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Microscale fluid flows have gained increased attention in recent years. As the physical scale

of fluidic devices decreases, rarefaction effects governed by the Knudsen number appear and the

continuum assumption is invalid. Fluidic devices designed without the consideration of these effects

may, in turn, perform sub-optimally. The goal of this thesis is to present two alternative approaches

for modeling flows with finite Knudsen numbers. First, a comparison of governing equations de-

rived from a moment method approach to the Boltzmann Transport Equation is considered. The

proposed stabilization scheme is found to be overly diffusive for nonlinear equations, which are

expected for higher-order moment equations. As an alternative, the incompressible Navier-Stokes

equations are used and a slip boundary condition is proposed to model the non-zero fluid velocity

near solid walls that occur at finite Knudsen numbers. The explicit Level Set Method (LSM) is

adopted to provide the precise location and orientation of the fluid-solid interface and the eXtended

Finite Element Method (XFEM) is used to realize the flow. A ghost penalty stabilization method

ensured smooth velocity gradients along the interface. The framework is validated with 2D numeri-

cal examples. Finally, 2D and 3D topology optimization examples are studied. For some examples,

ignoring the slip boundary leads to considerable design differences and sub-optimal performance.
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Chapter 1

Introduction

The Knudsen number is a nondimensional parameter that characterizes the rarefaction of a

gas and is defined as:

Kn =
λ

Lr
≈ λ

Φ0

∣∣∣∣
dΦ0

dL

∣∣∣∣ , (1.1)

where λ is the mean-free path of the fluid, Lr is a global reference length, e.g. the spacing between

plates or the cylinder diameter, and Φ0 is any chosen quantity, e.g. the fluid density or pressure [1].

The mean-free path is the average distance a fluid particle travels between collisions with other

particles. The first definition in (1.1) represents a global Knudsen number, while the second can

be used to represent a local Knudsen value. Larger Knudsen numbers indicate that particles travel

further distances between collisions; thus, the fluid is said to be more rarefied.

The regime breakdown based on the Knudsen number was originally proposed by Schaaf and

Chambre [2] and revised by Gad-el-Hak [3]. Flows for which Kn < 10−3 are said to be in the

Hydrodynamic Range, where the Navier-Stokes (NS) equations with traditional no-slip boundary

conditions are valid. Flows for which 10−3 < Kn < 10−1 are said to be in the Slip Flow Regime,

where the NS equation cannot be used with the traditional no-slip boundary conditions. Instead,

velocity and temperature slips begin to occur as the Kn increases, i.e. the velocity and temperature

of the fluid at the wall and that of the wall itself are not the same. Flows for which 10−1 < Kn < 10

are said to be in the Transition Regime; here, the NS equations are no longer valid, regardless of

boundary conditions. Finally, flows for which Kn > 10 are said to be in the Free Molecular Flow

Regime, where intermolecular collisions are so rare that they can be ignore; instead, only particle-
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Figure 1.1: Classification of gas flow regimes and governing equations over a range of Knudsen
numbers.

wall interactions are important. The Direct Simulation Monte Carlo (DSMC) method proposed by

Bird [4] is particularly powerful in this regime, since each particle can be considered independent

of other particles in a flow. In contrast to other fluid flow equations, the Boltzmann Transport

Equation (BTE) is valid across all regimes, though a collision-less BTE is most appropriate for

large Kn number flows [5]. This breakdown is summarized in Fig. 1.1. As the Knudsen number

increases, rarefaction effects becomes more obvious and the continuum assumption breaks down. To

fully understand the Knudsen effect, it is important to resolve all transport regimes [6]. However,

the classification discussed here is somewhat empirical and the boundary between regimes depends

on the particular device [7].

The goal of the work presented in this thesis is two-fold: 1. Develop a fluid model to

resolve rarefaction effects for low but finite Knudsen numbers. 2. Integrate these model into an

existing topology optimization framework to find optimal designs for fluidic devices operating in

the microscale.

Chapter 2 considers the moment approach proposed by Tölke [8] and studied previously

by Makhija and Maute [9], where the governing equations are linear and thus benefit from the

presented stabilization scheme. As higher-order moments are considered, as discussed in that

chapter, the governing equations become increasingly non-linear and may be negatively affected by
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the stabilization scheme. To study this effect, we derived a new set of governing equations similar

and compare its performance to previous work.

As an alternative, Chapter 3 considers an extension of the Navier-Stokes equations by in-

troducing a slip boundary model to the framework proposed by Villanueva and Maute [10]. This

extends the applicability of the NS equation to Kn numbers in the Slip Regime. The slip boundary

model introduced in this work benefits from smooth velocity gradients, which motivates the use

of the ghost-penalty method over other stabilization schemes. We validate the implementation of

the slip boundary model with several examples and then study the influence of the ghost-penalty

method.

Finally, Chapter 4 studies the influence of the slip boundary model on the optimal design of

several fluidic devices. In the simplest example, the device is required to split and redirect an inlet

flow. Then, we consider a fixed-valve whose intent is to allow flow in one direction but discourage

it in another. It is for this problem that the slip boundary has the greatest influence. These

two problems are more heavily discussed in the attached manuscript in Appendix C. Further, we

consider two transport problems in 2D and 3D.



Chapter 2

Moment Methods

2.1 Introduction to moment methods

The hydrodynamic Boltzmann transport equation (HBTE) represents a kinetic theory ap-

proach to fluid dynamics, whereas the Navier-Stokes equations are derived from the conservation of

momentum in a fluid continuum. Likewise, the continuity equation is derived from a conservation

of mass. The HBTE has been shown to recover the Navier-Stokes by Grad [5] and is able to resolve

finite Knudsen number flows [11]. In this Chapter, we will limit our discussion to Knudsen numbers

in the continuum regime and will revisit larger Kn numbers in Chapter 3. The HBTE describes the

time-evolution of a particle distribution function, f(x, ξ, t), and is introduced properly in Section

2.2. Traditionally, the majority of research on the HBTE has focused on the explicit finite difference

discretization, leading to the lattice Boltzmann method (LBM). A review of the LBM is provided

by Yu et al. [12]. As discussed by Makhija and Maute [9], while the LBM offers several numerical

advantages, including low computational cost and easy parallelization, it suffers from limitation due

to the explicit time integration scheme and from a large number of degrees-of-freedom per node.

The LBM also lacks a mathematical formalism for unstructured meshes and local mesh refinement

is more complex because the model parameters depend on the mesh spacing, e.g., see [13].

These limitations have been addressed with alternative discretization schemes, include finite

difference by Mei and Shyy [14] and, more recently, by Tölke [8], finite volume by Patil and

Lakshmisha [15], and finite element techniques. Finite element techniques have gained recent

attention, including a characteristic Galerkin finite element method by Lee and Lin [16], a least-
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squares finite element method by Li et al. [17] and Li et al. [18], and discontinuous Galerkin schemes

by Düster et al. [19] and Min and Lee [20].

Alternatives to the LBM include a wide variety of moment methods, such the Burnett, BGK-

Burnett, and super-Burnett models of Zhong et al. [21], Jin and Slemrod [22], and Balakrishnan [23],

respectively. As explained by Lockerby et al. [24], three reasons contribute the large number of

moment methods: (1) constitutive relations of higher-order than the NS equations have indicated

potential in modeling rarefied flows, (2) all these models depend on the numerical and physical

instability and (3) no single equation has the ability to predict the important non-equilibrium effects

in rarefied gas microflows. In particular, the regularized 13-moment equations (R13),originally

proposed by Struchtrup and Torrilhon [25], have becomes a popular choice for the study of non-

equilibrium flows. The R13 equations use a Chapman-Enskog expansion on Grad’s 13-moment

equations. Analytical solutions exist for simple flows, such the flow between parallel plates [26] and

the flow around a sphere [27]. They have also been shown to resolve the flow in a driven cavity [28],

a heated cavity [29], and the flow through a Knudsen pump [30]. Their reach in application has also

been considered by Gu et al. [31]. While the R13 and other higher-order moment methods show

promise in resolving non-equilibrium flows, they have not been rigorously studied for very complex

geometries, such as those that might arise in the process of topology optimization. Moreover, these

models are highly non-linear, which require greater computational power.

Recently, Makhija and Maute [9] applied an immersed boundary approach with a Streamline

Upwind Petrov-Galerkin (SUPG) scheme to the HBTE. Further, Makhija and Maute [32] aug-

mented said approach with a scalar advection-diffusion equation and studied mass transport and

heat transfer optimization problems. In that work, the immersed boundary approach provides a

way to perform topology optimization for various fluid problems and is realized by the eXtended

Finite Element Method (XFEM). In this Chapter, we will limit our discussion to fluid analysis and

will thus not require the immersed boundary approach. However, we will revisit this approach in

Chapter 3.

The remainder of this Chapter is organized as follows: Section 2.2 shows the derivation of the
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governing equations from the BTE, Section 2.3 discusses the enforcement of boundary conditions,

and Section 2.4 shows the numerical stabilization scheme. Section 2.5 briefly shows the finite

element discretization used in this Chapter. Numerical examples are provided in Section 2.6.

Conclusions drawn from these examples are discussed in Section 2.7.

2.2 Governing Equations

The Boltzmann Transport Equation (BTE) operates on a probability distribution function,

f(x, ξ, t), such that f(x, ξ, t)dxdξ is the probable number of particles within a sphere of radius dx

centered around x having velocities within dξ of ξ [5]. Some texts, as in this work, redefine this

distribution as a mass distribution instead of a number distribution, such that f(x, ξ, t)dxdξ is the

mass of the previously described particles. This redefinition is allowed by:

fnum =
1

m
fmass, (2.1)

where m is the mass of a single particle. Furthermore, moments of this distribution have physical

interpretations [5]. For example, the zeroth moment of the mass distribution is the local density:

ρ(x, t) =

∫
f(x, ξ, t)dξ, (2.2)

and the first moment is the momentum field:

ρui(x, t) =

∫
ξif(x, ξ, t)dξ. (2.3)

At this is point, it becomes convenient to define the remaining moments with respect to this mean,

so we introduce an intrinsic velocity:

c(ξ,x, t) = ξ − u(x, t). (2.4)

The second moments, i.e. the fluid stresses, are defined as:

σij =

∫
cicjf(x, ξ, t)dξ, (2.5)
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and so on for larger moments. For a more detailed consideration and for the derivation of the BTE,

the reader is referred to Grad [5]. The BTE is written as:

∂f

∂t
+ (ξ ·∇) f = Ω, (2.6)

where Ω is the integral collision operator. The BTE is thus a integro-differential equation in 7

variables (3 spatial, 3 velocities, and time) and presents two primary issues: (i) The integral on

the right-hand side is difficult and expensive to evaluate and (ii) the velocity space is infinite, i.e.,

to apply a numerical scheme, it would have to be truncated. To mitigate these issues, this work

follows Tölke [8] and Makhija and Maute [9].

2.2.1 The BGK approximation

To mitigate the difficulty of the right-hand side integral, the Bhatnagar-Gross-Krook (BGK)

[33] approximation is adopted:

Ω ≈ ΩBGK = −τ−1 (f − feq) , (2.7)

where τ is called the relaxation time and feq is the equilibrium distribution:

feq =
ρ

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

)
, (2.8)

where D is the dimension of the problem, R is the specific gas constant and T is a reference

temperature.

Considering a dxdξ finite volume centered at (x, ξ) in the xξ-phase plane, the BGK collision

operator approximates the exit rate of particles as proportional to the distribution of particles in

said finite volume and the entrance rate of particles as proportional to an equilibrium distribution

outside this space, such that intermolecular collisions tend the flow towards equilibrium. The latter

approximation is the most critical, since the original collision operator, Ω, required knowing the

distribution of all particles outside this finite volume, making it expensive to evaluate. The BGK

approximation replaces this requirement with an equilibrium distribution.
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2.2.2 Moment approach to the infinite velocity space

To mitigate the difficulty of the infinite velocity space, we take moments of the entire BTE,

∫ (
∂f

∂t
+ (ξ ·∇)f

)
Ψ(N)dξ =

∫
−τ−1 (f − feq) Ψ(N)dξ, (2.9)

∂

∂t

∫
fΨ(N)dξ +

∂

∂xi

∫
fξiΨ

(N)dξ = −τ−1

(∫
(f − feq) Ψ(N)dξ

)
, (2.10)

where Ψ(N) is 1, ξi, cicj , as in (2.2), (2.3), (2.5), respectively, and so on for higher-order moments.

In the first term on the left-hand side and in both terms on the right-hand side, an N -th order

moment, M (N), appears. However, the second term on the left-hand side has an additional ξi,

meaning that the resulting moment will necessarily be one order higher. This results in:

∂

∂t
M (N) +

∂

∂xi
M

(N+1)
i = −τ−1

(
M (N) −M (N)

eq

)
, (2.11)

thus creating a system of equations, i.e. (2.11) written for all orders, N .

While this approach removes the molecular velocities as independent variables, it inevitably

creates a new issue: the governing equation for an N -th order moment, appearing in the time

derivative and on the right-hand side, generally involves an (N + 1)-th order moment. In the

literature, this is commonly referred to as the closure problem, which has been discussed by Lev-

ermore [34], Levermore and Morokoff [35], and Lam and Groth [36]. For a brief review of moment

closure approaches, the reader is referred to Kuehn [37]. In principle, the closure problem appears

in the NSF equations as well: the governing equation for the density requires the velocity and the

governing equations for the velocities require the stresses. It is only until the stresses are related

to the gradients of the velocities, e.g. for Newtonian fluids, that the system is closed.

2.2.3 Galerkin expansion of the distribution

To mitigate this new issue for the BTE, we represent the distribution function, f , as a series

expansion of Hermite polynomials in the velocity space, such that the need of higher-order moments

is truncated depending on how large an expansion is used. Following the work of Tölke [8], a so-
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called global expansion is written as:

f ≈ f̂glb =
1

(2πRT )D/2
exp

(
− ξ2

2RT

) nD,N∑

k=1

ak(x, t)φk (ξ). (2.12)

For a 2nd order expansion in 2D, n2,2 = 6. Following the work by Tölke [8], this work chooses φk

as combinations of the first three Hermite polynomials:

H1(ξ) = 1, H2(ξ) = ξ, H3(ξ) =
ξ2 − 1√

2
, (2.13)

such that

φ1 = H1(ξ1)H1(ξ2) = 1

φ2 = H2(ξ1)H1(ξ2) =
ξ1√
RT

φ3 = H1(ξ1)H2(ξ2) =
ξ2√
RT

φ4 = H2(ξ1)H2(ξ2) =
ξ1ξ2

RT

φ5 = H3(ξ1)H1(ξ2) =
1√
2

(
ξ2

1

RT
− 1

)

φ6 = H1(ξ1)H3(ξ2) =
1√
2

(
ξ2

2

RT
− 1

)
.

(2.14)

Substituting fglb in place of f in (2.2), (2.3), and (2.5) gives a relationship between the coefficients,

ak, and the physical moments of the fluids, which can be summarized as:

U = F glb (a) , (2.15)

where

a =

(
a1 a2 a3 a4 a5 a6

)T
, (2.16)

and

U =

(
ρ vi σij

)T
, (2.17)
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such that

ρ = a1,

v1 =
a2

a1

√
RT,

v2 =
a3

a1

√
RT,

σ12 = −RT
(
a4 −

a2a3

a1

)
,

σ11 = −RT
(√

2a5 −
a2

2

a1

)
,

σ22 = −RT
(√

2a6 −
a2

3

a1

)
.

(2.18)

Note that (2.15) is invertible, by solving (2.18), to give expressions for a in terms of U :

a = F−1
glb (U) . (2.19)

Substituting φ (2.14) and fglb (2.12) in place of Ψ(N) and f , respectively, in (2.10) gives the 2nd-

order governing equations for the global expansion coefficients, or rather, the 2nd Global Hermite

Form (GHF2), which may be written as:

∂a

∂t
+ (A ·∇)a+C (a) = 0, (2.20)

where A = [Ax, Ay] are referred to as the coefficient matrices and C(a) is the collision vector.

These are shown in detail in Appendix A. At this point, one can solve (2.20), e.g. with finite

elements, and then use (2.18) to obtain solution for the physical moments of the fluid. This system

of equations is considered in Makhija and Maute [9], who used an immersed body method to study

the compressibility limit of said system of equations. Note that the system of equations presented

here is consistent with the ideal gas law:

p = ρRT. (2.21)

Further, the fluid forces, F , acting on a surface, Γ, are found from the pressure and stress tensor

as:

F =

∫

Γ
(−σ · n+ pn) dΓ. (2.22)
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Finally, as stated in Tölke [8], the GHF2 equations recover the NS equations with the kinematic

viscosity equal to:

µ = τRT. (2.23)

2.2.4 Direct moment equations

In this work, we introduce an alternative to (2.20), by substituting (2.19) into (2.20). In prin-

ciple, this would give a system of governing equations for the physical moments directly, eliminating

the need for (2.18). This substitution results in:

∂

∂t
F−1
glb (U) + (A ·∇)F−1

glb (U) +C
(
F−1
glb (U)

)
= 0, (2.24)

∂F−1
glb

∂U

∂U

∂t
+

(
A
∂F−1

glb

∂U
·∇
)
U +C

(
F−1
glb (U)

)
= 0. (2.25)

Denoting

Jglb =
∂F−1

glb

∂U
, (2.26)

we can derive the equivalent set of equations for the moments:

∂U

∂t
+
(
J−1
glbAJglb ·∇

)
U + J−1

glbC
(
F−1
glb (U)

)
= 0, (2.27)

∂U

∂t
+
(
Â(U) ·∇

)
U + Ĉ (U) = 0. (2.28)

In this work, we will refer to (2.28) as the 2nd-order Global Moment Form (GMF2). Note that

(2.20) and (2.28) represent the same physical phenomena and are linked by (2.15). While these

two systems of equations govern the same physical phenomena, this work is interested in finding

any differences that arise from the use of both of these systems of equations after discretization,

since at that point, their numerical forms will be different; for more, see Section 2.6.1.

2.2.5 Expansion about the local equilibrium

An alternative to the global expansion (2.12) is the so-called local expansion, originally

suggested by Grad [5]:

f ≈ f̂loc =
1

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

) nD,N∑

k=1

ak(x, t)φk (ξ). (2.29)
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As discussed by Tölke [8], the global expansion is an expansion about an absolute equilibrium where

the macroscopic velocities are much smaller than the average velocity of particles, which occurs in

nearly incompressible flows. The local approximation does not make this assumption and, thus,

more closely approximates compressible flows.

Substituting floc (2.29) in place of f in (2.2), (2.3), and (2.5) gives a different set of expressions

for the physical moments, U , and the expansion coefficients, ak, which can be summarized as:

U = F loc (a) . (2.30)

In this process, (2.3) requires that a2 = a3 = 0; instead, u and v become the dependent variables.

Just as for the GHF2 equations, substituting φ (2.14) and floc (2.29) in place of Ψ(N) and f ,

respectively, into (2.10) gives the 2nd-order governing equations for the local expansion coefficients

(LHF2), which may be written as:

∂a

∂t
+ (B(a) ·∇)a+D (a) = 0, (2.31)

where B and D(a) are shown in Appendix A. Thus, (2.31) is a set of governing equations for a

mixture of expansion coefficients and physical moments, i.e. the velocities.

2.2.6 Direct moment equations with the local expansion

Just as for the GMF2 equations, we can substitute (2.30) into (2.31) to arrive at the 2nd-order

Local Moment Form (LMF2) equations:

∂U

∂t
+
(
B̂(U) ·∇

)
U + D̂ (U) = 0, (2.32)

where B̂ and D̂ (U) are also shown in Appendix A. In the same way that the GHF2 and GMF2

equations are equivalent, as discussed in Section 2.2.4, the LHF2 and LMF2 equations are similarly

equivalent. However, as stated by Tölke [8], the GHF2 and GMF2 equations represent nearly

incompressible flows, while the LHF2 and LMF2 equations are not limited to the incompressible

case.
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2.2.7 Summary of Formulations

The derivation of governing equations can be summarized as follows: four sets of governing

equations are available, depending on the choice of fglb or floc and whether or not to substitute the

coefficient-to-moment expressions, namely the GHF2, GMF2, LHF2 and LMF2 equations.

Note, again, that the GHF2 and GMF2 equations are derived from the same global expansion,

but because different variables will be discretized they will have different finite elements models.

Further, while the GMF2 and LMF2 are governing equations on the same variables, meaning that

they will have an equal discretization, they are derived from different expansions and thus represent

different physical phenomena. Because the LMF2 equations use a local expansion, we expect that

they will behave differently as we consider flows further from the incompressible limit. All four

forms can be written generally as:

∂a

∂t
+ (A(a) ·∇)a+C (a) = 0, (2.33)

where a is ai in the GHF2, U in the GMF2 and LMF2, or a mixture of both in the LHF2; and

A(a) and C(a) take on their respective forms for each set of equations. Note especially that A is

constant for the GHF2 equations, which is discussed further by Makhija and Maute [9]; otherwise,

it is non-linearly dependent on a.

2.2.8 Non-dimensional form

All governing equations derived from the BTE have two numerical parameters, RT and τ .

However, in the incompressible limit,

µ = τRT, (2.34)

where µ is the fluid kinematic viscosity [8]. Further, as shown by Makhija and Maute [9], the GHF2

can be expressed in a nondimensional form:

∂â

∂t̂
+
τ
√
RT

L

(
Â · ∇̂x̂

)
â = −Ĉ(â), (2.35)
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where, in this Section, (̂·) denotes non-dimensional quantities. The coefficient of the advective term

can be interpreted as:

τ
√
RT

L
=

r RT√
RTL

=
µ√
RTL

=
|Ū |ν

|Ū |
√
RTL

=
Maref
Re

, (2.36)

where |Ū | is a reference velocity, Re = ρ|Ū |L/µ is the Reynolds number, and Maref = |Ū |/
√
RT

is a reference Mach number. The Reynolds number is determined by the physical fluid problem, as-

suming a reference velocity is available. The reference Mach number is then a free parameter which

determines the compressibility of the fluid; low reference Ma numbers lead to nearly incompressible

flows. However, as Maref is lowered, the scale of the collision term becomes more significant than

the scale of the advection terms; mesh refinement may be necessary to resolve these mismatches

scales. This behavior is discussed by Makhija and Maute [9] for the GHF2 equations; in this work,

we will further study this effect in the GMF2 equations.

For a chosen reference Mach number, the numerical parameters are computed by:

RT =
|Ū |2
Ma2

ref

, (2.37)

and

τ =
µ

RT
. (2.38)

The remaining systems of equations presented here likewise depend on the same numerical

parameters as the GHF2 equations. The parameters, RT and τ , are computed equally for all four

systems of equations.

2.3 Boundary Conditions

In this Section, we will discuss the method of enforcing boundary conditions for all forms of

the governing equations in Section 2.2. The approach shown here is a generalization of the approach

used by Makhija and Maute [9]. Using a comma notation to indicate time or spatial derivatives,

the weak form of (2.33) is written as:

R =

∫
w · (a,t +Ax(a)a,x +Ay(a)a,y +C(a)) dΩ, (2.39)
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with trial functions w = δa. Temporarily grouping the time derivative and the collision terms into

Rrem, we can write (2.39) as:

R = Rrem +

∫
w · (Ax(a)a,x +Ay(a)a,y) dΩ. (2.40)

Because Aa,xi = (Aa),xi −A,xia,

R = Rrem +

∫
w ·
(

(Axa),x + (Aya),y

)
δΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ. (2.41)

Calling F = Aa = [Axa, Aya] and applying the divergence theory on the first integral term gives:

R = Rrem +

∫
w · (∇ · F ) dΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ,

R = Rrem +

∫
∇ (w · F ) dΩ−

∫
F (∇ ·w) dΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ,

R = Rrem +

∫
((w · F ) · n) dΓ−

∫
F (∇ ·w) dΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ.

(2.42)

Here, we declare F |Γ = F ∗ = A(a∗)a∗, where a∗ is a vector of values for the free degrees-of-

freedom. Recall that a is either the coefficients or the physical moments, at the boundary, i.e.,

a∗ = a|Γ. In this way, we can enforce no-slip or pressure Dirichlet boundary conditions directly

in the GMF2, LHF2, and LMF2 equations or via (2.18) in the GHF2 equations. Substituting F ∗

gives:

R = Rrem +

∫
((w · F ∗) · n) dΓ−

∫
F (∇ ·w) dΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ. (2.43)

Adding and subtracting the boundary integral term gives:

R = Rrem +

∫
((w · F ∗) · n) dΓ−

∫
((w · F ) · n) dΓ +

∫
((w · F ) · n) dΓ

+

∫
F (∇ ·w) dΩ−

∫
w ·
(

(Ax),x + (Ay),y

)
adΩ. (2.44)

Here, we recover all the original terms and, after applying the divergence theory in reverse,

can recombine them with Rrem into Rorig, such that Rorig represents the terms that appear in

(2.39), which gives:

R = Rorig +

∫
w ·
(

(A (a∗) · n)a∗ −
(
A
(
ah
)
· n
)
ah
)

dΓ. (2.45)
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Note that, for the GHF2 equations, where the coefficient matrices are constant, (2.45) simplifies

the enforcement shown in [9]:

R = Rorig +

∫
w ·
(

(A · n)
(
a∗ − ah

))
δΓ. (2.46)

2.3.1 Comments on implementation

In practice, (2.45) is applied by first setting a∗ = ah, where ah are the values of the degrees-

of-freedom at an integration point. Then, the appropriate values in a∗ are overwritten by the

desired Dirichlet boundary conditions. For example, for the traditional no-slip condition on the

velocity field, ui = 0, we override a∗2 = a∗3 = 0.

2.4 Stabilization

This work uses the Streamline Upwind Petrov-Galerkin (SUPG) stabilization scheme used

by Makhija and Maute [9], which is itself derived from the work by Brooks and Hughes [38], such

that:

R =

∫
(w + τ (A ·∇)w) · (a,t +Ax(a)a,x +Ay(a)a,y +C(a)) δΩ, (2.47)

where τ is the stabilization matrix:

τ = P |Λ|−1/2P−1, (2.48)

and P and Λ arise from the eigenvalue decomposition:

PΛP−1 = 4
(
h−2
x ATxAx + h−2

y ATyAy
)

+
∂CT

∂a

∂C

∂a
, (2.49)

where

hi =
2

q∑
k=1

|ei · ∇Nk|
(2.50)

is the approximate length of a quadrilateral element, ei is the unit vector in the i -direction, Nk =

Nk(x) is the nodal basis function for node k, and q is the number of nodes per element. As discussed

in [9], for similar first order equations, such as the compressible Euler equations, the eigenvalues
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and vectors can be expressed analytically to remove computational cost. However, the collision

contribution in the GHF2 and the non-linear nature of the coefficient matrices in the remaining

forms, renders this approach prohibitive. Makhija and Maute [9] addressed this issue by removing

the non-linear components in ∂C
∂a ; however, this approach is not possible for the remaining governing

equations and is not considered in this work.

2.5 Discretization

The previous work in [9] uses the XFEM, which introduces additional degrees-of-freedom

to allow the immersed boundary method on a uniform background mesh. Because this particular

study is not interested in topology optimization, the XFEM is not needed. Instead, state variables

are interpolated within an element as:

u(x) ≈ ũ(x) =

Nn∑

i=1

vi(x)ufi , (2.51)

where vi(x) are the nodal basis functions and ufi are the degrees-of-freedom of node i. The XFEM

is a generalization of this approach and is formally introduced in Section 3.7.1.

2.5.1 Remarks regarding the Jacobian

The finite element discretization will require the derivative of the weak form of the governing

equations (2.39) with respect to the nodal degrees-of-freedom. Of particular interest as the advective

terms, Ax(a)a,x and Ay(a)a,y, which are evaluated at an integration point as:

Rg = Ax(ag)
∂ag

∂x
+Ay(a

g)
∂ag

∂y
= Ax(N â)Bxâ+Ay(N â)Byâ, (2.52)

where ag are the interpolated values at the integration point, â are the nodal degrees-of-freedom,

N = N(xg) are the interpolation functions at the integration point, and Bx and By are the

corresponding differential operators. The remaining terms in (2.39) are ignored in this discussion.

