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ABSTRACT 
 
Pelkie, Gregory James (M.S., Mechanical Engineering) 

Characterization of Viscoelastic Behaviors in Bovine Pulmonary Arterial Tissue 

Thesis directed by Associate Professor J. Hang Qi 

 

This work presents a characterization of the influence of viscoelasticity on the 

mechanical behavior of bovine pulmonary arteries.  It is commonly accepted that biological soft 

tissues do indeed exhibit viscoelastic characteristics; however its effect has yet to be quantified.  

Stress relaxation tests are used to determine the time dependent response of bovine pulmonary 

tissue.  Fitting this data to a modified standard linear solid model, allows a total of five 

independent time constants are attained, each of which describe individual time scales on which 

the medium has a viscoelastic response to an applied strain.  These time constants are applied to 

an analytical model through the Boltzmann integral in order to describe the stress response to a 

prescribed loading strain.  The strain used in this case was a sine wave in order to mimic the in 

vivo flow of blood from the heart.  These results were also modeled using finite element 

simulations in order to verify the time dependent response.  It was found that although 

viscoelasticity is a necessary consideration, depending on the loading conditions, it may in some 

cases be either neglected or simplified.  A time scale at which testing should be done in order to 

reduce time dependent effects as well as a simplified model describing the viscoelastic effect on 

the ultimate tissue response is presented. 
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CHAPTER I 

I.  Introduction 

One of the major causes of death in the modern world is cardiovascular disease [1].  For 

this reason, much effort is put forth in order to model and explain the mechanics which govern 

both physiological and pathophysiological arterial states.  Currently, it is not possible to 

completely model cardiovascular system function or a response which accurately reflects each of 

the physiologic phenomena taking place in vessels.  However, the ever increasing computational 

capabilities of computers and the advancement of mechanics are allowing models to become 

more and more accurate.  These arterial models are typically aimed at a better understanding of 

arterial diseases, including hypertension, aneurisms, and atherosclerosis as well as for design of 

treatment devices such as the angioplasty, stent, bypass, or graft [1]. 

These aforementioned reasons make it important to have a suitable constitutive model to 

utilize when creating a structural model accurately describing pulmonary arterial function.  

Viscoelasticity is the main mechanical component of arterial function which has yet to be widely 

considered in soft tissue constitutive models [1-4].  For accuracy, there are ever increasing 

numbers of fitting parameters in recent models [5], in which case, adding variables to account for 

viscoelasticity would increase this complexity to an even further extent.  For this reason, it is of 

vast importance to determine the extent of viscoelasticity’s role during in vivo mechanical 

loading.  Also, development of a simplified approximation which would account for the 

viscoelastic behavior could be of great significance. 

This work presents an analysis on the influence of viscoelastic behavior on bovine 

pulmonary arterial mechanics.  Using a modified standard linear solid model, the stress 

relaxation response curves of the tissue can be fit allowing characterization of the viscoelastic 

response.  Stress relaxation tests have been proposed to examine the time dependent behavior or 
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arterial tissue [6-11].  Fitting this data to the modified standard linear solid model allows both the 

moduli and time constants to be quantified [4, 8, 12].  Once the time dependent behavior is 

quantified, we are able to model in vivo behavior to quantify the effect of viscoelasticity.   

Through both experimentation and modeling, this study characterizes the viscoelastic behavior of 

bovine pulmonary tissue.  Using five decaying exponential functions in the modified standard 

linear solid model, the various times at which the material responds to a strain can be evaluated.  

These time constants determine the time scale at which the viscoelasticity is most important.  

The results of this study will characterize viscoelasticity and determine the importance of its 

inclusion in constitutive models describing the mechanical behavior of pulmonary arterial tissue.  

A simplified model accounting for this time dependent behavior will also be introduced and 

verified.  
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CHAPTER II 

 

II.  Background 

Biology Background 

The pulmonary arteries are of particular biological importance, as they carry blood which 

is low in oxygen to the lungs, which in turn oxygenates the blood.  The walls of these arteries are 

thick and the pressure is high as compared to the vessels in the rest of the body.  The histological 

structure of arterial walls consists of four major components.  The first of these components is 

the smooth muscle cells (SMCs).  The SMCs are a living component of the wall, which under 

neural control, actively contract and expand causing a change in both the geometry and modulus 

of the vessel [1].  The smooth muscle cells are thought to be one of the viscoelastic components 

of the vessel [13]. 

The second component of the arterial wall is elastin, a rubber-like protein synthesized by 

the smooth muscle cells.  Elastin in the arterial walls is present in its polymerized form, creating 

a fenestrated network of thin fibers.  It has an elastic modulus on the order of MPa [14].  A 

second protein synthesized by SMCs is collagen.  Collagen is inelastic, in that its modulus 

increases with increasing strain.  The modulus is on the order of 10 MPa to a few hundred MPa 

[14].  Collagen is widely accepted as the main factor which causes nonlinear behavior of the 

tissue.  It is also commonly understood that at low strains the collagen fibers are folded and do 

not contribute to the elastic properties until they are pulled taught.  At this point the collagen 

fibers are able to bear a large portion of the stress.  The fourth component of the artery is the 

ground substance.  This is a gel-like, highly hydrated matrix and is usually not considered to 

contribute to the elastic properties of the wall [1]. 
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These four components make up three layers, or tunicae, in the histological structure [2, 

5].  This layered structure can be seen in Figure 1.  The innermost layer is the intima, which 

consists of a monolayer of endothelial cells resting on a thin membrane.  Although the intima is 

known to contribute to the flow control, the mechanical contribution of the endothelium to the 

wall is negligible.  Thus, the contribution of the intima, as a whole, to the mechanical behavior or 

the arterial wall is commonly neglected [15]. 

 
Figure 1.  Diagrammatic scheme of the layered structure within the wall of an elastic artery 

adapted from [3]. 

 

The tunicae media is the middle and thickest layer of the arterial wall.  It is separated 

from both the innermost and outermost layers by lamina consisting of elastin.  The structure of 

the lamellae is able to change in order to minimize the radial stress gradient within the arterial 

wall [14, 16].  The outer layer (adventitia) of the vessel is mostly comprised of loose helical 

collagen fibers which are embedded within the ground substance.  The adventitia consists of a 

small amount of elastin however SMCs are not present in the adventitia. 
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Material Properties 

Arterial tissue is an orthotropic, highly nonlinear, composite solid made up of different 

constituent materials; thus, an effective constitutive model of the arterial wall requires 

understanding of the entire histology of the artery.  First of all, arteries are subcategorized into 

two types: elastic and muscular.  Elastic arteries are those located relatively close to the heart, 

and consequently have larger diameters.  Conversely, muscular arteries are located at the 

periphery of the circulatory system.  Since pulmonary arteries are located in close proximity to 

the heart, this work is limited to the study of elastic arteries.  Each of these arterial types consists 

of the three separate layers:  the intima, media, and adventitia [2, 5].   

The intima consists of a single layer of endothelial cells which create a lining along the 

wall.  In healthy tissues, the intima plays an insignificant role in terms of the solid mechanical 

properties.  Of note however, is that the intima both thickens and stiffens with age, so it is 

possible that it could play a larger role in this case [3].  The media is made up of a complex 

network of both elastin and collagen fiber bundles.  The orientation and configuration of the 

elastin and collagen fibrils, elastic laminae, and smooth muscles cells create a helix which gives 

the media high strength.  This matrix also allows the media to resist loads in both the 

circumferential and longitudinal directions, each of which are described below.  Due to all of 

this, the media is the most significant layer in terms of mechanical properties.  The outermost 

layer of the artery tissue, the adventitia, primarily consists of fibroblasts and fibrocytes, which 

are cells that produce collagen and elastin respectively.  The adventitia is much less stiff than is 

the media when in the assumed load-free configuration.  However, under high pressures, the 

collagen fibers are engaged creating an extremely stiff structure in order to help resist rupture [3, 

14].   
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Since under the physiological range of deformation arteries do not change their volume, 

they are assumed as incompressible.  This assumption becomes very important because it allows 

the properties of three-dimensional materials can be determined through two-dimensional testing 

[3].  Uniaxial tests on arterial samples may provide basic information about the material but in 

order to sufficiently describe the anisotropic behavior of the tissue, biaxial testing must be done.  

The mechanical properties shown by this test are greatly dependent on both chemical and 

physical factors.  These include a variety of parameters such as temperature and the pH of the 

bath.  These among other dynamics reinforce the importance of noting such factors within the 

experimental data set.  Also, the mechanical properties of the arterial walls change along the 

arterial tree, however the general behavior of the sample stays relatively consistent [3, 14]. 

 

Preconditioning 

Mechanically characterizing biological soft tissues is extremely difficult due to the above 

mentioned material variables.  Since biological tissues are both inhomogeneous and anisotropic, 

the material properties which are used to characterize the mechanical response are usually 

obtained from incredibly variable data.  Not only do the tissues exhibit anisotropy, but they also 

have a spatially varying microstructure leading to even deviation of material data.  These 

discrepancies are often attributed to the large natural variability of tissues, but in reality, 

neglecting the strain history-dependant viscoelastic response of the tissue can be the largest 

contributor to large data discrepancies [6]. 

