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Abstract

We introduce a new type of method for unconstrained optimization, which we call a tensor method.
It is related in its basic philosophy to the tensor methods for nonlinear equations of Schnabel and Frank,
but beyond that the methods have significant differences. The tensor method for unconstrained optimiza-
tion bases each iteration upon a fourth order model of the objective function. This model consists of the
quadratic portion of the Taylor series, plus low rank third and fourth order terms that cause the model to
interpolate already calculated function and gradient values from one or more previous iterates. We show
that the costs of forming, storing, and solving the tensor model are not significantly more than these costs
for a standard method based upon a quadratic Taylor series model. Test results are presented for sets of
problems where the Hessian at the minimizer is nonsingular, and where it is singular. On all the test sets,
the tensor method solves considerably more problems than a comparable standard method. On problems
solved by both methods, the tensor method requires about half as many iterations, and half as many func-

tion and derivative evaluations as the standard method, on the average.






1. Introduction

This paper describes a new method, called a tensor method, for solving the unconstrained optimiza-

tion problem
givenf :R"—>R , findx»eR" suchthat f (x«x)< f(x)forall x € D (1.

where D is some open neighborhood containing x«. We assume that f (x) is at least twice continuously
differentiable, and that n is of moderate size, say # < 100. Our objective is to create a general purpose
method that is more reliable and efficient than state-of-the-art methods for solving such problems, partic-
ularly in cases where the evaluation of f (x) and its derivatives is expensive. We especially intend to

improve upon the efficiency and reliability of standard methods on problems where V2f (x+) is singular.

The distinguishing feature of our new method is that it bases each iteration upon a fourth order
model of f (x), as opposed to the standard quadratic model. The third and fourth order terms of this
model have special, low-rank forms that make the costs of using the higher order model reasonable. In
particular, in comparison to standard methods, the formation and use of the fourth order tensor model
requires no additional function or derivative evaluations per iteration, only a small number of additional

arithmetic operations per iteration, and only a very small amount of additional storage.

The tensor method approach was introduced by Schnabel and Frank [1984, 1987], who describe
tensor methods for solving systems of nonlinear equations. Their methods base each iteration of an algo-

rithm for solving F (x) =0, where F : R*—R", upon the second order model
Mr(xe+d)=F(x.)+J.d+%T.dd . 1.2)

Here x. is the current iterate, J.e R"** is the Jacobian matrix F’(x.) or an approximation to it, and
T.eR™** is a low rank "tensor". In Schnabel and Frank’s computational experiments, the use of the
tensor methods led to significant improvements in efficiency and reliability over state-of-the-art methods

for nonlinear equations that are based upon standard, linear models. In the case when F’(x,) is available,



the average reductions measured in function and derivative evaluations ranged from 20% to 60%, on both
nonsingular and singular problems. Frank [1984] also proved that this derivative tensor method has a
three-step, order 1.16 local convergence rate on problems where rank(F ’(x«)) = n—1, whereas standard

methods are linearly convergent under these conditions.

The tensor method described in this paper is related to the methods of Schnabel and Frank in its
basic philosophy, but it is not a straightforward generalization of their methods. In particular, it is not the
application of the model (1.2) to the problem Vf (x) = 0. This would correspond to using a third order
model of f (x); as we have already stated, we use a fourth order model instead. To help motivate the

basic differences, we first summarize some features of standard methods for unconstrained optimization.

Standard methods for solving small to moderate size unconstrained optimization problems base

each iteration upon a quadratic model of f (x) around the current iterate x,,
mx.+d)=f (x;) +gld + %dTH.d , (1.3)

where deR"™, g.eR™ is Vf (x;) or a finite difference approximation to it, and H, e R»**. Such methods
can be divided into two classes, thase where H, is V2f (x.) or a finite difference approximation to it, and
those where H, is a secant approximation to the Hessian formed solely from current and previous gra-
dient values. In this paper we will consider standard and tensor methods of the first type, where both
Vf (x.) and V3f (x,) are available analyﬁcally or by finite differences at each iteration. A subsequent
paper will discuss tensor methods for unconstrained optimization that are based solely on function and

gradient values.

The fundamental method for unconstrained optimization, Newton’s method, is defined when
V2f (x.) is nonsingular. It consists of using H, = V2f (x.) in (1.3) and setting the next iterate x.. to the
critical point of (1.3),

xe=x =V (e )1 Vf (x) 14

The basic properties of Newton’s method are well known. If V2f (x«) is nonsingular at a local minimizer



x«, and the initial iterate is sufficiently close to x«, then the sequence of iterative generated by (1.4) con-
verges quadratically to x«. If the initial iterate is not sufficiently close to x«, then the iterates produced by
Newton’s method may not converge to x«, but they may be made to converge through the use of line
search or trust region strategies (see e.g. Fletcher [1980], Gill, Murray, and Wright [1981], Dennis and
Schnabel [1983]). The main costs of unconstrained optimization methods based upon Newton's method
are : one evaluation of V2f (x), and one or more evaluations of Vf (x) and f (x), at each iteration; the
solution of a symmetric nxn system of linear equations at each iteration, costing a small multiple of n3

arithmetic operations; and the storage of a symmetric nxXn matrix.

One shortcoming of standard unconstrained minimization methods is that they do not converge
quickly if the Hessian at the minimizer, V2f (x« ), is singular. Griewank and Osbome [1983] have shown
that in this case, the iterates produced by (1.4) generally are at best linearly convergent, even if V2f (x.)
is non-singular at all the iterates. Furthermore, the third derivatives do not supply information in the
direction(s) where the second derivative matrix is lacking, since the necessary conditions for minimiza-
tion show that at any minimizer x« where V2f (x«) is singular with null vector v, V3f (x+ )vvd must also
be O for all deR*. Thus, adding an approximation to V3f (x.) alone will not lead to better than linear
convergence for such problems. An approximation to the fourth derivative V4f (x,) as well, or at least

the quantity V4f (x, )vwwv, is necessary to obtain better than linear convergence.

This need for fourth order information in order to obtain fast convergence on singular problems is
one reason why we will use a fourth order model, rather than a third order model, in our tensor methods
for optimization. Other reasons are that a third order model is unbounded below, even though it may
have a local minimizer, and that the information that is readily available in an optimization algorithm,
namely values of f (x) and Vf (x) at previous iterates, naturally supports the use of a fourth order tensor
model. Note that these conditions are quite different from the situation for systems of nonlinear equa-
tions, where an approximation to F ”’(x« ) (analogous to V3f (x«)) is sufficient to produce faster than linear
convergence on problems where the Jacobian at the solution is singular, and where only one piece of

interpolation information (F (x), analogous to Vf (x)) is readily available from each previous iterate.



For these reasons, we have based the tensor methods for unconstrained minimization discussed in

this paper upon the fourth order tensor model

my(re+d) = f () + VS ()Td + - dTVf (x)d + LT, ddd + - V. dddd (1.5)

where by Vf (x.) and V2f (x,) we mean either these analytic derivatives, or finite difference approxima-
tions to them, and where T,e R***>* and V. e R"***** are symmetric. (The symmetry of T, and V, is
another significant difference between tensor models for unconstrained optimization and for nonlinear
equations, where T, is not symmetric.) The three-dimensional object T, and the four-dimensional object
V. are referred to as tensors, hence we call (1.5) a tensor model, and methods based on (1.5) tensor

methods. Before proceeding, we define the notation concerning these tensors that is used above and in

the remainder of this paper.