When the coefficient matrices are constant, the derivative of this residual contribution with respect

of the nodal degrees-of-freedom is trivially found. However, because the coefficient matrices are not
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constant for the GMF2 and LMF2 equations, they are implemented with the following procedure.

For brevity, we will limit our discussion to the x-component term in (2.52), but the y-component

term is treated similarly. First, consider the differential product rule:

∂Rg

∂â
=
∂(Ax(ag))

∂â
Bxâ+Ax(ag)Bx. (2.53)

When the coefficient matrices are constant, the first term vanishes and only the second remains.

For the first term, we now consider the chain rule of differentiation:

∂Rg

∂â
=
∂(Ax(ag))

∂ag
∂ag

∂â
Bxâ+Ax(ag)Bx, (2.54)

where ∂(Ax(ag))
∂ag is a 3rd order tensor. While this does not present a mathematical challenge, as

this term has an analytical expression, it does present an implementation challenge in the current

framework, as it would require the storage of a rather sparse object and its product operator is

computationally expensive. We avoid the need for this tensor by first introducing bg = Bxâ and

treating it locally as a constant, then the Jacobian becomes:

∂Rg

∂â
=
∂(Ax(ag)bg)

∂ag
∂ag

∂â
+Ax(ag)Bx, (2.55)

and, recognizing that analytical expressions for dg = Ax(ag)bg, i.e. the matrix-vector product of

Ax and an arbitrary vector, are available, we can write:

∂Rg

∂â
=
∂dg

∂ag
∂ag

∂â
+Ax(ag)Bx = Jx(ag, bg)N +Ax(ag)Bx, (2.56)

where

Jx(ag, bg) =
∂(Ax(ag)bg)

∂ag
(2.57)

is a matrix that has analytical expressions. We thus avoid the need to have expressions for a 3rd

order tensor. The time and collision vectors do not require this type of treatment. Further, we

recognize that the stabilization term in (2.47), i.e. τ (A·∇)w, needs a similar treatment to calculate

its derivative with respect to the nodal degrees-of-freedom. While the term τ ∂((A·∇)w)
∂â could make

use of the treatment described in this section, its counterpart would inevitably involve the factor
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∂τ
∂ag , which has no analytical expression. As noted by Makhija and Maute [9], the eigenvalues and

eigenvectors resulting from the eigenvalue decomposition (2.49) are not known analytically, even for

the GHF2 equations. An alternative would be to compute ∂τ
∂ag with finite differences. However, this

approach would significantly increase the computational cost, e.g. consider that the each degree-of-

freedom would be perturbed twice, each followed by an eigenvalue decomposition. Thus, this finite

difference approach would require 12 additional decompositions per integration point. We recourse

to ignore the derivative of the stabilization term with respect to the nodal degrees-of-freedom.

2.6 Numerical example for the moment formulations

To resolve higher Knudsen number flows, higher-order moment methods will be required.

However, these approaches result in highly non-linear equations that may be negatively impacted

by the SUPG stabilization framework presented previously. To this end, we will study the impact

of non-linear system of equations by comparing the GHF2 and GMF2 equations. Because these two

systems of equations result from the same equilibrium expansion, we expect that their resulting flow

solutions to be the same, except for any influence from the non-linearity of the GMF2 coefficient

matrices.

We consider the same problem as in [9], namely, the benchmark problem 2D-1 for the flow

past a cylinder in [39]. As noted in [9], the governing equations presented here approximate nearly

incompressible flows while the benchmark in [39] is presented for purely incompressible flows;

further, Makhija and Maute [9] studied the incompressibility error due to the reference Mach

number. The study in this work will focus on the influence of the GMF2 and LMF2 equations,

when compared to the GHF2 work in [9].

The problem description and boundary conditions are taken from Schafer [39] and are shown

in Fig. 2.1. The inlet flow profile is parabolic and the Reynolds number is set to Re = 20 and is

computed with respect to the mean inlet velocity and the cylinder diameter. While the benchmark

problem does not specify outlet boundary conditions, in this work, as in [9], we consider a constant

pressure boundary for simplicity. The benchmark problem provides a lower and upper limit on the
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Figure 2.1: Problem description for the flow past a cylinder. All dimensions are in m.

coefficient of drag, which is computed after nondimensionalizing the forces,

CD =
2F · Ū|Ū |
ρ̄|Ū |2D , (2.58)

where D is the cylinder diameter. As mentioned previously, Makhija and Maute [9] studied this

problem for the GHF2 equations presented here and found, among other results, that (i) the GHF2

satisfy the benchmark as the reference Mach number is decreased, (ii) as the reference Mach number

is decreased, a more refined mesh is required to accurately resolve the flow, and (iii) the XFEM

accurately predicts the cylinder boundary and has similar results to the body-fitted examples

considered. In this work, we will focus on the use of body-fitted meshes and study the effect of the

proposed systems of governing equations.

The body-fitted meshes used in this study use a constant number of intervals in the radial

direction and a higher mesh density near the cylinder to attempt to better capture boundary layer

effects. The remaining domain behind the cylinder is meshed uniformly with square elements. The

coarsest body-fitted mesh is shown in Fig. 2.2.

2.6.1 Effect of the finite element discretization: GMF2 against the GHF2 equations

First, we wish to compare the GMF2 and GHF2 equations. While Makhija and Maute [9]

found that Maref = 0.023 satisfied the benchmark problem, the results are very close to the upper

limit on the coefficient of drag set by Schafer et al. [39]. Instead, the reference Mach number is

set to Maref = 0.01. We will consider the compressibility error in Section 2.6.2. Here, we solve

the 2D-1 benchmark problem with the GHF2 and GMF2. For the GHF2 equations, the no-slip
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Figure 2.2: Coarsest body-fitted mesh for cylinder problem.
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boundary conditions are taken as a2 = a3 = 0; the GMF2 equations have the velocities as the

degrees-of-freedom, so the no-slip boundary conditions are enforced directly.

Fig. 2.3 shows the nondimensionalized velocity magnitude with streamlines for three levels

of refinement: 78720, 484800, and 1478400 total degrees-of-freedom, respectively. From this study,

we observe that the velocity distribution is rather insensitive to the level of refinement when using

the GHF2 equation; in contrast, the level of mesh refinement is critical when using the GMF2

equations. Even for the finest level of refinement, we see a slight disagreement in the velocity

solutions; however, this disagreement diminishes with mesh refinement. This suggests that the

GMF2 and GHF2 equations are indeed equivalent, i.e. in the limit of mesh refinement, both sets

of governing equations converge to the same solution.

To investigate the disagreement between the GHF2 and GMF2 results, we solve the bench-

mark problem again but without the numerical stabilization, i.e. τ = 0. Because we remove

stabilization, we can no longer consider the same levels of refinement as previously; instead, we use

a body-fitted mesh with 92400 degrees-of-freedom. Fig. 2.4 shows the velocity magnitude for the

GHF2 and GMF2 equations, with and without stabilization. We observe the same phenomena as

in Fig. 2.3, the GMF2 results disagree with the GHF2 when an insufficiently refined mesh is used.

Further, we see the effect of omitting the stabilization, oscillations develop for both sets of

equations. These oscillations are stronger in finer meshes, which prevents their use. Finally, the

disagreement between the GHF2 and GMF2 vanishes when stabilization is removed, i.e. compare

Fig. 2.4b and Fig. 2.4d. This suggests that that the disagreement shown in Fig. 2.3 is directly

caused by the stabilization. The stabilization presented by Makhija and Maute [9], who show the

need for mesh refinement as the reference Mach number decreases, dampens the flow solutions with

the GHF2. In this work, we find that the diffusive effect of the stabilization scheme is considerably

worse for the GMF2 equations. We suggest that this is due to the highly non-linear nature of the

coefficient matrices, A = [Ax, Ay].

We consider the coefficient of drag (2.58), shown in Fig. 2.5 for the GHF2 and GMF2

equations and several levels of mesh refinement. The convergence for the GHF2 was previously
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Nondimensionalized velocity magnitude

(a) GHF2 (78720 degrees-of-freedom) (b) GMF2 (78720 degrees-of-freedom)

(c) GHF2 (484800 degrees-of-freedom) (d) GMF2 (484800 degrees-of-freedom)

(e) GHF2 (1478400 degrees-of-freedom) (f) GMF2 (1478400 degrees-of-freedom)

Figure 2.3: Velocity magnitude with streamlines for the GHF2 and GMF2 equations for select
levels of mesh refinement.
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(a) GHF2 (w/ stabilization) (b) GHF2 (w/o stabilization)

(c) GMF2 (w/ stabilization) (d) GMF2 (w/o stabilization)

Figure 2.4: Velocity magnitude for the GHF2 and GMF2 equations with and with stabilization for
lowest level of refinement.
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Figure 2.5: Coefficient of drag using the GHF2 and GMF2 equations, Maref = 0.01, and several
levels of mesh refinement.

shown in [9]. In contrast, the GMF2 requires further mesh refinement. In [9], the GHF2 also

required significant mesh refinement for smaller reference Mach numbers; this study suggests that

the GMF2 equations require further refinement at a larger reference Mach number threshold than

the GHF2 equations, i.e. the GHF2 equations require considerable mesh refinement when Maref ≤

0.001, whereas the GMF2 require it when Maref ≤ 0.01.

Finally, we consider the convergence of the two system of equations. The L2 error is computed

for a chosen solution, usol, against a reference solution, uref , as follows:

L2 error =




∫
|usol − uref |2dΩ
∫
|uref |2dΩ




1/2

(2.59)

. Fig. 2.6 shows the L2 error of the GHF2 and GMF2 solutions at each level of refinement, where

the reference solution uses the GHF2 equations and the finest level of mesh refinement. We observe

that the convergence rate of the GMF2 is considerably lower than that of the GHF2 equations;

however, we can reasonably expect that the two system of equations converge to the same solution

and that the disagreement between the two is caused by the interaction between the stabilization

scheme and the non-linear form of the coefficient matrices.
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Figure 2.6: L2 error using the GHF2 and GMF2 equations, Maref = 0.01, and several levels of
mesh refinement. The reference solution uses the GHF2 equations and the finest level of refinement,
1.93× 106 degrees-of-freedom.
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2.6.2 Effect of the reference Mach number

In this study, we consider the effect of the reference Mach number on the numerical results.

For the GHF2 equations, lower reference Mach numbers eliminate the compressibility error, they

also require increasingly finer meshes to convergence [9]. We seek to understand this effect in the

GMF2 equations; as in [9], we consider reference Mach numbers 0.023, 0.04, 0.0577, and 0.1, and

repeat the mesh refinement study considered previously.

Fig. 2.7, 2.8, 2.9, 2.10 show the velocity magnitude near the cylinder using the GHF2 and

GMF2 equations and two select levels of refinement, for reference Mach numbers 0.023, 0.04, 0.0577,

and 0.1, respectively. We observe that as Maref is increased, the disagreement between the GHF2

and GMF2 results on a coarse mesh vanishes. The required level of refinement relaxes as larger

reference Mach numbers for the GMF2 equations, just as for the GHF2 equations in [9].

The coefficient of drag for same levels of refinement and reference Mach numbers is shown in

Fig. 2.11. As the reference Mach number is increased, the convergence rate of the GMF2 equations

approaches that of the GHF2 equations. Hardware limitations prohibit further levels of refinement.

Fig. 2.12 shows the coefficient of drag at the finest level of refinement available for each reference

Mach numbers. This shows the agreement between the GHF2 and GMF2 equations for larger

reference Mach numbers and highlights the need for further refinement at the lower reference Mach

numbers. Because this level of refinement was not available for this study, the GMF2 only appear

to diverge from the GHF2 equations. This will be made clear in the next Section, where we consider

an alternative to mesh refinement.

2.6.3 Improved performance with quadratic elements

Because finer levels of refinement are not considered due to hardware limitations, we instead

consider the use of higher-order 8-node quadratic elements. We expect that the use of a higher-order

element will result in smoother solutions and that the diffusive effect of the stabilization scheme

presented in Section 2.4 will be reduced. Fig. 2.13 shows an example of the bilinear (Q4) element
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0 0.411

Nondimensionalized velocity magnitude

(a) GHF2 (78720 degrees-of-freedom) (b) GMF2 (78720 degrees-of-freedom)

(c) GHF2 (484800 degrees-of-freedom) (d) GMF2 (484800 degrees-of-freedom)

Figure 2.7: Velocity magnitude for the GHF2 and GMF2 equations, for Maref = 0.023 and two
levels of refinement.
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0 0.411

Nondimensionalized velocity magnitude

(a) GHF2 (78720 degrees-of-freedom) (b) GMF2 (78720 degrees-of-freedom)

(c) GHF2 (484800 degrees-of-freedom) (d) GMF2 (484800 degrees-of-freedom)

Figure 2.8: Velocity magnitude for the GHF2 and GMF2 equations, for Maref = 0.04 and two
levels of refinement.
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Nondimensionalized velocity magnitude

(a) GHF2 (78720 degrees-of-freedom) (b) GMF2 (78720 degrees-of-freedom)

(c) GHF2 (484800 degrees-of-freedom). (d) GMF2 (484800 degrees-of-freedom).

Figure 2.9: Velocity magnitude for the GHF2 and GMF2 equations, for Maref = 0.0577 and two
levels of refinement.
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Nondimensionalized velocity magnitude

(a) GHF2 (78720 degrees-of-freedom). (b) GMF2 (78720 degrees-of-freedom).

(c) GHF2 (484800 degrees-of-freedom). (d) GMF2 (484800 degrees-of-freedom)

Figure 2.10: Velocity magnitude for the GHF2 and GMF2 equations, for Maref = 0.1 and two
levels of refinement.
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Figure 2.11: Coefficient of drag using the GHF2 and GMF2 equations, for several reference Mach
numbers and several levels of mesh refinement.
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Figure 2.13: Example of a bilinear and quadratic element with relative node numbering.

used previously, as well as an example of a quadratic (Q8) element, where each element edge has

three nodes, instead of two.

Fig. 2.14 shows the nondimensionalized velocity magnitude with streamlines for two levels

of refinement, similar to the refinement used in Fig. 2.3. In contrast with the results using bilinear

elements, the results with quadratic elements suggest a considerably better agreement between the

GHF2 and GMF2 equations at low levels of refinement. The pronounced diffusive effect of the

stabilization scheme when using the GMF2 equations appears to be well-countered by the use of

quadratic elements.

We again consider the coefficient of drag, shown in Fig. 2.15 for the GHF2 and GMF2 equa-

tions using quadratic elements and several levels of refinement. The GHF2 results using bilinear

elements as the same as those shown in Fig. 2.5. We observe the significant improvement in con-

vergence rate for both sets of governing equations; moreover, we note the nearly perfect agreement

of the GHF2 and GMF2 equations.

Finally, we again consider the L2-convergence rate of the GHF2 and GMF2 equations using

quadratic elements. Fig. 2.16 shows L2 error for several levels of refinement. The reference

solution is the GHF2 solution using quadratic elements and the finest level of refinement, 1.45×106

degrees-of-freedom. Note the remaining error in the GHF2 results using bilinear elements, we

reasonably attribute this to the difference in element degree. More importantly, we observe the

improved convergence rate of the GMF2 when using quadratic over bilinear elements. This study
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Figure 2.14: Velocity magnitude with streamlines for the GHF2 and GMF2 equations using
quadratic elements for select levels of mesh refinement.
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Figure 2.15: Coefficient of drag using the GHF2 and GMF2 equations, Maref = 0.01, and several
levels of mesh refinement.

more strongly suggest that the GMF2 equations are indeed equivalent to the GHF2 equations.

The change in discretized variables, i.e. the GHF2 equations discretize the Hermite expansion

coefficients, ai, whereas the GMF2 equations discretize the physical moments directly, does not

ultimately change the final flow solution.

2.6.4 Influence of quadratic elements at larger reference Mach numbers

In this section, we study the use of quadratic elements for larger reference Mach numbers,

similar to the study in Section 2.6.2. We again consider reference Mach numbers 0.023, 0.04, 0.0577,

and 0.1. Here, we do not show the velocity magnitude near the cylinder, as done in Fig. 2.7-2.10,

since there are no discernible differences between the GHF2 and GMF2 results.

Rather, Fig. 2.17 shows the coefficient of drag for the same reference Mach numbers and

for several levels of refinement. We observe that the coefficients of drag converge using the GMF2

equations converge to those using the GHF2 equations at coarser levels of refinement. The dis-

agreement in Fig. 2.17d is less than 0.002%; note the vertical scale compared to other plots that

show the coefficients of drag. The use of quadratic elements greatly improves the convergence rate

of the GHF2 and GMF2 equations; because of this, we are able to reach the level of refinement to
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achieve full convergence.

Fig. 2.18 shows the coefficient of drag for several reference Mach numbers, similar to Fig.

2.12. Here, the available level of mesh refinement allows the GMF2 results to agree with the GHF2

results.

2.6.5 Other Re numbers

Having considered the effect of the reference Mach number previously, we now consider the

effect of the Reynolds numbers and its interaction with the use of quadratic elements. We consider

only Maref = 0.01 and Reynolds numbers of 30, 40, 50, and 60. Fig. 2.19 shows the coefficient of

drag for the GHF2 and GMF2 equations with bilinear and quadratic elements and several levels

of refinement. We again observe the good agreement of the GHF2 and GMF2 equations when

quadratic elements are used and that the GMF2 require a greater level of refinement when using

bilinear elements. Moreover, requirement threshold decreases as the Reynolds number increases.

This suggests that at larger Reynolds numbers, the diffusive effect of the stabilization scheme on

the GMF2 is weakened, just as it does for larger Reference Mach numbers.

2.6.6 Concluding remarks on the GMF2 equations

We summarize our findings regarding the GMF2 equations as follows: the GMF2 and GHF2

are indeed equivalent such that they converge to nearly identical solutions. However, the diffusive

effect of the stabilization scheme is considerably more pronounced with the GMF2 due to the non-

linear coefficient matrices. The GMF2 require a higher level of refinement at each reference Mach

number when compared to the GHF2 equations; however, this requirement is considerably reduced

when using quadratic elements over bilinear elements. We expect that this is due to the ability of

quadratic elements to more smoothly resolve the non-linear nature of the GMF2 equations.
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Figure 2.17: Coefficient of drag using the GHF2 and GMF2 equations and quadratic elements, for
several reference Mach numbers and several levels of mesh refinement.



40

0 0.02 0.04 0.06 0.08 0.1

Reference Mach Number

5.56

5.58

5.6

5.62

5.64

5.66

5.68

5.7

5.72

5.74

C
D

GHF2 w/Q4

GHF2 w/Q8

GMF2 w/Q8

Lower Limit

Upper Limit

Figure 2.18: Coefficient of drag using the GHF2 and GMF2 equations, quadratic elements, and the
finest level of mesh refinement for several reference Mach numbers.
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Figure 2.19: Coefficient of drag using the GHF2 and GMF2 equations, for several Reynolds numbers
and several levels of mesh refinement.
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2.6.7 Effect of the local expansion: LMF2 against the GMF2 equations

In this Section, we will study the impact of using the local expansion (2.29) over the global

expansion (2.12). Recall that the global expansion is an expansion about an absolute equilibrium

where the macroscopic velocities are much smaller than the average particle velocities, which is

true for nearly incompressible flows. The local expansion is instead an expansion about a local

equilibrium, which is not bound to the nearly incompressible assumption [8]. To this end, we

expect that the governing equations resulting from the local expansion, i.e. the LHF2 and LMF2

equations, will behave differently than those resulting from the global expansion for larger reference

Mach numbers. We further expect that both expansion will behave similarly as the reference Mach

number is decreased.

Because we have already shown that discretizing different variables does not result in different

performance, provided that the mesh is sufficiently refined, we will not consider the LHF2 equations

in this study. Further, unlike the GHF2, the LHF2 equations are also non-linear; in this way, the

LHF2 and LMF2 are more alike than the GHF2 and GMF2 equations are. While we expect that

the stabilization scheme will have a similar effect on the LMF2 equations as it did on the GMF2

equations when using bilinear elements, we will refrain from using quadratic elements until Section

2.6.8.

Fig. 2.20 shows the velocity magnitude around the cylinder for the GMF2 and LMF2 equa-

tions and several reference Mach numbers. The flow solutions are very similar, but differences

begin to emerge at Maref = 0.1, i.e. the tail ends of the fast-moving fluid (shown in red) and the

fluid behind the cylinder (shown in blue) extend slightly further from the cylinder when the LMF2

equations are used.

Fig. 2.21 shows the coefficients of drag for the same reference Mach numbers. Note that

the GHF2 and GMF2 results are repeated from the previous section. We observe that the LMF2

equations behave similarly to the GMF2 equations for low reference Mach numbers, but differences

arise starting at Maref = 0.0577. Further, the LMF2 equations suffer from the same lack of
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Figure 2.20: Velocity magnitude for the GMF2 and LMF2 equations, using bilinear elements and
484800 degrees-of-freedom, for several reference Mach numbers.
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convergence as the GMF2 equations when using bilinear elements.

2.6.8 Improvement in performance of the LMF2 equations using quadratic ele-

ments

In this Section, we introduce the use of quadratic elements to the LMF2 equations. Fig. 2.22

shows the velocity distribution around the cylinder for several levels of refinement. Fig. 2.23 shows

the coefficients for several levels of refinement at each reference Mach numbers. The results using

GHF2 and GMF2 are repeated from before; we observe that, with the improved convergence of the

quadratic elements, the difference between the LMF2 and GMF2 appear at a lower reference Mach

number. Finally, Fig. 2.24 shows the percent relative difference in the coefficient of drag between

the GMF2 and LMF2 equations. Even for Maref = 0.1, the relative difference is only ≈ 0.1%;

however, we can reasonably expect that this difference will continue to grow for larger reference

Mach numbers.

2.6.9 Concluding remarks regarding the LMF2 equations

While this study is not sufficient enough to suggest when compressible effects should be

considered in a flow, i.e. we show small differences around Maref = 0.1, but common consensus

says that compressible effects are important for Ma > 0.3, we can observe that indeed the LMF2

and GMF2 are different due to the fact that the LMF2 are derived from a local expansion, which

does not use the nearly incompressible assumption.

2.7 Conclusion

We have shown, in the study of moment expansions of the BTE, that using the governing

equations for the physical moments directly, i.e. the GMF2, does not offer any benefit over the

governing equations for the expansion coefficients, i.e. the GHF2. In fact, the required level of mesh

refinement for a given reference Mach number, shown for the GHF2 by Makhija and Maute [9], is

greater for the GMF2 equations due in part to the interaction between the stabilization scheme
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Figure 2.21: Coefficient of drag using the GHF2, GMF2, and LMF2 equations, for several reference
Mach numbers and several levels of mesh refinement.
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Figure 2.22: Velocity magnitude for the GMF2 and LMF2 equations, using quadratic elements and
364800 degrees-of-freedom, for several reference Mach numbers.
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Figure 2.23: Coefficient of drag using the GHF2, GMF2, and LMF2 equations and quadratic
elements, for several reference Mach numbers and several levels of mesh refinement.
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and the highly non-linear coefficient matrices. This interaction can be mitigated with the use of

quadratic elements; however, both using finer meshes and using quadratic element ultimately make

the linear problem larger with more degrees-of-freedom when compared to a coarse mesh or bilinear

elements, respectively. Moreover, the GHF2 equations remain superior, though the differences are

significantly less when using quadratic elements. The GHF2 equations represent a good alternative

to the incompressible Navier-Stokes equations, provided that a sufficiently small reference Mach

number is used, while the GMF2 are just as non-linear and difficult to resolve.

Further, we have shown that the use of the LMF2 equations over the GMF2 equations results

in small difference in flow performance and in the coefficient of drag. We expect that, just as the

GHF2 may be an alternative to the incompressible Navier-Stokes equations, the LMF2 equations

may be an alternative for the compressible Navier-Stokes equations. However, because the LMF2

suffers from the same diffusive effect of the stabilization scheme as the GMF2 equations, their

benefit is not likely as great as that of the GHF2 equations.

Finally, because Makhija and Maute [9] showed that the GHF2 behave similarly using body-

fitted meshes and with an immersed boundary with the XFEM, we can expect that the GMF2 and

LMF2 will have similar extensions and suffer from the same diffusive effects shown in this work.

Higher-order expansions, such as the 3rd order expansion derived by Grad [5], and other

approaches to the closure problem, such as the R13 equations of Struchtrup and Torrilhon [25], are

highly non-linear. Most importantly, our comparison of the GHF2 and GMF2 equations suggest

that the SUPG stabilization framework will require too fine a level of refinement for adequate flow

resolution in the nearly incompressible regime based on the reference Mach number. This required

level of refinement will in turn prohibit meaningful topology optimization examples. To this end,

in the next Chapter, we will introduce a slip boundary model to be used with the Navier-Stokes

equation in the Slip regime.



Chapter 3

Slip boundary conditions for the Navier Stokes equations

3.1 Introduction

The study of optimal designs for fluid flows, through shape and topology optimization, for

example, has gained widespread attention for Stokes and Navier-Stokes flow regimes in recent years.

In these regimes, gas microflows in microfluidic devices have a broad range of applications, such

as extracting biological samples, cooling integrated circuits and actively controlling aerodynamic

flows [1,7]. However, as we consider flows with physical scales further in the microscale, e.g. micro-

electromechanical systems, rarefaction effects begin to impact the performance of the flow. Flows

at the microscale behave different than those in the macroscale [40]. The differences arise with near-

wall effects and continue further into the fluid domain as the flow becomes more rarefied. While

these effects have been been readily studied for simple geometries [41–44] and, more recently, for

fluid-structure-interaction problems with complex geometries [45], their impact on optimal designs

has not been fully explored. In this and subsequent Chapters, we will introduce a topology opti-

mization framework for microfluidic flows and will show that the Knudsen-number-dependent slip

boundary condition affects the optimal design and should be considered.

Recall that the NS equations cannot be used with the traditional no-slip boundary condition

in the Slip Flow Regime. Instead, velocity and temperature slip effects begin to occur as the Kn

number increases. Specifically, the tangential velocities and temperatures of the fluid and the solid

are no longer the same. For flows in the Slip Flow Regime, there exists a variety of slip models

for the tangential velocity at the fluid-solid interface. The wall-function method described the
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Figure 3.1: Cartesian and local coordinate system at the fluid-solid interface and velocity compo-
nents.

tangential velocity as a function of the distance from the wall up to O(λ), i.e. within the so-called

Knudsen layer [41]. Another option is to use higher-order continuum models, including the Burnett,

BGK-Burnett, and super-Burnett models, inside the Knudsen layer, e.g. [21–23,25]. The reader is

referred to Zhang et al. [46] for a review of slip models. The boundary condition used in this work

is introduced in Section 3.6 and is represented by:

ut − uwt +
Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

)
= 0, (3.1)

where ut and uwt are the fluid and wall tangential velocities, respectively, un is the fluid normal

velocity, and ∂
∂n and ∂

∂t denote derivatives in the normal and tangential directions, respectively.

Fig. 3.1 shows the local coordinate system at the fluid-solid interface. Throughout this paper, we

will refer to this boundary condition as the Knudsen-slip (or simply, Kn-slip) boundary condition.

To adequately model slip, the proposed boundary condition requires accurate near-wall velocity

gradients, which will dictate the choice of our boundary representation for topology optimization

as discussed in the following.

The majority of fluid topology optimization studies use density methods [47, 48]. Topology

optimization in fluids was pioneered by Borrvall and Peterson [49], who adopted the concept of

density methods to Stokes flows and modeled the presence of a wall in the fluid flow by representing

it as a body force, i.e. a penalization approach. The work on Stokes models has been extended
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to the NS equations by several authors, including [50], [51], [52], and [53]. The density method

typically describes the interface between different material domains by either using intermediate

densities, which lead to ambiguous boundaries, or by discrete material distributions, which could

lead to jagged boundaries. For problems that require a precise geometrical description of the

interface, density methods will result in an inaccurate enforcement of boundary conditions due

to the aforementioned ambiguous or jagged boundaries [54, 55]. Such issues can be mitigated

by mesh refinement or by adaptive refinement; however, they do not provide the exact location

and orientation of the boundary a priori. Thus, unlike the no-slip boundary condition, the Kn-slip

boundary condition cannot be enforced with the same penalization approach as is used with density

methods.