During cyclic deformation, biological soft tissues demonstrate hysteresis, or memory 

effect, that is independent of rate over several decades of strain rate [17].  However, as the strain 

rate is increased in displacement controlled experiments, the overall stiffness of the tissue 
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increases [18].  On top of this, soft tissues show both stress relaxation and creep effects in 

response to constant displacement or load, respectively.  Due to the strong time dependency of 

the tissue response, it is often very important to create a well specified loading history prior to 

any data collection [18].  

All arterial tissues, and the vast majority of all biological soft tissues for that matter, 

exhibit strong, stress softening effects.  This phenomenon occurs over the first few load cycles 

and eventually the material begins to produce a nearly repeatable stress strain curve [14].  For 

this reason, the initial curve is never used when characterizing mechanical properties of materials 

with memory [19].  This softening effect is very evident in Figure 2.  A nonlinear stress-strain 

response is shown in all arterial tissue.  The tissue is very flexible and highly deformable when 

small loads are applied.  However, when the load (or pressure) is increased, the tissue exhibits an 

exponential stiffening rate caused by the engagement of the much stiffer collagen fibers [20].   

 

 

(A)                                                                          (B) 

 

Figure 2.  Figure 2A shows the variation between the stress and strain responses of the same tissue 

over cycles 1 through 10.  Figure 2B shows only cycle 1 and 10 of the preconditioning cycle.  It 

can be observed that the loading and unloading path become increasingly similar until the curves 

become nearly repeatable. 

 



8 
 

Loading beyond the viscoelastic portion (when the curve changes from concave to 

convex) occurs in clinical treatments such as an angioplasty [1].  Deformation outside of the 

physiological range begins to bring about inelastic effects which can lead to drastic changes in 

material behavioral mechanics.  This is caused due to a stress that is high enough to destroy 

various intermolecular bonds including the following:  ligand-receptor interactions, proteoglycan 

interactions, and intermolecular bonds.  In the case of altered material behavior, damage 

mechanics can be used to quantify the current behavior when compared to the non-stressed, 

virgin material properties [5, 14]. 

The occurrence of stress-softening is the reason for which in all research, some type of 

preconditioning is done to the sample.  Figure 2 gives a visual representation of the effect of the 

so-called preconditioning through uniaxial test data.  The plot on the left gives a good 

representation of how the material changes from cycle to cycle.  It is easily noted that the first 

stretch reaches a much higher stress at the same level of strain.  The plot to the right represents 

the first and last of the ten preconditioning cycles.  Not only are the material properties much 

different, but perhaps more importantly, the tissue behaves as a history dependent material, 

returning along a much different stress-strain curve.  The area between these curves is the 

hysteresis loop and shows that the material has ever changing properties with respect to time.  

Thus, the second cycle will start along the unloading path of the first which explains the shift of 

the curves to the right on the first plot.  This example shows the assumed necessity of 

preconditioning arterial tissue in order to collect accurate data [14]. 

Preconditioning is obviously considered to be a very important component of biological 

tissue testing.  It is reported that preconditioning provide benefits which consist of a known 

loading history and makes it possible to gain a both consistent and repeatable state for the period 
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of data recording [17].  Early studies on soft tissue properties showed that after about three 

preconditioning cycles, the tissue followed a consistent loading and unloading path, thus leading 

to repeatability throughout the test.  Preconditioning has become standard test protocol when 

dealing with biological tissues for these aforementioned reasons.  Both the stress-strain and 

stress-relaxation responses of biological tissues have been investigated using various 

combinations of max strain and strain rate.  In most of these cases it is seen that the protocols 

involve cyclic preconditioning on the order of 3-30 cycles, which is somewhat dependant on the 

type of tissue sample being tested [18, 19].  It is also seen as commonplace for the studies to 

apply a maximum strain and a strain rate that correspond to the test which is being done.  In tests 

that involve testing at various strain or strain rate combinations it is commonplace to have a 

preconditioning cycle which corresponds to each individual test [19].   

Higher stress-strain responses can be seen in specimens which are preconditioned to a 

lower strain, suggesting that preconditioning strain magnitude does indeed affect the stress-strain 

response during the test [19].  As mentioned, it is common for studies to test biological samples 

under various combinations of strain and strain rate.  Fiford and Bilston looked at spinal cord 

specimens which were tested under various conditions and the preconditioning which was 

performed corresponded to the strain and strain rate of the actual test [21].  However, the stress-

strain data from these tests did not produce repeatable results; two curves taken under the same 

conditions did not overlap.   It is very likely that this discrepancy is due to preconditioning the 

specimens to different strain magnitudes, therefore a common preconditioning strain magnitude 

should be used to obtain consistent data sets. Such a small issue can produce notable effects on 

both stress-strain and stress relaxation responses of these tissues.  Notably the tissues in this 

analysis were spinal cords but it is presumed that the same principles could be applied when 
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considering preconditioning procedures in any biological tissue sample [19].  The discrepancy 

between preconditioning strain and mechanical property data achieved is shown below. 

 

 

Figure 3.  Stress–strain responses of spinal cords subjected to uniaxial strain of 2% (groups 2 and 

3) and 5% (group1). While specimens of groups 1 and 2 were preconditioned to 5% strain, 

specimens of group 3 were preconditioned to a lower strain of 2% [19]. 

 
It has also been suggested to use repeated stress-relaxation cycles as a method of 

preconditioning.  It had been assumed that both stress relaxation and creep experiments carried 

out from some generalized reference state would in themselves be repeatable, and thus generate 

accurate viscoelastic material constants.  This procedure has been widely used, however it has 

also been shown that a repeatable stress relaxation curve cannot be obtained using conventional 

preconditioned state [6, 22].  The exact mechanisms of preconditioning remain unknown; 

however it is very likely that the cyclic loading at a specified strain induces structural 

rearrangement within the tissue.  This allows the material to return to the same loading protocol 

[6]. 
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Figure 4.  Load preconditioning curves from the same specimen shown in Fig. 6, after conclusion 

of the stress relaxation tests.  Note that the 25 load preconditioning cycles plotted for each day are 

virtually identical, indicating that the specimen remains in a load-preconditioned state after each 

sequence of stress relaxation. There is evidence, however, of specimen lengthening (~6%) over the 

course of 3 days of testing [6]. 

 

 The preconditioning procedure, coupled with the need to impose a reference load to 

ensure tissue tautness, changes the so called zero stress, zero strain state of the tissue.  It is 

essential that this reference state be consistently represented as a part of modeling the subsequent 

soft tissue behavior, since it is a direct effecter of the stress and strain calculation.  Typically, the 

stress and strain values are calculated using dimensions of the sample in a fully relaxed state or 

under a minute preload following the preconditioning procedure [18]. 

 Preconditioning has even been questioned on being a valid procedure.  This is due to the 

potential of variation both within and between different studies that the preconditioning strain 

may cause.  Conversely, Gefen et al. [23] demonstrated that there is a large variation in 

biological tissue properties when preconditioning is not performed, thus making it seemingly 

preferable to perform a preconditioning procedure when examining the mechanical properties of 

these tissues [19].  Cheng et al. recommended that in future studies, that the preconditioning 

strain should be stated, and also performed to the highest strain of any test within that study.  

Secondly, if comparisons are made with another study, it would be useful to use the same 
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preconditioning strain as the comparison study for at least part of the test, resulting in much more 

meaningful data comparisons [19]. 

 Analyzing mechanical properties of biological materials which exhibit viscoelastic 

behavior is extremely challenging.  Viscous models are not universally acceptable and material 

testing protocols are far from standardized.  For sake of statistical analysis, it is often beneficial 

to subject one sample specimen to sequential mechanical tests.  This method eliminates the issue 

of material variability (which is a large issue in nearly all biological specimens) however there is 

an unknown effect of specimen memory.  Preconditioning has been used to overcome these 

effects and although always mentioned as a necessary first step in soft tissue testing, the effects 

of intermediate preconditioning along with adequate recover times (or lack thereof)  is not well 

understood [22].  

Although preconditioning has become an accepted aspect of biological soft tissue 

mechanical testing, there is not a consistent preconditioning protocol [18, 19].  The effects of this 

preconditioning however seem to be qualitatively consistent in that multiple loading cycles lead 

to a repeatable data set [18]. 

 

Viscoelasticity 

It is well known that the mechanical behavior of soft tissues is viscoelastic rather than 

elastic [7, 10, 11, 20, 24-38].  The biological functionality of the viscoelasticity is however not 

very clear.  Understanding the changes in material properties of the arteries and the relationship 

with the viscoelastic properties should give a significant insight into the tissue’s functional 

behavior [27, 28].  Blood vessels are typical biological soft tissues in that they exhibit highly 

nonlinear stress-strain relationships, are anisotropic, and have significant viscoelastic features.  
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Understanding the mechanical behavior, including viscoelastic relationship, is imperative when 

considering the vascular processes under both physiological and pathophysiologial conditions 

[38].  The pseudoelastic formulation, or investigation of the loading and unloading curves of the 

stress-strain response has already been widely used, however in order to do a more realistic 

analysis, the viscoelastic behavior of the arterial wall is becoming a much more relevant 

consideration [20, 34]. 

One hypothesis on the physiologic purpose of viscoelasticity is that it reduces the stresses 

and strains seen by the vessel walls, which could significantly affect the fatigue life of the artery.  

It is known that viscoelasticity in blood vessels helps reduce the wall stress and strain during a 

sudden mechanical load increase, as in hypertension.  Even still, the complete functional role of 

viscoelasticity in blood vessels has not been fully understood [38].  In order to characterize the 

mechanical response of in vitro artery walls, uniaxial tensile experiments can be carried out.  