Definition 1.1 Let TeR*>**>*# Then foru,v,w,eR*, TuwweR, TyweR", with

Tuvw =‘§]§ZT[i,j,k]u[i]v[j]w[k],

Towlil=S S Tli,jklvlilwik] ,i=1, - n.
ww [i ] ,;fg L. jkIvijIwlk] ,i n

Definition 1.2 Let Ve R#>>#>n Then forr,u,v,weR", Viuvwe R, Vuyw e R* with

vruw = § 8 3 S VL ke D KW,
VuVW[f]=J§=:1;EV[i,j,k,l]uU]v[k]w[l] Ji=l, ..

The obvious choices of T, and V, in (1.5) are V3f (x.) and V4f (x.); these would make (1.5) the
first five terms of the Taylor series expansion of f around x.. We will not consider using the actual

higher order derivatives in the tensor model, however, because the cost of doing so would be prohibitive.



In particular, O (n#) partial derivatives would have to be evaluated or approximated at each iteration; stor-
ing these derivatives would take O (n4) locations; and finding a minimizer or the model would require the
solution of a difficult minimization problem in n variables at each iteration. Each of these reasons alone
is sufficient to reject this alternative for a general purpose method, although we note that for some func-
tions f (x) with special forms, using analytic higher order information can be viable (see Jackson and

McCormick [1986]).

Instead, our new method will choose T, and V. in (1.5) to be simple, low-rank symmetric approxi-
mations to V3f (x.) and V4f (x.) that are formed from previously calculated function and gradient values.
The remainder of this paper will show how we efficiently form and solve such a tensor model, how we
incorporate it into a complete unconstrained optimization algorithm, and what the computational perfor-
mance of this algorithm is. Section 2 describes how we form the tensor model, and shows that this
requires only a small multiple of n2 additional arithmetic operations per iteration, and a small multiple of
n additional storage locations. In Section 3 we show how we solve this model using only 0(n2) more
operations per iteration than the O (n3) operations that are needed by the standard quadratic model. A full
tensor algorithm for unconstrained optimization is presented in section 4. In section 5, we present test
results of our tensor method on problems from Moré, Garbow and Hillstorm [1981], and on modifications
of these problems constructed so that V2f (x«) is singular. We compare these results to those obtained
from a state-of-the-art algorithm that uses the standard quadratic model (1.3) but is identical to the tensor
algorithm in virtually all other respects. We briefly summarize our research and comment on possible

extensions of this work in Section 6.

We will denote members of a sequence of n-vectors x by {x}, where each x,€R", and to avoid
ambiguity with this notation, we will continue to denote components of a vector ve R" by v[i]JeR. We
will also abbreviate terms of the form dd, ddd, and dddd in our tensor models by d2, d3, and d* respec-

tively.



2. Forming the Tensor Model
Now we discuss how we select the tensor terms T, e R?>**** and V,e R4 in the model

my(x.+d) = f (x. VS (x, )Td+—%—dT V2f (x, )d+—é—Tcd3+—2—IIVc d*. @.1)

We have already stated that T, and V. will not contain actual third and fourth derivative information.
Instead, we will use the third and the fourth order terms in (2.1) to cause the model to interpolate function
and gradient information that has been computed at some previous iterations of the optimization algo-
rithm. In particular, we will select p not necessarily consecutive past iterates x_, - - -, x_p, and ask that

the model (2.1) interpolate f (x) and V£ (x) at these points, i.e.

f ) = F GV (o) st 3 SEVS (o)t i TosPt e Vesd, k=1, p (2.2a)
Vf () = Vf GV st TesBgVesd, k=1, p (2.2b)

where
Sk =X_x~X;, k=1, ---p. (2.2¢)

First we briefly summarize how the past points x_y, - - - ,x_, are selected. Then we discuss how we select

T, and V. so that (2.2) is satisfied.

The set of past points used in the interpolation conditions (2.2) is selected by the procedure given in
Schnabel and Frank [1984]. We always select the most recent previous iterate, and then select each
preceding past iterate if the step from it to x. makes an angle of at least 8 degrees with the subspace
spanned by the steps to the already selected, more recent iterates. Values of 6 between 20 and 45 degrees
have proven to be best in practice; therefore the selected directions {si} are strongly linearly independent.
This procedure is easily implemented using a modified Gram-Schmidt algorithm. We also set an upper

bound

psni3, (2.3)



on the number of past points. This bound was motivated by computational experience that showed that
using more than about n 3 interpolation conditions rarely helped much, and also by the desire to keep the
storage and arithmetic costs of our tensor method low. In fact, however, our computational results will
show that the strong linear independence criterion discussed above usually limits p far more severely

than (2.3).

Now we discuss how we choose T, and V, to satisfy (2.2). First we show that the interpolation

conditions (2.2) uniquely determine 7T and Vs* foreach £ = 1, - - - ,p. Multiplying (2.2b) by s5; gives
Vf ) sk = VF )T sibSEV2f (e )5+ Te 58+ Vesi k=1, p . 2.4)

Let the unknown quantities o, fe R? be defined by

olk]l=Tsg, (2.5a)
Blkl=Vsd, (2.5b)
for k=1, - - - ,p. Then from (2.2a) and (2.4) we have the following systems of two linear equations in two

unknowns for each of the p pairs o[k ] and B[k ] :

5 alkH+EBlk1=qilk] , (2.62)

SOl T+ Blk] = galk] (2.6b)
where ¢1, ¢, R? are defined by

g 1lk] =V )T 5=V )T s —sEVAf (x. sk,

qalk] = f o )f o)V ()T se=g-5TVF (e )s,
for k=1, - - - ,p, The system (2.6) is nonsingular, so each a[k] and B[£] is uniquely determined.

Thus for each &, our interpolation conditions uniquely determine Vs and Ts,3, and, from (2.2b),

leave us with np linear equations in O (n*) unknowns to determine the p terms Tsk2+—31-Vsk3. These are the



only remaining interpolation conditions, meaning that the choices of T and V are vastly underdetermined.

We have chosen to select T and V from among the infinite number of possibilities by first choosing

the smallest symmetric V, in the Frobenius norm, for which
Vs =Blk]l, k=1, ---p

where B[k ] is calculated by (2.6). The rationale behind this choice is to use the smallest fourth order term
consistent with the interpolation conditions, thereby modeling as much of the function and gradient infor-
mation as possible with a third order model. This choice also will give us the necessary fourth order

information in the singular case. We then substitute this value of V into (2.2b), obtaining
T.sé=ap, k=1,---p (2.7a)

where
ar =2(Vf (x)=-Vf (x. -V (xc)—%;Vsk-"’), k=1,---p. (2.7v)

This is a set of np <n*? linear equations in »3 unknowns T, [i,j k], 1<i,j,k<n. Finally we choose the
smallest symmetric T, in the Frobenius norm, which satisfies the equations (2.7). The use of the
minimum norm solution here is consistent with the tensor method for nonlinear equations, and will again

be a key to the efficiency of our method because it will cause T, and V. to have low rank.