In response to the shortcomings of density methods, we utilize the Level Set Method (LSM)

to represent the geometry. External or internal phase boundaries, where phase may refer to either

the fluid or solid domain, are described implicitly by the zero level set isosurfaces of a Level Set

Function (LSF), φ(x), where x is the position vector [56–58]. Smooth changes in the LSF lead to

smooth changes in the geometry, e.g. the merging or separation of geometric features, making the

LSM a good choice for topology optimization.

The LSF is typically discretized on a fixed background mesh and updated during the opti-

mization process by the Hamilton-Jacobi equations. An alternative, used in this paper, is to define

the parameters of the LSF as explicit functions of the optimization variables. The resulting opti-

mization problem is solved by standard nonlinear programming (NLP) methods [59]. For a detailed

discussion of the LSM, the reader is referred to van Dijk et al. [59] and Gain and Paulino [60].

Further, we utilize the eXtended Finite Element Method (XFEM) to describe the material

distribution in the model. The XFEM allows for an immersed boundary technique that does not

require a conforming mesh. The XFEM was developed by Babuška and Melenk [61] and was

originally used to model crack propagation [62]. Alternatives to the XFEM include an Ersatz’s

material approach, which suffers from the same problems as density methods, and adaptive re-

meshing after each LSF update, which is computationally expensive. The XFEM decomposes an
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element cut by a zero isosurface of the LSF into several subdomains, such that each subdomain

has a distinct phase, i.e. is exclusively fluid or solid. Thus, the LSM and XFEM provide the exact

location and orientation of the fluid-solid interface.

The XFEM, however, results in an ill-conditioned system of equations, when an element cut

by the zero isosurface of the LSF has a small ratio of volumes, e.g. when the interface moves very

close a node. These configurations are unavoidable when using a fixed background mesh. Several

approaches have been proposed to avoid this ill-conditioning issue, such as the geometric, Jacobi,

and Cholesky decomposition preconditioners of [63], [64], and [65] and [66], respectively, and, more

recently, face-oriented ghost-penalty methods [67]. Face-oriented ghost-penalty methods penalize

discontinuities in the spatial gradients of the velocities and pressure across the common facets

of intersected elements [68]. This presents a clear advantage over preconditioners, since smooth

gradients are particularly important for the Kn-slip boundary condition. Smooth velocity gradients

in (3.1) result in smooth tangential velocities at the interface. Boundary conditions on the interface

are imposed weakly via Nitsche’s method [69].

In this work, we will extend the LSM-XFEM framework prosed by Villanueva and Maute [10]

to allow for the enforcement of the Kn-slip boundary condition. We will show that when the physical

scaling and fluid properties would results in a finite Kn number, the slip boundary condition should

be accounted for during the optimization process; additionally, we will show the influence, in terms

of design and performance, of this boundary condition when compared to the traditional no-slip

condition.

3.1.1 General problem description

Before introducing the slip boundary condition in detail, we first show the supporting frame-

work for this work, including the governing equations, stabilization, and the ghost-penalty formu-

lation.

Fig. 3.2 shows the general setup for the fluid problems considered in this work. The fluid

and solid domains are denoted as Ωf and Ωs, respectively. The example shown has a disconnected
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Figure 3.2: General problem and boundary setup.

solid subdomain; it is also possible to have disconnected fluid subdomains, as shown in [10]. The

external fluid and solid boundaries are denoted as Γf and Γs, respectively. Finally, the internal

fluid-solid interface is denoted as Γfs.

3.2 Governing Equations

In this study, we model the flow with the incompressible Navier-Stokes (NS) equations.

Energy transport is descried by coupling an advection-diffusion equation to our flow model. The

governing equations in the fluid and solid phases are summarized subsequently.

3.2.1 Weak form of NS Equations

This work adopts the same weak form of the Navier-Stokes (NS) equations as Villanueva and

Maute [10]. The residual of the weak form is decomposed into surface and volume contributions:

ru,p = rΩ
u,p + rΩ̂

u,p + rDu,p + rfsu,p + rNu,p + rGPu,p , (3.2)

where rΩ
u,p and rΩ̂

u,p are the non-stabilized and stabilized volumetric residual contributions, respec-

tively. The terms rDu,p and rfsu,p enforce Dirichlet boundary conditions on the external surfaces
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and on the fluid-solid (or fluid-void) interface, respectively; while the term rNu,p enforces Neumann

boundary conditions on the external boundary. Finally, rGPu,p represents the ghost-penalty formula-

tion.

The stabilization term is discussed in Section 3.4. The ghost-penalty stabilization terms is

described in Section 3.5. Finally, the boundary condition enforcement terms, as well as the proposed

velocity slip model, are discussed in Section 3.6.

The non-stabilized volume contribution takes the form:

rΩ
u,p =

∫

Ωf

(
vfi ρ

f

(
∂ufi
∂t

+ ufi
∂ufi
∂xj

)
+ εij(v

f )σij(u
f , pf )

)
dΩ +

∫

Ωf

(
qf
∂ufi
∂xi

)
dΩ. (3.3)

The first integral describes the momentum equations with test functions vfi ; the second integral

describes the incompressibility condition with test functions qfi . The fluid velocities are given by

ufi , pf is the pressure, ρf is the fluid density, µf is the dynamic viscosity, εij is the strain rate tensor

given by:

εij(u
f ) =

1

2

(
∂ufi
∂xj

+
∂ufj
∂xi

)
, (3.4)

and σij is the Cauchy stress tensor for Newtonian fluids:

σij(u
f , pf ) = −pfδij + 2µf εfij(u

f ). (3.5)

The residual contribution for Dirichlet boundary conditions presented in [10] only accepts no-slip

boundary conditions; in this work, we generalize the formulation to also allow for the proposed slip

model. This is discussed in detail in Section 3.6. Neumann boundary conditions are defined as:

σij(u
f , pf )nfj = t̂fi ∀x ∈ ΓfN , (3.6)

and the residual contribution from external Neumann boundary conditions is defined as:

rNu,p =

∫

Γf
N

vfi t̂
f
i dΓ. (3.7)

3.2.2 Advection-Diffusion

Similar to the treatment for the NS, we follow the work of Villanueva and Maute [10] and

denote the weak form of the advection-diffusion model as ru,T and decompose it into volumetric
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and surface components:

ru,T = rΩ
u,T + rΩ̂

u,T + rDu,T + rD,fsu,T + rNu,T + rN,fsu,T + rGPu,T , (3.8)

where rΩ
u,T and rΩ̂

u,T are the non-stabilized and stabilized volumetric residual contributions, respec-

tively; rDu,T and rD,fsu,T are the residuals of the weak enforcement of Dirichlet boundary conditions, on

external boundaries and on the fluid-solid interface, respectively; similarly, rNu,T and rN,fsu,T are the

residuals corresponding to Neumann boundary conditions; and rGPu,T models the ghost-penalty

formulation. The boundary conditions terms are discussed presently. The volumetric stabilization

term and the ghost-penalty formulation are presented in Sections 3.4 and 3.5, respectively.

The non-stabilized volumetric residual contribution is defined as:

rΩ
u,T =

∑

m∈{f,s}

∫

Ωm

(
dmρmcmp

(
∂Tm

∂t
+ umi

∂Tm

∂xi

)
+
∂dm

∂xi
(Ji(T

m))− dmq̂mΩ
)

dΩ, (3.9)

where dm is a temperature test function, ρm and cmp represent the density and specific heat capacity,

respectively, Tm is the temperature field, umi is the velocities vector field, q̂mΩ is a volumetric heat

source, and Ji(T
m) is the diffusive heat flux defined as:

Ji(T
m) = kmδij

∂Tm

∂xj
, (3.10)

where km is the isotropic thermal conductivity. The summation in (3.9) indicates that we model

energy and species transport in both the fluid and solid phases; however, because the solid phase

is stationary, (3.9) reduces to a linear diffusion model in the solid region.

Dirichlet and Neumann boundary conditions boundary conditions are imposed on the fluid-

solid interface, Γfs, and on the external boundaries, Γm, as:

Tm = T̂m ∀x ∈ ΓmD (3.11)

Tm = T̂ fs ∀x ∈ ΓfsD (3.12)

Ji(T
m)nmi = q̂mΓ ∀x ∈ ΓmN (3.13)

Ji(T
m)nfsi = q̂fsΓ ∀x ∈ ΓfsN , (3.14)
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where nfsi is the normal vector on the fluid-solid interface pointing towards the solid phase, T̂m

and T̂ fs are prescribed temperature values, and q̂mΓ and q̂fsΓ are prescribed heat flux values.

As presented in [10], the weak enforcement of Dirichlet boundary conditions is modeled

using Nitsche’s method [70]. The residual contribution of the Dirichlet conditions at the fluid-solid

interface follows the formulation of [71] and is defined as:

rD,fsu,T =

∫

Γfs

(
[[d]] {Ji(T f , T s)}nfsi + {Ji(df , ds)}nfsi [[T ]] + γN,T [[d]] [[T ]]

)
dΓ, (3.15)

where the jump operators are defined as:

[[ζ]] = ζf − ζs, (3.16)

{Ji(ζf , ζs)} = γfJJi(ζ
f ) + γsJJi(ζ

s), (3.17)

where γmJ is a weighting factor defined as:

γmJ =
(
∫

Ωm dΩ)/km

(
∫

Ωf dΩ)/kf + (
∫

Ωs dΩ)/ks
, (3.18)

and γN,T is a penalty term defined as:

γN, T =
2αN,T

∫
Γfs dΓ

(
∫

Ωf dΩ)/kf + (
∫

Ωs dΩ)/ks
, (3.19)

with a problem-dependent constant αN,T . The first, second, and third terms in (3.15) represent

the standard consistency term, the adjoint consistency term, and the penalty term of the Nitsche

formulation, respectively [10].

The residual contribution of Dirichlet boundary conditions is defined as:

rDu,T =
∑

m∈{f,s}

∫

Γm
D

(
−dmJi(Tm)nmi + Ji(d

m)nmi T
m + αN,Th

−1dm(Tm − T̂m)
)

dΓ. (3.20)

Finally, the contributions from Neumann boundary conditions at the interface and external

boundaries defined as:

rN,fsu,T =

∫

Γfs
N

df q̂fsΓ dΓ (3.21)

and

rNu,T =
∑

m∈{f,s}

∫

Γm
N

dmq̂mΓ dΓ, (3.22)

respectively.
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3.2.3 Hamilton-Jacobi Equation

The Kn-slip boundary condition, introduced in Section 3.6, requires knowing the gradient of

the normal and tangential vectors at an interface. The normal vector at the fluid-solid interface

(and, by extension, the tangential vector) is defined as the gradient of the level set fluid (LSF):

n̂ =
∇φ
|∇φ| . (3.23)

Thus, the gradient of the normal vector requires second-order derivatives of the LSF, which are

impossible to compute with bilinear elements. One option is to ignore the terms that require these

gradients, thought there would be no ground to defend it. A second option is to provide analytical

expressions for these terms along with the LSF. This option is attractive but is impossible to

reproduce in a topology optimization framework, since the LSF is not known analytically; this

option is used in Section 3.10 to show that these terms are indeed necessary for an accurate flow

prediction. A third option is to introduce the normal vector as nodal degrees-of-freedom and enforce

its definition in terms of the LSF weakly:

rn̂ =

∫

Ω
δn̂ · (n̂ |∇φ| − ∇φ) dΩ. (3.24)

Introducing the normal vector components as nodal degrees-of-freedom increases the number of

degrees-of-freedom per node from 3 to 5. Because of this increase in problem size, it is important

to understand if or when the J{n,t} terms can be neglected.

3.3 Nondimensionalization

In this section, we briefly propose an alternative nondimensionalization scheme to the classical

scheme involving a characteristic velocity.

3.3.1 Nondimensionalization of the NS equations

The strong form of the incompressible NS equations takes the form:

ρ
∂u

∂t
+ ρ (u ·∇)u = −∇p+ µ∇2u. (3.25)
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The classical nondimensionalization of the NS equations uses a reference velocity, which is typically

the average or maximum prescribed velocity at an inlet, which is in turn enforced as a Dirichlet

boundary condition. The nondimensional time, Cartesian coordinates, velocities, and pressure are

thus given by:

t̄ =
t

L/U0
, x̄ =

x

L
, ū =

u

U0
, p̄ =

p

ρU2
0

, (3.26)

where L and U0 are the reference length and velocity. Substituting 3.26 into 3.25 gives:

∂ū

∂t̄
+
(
ū · ∇̄

)
ū = −∇̄p̄+

1

Re
∇̄2ū, (3.27)

which has the same form as 3.25, except that ρ̄ = 1 and µ̄ = 1/Re, where Re is the Reynolds

number defined as Re = ρU0L
µ .

In this work, we seek to nondimensionalize the NS equations without a reference velocity,

since some problems considered here are pressure-driven, i.e. the inlet has a known pressure instead

of a known velocity distribution. To this end, the nondimensionalized time, Cartesian coordinates,

velocities, and pressure are given by:

t̄ =
t

ρL2/µ
, x̄ =

x

L
, ū =

u

µ/(ρL)
, p̄ =

p

µ2/(ρL2)
. (3.28)

Substituting (3.28) into (3.25) gives:

∂ū

∂t̄
+
(
ū · ∇̄

)
ū = −∇̄p̄+ ∇̄2ū, (3.29)

which has the same form as 3.25, except that ρ̄ = µ̄ = 1. This second nondimensionalization scheme

is equivalent to the first if the reference velocity is calculated from the fluid properties as U0 = µ
ρL .

Subsequently, we compare both schemes in problems with and without a known reference velocity.

3.3.1.1 Validation: flow between parallel plates

In this section, we will validate the proposed nondimensionalization scheme against the clas-

sical scheme by consider the flow through parallel plate and the flow past a cylinder, similar to the

problem considered in Chapter 2. The problem setup for the flow between parallel plates in shows
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in Fig. 3.3; all dimensions and fluid properties are given in self-consistent units. In this example,

the channel height is set to h = 10−4, the channel length is set to L = 10−4, the inlet is given a

Dirichlet pressure boundary condition, pin = 10, and the outlet is given a traction-free boundary

condition, equivalent to pout = 0. Naturally, this problem has an analytical solution:

u(y) =
pin
L

h2

8µ

(
1− 4

(y
h

)2
)

= umax

(
1− 4

(y
h

)2
)
, (3.30)

where umax = pin
L

h2

8µ is the maximum velocity at the center of the flow. This allows us to define a

mean velocity:

uavg =
1

h

h/2∫

−h/2

u(y)dy =
2

3
umax, (3.31)

and in turn the Reynolds number as Re =
ρuavgh
µ . Considering standard air as the choice of fluid,

ρ = 1.205 and µ = 1.511 × 10−5, the mean velocity is uavg = 5.5151 and the Reynolds number is

Re ≈ 44.

We consider simulations using (i) a dimensional mesh and unscaled fluid properties, (ii) the

proposed nondimensionalization scheme, (iii) the classical nondimensionalization scheme with an

accurate reference solution and (iv) the classical nondimensionalization scheme with an arbitrary

reference solution. We discretize the domain with a 100 × 100 square mesh. While the solution

method is further discussed in Section 3.9, here we note that the numerical time step is chosen as

∆t = 1024, such that it is not affected by the nondimensionalization schemes.

Fig. 3.4 shows the resulting symmetric velocity profile and a close-up view near the center of

the flow. Note the excellent agreement among the numerical solutions with the analytical solution.

The largest relative error between any two solutions is < 0.001%. Table 3.1 shows the resulting

Reynolds number calculations in this study. The density and viscosity refer to the values used in the

solution, the channel height refers to the total height of the mesh. The scaling velocity is the scal-

ing term used to re-dimensionalize the flow solution, when applicable. The maximum and average

velocities refer to the maximum and average scaled, i.e. nondimensional, velocities obtained from

the flow solution. Finally, the Reynolds number refers to the calculation performed with the nondi-
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Figure 3.3: Problem setup for the flow through parallel plates.

mensionalized solution. Note that the physical solution and the proposed nondimensionalization

scheme best approximate the analytical Reynolds number.

3.3.1.2 Validation: flow past a cylinder

The previous example makes use of an available analytical solution to define a reference

velocity in the classical nondimensionalization scheme. We now consider a problem without such

an available solution. We consider a similar problem setup as in the previous section, but with a

cylinder inclusion of radius h/8 located at (h, 0), shown in Fig. 3.5. To accommodate the inclusion,

the channel has length L = 3h. The inlet and outlet have the same boundary conditions as in the

previous section, pin = 10 and pout = 0.

We again consider simulations using (i) a physical mesh and unscaled fluid values, (ii) the

proposed nondimensionalization scheme, and the classical nondimensionalization scheme with (iii)

a reference velocity and (iv) an arbitrarily chosen reference velocity. The reference velocity used

in case (iii) is first obtained from the average inlet velocity in case (i). Fig. 3.6 and 3.7 show

the velocity distribution through the inlet and through the minimum cross-section, i.e. above

the cylinder. Note the good agreement of all nondimensionalization schemes with the physical

simulation. The close-up views reveal that the proposed scheme deviates slightly, but the relative

difference is < 0.06%, which is well-tolerable; note especially the vertical scale of the close-up views.

Table 3.2 summarizes this study. The maximum velocity is measured as the maximum nu-
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Figure 3.4: Velocity profiles for nondimensionalization study on the flow between parallel plates.
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Analytical
Solution

Solution (i):
Unscaled

simulation

Solution (ii):
Proposed scheme

Solution (iii):
Classical scheme

Solution (iv):
Classical scheme
with arbitrary U0

Density ρ = 1.205 ρ = 1.205 ρ = 1 ρ = 1 ρ = 1

Viscosity µ = 1.511(10−5) µ = 1.511× 10−5 µ = 1 µ = 2.274× 10−2 µ = 5.016× 10−2

Channel Height h = 10−4 h = 10−4 h = 1 h = 1 h = 1

Reference velocity - - - U0 = 5.5151 U0 = 2.5

Scaling velocity - - us = 0.12539 us = 5.5151 us = 2.5

Maximum velocity umax = 8.2727 umax = 8.2750 umax = 65.9000 umax = 1.5000 umax = 3.3100

Average velocity uavg = 5.5151 uavg = 5.5151 uavg = 43.9824 uavg = 1.0000 uavg = 2.2061

Reynolds number Re = 43.9822 Re = 43.9824 Re = 43.9824 Re = 43.9826 Re = 43.9825

Table 3.1: Resulting Reynolds number calculation for the flow between parallel plates.
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Figure 3.5: Problem setup for the flow past a cylinder.

merical velocity in the entire fluid domain, while the average velocity refers to the average velocity

only at the inlet. These are additionally rescaled with the scaling velocity. Finally, note the general

agreement between all three nondimensionalization schemes. We recognize that the proposed nondi-

mensionalization scheme deviates slightly from the two classical approaches. However, we note that

the proposed scheme is ultimately no different than the classical scheme with an arbitrary reference

velocity, as a meaningful reference velocity is not known a priori in pressure driven flows without an

analytical solution. Further, it is important to recognize that, as the design changes in a topology

optimization framework, any inlet velocity distribution and its corresponding average velocity will

continuously change. As such, we will make use of the proposed nondimensionalization scheme in

the remainder of this Chapter.

3.3.2 Nondimensionalization of the advection-diffusion model

Consider the strong form of the advection-diffusion equation:

ρmcmp

(
∂Tm

∂t
+ (um ·∇)Tm

)
= km∆Tm, (3.32)

where ∆ is the Laplace operator. Because the advection-diffusion equation is solved for both

the fluid and solid phases, it becomes important to explicitly state that the fluid properties are

used to nondimensionalize the advection-diffusion equation. Consider the same nondimensionalized

variables as with the NS equations,
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Figure 3.7: Velocity profile through the minimum cross-section, x = h.
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Solution (i):
Unscaled

simulation

Solution (ii):
Proposed scheme

Solution (iii):
Classical scheme

Solution (iv):
Classical scheme
with arbitrary U0

Density ρ = 1.205 ρ = 1 ρ = 1 ρ = 1

Viscosity µ = 1.511× 10−5 µ = 1 µ = 1.5779× 10−2 µ = 5.0158× 10−2

Channel Height h = 10−4 h = 1 h = 1 h = 1

Reference velocity - - U0 = 0.7947 U0 = 2.5

Scaling velocity - us = 0.12539 us = 0.79547 us = 2.5

Maximum velocity
(in Ωf )

umax = 1.5340 umax = 12.2400 umax = 1.929 umax = 0.6135

Scaled maximum
velocity (in Ωf )

- us×umax = 1.5348 us×umax = 1.5330 us×umax = 1.5338

Average velocity
(inlet)

uavg = 0.7947 uavg = 6.3410 uavg = 1.0000 uavg = 0.3179

Rescaled average
velocity (inlet)

- us × uavg = 0.7951 us × uavg = 0.7947 us × uavg = 0.7947

Reynolds number Re = 6.3374 Re = 6.3410 Re = 6.3374 Re = 6.3374

Table 3.2: Resulting Reynolds number calculation for the flow past a cylinder.
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x̄ =
x

L
, t̄ =

µf

ρfL2
t, ūm =

ρfL

µf
um,

along with

T̄m =
Tm

T0
, (3.33)

where T0 is a reference temperature. Substituting these into 3.32 gives:

ρmcmp
T0µ

f

ρfL2

(
∂T̄m

∂t̄
+ (ūm · ∇̄)T̄m

)
=
kmT0

L2
∆̄T̄m.

Eliminating the common factor of T0/L
2 and then diving both sides by µfcfp gives the final nondi-

mensional form:

ρm

ρf
cmp

cfp

(
∂T̄m

∂t̄
+ (ūm · ∇̄)T̄m

)
=

km

µfcfp
∆̄T̄m. (3.34)

Note that, in the fluid, the density and specific heat capacity terms vanish to 1 but not so in the

solid phase. Note also that the temperature field can just as easily be nondimensionalized as:

T̄m =
Tm − TL
TU − TL

, (3.35)

in problems with a lower, TL, and upper, TU , reference temperatures.

3.4 Subgrid Stabilization

The convective terms in the incompressible NS equations may cause spurious node-to-node

oscillations in the velocities field. Furthermore, equal-order approximations used for vfi and qf

may cause oscillations in the pressure field. To prevent these oscillations, this work augments

the NS equations with Streamline Upwind Petrov-Galerkin (SUPG) and the Pressure Stabilized

Petrov-Galerkin (PSPG) stabilization formulations introduced by Tezduyar [72]:

rΩ̂
u,p =

∑

Ωe∈Ω

∫

Ωe∩Ωf

((
τSUPG

(
ufi
∂vfi
∂xj

)
+ τPSPG

(
1

ρf

∂qf

∂xi

))
·

(
ρf

(
∂ufi
∂t

+ ufi
vfi
∂xj

)
∂pf

∂xj
δij − 2µf

∂

∂xj

(
εij(u

f )
)))

dΩ,

(3.36)
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where Ωe denotes the set of all elements in the domain Ω, and the stabilization terms τSUPG and

τPSPG are defined in [72].

The stabilized volumetric contribution in (3.8) uses the SUPG method and is defined as:

rΩ̂
u,T =

∑

Ωe∈Ω

∫

Ωe∩Ωf

(
τSUPG,T ·

(
1

ρfcfp
ufi
∂df

∂xi

)
·
(
ρfcfp

(
∂T f

∂t
+ ufi

∂T f

∂xi

)
− ∂

∂xi

(
Ji(T

f )
)))

dΩ,

(3.37)

where the stabilization term τSUPG,T is defined in [73].

3.5 Ghost-Penalty Stabilization

As the optimization process changes the geometry of the design, the interface may move close

to a mesh node; if this occurs, certain degrees-of-freedom interpolate into very small subdomains.

This in turn produces an ill-conditioning of the system, which results in an increase in the condition

number of the linearized system and may slow down or prevent the convergence of the nonlinear

program. Face-oriented ghost-penalty stabilization terms are used in the vicinity of the fluid-solid

interface to guarantee stability, as well as improve the condition number, cf. [67]. The ghost-penalty

term in (3.2) is defined as:

rGPu,p = rGP,µu,p + rGP,pu,p + rGP,uu,p , (3.38)

where rGP,µu,p , rGP,pu,p , rGP,uu,p are the viscous, pressure, and convective ghost-penalty formulations,

respectively.

The viscous face-oriented ghost-penalty formulation as proposed in [74] is used to overcome

stability issues related to the weak enforcement of boundary conditions via Nitsche’s method and

is defined as:

rGP,µu,p =
∑

F∈Ξf

∫

F

(
γGP,µ

[[
∂vfi
∂xj

]]
nfj

[[
∂ufi
∂xk

]]
nfk

)
dΓ, (3.39)

where γGP,µ is a penalty parameter defined as:

γGP,µ = αGP,µµ
fh, (3.40)

and αGP,µ is a chosen scaling factor. The jump operator is defined as:

[[ζ]] = ζ|Ω1
e
− ζ|Ω2

e
, (3.41)
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Ωf

(a) Facets Ξf in domain Ωf .

Ωs

(b) Facets Ξs in domain Ωs.

Figure 3.8: Integration facet domains for the face-oriented ghost-penalty method.

and is evaluated at the edge or face between two adjacent elements, Ω1
e and Ω2

e. Because the

integration domain is the entire edge or face, this formulation is able to mitigate the issue of small

ratio of volumes on elements bisected by the interface. The set Ξf belonging to the domain Ωf

contains all facets F in the immediate vicinity of the fluid-solid interface, for which at least one of

the two adjacent elements is intersected by the interface; for example, see Fig. 3.8.

The pressure ghost-penalty stabilization term is applied to reduce pressure instabilities due

to a violated inf-sup condition for equal-order approximations used for the velocity and pressure

degrees-of-freedom and defined as:

rGP,pu,p =
∑

F∈Ξf

∫

F

(
γGP,p

[[
∂qfi
∂xj

]]
nfj

[[
∂pfi
∂xk

]]
nfk

)
dΓ, (3.42)

where γGP,p is a penalty parameter defined as:

γGP,p = αGP,p

(
µf

h
+
ρ||uf ||∞

6

)−1

h2, (3.43)

and αGP,p is a chosen constant scaling parameter [68].

Schott and Wall [75] further proposed a convective ghost-penalty formulation to sufficiently

control the convective derivative in the incompressible NS equations for high Reynolds number
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flows. This formulation is defined as:

rGP,uu,p =
∑

F∈Ξf

∫

F

(
γGP,u

[[
∂vfi
∂xj

]]
nfj

[[
∂pfi
∂xk

]]
nfk

)
dΓ, (3.44)

where γGP,u is a penalty parameter defined as:

γGP,u = αGP,uρ
f ||ufi n

f
i ||h2, (3.45)

and αGP,u is a chosen constant scaling parameter.

To stabilize the temperature field (3.9) in thermal trasport problems, we adopt the formula-

tion in [76]:

rGPu,T =
∑

m∈{f,s}

∑

F∈Ξm

∫

F

(
γGP,T

[[
∂dm

∂xi

]]
nfi [[Jj(T

m)]]nfj

)
,dΓ (3.46)

where γGP,T is a penalty term defined as:

γGP,T = αGP,Th, (3.47)

and αGP,T is a scaling term.

This work adopts the values for αGP,u and αGP,T from [10]. The values for αGP,µ and αGP,p

are set on a per-problem basis and their influence is studied in Section 3.13.2.

3.6 Boundary Conditions for NSF

Fluid boundary conditions can be categorized as applying in the orthogonal (normal) or

tangential directions. In the normal direction, the most common boundary condition is the no-

penetration condition:

un − uwn = 0, (3.48)

where un and uwn are the fluid and wall normal velocities, respectively.