Biomechanical models are needed to classify arterial vessels both to further understand the 

biological functional behavior and to reduce the viscoelastic mismatch with arterial replacement.  

Stress relaxation tests allow the time dependant behavior of the tissues to be examined.  In this 

case, biological soft tissues are not greatly affected by the strain rate of the loading ramp phase 

[28]. 

  Looking at viscoelasticity from a mechanical perspective, it is possible that the energy 

dissipation produces heat which helps to maintain the homeostatic state of the tissues.  Secondly, 

the hysteresis loop shown previously may filter out instantaneous loading changes, which could 

help in prevention of sudden mechanical failure.  Viscoelasticity has not yet been related to the 

fatigue of arteries, despite its effect on this loading change.  Based on current findings, Zhang et 

al. have hypothesized that the reduction of stress and strain due to the viscoelastistic arterial wall 
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property is beneficial in terms of artery fatigue life.  Also, they hypothesize that in general, 

viscoelasticity is present in biological tissues to reduce fatigue failure.  Their reasoning behind 

this assumption is based on the idea that fatigue should be significantly smaller in viscoelastic 

response when compared to a purely elastic response [38]. 

The arterial wall’s slow, time-dependent uniaxial stress-relaxation decay can be 

characterized by implementing viscoelastic models.  The decay can be described through weak 

power-law functions.  Cariem et al. successfully applied the quasi-linear viscoelastic theory to 

modeling these responses, however accurate estimation of the relaxation parameters from the 

reduced relaxation is more difficult [28].  This method is used in order to reduce the 

mathematical complexity in characterizing the viscoelastic response in arteries along with other 

biological soft tissues [38].  Alternatively, the fractional calculus theory has been proposed to 

describe stress relaxation curves of healthy human aortas.  In this study, stress relaxation 

measurements were taken at three incremental stress levels, as seen in Figure 5 [28]. 

 

 

Figure 5.  Schematic protocol with three stress levels: low (0.025 MPa), med (0.05 MPa) and high 

(0.1 MPa). Relaxation time = 1 hour. Loading rate during preconditioning ramps:  0.03 mm s
−1

 

[28]. 

 

Using the data gathered from the protocol described above (Figure 5), Cariem et al. 

integrated a relaxation function, containing three parameters, into the quasi-linear viscoelastic 

theory to fit the experimental data.  Their formulations were based on a modified Voigt model, 

which included a fractional element termed a spring-pot, which intermediates a standard spring 
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and dashpot [39].  This is similar to the dashpot except instead of a first order derivative, it is an 

alpha order derivative which is no longer limited to an integer value.  This resulted in a very 

accurate stress relaxation prediction which shows a power-law decay matching the time course 

of all the stress relaxation experimental data [28, 39].  The accuracy of this prediction is shown 

in Figure 6. 

 

 

Figure 6.  Ramp and stress relaxation example for specimen PH45 during stress level HIGH.  

Measured data in solid line and model fitting in dots.  The difference (Error) between them is also 

drawn as a solid line.  A magnified area of the peak and initial relaxation portions is shown the 

center of the figure.  Image from Craiem [28]. 

 
 Although there has been much consideration of viscoelasticity and its importance in the 

arterial vessel, the effect of this viscoelasticity under physiological loading conditions has yet to 

be quantified.  In general, there is very little data on relaxation times of biological soft tissue, 

pulmonary arterial tissue in our case.  In this work, we look to quantify the relaxation times of 

bovine, pulmonary tissue as well as delve into the significance of considering this viscoelastic 

effect when trying to accurately model pulmonary arteries under in vivo conditions. 
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Pressure-Diameter Relationship 

Biomechical behavior of the artery needs to be further understood due to the widespread 

use of the balloon angioplasty to increase the lumen of an obstructed vessel through the use of an 

intravascular balloon catheter.  The mechanisms of the balloon angioplasty as they relate to the 

mechanical behavior of arteries is however, very complicated.  It does seem that the cells of 

bodily tissues tend toward a state which results in optimal stress and strain [40].  Very limited 

data has been available on vessel mechanics in this manner [31]. 

 Histological tests have shown that the primary mechanisms comprise of overstretching 

the media and splitting of the intima [31].  This is relevant, since as stated earlier, the media and 

adventitia account for nearly all of the normal biomechanical behavior of vessels [14].  For this 

reason, studies on healthy arteries will help with the understanding of the overstretching of the 

vasculature. 

 Kang did a pressure-diameter analysis on common canine carotid arteries.  The 

cannulated vessels were cyclically inflated and deflated from 0-200 mmHg at both 5 and 25 

gram axial loads.  As with other biological soft tissues, the specimens exhibited both hysteresis 

and a nonlinear pseudoelastic response.  The arterial behavior at low pressures were nearly 

identical, however when the pressure was increased, the balloon induced specimens dilated 

considerably wider [41].  Figure 7 below gives a visual representation of this data.  There is 

obviously a shift in the outer diameter of the vessel, as the control vessels do not expand to the 

same final diameter as the balloon-induced vessels.  This means that there must be some type of 

weakening, or damage, to the blood vessel wall.  Also of note, each of the vessels showed 

considerable stiffening with increased axial loads [31]. 
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 Current understanding suggests that pressure-diameter data are useful when qualitatively 

evaluating the behavior of normal and balloon-inflated vessels independently.  Also, this data 

suggests that this can be done at various levels of axial loading [31]. 

 

 

Figure 7.  Comparison of vessel behavior (axial weights are 5 gram and 25 gram, respectively).  

Both the control and balloon-induced vessels stiffened with increased axial loads [31]. 
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CHAPTER III 

 

III.  Experiments 

Experimental Background 

It has been proposed to use stress relaxation tests in order to examine the time dependent 

behavior of arterial tissue.  These tests are able to be used since biological soft tissues are not 

greatly affected by the strain rate of the loading ramp phase, assuming a relatively quick loading 

rate [28].  Fitting the stress relaxation response to a stress relaxation function allows both the 

moduli and time constants to be determined for the arterial tissue [4, 8, 12].  This study 

investigates the quantitative, viscoelastic behavior of bovine pulmonary arteries through 

experimentation.  Using five decaying exponential functions for a modified standard linear solid 

viscoelastic model, the mechanical parameters of the arterial tissue may be evaluated.  The 

results of this study will determine the importance of considering viscoelasticity when modeling 

the stress behavior of arterial tissue.  Also, the strain rate at which mechanical tests should be 

done in order to avoid strong relaxation effects will be quantified.  Finally, a simplified model 

will be developed in order to easily account for the physiologic, viscoelastic behavior. 

Materials and Methods 

Sample Preparation 

Bovine arterial samples for this study were obtained fresh (Arapahoe Meat Packing, 

Louisville, CO), within an hour of the animal’s slaughter.  Tubular, arterial sections from the 

main (MPA), right (RPA), and left (LPA) pulmonary arteries were removed at the same locations 

relative to the heart on each of the animals.  Circumferential and longitudinal strips were excised 

from each respective arterial sample.  The size of the strips varied between artery type since the 
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MPA has a much larger circumference and thickness than do either the RPA and LPA.  A typical 

steady state length for the MPA was about 25 mm with a width and thickness of 7 mm and 4 mm 

respectively.  Right and left pulmonary samples were on the order of 15 mm in length with a 

width of roughly 5 mm and thickness of 1.5 mm.  Excised samples were immediately placed into 

a phosphate buffer solution and refrigerated to near freezing.  A total of nine animals were used 

for this investigation.  The bovine were roughly 12 months in age, weighing between 600 and 

800 pounds. 

Experimental Method 

The mechanical tests on the pulmonary artery samples were conducted using an MTS 

Insight 2, with data acquisition via the TestWorks® MTS software.  Samples were clamped into 

place using custom plastic grips and pulled taught.  The entire setup was then enclosed within a 

plexiglass chamber for the duration of the tests in order to maintain a controlled environment.  

Phosphate buffer solution was poured into the environmental chamber and preheated to 37.1ºC in 

order to simulate in vivo conditions.  The tissue sample was then preloaded to approximately 

0.01N in order to remove all slack.  At this point, the initial gauge length was recorded.  

Experimental data were taken at a rate of 100 points per second for the first 30 seconds and 10 

per second for the remainder of the test. 

A test method within the MTS software was programmed for our prescribed stress 

relaxation test.  Each arterial sample was preconditioned for 10 cycles, at a strain equivalent to 

the relaxation test strain, prior to each relaxation test being performed.  The sample was then 

ramped at 30% per second to the prescribed test strain.  Constant test strain amplitudes of 35%, 

45%, 55%, and 65% were applied respectively to the tissues, totaling four stress relaxation tests 

per sample.  In order to minimize the chance of sample failure, tests were done in order of 
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increasing strain magnitude, starting with the 35% relaxation test.  This is necessary since the 

maximum test strain (65%) is very close to the failure point of the material.  For each relaxation 

test, the samples were held at each respective strain for a period of 1200 seconds in order to 

observe the stress relaxation behavior.  This entire procedure was performed on each of the six 

bovine tissue samples (MPA, LPA, RPA in both longitudinal and circumferential directions) for 

a total of 24 relaxation tests per animal. 