The solutions to the minimum norm problems that determine V, and T, are given by Theorems 2.2
and 2.3. We note that deriving the minimum norm T, is much more difficult than in the tensor method
for nonlinear equations, because of the symmetry requirement. First we define three and four dimensional
rank one tensors, which will feature prominently in these theorems and the remainder of this paper. Also
recall that the Frobenius norm of any matrix or tensor A, denoted | |A | |, is the square root of the sum

of the squares of all the elements of A .

Definition 2.1 Let u,v,wxeR". The tensor TeR"*" for which T, jkl=ulil*v[j]*Wwlk],

- 1<i,j ,k<n is called a third order rank one tensor and will be denoted T=uvw. The tensor V e R #>#xnxn



for which V[i ,j ,k ll=u[i1*v[j *w[k]*x[l],1<i,j ,k [<n is called a fourth order rank one tensor and will

be denoted V=uvwx.

Theorem 2.2 Let p<n, let s,eR" k=1, .. ,p with {s;} linearly independent, and let Be R?. Define

M eRP*® by M [i,j1=(ss;)% 1<i,j<p, and define ye R? by y=M~1B. Then the solution to

minimize | |V, | | subjectto V.s¢=Blk], k=1, - - p and V, symmetric 2.8)

V:eRnuxum
is

Ve =§‘Yk (Sic Sk Sk Sk) - 2.9

Proof. Let VeR™ be defined by V7 = (V,[1,1,1,11,V.[1,1,12], ---, V.[L1,1,a],V.[1,1,2,1], -
Vell,12,n1, -+, Voln,n,n,n]l). Also let SfeRP** be defined so that row k of § is equal to
CCse LIDA G L3 G 2D, (e 113Gk [3D) 5 - - - (e [1D3(se[n D), - -+ se[n1)*), i.e. the same order of sub-

scripts asin V. Then (2.8) is equivalent to
minignize | |V | |2 subjectto § V =P and V, symmetric ,
where V, is the original form of V. Since {s¢} are linearly independent, s has full row rank. The solu-
tion to
mini‘r/nize V]2 subjectto § V = B

is V=¢T (ss7)"!B. By straightforward algebra, s§7=M. Thus V=¢Ty, which by reversing the transforma-

tion from V back to V. is equivalent to (2.9). Since V, is symmetric, it is the solution to (2.8). [J

Theorem 2.3 Let p<n, let s;eR", k=1, -+ p with {s;} linearly independent, and let a,eR”",

k=1, - p. The solution to



10
nTleigerpni'ge [T, | | F subject to T,s;s;=a; i=1, - ,p and T, symmetric (2.10)
is
T, =21bk Sk Sk+Sr DSk +Sk Sk by 2.11)

where byeR", k=1,--- p, and {b;} is the unique set of vectors for which (2.11) satisfies T.s;s;=qa;,

i_—_l’. ..’p.

Proof. First we show that the constraint set in (2.10) is feasible. Let;eR",i=1, - - p, obey

1, i=j
tfs; ={0, i%)
for j=1,---,p. Such vectors ¢#; are obtainable via a QR factorization of the matrix whose columns are the

s;. Then
T=2t,' tLai+t;a; t+a; t; t,-—2(a,7s,~ e t:t)
=
is a feasible solution to (2.10).

Dennis and Schnabel [1979] show that if the constraints in (2.10) are satisfiable, then the set of ten-

sors T; e R*>***" generated by the procedure T (=0, and for all j=0,1,2, - - -, Tj41 is the solution of
minimize | |T2;41—T2; | | subject to Tyj.8:8i=a; i=1, - p (2.12)
and T'5;,, is the solution of
minimize | |T5;42-T2j+1| | F subject to T2, is symmetric,
has a limit which is the unique solution to (2.10).

Next we show that this limit has the form (2.11) for some set of vectors {5, }, by showing that each

T>; has this form. This is trivially true for Ty. Assume it is true for some fixed j, i.e.



11

Ty =Z‘1uk S Se+SkUp Si+SK Sk Uy 2.13)
for some set of vectors {u, }. Then from Schnabel and Frank [1984], the solution to (2.12) is
T3;41=Ty; +§V/z Sk Sk
for some set of vectors {v; }. Thus

T3j42=Ty; +‘%"(;Vk Sk Sk Sk Ve Sk+Sk Sk Vie)

=§(uk +-v3k—)Sk Sk+Sk (Ui +%k—)sk 5y g (g +_"3’_‘_) .

which again has the form (2.13). Thus by induction the solution 7, to (2.10) must have the form (2.11)

for some set of vectors {5 }.

Finally we show that the set of vectors {5, } for which T, given by (2.11) satisfies
T.sisi=a;, i=1,---p (2.14)

is unique. This will mean that the equations (2.11) and (2.14) uniquely determine the solution to (2.10).
Substituting (2.11) into (2.14) gives a system of np linear equations in np unknowns, where the matrix is
a function of the {s }, the unknowns are the elements of the {5, }, and the right hand side consists of the
elements of the {a,}. Since we showed above that (2.10) is feasible for any {a }, the above derivation
and the theory of Dennis and Schnabel [1979] imply that for any set {sy }, this linear system has at least
one solution for any right hand side. Thus the linear system must be nonsingular and have a unique solu-

tion. This means that the set of vectors {b; } is uniquely determined, and completes the proof. [J

Theorems 2.2 and 2.3 show that T, and V, determined by the minimum norm problems (2.10) and
(2.8) have rank 2p and p, respectively. This is the key to making the tensor model efficient to store and
solve. However, while the proof of Theorem 2.3 shows constructively that there is a unique T, of the
form (2.11) that satisfies (2.10), it does not give an efficient algorithm for finding it, since the proof

involves solving a system of np linear equations in np unknowns. We now present an efficient method
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for finding T.
Substituting (2.11) into (2.14) gives the equations

a; =(kf1bk Sk Sk+Sg by Sk +Sk Sk br)s; 8;

= ;bk (sFs:)%+2 kgsk (s€s:)blsi)

i=1,- - ,p inthe unknowns {b; }.  We can write these equations in the matrix form
A=BN+2S M 2.15)

where A e R**, with column k of A=ay, BeR™*P, with column k of B=by, S € R"*P, with column k of
S=sx,and N, M eRP*P with Nij=(s{s;)? and M;;=(ss;)(b{s;), 1<i,j<p. Note that B contains the unk-
nowns, that M is a linear function of these unknowns, and that A, N, and S are known. Pre-multiplying
both sides of (2.15) by ST gives

[STAI=[STBIN +2[STS M. (2.16)

Defining x;j=b[s;, 1<i,j<p, we can rewrite (2.16) in the form of p? linear equations in the p? unknowns

x;j
r
S%ax N x| |wyy X1y
siaz . X12 w2 X12
= . o+ I 2.17)
7 . N . Wpi .
Spap *pp Wpp | |*pp

where each w;; in the second matrix of (2.17) is a p -vector given by Wi =[(s1s 1)(s(s,~), (sTs2)(s%s i
, (57sp)(s7s;)1T. The only unknowns in (2.17) are the Xij, S0 we can solve (2.17) for x;;, and then com-

pute M by
M;j = (slsj)(bls)) = (5T )i

Finally, from (2.15), we can compute B by
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B=(A-2SM)N-! . (2.18)
Note that N is symmetric and positive definite since the {s; } are linearly independent.