The tangential direction offers a variety of boundary conditions. The most common of these

is the traditional no-slip (or equally, stick) condition:

ut − uwt = 0, (3.49)
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where ut and uwt are the fluid and wall tangential velocities, respectively. However, this is only

appropriate for very small Knudsen number flows [2]. Schaaf and Chambre [2] originally suggested

this cut-off to be Kn < 10−2, but Gad-el-Hak [3] suggested this be moved to Kn < 10−3, due to the

breakdown of the thermodynamic equilibrium assumption. For larger Kn numbers in the Slip Flow

regime, there exists a variety of slip models for the tangential velocity. The wall-function method

described the tangential velocity as a function of distance from the wall up to O(λ), i.e. within the

so-called Knudsen layer. However, the wall-function method is phenomenological, thus dependent

on curve-fitting to experimental data, and has been primarily studied on planar surfaces [41].

Another option is to use higher-order continuum models, including the Burnett, BGK-Burnett,

and super-Burnett models, inside the Knudsen layer. However, the goal in this work is to extend

the regime of validity of the NS equations. The reader is referred to Zhang et al. [46] for a review

of slip models.

To this end, this work adopts the second-order model proposed by Beskok and Karniadakis

[77], which is based on Maxwell’s proposal of the fundamental description of gas-surface interaction

[78]:

ut − uwt −
2− σu
σu

Kn

1− bKn

(
∂ut
∂n

)
= 0. (3.50)

For stationary walls, uwt = 0. The derivative term is the rate of change of the tangential velocity in

the normal direction, i.e. a shear rate. σu is an accommodation coefficient, which typically depends

on the fluids [77]. Further, there is no general agreement on the appropriate values for σu [46].

For simplicity, this work will use σu = 1. For fully developed flows, b = −1 [77]. This value is

acceptable for Knudsen values less than 10−1.

More recently, Colin [79] and Leontidis et al. [42] studied the effect of curved surfaces and

recognized the important of a ∂un
∂t term. The boundary condition in that work takes the form:

ut − uwt = α
2− σu
σu

λ

(
∂ut
∂n

+
∂un
∂t

)
, (3.51)

where un is the velocity in the normal direction, t is the tangential direction, and α is an additional

correction factor, which may be used to calibrate the boundary condition for various gase. Méolans
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[80] uses α2−σv
σv

= 1.494 for helium and α2−σv
σv

= 1.262 for nitrogen. In this work, we will use

α = 1, since our goal is to see the influence of the Kn on optimization results rather than model

one specific fluid. The additional derivative term, ∂un
∂t , can be omitted for straight-wall channels

but plays a critical role along curved walls. This, however, is a first-order model, which Beskok and

Karniadakis [77] improve to a second-order model, for planar surfaces. To this end, we extend the

boundary condition proposed by Beskok and Karniadakis [77] to include the other derivative term,

which gives:

ut − uwt −
Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

)
= 0 (3.52)

This work will refer to this boundary condition as the Knudsen-slip (or Kn-slip) condition.

Finally, the so-called “slip” boundary condition allows the tangential velocity in the fluid to

be free:

∂ut
∂n

= 0. (3.53)

This type of conditions appears in inviscid fluid-solid flows, liquid-gas interface flows or where

symmetry in a flow is to be enforced. It is tempting to think of this slip condition as the end

behavior (i.e. Kn→∞) of the first order Kn-slip model, just as the no-slip condition corresponds

to the Kn → 0 end behavior, but it is important to remember that such Kn-slip models are not

valid for large Kn numbers. In this work, we will use this condition to enforce symmetry, where

applicable. To avoid ambiguity, we will refer to this type of boundary condition as free-slip.

3.6.1 Generalization to 3D

While this work focuses on problems in 2D, we generalized our approach to the Kn-slip

boundary condition to 3D and note that appropriate terms can be omitted for problems in 2D.

The Kn-slip boundary condition (3.1) applies on a 2D plane, where there is only one tangential

direction. In 3D, there is instead a tangent plane with infinite choices for basis vectors. One

tangential vector, t̂, can be chosen such that:

t̂ · n̂ = 0. (3.54)
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The other, ŝ, is then calculated by:

t̂ = n̂× t̂. (3.55)

Next, we write (3.1) in each of these directions,

Rt = ut − uwt −
Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

)
,

Rs = us − uws −
Kn

1 +Kn

(
∂us
∂n

+
∂un
∂s

)
,

(3.56)

and apply each contribution in its respective direction:

RKn = Rtt̂+Rsŝ

=

(
ut − uwt −

Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

))
t̂+

(
us − uws −

Kn

1 +Kn

(
∂us
∂n

+
∂un
∂s

))
ŝ

= utt̂+ usŝ− uwt t̂− uws ŝ−
Kn

1 +Kn

(
∂ut
∂n
t̂+

∂us
∂n
ŝ

)
− Kn

1 +Kn

(
∂un
∂t
t̂+

∂un
∂s
ŝ

)
. (3.57)

We can then expand the derivative terms as:

∂ut
∂n

=
∂(u · t̂)
∂n

=
∂u

∂n
· t̂+ u · ∂t̂

∂n

= (Jun̂) · t̂+ u · (J tn̂)

= t̂
T
Jun̂+ (J tn̂)Tu

, (3.58)

∂us
∂n

=
∂(u · ŝ)
∂n

=
∂u

∂n
· ŝ+ u · ∂ŝ

∂n

= (Jun̂) · ŝ+ u · (Jsn̂)

= ŝTJun̂+ (Jsn̂)Tu

, (3.59)

∂un
∂t

=
∂(u · n̂)

∂t
=
∂u

∂t
· n̂+ u · ∂n̂

∂t

= (Jut̂) · n̂+ u · (Jnt̂)

= n̂TJut̂+ (Jnt̂)
Tu

= t̂
T
JTu n̂+ (Jnt̂)

Tu

, (3.60)
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and

∂un
∂s

=
∂(u · n̂)

∂s
=
∂u

∂s
· n̂+ u · ∂n̂

∂s

= (Juŝ) · n̂+ u · (Jnŝ)

= n̂TJuŝ+ (Jnŝ)
Tu

= ŝTJTu n̂+ (Jnŝ)
Tu

, (3.61)

where

(Ju)ij =
∂ui
∂xj

, (Jn)ij =
∂ni
∂xj

, (Js)ij =
∂si
∂xj

, and (J t)ij =
∂ti
∂xj

(3.62)

are the derivatives of the velocities and the normal and tangent vectors with respect to the Cartesian

coordinates. Substituting (3.58)-(3.61) into (3.57) gives:

RKn = (u · ŝ)ŝ+ (u · t̂)t̂− (uw · ŝ)ŝ+ (uw · t̂)t̂

− Kn

1 +Kn

(
ŝŝTJun̂+ t̂t̂

T
Jun̂+ ŝŝTJTu n̂+ t̂t̂

T
JTu n̂

)

− Kn

1 +Kn

(
ŝ(Jsn̂)Tu+ t̂(J tn̂)Tu+ ŝ(Jnŝ)

Tu+ t̂(Jnt̂)
Tu
)
. (3.63)

As currently written, (3.63) requires a choice of ŝ and t̂. As stated previously, this choice is

not necessary in a 2D problem, as there is only one tangential direction; however, nothing in (3.56)

suggest that the Kn-slip boundary condition would depend on the orientation of the tangent plane.

Consider that:

I = î̂i
T

+ ĵĵ
T

+ k̂k̂
T
, (3.64)

where

î = {1, 0, 0}T , ĵ = {0, 1, 0}T , and k̂ = {0, 0, 1}T . (3.65)

Next, consider the arbitrary rotation matrices,

Rx(α) =




1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)



, (3.66)
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Ry(β) =




cos(β) 0 sin(β)

0 1 0

− sin(β) cos(β)



, (3.67)

Rz(γ) =




cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1



, (3.68)

and

R = Rz(γ)Ry(β)Rx(α). (3.69)

Finally, consider the rotated coordinate system at any point in the fluid-solid interface,

t̂ = Rî, ŝ = Rĵ, and n̂ = Rk̂. (3.70)

Substituting (3.70) into (3.64), it can be shown that:

I = n̂n̂T + ŝŝT + t̂t̂
T
, (3.71)

regardless of the rotation angles, (α, β, γ), or the order of transformation, i.e. R = RxRyRz has

the same results, such that:

ŝŝT + t̂t̂
T

= I − n̂n̂T , (3.72)

and thus (3.63) may be written as:

RKn =
(
I − n̂n̂T

)
u−

(
I − n̂n̂T

)
uw

− Kn

1 +Kn

(
I − n̂n̂T

) (
Ju + JTu

)
n̂

− Kn

1 +Kn

((
I − n̂n̂T

)
JTnu+ ŝn̂TJTs u+ t̂n̂TJTt u

)
.

(3.73)

Note that (3.72) nearly eliminates need to define the two tangent vectors, but the terms

that involve the gradients of the tangent vectors, ŝ and t̂, cannot make use of this identity (3.72).

The influence of these terms will be studied for problems with and without analytical solutions in

Sections 3.10.5 and 3.12.1, respectively, and within an optimization problem in Section 4.2.
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Note that n̂ in this section is defined as pointing into the fluid at a boundary. However,

the normal vector derived from the level set function is defined as pointing outward from the fluid

(i.e. opposite of what is used in this section). In (3.73), the first two terms are not affected by the

direction of n̂, but the last two ultimately do; thus the sign on this term must be reversed to give:

RKn =
(
I − n̂n̂T

)
v −

(
I − n̂n̂T

)
vw

+
Kn

1 +Kn

(
I − n̂n̂T

) (
Jv + JTv

)
n̂

+
Kn

1 +Kn

((
I − n̂n̂T

)
JTnv + ŝn̂TJTs v + t̂n̂TJTt v

)
.

(3.74)

3.6.2 Implementation by Nitsche’s Method

In this work, we adapt the boundary condition enforcement method described in Villanueva

and Maute [10]. There, Nitsche’s method is used to enforce Dirichlet boundary conditions as follows

(presently, we drop the superscript fluid notation):

rmu,p =

∫

Γm

δui (pδij − 2µεij(u))njδΓ

+

∫

Γm

(βpδpδij − βµ2µεij(δu))nj (uj − ûj) δΓ

+

∫

Γm

(λN,uδui (ui − ûi)) δΓ,

where δui and δp are the trial functions for the velocities and pressure, respectively, λN,u is the

Nitsche penalty parameter, and the terms βp and βµ determine whether a symmetric (βp = +1,βµ =

+1) or a skew-symmetric formulation (βp = −1,βµ = −1) is used. m ∈ {D, fs} denotes the

enforcement of boundary conditions on the external boundaries or on the fluid-solid (or fluid-void)

interface. The penalty term λN,u is taken from Schott et al. [68] and defined as:

λN,u = αN,u

(
µ

h
+
ρ||u||∞

6

)
(3.75)

and its terms account for viscous-dominated and convection-dominated flows, respectively. The

term αN,u is a problem-dependent parameter and the term ||uf ||∞ is the infinity norm evaluated

at each integration point and differentiated at its maximum value. The influence of this term was

previously studied by Villanueva and Maute [81].
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This formulation, however, is written exclusively for fully no-slip boundary conditions; as

written, it neither allows the free- and Kn-slip boundary conditions nor no-slip condition in partic-

ular directions (i.e. enforcing only the x-component velocities at a horizontal inlet). To this end,

we seek to generalize the formulation.

First, we write the Cauchy stress tensor as σij = −pδij +2µεij and the traction as Ti = σijnj .

Similarly, we can write trial functions for the traction as δTi = βpδpδijnj − βµ2µεijnj . This allows

us to write the boundary condition as:

ru,p = −
∫
δuiTiδΓ +

∫
δTi(ui − ûi)δΓ +

∫
λN,uδui(ui − ûi)δΓ,

or, in vector notation, as:

ru,p = −
∫
δu · T δΓ +

∫
δT · (u− û)δΓ +

∫
λN,uδu · (u− û)δΓ. (3.76)

Considering that ru,p is used to enforce a boundary at an interface, there exists normal and tangen-

tial directions and we may split each vector into components in each of those directions. Consider

that u = ut + un and T = T t + T n, and similarly for δu and δT , which gives:

ru,p = −
∫

(δut + δun) · (T t + T n)δΓ

+

∫
(δT t + δT n) · (ut − ût + un − ûn)δΓ

+

∫
λN,u(δut + δun) · (ut − ût + un − ûn)δΓ.

(3.77)

Then, we expand the terms:

ru,p =−
∫
δut · T tδΓ−

∫
δun · T nδΓ

+

∫
δT t · (ut − ût)δΓ +

∫
δT n · (un − ûn)δΓ

+

∫
λN,uδut · (ut − ût)δΓ +

∫
λN,uδun · (un − ûn)δΓ.

(3.78)

This separation is allowed since, by definition, the normal and tangential directions are orthogonal.

At this point, different conditions may be applied in the normal and tangential directions; for



78

example, to enforce no-slip conditions (though the split is not necessary for this case),

ûn = 0

ût = 0.

(3.79)

For free-slip conditions,

ûn = 0

ût = ut

T t = 0

δT t = 0.

(3.80)

Note the additional conditions on the tangential traction: if the tangential velocity is to be free,

then the tangential traction must be zero, i.e. recall that this condition is equivalent to δut/δn = 0

and δut/δn is precisely the tangential traction. Finally, for the Kn-slip condition,

ûn = 0

ut − ût = RKn.

(3.81)

Note that the normal-tangential splitting of (3.76) is only partially necessary. Thus, a partial

splitting is suggested as follows:

ru,p = −
∫
δu · (T t + T n)δΓ +

∫
(δT t + δT n) · (u− û)δΓ

∫
λN,uδu · (u− û)δΓ, (3.82)

with

u− û =





u , no-slip

un +RKn , Kn-slip

un , free-slip

and

T t = δT t = 0, for free-slip.
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3.6.3 Final Generalization

Disregarding the Kn-slip condition momentarily, (3.82) can be further generalized to enforce

boundary conditions in any arbitrary direction, i.e. not just in the normal or tangential direction.

To this end, consider (3.78), where the normal direction is replaced with an arbitrary direction,

on which boundary conditions are desired, and the tangential direction remains tangent to this

arbitrary direction, on which velocities are meant to be free:

ru,p = −
∫
δu · (M bcT )δΓ +

∫
(M bcδT ) · (u− û)δΓ +

∫
λN,uδu · (M bc(u− û))δΓ, (3.83)

where, for the no-slip conditions (or to enforce a no-slip condition in a particular Cartesian direc-

tion),

M bc =




δx1 0 0

0 δx2 0

0 0 δx3



, (3.84)

where δxi = 1 if a boundary condition should be enforce in the xi-direction, or 0 otherwise. Notice

that for the full no-slip boundary condition, M bc = I. For the free-slip boundary condition,

M bc = n̂n̂T . (3.85)

In this way, (3.83) handles both the no-slip and free-slip boundary conditions. Finally, the Kn-slip

condition acts as an extension to the free-slip boundary condition, since it uses the same M bc in

(3.83) but with additional (underlined) terms,

rKnu,p =−
∫
δu · (M bcT )δΓ−

∫
δu · ((I −M bc)T )δΓ

+

∫
(M bcδT ) · (u− û)δΓ+

∫
((I −M bc)δT ) ·RKnδΓ

+

∫
λN,uδu · (M bc(u− û))δΓ+

∫
λN,uδu ·RKnδΓ.

(3.86)



80

Thus, the most general implementation can be written as:

ru,p =−
∫
δu · (M bc + βKn(I −M bc)T )δΓ

+

∫
(M bcδT ) · (u− û) + βKn((I −M bc)δT ) ·RKnδΓ

+

∫
λN,uδu · (M bc(u− û) + βKnRKn)δΓ

, (3.87)

where

βKn =





1, for Kn-slip

0, otherwise

,

and M bc is given by (3.84) for no-slip conditions or by (3.85) for free- and Kn-slip conditions.

3.7 Level Set Function

The Level Set Method (LSM) describes the geometry of a body immersed in a domain by

the zero isosurfaces of a higher dimensional Level Set Function (LSF), φ(x). The LSF is defined

such that:

φ(x) > 0, ∀x ∈ Ωs

φ(x) < 0, ∀x ∈ Ωf

φ(x) = 0, ∀x ∈ Γfs,

(3.88)

where Ωs is the solid phase, Ωf is the fluid phase, and Γfs is the fluid-solid interface. The external

boundaries of the solid and fluid phases are represented as Γs and Γf , respectively.

Topology optimization allows the emergence of a large set of geometries by parameterizing

the LSF with local shape functions defined on a finite element mesh. Each node of the design mesh

is assigned one optimization variable, si, for i = 1...Nn, where Nn is the number of nodes. Then,

the LSF value of the i-th node, φi, is defined as:

φi(s,x) =




Nn∑

j=1

wij



−1


Nn∑

j=1

wijsj


 , (3.89)

where

wij = max (0, rφ − |xi − xj |) , (3.90)
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and rφ is the smoothing filter radius. Kreissl and Maute [82] and Makhija and Maute [32] have

used this linear filter (3.89) to widen the zone of influence of each optimization variable and to

improve the convergence rate.

To define inlet and outlet ports, the LSF value on nodes outside the design domain can be

overwritten, e.g. for a point, xi, near a desired horizontal port, the nodal LSF value, φi(xi), is

overwritten with:

φi = min
(

max
(
φmin, r −

√
(yi − yc)2

)
, φmax

)
(3.91)

where φmin = −h/2, φmax = h/2, h is the element width, and yc and r are the center axis and

radius of the port. Vertical ports are created similarly. This approach is similar to the approach

taken by Villanueva and Maute [10].

3.7.1 XFEM Discretization

The governing equations in the fluid phase are discretized in space by the XFEM. This paper

adopts the generalized enrichment strategy based on the Heaviside-step enrichment of Hansbo and

Hansbo [83], which consistently interpolates the solution field in the presence of small features and

does not suffer from artificial coupling arising from disconnected phases. This particular approach

has been used by Kreissl and Maute [82] for incompressible Navier-Stokes problems, Lang et al. [63]

for linear diffusion problems, Makhija and Maute [32] for advection-diffusion problems, and Makhija

and Maute [84] and Villanueva and Maute [81] for linear elasticity problems.

The XFEM can be used to approximate a state variable in a single phase phase or in both

phases. Here, we present the most general case, where the state variables are modeled in both

phases. The approximation for a solution field u, e.g. the fluid velocities, within an element is

denoted as ũ and is discretized by the enrichment strategy:

u(x) ≈ ũ(x) =

Nl∑

l=1

(
H(−φ(x))

Nn∑

i=1

vi(x)δi,flk u
f
i,l +H(+φ(x))

Nn∑

i=1

vi(x)δi,sln u
s
i,l

)
, (3.92)

where l is the enrichment level, Nl is the maximum number of enrichment levels used for each

phase, vi(x) are the nodal basis function, i.e. the shape functions, ufi,l and usi,l are the degrees-of-
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freedom of enrichment level l at node i in the fluid and solid phase, respectively, and H denotes

the Heaviside function, which turns the interpolation for phase m on and off, and is defined as:

H(ζ) =





1, ζ < 0

0, ζ > 0.

(3.93)

The Kronecker delta, δi,mab , selects the degrees-of-freedom for phase m. The indices k and n denote

the active degree-of-freedom at node i in the fluid and solid phases, respectively. Ensuring the

partition of unity is satisfied, only one degree-of-freedom per node is used to interpolate the solution

at any given point. For problems where the solid phase is void, the respective degrees-of-freedom

are set to zero and condensed out of the problem.

For each phase, multiple enrichment levels may be necessary to interpolate the state variables

in multiple, physically disconnected regions of the same phase, cf. [85], [86], and [84]. In order to

accurately integrate the weak form of the governing equations by Gaussian quadrature, intersected

elements are decomposed into triangles in 2D or into tetrahedrons in 3D using Delaunay triangu-

lation. The reader is referred to Makhija and Maute [84] for more details on the particular XFEM

implementation used in this paper.

The Heaviside-step enrichment formulation (3.92) has a singularity for cases in which the

fluid-solid interface lies exactly on a node, i.e. the level set value φi at node i equals 0. To avoid

this issue, we adopt the perturbation approach outlined in [87] and [63]. If the magnitude of the

level set value at a node is smaller than some critical value, φc, it is modified to a shifted value,

φs. This perturbation results in the fluid-solid interface moving away from the node, solving the

singularity issue. In this study, we adopt the values of φc = φs = 10−6×h, where h is the size of an

element. This perturbation strategy was used by Sharma et al. [88], who shows that the influence

of the perturbation is negligible.
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3.8 Analytical Implementation of Unit Vector Gradients

In this section, we will describe how an analytical Jn is obtained for use in (3.73). Consider

the definition of the normal vector in terms of the level set field,

n =
∇φ

|∇φ| , (3.94)

or, in indicial notation,

ni =
φxi√

φ2
x + φ2

y + φ2
z

, (3.95)

where the subscript notation denotes differentiation, i.e. φxi = ∂φ
∂xi

. Thus Jn is written as:

(Jn)ij =
∂ni
∂xj

(3.96)

=
φxixj (φ

2
x + φ2

y + φ2
z)− φxi(φxφxxj + φyφyxj + φzφzxj )

(φ2
x + φ2

y + φ2
z)

3/2
, (3.97)

where φxixj = ∂2φ
∂xi∂xj

. This requires second-order derivatives, which are not available with bilinear

elements unless an analytical expression for φ(x) is known. For a non-analytical expression for Jn,

we use (3.96) and use the normal vector degrees-of-freedom, as discussed in Section 3.2.3. This is

studied in Sections 3.10.5 and 3.12.

Further, in 2D, t̂ = n̂× ẑ, thus t1 = n2 and t2 = −n1. Finally,

J t =



∂t1
∂x

∂t1
∂y

∂t2
∂x

∂t2
∂y


 =




+∂n2
∂x +∂n2

∂y

−∂n1
∂x −∂n1

∂y


 . (3.98)

3.9 Numerical Examples

In the following, we study the characteristics of the proposed Kn-slip boundary condition for

steady-state flow problems in 2D. We first validate the implementation of the Kn-slip boundary

condition for planar geometries with analytical solution. In planar flows, the J{n,t} terms vanish.

Further, we study the influence of the ghost-penalty method proposed in [10] in comparison to the

geometric preconditioner of [63]. We then validate the implementation of the J{n,t} terms in a

problem with non-planar geometry and an analytical solution. Further, we study the importance
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of the J{n,t} terms in a problem with variable curvature. We then discuss the spurious errors that

appear in the solution process and study various strategies to mitigate these errors. Finally, we

study the influence of the ghost-penalty method and its parameters for more complex geometries.

Unless otherwise stated, geometric and material parameters are given in non-dimensional and self-

consistent units.

In this work, the time integration is performed by a 1-step backward differentiation scheme.

Most steady-state flow problems use a homotopy approach, i.e. a sufficiently small time step is

initially chosen to achieve stability and it is then gradually increased until a steady-state solution

is achieved. The problems considered in this paper where not found to need this approach; instead,

the time step is initially large and the solution is advanced until a steady-state solution is reached.

The equilibrium at any time step (n) is satisfied by solving the nonlinear system R(n) via

Newton’s Method, where:

R = ru,p + rn̂, (3.99)

or

R = ru,p + ru,T + rn̂ (3.100)

in examples involving energy transport. The linear problem is solved using the Generalized Minimal

RESidual (GMRES) iterative method [89] with an Incomplete LU factorization with dual Threshold

(ILUT) preconditioner [90].

3.9.1 Scope

The Knudsen number (1.1) is also given by the Reynolds and Mach numbers via: [91]

Kn =
Ma

Re

√
γπ

2
. (3.101)

Because the incompressible NS equations, used in this paper, are valid only for Ma < 0.3, we will

limit the maximum Kn number of interest to allow a larger Re number, which in turn allows for

larger inertial effects in the fluid flow problems considered.
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3.10 Analytical Solutions for Simple Geometries

In this section, we validate components of our implementation of the Kn-slip boundary con-

dition in problems with an available analytical solution. Further, we study the influence of the

ghost-penalty terms when compared to XFEM preconditioner of [63]. Finally, we study the influ-

ence of the J{n,t} terms in an example with curved surfaces.

All examples considered here use the nondimensionalized NS equations (3.29). As such, the

fluid density and viscosity are chosen as ρ̄ = µ̄ = 1 and the geometry is nondimensionalized with

a characteristic length. The inlet pressure boundary condition and the wall velocities in Section

3.10.5 are chosen in nondimensional form.

3.10.1 Planar Poiseuille flow

In this section, we again consider the flow between parallel plates. The problem setup is

similar to the one in Fig. 3.3, except that the walls enforce Kn-slip boundary conditions instead of

no-slip boundary conditions. The updated problem setup is shown in Fig. 3.9. Because the walls

are planar, the J{n,t} terms vanish and we can focus on validating the remaining portion of the

Kn-slip implementation. The inlet is given a pressure boundary condition such that:

p̄in =
ρh2

µ2
pin = 10. (3.102)

For this problem, the NS equations admit the general solution:

u(y) = −B
2
y2 + C1y + C2. (3.103)

A symmetry condition at y = 0 gives C1 = 0. The Kn-slip boundary condition at the top wall,

(3.1), simplifies to:

u
∣∣∣
y=h/2

+
Kn

1 +Kn

du

dy

∣∣∣
y=h/2

= 0. (3.104)

This in turn gives the analytical solution:

u(y) =
1

2µ

pin
L

(
1− 4

(y
h

)2
+ h

Kn

1 +Kn

)
. (3.105)
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Figure 3.9: Problem description for the flow past a cylinder with Kn-slip boundary conditions.

Additionally, the mass flow rate through half the domain is given as:

ṁ =

h/2∫

0

ρu(y)dy =
h3

24

ρ

µ

pin
L

(
1 +

6

h

Kn

1 +Kn

)
. (3.106)

A square domain is chosen, i.e. L = h, and because we consider the nondimensional NS

equations, h = 1. We consider the domain Ω = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.6}, and discretize it

with a uniform mesh with Ne × 5
3Ne square elements. The fluid domain and interface are defined

with the LSF:

φ = |2y| − 1. (3.107)

Fig. 3.10a show the x-component velocities through the line x = 0.5 with several levels of

refinement for Kn = 0.01. Fig. 3.10b is a close-up view. Note the pronounced agreement between

the obtained solutions and the analytical solution, particular for the coarser levels of refinement.

This agreement is not perfect, as the XFEM does not perfectly discretize the channel [9]. Fig.

3.10c shows the convergence of the mass flow for the same levels of refinement; note, in particular,

the scale of the vertical axes.

Finally, Fig. 3.10d shows the convergence of the L2 error against the analytical solution. The

rate is approximated with a linear curve-fit through the log-log data. Fig. 3.11 and 3.12 show the

same information for Kn = 0.02 and 0.05, respectively. We observe a larger deviation from the

analytical solution, for a given level of refinement, as the Kn number increases. Further, the L2

convergence rate decreases as the Kn number increases, indicating a potential interaction between

the ghost-penalization and the Kn numbers. Fig. 3.13 aggregates the velocity distribution and
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L2 error for the Kn numbers considered in this study. We will further study the effect of the

ghost-penalty formulation in Sections 3.13.2, 3.13.3, and 3.14.

3.10.2 Planar Poiseuille flow using the XFEM preconditioner

In the previous section, we showed that the L2 convergence rate decreased as the Kn in-

creased. In this example, we consider same flow between parallel plates but use the XFEM pre-

conditioner of [63]. Recall from Section 3.5, that the ghost-penalty method is an alternative to

the XFEM preconditioner, which simply scales the linear system with the area of influence of each

node. We repeat the procedure of the previous section, for the same levels of refinement and Kn

numbers.

Fig. 3.14, 3.15, and 3.16 show the velocity distribution, mass flow rate, and L2 error for

Kn = 0.01, 0.02, and 0.05, respectively. Note that the agreement of the velocity distributions with

their respectively analytical solutions remains favorable for coarse meshes, but that convergence

comes from above rather than below. This suggests that the XFEM preconditioner tends to over-

approximate velocities, while the ghost-penalty method has a diffusive effect. This is consistent in

the convergence of the mass flow rate. Finally, note that the L2 convergence rate is the same for

all Kn numbers, though considerably lower than with ghost-penalization.