Data Fitting 

For rate dependent materials, the modulus, 𝐸 𝑡 , can be decomposed into 

    0E t E G t    (3.1) 

Where 𝐸0 is the equilibrium state modulus asymptote obtained as time approaches infinity, and 

𝐺 𝑡  is the relaxation function describing the material relaxation characteristics.  In this study, 

the aforementioned relaxation function was employed to determine the parameters describing the 

stress relaxation behavior. The model used was comprised of a spring and five Maxwell units, all 

in parallel.  A decaying exponential equation (Prony series) was chosen as the reduced relaxation 

function for this model and is defined as in (3.1).  The Prony series is a common form of 

constitutive equation used to describe relaxation behavior [4].  It was determined that five 

Maxwell branches were necessary in order to capture the strong, initial stress decay of the 

pulmonary artery. 
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  (3.2) 

𝐸𝑖  and 𝜏𝑖  are defined as positive constant values which can be determined through 

experimentation.  Thus, the stress in the tissue is 

    0t E G t      (3.3) 



21 
 

The linear portion (𝐸0) describes the elastic stress behavior of the tissue while the relaxation 

function, 𝐺 𝑡 , represents the time dependent, decaying nature of the stress response.  The 

method of least squares was used within MATLAB to fit the experimental data to equation (3.3).  

This fit allowed the material constants for each of the data sets to be determined.  As previously 

mentioned, it was here established that five Prony series were necessary in order to capture the 

strong initial stress relaxation response.  This observation is the reason that 5 Maxwell elements 

were used in the aforementioned constitutive model.  

Results  

Typical Stress Response 

Of the nine bovine, tissue samples from each artery, in each direction were obtained.  A 

small number of tissue samples failed during testing so the corresponding data was left out.  E 

arterial samples were preconditioned and elongated to 35%, 45%, 55%, and 65% respectively 

before undergoing the stress relaxation test.  Figure 8 shows the normalized stress relaxation of 

the circumferential samples.  Strains of 55% and 65% show a similar relaxation trend while the 

35% and 45% strained samples showed a lower degree of relaxation, especially in the first 300 

seconds.  Past that point, the decaying rate slowed to a similar magnitude for each of the strain 

cases.  The 55% and 65% samples decayed to a normalized stress rate of less than 0.7 while the 

35% and 45% strained samples decayed to a normalized stress of about 0.8.  These trends were 

common in both the circumferential and longitudinal directions.  The data in Figure 8 is an 

average of all bovine arterial data.  The right plot shows the normalized stress relaxation 

behavior of the longitudinal samples throughout the same strain regime.  Decaying trends are 

similar to those seen in the circumferential directions.  As the test strain was increased, the 

relaxation decay through the first 300 seconds increased. 
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Figure 8.   Normalized stress relaxation response for the circumferential and longitudinal 

directions.  The observed stress for the 65% strain case falls to below 70% of the initial stress as 

time approaches 1200 seconds.  It is seen that even with low constant strain, the final stress 

response is less than 80% of original.  The rate at which the stress decreases becomes linear at 

approximately 300 seconds in all of the cases. 

 

 In order to model the stress relaxation behavior, the experimental curve was fit to a Prony 

series model.  Initially, it was thought that a 2 term Prony series would be sufficient in fitting the 

experimental data.  However, as shown in Figure 9, in order to capture the strong initial stress 

decay, it was necessary to include 5 terms in the Prony series (as shown in (3.2)). 

 
Figure 9.  Sample curve fit of the Prony series model to the experimental relaxation data.  

Initially, the data was fit to a two Prony series model however it was found that five Prony series 

were necessary to capture the strong initial relaxation of the tissue.   
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Grouped Stress Response 

For the first analysis, the individual data sets (for both tissue location and direction) were 

simply pooled together in order to show the overall trends.  It can be seen from Figure 10 that the 

time constants followed a fairly normal data curve.  In total, 184 measured time constants were 

combined to form this set. 

 
Figure 10.  Histograms of the pooled time constants for all of the gathered data.  The data follows 

a relatively normal distribution curve.  No major trends were observed between the tissue 

locations (MPA, RPA, LPA) nor the direction (circumferential, longitudinal).   

 

The time constants were relatively consistent throughout the strain regime for each of the 

tissue samples.  Table 1 below plots each of the average relaxation times for each respective 

tissue and direction.  The relaxation times were very similar between the circumferential and 

longitudinal directions.    This is true for the initial relaxation constant (0.3 - 0.4 seconds) all the 

way to the longest time constant (~700 - 800 seconds).  Similarly, the time constants change only 

minimally between different tissues (MPA, RPA, LPA). 
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Table 1.  Average and standard deviation of all time constants as determined by Prony series curve fitting. 

MPA 
 

τ1 τ2 τ3 τ4 τ5 

 
Circ. Avg. 0.392 2.489 16.064 86.112 803.503 

 

Stdv. 0.082 0.473 8.901 33.3545 234.913 

Long. Avg. 0.408 2.630 14.827 83.842 692.722 

 

Stdv. 0.101 0.753 5.955 39.386 239.192 

RPA 

      
Circ. Avg. 0.296 2.183 14.307 78.673 666.709 

 

Stdv. 0.069 0.499 7.752 24.001 154.996 

Long. Avg. 0.324 2.305 14.593 87.575 696.701 

 

Stdv. 0.119 0.784 8.134 29.521 153.156 

LPA 

      
Circ. Avg. 0.316 2.269 12.840 84.202 738.649 

 

Stdv. 0.073 0.565 5.108 27.015 169.306 

Long. Avg. 0.369 2.440 13.271 84.207 774.888 

 

Stdv. 0.094 0.679 6.630 29.554 158.003 

 

The moduli determined from fitting the 5 term Prony series is shown in Figure 11.  In 

general, for all of the tissues, the modulus increased with larger time constants.  This suggests 

that the time constants corresponding to a smaller time scale are less influential on the overall 

mechanical behavior.  Conversely, the larger moduli would be assumed to be more relevant, 

assuming that their respective time scale is reached. 

 
Figure 11.  Plot of the grouped branch moduli with standard deviations.  The moduli were found 

by fitting the 5 term Prony series (Eq. 2).  The moduli corresponding to the fastest time constants 

are generally lower in magnitude than are the moduli related to the slower time constants. 
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The time constants determined from curve fitting were also plotted, as shown in Figure 

12.  The standard deviations for these time constants were relatively low, suggesting that there is 

little difference when comparing either tissue location or tissue direction.  Interestingly, the time 

constants follow the logarithmic scale very well. 

 
Figure 12.  Semi-log scale plot of the grouped relaxation times with standard deviations.  The 

standard deviations are relatively small suggesting that the time scale my not significantly differ 

between either tissue location or tissue direction. 

 

Effects of Strain Levels 

The strain level used for the relaxation test was not shown to have a significant effect on 

the observed relaxation curve parameters.  Figure 13 presents the average values for the moduli 

and standard deviations for the main pulmonary artery data in the circumferential direction.  

Similarly, Figure 14 shows the average time constant values for the same data set.  For the sake 

of simplicity, it was determined to present only the circumferential, MPA data set since it is the 

most physiologically significant for this discussion.  The main pulmonary artery is closest to the 

heart and the circumferential direction should be more relevant to pulsatile blood flow [14]. 
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Figure 13.  Plots of the average moduli in relation to the test strain.  The data set chosen for these 

plots was that from the MPA in the circumferential direction.  It can be seen from the plots that 

there is no strong correlation between the observed moduli and the strain at which the test was 

performed. 

 

The moduli are again shown to increase with relaxation time.  The modulus for the 

longest relaxation time is much greater than is the moduli of the fastest relaxation time.  There is 

no significant difference between the test strain and the measured modulus. 

 
Figure 14.  Plots of the average time constants as a function of test strain.  The data set chosen for 

these plots was that from the MPA in the circumferential direction.  It can be seen from the plots 

that there is no correlation between the observed relaxation times and the strain at which the test 

was performed. 

 

Effects of Locations 

Now, we will again consider each of the tissue locations (MPA, RPA, LPA).  Since 

Figure 13 and Figure 14 have shown that test strain does not have a large effect on either the 

measured moduli or the measured time constants, we will consider only the 55% test strain for 

this section.  The moduli follow the same trends, in that the slower relaxation times correspond 

to a higher modulus.  The difference however, lies in the moduli of each respective direction.  In 
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general, it seems as though the left pulmonary artery has the highest moduli followed by the right 

and main pulmonary arteries respectively.  This is shown in Figure 15. 

 

 
Figure 15.  Plots of the average moduli in relation to the tissue direction.  The data set chosen for 

these plots was that from the circumferential direction taken at 55% strain.  It seems as though the 

RPA produces the highest moduli followed by the LPA and MPA respectively. 

 

Unlike the differing moduli, the relaxation times seem to be very consistent regardless of 

tissue location.  Again, the time constants increase in a very logarithmic fashion and no 

significant difference is seen between the MPA, RPA, or LPA respectively. 

 
Figure 16.  Plot of time constant data for the MPA, RPA, and LPA in the circumferential direction 

at 55% test strain.  As expected, there is little variation in the relaxation time scale between the 

three tissue types. 

 

Effects of Directions 

The last comparison looks at the effect of the direction on the observed parameters.  In 

this relation we again consider only the main pulmonary artery at 55% test strain.  The moduli 
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followed the same trend seen in each of the other comparisons, where the time constants have a 

higher corresponding modulus than do the fastest relaxation times.  From Figure 17, we can see 

that the direction did not seem to greatly affect the observed modulus, although in each case the 

circumferential direction did seem to be slightly stiffer, agreeing with claims by Hozapfel [20]. 