We conclude this section by summarizing the costs to form and store the tensor model. The dom-
inant costs of the process for calculating T, that is summarized in equations (2.17) and (2.18) are np?
each multiplications and additions for calculating ST A, the same cost for calculating $*M , the same cost
again for the backsolves in (2.18), roughly np %2 each multiplications and additions for calculating s7. sj
for 1<i<j<p, and p%3 each multiplications and additions for solving the system (2.17), for a total of
(7/2)np? + p5/3 each multiplications and additions. Since p <n /3, these are all O (n2) or less. The addi-
tional costs of forming V. are negligible, at most O (p3). In addition, the cost of forming the interpolation
equations (2.2) includes the multiplication V2f (x.) s, for k=1, - - - ,p which requires n2p each multipli-
cations and additions. This is generally the largest cost of forming the tensor model. The Gram-Schmidt
process for selecting the {s; } requires about 753 arithmetic operations if n!/® vectors are considered. In
summary, only a small multiple of n? additional arithmetic operations are required to form the model.
We will see in section 5 that usually p=1, so that the total additional cost per iteration is usually n2 + n5/3

+ O (n) each additions and multiplications per iteration.

The storage required for forming and storing the tensor model is also small. The tensor terms T,
and V. themselves require only the storage of the vectors b, and s;, which takes 2np <2n%3 storage
locations. In addition, the model formation process requires at most 2n %3 storage locations for storing
n'3 each past iterates and their gradients, np < n%3 storage locations for intermediate quantities in
(2.18), and p* < n*3 storage locations for the factorization in solving (2.17). Thus the total additional

storage is at most 6143,
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3. Solving the Tensor Model

In Section 2 we showed how to find a rank 2p tensor T, of the form (2.11), and a rank p tensor V,
of the form (2.9), for which the tensor model (2.1) interpolates the function and gradient values at p

(€n13) past iterates. Substituting these values of T, and V. into (2.1), the tensor model has the form
d)= Vi@ )Td + LdTVef (x)d + -+ § 0Fd) (sTd)? + L Td)y*
mr(x.+d)=f (x.)+ Vf (x¢) + f (xe) +x 2 (bed) (s¢d) t g 2V (sed)*. 3.1

In this section we show how to efficiently find a minimizer of this model. Although equation (3.1) is a
fourth order polynomial in n variables, we will show how to reduce its minimization to the minimization
of a fourth order polynomial in p variables plus a quadratic in n—p variables. For conciseness we use the

notation g=Vf (x.) and H=V2f (x.) for the remainder of this section.

Let SeR™*P, where column £ of S is s¢, and the {s,} are linearly independent. Also let
ZeR™(P) and WeR™? have full column rank and satisfy Z7S=0 and WTS=/ respectively. (Z and
W can be calculated through the QR factorization of §; the efficient implementation of the operations

involving Z and W is discussed later in this section.) Then we can write d in (3.1) in the form
d =Wu+2t (G2

where ueRP, teR"P. Substituting (3.2) into (3.1) gives

mr (X +Wu+Zt)=f (x;.) +gTWu +gTZt + %-uTWTHWu (3.3)
+uTWTHZ: + Ql-tTZTHZt + -%- 2\ ulZ (biwu +bfzt) + —214- éyk ud .

Equation (3.3) is a quadratic with respect to ¢. Therefore, for the tensor model to have a minimizer,

ZT HZ must be positive definite and the derivative of the model with respect to ¢ must be 0, i.e.
2T g+ZTHZt+ZTWT Hu+5ZT § biu=0 (3.4)
1= .

which yields



15

t=—ZT HZ)"'Z" (g +HWu+L+ $ biu). (3.5)

Thus, if ZTHZ is positive definite, substituting (3.5) into (3.3) reduces the problem of minimizing the

tensor model to finding a minimizer of

vy (u)=f +gT Wu+-uTWT HWu+% ‘iuiz(b,TWu R (3.6)

--%—(g +HWu+-%—‘= biu)'Z (ZTHZ)‘lzT(g+HWu+-%-;= biu?)

which is a fourth degree polynomial in p variables. If (3.6) has a minimizer u«, then the minimizer of the
original tensor model (3.1) is given by d« = Wux+Zt«, where t« is determined by setting u = ux in (3.5).
Note that this process is well defined even if H is singular, as long as ZT HZ is nonsingular and positive

definite. This is possible if rank(H) 2n—p.

There are several possible difficulties with this process. First, (3.6) may have multiple minimizers.
If p=1, we can find the minimizers analytically, and if there are two, we choose the value of u« that is in
the same valley of the function miy(u) as u=0. This choice can be showh to guarantee that there is a
(nonlinear) descent path from x. to x.+d« for the model mr(x.+d). If p>1 we minimize (3.6) with a
standard unconstrained minimization code (starting from u=0) and use the minimizer it returns. We have

found that these procedures generally produce a desirable minimizer.

Secondly, the tensor model may not have a minimizer, either because ZTHZ is not positive
definite, or because (3.6) has no minimizer when ZT HZ is positive definite. Finally, even if (3.6) has a
minimizer dx, x.+d« may not be an acceptable next iterate. These difficulties are addressed by using a

global strategy.

We have tried both line search and trust region global strategies in conjunction with our tensor
method. The line search strategy we used is simple : if (3.6) has a minimizer d« which is in a descent
direction, but x.+d« is not an acceptable next iterate, we set x, = x.+Adx for some Ae (0,1] using a stan-

~ dard line search. If (3.6) has no minimizer, or d« is not in a descent direction, we find the next iterate by
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using a line search algorithm based on the standard quadratic model (1.3). The tensor method based on
this strategy has performed quite well (see Section 5), but we find that about 40% of the iterations cannot
use the tensor model. In order to make fuller use of the tensor model, we have also tried a trust region

strategy, which is the method that we concentrate on in this paper.

The trust region method approximately solves the problem

migg}g‘ize mr (x. +d) subjectto | |d|],<8 (3.7)

where de R is the trust radius that is adjusted at each iteration. This is a standard type of approach for
unconstrained optimization, see for example Fletcher [1980], Dennis and Schnabel [1983]. Efficient
methods exist for solving the trust region problem with quadratic models (see e.g. Moré and Sorensen
[1983], but it is quite difficult to extend them to the tensor model. For this reason, in order to test the
trust region tensor method approach initially, we used a penalty method to solve (3.7). This means that

we solve (3.7) by solving a sequence of unconstrained optimization problems of the form

mi‘?eirl?nize mr (x; +d) + o (dfd,—8%)? (3.8)

for increasing positive values of the scalar 0. (The details of selecting o are given in Chow [1989].) As in
most trust region algorithms, we only solve (3.7) approximately; in our implementation we stop when a
solution dx (o) to (3.7) satisfies | [dx(0)| | € [0.953, 1.053]. This means that ¢ does not grow unbound-
edly, and in practice a small number of problems of the form (3.8) are solved per iteration. The penalty
approach is only intended for initial test purposes, because it increases the cost of each iteration consider-
ably due to the cost of solving (3.8), although it does not increase the cost in function and derivative
evaluations. We will see that our best results so far have been obtained when p is constrained to be 1 at

each iteration; an efficient but complicated method for solving (3.7) in this case is given in Chow [1989].