For a more direct comparison, we overlay the convergence of the L2 errors using ghost-

penalization and the XFEM preconditioner in Fig. 3.17. This study shows the superior convergence

rates of the ghost-penalty methods, though its interaction with the Kn numbers remains unstudied.

3.10.3 Couette Flow: Flow Between Moving Plates Flow

Consider the same problem as in the previous section, except that the flow is driven by

moving plates rather than a pressure gradient. The problem setup is shown in Fig. 3.18. The

plates move in opposite horizontal directions with speeds uw = ±U/2, where U is set such that:

ρh

µ
U = 5.0 (3.108)
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Figure 3.10: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.01 and several levels of refinement.
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Figure 3.11: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.02 and several levels of refinement.
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Figure 3.12: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.05 and several levels of refinement.
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Figure 3.13: Velocity distribution (a) and L2 error (b) for several Kn numbers and several levels
of refinement.
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ṁout

Analytical

(c)

10
4

10
6

Number of degrees-of-freedom

10
-5

10
-4

10
-3

L
2
E
rr
or

← O(−0.43)

(d)

Figure 3.14: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.01 and several levels of refinement using the XFEM preconditioner.
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Figure 3.15: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.02 and several levels of refinement using the XFEM preconditioner.
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Figure 3.16: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.05 and several levels of refinement using the XFEM preconditioner.
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Figure 3.18: Problem description for the flow between moving plates with Kn-slip boundary con-
ditions.

For this problem, the NS equations admit a general solution:

u(y) = C1y + C2 (3.109)

A symmetry condition at y = 0 gives C2 = 0. The Kn-slip boundary condition at the top wall,

(3.1), simplifies to:

u− uw + C
du

dy
= 0, (3.110)

which gives the final solution:

u(y) = U
1 +Kn

1 + 3Kn
y (3.111)

Additionally, the mass flow rate through the half-domain is found as:

ṁ =

h/2∫

0

u(y)dy =
Uh2

8

1 +Kn

h+ (h+ 2)Kn
(3.112)

Naturally, the net mass flow rate between the plates is ṁnet = 0.

We discretize the problem with the same domain and LSF as in the previous section and

consider the same levels of refinement. In addition to finding the convergence behavior for this

problem, we will additionally investigate the effect of ghost-penalization against the use of the

XFEM preconditioner, as with the previous problem.

Fig. 3.19a shows the x-component nondimensional velocity distribution for Kn = 0.01. Fig.

3.19b shows a close-up. We observe good agreement with the analytical solution, except for the

coarsest level of refinement. Fig. 3.19c shows the convergence of the mass flow with the same levels
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of refinement; note the same. Fig. 3.19d shows the convergence of L2 error, where the analytical

solution is used as a reference solution. The shown convergence rate is approximate from a linear

curve-fit through the log-log data. Fig. 3.20 and 3.21 show the same information for Kn = 0.02

and 0.05, respectively. The L2 convergence rate is nearly identical for all Kn numbers, in direct

contrast with the pressure-driven flow problem.

We summarize these results in Fig. 3.22, which shows the velocity distribution and L2 error

for several Kn numbers. As the Kn numbers increases, the fluid slips further from the wall velocity.

We further observe nearly identical L2 errors for all Kn numbers.

3.10.4 Couette flow using the XFEM preconditioner

We again consider using the XFEM preconditioner instead of ghost-penalization, as with

the pressure-driven problem. Fig. 3.23, 3.24, 3.25 show the x-component nondimensional velocity

between the moving plates and the convergence of the mass flow rate and L2 error against the

analytical solution using the XFEM preconditioner, for Kn = 0.01, 0.02, and 0.05, respectively.

We observe that the use of the XFEM preconditioner does not change the convergence rate of

the L2 error. Because these results are nearly identical to those using ghost-penalization, we do

not aggregate the results for all Kn numbers considered nor overlay them with the results using

ghost-penalization.

3.10.5 Radial Couette Flow: Flow Between Rotating Cylinders

Having validated the implementation of the Kn-slip boundary condition and studied its effect

with ghost-penalization and the XFEM preconditioner, we now seek to validate the implementation

of the J{n,t} terms. To this end, we consider the flow between concentric rotating cylinders. The

inner and outer cylinders have radii, r1 and r2, and rotate with angular velocities, ω1 and ω2,

respectively. The problem setup is shown in Fig. 3.26.

This problem is extensively discussed in the manuscript found in Appendix C. Here, we

will summarize the relevant observations as follow: (i) the Kn-slip boundary conditions becomes
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Figure 3.19: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.01 and several levels of refinement.
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Figure 3.20: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.02 and several levels of refinement.
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Figure 3.21: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.05 and several levels of refinement.
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Figure 3.22: Velocity distribution (a) and L2 error (b) for several Kn numbers and several levels
of refinement.
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Figure 3.23: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.01 using the XFEM preconditioner and several levels of refinement.
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ṁ
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Figure 3.24: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.02 using the XFEM preconditioner and several levels of refinement.
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Figure 3.25: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.05 using the XFEM preconditioner and several levels of refinement.
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Figure 3.26: Problem description for the flow between concentric rotating cylinders with Kn-slip
boundary conditions.
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important around Kn = 10−3, (ii) the J{n,t} terms are necessary to fully recover the analytical

solution, but (iii) the error in omitting these terms is smaller for small Kn numbers, and (iv) our

inclusion of the weak enforcement of the normal vector definition (3.24) is validated against the

available analytical solution.

3.10.6 Concluding Remarks

In this study, we considered two planar 2D problems, along with a non-planar problem,

with analytical solutions. Our implementation of the Kn-slip boundary condition, including the

J{n,t} terms, is thus validated. In the plate-driven problem, we observe the similar convergence

behavior of the ghost-penalty method to the use of the XFEM preconditioner. Our study of the

pressure-driven problem, however, suggests that that the ghost-penalty method behaves differently

in pressure-driven flows. The convergence rate of the L2 error improves when using the ghost-

penalty method, particularly for Kn = 0.01. However, the improved convergence rate lessens as

the Kn number increases. Further, ghost-penalization appears to have a diffusive effect, causing

slightly larger L2 errors for coarser meshes. We further discuss the ghost-penalty method in Sections

3.13.2, 3.13.3, and 3.14.

3.11 Choice of normal vector definition

In this section, we will study the flow past a single cylinder and discuss two options for

computing the normal vector at an integration point. The normal vector at an intersected element

can be determined in two ways: using the geometry of the intersection or using the level set function.

In the former, the intersection facet is treated as a plane (in 2D, a line) and its perpendicular

outward-facing normal vector is found; this normal vector is thus constant through the interface but

discontinuous between adjacent elements. This discontinuity may lead to the accidental omission

of jump terms in the surface integral. In the latter, the normal vector is calculated from the

level set field, (3.94), using the nodal LSF values; this normal vector is thus not guaranteed to

be perpendicular to the interface, which may lead to inaccurate enforcement of the no-penetration
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Figure 3.27: Example element with various normal vector definitions.

boundary condition.

We illustrate this choice for the normal vector in Fig. 3.27, shows an example of an intersected

element. The points where the zero isosurface of the LSF intersects the edges of the elements

are denoted xi1 and xi2. The solid straight line connecting these intersection points denotes the

approximation of the fluid-solid interface by the XFEM that separate the fluid and solid domains,

Ωf and Ωs, respectively. This line approximate the zero isosurface of the LSF, φ(x), denoted

with a dashed line. The integration points are denoted as xg1, xg2, and xg3. Dotted lines denote

respective isosurfaces of the LSF at the integration points; in this example, two integration points

share an isosurface but, in general, each integration point has its own isosurface. Finally, we denote

the two options for the normal vector discussed in this section: n̂f denotes the normal which

is constant through this element and always perpendicular to the fluid-solid interface, while n̂φ

denotes the normal vector computed via (3.94). In this example, n̂f and n̂φ are the same at xg2, so

n̂f is purposely displaced. We expect that the disadvantage of each option will vanish with mesh

refinement, since both choices approach the true normal vector of the approximated shape.

In this example, the problem setup is similar to the one in Fig. 3.5, except that the cylinder

is placed in the center, i.e. vertically as well as horizontally, of the channel and its radius is one
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Figure 3.28: Problem description for the slow flow past a cylinder with Kn-slip boundary conditions.

quarter of the channel height. Thus, the LSF becomes:

φ = r −
√(

x1 − h
a

)2

+

(
x2 − k
b

)2

, (3.113)

with (h, k) = (0, 0), r = 0.25, and a = b = 1. Additionally, the channel walls are replaced with

symmetry boundary conditions, such that we model a vertical array of cylinders. The updated

problem setup is shown in Fig. 3.28. We model only the symmetric portion and discretize the

domain, Ωd = {−3r ≤ x ≤ 3r, 0 ≤ y ≤ 3r}, with a uniform mesh with Nelem × 2Nelem square

elements. The cylinder and channel walls enforce the Kn-slip boundary condition. The inlet is

given an Dirichlet boundary condition, such that:

p̄in =
ρh2

µ2
pin = 10 (3.114)

and the outlet is given a zero-traction boundary condition, equivalent to pout = 0. Finally, because

there exists an analytical expression for the LSF, we will use analytical expressions for the J{n,t}

in this example. The Kn number will be set as in previous examples, Kn = 0.01, 0.02, and 0.05.

Fig. 3.29 shows the velocity distribution over the fluid domain with Kn = 0.05 using n̂f and

the finest level of refinement, Ne = 180. Note especially the non-zero velocities at the top of the

cylinder, indicative of the Kn-slip boundary condition. For clarity, we will not show similar velocity

distributions for other Kn or choices of the normal vector calculation. Instead, we will sample the

velocity distribution at the y = 0.25 line. Note that this line is tangent to the top of the cylinder.
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Figure 3.29: Example solution of the flow past a cylinder with Kn = 0.05 using n̂f and Ne = 341.

Fig. 3.30, 3.31, 3.32 show the x-component velocity through the sample line for Kn = 0.01, 0.02,

0.05, respectively. Note the non-zero velocity at x = 0 due to the Kn-slip boundary condition, i.e.

if the no-slip boundary conditions had been used, u(x = 0, y = 0.25) = 0. We observe that the

results using n̂f agree well with those using n̂φ, even for coarse meshes; further, we note that the

disagreement increases slightly with Kn. Finally, Fig. 3.33 shows the difference in solution relative

to the solution using the finest level of refinement and n̂φ for several levels of refinement. We

observe the unsmooth behavior of the differences, thought they remain small for nearly all levels

of refinement and Kn numbers. Because these relative difference remain small and appear to at

least remain bound, we suggest that the use of n̂f is interchangeable with the use of n̂φ. Unless

otherwise noted, we will continue to use n̂φ in the remaining sections of this work.

3.12 Flows without an analytical solution

In Section 3.10.5, we showed the importance of the J{n,t} terms in the Kn-slip boundary

condition. Though necessary to fully recover an analytical solution, their omission resulted in

a small error for small Kn numbers. The J{n,t} terms relate to the curvature of the fluid-solid

interface; as the interface flattens, these terms vanish. In fact, for planar surfaces, the J{n,t} terms
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Figure 3.30: Velocity distribution (a) and close-up (b) for Kn = 0.01 and select levels of refinement.
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Figure 3.31: Velocity distribution (a) and close-up (b) for Kn = 0.02 and select levels of refinement.
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Figure 3.32: Velocity distribution (a) and close-up (b) for Kn = 0.05 and select levels of refinement.
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Figure 3.33: Relative difference in solution for (a) Kn = 0.01, (b) Kn = 0.02, and (c) Kn = 0.05.
The reference solution is that using the finest level of refinement and n̂φ for each Kn number.
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vanish entirely. In this section, we will revisit the flow past a cylinder from Section 3.11 and study

the effect of omitting the J{n,t} terms on the flow solution.

Because Section 3.10.5 shows that the J{n,t} terms found its weak form is equivalent to using

analytical expressions, we will only use the later in this section. Thus, we consider solution (i) after

omitting the J{n,t} terms, and (ii) with analytical expressions for the J{n,t} terms using (3.97).

Fig. 3.34a shows the x-component velocity sampled through the y = 0.25 tangent line for a

coarse and the finest level of refinement; Fig. 3.34b is a close-up view. Note the disagreement in the

velocity when the J{n,t} are omitted for both levels of refinement. Fig. 3.34c shows the convergence

of the mass flow with the level of refinement. The difference between the converged mass flow rates

exemplifies the error in omitting the J{n,t} terms. Finally, Fig. 3.34d show convergence of the L2

error in the velocities, where the results with the finest level of refinement is used as the reference

solution. We observe that omitting the J{n,t} terms does not affect the L2 error convergence rate,

even if the flow converges to a different solution, e.g. Fig. 3.34c.

Fig. 3.35 and 3.36 represent similar results for Kn = 0.02 and 0.05, respectively. We observe

that the disagreement between the results with and without th J{n,t} terms widens as the Kn

number increases. We recognize that Fig. 3.36c suggests that further refinement is necessary for

Kn = 0.05 and will address this in Section 3.12.1.

Finally, we consider the relative error (3.115) due to omitting the J{n,t} terms. The relative

error is computed as the difference in the velocity results with and without the J{n,t} terms at each

level of refinement, relative to the results with the J{n,t} terms and the finest level of refinement.

We expect that this error will convergence for finer levels of refinement. Fig. 3.37 shows the relative

error for Kn = 0.01, 0.02, and 0.05. We observe that, for the levels of refinement considered in

this section, the relative error does not converge. However, we note that Fig. 3.37a suggests that

convergence from below is possible. To study this further, we consider the same analysis with

body-fitted meshes in the next section.
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Rel. Error =

∫ (
uw/o J{n,t}, Ni

uw/ J{n,t}, Ni

)2

∫ (
uw/ J{n,t}, Nfinest

)2
(3.115)

3.12.1 Effect of the J{n,t} terms using body-fitted meshes

In Section 3.12, we showed that the relative error due to omitting the J{n,t} terms appears

to increase for finer levels for refinement but suggested that this error should converge to a value

dependent on the Kn number. To study this further, we consider the use of conforming meshes

that do not require the LSM-XFEM. We consider two kinds of body-fitted meshes: unstructured

or boundary-layer meshes. Examples of these two types of meshes are shown in Fig. 3.38.

Unstructured meshes are built such that the circumference of the cylinder and top wall

are discretized with Ne elements; the inlet and outlet walls are discretized with Ne/2 elements,

respectively. Finally, the two remaining faces, i.e. along the bottom axis of symmetry in front of

and behind the cylinder, are discretized with Ne/2 elements each. These intervals tend to create

square elements far away from the cylinder and slender elements near the cylinder. The transition

between these two regions have elements of similar sizes, but some small elements are inevitable.

For the boundary-layered mesh, we first build a structured mesh around the cylinder and

then fill the remaining domain with unstructured elements. The structured region is built in the

following manner: the circumference of the cylinder is discretized with Nb layers of Ne elements.

The width of the innermost elements is thus:

W =
πr

Ne
. (3.116)

The thickness of each layer, bi for i = 1, 2, ..., Nb, is such that the first layer has thickness b0 = f1W

and bi+1 = f2bi. The remaining unstructured region of this mesh is then built such that the top

wall and the inlet and outlet have Ne and Ne/2 elements, respectively. The faces on the bottom

line of symmetry in front and behind the cylinder are discretized with Nc elements, where:

Nc = max

(
Ne

2
,
Ne

4
+Nb

)
. (3.117)
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Figure 3.34: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.01 with and without analytical expressions for the J{n,t} terms.
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Figure 3.35: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.02 with and without analytical expressions for the J{n,t} terms.
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Figure 3.36: Velocity distribution (a) and close-up (b), mass flow rate (c), and L2 error (d) for
Kn = 0.05 with and without analytical expressions for the J{n,t} terms.
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Figure 3.37: Relative error in the velocity distribution due to omitting the J{n,t} terms for several
levels of refinement.
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(a) Unstructured (b) Boundary-layer

Figure 3.38: Example of unstructured (a) and boundary-layer (b) meshes.
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Note that Nb of the Nc elements are part of the boundary-layered structure. For all boundary-layer

meshes used in this section, f1 = 0.01, f2 = 1.2 and Nb is such the last layer of boundary-layer

elements has the same approximate thickness as an element along the top wall.

6r

Ne
= Wf1f

Nb
2

6r

Ne
=
πr

Ne
f1f

Nb
2

(3.118)

Approximating π ≈ 3 gives:

2 = f1f
Nb
2 (3.119)

and thus:

Nb =
log(2)− log(f1)

log(f2)
≈ 29. (3.120)

We consider the same flow past a cylinder as in the previous section with the body-fitted

meshes described previously for several levels of refinement. We update the convergence figures from

the last section with the results using body-fitted meshes; for brevity, we do not update figures

showing velocity distributions as they would not reveal important information. Fig. 3.39 shows

the convergence of the mass flow rate for same Kn numbers considered previously. Results using

the XFEM are repeated from before. We note that the unstructured body-fitted (BF) converge

from below, just as with the XFEM, and that the boundary-layer (BL) converges from above. Both

show a similar gap, confirming the error in omitting the J{n,t} terms.

Further, Fig. 3.40 shows the L2 error for several levels of refinement using the two types

of body-fitted meshes. Again, the results using the XFEM are repeated from before. We note

that both body-fitted meshes lead to smaller L2 errors, approximately one order-of-magnitude less.

Using unstructured meshes, however, leads to a smaller convergence rate. The convergence rates

for the XFEM and boundary-layer meshes are approximately the same.

Finally, Fig. 3.41 shows the relative error in the velocity due to omitting the J{n,t} terms

using body-fitted meshes. We repeat the results using the XFEM for comparison. While the results

in Fig. 3.37 initially suggested that this error grew unbounded with mesh refinement, the results
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with body-fitted confirm our own suggestion: the error in omitting the J{n,t} terms converges and

this converged value depends on the Kn number.

Fig. 3.42 shows the maximum relative error due to omitting the J{n,t} terms using the XFEM

for each Kn number. As the Kn increases, this relative error increases; the approximate order is

1.56, using a linear curve-fit through the log-log data. While we recognize that this error is small,

< 1%, for Kn = 0.01, we note that it grows quickly as Kn increases. We show the influence of

omitting these terms in a topology optimization framework in Section 5.4.3 in the manuscript found

in Appendix C.

3.12.2 Flow past an elliptical cylinder

Thus far, we have considered the Kn-slip boundary condition around a circular cylinder, where

the curvature of the fluid-solid interface is constant. In this section, we consider the flow past an

elliptical cylinder, where the major axis aligns with the flow direction. In this case, the interface is

more planar near the faster-moving fluid, compared to the circular cylinder. The elliptical cylinder

has larger curvature at the head and tail, but the fluid moves more slowly in this region. Thus,

we expect that omitting the J{n,t} terms results in a smaller error. An ellipse is formed by setting

a = 2 in (3.113). All other problem parameters are left the same.

In this section, we will limit ourselves to using the XFEM, as a comparison to body-fitted

meshes would not reveal new information. Fig. 3.43 shows the nondimensional velocity in the fluid

domain for Kn = 0.05. Because the ellipse is less obtrusive than the circular cylinder, the flow is

faster and appears to approach the flow between parallel plates, cf. Fig. 3.29. Fig. 3.44 shows

the velocity through the tangent line, which exemplifies the less obtrusive nature of the elliptical

cylinder.

Finally, we compute the relative error in the velocity distribution due to omitting the J{n,t}

terms. Fig. 3.45 shows the relative error against the Kn number for the elliptical cylinder; the

results for the cylinder are repeated from the previous study. We observe that the error grows at

the same rate with respect to the Kn number, which suggests that the error rate is only dependent
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Figure 3.39: Convergence of mass flow rate using the XFEM and body-fitted meshes for various
Kn numbers and several levels of refinement.
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Figure 3.40: Convergence of L2 error using the XFEM and body-fitted meshes for various Kn
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Figure 3.43: Example solution of the flow past an ellipse including the J{n,t} terms, for Kn = 0.05.
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Figure 3.45: Relative error due to omitting the J{n,t} terms for two shapes and several Kn numbers
using the XFEM.

on the Kn number. Further, we note that the ratio in the relative error in the flow past a circle to

the relative error in the flow past an ellipse is 2 : 1. Considering the the curvature of the circular

cylinder is always κ = 1
r and the curvature for the ellipse at the point of intersection is κ = 1

4r , see

Appendix B, this suggests that the relative error due to omitting the J{n,t} terms grows with κ1/2.

We summarize our findings as follows: in situations where the interface curvature is small

and/or small Kn numbers, the J{n,t} terms may be ignore in the Kn-slip boundary condition. This

not only reduces the amount calculations at the interface, but also eliminates the need to augment

the nodal degrees-of-freedom with additional degrees-of-freedom for the normal vector. For larger

Kn numbers or problems with high curvature, this error cannot be as easily ignored. As mentioned

previously, we show the influence of omitting the J{n,t} terms in a topology optimization framework

in Section 5.4.3 in the manuscript found in Appendix C.

3.13 Intersected elements with small ratio of areas

In this section, we explore some spurious errors caused by the emergence of intersected

elements with small ratio of areas. We expect that these kinds of intersection patterns will appear

as the fluid-solid interface is moved closer to a node during topology optimization and wish to study
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Figure 3.46: Errors in the velocity distribution at four locations along the fluid-surface interface
(a) and a close-up view of the region near the top-right error (b).

their impact on the flow solution. These kinds of intersected elements tend to lead to errors in the

velocity solution; here, we consider several strategies to mitigate these errors.

3.13.1 Local refinement

Consider again the flow past a circle, introduced in Section 3.11, with Kn = 0.10 and the

finest mesh available. At lower Kn values, this particular mesh does not result in any errors along

the fluid-solid interface. However, as shown in Fig. 3.46, when Kn = 0.10, discrepancies in the

velocity field lead to four small areas along the interface where the flow behaves erroneously.

Focusing only on the top-right error, we identify the intersected element, shown in Fig. 3.47,

that is potentially culpable for this error. The red lines identify the edges intersected by the

fluid-solid interface, which is highlighted with a dotted line. Note the particularly small triangular

subdomain; the approximate ratio of its area to the area of the square element is 1.3 × 10−3. We

subdivide the four elements shown in Fig. 3.47, i.e. the intersected element, the two elements

adjacent to its intersected edges, and the element mutually adjacent to them.

The result of this local refinement is shown in Fig. 3.48. The error disappears and the flow

becomes smooth, as expected. The other three errors, where refinement was not performed, remain.
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Figure 3.47: Edges surrounding a small region. Dotted line highlight the fluid-solid interface.
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It is important to note that intersected elements with small area ratios appear at other location

along the fluid-solid interface, yet they do not always results in the errors shown here. As stated

previously, this kind of intersected elements did not results in errors for lower Kn numbers either.

This suggests that intersected elements with small ratio of areas do not always cause discrep-

ancies in the velocity solutions; however, when these errors do appear, they do so near these type

of elements. Refinement helps, as shown in this example, but as we will discuss in Section 3.13.3,

there is no guarantee. Further, with the goal of topology optimization, local refinement proves

an inconsistent strategy, as the fluid-solid interface will change locations after each design update.

A more helpful solution, as we will discuss in Section 3.13.2, are carefully balanced ghost-penalty

parameters.

3.13.2 Balancing problem parameters

In this Section, we will investigate the influence of various parameters on the errors described

in Section 3.13.1. We again consider the finest level of refinement, Ne = 341, and Kn = 0.10.

As a starting point, we set the ghost-penalty parameters as αGP,p = αGP,u = 0.5 and αGP,µ = 5.

Additionally, in the Nitsche formulation, both βµ and βp are set to -1, i.e. the skew-symmetric

variant is used, and αN,u = 100. Fig. 3.49 shows the velocity distribution in the fluid domain with

these settings. We again observe four locations along the fluid-solid interface with discrepancies in

the velocity solution. The top-right error is caused by the element identified in Fig. 3.47.

Figure 3.50 shows the velocity distribution after switching to the symmetric variant of the

viscous adjoint in the Nitsche formulation, i.e. setting βµ = 1. This switch does help with the two

bottom errors, but does not mitigate the top two errors. While using this variant does not solve

all errors, it does reduce them, as stated suggested by Vilanueva and Maute [10]. The remaining

results in this Section use the symmetric variant.

Recall that Fig. 3.47 shows the intersected element with a small ratio of areas that is

responsible for the errors along the fluid-solid interface. We focus our attention on the intersected

edges highlighted in red and overwrite the ghost-penalty parameter αGP,µ on these edges only. Fig.
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Figure 3.48: Effect of local mesh refinement on the spurious error.
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Figure 3.49: Resulting errors in the velocity distribution using base ghost-penalty and Nitsche
parameters.
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Figure 3.50: Resulting errors in the velocity distribution after switching the Nitsche viscous term
to its symmetric variant, βµ = 1.
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Figure 3.51: Resulting errors in the velocity distribution after decreasing αGP,µ to 0.5 locally.

3.51 and 3.52 show the resulting velocity distribution after decreasing αGP,µ to 0.5, and increasing

it to 50, respectively. These changes address only the top-right error; that the other errors are still

present is not relevant in our current discussion. Both local changes to the ghost-penalty parameter

resolve the error caused by the ill-intersected element. This strategy could be employed for the

remaining errors; however, this strategy is ultimately not sustainable because (i) the presence of

errors cannot be known a priori and (ii) intersected elements with small ratio of areas do not always

cause these errors. Instead, we consider changing the ghost-penalty parameters for all elements.

We again consider αGP,µ, but change the parameter for all elements. Fig. 3.53 shows the

resulting velocity distribution after decreasing αGP,µ by one order of magnitude, i.e. αGP,µ = 0.5.

Similarly, Figure 3.54 shows the resulting velocity distribution after increasing it by one order of

magnitude, i.e. αGP,µ = 50. Reducing this parameter mitigates the top errors, but creates new

ones, though smaller, at different locations along the interface; in contrast, increasing the parameter

eliminates the errors without introducing new ones and is thus more helpful.

We return αGP,µ to its original setting, αGP,µ = 5, and now focus on the pressure parameter,

αGP,p. Figures 3.55, 3.56, and 3.57 shows the resulting velocity distributions after setting αGP,p =

0.05, i.e. decreasing it by one order of magnitude, αGP,p = 5, i.e. increasing it by one order of

magnitude, and αGP,p = 50, i.e. increasing it by two orders of magnitude, respectively. Decreasing
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Figure 3.52: Resulting errors in the velocity distribution after increasing αGP,µ to 50 locally.
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Figure 3.53: Resulting errors in the velocity distribution after decreasing αGP,µ to 0.5.
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Figure 3.54: Resulting errors in the velocity distribution after increasing αGP,µ to 50.
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Figure 3.55: Resulting errors in the velocity distribution after decreasing αGP,p to 0.05.

the parameter helps reduce the remaining errors in Fig. 3.50 but it leaves smaller errors lower

on the fluid-solid interface. In contrast, increasing the parameter improves the solution without

introducing new errors, though there is no need to increase it by two orders of magnitude.

Intersected elements with small ratio of areas sometimes lead to errors in the velocity solution

at the fluid-solid interface. While local mesh refinement or a local modification to the ghost-

penalty parameters mitigate these errors, these strategies are not scalable to a topology optimization

framework. Instead, changing the ghost-penalty parameters globally is a more appropriate solution.

We observe that the errors are reduced when the ghost-penalty parameters are decreased and fully

eliminated when the parameters are increased. This suggests that the ghost-penalty parameters

do not exhibit monotonic behavior, i.e. deceasing them does not make errors worse. Thus, the

best ghost-penalty parameters for a given problem are found in local extrema rather than absolute

extrema.

3.13.3 Strategies for the wavy ellipse

Thus far, we have considered strategies to mitigate the errors in the velocity solution caused

by intersected elements with small ratio of areas and have shown that local mesh refinement and

modification of ghost-penalty parameters mitigate these errors successfully but are potentially not
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Figure 3.56: Resulting errors in the velocity distribution after increasing αGP,p to 5.
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Figure 3.57: Resulting errors in the velocity distribution after increasing αGP,p to 50.
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Figure 3.58: Example wavy ellipse with fr = 0.1 and ω = 10. Dotted line represents the regular
ellipse.

appropriate solutions in the context of topology optimization. Changing the ghost-penalty param-

eters for all elements also mitigate the errors but this behavior is not monotonic.