 

Figure 17.  Plots of the average moduli in relation to the test strain.  The data set chosen for these 

plots was that from the MPA at 55% test strain.  It can be seen from the plots that there is no 

strong correlation between the observed moduli and the direction of the tissue, although the 

circumferential direction does provide slightly stiffer average moduli in all cases. 

 

 

As in each of the other comparisons, there is no correlation between the direction and the 

observed relaxation times.  These results are shown in Figure 18. 

 

Figure 18.  Plots of the average time constants as a function of test strain.  The data set chosen for 

these plots was that from the MPA at 55% test strain.  It can be seen from the plots that there is no 

correlation between the observed relaxation times and the strain at which the test was performed. 

 



29 
 

Experimental Results 

The initial study investigated the time dependence of bovine arteries as well as the ability 

of the reduced relaxation function to accurately describe the stress relaxation phenomena.  The 

two different sample directions (circumferential and longitudinal) were considered due to the 

difference in fiber orientation [5] in order to determine the directional effect of viscoelastic 

properties.  It has been shown that in skin tissue, fiber orientation seems to affect the stress 

relaxation behavior of the samples; the regular fiber realignment process can only occur when a 

mechanical load is exerted along a particular fiber direction [8].  In our study, a significant 

difference in the decaying rate over the first 300 seconds was not observed when comparing 

circumferential to longitudinal directions.  Also of note, the summation of the five moduli 

parameters was found to be slightly larger in the circumferential direction than in the 

longitudinal direction.  Physiologically, this result seems to make sense as the in vivo artery 

experiences much more force in the radial direction when compared to the longitudinal direction.  

This claim agrees with the literature as it has been previously shown that arterial tissue is stiffer 

in the circumferential than in the longitudinal direction [3, 14].  Stress caused by tension along 

the axis of the artery should be relatively small when compared to the radial stress from pulsatile 

blood pressures.  This phenomenon was observed in each of the tissue locations (MPA, RPA, 

and LPA). 

The relaxation times of the material did not differ greatly between either sample location 

or direction.   Although all of the respective groups (MPA, RPA, LPA) were not shown to be 

equivalent by the two sample t-test, the magnitude of the difference was very minute.  It was 

observed that the relaxation times showed little variation between the circumferential and 

longitudinal directions.  The group averages of each of the three longest relaxation times lied 

within 3.5% between circumferential and longitudinal.  Similarly, each of the two short time 
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constants was within 10% between circumferential and longitudinal.  All of the average time 

constants did however increase slightly from the circumferential to longitudinal directions, 

although minimally.  This result implies that there is little or no difference in time dependency 

between the circumferential and longitudinal directions,.  Perhaps further research need be done 

on this as it is outside the scope of the current study.  The experimental time constant data can be 

seen in the comparisons presented in the results section.  Although the data was not shown to be 

similar in the t-test (p>0.05), the standard deviation from the sample means overlapped between 

both tissue type and direction for each of the respective time constants.  Also of note, the test 

strain did not seem to have any effect on any of the relaxation times achieved from the reduced 

relaxation curve data fit.  However, as seen in Error! Reference source not found., the 

normalized magnitude of the relaxation decay did increase with increasing strain in both of the 

tested directions.  Experimental results did show the relaxation rate approaching steady state 

after 300 seconds for all of the samples, verifying the time dependent nature of the arterial tissue.  

These results are similar to those found by Liu for the relaxation of porcine skin tissue [8]. 

Similarly, the test strain did not have a large effect on the modulus parameters.  As 

expected, the equilibrium static modulus, E0, also remained fairly constant with increasing strain.  

Only at high strains (65%) did the relationship seem to deviate, in which case the material is very 

close to its strain of yielding.  This resultant is sensible as this portion of the model describes the 

elastic (spring) response of the tissue, which is assumed to be linear.  The remaining moduli did 

not seem to be influenced by the test strain.  As shown in the comparisons in section 3, the 

measured moduli were relatively consistent with respect to both tissue direction and tissue 

location as well.  The only noteworthy difference is shown in Figure 15.  The moduli of the RPA 

seem to be substantially larger for all time constants than both the LPA and MPA.  Similarly, the 
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moduli of the LPA are stiffer than each of the MPA.  Perhaps this is due to the smaller 

dimensions of both the RPA and LPA when compared to the MPA. 

The normalized stress plots seen in Error! Reference source not found. show that there is 

a very strong decline in the magnitude of the stress response over the observed time period.  

Even at low test strains, the stress response decreased over 20 percent.  At more the extreme case 

of 65 percent test strain, the stress response decreased to nearly 65 percent of its original value.  

In general, with increasing test strain, the percent decrease of the normalized stress response 

grew.  In the case of the longitudinal direction (Error! Reference source not found.), there was a 

decrease in normalized stress response throughout the strain regime.  Strains of 35 and 45% 

produced similar normalized responses while the normalized response of both 55 and 65% 

strains were significantly lower.  There were similar results seen in the circumferential direction, 

shown in Error! Reference source not found..  There was no significant difference between the 

circumferential and longitudinal normalized relaxation curves.   

The strong relaxation, especially at high strains, suggests that static data might not 

accurately describe stress magnitudes.  For example, static pressure-diameter data may not 

produce an accurate representation of the true vessel pressure-diameter curve.  This would be the 

case if, in its in vivo state, the tissue is not entirely relaxed.  On the other hand, if the tissue does 

fully relax under biological loading, stress relaxation would have to be considered when 

developing mechanical test methods.  After 1 second of relaxation, it was observed that there 

was an average decrease of 2% in the magnitude of the stress.  After 6 seconds this relaxation 

resulted in about an 8% decrease in observed stress.  This data suggests that the loading ramp 

phase for a uniaxial test should take place as quickly as possible in order to reduce the effects of 

relaxation, agreeing with the statements of Craiem [28]. 
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CHAPTER IV 

IV.  Modeling 

Novel Model from Stress Relaxation Experiment 

This initial investigation has shown that arterial tissues do indeed exhibit viscoelastic 

behavior.  Now we will focus on determining what effect this viscoelastic nature has on the 

ultimate mechanical response of an in vivo, pulmonary artery.  Knowing this, we can make a 

judgment on the importance of considering the viscoelastic nature, both when testing and 

modeling pulmonary tissue.  For the simulation, the frequency of the heart rate oscillation for 

bovine is assumed to be approximately 95 beats per minute.  Using this information, along with 

the time constants from Table 2, we can model how this time dependency affects the stress 

behavior of the artery under these prescribed, physiologic conditions.  Taking data from Table 1 

and 2 for 35% strain, the stress-strain behavior can be predicted for each branch and then 

summed using the Boltzmann superposition principle. 

The Boltzmann integral can be applied in order to describe the stress behavior of a 

Maxwell element with a known strain behavior.  For this case, the Boltzmann integral is defined 

as: 
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where 𝜎𝑖 𝑡  is the stress at time 𝑡.  𝐸𝑖  and 𝜏𝑖  are defined as the modulus and time constant for the 

i
th

 Maxwell branch.  Finally 𝜀  is defined as the change in applied strain.  For this case, the strain 

is initially equal to zero so the integral bounds can be taken as follows: 
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 The prescribed strain input used in this simulation is comprised of an initial, linear, 

loading portion followed by a cyclic load.  The general strain is applied as in (4.3).  For 

continuity in the function, (4.4) must be satisfied.  
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The total strain after 𝑡1 can thus be described and simplified as follows: 
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Combining (4.3) with (4.4) and taking the derivative we arrive at the change in strain 
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The stress then becomes the summation of two functions.  The first is the response to the 

linear, loading phase where  𝑡 < 𝑡1.  The second function describes the cyclic strain, or when 

𝑡 ≥ 𝑡1.  This produces the following result. 

      linear cyclic

i i it t t     (4.9) 

Applying the step function in (4.8) to (4.2) we reveal the stress response for both the linear and 

cyclic portions. 
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Integrating (4.10) and (4.11) the following results are achieved, respectively. 
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 (4.13) 

Placing (4.12) and (4.13) back into (4.9) and plugging in the boundary conditions, the total stress 

in the Maxwell element over the prescribed strain regime can be formulated. 
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 (4.14) 

Assuming that 𝑡1 is small, the initial term can be dropped in order to observe the behavior as 𝑡 

becomes large.  Applying the boundary conditions and simplifying the remaining terms, we 

arrive at the following: 
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Since the sine and cosine terms are always between negative one and one, assuming that 

ℎ𝜏𝑖  is substantially larger than one, the sine term becomes negligible. 
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Assuming that ℎ2𝜏𝑖
2 is substantially larger than one, (4.16) reduces to the final, simplified stress 

equation for the stress in one Maxwell element as 𝑡 becomes very large. 

     1 1cosi it E A h t t      (4.17) 
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This final stress equation is a simplified stress response for one Maxwell element 

undergoing a cyclic strain (as described by (4.3)), similar to what would be seen by the in vivo 

pulmonary vasculature.  Using the Boltzmann superposition principle, this result can be applied 

to each of the five Maxwell branches in the model and summed to formulate the total viscoelastic 

stress response.  This viscoelastic stress can then be added to the elastic stress to produce the 

total stress response of the model to a cyclic strain input. 
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   (4.18) 

In (4.18), the linear stress behavior is described as: 

    0 ot E t   (4.19) 

Combining (4.5) and (4.18) we can achieve the following equation describing the total stress 

response. 