Finally, we discuss the costs of solving the tensor model. The main additional calculations in
finding a minimizer of the tensor model, in comparison to minimizing a standard quadratic model, are the

calculations involving the matrices Z and W. These are performed by calculating the decomposition S =
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O R, where Q e R"** is an orthogonal matrix that is the product of p Householder transformations, and
ReR™® consists of an upper triangular matrix R in its first p rows, and is O otherwise. (Q is not actu-
ally formed, rather the p n-vectors that determine the p Householder transformations are stored, see e.g.
Stewart [1970].) Also let Re R™® consist of (R;)™! in its first p rows and 0 otherwise. Then W = Q R,
so for any veR” we can calculate WTv in 2np each multiplications and additions by applying the p
Householder transformations for Q7 followed by O (p?) operations to apply (R1)!. Similarly Z = Q-1
where /" is 0 in its first p rows and the identity matrix in its bottom n—p tows. Thus for any veR" we
can calculate ZTv in 2np each multiplications and additions by applying Q7 and then /. Using these
techniques, it is straightforward to verify that all the calculations in the tensor method that involve Z and
W, as well as the QR decomposition of S, can be performed in 4n%p + O (np?) each multiplications and

additions per iteration; the leading term comes from calculating HQ and then QTHQ.

The other costs of minimizing the tensor model are (n—p )3/6 each multiplications and additions for
the factorization of ZT HZ, and the cost of minimizing the fourth order polynomial in p variables (3.6),
which is negligible in comparison to the O (n3) cost, especially when p = 1. Thus the total cost of minim-
izing the tensor model is only a small multiple of n2p operations more than the n3/6 cost of finding a
minimizer of a standard quadratic model. Since p<n'? and we will see that usually p = 1, this is a very

small additional cost.

At many iterations, the tensor model has a minimizer which is accepted as the next iterate, so these
are the only costs of solving the tensor model. If a global strategy is needed, then the line search
described above can be implemented with about the same cost as for a standard quadratic model, since
given the factorization of ZT HZ we can also factor H using only O (n?p) additional operations. In the
case p =1, the trust region strategy can also be implemented as efficiently as in the quadratic case, i.e.
requiring the minimization of the tensor model at each inner iteration, by using the techniques in Chow

[1989]. The penalty approach is more expensive but is only intended for test purposes.
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4. The Complete Tensor Method Algorithm

An outline of the complete tensor method algorithm that we used in our computational tests is
given in Algorithm 4.1. The remainder of this section comments on several aspects of this algorithm that

have not yet been discussed.

Algorithm 4.1 -- An iteration of the tensor method. Given x,, f (x.), 6. :

1. Calculate Vf (x.) and decide whether to stop. If not:

2. Calculate V2f (x,).

3. Select p past points to use in the tensor model from among the 7 3 most recent past points.

4. Calculate the terms T, and V. in the tensor model, so that the tensor model interpolates f (x) and
V£ (x) at all the points selected in step 3.

5. Find a potential acceptable next iterate x.+dr and a potential new trust radius dr using the tensor
model and a trust region strategy.

6. Find a potential acceptable next iterate x.+dy and a potential new trust radius 8y using the qua-
dratic model and a trust region strategy.

7. If f (xe+dr) <= f (x.+dn)
then set x, = x.+dr and 3, = &7
else set x, = x,+dy and &, = Oy .

8. Setx.=x., f (x;)=f (x4), O, = d,, go to step 1.

The most important feature of Algorithm 4.1 that has not been previously discussed is that at each
iteration, we calculate a potential new iterate based on the quadratic model, as well as a potential new
iterate based on the tensor model. This means we perform a full global strategy using each model, result-
ing in two points x.+dr and x.+dy which both give sufficient decrease in f (x) to be acceptable as the
next iterate. Then we choose the one with the lower function value as the next iterate. Even though this
strategy increases the cost of each iteration by at least one function evaluation (since it is necessary to

evaluate f (x) at both x.+dr and x.+dy, and maybe at some unsuccessful trial points, in the global
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strategies), we have found that this approach substantially improves the efficiency of our tensor method as
measured in function and derivative evaluations, as well as in iterations. We have not yet found a way to

achieve the same efficiency without requiring the use of both models at each iteration.

Finally we discuss some details of the steps of Algorithm 4.1. In steps 1 and 2, the gradient and
Hessian are approximated by finite differences using Algorithms A5.6.3 and A5.6.2 in Dennis and Schna-
bel [1983], respectively. The algorithm stops if | | Vf (x;)| |2 <1050or | |d, | |2 < 10719, Step 3 was dis-
cussed in Section 2; 45 degrees is used for the angle 8 mentioned there. The procedures for calculating

T, and V. in step 4 also were discussed in Section 2.

In step 5, we first determine whether the tensor model has an acceptable minimizer within the trust
region, and if so, we select this point as the solution to step 5. Otherwise we solve the trust region prob-
lem (3.7) by a penalty method, as discussed in Section 3, resulting in a candidate step d. Then we decide
whether to accept x.+d as the solution to step 5, update the trust radius, and possibly repeat this process
until an acceptable point x.+dr is found. In step 6, we follow the exact same procedure except that we
only use the first three terms of the model. The procedure for determining whether the candidate step is
acceptable in these trust region algorithms, and for updating the trust region, is identical to Algorithm
A6.4.5 in Dennis and Schnabel [1983], except that : 1) every occurrence of initslope is changed to
Afpred, where Afpred is the difference of the values of the model being used (tensor or quadratic) at the
candidate point and at x.; 2) steps (9c.1-2) of Algorithm A6.4.5 are replaced by setting Afpred to this

same value.
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5. Test Results

We have tested the tensor algorithm described in Section 4 on a variety of nonsingular and singular
problems. We compared it to an algorithm that is identical except that the third and fourth order terms T,
and V. are always zero. That is, the comparison algorithm is a finite difference Newton’s method, whose
global strategy is a trust region problem solved by a penalty method. In this section we summarize our
test results. The details of our computational results are provided in the appendix. All our computations

were performed on a MIPS computer, using double precision arithmetic.

First we tested our algorithms on the set of unconstrained optimization problems in Moré, Garbow
and Hillstrom [1981]. All these problems except the Powell singular problem have V2f (x« ) nonsingular.

The dimensions of the problems range from 2 to 30.