In this Section, we consider the flow past a more complex shape: an ellipse with a wavy

interface. We realize this shape by generalizing the LSF for an ellipse as:

φ = r(1 + fr cos(ωθ))−
√(

x− h
a

)2

+

(
y − k
b

)2

, (3.121)

where tan θ = y/x, and fr and ω control the oscillations along the ellipse wall. Figure 3.58 show

the wavy elliptical body with fr = 0.1 and ω = 10. We repeat the remaining LSF parameters used

previously, (h, k) = (0, 0), a = 2, b = 1, and r = 0.25. The problem setup and boundary conditions

are otherwise identical to the ones shown in Fig. 3.28. The J{n,t} are included in the Kn-slip

boundary condition and are computed analytically from (3.121).

As a starting point, we use a mesh with Ne = 221 elements along the vertical direction.

Because we have shown that the ideal ghost-penalty parameters are problem-dependent, we first

set αGP,p = αGP,u = 0.5, the sweep over various values for αGP,µ = {0.05, 0.5, 5, 50, 500} and

show the results in Fig. 3.59. We observe some errors along the fluid-solid interface, which lead

to spurious recirculation regions, best exemplified by Fig. 3.59b. As the ghost-penalty parameter

continues to increase, the flow solution becomes smoother; at the largest value, the spurious errors

return, e.g. note the disturbance in the streamlines after the third bump from the left. This

confirmed the non-monotonic behavior of the ghost-penalty method.
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Figure 3.59: Resulting velocity distribution for increasing values of αGP,µ with Ne = 221. Spurious
recirculation regions appear in (a), (b), and (c).
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Figure 3.60: Partial refinement along the fluid-solid interface. Red highlight is an example of an
element prior to refinement.

We reconsider this sweep over parameter values with two new meshes. The first undergoes

partial refinement along the fluid-solid interface. Elements intersected by the zero isosurface of

the LSF and their adjacent neighbors are subdivided into 9 smaller elements, as shown in Fig.

3.60. The red highlight represents an element prior to this refinement. Elements further away from

the interface are also subdivided to transition smoothly into the original undivided elements. The

second mesh is a simply global refinement to Ne = 341.

Fig. 3.61 shows the resulting velocity distributions as we sweep over the same values for

αGP,µ with the partially refined mesh. Note the same type of errors and spurious recirculation

regions appear as before but at different values of the parameter, e.g. Fig. 3.59d has no errors but

Fig. 3.61d does. The results with αGP,µ = 500 are smooth, which suggests that the “sweet” spots

for the ghost-penalty parameter have simply shifted. Finally, Fig. 3.62 shows the resulting velocity

distributions when the sweep over parameter values is performed on the Ne = 341 mesh. Again,

the parameter values that do not lead to spurious recirculation regions have changed.

This study suggests that the ghost-penalty method does not solve all of the ill-conditioning

caused by intersected elements with small ratio of areas. Further, the ghost-penalty parameter do

not exhibit monotonic behavior; however, when errors are detected, increasing the ghost-penalty



142

0 1.125

Nondimensionalized velocity magnitude

(a) αGP,µ = 0.05 (b) αGP,µ = 0.5

(c) αGP,µ = 5

(d) αGP,µ = 50 (e) αGP,µ = 500

Figure 3.61: Resulting velocity distribution for increasing values of αGP,µ with the partially refined
Ne = 221 mesh. Spurious recirculation regions appear in (a), (c), and (d).
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Figure 3.62: Resulting velocity distribution for increasing values of αGP,µ with Ne = 341. Spurious
recirculation regions appear in (a), (c), and (e).
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parameters generally help mitigate errors along the fluid-solid interface. Because these errors do

seem to appear in a regular pattern in term of mesh size of Kn number, more careful and direct

study is necessary in the future.

3.14 Flow through porous medium

As a final consideration, we will study the effect of the ghost-penalty method on the conver-

gence rate. In this Section, we will consider the flow past several circular inclusions, which simulate

the flow through a porous medium. This geometry is achieved with the LSF:

φ(x, y) = min
i
φi, (3.122)

where

φi(x, y) = r −
√

(x− xc,i)2 + (y − yc,i)2, (3.123)

and (xc,i, yc,i) is the center of the ith inclusion.

Consider the porous medium shown in Fig. 3.63. The porosity is symmetric about the

bottom boundary and periodic vertically. The main parameter is the horizontal distance between

the inclusions, L; all other dimensions are derived from it. The inlet is prescribed an inlet pressure,

Pin, and the outlet, an outlet pressure, pout = 0. The nondimensional inlet pressure boundary

condition is set as:

ρh2

µ2
pin = 100. (3.124)

The fluid-solid interface enforces the Kn-slip boundary condition. The problem is discretized with

square elements elements, such that the mesh is Ne-by-6Ne, where Ne is the number of elements

along the inlet and outlet.

We use a uniform mesh with Ne = 91 and set the ghost-penalty parameters as αGP,µ =

αGP,p = 0.5, the Nitsche parameter as αN,u = 1, and consider various Kn numbers, Kn =

{0, 0.01, 0.02, 0.03, 0.04, 0.05}. Note that setting Kn = 0 is equivalent to the no-slip boundary

condition.
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Figure 3.63: Porous Medium Description

Fig. 3.64 shows the nondimensional velocity magnitude in the fluid domain; the inclusions

are removed for clarity. Similarly, Fig. 3.65 and 3.66 show the x- and y-component velocities.

Note the increasing velocity at the fluid-solid interface and between inclusions. For a different

perspective, Fig. 3.67 samples the velocities through the tangent line, y = 0.25L, which is tangent

to each inclusion. This best shows the non-zero x-component velocity at the intersection points, i.e.

the highest points of the bottom inclusions and the lowest points of the top inclusions. Naturally,

uy = 0 at these points because of the no-penetration boundary condition.

Now, we will focus on Kn = 0.05 and consider various Nitsche parameters, 100, 101, 102, 103,

and 104. Fig. 3.68 and 3.69 show the x- and y-component velocity, respectively, sampled on the

tangent line. We observe the oscillations appear when αN,u = 103 and the divergent behavior when

αN,u = 104. Fig. 3.70a shows the L2 error in the fluid velocity, where the reference solution is the

solution with αN,u = 100. Fig. 3.70b shows the relative mass loss through the channel, where:

Rel. Mass Loss =
ṁout − ṁin

ṁin
. (3.125)

The relative mass loss is caused by the weak enforcement of the no-penetration boundary condition.

This demonstrates the required balance in the Nitsche parameter: the Nitsche parameter should

be chosen large enough to reduce the relative mass loss through the interface, but small enough so

as to not introduce errors in the solution or a large L2 error.

Secondly, we return the Nitsche parameter to αN,u = 1 and consider various values for the

viscous ghost-penalty parameter, 5× 10−2, 5× 10−1, 5× 10+0, 5× 10+1, and 5× 10+2. Fig. 3.71

and 3.72 show the x- and y-component velocities, respectively, through the y = 0.25L tangent line.
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Figure 3.64: Velocity magnitude through the porous medium for various Kn numbers.
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Figure 3.65: x-Component velocity through the porous medium for various Kn numbers.
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Figure 3.66: y-Component velocity through the porous medium for various Kn numbers.
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Figure 3.67: Velocity components through the y = 0.25L tangent line for various Kn numbers.
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Figure 3.68: x-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
values of αN,u (a) and select close-up views (b).
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Figure 3.69: y-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
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In general, we cannot expect a solution to converge when the ghost-penalty parameter is zero. In

this case, the results with αGP,µ = 0 do converge; but the results with αGP,µ = 5 × 10−2 display

erroneous behavior. Otherwise, the velocity converge as the ghost-penalty parameter decreases.

Fig. 3.73 shows the L2 error, where reference solution is that with αGP,µ = 0. This again illustrates

the non-monotonic behavior of the ghost-penalty methods.

Finally, we sweep pressure ghost-penalty parameter, αGP,p, over the values 5×10−2, 5×10−1,

5 × 10+0, 5 × 10+1, and 5 × 10+2. Fig. 3.74 and 3.75 show the x- and y-component velocities,

respectively, and Fig. 3.76 shows the L2 error in the velocity through the porous medium. Again,

setting the parameter to 5 × 10−2 causes errors in the velocity; otherwise, the flow demonstrates

smooth convergence as αGP,p is decreased.

3.15 Conclusion

In Chapter 2, we studied the behavior of non-linear governing equations with the stabilization

scheme used by Makhija and Maute [9]. The stabilization scheme was prohibitively diffusive on

the non-linear equations and we expect that this behavior would continue for non-linear equations

resulting from higher-order moment methods. Overcoming the diffusive effect of the stabilization

scheme would require a level of mesh refinement not suitable for topology optimization. Instead of

using higher-order moment methods to resolve flows in the Slip Regime, this Chapter introduced a

slip boundary model to extend the applicability of the Navier-Stokes equations.

We extend the framework proposed by Villanueva and Maute [10] to accommodate the Kn-

slip boundary condition. We then validate its implementation in problems with available analytical

solutions and then show that the error in omitting the J{n,t} terms from the Kn-slip boundary

condition increases with the Kn number and the curvature of the fluid-solid interface. Finally,

we study the behavior of the ghost-penalty method and find that increasing the ghost-penalty

parameters mitigate spurious error in the velocity field; however, this behavior is non-monotonic.

Thus, the ideal choice of ghost-penalty parameters is problem-dependent.

Having validated the implementation of the Kn-slip boundary condition and studied the
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Figure 3.71: x-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
values of αGP,µ (a) and select close-up views (b).
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Figure 3.72: y-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
values of αGP,µ (a) and select close-up views (b).
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Figure 3.73: L2 error in the velocity through the porous medium for Kn = 0.05 and various values
of αGP,µ.



156

-1.5 -0.75 0 0.75 1.5

x

0

0.1

0.2

0.3

0.4

0.5

u
x
(x
)

αGP,p = 0

αGP,p = 5 × 10−2

αGP,p = 5 × 10−1

αGP,p = 5 × 10+0

αGP,p = 5 × 10+1

(a)

-1.25 -1 -0.75

x

0.15

0.2

0.25

0.3

0.35

0.4

0.45

u
x
(x
)

-0.8 -0.75 -0.7

x

0.4

0.405

0.41

0.415

0.42

0.425

u
x
(x
)

(b)

Figure 3.74: x-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
values of αGP,p (a) and select close-up views (b).
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Figure 3.75: y-Component velocity through the y = 0.25L tangent line for Kn = 0.05 and various
values of αGP,p (a) and select close-up views (b).
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influence of various parameters on the convergence of the flow solution and spurious errors, we are

now ready investigate of the influence of the Kn number of the optimal design of various fluidic

devices in the next Chapter.



Chapter 4

Topology optimization with the Kn-slip boundary condition

In this Chapter, we consider several topology optimization problems and show the effect of

the Kn-slip boundary condition on the optimal designs. First, we present the optimization model;

note that this is also shown in Section 2 of the manuscript found in Appendix C. Then, we consider

the design of a splitting manifold. This work is found in in Section 5.4 of the manuscript in

Appendix C, though a summary is provided here. Further, we consider the design of a Tesla valve

in Section 5.5 of the manuscript in Appendix C and provide a summary here. Finally, we consider

temperature-dependent problems in Sections 4.4 and 4.5.

4.1 Optimization model

The optimization problems considered in this work are formulated with respect to an objective

and one or more constraints. The objective and constraints are defined in terms of design criteria,

such as mass flow rate, pressure differences, fluid volume, etc. These design criteria can depend

explicitly on the state and optimization variables, e.g. mass flow rate, or only on the optimization

variables, e.g. fluid volume. The formulation for this type of optimization problem takes the form:

min
s
Z = z(s,u(s))

s.t. gi(s,u) ≤ 0, i = 1...Ng

s ∈ S = {RNs |sLi ≤ si ≤ sUi , i = 1...Ns}

u ∈ U = {RNu |R(s,u) = 0},

(4.1)
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Value

Relative step size 0.01

Minimum asymptote adaptivity 0.5

Initial asymptote adaptivity 0.7

Maximum adaptivity 1.43

Constraint penalty 100

Table 4.1: GCMMA parameters for the topology optimization problems.

where s is the vector of optimization variables, of size Ns, and u is the vector of state variables,

of size Nu. Z is a function of the criteria to be optimized and includes a perimeter regularization

term; for a discussion on the use of the perimeter as a regularization term, see Section 4.1.1. The

function gi is the i-th inequality constraint, and Ng is the number of constraints. The optimization

variables si are bounded by lower and upper limits, sLi and sUi , respectively. The state variables

satisfy the residual of the governing equations, R(s,u) = 0.

The optimization problem (4.1) uses a gradient-based algorithm, and the gradients of the

objective and constraint functions with respect to the optimization variables, si, are computed

via the adjoint method. In this paper, we adopt the discrete adjoint formulation for nonlinear

fluid systems of Kreissl et al. [92] and Golmon et al. [93]. The problems are solved via the Globally

Convergent Method of Moving Asymptotes (GCMMA) of Svanberg [94]. The GCMMA parameters

are given in Table 4.1. The stopping criteria for the optimization are: (i) the change in the objective

value relative to the previous value is less than 10−6, and (ii) all constraints are satisfied.

4.1.1 Optimization Criteria

The objective and constraints described in Section 4.1 make use of geometric or state-

dependent criteria. The two state-independent criteria are the perimeter of the fluid-solid interface

and the volume of the fluid inside the design domain, defined as:

P =

∫

Γfs

dΓ (4.2)
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and

Vfd =

∫

Ωf∩Ωd

dΩ, (4.3)

respectively. Minimizing the perimeter, either as a penalty in the objective function or as a con-

straint, discourages the appearance of small geometric features or oscillatory shapes during the

optimization process. While a perimeter penalty does not explicitly control the local shape or

feature size [81], it is effective in regularizing flow optimization problems [32,59].

State-dependent criteria are defined over a part of the external fluid boundary, Γfi ∈ Γf . The

mass flow rate through a port is defined as:

ṁi =

∫

Γf
i

ρf
(
uf · n̂

)
dΓ, (4.4)

and the total pressure on a port surface is defined as:

Ti =

∫

Γf
i

(
pf +

ρf |uf |2
2

)
dΓ. (4.5)

In temperature-dependent problems, the thermal energy rate through a port is defined as:

ėi =

∫

Γf
i

ρfcfp

(
uf · n

)
T fdΓ. (4.6)

4.2 Design of a splitting manifold

We consider the design of a splitting manifold in Section 5.4 of the manuscript in Appendix

C. The problem setup and initial design is shown in Fig. 4.1. The objective is to maximize the

mass flow rate through the manifold, which is equivalent to minimizing the total pressure difference

given an inlet velocity distribution, subject to requiring specific mass flow rate ratios through the

outlets. The objective is thus:

Z = −

∑
i∈{1a...2b}

ṁout,i

∑
i∈{1a...2b}

ṁ0
out,i

+ wP
P
P0

, (4.7)

where the superscript “0” denotes the values of the initial design, the subscript i denotes the i-th

outlet, and wP is a constant scaling factor. Unless otherwise noted, wP = 0.1.
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Figure 4.1: Problem setup for the splitting manifold problem.
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The fluid volume inside the design domain is constrained to a fraction, fV , of the design

domain to suppress trivial solutions and to promote the formation of distinct fluid channels:

g1 =
Vfd
fVVd

− 1. (4.8)

Further, we wish to specify the ratio of the outlet mass flow rates. Given that the GCMMA

algorithm does not allow equality constraints, we recourse to imposing inequality constraints with

lower and upper limits on the mass flow rates. The lower and upper inequality constraint on the

i-th outlet are given as:

gi+1 =
(1− τ)fiṁin − ṁout,i

ṁ0
in

(4.9)

and

gi+5 =
−(1 + τ)fiṁin + ṁout,i

ṁ0
in

, (4.10)

respectively, where τ is a small tolerance value, fi is the desired fraction of the total mass flow rate

through outlet i, and
∑
fi = 1. Note that the tolerance on the outlet mass flows is such that each

is allows to be within ±τfiṁin of the desired value. Unless otherwise stated, τ = 0.005.

The results of this optimization study are shown in Section 5.4 of the manuscript in Appendix

C, which discusses them in further detail. Presently, we summarize our findings as follows: (i)

Including the Kn-slip boundary condition during the optimization process leads to slightly different

optimal designs. Using a design obtained with the no-slip condition when the Kn number is finite

leads to a sub-optimal performance in terms of the total mass flow rate and may result in violated

flow rate ratio requirements. Our results suggest that when the Kn number is finite, the Kn-slip

boundary condition should be included during the optimization process; however, the error due to

ignoring it remains small for smaller Kn numbers. However, we expect that this error will become

significant as the Kn number increases. These findings are further discussed in Section 5.4.1 in

the manuscript in Appendix C. (ii) For Kn > 10−3, designs obtained with the no-slip boundary

condition begin to perform differently when analyzing with the Kn-slip boundary condition. This

is is further described in Section 5.4.2 in the manuscript. (iii) Finally, we find that the J{n,t} are

similarly important in terms of design and performance. Our study suggests that omitting the
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J{n,t} terms from the Kn-slip condition results in similar errors as ignoring the Kn-slip boundary

condition altogether. Thus, when the Kn is large enough that the Kn-slip boundary condition

should not be ignored, the J{n,t} terms should also be included.

4.3 Design of a Tesla valve

A Tesla valve allows fluid flow in one direction but restricts it when reversed. Experimentally,

flow is achieved by enforcing a velocity distribution at the inlet, e.g. the inlet in the forward flow

becomes the outlet in the reverse flow, or by enforcing a pressure difference between ports. In the

case where a velocity distribution is used, the valve’s property of allowing and restricting flow is

captured in its diodicity, defined as:

Di =
∆T fwd
∆T rev =

T fwd
Γf
1

− T fwd
Γf
2

T rev
Γf
2

− T rev
Γf
1

, (4.11)

where T fwd
Γf
i

is the total pressure at port i with flow in the forward direction and similarly for

T rev
Γf
i

in the reverse direction, and Γf1 and Γf2 are the external surfaces of the two ports. By this

definition, Di < 1; smaller values of Di indicate valves that further restrict the reverse flow. Some

works define the diodicity as the inverse of that defined here, e.g. [95].

For a shape optimization study of the traditional Tesla valve, shown in Fig. 4.2, the reader

is referred to Gamboa et al. [96]. Alternatively, a Tesla valve can have axially aligned ports, which

was studied for small Re by Deng et Re by Lin et al. [95]. Finally, it is also possible to consider

valves with axially aligned but offset ports, as depicted in Fig. 4.5. The example in this paper is

similar to the one previously studied by Pingen et al. [97].

4.3.1 Analysis of a Traditional Valve

The traditional Tesla value, shown in Fig 4.2, features a 45◦-bend and a redirecting manifold.

The radii of the redirecting manifold are given with respect to the reference length, r = 0.2L and

R = 0.4L. We consider this design for various Re using an unstructured body-fitted mesh, shown
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Figure 4.2: Traditional Tesla valve design.

in Fig. 4.3. The mesh is formed such that the ports, i.e. the width denoted R − r, are discretized

with 31 elements.

Fig. 4.4 show the flow solution for the forward and reverse flows through the traditional Tesla

value, for various Re numbers; these agree with those reported in [98]. For small Re numbers, there

is no appreciable difference in the forward and reverse flow (aside from direction); however, for

larger Re above 100, the manifold begins to truly prohibit the reverse flow. This is likewise shown

in the manuscript in Appendix C; here, we append the results with Re = 1 and make the figure

larger for an easier comparison.

The diodicity of this design is given in Table 4.2. For large Re numbers, the traditional Tesla

valve offers considerably favorable diodicities. However, for smaller Re numbers in the range that

would also have finite Kn numbers, see Section 3.9.1, the diodicity is very near unity: a new design

is needed for low Re numbers.
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Figure 4.3: Body-fitted unstructured mesh for the traditional Tesla valve.

Re Di

1 0.999994

10 0.999993

50 0.999831

100 0.996436

200 0.967686

500 0.816144

Table 4.2: Diodicity of the traditional Tesla valve for various Re numbers.
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Figure 4.4: Velocity magnitude and streamlines in the forward (top) and reverse (bottom) flows
through the traditional Tesla valve for various Re numbers.
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4.3.2 Optimization

In this work, we formulate the optimization problem as in (4.1), where:

Z =
∆T fwd
∆T 0

+ wP
P
P0

, (4.12)

where the superscript “0” denotes the values of the initial design and wP is a constant scaling

factor. A constraint on the diodicity is given by:

g1 =
∆T fwd
∆T rev −Di

∗, (4.13)

where Di∗ is a chosen target diodicity. We seek to reproduce the diodicity at Re = 200 of the

traditional Tesla valve but at Re = 40, where the incompressibility condition, (3.101), allows for

Kn = 0.01; thus, the target diodicity is set to Di∗ = 0.97. Finally, a volume constraint (4.8) may

be included to discourage trivial solutions. While the optimization problem can alternatively be

defined to minimize the valve’s diodicity, e.g. [95], this paper follows the formulation found in [98],

which performed a topology optimization using density methods for low Re number flows with

no-slip boundary conditions. The problem setup is shown in Fig. 4.5.

In Section 5.5 of the manuscript in Appendix C, we perform a topology optimization for

various volume constraint cases with the no-slip and Kn-slip with Kn = 0.01 boundary conditions.

We summarize our observations as follows: (i) While this work is not meant to provide design

guidelines, we observe that, when the Kn-slip boundary condition is enforced during the design

process, the optimizer makes smaller recirculation regions and uses less pronounced constrictions

in the valve. (ii) While differences in design and performance were small in the manifold problem,

the differences in performance in this example are more pronounced. In most cases, there is a

23% drop in performance when a design is optimized with the no-slip boundary condition and

subsequently analyzed with the Kn-slip boundary condition. This is analogous to designing a Tesla

valve for an application where Kn = 0.01 but the Kn-slip boundary condition is ignored during

the design optimization process. (iii) Our study suggests that if the geometry and fluid properties

of the problem lead to a finite Kn number, the Kn-slip boundary should be enforced during the
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Figure 4.5: Problem setup for the Tesla valve problem.



171

optimization process.

4.4 Optimal number and layout of fins

In this Section, we consider the effects of the Kn-slip boundary condition on the design of an

array of heated fins, whose goal is to heat incoming cool fluid. First, we motivate an optimization

problem with an analysis of an array of elliptical fins, similar to the work of Laniewski-Wo l lk [99].

We then consider a shape optimization example.

4.4.1 Analysis

We consider the flow past an array of heated fins, such that nF fins are equally spaced over

a unit section of height H. An example of this problem setup with nF = 3 is shown in Fig. 4.6.

The fins are elliptically shaped and have flow-wise width, w, and thickness, t. The channel length

is set as L = H. Dashed lines denote symmetric boundary conditions and the fluid-solid interface

enforces no-slip or Kn-slip with Kn = 0.01 boundary conditions. The outlet is given a traction-free

boundary condition and the inlet is given a pressure Dirichlet boundary condition such that:

pin = 1.5× 103. (4.14)

The fluid properties are set as ρ = 1.205, µ = 1.511× 10−5, cp = 1.005× 103, and κ = 2.57× 10−2,

and the channel height is set as H = 5.356× 10−6. The fins are realized with the LSF:

φ(x, y) = max
i
φi(x, y), (4.15)

where

φi(x, y) = 1−
√(

2(x− xc,i)
w

)2

+

(
2(y − yc,i)

t

)2

. (4.16)

The fins are vertically aligned; thus xc,i = 0. The centers of the fins are such that yc,i+1 − yc,i =

H/nF . Finally, the fins are uniformly heated to TH and the incoming fluids enters the channel with

temperature Tin = TL. In this problem, TL = 300K and TH = 600K.
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Figure 4.6: Problem setup for flow through heated fins. This example has nF = 3.
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We consider the flow past an array of 1, 2, 3, 4, and 5 fins with thickness 0.01H, 0.03H, and

0.05H with the no-slip and Kn-slip boundary conditions. Fig. 4.7 shows the mass flow rate and

energy flow rate for various number and thickness of fins. As the number of fins or the fin thickness

increases, the mass flow rate decreases as the flow is further obstructed. However, the energy flow

rate increases initially due of the increasing heating surface area. We note that the optimal number

of fins is 3 regardless of the type of boundary condition used. However, the optimal thickness is

0.01H when using the no-slip condition and 0.03H when using the Kn-slip condition. Because of

the increased fluid momentum from the slip effect, the fins have a reduced opportunity to heat the

fluid; thus, thicker fins are required to (i) impede the flow and (ii) increase the available heating

surface area.

4.4.2 Optimization

We now consider this problem within the context of topology optimization. The goal is again

to heat incoming fluid; thus, we formulate the optimization problem (4.1) as:

Z =
ė

ė0
+ wP

P
P0

, (4.17)

where the superscript “0” denotes the values of the initial design and wP is a constant scaling

factor. The energy flow can be maximized by (i) increasing the temperature component in (4.6) or

(ii) increasing the flow rate component. A volume constraint on the solid phase is enforced as:

g1 =
Vs
fVVd

− 1. (4.18)

Here, we use fV = 0.50. The objective has conflicting contributions; on one hand, removing solid

material will improve the mass flow rate but weakening the fins’ ability to heat the fluid. These

influences are not balanced, and the optimizer heavily favors material. To mitigate this, we enforce

a minimum heating constraint in the form of:

ė

cpṁ
> T ∗, (4.19)
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which we write as:

g2 =
cpT

∗ṁ− ė
ṁ0

. (4.20)

The problem setup is shown in Fig. 4.8. The design domain, Ωd = {−0.5L ≤ x ≤ 0.5L, −0.5H ≤

y ≤ 0.5H, is the center region of the flow domain and is initialized with a 3 × 1 array of circular

inclusions of radii 0.05H. The center inclusion is forced to be solid, while the rest of the design

domain is free to be solid or fluid. Dashed lines denote the planes of symmetry; the unit design is

symmetry about the y = 0 line and then vertically periodic. As with the analysis problem, L = H.

The remaining parameters are shown in Table 4.3; note that properties for the solid phase are not

listed because the solid phase is heated uniformly to TH .

Fig. 4.9 shows the converged designs (in white) and the surrounding velocity and temperature

distributions in the fluid phase. Recall that the solid phase is heated uniformly. We observe that the

optimizer makes no changes to the center inclusion when the no-slip boundary conditions are used;

however, when the Kn-slip boundary condition is used, a more elliptical shape with larger surface

area is favored. Further, the flanking fins show more pronounced differences: the no-slip design

favors a slender aerodynamic fin shape, while the Kn-slip design requires thicker fins. Because of

the velocity slip, there is less opportunity to heat the flow; thicker and blunter fins counter this

effect.

We analyze the no-slip design with the Kn-slip boundary condition and compare its perfor-

mance to the Kn-slip design. Table 4.4 summarizes this comparison. The no-slip design performs

approximately 7% better than the Kn-slip design but suffers from a 4% violation in the minimum

heating constraint. This violation is measured as:

Violation =
ṁcpT

∗ − ė
ṁcpT ∗

(4.21)

The increase in performance in the no-slip design is ultimately not surprising; however, this study

suggests that such designs may not adequately heat incoming fluid if the Kn number is finite.

This is similar to the results for the splitting manifold, where the biggest differences where in the

mass flow rate requirement violations. We recognize that this study ignores the temperature jump
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Figure 4.8: Problem setup for the heat fins optimization problem. Dashed line denotes the plane
of symmetry.