      0[ ]  o it E t E        (4.20) 

 In our case, this simple model was tailored to mimic an in vivo, bovine, main pulmonary 

artery.  A typical, healthy, bovine MPA sees strains that cycle between about 20% and 40%.  

Using (4.3), the following equation was developed to describe the strain input. 
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 (4.21) 

Using this strain input, the artery undergoes a quick linear loading phase followed by a cyclic, 

wave strain.  This gives a simplification of the change in the diameter of the vessel due to the 

heart beat.  The heart beat is approximately 95 beats per minute in this case, which is appropriate 

for the bovine considered in this study.  Using these input parameters, the stress response (4.17) 

becomes: 
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Using Matlab, (4.21) was applied to (4.2) in order to simulate the stress-strain response as a 

function of time.  This result was then compared against the simplified, final stress response 

shown in (4.22).  These results can be seen in Figure 19. 

 

Figure 19.  Matlab simulation of the stress-strain response using the cyclic strain input (with a 

linear initial loading ramp) described in Equation (4.21).  The simulation was run until t = 10
5
 

seconds.  This result is compared against Equation (4.22), which is the simplification for the stress 

response to the same input as t approaches infinity. 

 

The simulation was done assuming the same material model as previously applied:  five 

Maxwell elements (all in parallel) in parallel with a spring element.  The model input parameters 

were taken from the experimental bovine data for the main pulmonary artery at 35% strain.  

These input parameters can be seen in Table 2.  The breakdown of the stress vs. strain response 

in each Maxwell element is shown in Figure 20. 

 

Table 2.  Matlab model input parameters. 

E1 1.18 kPa modulus of first Maxwell element 
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E2 1.92 kPa modulus of second Maxwell element 

E3 2.14 kPa modulus for third Maxwell element 

E4 2.80 kPa modulus of forth Maxwell element 

E5 8.55 kPa modulus of fifth Maxwell element 

E0 66.82 kPa modulus of spring element 

τ1 0.39 s time constant of first Maxwell element 

τ2 2.49 s time constant of second Maxwell element 

τ3 16.06s time constant of third Maxwell element 

τ4 86.11 s time constant of forth Maxwell element 

τ5 803.50 s time constant of fifth Maxwell element 

 

 
Figure 20.  Matlab model predicted stress-strain response for each individual Maxwell element.  

The stress decreases to equilibrium as time becomes large.  It can also be seen that the predicted 

response from Equation (4.22) fits very well for each of the individual branches. 

 
From Figure 20 we can see that the prediction from Equation (4.22) fits out model very well.  

The only deviation is in the first element where the approximation is linear while the actual 
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response is a small loop.  However, the slope is equivalent and due to the small magnitudes of 

the values in element one, the differences caused by the loop become minute when the total 

stress response is observed in Figure 19. 

The results of this simulation show that although the viscoelastic properties of bovine 

vascular tissue are quite pronounced, a very simple constitutive model can be applied to 

accurately describe the in vivo behavior.  This success of this model is linked to both its ability to 

accurately predict the in vivo stress-strain response and its overall simplicity.   

Our findings agreed with the results of Grashow et al.  They found that the mitral valve 

anterior leaflet exhibited significant stress relaxation.  They did however see that there was 

negligible creep seen over a 3 hour test [7].  Cox et al. examined the viscoelastic properties in 

vitro pulmonary of canine.  Measurements of force in response to sinusoidal perturbations were 

made over the frequency range of 0.002 Hz to 10 Hz.  It was found that most of the frequency 

dependence of the dynamic modulus occurred on the lower end of this range, under 0.1 Hz.  This 

viscoelasticity is thought to be a representation of the smooth muscle contribution in the wall of 

the arteries [13].  Our model was thus modified by adding a smooth muscle term to (3.2).  The 

smooth muscle term (σs) is described as follows. 

 s

t

s sE e




  (4.23) 

 

The relaxation time of the smooth muscle term was taken to be equivalent to the fastest of 

the above relaxation times (τ1 = 0.39s).  In order to determine the possible contribution of the 

smooth muscle, the modulus, Es, was varied in terms of E0.  Initially Es was taken to be 5% of E0, 

and then incrementally increased to 10, 20, and 30% of E0 respectively.  The ultimate tissue 

response with the incorporated smooth muscle contribution is shown in Figure 21. 
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Figure 21.  Matlab model ultimate predicted stress-strain response with added smooth muscle 

branch.  The time constants for the smooth muscle effects was equal to τ1 and the smooth muscle 

branch modulus was varied between 5, 10, 20, and 30% strain from top left to bottom right 

respectively.  With a smaller modulus, the hysteresis loop is much smaller when compared to 

larger values of Es. 

 
These model results show that as expected, a larger modulus on the fastest time constant causes a 

hysteresis loop to form in the ultimate stress-strain response.   

 

Finite Element Verification 

 It was felt necessary to validate the experimental results found in the previous section 

through the use of finite element modeling.  In vivo, the pulmonary artery is experiencing a 

pressure-diameter relationship as opposed to the simplified, uniaxial stress-strain relationship 

suggested above.  Although our uniaxial results are as expected, and agree fairly well with 

previous research [8, 11], a simple, axisymmetric FEA model was employed for comparison. 

 In order to model the viscoelastic pulmonary artery behavior as a function of time, 

Abaqus 6.10 CAE was used for both creation of the physical model and for the simulation.  The 
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objective of this analysis was to determine the ultimate response of the pulmonary tissue under 

the prescribed loading conditions.  Also, the amount of time necessary to reach this equilibrium 

will be noted. 

 The main pulmonary artery was modeled as to retain consistency with the earlier 

experiments.  In this analysis, the tube cross-section was modeled and the problem was defined 

as axisymmetric.  It was assumed that there was no dependence of direction on material behavior 

in the r, θ, or z directions.  This assumption greatly reduced the size of the problem matrix 

allowing the problem to be run for long periods of time.  The artery was modeled using 

approximate experimental dimensions for the bovine main pulmonary artery.  The radial 

thickness of the artery was assumed to be 5 millimeters while the inner diameter was 14 

millimeters.  The height of the artery modeled along the axis of symmetry (z axis) was 1 

millimeter.  Effectively, a small ring of the artery was modeled due to the axisymmetry of the 

problem.  CAX4H elements were used for the problem as they are 4-node bilinear axisymmetric 

quadrilateral, hybrid, constant pressure.  A total of 20 elements were used in the analysis, each 

with an edge length of 0.5 millimeters.    

 Most commercially available FEM allow for the use of popular hyperelastic material 

models [42].  The Ogden formulation postulates that the strain energy is a function of the 

principle stretches [1] where: 
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Where the condition for consistency of the model is the following 
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where μ is the shear modulus of the material in the reference configuration. 

 It has been suggested that using three pairs of constants (N = 3) to (4.25) are enough to 

give excellent correlation to experimental soft tissue data [3].  By applying the Ogden function 

(4.24) to calculate the stress in the vessel, we have the following: 
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  (4.26) 

 

where a total of six material parameters are used to fit the experimental data.  The fitting 

parameters can be seen in Table 3 below. 

 

Table 3.  Fitting parameters for Ogden material model 

i μi (N/m
2
) αi 

1 -833,938 -4.256 

2 428,656 -2.737 

3 415,164 -5.858 
 

The data fit for the Ogden model compared to the experimental data can be seen in Figure 22 

below.   
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Figure 22.  Abaqus model fit for the Ogden material model against experimentally obtained 

uniaxial stress strain behavior.  The Ogden model fits soft tissue very well when using N=3. 

 
In order to incorporate viscoelastic properties into the behavior of the material, the same, 

five term, Prony series was again used.  The fitting parameters from the MPA data were 

averaged in order to come up with a generalized fit which was used in the Abaqus model.  These 

parameters can be seen in Table 4 below.  The moduli for each Prony series (Gi) is normalized 

by the elastic modulus.  The elastic modulus used in this evaluation was E0 = 66.82 kPa.   

 

Table 4.  Experimentally obtained Prony series parameters used for the Abaqus material model 

i Gi (kPa) τi (s) 

1 0.0177 0.39 

2 0.0287 2.49 

3 0.0320 16.06 

4 0.0419 86.11 

5 0.1280 803.50 

 

Finally, the density of the vessel wall was assumed to be roughly the density of water, or 1000 

kg/m
3
. 
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 The loading conditions were now able to be set for the model.  The first step of the 

simulation was a ramp to the average of diastolic and systolic pressure.  This resting pressure 

was set to be 13 kPa, and was applied to only the inner surface of the membrane.  Both the upper 

and lower surfaces of the artery slice were fixed in the y direction, since the artery as a whole is 

very long when compared to the thickness of 5 mm.  In order for the simulation to run for all 

conditions, this initial loading portion was extended to take 10 seconds.  This allows the 

displacement of the vessel to not be overly large at any particular time step.  The boundary 

conditions for the second step were applied in the same manner.  The difference between the two 

steps was only the profile of the pressure load.  During the alternating pressure step of the 

simulation, the pulsatile nature of blood pressure was simulated.  In order to simply capture this 

phenomenon, a sine wave pressure was applied to the inner surface of the arterial wall.  The sine 

wave amplitude was 3 kPa and oscillated between 10 and 16 kPa.  These values correspond to 

roughly 75 mmHg and 120 mmHg, which are relatively standard diastolic and systolic blood 

pressure values.  The applied pressure profile can be seen in Figure 23. 
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Figure 23.  Applied pressure profile used for the finite element simulations.  There is an initial 

loading ramp followed by a sine oscillation at about 95 Hz.  The oscillation pressures vary from 

10 kPa to 16 kPa or about 80 to 120 mmHg.  These parameters are chosen to simulate biological 

loading conditions. 