Then we created singular test problems by modifying the nonsingular test problems of Moré, Gar-
bow and Hillstrom [1981]. All of the unconstrained optimization test problems in that paper are obtained

by taking a system of nonlinear equations

FT = (F1(x), -, fm®)) G.1

where m2n and each f; : R* —R, and setting
f@) = F@IF) = § f2). (5.2)
In most cases, F (x) = O at the minimizer x«, and F’ (x«) is nonsingular. In these cases, Schnabel and
Frank [1984] showed how to create singular systems of nonlinear equations from (5.1), by forming
F(x) = F(x)=F (x)AQATAY AT (x—x2) (5.3)

where Ae R™* has full column rank with 1<k <n. Thus F (x«)=0 and F ’(x« ) has rank n—k. To create a

singular unconstrained optimization problem, we simply define the function
fx) = BF@)TF(x). (5.4

From (5.4) and F (x+ )=0, we have Vf ()= F'(x)TF {x+)=0. From
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F'(x«) = FF ) [I-AATAY1AT] (5.5)

and
V2 (o) = F /(o )T F /() + i FiGe )V (o) =F (e )T F () (5.6)
we know that V2f (x«) has rank n—k .

By using (5.3-4), we created two sets of singular problems, with sz (x+) having rank n—1 and

n—2, by using
AeR™ | AT=(1,1,..,1)

and

n {1 111 . 1
AeR’Q, AT— 1-11-1 '(—1)"

respectively. We tested our methods on the singular versions of all the nonsingular problems except the

Gaussian function and the Gulf research and development function, which we excluded because their

nonsingular versions never converged to a minimizer using either standard or tensor methods.

Our computational results for the sets of test problems whose Hessians at the minimizers have
ranks n, n—1, and n-2 are summarized in Tables 5.1-5.3, and given in detail in Appendices A1-A3,
respectively. For each problem set, Tables 5.1-5.3 compare the performance of the standard method to
two versions of the tensor method: the one described in Sections 2-4 where the number of past points
interpolated, p, is selected at each iteration to be between 1 and n /3, and a second version where p is res-
tricted to be 1 at all iterations. We tested the second version because we observed that the first version
generally chose p = 1 anyhow, and because the tensor method is considerably simpler to implement, and

is cheaper in terms of storage and cost per iteration, when p = 1.

Tables 5.1-5.3 summarize the comparative costs of the standard and tensor methods using ratios of
two measures: iterations, and function and derivative evaluations. The iteration ratio is the total number

of iterations required by the tensor method on all problems that were successfully solved by both
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methods, divided by the total number of iterations required by the standard method on these problems.
The second ratio is based upon the total number of function evaluations required to solve each problems,
including those for finite difference gradients and Hessians (i.e. we count n function evaluations per gra-
dient evaluation and (n2+3n)/2 function evaluations per Hessian evaluation). The ratio reported is the
total of these numbers for the tensor method over all problems that were successfully solved by both
methods, divided by the total of these numbers for the standard method over the same problems. Tables
5.1-5.3 also contain, for that test set, the number of problems where the performance of the tensor method
was better, worse, or the same as the standard method. Here better is defined as at least 5% better in the
function evaluation measure, worse is defined as at least 5% worse in the function evaluation measure,

and the remaining problems are considered the same.

The statistics in Tables 5.1-5.3 only pertain to test problems that were solved successfully by both
the standard method and the tensor method. Table 5.4 shows, for each test set, how many problems were

solved successfully by the tensor method but not by the standard method, and vice versa.

In summary, Tables 5.1-5.4 show that both the p 21 and the p =1 versions of the tensor method have
a large advantage, in both reliability and efficiency, over the standard method on all three test sets. In
each of the six comparisons, a substantial portion of the test problems (between 16% and 22%) are solved
by the tensor method and not the standard method, while only two problems in the nonsingular sets and
none in the singular sets are solved by the standard method and not the tensor method. In addition, on the
problems solved by both methods (between 43 and 50 problems in each of the six cases), the average cost
of the tensor method, measured in iterations or function and derivative evaluations, is generally slightly
less than half of the cost of the standard method. Finally, the improvements by the tensor method are
quite consistent. Totaling all our tests, the tensor method is worse than the standard method in 8% of the

test cases (28 of 352), better in 87.5% (308 of 352), and the same in 4.5% (16 of 352).

The performances of the version of the tensor method which constrains p to be 1 and the version

that allows p to be between 1 and n'3 are rather similar overall, with the p=1 version actually
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Table 5.1 -- Summary of Test Results for Nonsingular Problems

method | tensor/std.(itn) | tensor/std.(fcn) | tensor better | std. better | tie
p=1 0.496 0.580 36 5 3
p=1 0.468 0.488 34 5 4
Table 5.2 -- Summary of Test Results for Rank n-1 Singular Problems
method | tensor/std.(itn) | tensor/std.(fcn) | tensor better | std. better | tie
p=1 0.465 0.400 42 3 2
p=1 0.479 0.466 40 5 2
Table 5.3 -- Summary of Test Results for Rank n-2 Singular Problems
method | tensor/std.(itn) | tensor/std.(fcn) | tensor better | std. better | tie
p=1 0.449 0.390 45 1 3
p=1 0.489 0.466 43 5 2

Table 5.4 -- Number of Problems Solved by Tensor/Standard Method Only

method | nonsingular | singular(rank n—1) | singular(rank n-2)
p=1 1322 9/0 13/0
p=1 1122 12/0 10/0

performing somewhat better overall on the singular test sets and the p 21 version performing somewhat
better on the nonsingular test set. One reason for their similarity is that even when we allow p >1, we
have found that our criterion for selecting past iterates to interpolate generally results in p=1. Over all
our test problems, we found that the p=1 method selected p=1 85% of the time, p=2 15%, and p >2
0.35%. Thus it appears that the advantages of the tensor method may be achieved by using p=1, which
would mean that the extra cost of storing and forming the tensor model would be very low, and that the

method would be quite simple to implement. In particular, using p=1 has the advantage that the formulas
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for T, and V. are readily available in closed form in terms of the function and derivative values being
interpolated, and that solving the tensor model reduces to minimizing a fourth order polynomial in one

variable which also can be done in closed form.

In our tests, the global portion of the tensor method (steps 5-7 of Algorithm 4.1) selected the step
from the quadratic model about 20% of the time on the average. While this is a rather small percentage,

the performance of the tensor method is improved significantly by allowing this possibility.

We do not claim to fully understand why the tensor method performs so much more efficiently and
reliably than a state of the art standard method in our tests. What is especially surprising is that the
improvements are attained by incorporating a small amount of extra information, usually just the function
in gradient from the previous iterate, into the model. Apparently, having a more accurate model in the

direction of the previous step is especially useful in practice.

The computational advantage of the tensor method is probably not due to an improved rate of con-
vergence, except when rank(V2f (x«)) = n—1. In particular, when V2f (x+) is nonsingular and n>1, it is
highly unlikely that the convergence rate of the tensor method is different than the quadratic rate of the
standard method. (It is easy to show that the tensor method is at least quadratically convergent in this
case because the influence of the tensor terms vanishes asymptotically.) In the case when V2f (x«) has
rank n—1, we conjecture that the convergence rate of the tensor method is again better than the linear con-
vergence of the standard method, as was shown by Frank [1984] for the tensor method for nonlinear equa-

tions. We have not yet attempted to prove this, except in the case n=1 where it is straightforward to show
that the tensor method converges with order h;—ﬁ— = 1.2 (Chow [1989)). We did measure the ratios of

the errors of successive iterates on our test problems with rank V2f (x«) = n—1. An example is given in
Table 5.5. We see that the standard method converges linearly with constant = 2/3, as predicted by the
theory, and that the tensor method appears to be converging faster than linearly. (An interesting feature
of this example is that iterations 2 and 5 of the tensor method increase the error in x, even though the

function value decreases. We noticed such behavior by the tensor method on several test problems,
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although for most it did not occur.) When rank(V2f (x«)) = n—2, the tensor method does not have enough

information to prove a faster than linear convergence rate, since it usually uses p =1.