Value

Mesh size 80× 160

Element size h = 0.0125H

Characteristic length H = 5.356× 10−6

Fluid density ρf = 1.205

Fluid viscosity µf = 1.511× 10−5

Fluid heat capacity cfp = 1.005× 103

Fluid conductivity κf = 2.57× 10−2

Inlet pressure pin = 104

Inlet temperature Tin = 300

Heated fin temperature TH = 375

Perimeter scaling factor wP = 0.1

Volume constraint factor fV = 0.5

Nitsche velocity parameter αN,u = 1

Viscous ghost-penalty αGP,µ = 5× 10+0

Pressure ghost-penalty αGP,p = 5× 10−1

Convective ghost-penalty αGP,u = 5× 10−1

Relative Optimization Step ∆s = 0.01

Design variable bounds sLi = −0.0125H, sUi = +0.0125H

Smoothing radius rφ = 2.4h

Number of design variables 6, 427

Table 4.3: Parameters for the heated fins optimization problem.
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Figure 4.9: Velocity magnitude (a,b) and temperature (c,d) in fluid domain, using the no-slip (a,c)
and Kn-slip (b,d) boundary conditions.
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Design Z ė g1

no-slip -0.7214 12.4178 V (4%)

Kn-slip −0.6718 11.5922 S

Table 4.4: Analysis of both designs with the Kn-slip boundary condition. Minimum heating con-
straint can be satisfied (S) or violated (V) with a reported percentage.

condition analogous to the Kn-slip boundary condition but plan to include it in future work.

4.5 Design of a heat exchanger

As a final example, we consider the design of a heat exchanger, similar to that considered by

Laniewski-Wo l lk [99]. The goal of the exchanger is the same as the heated fins example examined

in Section 4.4.2, namely, to heat incoming cool fluid while simultaneously maximizing the mass

flow rate; this is achieved by the maximizing energy flow rate (4.6). In addition, we penalize the

interface surface area to promote smooth designs. Thus, the optimization model (4.1) is formulated

as:

Z =
ė

ė0
+ wP

P
P0

, (4.22)

where the superscript “0” denotes the values of the initial design and wP is a constant scaling

factor. The energy flow can be maximized by (i) increasing the temperature component in (4.6)

and (ii) increasing the flow rate component. A volume constraint on the solid phase is enforced as:

g1 =
Vs
fVVd

− 1. (4.23)

Here, we use fV = 0.25. Table 4.5 shows the remaining problem parameters.

The problem setup is shown in Fig. 4.10. The domain consists of a 7D × D × D channel.

The center of the channel is designated as the design domain, while the two sections ahead and

behind the design domain are strictly forced to be in the fluid domain. The design domain is the

3D×D×D region in the middle of the channel and the center D×D plate on the bottom wall is

heated to TH . The four channel walls enforce either the no-slip or the Kn-slip boundary condition

in the fluid problem and have adiabatic condition in the temperature problem. The fluid-solid
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Value

Mesh size 150× 30× 15

Element size h = 0.033D

Characteristic length D = 1

Fluid density ρf = 1

Fluid viscosity µf = 0.01

Fluid heat capacity cfp = 1

Fluid conductivity κf = 0.003

Solid density ρs = 1

Solid heat capacity csp = 1

Solid conductivity κs = 1

Nondimensional inlet pressure pin = 104

Perimeter scaling factor wP = 0.1

Volume constraint factor fV = 0.5

Nitsche velocity parameter αN,u = 1

Viscous ghost-penalty αGP,µ = 5× 10+0

Pressure ghost-penalty αGP,p = 5× 10−1

Convective ghost-penalty αGP,u = 5× 10−1

Relative Optimization Step ∆s = 0.01

Design variable bounds sLi = −0.0333L, sUi = +0.0333L

Smoothing radius rφ = 3.6h

Number of design variables 44, 488

Table 4.5: Parameters for the heat exchanger problem.
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Figure 4.10: Problem setup for the heat exchanger problem. Dashed lines denote the plane of
symmetry.

interface enforce the no-slip or Kn-slip boundary condition in the fluid problem and have Dirichlet

boundary condition in the temperature problem. We recognize that this ignores the temperature

slip effect, analogous to the Kn-slip boundary condition. This will be considered in future work.

The inlet has pressure and temperature Dirichlet boundary conditions and the outlet has a traction-

free boundary condition. We model only half of the domain and a symmetry boundary condition

is enforced on the z = D/2 plane. The design is initialized with a lattice, shown in Fig. 4.11.

The convergence of the objective and volume constraint using the no-slip and Kn-slip bound-

ary conditions is shown in Fig. 4.12. We recognize that the objective history suggests that more

iterations are require; however, we reasonable expect that the designs will not undergo further

significant changes.

Fig. 4.13 and 4.14 show the final designs after 500 iterations using the no-slip and Kn-slip

boundary conditions, respectively.

Finally, Fig. 4.15 shows side-by-side comparisons of the two designs; the design obtained

with the no-slip boundary condition are shown in gray, while the Kn-slip design is colored with the

nondimensional temperature.

Table 4.6 shows the performance of both designs when analyzed with the Kn-slip boundary

condition. The Kn-slip design is optimal though the difference in the objective value is very small;

more importantly, the average heating is about 3% better when the Kn-slip is used. This suggests

that if the heat exchanger will be used in an application where Kn = 0.01, using a design was was
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Figure 4.11: Initial design for the heat exchanger problem. Dashed line denotes the plane of
symmetry.
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Figure 4.13: Final design using the no-slip boundary condition.
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Figure 4.14: Final design using the Kn-slip boundary condition.
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Figure 4.15: Various views of the final designs: results using the no-slip boundary condition are
shown in gray and those using the Kn-slip condition are colored.
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Design Z ė ṁ Tavg
no-slip -6.9116 13.2206 22.3293 0.5921

Kn-slip -6.9207 13.2371 21.7025 0.6099

Table 4.6: Analysis of both designs with the Kn-slip boundary condition.

obtained with the no-slip boundary condition, i.e. ignoring the Kn-slip effect, would result in a

less-than-ideal heating.

4.6 Conclusions

Barber and Emerson [7] suggest that the boundaries between flow regimes depend on the

fluidic device, i.e. the empirical Kn = 10−3 cut-off between the continuum and slip regimes

might only apply to certain devices. In this Chapter, we consider several design applications

and study the influence of the Kn-slip boundary condition for moderate Kn numbers in the slip

regime. We find that for the splitting manifold, heated fins, and heat exchanger, ignoring the

Kn-slip design during the topology optimization process lead to only minor differences in design

and performance. However, with the splitting manifold problem, we observe that the differences

become more pronounced for larger Kn numbers. If the Kn-slip boundary condition does not lead

to significant difference in design or performance, it may be sufficient to design the fluidic device

with the no-slip condition. In this case, the expensive LSM-XFEM framework presented here may

not be necessary and less expensive density method approach could be used.

In contrast, our study of the Tesla valve problem suggests that the difference in performance

could be as large as 23% in some situations. In these situations, inclusion of the Kn-slip boundary

condition during the optimization process is critical and an approach that allows for the precise

location, orientation and curvature of the fluid-solid interface, such as the LSM-XFEM framework

shown here, is appealing.

Future work should include the temperature jump condition, which is the temperature ana-

logue to the Kn-slip boundary condition, for energy transport problems.
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Appendix A

Summary of Moment Equations

A.1 Overview

All four systems of equations described in Section 2.2 can be written as:

δa

δt
+ (A(a) ·∇) a + C (a) = 0, (A.1)

where A are the coefficient matrices:

A(a) = [Ax(a), Ay(a)] (A.2)

and C is the collision vector. Additionally, the GHF2 and LHF2 equations relate the physical

moments to the expansion coefficients with:

ρ(x, t) =

∫
f(x, ξ, t)dξ, (A.3)

ρui(x, t) =

∫
ξif(x, ξ, t)dξ, (A.4)

and

σij =

∫
cicjf(x, ξ, t)dξ, (A.5)

where c is the intrinsic velocity:

c(ξ,x, t) = ξ − u(x, t). (A.6)

For the GHF2 and GMF2 equations, the particle distribution, f , is approximated with an

absolute (or global) expansion:

f ≈ f̂glb =
1

(2πRT )D/2
exp

(
− ξ2

2RT

) nD,N∑

k=1

ak(x, t)φk (ξ), (A.7)
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whereas the LHF2 and LMF2 equations are derived with a local expansion:

f ≈ f̂loc =
1

(2πRT )D/2
exp

(
−(ξ − u)2

2RT

) nD,N∑

k=1

ak(x, t)φk (ξ − u) (A.8)

A.1.1 GHF2 Equations

For the GHF2 equations, a =

(
a1 a2 a3 a4 a5 a6

)T
, and the coefficient matrices and

collision vector are given by:

Ax =
√
RT




0 1 0 0 0 0

1 0 0 0
√

2 0

0 0 0 1 0 0

0 0 1 0 0 0

0
√

2 0 0 0 0

0 0 0 0 0 0




, Ay =
√
RT




0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0
√

2

0 1 0 0 0 0

0 0 0 0 0 0

0 0
√

2 0 0 0




, (A.9)

and

C(a) =
1

τ

(
0 0 0 a4 − a2a3

a1
a5 − a22

a1
√

2
a6 − a23

a1
√

2

)T
. (A.10)

Finally, the physical moments are obtained with:

ρ = a1

ux =
a2

a1

√
RT

uy =
a3

a1

√
RT

σxy = −RT
(
a4 −

a2a3

a1

)

σxx = −RT
(√

2a5 −
a2

2

a1

)

σyy = −RT
(√

2a6 −
a2

3

a1

)
.

(A.11)
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A.1.2 GMF2 Equations

For the GMF2 equations, a =

(
ρ ux uy σxy σxx σyy

)T
, and the coefficient matrices

and collision vector are given by:

Ax =




ux ρ 0 0 0 0

RT
ρ ux 0 0 −1

ρ 0

0 0 ux −1
ρ 0 0

u2
xuy 2ρuxuy ρ(u2

x −RT ) −ux −uy 0

u3
x ρ(3u3

x − 2RT ) 0 0 −2ux 0

uxu
2
y ρu2

y 2ρuxuy −2uy 0 0




,

Ay =




uy 0 ρ 0 0 0

0 uy 0 −1
ρ 0 0

RT
ρ 0 uy 0 0 −1

ρ

uxu
2
y ρ(u2

y −RT ) 2ρuxuy −uy 0 −ux

u2
xuy 2ρuxuy ρu2

x −2ux 0 0

u3
y 0 ρ(3u2

y − 2RT ) 0 0 −2uy




,

(A.12)

and

C(a) =
1

τ

(
0 0 0 σxy σxx σyy

)T
. (A.13)
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A.1.3 LHF2 Equations

For the LHF2 Equations, a =

(
a1 ux uy a4 a5 a6

)T
, and the coefficient matrices and

collision vector are given by:

Ax =




ux a1 0 0 0 0

RT
a1

ux 0 0
√

2RT
a1

0

0 0 ux
RT
a1

0 0

0 2a4 a1 +
√

2a5 ux 0 0

0
√

2a1 + 3a5 0 0 ux 0

0 a6

√
2a4 0 0 ux




,

Ay =




uy 0 a1 0 0 0

0 uy 0 RT
a1

0 0

RT
a1

0 uy 0 0
√

2RT
a1

0 a1 +
√

2a6 2a4 uy 0 0

0
√

2a4 a5 0 uy 0

0 0
√

2a3a6 0 0 uy




,

(A.14)

and

C(a) =
1

τ

(
0 0 0 a4 a5 a6

)T
. (A.15)

When using the local expansion, (A.4) requires that a2 = a3 = 0; thus, ux and uy are added as

degrees-of-freedom. The remaining physical moments are given by:

ρ = a1

σxy = −a4RT

σxx = −
√

2a5RT

σyy = −
√

2a6RT

(A.16)
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A.1.4 LMF2 Equations

For the LMF2 equations, a =

(
ρ ux uy σxy σxx σyy

)T
, and the coefficient matrices

and collision vector are given by:

Ax =




ux ρ 0 0 0 0

RT
ρ ux 0 0 −1

ρ 0

0 0 ux −1
ρ 0 0

0 2σxy σxx − ρRT ux 0 0

0 3σxx − 2ρRT 0 0 ux 0

0 σyy 2σxy 0 0 ux




,

Ay =




uy 0 ρ 0 0 0

0 uy 0 −1
ρ 0 0

RT
ρ 0 uy 0 0 −1

ρ

0 σyy − ρRT 2σxy uy 0 0

0 2σxy σxx 0 uy 0

0 0 3σyy − 2ρRT 0 0 uy




(A.17)

and

C(a) =
1

τ

(
0 0 0 σxy σxx σyy

)T
. (A.18)



Appendix B

Curvature of an ellipse

The curvature of a given path, r(t), is given as:

κ =
|r′(t)× r′′(t)|
|r′(t)|3 . (B.1)

An elliptical cylinder is parametrized as:

r(t) = (a cos t)̂i+ (b sin t)ĵ, (B.2)

which gives a curvature of:

κ =

∣∣∣
(

(−a sin t)̂i+ (b cos t)ĵ
)
×
(

(−a cos t)̂i+ (−b sin t)ĵ
) ∣∣∣

∣∣∣(−a sin t)̂i+ (b cos t)ĵ
∣∣∣
3

κ =
ab

(
a2 sin2(t) + b2 cos2(t)

)3/2 .

(B.3)

At the point of intersection with the horizontal tangent line, t = π
2 , and for a = 2r and b = r, the

curvature is κ = 1
4r .
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Luis F Negrete, Kurt Maute∗, Georg Pingen

Abstract

As fluidic devices become smaller in scale, non-equilibrium effects begin to manifest in the flow,
starting with a non-zero fluid velocity at solid boundaries. This increase in momentum can have important
implications in terms of design. To capture this effect, a slip boundary model is adopted into an existing
Navier-Stokes model and is enforced with Nitsche’s method. The ghost-penalty stabilization method
encourages smooth velocity gradients at the fluid-solid boundary, which in term encourages a smooth
fluid velocity. The slip boundary model is validated against numerical examples. The effect of the slip
velocity is then studied with two topology optimization examples. We find that effect of the non-zero
fluid velocity depends on the application of the fluidic device and is more pronounced in flows with larger
Knudsen numbers.

1 Introduction

The study of optimal designs for fluid flows, through shape and topology optimization, for example, has

gained widespread attention for Stokes and Navier-Stokes flow regimes in recent years. In these regimes, gas

microflows in microfluidic devices have a broad range of applications, such as extracting biological samples,

cooling integrated circuits and actively controlling aerodynamic flows [1, 2]. However, as fluidic devices

become smaller in scale, e.g. in microelectromechanical systems, rarefaction effects begin to matter. Flows in

the microscale behave different than those in the macroscale [3], beginning with effects near solid boundaries

and extending into the fluid domain. While these effects have been readily studied for simple geometries [4–7]

and, more recently, for fluid-structure-interaction problems with complex geometries [8], their impact on

optimal designs has not been fully explored. In this paper, we will introduce a topology optimization

framework for microfluidic flows and will show that the Knudsen-number-dependent slip boundary condition

considerably affects the optimal designs of some fluid devices.

The Knudsen number is a nondimensional parameter that characterizes the rarefaction of a fluid and is

defined as:

Kn =
λ

Lc
, (1)

where λ is the mean-free path of the fluid, i.e. the average distance a fluid particle travels between collisions

with other particles, and Lc is a global characteristic length, e.g. the height of the channel. Flows for which

∗Corresponding autor: kurt.maute@colorado.edu
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Figure 1: Cartesian and local coordinate system at the fluid-solid interface and velocity components.

Kn < 10−3 are considered to be in the Hydrodynamic Regime, where the Navier-Stokes (NS) equations

with traditional no-slip boundary conditions are valid [9–11]. However, in the Slip Flow Regime, where

10−3 < Kn < 10−1, the NS equations cannot be used with the traditional no-slip boundary condition.

Instead, velocity and temperature slip effects begin to occur as the Kn number increases. Specifically, the

tangential velocity and temperature of the fluid and the solid are no longer the same.

For flows in the Slip Flow Regime, there exists a variety of slip models for the tangential velocity at the

fluid-solid interface. The wall-function method describes the tangential velocity as a function of the distance

from the wall up to O(λ), i.e. within the so-called Knudsen layer [4]. Another option is to use higher-order

continuum models, including the Burnett, BGK-Burnett, and super-Burnett models, inside the Knudsen

layer, e.g. [12–15]. The reader is referred to [11] for a review of slip models. The boundary condition used

in this paper is introduced in Section 4.4 and is represented by:

ut − uwt +
2− σ
σ

Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

)
= 0, (2)

where ut and uwt are the fluid and wall tangential velocities, respectively, un is the fluid normal velocity,

σ is an accommodation coefficient, and ∂()/∂n and ∂()/∂t denote derivatives in the normal and tangential

directions, respectively. Figure 1 shows the local coordinate system at the fluid-solid interface. Throughout

this paper, we will refer to this boundary condition as the Knudsen-slip (or simply, Kn-slip) boundary

condition. To adequately model slip, the proposed boundary condition requires accurate near-wall velocity

gradients, which will dictate the choice of our boundary representation for topology optimization as discussed

in the following.

The majority of fluid topology optimization studies use density methods [16,17]. Topology optimization

in fluids was pioneered by [18], who adopted the concept of density methods to Stokes flows and modeled the

presence of a wall in the fluid flow as a body force, i.e. a penalization approach. The work on Stokes models
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has been extended to the NS equations by several authors, including [19], [20], [21], and [22]. The density

method typically describes the interface between different material domains by either using intermediate

densities, which lead to ambiguous boundaries, or by discrete material distributions, which lead to jagged

boundaries. For problems that require an accurate geometrical description of the interface, density methods

will result in an inaccurate enforcement of boundary conditions due to the aforementioned ambiguous or

jagged boundaries [23, 24]. Such issues can be mitigated by mesh refinement; however, they do not provide

the exact location and orientation of the boundary a priori. Thus, unlike the no-slip boundary condition,

the Kn-slip boundary condition cannot be enforced with the same penalization approach as is used with

density methods.

In response to the shortcomings of density methods, we utilize the Level Set Method (LSM) to represent

the geometry. External or internal phase boundaries, where phase may refer to either the fluid or solid

domain, are described implicitly by the zero level set isosurfaces of a Level Set Function (LSF), φ(x), where

x is the position vector [25–27]. Smooth changes in the LSF lead to smooth changes in the geometry, e.g.

the merging or separation of geometric features, making the LSM a good choice for topology optimization.

The LSF is typically discretized on a fixed background mesh and updated during the optimization process

by solving the Hamilton-Jacobi equations. An alternative, used in this paper, is to define the parameters of

the LSF as explicit functions of the optimization variables. The resulting optimization problem is solved by

standard nonlinear programming (NLP) methods [28]. For a detailed discussion of the LSM, the reader is

referred to [28] and [29].

Further, we utilize the eXtended Finite Element Method (XFEM) to describe the material distribution

in the discretized fluid model. The XFEM is an immersed boundary technique that does not require a

conforming mesh. The XFEM was built upon the concept of partition of unity developed by [30] and

was originally used to model crack propagation [31]. Alternatives to the XFEM include an Ersatz’ material

approach, which suffers from the same problems as density methods, and adaptive re-meshing after each LSF

update, which is computationally expensive. The XFEM decomposes an element cut by a zero isosurface of

the LSF into several subdomains, such that each subdomain has a distinct phase, i.e. is exclusively fluid or

solid. Thus, the LSM and XFEM provide the precise location and orientation of the fluid-solid interface.

The XFEM, however, results in an ill-conditioned system of equations, when an element cut by the zero

isosurface of the LSF has a small ratio of volumes, e.g. when the interface moves very close a node. Such

configurations are often unavoidable when using a fixed background mesh. Several approaches have been

proposed to avoid this ill-conditioning issue, such as the geometric, Jacobi, and Cholesky decomposition

preconditioners of [32], [33], and [34] and [35], respectively, and face-oriented ghost-penalty methods [36].

Face-oriented ghost-penalty methods have been studied in the context of fluid flow problems, where discon-
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tinuities in the spatial gradients of the velocities and pressure are penalized across the common facets of

intersected elements [37]. This presents a clear advantage over preconditioners, since smooth gradients are

particularly important for the Kn-slip boundary condition. Smooth velocity gradients in (2) result in smooth

tangential velocities at the interface. Boundary conditions on the interface are imposed weakly via Nitsche’s

method [38].

In this paper, we will extend the LSM-XFEM framework proposed by Villanueva and Maute [39] to allow

for the enforcement of the Kn-slip boundary condition. We will show that, for some fluid devices, the effects

of the slip boundary might not be negligible and may need to be accounted for in the optimization process;

additionally, we will show the influence, in terms of design and performance, of this boundary condition

when compared to the traditional no-slip condition.

The remainder of the paper is structured as follows: Section 2 describes the formulation of the opti-

mization problem. Section 3 provides a detailed description of the geometry using the design variables and

the LSM. In Section 4, we present the governing equations, the ghost-penalty formulation, the velocity slip

boundary condition and its implementation using Nitsche’s method, and the discretization using the XFEM.

Numerical examples are discussed in Section 5. Finally, conclusions drawn from these studies are presented

in Section 6.

2 Optimization

The optimization problems considered in this paper are formulated with respect to an objective and one or

more constraints. The objective and constraints are defined in terms of design criteria, such as mass flow

rate, pressure differences, fluid volume, etc. These design criteria can depend explicitly on the state and

optimization variables, e.g. mass flow rate, or only on the optimization variables, e.g. fluid volume. The

formulation for this class of optimization problem takes the form:

min
s
Z = z(s,u(s))

s.t. gi(s,u) ≤ 0, i = 1...Ng

s ∈ S = {RNs |sLi ≤ si ≤ sUi , i = 1...Ns}

u ∈ U = {RNu |R(s,u) = 0},

(3)

where s is the vector of optimization variables, of size Ns, and u is the vector of state variables, of size Nu.

Z is a function of the criteria to be optimized. The function gi is the i-th inequality constraint, and Ng is

the number of constraints. The optimization variables si are bounded by lower and upper limits, sLi and sUi ,
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respectively. The state variables satisfy the residual of the governing equations, R(s,u) = 0.

3 Geometric Description

The LSM describes the geometry of a body immersed in a domain by the zero isosurfaces of a higher

dimensional LSF, φ(x). The LSF is defined such that:

φ(x) > 0, ∀x ∈ Ωs

φ(x) < 0, ∀x ∈ Ωf

φ(x) = 0, ∀x ∈ Γfs,

(4)

where Ωs is the solid phase, Ωf is the fluid phase, and Γfs is the fluid-solid interface. The external boundaries

of the solid and fluid phases are represented as Γs and Γf , respectively.

Topology optimization allows the emergence of a large set of geometries by having the LSF be parametrized

by local shape functions defined on a finite element mesh. One optimization variable, si, for i = 1...Nn, is

assigned to each node of the design mesh, where Nn is the number of nodes. Then, the LSF value of the

i-th node, φi, is defined as:

φi(s,x) =



Nn∑

j=1

wij



−1

Nn∑

j=1

wijsj


 , (5)

where

wij = max (0, rφ − |xi − xj |) , (6)

and rφ is the smoothing filter radius. The linear filter in (5) was used previously in [40] and [41] to widen

the zone of influence of each optimization variable and to improve the convergence rate.

To define horizontal cylindrical inlet and outlet ports in 2D, the LSF value on nodes with coordinates

(xi, yi), outside the design domain is defined as:

φi = min

(
max

(
φmin, r −

√
(xi − xc)2 sin2(α) + (yi − yc)2 cos2(α)

)
, φmax

)
, (7)

where φmin = −h/2, φmax = h/2, h is the element width, (xc, yc) is a point on the cylinder axis, α is the

angle between the axis and the global x-axis, and r is the radius of the port.
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4 Governing Equations

This work adopts the isothermal, single species version of the weak form of the NS equations of Villanueva

and Maute [39], where the weak form is decomposed into volume and surface contributions:

ru,p = rΩ
u,p + rΩ̂

u,p + rDu,p + rfsu,p + rGPu,p , (8)

where rΩ
u,p and rΩ̂

u,p are the volumetric residual contributions, non-stabilized and stabilized, respectively [39].

The term rDu,p is used to enforce Dirichlet boundary conditions on the external surfaces, while the term rfsu,p

is used to enforce boundary conditions on the fluid-solid interface. The ghost-penalty term rGPu,p depends

on the face-oriented ghost-penalty formulation. The volumetric stabilization and ghost-penalty terms are

discussed in Sections 4.2 and 4.3, respectively. Both boundary condition enforcement terms are discussed in

Section 4.4.

4.1 Weak form of NS Equations

The non-stabilized volume contribution takes the form:

rΩ
u,p =

∫

Ωf

(
vfi ρ

f

(
∂ufi
∂t

+ ufi
∂ufi
∂xj

)
+ εij(v

f )σij(u
f , pf )

)
dΩ +

∫

Ωf

(
qf
∂ufi
∂xi

)
dΩ. (9)

The first integral describes the momentum equations, with admissible test functions vfi ; the second integral

describes the incompressibility condition, with admissible test functions qfi . The fluid velocity is given by

ufi , pf is the pressure, ρf is the fluid density, µf is the dynamic viscosity, εij is the strain rate tensor given

by:

εij(u
f ) =

1

2

(
∂ufi
∂xj

+
∂ufj
∂xi

)
, (10)

and σij is the Cauchy stress tensor for Newtonian fluids:

σij(u
f , pf ) = −pfδij + 2µf εfij(u

f ). (11)

4.2 Subgrid Stabilization

The convective terms in the incompressible NS equations may cause spurious node-to-node oscillations in the

velocities field. Furthermore, equal-order approximations used for vfi and qf may cause pressure oscillations.

To prevent these oscillations, this work augments the NS equations with Streamline Upwind Petrov-Galerkin
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(SUPG) and the Pressure Stabilized Petrov-Galerkin (PSPG) stabilization formulations introduced in [42]:

rΩ̂
u,p =

∑

Ωe∈Ω

∫

Ωe∩Ωf

((
τSUPG

(
ufi
∂vfi
∂xj

)
+ τPSPG

(
1

ρf

∂qf

∂xi

))
·

(
ρf

(
∂ufi
∂t

+ ufi
vfi
∂xj

)
∂pf

∂xj
δij − 2µf

∂

∂xj

(
εij(u

f )
)
))

dΩ,

(12)

where Ωe denotes the set of all elements in the domain Ω, and the stabilization terms τSUPG and τPSPG are

defined in [42].

4.3 Ghost-Penalty Stabilization

As the optimization process updates the design geometry, the fluid-solid interface may lead to intersection

patterns where certain degrees-of-freedom interpolate into very small subdomains, i.e. as the interfaces

approaches a node [39]. This results in an ill-conditioning of the linear sub-problem, which in turn results

in an increased condition number of the linearized system and may slow down or prevent the convergence

of the nonlinear program. To guarantee stability, as well as improve the condition number, face-oriented

ghost-penalty stabilization terms are used to in the vicinity of the fluid-solid interface [39], c.f. [36]. The

ghost-penalty terms for the residual contribution of the incompressible NS equations are defined as:

rGPu,p = rGP,µu,p + rGP,pu,p , (13)

where rGP,µu,p and rGP,pu,p are the viscous and pressure ghost-penalty formulations, respectively.

The viscous face-oriented ghost-penalty formulation, as proposed by [43], is used to overcome stability

issues related to the weak enforcement of boundary conditions via Nitsche’s method, and is defined as:

rGP,µu,p =
∑

F∈Ξf

∫

F

(
γGP,µ

[[
∂vfi
∂xj

]]
nfj

[[
∂ufi
∂xk

]]
nfk

)
dΓ, (14)

where γGP,µ is a penalty parameter defined as:

γGP,µ = αGP,µµ
fh, (15)

and αGP,µ is a chosen constant scaling factor. The jump operator is defined as:

[[ζ]] = ζ|Ω1
e
− ζ|Ω2

e
, (16)
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Ωf

Figure 2: Facets Ξf in domain Ωf .

and is evaluated at the facet between two adjacent elements, Ω1
e and Ω2

e. This term overcomes the small-area

issue on elements bisected by the interface because the domain of integration is the entire edge, regardless

of the intersection pattern. The set Ξf belonging to the domain Ωf contains all facets F for which at least

one of the two adjacent elements is intersected by the fluid-solid interface; for example, see Figure 2.