 

 The Ogden material model simulations were run for 100, 1000, and finally 10,000 

seconds within Abaqus standard.  The input file for the 10,000 second simulation can be found in 

the appendix.  The analysis produced results which agreed with our hypotheses.  The applied 

pressure produced radial displacements between about 5 and 6 mm.  This means that the inner 

arterial diameter increased from 28 mm to about 40 mm at full systole.  This agrees with our 

previous model, stating that the artery strains grow to around 40% during peak pressure.  Also, 

the strains in both the 2 and 3 directions were confirmed to be approximately zero, which agrees 

with expected results given the prescribed boundary conditions of the problem.  The stress 

profile contour at peak deformation can be seen below in Figure 24. 
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Figure 24.  The stress profile contour plot of the arterial section at peak deformation.  The stress 

decreases from about 14.4 kPa on the inner surface of the vessel to 0.37 kPa seen by the outer 

surface of the wall. 

 
Similarly, the profile of the strain in the 1 direction can be seen below.  This direction 

corresponds to the radial direction, or the direction in which displacement is most greatly 

affected by the internal pressure.  As previously mentioned, the strain in each of the other 

directions was zero, as prescribed by the initial conditions. 
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Figure 25.  The displacement profile contour plot of the arterial section at peak deformation.  The 

displacement decreases from about 6.3 mm on the inner surface of the vessel to 5.0 mm along the 

exterior of the wall.  These displacements compare favorably with the findings in Chapter III. 

 

 The data from the Abaqus simulations with the Ogden material model was then compiled 

into Matlab in order to observe the pressure-diameter loop and compare it to the P-D loop seen in 

the results of Chapter III.  The diameter was calculated based on the initial internal dimensions 

of the artery and the radial displacement.  A plot of the full pressure-diameter profile can be seen 

in Figure 26.  Also, the loops at 100, 1000, and 10,000 seconds are plotted in order to give some 

reference as to the time dependence of the tissue.  At 10,000 seconds the artery has reached 

steady state, where the pressure-diameter loop is repeatable. 
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Figure 26.  The pressure-diameter response for the Ogden model using the parameters listed in 

Table 3.  The diameter was calculated using the initial radius and the displacement data.  It can be 

seen that the artery does relax from 100 to 1000 seconds and again from 1000 seconds to 10,000 

seconds.  The artery P-D response is at steady state after 10,000 seconds and reaches a repeatable 

loop. 

 
In order to compare these results to the Matlab simulations in Chapter III, an additional 

Prony series term was again added in order to account for the affects of the smooth muscle cells.  

The same Ogden material model from above was modified as follows.  The time constant used 

was equal to the fastest time constant from Table 2, or τsmooth = 0.39 seconds.  From the results 

seen in Figure 21, it was determined that the modulus corresponding to the smooth muscle cell 

would be 20 percent of the elastic modulus, E0.  The results of the P-D response, for the FEA 

simulation incorporating the smooth muscle effects, are shown in Figure 27 below.    
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Figure 27.  The pressure-diameter response for the modified Ogden model using the parameters 

listed in Table 3 as well as a smooth muscle term.  The smooth term was just an added Maxwell 

element with a time constant equal to τ1 (0.39sec) and a modulus value equal to 20% of E0 (13.36 

kPa).  The diameter was calculated using the initial radius and the displacement data.  It can be 

seen that the artery does relax from 100 to 1000 seconds and again from 1000 seconds to 10,000 

seconds.  The artery P-D response is at steady state after 10,000 seconds and reaches a repeatable 

loop.  In the case of the added smooth muscle term it is obvious from the plot on the right that 

some sort of P-D loop does indeed exist.  These results agree favorably with those seen from the 

Matlab simulations in Chapter III. 

  

The addition of the smooth muscle term did have a slight affect on the pressure-diameter 

response.  When comparing Figure 26 and Figure 27, it is easy to notice that the addition of this 

term creates a small loop in the response.  Although the loop is very small, and not greatly 

pronounced, it does show the effect of viscoelasticity on the tissue’s mechanical response.  These 

FEA simulation results agree well with those previously achieved from the analytical model 

(shown in Figure 19).  The FEA model shows the same overall relaxation effect of the vascular 

tissue, however again, it seems logical that our above constitutive model could be applied in 

order to accurately describe the in vivo behavior.  Even with the addition of the smooth muscle 

effect, the hysteresis loop seen in the P-D curve is minimal, and thus could in most cases 

probably be ignored. 
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CHAPTER V 

 

V.  Conclusion 

 Cardiovascular modeling continues to be a very active field of research as both 

mechanical and computational models advance [1].  The motivation of these models is generally 

that of cardiac disease, as it is hopeful that further understanding of arterial behavior and 

mechanics could help with the design of treatment techniques.  Namely, arterial modeling takes 

into account the flexibility of the vessel wall which could help in the design and application of 

stents and bypasses. 

 The behavior of bovine pulmonary arteries including preconditioning behavior and 

viscoelastic response were observed and quantified.  It has been well established that soft tissues 

do indeed exhibit some degree of viscoelastic nature, however the importance or physiologic role 

of this viscoelasticity has only been speculated [7, 10, 11, 20, 24-38].  It is also widely accepted 

that in order to create a more accurate model describing the behavior of soft tissues, 

viscoelasticity must be considered.  This work delves into the effect of viscoelasticity and the 

importance of considering viscoelasticity of pulmonary arteries subjected to in vivo loading 

conditions. 

 The viscoelastic behavior of bovine pulmonary arteries was observed and a simple model 

describing this behavior was presented and verified through both an analytical model and finite 

element simulation.  The stress relaxation curves of the artery were fit with a 5 term Prony series 

in order to determine the individual relaxation times of the material.  The characterization of the 

viscoelastic response was then simplified through the use of the Boltzmann integral.  Given the 

in vivo boundary conditions, this integral then simplified to a cosine term, which is independent 
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of the relaxation time.  This simplified model was dependent only on the Prony series modulus 

and matched the ultimate stress response of the arteries very well. 

 The results from this simplified model and the analytical Matlab model were then 

verified through finite element simulation.  By comparing the pressure-diameter curves of the 

FEA simulation to the predicted stress-strain response of the analytical model, it was observed 

that the ultimate response was nearly identical in each case.  In both cases, the addition of a 

smooth muscle term did in fact increase the amount of hysteresis seen at ultimate response; 

however the loop was still small enough that under most loading cases it could be assumed 

negligible.  
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APPENDIX 
 

Analytical Matlab Model 
%function name: viscoAnalytical 

%Analytical model of viscoelastsic behavior 

 clear all 

 close all 

 clc 

  

%Model Input Parameters 

 E1 = 1.18; 

 E2 = 1.92; 

 E3 = 2.14; 

 E4 = 2.80; 

 E5 = 8.55; 

 E0 = 66.82; 

 tao1 = 0.39; 

 tao2 = 2.49; 

 tao3 = 16.06; 

 tao4 = 86.11; 

 tao5 = 803.50;    

  

%loading parameters 

 time1 = (0:0.01:100); 

 time2 = (100.1:.1:1e5); 

 time = [time1,time2]; 

 t1 = time(1:300); 

 t2 = time(301:end); 

  

 e1 = (4/30).*time;    %define intitial loading ramp 

 e1 = e1(1:300); 

 e2 = 0.3 + 0.1*cos(10.*(t2-3));   %define cyclic loading 

  

 strain = [e1,e2];   %define total strain input 

  

 syms s t 

  

%solving the linear portion for t<3 

 stress001 = E1*(int(exp(-(t-s)/tao1)*(4/30),s,0,t)); 

 s001 = subs(stress001,t1); 

  

 stress002 = E2*(int(exp(-(t-s)/tao2)*(4/30),s,0,t)); 

 s002 = subs(stress002,t1); 

  

 stress003 = E3*(int(exp(-(t-s)/tao3)*(4/30),s,0,t)); 

 s003 = subs(stress003,t1); 

  

 stress004 = E4*(int(exp(-(t-s)/tao4)*(4/30),s,0,t)); 

 s004 = subs(stress004,t1); 

  

 stress005 = E5*(int(exp(-(t-s)/tao5)*(4/30),s,0,t)); 

 s005 = subs(stress005,t1); 

  

%solving the linear portion for t>=3 
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 stress01 = E1*(int(exp(-(t-s)/tao1)*(4/30),s,0,3)); 

 s01 = subs(stress01,t2); 

  

 stress02 = E2*(int(exp(-(t-s)/tao2)*(4/30),s,0,3)); 

 s02 = subs(stress02,t2); 

  

 stress03 = E3*(int(exp(-(t-s)/tao3)*(4/30),s,0,3)); 

 s03 = subs(stress03,t2); 

  

 stress04 = E4*(int(exp(-(t-s)/tao4)*(4/30),s,0,3)); 

 s04 = subs(stress04,t2); 

  

 stress05 = E5*(int(exp(-(t-s)/tao5)*(4/30),s,0,3)); 

 s05 = subs(stress05,t2); 

  