Table 5.5 -- Speed of Convergence on a Typical Problem with Rank V2f (x«) =n—1

(Singular version of variably dimensioned function, n=10, started from x, using p=1)

Numbers in the second and the third columns are - Li" :f;*l '
Iteration (k) Tensor Method Standard Method
1 0.825 0.825
2 61.73 0.825
3 0.028 0.825
4 0.104 0.668
5 7.860 0.776
6 0.033 0.647
7 0.665 0.666
8 0.665 0.665
9 0.600 0.666
10 0.635 0.666
11 0.664 0.666
12 0.654 ; 0.667
13 0.436 0.667
14 0.511 0.667
15 0.120 0.666
16 0.058 0.666
17 0.666
18 0.666
19 0.666
20 0.665
21 0.665
22 0.664
23 0.664
24 0.667
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Finally, we have also implemented a line search version of the tensor method and compared it to an
algorithm using the standard quadratic model and the same line search. We found that, on the average,
the performances of the line search and trust region versions of the quadratic model algorithms were very
similar, and that the line search version of the tensor method was almost 15% less efficient than the trust
region tensor method. (See Chow [1989] for details.) We observed that the global strategy is only able to
use a tensor method step about 60% of the time in the line search tensor method versus about 80% of the
- time in the trust region version. This may be related to the difference in their performances. But the line

search tensor method still improves by a large amount over the standard method.

6. Summary and Future Research Directions

We have presented a tensor method for unconstrained optimization that bases each iteration upon a
fourth order model of the objective function. This model interpolates the function value, gradient, and
Hessian of the objective function at the current iterate, and forms its third and fourth order terms by inter-
polating values of the function and gradient at previous iterates. The costs of storing, forming, and using

the model are not significantly more than for a standard method that uses a quadratic Taylor series model.

The computational results of Section 5 show that the tensor method is substantially more reliable
and efficient than the corresponding standard method on both the nonsingular and singular problems that
we tested. This experience indicates that the tensor method may be preferable to methods available in
software libraries for solving small to medium sized unconstrained optimization problems, in cases when
analytic or finite difference Hessian matrices are available. Obviously, more computational experience is
necessary to determine this conclusively. To facilitate this process, we are developing a software package
that implements a tensor method for unconstrained optimization using analytic or finite difference second
derivatives, and will make it available shortly. Our software package restricts p, the number of past
iterates whose function and gradient values are interpolated at each iteration, to be one. The reasons for

this choice are that our computational results show that the tensor method with p=1 is generally about as
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effective as the method that allows p 21, and that the method is considerably simpler and cheaper to
implement in this case. Initially it will use a line search rather than a trust region, because the line search
tensor method is currently much easier to understand, and much faster on small, inexpensive problems,
than the trust region version, while still leading to large savings in iterations and function and derivative

evaluations on our test problems. A trust region version may be added to the package later.

Several interesting research topics remain concerning the tensor method described in this paper. As
indicated above, the development of a simple, efficient method for approximately solving the trust region
problem using the tensor method would be very useful. Chow [1989] has developed a fairly efficient, but
complex method for solving the trust region problem (3.7) when p=1; the question of how to solve this
problem efficiently when p >1 remains open. It would also be nice to develop an effective global strategy
that does not require the determination of the step using both the tensor model and the quadratic model at
each iteration. Finally, as we mentioned in Section 5, the local convergence analysis in the case n>1

remains open.

The standard and tensor methods discussed in this paper both assume that the analytic or finite
difference Hessian is available at each iteration. Often in practical applications, however, the analytic
Hessian is not available, and it is expensive to calculate by finite differences, so secant (quasi-Newton)
methods are used instead. These methods are based on a quadratic model that is formed solely from func-
tion and gradient values at the iterates (see e.g. Dennis and Moré [1977], Fletcher [1980], Dennis and
Schnabel [1983]). We are developing a secant tensor method for unconstrained optimization that bases
each iteration upon a fourth order model that is also determined solely from function and gradient values

at the iterates. This work is described in Chow [1989] and in a forthcoming paper.
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Appendix A

Test Results for the Standard and Tensor Methods

The columns in Tables A.1 - A.3 have the following meanings :

Function: name of the problem.
n : dimension of the problem.

xo: starting point (from Moré, Garbow and Hillstrom [1981]). 1, 10 and 100 stand for xq, 10x¢ and
100x g, respectively.

itns: number of iterations.

fens: number of function evaluations (including the necessary function evaluations for finite difference
gradients and Hessians).

x+ . two methods converge to the same minimizer if and only if they have the same letter in this column.

The abbreviations OF, OL and NC stand for overflow, over iteration limit, and convergence to a
nonminimizer, respectively. The iteration limit was 120.
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Table A.1 -- Test Results for the Standard and Tensor Methods
on Nonsingular Problems

. Tensor (p 21) Tensor (p=1) Standard
Function *o ins fcns X» | itns fcns X« | itns fcns X
Rosenbrock 1 15 150 a 14 146 a 22 183 a

10 35 345 a 35 345 a 64 542 a

100 | 86 833 a 83 795 a OL - -

10 1 21 1724 a 21 1683 a 21 1615 a

10 OF - - OF - - 73 5605 a

100 | OF - - OL - - OL - -

30 1 21 11640 | a 25 13240 | a 22 11610 | a

10 OF - - 83 | 44067 | a 92 | 48484 | a

100 { OF - - OL - - OL - -

Wood 4 1 30 629 a 30 629 a 62 1230 a
10 32 674 a 34 723 a 70 1391 a

100 | OL - - OF - - OL - -

Helical 3 1 11 170 a 9 138 a 13 175 a
valley 10 14 213 a 14 215 a 16 216 a
100 13 194 a 13 194 a 15 203 a

Trigono- 2 1 4 40 a 4 40 a 4 37 a
metric 10 6 62 a 6 62 a 7 59 a
100 4 38 a 4 38 a 5 43 a

10 1 6 553 a 7 555 a 19 1467 a

10 9 708 a 9 708 a 50 3820 a

100 | 40 3106 a 43 3336 a 32 2446 a

Beale 2 1 7 71 a 7 71 a 7 62 a
10 12 120 a 8 78 a OL - -

100 | OL - - OF - - NC - .