%solving the cyclic portion for t>=3 

 stress11 = E1*(int(exp(-(t-s)/tao1)*(-sin(10*s-30)),s,3,t)); 

 s11 = subs(stress11,t2); 

  

 stress12 = E2*(int(exp(-(t-s)/tao2)*(-sin(10*s-30)),s,3,t)); 

 s12 = subs(stress12,t2); 

  

 stress13 = E3*(int(exp(-(t-s)/tao3)*(-sin(10*s-30)),s,3,t)); 

 s13 = subs(stress13,t2); 

  

 stress14 = E4*(int(exp(-(t-s)/tao4)*(-sin(10*s-30)),s,3,t)); 

 s14 = subs(stress14,t2); 

  

 stress15 = E5*(int(exp(-(t-s)/tao5)*(-sin(10*s-30)),s,3,t)); 

 s15 = subs(stress15,t2); 

  

%combine stress values to get total stress for all times 

 s1 = [s001, s01+s11]; 

 s2 = [s002, s02+s12]; 

 s3 = [s003, s03+s13]; 

 s4 = [s004, s04+s14]; 

 s5 = [s005, s05+s15]; 

  

 s0 = E0*strain;   %define stress due to linear element 

  

 sT = s0 + s1 + s2 + s3 + s4 + s5;   %define total stress 

  

%simplified stresses as t approaches infinity 

 simp1 = 0.1*E1*cos(10*t2-30); 

 simp2 = 0.1*E2*cos(10*t2-30); 

 simp3 = 0.1*E3*cos(10*t2-30); 

 simp4 = 0.1*E4*cos(10*t2-30); 

 simp5 = 0.1*E5*cos(10*t2-30); 

  

%total simplified stress 

 simpT = s0(301:end) + simp1 + simp2 + simp3 + simp4 + simp5;   

 y = [0,  max(s0)]; 

 x = [0, 0.4]; 

 

%plot of first element branch with simplified response  

 subplot(3,2,1);   

 plot(strain,s1,'b'); 
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 hold on 

 plot(strain(301:end),simp1,'k'); 

 title('Branch 1'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 

 

%plot of second element branch with simplified response  

 subplot(3,2,2);   

 plot(strain,s2,'b'); 

 hold on 

 plot(strain(301:end),simp2,'k'); 

 title('Branch 2'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 

 

%plot of third element branch with simplified response 

 subplot(3,2,3);   

 plot(strain,s3,'b'); 

 hold on 

 plot(strain(301:end),simp3,'k'); 

 title('Branch 3'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 

  

%plot of forth element branch with simplified response 

 subplot(3,2,4);   

 plot(strain,s4,'b'); 

 hold on 

 plot(strain(301:end),simp4,'k'); 

 title('Branch 4'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 

  

%plot of fifth element branch with simplified response 

 subplot(3,2,5.5);   

 plot(strain,s5,'b'); 

 hold on 

 plot(strain(301:end),simp5,'k'); 

 title('Branch 5'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 

 

%plot total response with simplified response 

 figure (2) 

 plot(strain,sT,'b'); 

 hold on 

 plot(strain(301:end),simpT,'k'); 

 plot(x,y,'c'); 

 title('Total Stress'); 

 xlabel('Strain'); 

 ylabel('Stress (kPa)'); 
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Abaqus Input File 
*Heading 

** Job name: Ogden Model name: BovinePulmonary 

** Generated by: Abaqus/CAE 6.10-EF1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Vessel 

*Node 

      1, 0.0189999994, 0.00400000019 

      2, 0.0140000004, 0.00400000019 

      3, 0.0140000004, 0.00300000003 

      4, 0.0189999994, 0.00300000003 

      5, 0.0185000002, 0.00400000019 

      6, 0.0179999992, 0.00400000019 

      7, 0.0175000001, 0.00400000019 

      8, 0.0170000009, 0.00400000019 

      9, 0.0164999999, 0.00400000019 

     10, 0.0160000008, 0.00400000019 

     11, 0.0154999997, 0.00400000019 

     12, 0.0149999997, 0.00400000019 

     13, 0.0144999996, 0.00400000019 

     14, 0.0140000004, 0.00350000011 

     15, 0.0144999996, 0.00300000003 

     16, 0.0149999997, 0.00300000003 

     17, 0.0154999997, 0.00300000003 

     18, 0.0160000008, 0.00300000003 

     19, 0.0164999999, 0.00300000003 

     20, 0.0170000009, 0.00300000003 

     21, 0.0175000001, 0.00300000003 

     22, 0.0179999992, 0.00300000003 

     23, 0.0185000002, 0.00300000003 

     24, 0.0189999994, 0.00350000011 

     25, 0.0179997738, 0.00349709298 

     26, 0.0159999002, 0.00349781476 

     27, 0.0149999503,  0.003498815 

     28, 0.0184999574, 0.0034990923 

     29,  0.017499797, 0.00349698099 

     30, 0.0169999022, 0.00349777634 

     31, 0.0154999718, 0.00349894725 

     32, 0.0164999627, 0.00349862291 

     33, 0.0144999903, 0.00349962991 

*Element, type=CAX4H 

 1,  5, 28, 24,  1 

 2,  6, 25, 28,  5 

 3, 25, 29, 21, 22 

 4,  8, 30, 29,  7 

 5, 18, 19, 32, 26 

 6, 26, 31, 17, 18 

 7, 12, 27, 31, 11 

 8, 31, 27, 16, 17 

 9, 13, 33, 27, 12 

10, 27, 33, 15, 16 

11,  2, 14, 33, 13 

12,  3, 15, 33, 14 
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13,  9, 32, 30,  8 

14, 30, 32, 19, 20 

15, 29, 30, 20, 21 

16,  7, 29, 25,  6 

17, 22, 23, 28, 25 

18, 23,  4, 24, 28 

19, 26, 10, 11, 31 

20, 32,  9, 10, 26 

*Nset, nset=_PickedSet2, internal, generate 

  1,  33,   1 

*Elset, elset=_PickedSet2, internal, generate 

  1,  20,   1 

** Section: TissueSection 

*Solid Section, elset=_PickedSet2, material=Tissue 

, 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Vessel-1, part=Vessel 

*End Instance 

**   

*Nset, nset=_PickedSet11, internal, instance=Vessel-1 

  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 15, 16, 17 

 18, 19, 20, 21, 22, 23 

*Elset, elset=_PickedSet11, internal, instance=Vessel-1, generate 

  1,  20,   1 

*Nset, nset=Set-1, instance=Vessel-1 

  2,  3, 14 

*Elset, elset=Set-1, instance=Vessel-1 

 11, 12 

*Elset, elset=__PickedSurf10_S1, internal, instance=Vessel-1 

 11, 

*Elset, elset=__PickedSurf10_S4, internal, instance=Vessel-1 

 12, 

*Surface, type=ELEMENT, name=_PickedSurf10, internal 

__PickedSurf10_S1, S1 

__PickedSurf10_S4, S4 

*Elset, elset=__PickedSurf13_S1, internal, instance=Vessel-1 

 11, 

*Elset, elset=__PickedSurf13_S4, internal, instance=Vessel-1 

 12, 

*Surface, type=ELEMENT, name=_PickedSurf13, internal 

__PickedSurf13_S1, S1 

__PickedSurf13_S4, S4 

*End Assembly 

*Amplitude, name=Amp-1, time=TOTAL TIME, definition=PERIODIC 

1,          10.,           1.,         4.33 

          1.,           0. 

*Amplitude, name=Ramp 

          0.,           0.,          10.,           1. 

**  

** MATERIALS 

**  
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** Bovine Pulmonary Tissue 

*Material, name=Tissue 

*Density 

1000., 

*Hyperelastic, n=3, ogden, moduli=LONG TERM 

-833938., -4.256,428656., -2.737,415164., -5.858,     0.,     0. 

     0., 

*Viscoelastic, time=PRONY 

 0.0176594,    0.,  0.39 

 0.0287339,    0.,  2.49 

 0.0320263,    0., 16.06 

 0.0419036,    0., 86.11 

  0.127956,    0., 803.5 

** ------------------------------------------------------------- 

**  

** STEP: Pressure Ramp 

**  

*Step, name="Pressure Ramp", nlgeom=YES 

*Visco, cetol=0.05 

0.5, 10., 0.001, 0.5 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

_PickedSet11, 2, 2 

**  

** LOADS 

**  

** Name: Ramp Pressure   Type: Pressure 

*Dsload, amplitude=Ramp 

_PickedSurf10, P, 13000. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

*Print, solve=NO 

**  

** FIELD OUTPUT: F-Output-2 

**  

*Output, field 

*Node Output 

U,  

*Element Output, directions=YES 

S,  

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Output, history 

*Energy Output 

ETOTAL,  

*End Step 

** ------------------------------------------------------------- 

**  

** STEP: Alternating  Pressure 

**  

*Step, name="Alternating  Pressure", nlgeom=YES, inc=1000000 
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*Visco, cetol=0.05 

0.01, 10000., 0.0001, 0.05 

**  

** LOADS 

**  

** Name: Ramp Pressure   Type: Pressure 

*Dsload, op=NEW 

** Name: alternating pressure   Type: Pressure 

*Dsload, op=NEW, amplitude=Amp-1 

_PickedSurf13, P, 3000. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-2 

**  

*Output, field 

*Node Output 

U,  

*Element Output, directions=YES 

E, S 

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Output, history 

*Energy Output 

ETOTAL,  

*End Step 