Brown and 4 1 13 272 a 13 271 a 18 347 a
Dennis 10 16 333 a 14 292 a 24 461 a
100 | 22 469 a 21 440 a 40 778 a

Brown badly | 2 1 OL - - OF - - OL - -
scaled 10 OL - - OL - - OL - -
100 | OL - - OL - - oL - -

Box three 3 1 12 183 a 13 200 a 21 290 a
dimensional 10 19 305 a 23 359 a 59 827 b
100 | 20 325 a 17 281 b OL - -




Penalty I

Penalty II

Variably
dimensioned

Biggs
EXP6

Chebyquad

Watson

10

30

10

30

20

20

10
100

10
100

10
100

10
160

10
100

10
100

10
100

10
100

10
100

10
100

Table A.1 (continued)

211
209
293

1179
868
1811

10058
11640
15337

151
274
913

153
150
272

794
936
1492

9540
10056
30641

972
2987
914

221

1214
1785
3815

403

31

9
11
13

14
9
24

20
26
31

5
20
29

7
7
13

11
10
17

10
17
OL

28
34
26

6
29
53
16
95
104
11

NC

150
229
272

1101
707
1889

10577
13761
16391

108
416

153
148
271

863
786
1338

5306
9002

1005
1223
937

221
1033
1885

4064
24102
26385

397

757
829

2680
3059
3988

18973
23189
52174

2285

195
214
348

1229
1534
2447

17391
21073
58956
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Table A.2 -- Test Results for the Standard and Tensor Methods
on Singular (rank n-1) Problems

. Tensor (p 21) Tensor (p=1) Standard
Function *0 s | fens | x» | itns | fons | x» | itns | fens | x-
Rosenbrock 1 31 305 a 31 305 a 70 570 a

10 39 383 a 39 383 a 93 764 a

100 | 60 601 a 58 579 a OL - -

10 1 11 945 a 15 1181 b 15 1162 c

10 25 2049 a 27 2125 b 27 2071 c

100 | 29 272 a 41 3224 b 66 5060 c

30 1 6 3202 a 6 3202 a 60 | 31598 | b

10 12 6368 a 12 6367 b 23 12137 | b

100 | 21 11647 | a 21 11118 | a 35 18453 | b

Wood 4 1 25 519 a 25 519 a 37 708 a
10 34 713 a 36 758 a 52 1001 a

100 | 77 1576 a 58 1200 a | OL - -

Helical 3 1 9 147 a 9 138 a 13 180 a
valley 10 15 229 a 15 222 a 25 334 a
100 | 20 319 a | ‘16 243 a 26 345 a

Trigono- 2 1 6 59 a 6 59 a 12 102 a
metric 10 5 50 a 5 50 a 9 75 a
100 6 58 a 6 58 a 9 76 a

10 1 8 630 a 7 553 a 14 1085 a

10 14 1097 a 14 1098 a 15 1159 a

100 | 20 1639 a 18 1399 a | NC - -

Beale 2 1 6 64 a 7 74 a 6 52 a
10 10 100 a 10 100 a 47 396 b

100 | 64 679 a 23 231 a 44 364 a

Brown and 4 1 12 254 a 13 274 a 19 366 a
Dennis 10 16 337 a 14 293 a 24 461 a
100 | 20 421 a 21 443 a 40 778 a

Brown badly | 2 1 OF - - OF - - | NC - -
scaled 10 OL - - OF - - NC - -
100 | OL - - OF - - NC - -

Box three 3 1 9 136 a 18 270 b 9 121 c
dimensional 10 11 169 a 28 423 b 83 1083 c
100 | 28 430 a 25 380 a 31 412 b




Penalty I

Penalty II

Variably
dimensioned

Biggs
EXP6

Chebyquad

Watson

10

30

10

30

20

20

10
100

10
100

10
100

10
100

10
100

10
100

10

100

10
100

10
100

10
100
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Table A.2 (continued)

84
84
147

318
550
1341

3722
9001
10584

130
229
354

91
192
359

1020
1479
1712

25382

2962
2694

332
789
1245

7349
7349

13903
295

6099

33

4
4
7

4
7
17

10
16
18

4
11
15

4
11
18

16

17
21

23
36
OF

OF
63
OF

10
19
22
8
OF
57
8

28

84
84
147

318
550
1341

5300
8471
9532
88
229
313
87
229
372
1254
1332
1641

12170
19039

2246

365
683
785
2045
14441
295

7100

15

20

18

35

22

86

57
OL
17

25

24

27

41

oL
OL

OL
OL

OL
OL
OL

OL
OL

OL

290

<

Voo
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Table A.3 -- Test Results for the Standard and Tensor Methods
on Singular (rank n-2) Problems

. Tensor (p 21) Tensor (p=1) Standard
Function " *o itns fcns X« | itns fcns Xu itns fcns p
Rosenbrock 2 1 7 68 a 7 71 a 16 131 b

10 5 52 a 5 52 a 21 171 b

100 11 111 a 13 128 b 26 211 c

10 1 11 872 a 11 872 a 14 1084 b

10 33 2718 a 25 1959 b 29 2233 b

100 | 25 2007 a 29 2330 a 45 3473 a

30 1 11 5841 a 11 5841 a 21 11083 | a

10 23 12172 | a 25 1959 a OL - -

100 | OF - - 59 | 31247 | a OL - -

Wood 4 1 13 277 a 13 275 a 19 366 b
10 16 339 a 18 378 b 24 461 c

100 | OF - - OF - - NC - -

Helical 3 1 15 222 a 13 196 a 41 541 a
valley 10 21 316 a 19 281 a 49 648 a
100 | 22 328 a 21 315 a 47 621 a

Trigono- 2 1 4 38 a 4 38 a 8 67 a
metric 10 6 62 a 6 62 a 10 83 a
100 7 70 a 7 70 a 8 67 a

10 1 6 553 a 7 554 a 15 1161 a

10 11 941 a 11 864 a 15 1159 a

100 | NC - - NC - - NC - -

Beale 211 | 6 65 | a| 6 65 | a | 10| 8 | b
10 10 101 a 9 95 b 10 84 c

100 | 22 235 a 20 217 a NC - -

Brown and 4 1 12 253 a 13 271 a 18 347 a
Dennis 10 17 355 a 14 292 a 24 461 a
100 | 20 424 a 20 419 a 40 778 a

Brown badly | 2 1 NC - - NC - - NC - -
scaled 10 | NC - - NC - - NC - -
100 | NC - - NC - - NC - -

Box three 3 1 16 248 a 11 172 b 16 200 c
dimensional 10 22 331 a 13 202 a 22 304 b
100 | 48 763 a 40 633 b 46 637 b
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Table A.3 (continued)

64
84
147

318
437
1469

4776
9002
8473

88
230
314

192
193
377

1663
1217
1966
15368

23269
16426

2627
1491
473
1076
1320
3308
15705

216

35

3
4
7
4
7

[y

8

8
15
18

4
12
16

9
9
12

11
14
21

16
OL
OL

OF
54
52

11
26
32
13
42
46
6

33

84
147

318
555
1418

4246
7944
9525

88
253
335

192
191
250

868
1100
1666

8476

1946
1884
404

926
1141

3310

10631

11687
216

8369

oo oo o o'

[ [w = o]

[

102
OL

39
OL
OL
OL
96
OL
OL
OL

OL

OL

290
385
499

1381
1838
2685

11605
15292
45334

100
271
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Powell
singular

20

10
100

10
100

12
22

13
11
17

36

Table A.3 (continued)
194 a| 11 233
253 a| 14 294
464 a| 22 464

3308 | a | 10 | 2550
3308 | a | 14 | 3559
5075 | a | OF -

15
26
16

21
27

290
499
4043

5296
6801
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