We apply the pressure ghost-penalty stabilization term is to control pressure instabilities due to a violated

inf-sup condition for equal-order approximations used for ufi and pf [37, 44], defined as:

rGP,pu,p =
∑

F∈Ξf

∫

F

(
γGP,p

[[
∂qfi
∂xj

]]
nfj

[[
∂pfi
∂xk

]]
nfk

)
dΓ, (17)

where γGP,p is a penalty parameter defined as:

γGP,p = αGP,p

(
µf

h
+
ρ||uf ||∞

6

)−1

h2, (18)

and αGP,p is a chosen constant scaling parameter.

As discussed by Villanueva and Maute [39], the literature has proposed additional ghost-penalty mea-

sures, e.g. to control instabilities arising from the incompressibility constraint. However, these additional

formulations are not considered in our numerical examples because previous studies have not revealed any

further improvement for the laminar flow situations analyzed here, see also [37].

4.4 Boundary Conditions

The Kn-slip boundary condition (2) extends the second-order model found in [45], which is based on

Maxwell’s proposal of the fundamental description of gas-surface interaction [46], to include the tangen-

tial gradients, i.e. ∂un/∂t, for arbitrarily oriented interfaces found in [5].
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Throughout the literature, the third term in (2) traditionally takes on a negative sign because the interface

normal vector is defined as pointing towards the fluid domain. However, in this paper, the normal vector is

defined as pointing outward from the fluid domain, see Figure 1; thus, the sign of the third term in (2) is

positive. Note that the Kn-slip boundary convergences to the no-slip condition, as Kn → 0. An empirical

model for the accommodation coefficient, σ, has been proposed by McNenly [6] for simple flows; however,

there is no general agreement on the appropriate value or form for the accommodation coefficient [11]. For

simplicity, this paper will use σ = 1, as the goal of this paper is to study the general effect of the slip

boundary condition on the optimal design without the desire to study a particular fluid.

The Kn-slip boundary condition governs the tangential velocity at the fluid-solid interface and requires

gradients in the normal and tangential directions; as such, the exact location and orientation of the interface

is required. We enforce the Kn-slip boundary condition (2) on the fluid-solid interface along the tangential

direction via:

RKn =

(
ut − uwt +

Kn

1 +Kn

(
∂ut
∂n

+
∂un
∂t

))
t̂, (19)

where t̂ is the unit tangential vector along the fluid-solid interface. Treating vectors as column matrices, we

then expand the derivatives as:

∂ut
∂n

=
∂(u · t̂)
∂n

=
∂u

∂n
· t̂ + u · ∂t̂

∂n
= t̂

T
Jun̂ + (J tn̂)Tu, (20)

where

(Ju)ij =
∂ui
∂xj

, (Jn)ij =
∂ni
∂xj

, and (J t)ij =
∂ti
∂xj

, (21)

are the spatial derivatives of the velocities and normal and tangent vectors, and similarly for ∂un/∂t,

Recognizing that, for any rotated local coordinate system,

t̂t̂
T

= I − n̂n̂T , (22)

we can write (19) as:

RKn =
(
I − n̂n̂T

)
u−

(
I − n̂n̂T

)
uw

+
Kn

1 +Kn

(
I − n̂n̂T

)(
Ju + JTu

)
n̂ +

Kn

1 +Kn

((
I − n̂n̂T

)
JTnu + t̂n̂TJTt u

)
.

(23)

Note that (22) nearly eliminates the need to define the tangent vector, i.e. t̂ only appears in the last term,

but the terms that involve its gradients cannot make use of the identity (22). In future sections of this
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paper, we will collectively refer to the last two terms in (23) as the “J{n,t} terms”. These terms relate to

the curvature of the interface and are included in the Kn-slip boundary condition found in [5]. Thus, besides

the location and orientation of the fluid-solid interface, the Kn-slip boundary condition may also require

knowledge of the interface curvature. These terms are studied in Section 5.2.

4.4.1 Implementation with Nitsche’s method

In this paper, we adapt the boundary condition enforcement method described in [39]. There, Nitsche’s

method is used to enforce no-slip boundary conditions with:

rmu,p =

∫

Γm

vfi
(
pfδij − 2µf εij(u

f )
)
nfj dΓ

+

∫

Γm

(
βpq

fδij − βµ2µf εij(v
f )
)
nfj

(
ufi − ûfi

)
dΓ

+

∫

Γm

(
λN,uv

f
i

(
ufi − ûfi

))
dΓ,

(24)

where λN,u is the Nitche penalty parameter. The terms βp and βµ determine whether the second term uses

a symmetric (βp = +1, βµ = +1) or a skew-symmetric formulation (βp = −1, βµ = −1). In this paper, we

follow [39] and use the symmetric variant for the viscous term, i.e. βµ = 1, and the skew-symmetric variation

for the pressure term, i.e. βp = −1. The symmetric variant for the viscous term leads to smaller errors when

compared to the skew-symmetric variant, as reported by [47]. The skew-symmetric variant for the pressure

term is used because it consistently controls the mass conservation, ufi n
f
i = 0 [37,48]. m ∈ {D, fs} denotes

the enforcement of boundary conditions on the external boundaries or on the fluid-solid interface. The

penalty term λN,u is adopted from [37] and defined as:

λN,u = αN,u

(
µf

h
+
ρf ||uf ||∞

6

)
, (25)

and its terms account for viscous-dominated and convection-dominated flows, respectively. αN,u is problem-

dependent and the term ||uf ||∞ is the infinity norm evaluated at each integration point and differentiated

at its maximum value. The influence of this term is studied in [39].

This formulation, however, is written exclusively for the no-slip boundary condition. We generalize this

by first considering a split of (24) into normal and tangential components. We enforce the no-penetration

condition, i.e. un = uwn , along the normal direction, and the no-slip or the Kn-slip condition in the tangential

direction. After reassembling the terms, we can write (24) as:
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rmu,p =

∫

Γm

vfi
(
pfδij − 2µf εij(u

f )
)
nfj dΓ

+

∫

Γm

(
βpq

fδij − βµ2µf εij(v
f )
)
nfjΥjdΓ

+

∫

Γm

(
λN,uv

f
i Υj

)
dΓ,

(26)

where

Υ =





u− û , to enforce no-slip

un − ûn + RKn , to enforce Kn-slip.

(27)

4.5 Weak enforcement of the normal vector

The Kn-slip boundary condition, introduced in Section 4.4, requires knowing the gradient of the normal and

tangential vectors at an interface. The normal vector at the fluid-solid interface (and, by extension, the

tangential vector) is defined as the gradient of the LSF:

n̂ =
∇φ
|∇φ| . (28)

Thus, the gradient of the normal vector requires second-order derivatives of the LSF, which are not available

when using bilinear elements. One option is to use analytical expressions for the LSF, which allows analyt-

ically evaluating (28). This option is attractive but is in general not applicable in a topology optimization

framework, since the LSF is not known analytically. An alternative option is to project the level set gradi-

ents onto a smoother approximation space which allows computing curvature information using low-order

elements. The projection is defined by:

rn̂ =

∫

Ω

δn̂ · (n̂ |∇φ| − ∇φ) dΩ, (29)

where n̂ is the projected normal. Introducing the normal vector components as nodal degrees-of-freedom

increases the number of degrees-of-freedom per node from 3 to 5. Because of this increase in problem size,

it is important to understand if or when the J{n,t} terms can be neglected.

4.6 XFEM Discretization

The governing equations in the fluid phase are discretized in space by the XFEM. This paper adopts the

generalized enrichment strategy based on the Heaviside-step enrichment of [49], which interpolates consis-
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tently the solution field in the presence of small features and does not suffer from artificial coupling arising

from disconnected phases. This particular approach has been used for incompressible Navier-Stokes [40],

linear diffusion, [32], advection-diffusion, [41], and linear elasticity problems [44,50].

The XFEM is used to approximate a state variable in only a single phase or in both phases. Here, we

present the most general case, where the state variables are modeled in both phases. The approximation for

a solution field u, i.e. the fluid velocity components, within an element is denoted as ũ and is discretized by

the enrichment strategy:

u(x) ≈ ũ(x) =

Nl∑

l=1

(
H(−φ(x))

Nn∑

i=1

vi(x)δi,flk u
f
i,l +H(+φ(x))

Nn∑

i=1

vi(x)δi,sln u
s
i,l

)
, (30)

where l is the enrichment level, Nl is the maximum number of enrichment levels used for each phase, vi(x)

are the nodal basis function, i.e. the shape functions, ufi,l and usi,l are the degrees-of-freedom of enrichment

level l at node i in the fluid and solid phase, respectively, and H denotes the Heaviside function, which turns

the interpolation for phase m on and off, and is defined as:

H(ζ) =





1, ζ < 0

0, ζ > 0,

(31)

The Kronecker delta, δi,mab , selects the degrees-of-freedom for phase m. The indices k and n denote the

active degree-of-freedom at node i in the fluid and solid phases, respectively. At any given point, only one

degree-of-freedom per node is used to interpolate the solution, ensuring the partition of unity is satisfied. For

problems where the solid phase is void, the respective degrees-of-freedom are condensed out of the problem

and set to zero.

For each phase, multiple enrichment levels, i.e. sets of shape functions, may be necessary to interpolate

the state variables in multiple, physically disconnected regions of the same phase, cf. [51], [52], and [50]. In

order to accurately integrate the weak form of the governing equations by Gaussian quadrature, intersected

elements are decomposed into triangles. The reader is referred to [50] for more details on the particular

XFEM implementation used in this paper.

The Heaviside-step enrichment formulation (30) has a singularity for cases in which the fluid-solid interface

lies exactly on a node, i.e. the level set value φi at node i equals 0. To avoid this issue, we adopt the level set

perturbation approach outlined in [53] and [32]. If the magnitude of the level set value at a node is smaller

than some critical value, φc, it is modified to a shift value, φs. This perturbation results in the fluid-solid

interface moving away from the node, solving the singularity issue. In this study, we adopt the values of
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φc = φs = 10−6 × h, where h is the size of an element. This perturbation strategy was used by [54], where

it is shown that the influence of the perturbation is negligible.

5 Numerical Examples

In the following, we study the characteristics of the proposed Kn-slip boundary condition for steady-state

flow problems in 2D. We first compare the accuracy against an analytical solution and investigate the need

for the normal and tangential vector gradients in the Kn-slip boundary condition (2). We then study the

effect of the Kn-slip against the no-slip boundary condition, as well as the effect of the J{n,t} terms, on the

design of a splitting manifold. Finally, we study the impact of the Kn-slip boundary condition on the design

of a fixed-valve. Unless otherwise stated, geometric and material parameters are given in non-dimensional

and self-consistent units.

In this study, the time integration is performed by a 1-step backward differentiation scheme. Most steady-

state flow problems use a homotopy approach, i.e. a sufficiently small time step is initially chosen to achieve

stability and it is then gradually increased until a steady-state solution is achieved. The problems considered

in this paper where not found to need this approach; instead, a sufficiently large time step is chosen.

The equilibrium at any time step (n) is satisfied by solving the nonlinear system R(n) via Newton’s

Method, where:

R = ru,p + rn̂. (32)

In each Newton step, the linear sub-problem is solved using the Generalized Minimal RESidual (GMRES)

iterative method [55], with an Incomplete LU factorization with dual Threshold (ILUT) preconditioner [56].

The optimization problem (3) is solved by a gradient-based algorithm, and the gradients of the objective

and constraint functions with respect to the optimization variables, si, are computed via the adjoint method.

In this paper, we adopt the discrete adjoint formulation for nonlinear fluid systems of [57] and [58]. The

problems are solved via the Globally Convergent Method of Moving Asymptotes (GCMMA) of [59]. The

GCMMA parameters are given in Table I. The stopping criteria for the optimization are: (i) the change in

the objective value relative to the previous value is less than 10−6 and (ii) all constraints are satisfied.

5.1 Scope

The Knudsen number (1) is also given by the Reynolds and Mach numbers [60] via:

Kn =
Ma

Re

√
γπ

2
. (33)
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Value

Relative step size 0.01

Minimum asymptote adaptivity 0.5

Initial asymptote adaptivity 0.7

Maximum adaptivity 1.43

Constraint penalty 100

Table I: GCMMA parameters for the topology optimization problems.

In our experience, flows with larger inertial effects experience more significant design changes. Because the

incompressible NS equations, used in this paper, are valid only for Ma < 0.3, we will limit the maximum

Kn number of interest to allow a larger Re number, which in turn allows for larger inertial effects in the

fluid flow problems considered.

5.2 Radial Couette Flow: Flow Between Rotating Cylinders

To understand the effect of the Kn-slip boundary condition and the importance of the J{n,t} terms in (23),

we consider the flow between rotating concentric cylinders with inner and outer radii, r1 and r2, and angular

speeds, ω1 and ω2, respectively. In polar coordinates, the NS equations admit the general solution:

uθ(r) = Ar +
B

r
, (34)

where A and B are determined from the boundary condition. With the no-slip boundary condition, i.e.

uθ|r=r1 = r1ω1 and uθ|r=r2 = r2ω2, A and B take the well-known form:

A =
r2
2ω2 − r2

1ω1

r2
2 − r2

1

, B =
r2
2r

2
1 (ω1 − ω2)

r2
2 − r2

1

(35)

For the Kn-slip boundary condition, A and B are the solution to the system of equations:

(
r1 −

Kn

1 +Kn

)
A+

(
1

r1
+

1

r2
1

Kn

1 +Kn

)
B = r1ω1,

(
r2 +

Kn

1 +Kn

)
A+

(
1

r2
− 1

r2
2

Kn

1 +Kn

)
B = r2ω2.

(36)

Note that (35) is the solution to (36) for Kn = 0. In this example, we use r1 = 1, r2 = 2, ω1 = −5, and

ω2 = 5; in the fluid, ρ = 1 and µ = 1. The domain Ω = {(x, y)| − 2.25 ≤ x ≤ 2.25,−2.25 ≤ y ≤ 2.25} is

discretized with a (9/2)Ne × (9/2)Ne uniform square mesh, such that the width of an element is 1/Ne, for
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Figure 3: Numerical flow solutions against the no-slip analytical solution for Kn = 10−6 (a) and Kn = 10−2

(c), and relative error of flow solutions against the no-slip analytical solution (b).

values of Ne ranging from Ne = 30 to Ne = 120. The fluid domain is described with the LSF:

φ(r) =

∣∣∣∣r −
r1 + r2

2

∣∣∣∣−
r2 − r1

2
, (37)

where r =
√
x2 + y2.

To find the critical Kn number at which the Kn-slip boundary condition becomes necessary, we simulate

the flow between rotating cylinders with the Kn-slip boundary condition for Kn in the range of 10−6− 10−2

and compare the results to the no-slip analytical solution. Figure 3a and Figure 3c show the velocity

distributions of the simulated flows and the no-slip analytical solution for Kn = 10−6 and Kn = 10−2,

respectively. The solution with Kn = 10−6 overlaps the no-slip analytical solution, whereas the solution

with Kn = 10−2 begins to separate from the no-slip analytical solution near the rotating cylinders. Further,

Figure 3b shows relative error of the flow solutions for various Kn numbers against the no-slip analytical

solution, defined as:

Rel. Error =

∫ (
usolθ,Kni

− uanalyticalθ,no−sip

)2

dΩ
∫ (

uanalyticalθ,no−sip

)2

dΩ

. (38)

For Kn < 10−3, it remains safe to use the no-slip boundary condition; however, the relative error begins

to more rapidly increase near Kn = 10−3. Thus, slip effects show an impact on the flow starting near

Kn = 10−3, as suggested by [10].
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5.2.1 Effect of the normal and tangential vector gradients

Given that the Kn-slip boundary condition is important for Kn > 10−3, we now seek to understand the

importance of the J{n,t} terms. As the LSF is defined analytically for this example, we can derive analytical

expressions for J{n,t}:

Jn = sgn

(
r − r1 + r2

2

)


−y2r3 +xy

r3

+xy
r3 −x2

r3


 , and J t = sgn

(
r − r1 + r2

2

)



+xy
r3 −x2

r3

+y2

r3 −xyr3


 . (39)

We analyze the flow with the Kn-slip boundary condition (a) without the J{n,t} terms, (b) with the

analytical expressions (39) for J{n,t}, and (c) computing J{n,t} by (21) using the projected normal vectors

(29), for Kn = 0.01, 0.02, and 0.05.

Figure 4a shows the Kn-slip analytical solutions (34), (36) for each Kn number, while Figures 4b and 4c

additionally show the flow solutions with and without the J{n,t} terms. The selected views show that the

solutions obtained with the J{n,t} terms, i.e. cases (b) and (c), agree with each other and with the analytical

solution. The velocities obtained without the J{n,t} terms diverge from the analytical solution for larger Kn

numbers, especially for Kn = 0.05 in Figure 4c.

Figure 5 shows the relative error against the analytical solution, (34) and (36), for each case and Kn

number. When the J{n,t} terms are omitted, the relative error grows slowly but remains small for the

smallest Kn value. For Kn = 0.01, the relative error after omitting the J{n,t} terms approaches 1%; for

Kn = 0.05, the relative error becomes more significant, at approximately 4%. These terms will be further

studied in the context of topology optimization.

Further, when the J{n,t} terms are included, the order of convergence with respect to the analytical

solution is approximately linear for all Kn numbers. Both methods of including the J{n,t} terms converge

to the analytical solution, meaning that the projected normals are equivalent to the case where analytical

expressions for the gradients are used.

Our implementation of the Kn-slip boundary condition is thus validated against an analytical solution.

This study suggests that, for Kn > 10−3, the Kn-slip boundary condition should be used over the no-slip

condition and that the J{n,t} terms should be included. Because analytical expressions for J{n,t} are not

available in the context of topology optimization, J{n,t} can be computed from projected normals (29).

5.3 Design of a splitting manifold

In this example, we consider the design of a manifold with multiple outlets under steady-state flow conditions,

where the objective is to maximize the mass flow rate through the manifold. The example is an extension of
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(b) (c)

(a)

Figure 4: Velocity distributions of the analytical solution (a) and detailed views with and without the J{n,t}
terms (b and c).
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Figure 5: Relative error in the velocity distributions with and without the J{n,t} terms with respect to the
analytical solution using the Kn-slip boundary condition.

the bend problem found in [61] and is motivated by the following considerations: because the manifold must

optimally split and redirect the flow, the increase in momentum due to the velocity slip that occurs at finite

Kn numbers may require significant changes in the optimal design. Alternatively, if no significant changes

are present, then the Kn-slip boundary condition could be safely ignored during the design optimization

process and later considered in a post-hoc analysis.

The problem setup is shown in Figure 6. The design domain has one inlet (on the left) and four outlets

(two on the right, and one on each of the other planes). Traction-free boundary conditions are enforced on

all outlets and the inlet is given a prescribed pressure to drive the flow. We model only half of the domain,

and a symmetry boundary condition is enforced on the y = 2L plane.

In addition to maximizing the mass flow rate through the manifold, we minimize the perimeter of the fluid-

solid interface. A perimeter penalty in the objective function was previously applied to species transport

topology optimization by Makhija and Maute [41] to improve the smoothness of the final design and to

regularize the optimization problem. Thus, the objective is defined as:

Z = −

∑
i∈{1a...2b}

ṁout,i

∑
i∈{1a...2b}

ṁ0
out,i

+ wP
P
P0

, (40)
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Figure 6: Problem setup and initial design for the splitting manifold problem. The dashed line denotes the
symmetry plane.

Case Description

(a) no-slip boundary condition

(b) Kn-slip boundary condition with Kn = 0.01

(c) Kn-slip boundary condition with Kn = 0.02

Table II: Boundary condition cases for the splitting manifold problem.

where the superscript “0” denotes the values of the initial design, the subscript i denotes the i-th outlet,

and wP is a constant scaling factor. Unless otherwise noted, wP = 0.1. The mass flow rate through a port

is defined as:

ṁi =

∫

Γf
i

ρf
(
uf · n̂

)
dΓ. (41)

The perimeter is defined as:

P =

∫

Γfs

dΓ. (42)

The fluid volume inside the design domain is constrained to a fraction, fV , of the design domain to

suppress trivial solutions and to promote the formation of distinct fluid channels:

g1 =
Vfd
fVVd

− 1, (43)
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Configuration Requirement

(i) f1a = f1b = 2/3, f2a = f2b = 1/3

(ii) f1a = f1b = 1/2, f2a = f2b = 1/2

(iii) f1a = f1b = 1/3, f2a = f2b = 2/3

Table III: Outlet configurations for the splitting manifold problem.

Value

Mesh size 62× 93

Element size h = 0.03226L

Characteristic length L = 1

Fluid density ρf = 1.205

Fluid viscosity µf = 1.511× 10−5

Inlet pressure pin = 1.5× 10+4

Perimeter scaling factor wP = 0.1

Outlet requirement error τ = 0.005

Nitsche velocity parameter αN,u = 10

Viscous ghost-penalty αGP,µ = 5× 10+0

Pressure ghost-penalty αGP,p = 5× 10−1

Convective ghost-penalty αGP,u = 5× 10−1

Relative Optimization Step ∆s = 0.01

Design variable bounds sLi = −0.03226L, sUi = +0.03226L

Smoothing radius rφ = 2.4h

Number of design variables 1, 849 (half-domain)

Table IV: Parameters for the splitting manifold problem.

where the fluid volume inside the design domain is defined as:

Vfd =

∫

Ωf∩Ωd

dΩ. (44)

Further, we wish to specify the ratio of the outlet mass flow rates. Given that the GCMMA algorithm does

not allow equality constraints, we recourse to imposing inequality constraints with lower and upper limits

on the mass flow rates. The lower and upper inequality constraint on the i-th outlet are given as in [39]:

gi+1 =
(1− τ)fiṁin − ṁout,i

ṁ0
in

(45)

gi+5 =
−(1 + τ)fiṁin + ṁout,i

ṁ0
in

(46)

where τ is a small tolerance value, fi is the desired fraction of the total mass flow rate through outlet i,

and
∑
fi = 1. Unless otherwise stated, τ = 0.005. In this paper, we study three constraint configurations,

summarized in Table III: (i) the flow rate through the horizontal outlets is twice that of the vertical outlets,
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(ii) the outlets have equal flow rates, and (iii) the flow rate through the vertical outlets is twice that of the

horizontal outlets. The remaining parameters for the fluid and optimization problem are given in Table IV.

Since an outlet cannot simultaneously violate both its minimum and maximum constraints, when reporting

whether constraints are violated, we will report the deviation from the target mass flow rate fraction:

hi =
1

fi

∣∣∣∣
ṁout,i∑
ṁout,i

− fi
∣∣∣∣ (47)

such that hi < τ if outlet i satisfies both its constraints or hi > τ if one of its constraints is violated.

Since sensitivities only exist near the fluid-solid interface, the LSM-XFEM restricts the topology opti-

mization problem to a general shape optimization problem, no solid inclusions can be created within the

fluid phase but only merge. To mitigate this issue, the design is initially seeded with an array of inclusions.

In this example, the design domain is initialized with 6× 6 circular solid inclusions of radii 0.09L, as shown

in Figure 6. In our experience, the flow topology optimization problems studied here are rather insensitive

to the initial design as long as the number of inclusions is sufficiently large.

We consider two problems with different Kn numbers but choose the other flow parameters such that

the problems have the same nondimensional inlet pressure. For each of these problems, we will study the

differences in design and performance if the Kn-slip boundary condition is ignored. Two problems with

different finite Kn numbers but the same nondimensional inlet pressure have the same nondimensional

solution, if the Kn-slip boundary condition is ignored and the no-slip condition is used. Thus, we consider

the same nondimensional setup with various boundary conditions: (a) no-slip, which is equivalent to ignoring

the Kn-slip boundary condition despite a finite Kn number, and the Kn-slip boundary condition with (b)

Kn = 0.01 or (c) Kn = 0.02, as summarized in Table II. The “no-slip” case in Table II represents any problem

in which the Kn-slip boundary condition is ignore regardless of whether the Kn is finite or negligible.

5.3.1 Effect of the Kn-slip boundary condition

We study the influence of the boundary condition on the optimum design. When model Kn-slip, the J{n,t}

terms are included. We find the optimal design for each case in Table II and each configuration in Table

III. Figure 7 shows the convergence plots of the objective and the volume and mass flow rate constraints for

the no-slip problem in Configuration (i). The initial design violates the volume and some of the mass flow

rate constraints; in the process of satisfying these constraints, the objective increases. After the constraints

are satisfied, the objective reaches a feasible minimum. The convergence behavior for the other cases and

configurations is similar.

The velocity magnitude through the converged designs for constraint configuration (i)-(iii) are shown
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Figure 7: Convergence plots of the objective and constraints for Configuration (i) with the no-slip boundary
condition.

in Figure 8. The inlet and outlet ports are not shown for brevity. Figure 9 overlays the designs for each

Configuration. When the Kn-slip boundary condition is active, the flow has an increased horizontal inertia.

Thus, to satisfy the outlet constraints, the design constricts the horizontal outlets and redirects the flow

vertically with the changing inclines ahead of the horizontal outlets, compared to the case where the Kn-slip

boundary condition is ignored. This difference in design becomes more pronounced for larger Kn numbers,

e.g. compare (a) and (d).

To verify that each design is indeed optimal for its flow state, we perform a cross-comparison between

the results. Within each constraint configuration, each design is analyzed with the other two boundary

conditions. For example, analyzing the design of Case (b) with the flow state in Case (c) corresponds to

using a design obtained with Kn = 0.01 and for a different problem with Kn = 0.02. This comparison is

summarized in Table V, which shows the total mass flow and constraint violations for each design. Values

for hi greater than 0.5% constitute a constraint violation.

Table V should only be read row-wise. In each row, i.e. for each boundary condition case, the design

with the optimal performance, disregarding instances of constraint violations, is highlighted in boldface. A

column-wise reading only reveals that, in general, the (nondimensional) mass flow rate increases with the

Kn number, which is not relevant in this study.

If the no-slip design is used instead of the proper Kn-slip design, i.e. design (b) if Kn = 0.01 or design (c)

if Kn = 0.02, the flow will perform suboptimally, though the differences in performance are small. The most

noticeable results of this comparison are the mass flow rate violations, which at worst are approximately three

times the tolerance set during the optimization process. While the differences in mass flow are small, the

constraint violations suggest that it is not ideal to design the manifold with the no-slip boundary condition
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Figure 8: Velocity magnitude of the optimized designs for the splitting manifold problem.
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Configuration (i) Configuration (ii) Configuration (iii)
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No-slip Kn = 0.01 Kn = 0.02

Figure 9: Overlay of no-slip and Kn-slip designs for each Kn and Configuration of the splitting manifold
problem.
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∑
ṁout,i, Design in Configuration (i)

(h1, h2) (a) (b) (c)
C

as
e (a) 3.397, (0.28%,0.48%) 3.403, (0.94%, 1.80%) 3.393, (0.11%, 0.29%)

(b) 3.838, (0.16%, 0.39%) 3.854, (0.27%,0.46%) 3.844, (0.60%, 1.30%)

(c) 4.344, (0.25%, 0.43%) 4.372, (0.78%, 1.50%) 4.368, (0.05%,0.16%)

∑
ṁout,i, Design in Configuration (ii)

(h1, h2) (a) (b) (c)

C
as

e (a) 3.449, (0.19 0.25%) 3.444, (0.88%, 0.92%) 3.443, (0.24%, 0.30%)

(b) 3.896, (0.23%, 0.27%) 3.921, (0.43%,0.48%) 3.918, (0.02%, 0.06%)

(c) 4.415, (0.05%, 0.09%) 4.441, (0.31%, 0.35%) 4.448, (0.02%,0.021%)

∑
ṁout,i, Design in Configuration (iii)

(h1, h2) (a) (b) (c)

C
as

e (a) 3.262, (0.499%,0.30%) 3.267, (0.90%, 0.50%) 3.257, (1.32%, 0.61%)

(b) 3.690, (0.06%, 0.07%) 3.705, (0.47%,0.28%) 3.698, (1.43%, 0.67%)

(c) 4.180, (1.58%, 0.83%) 4.202, (1.77%, 0.92%) 4.196, (0.05%,0.01%)

Table V: Total mass flow rate and constraint violations for each case analyzed with each design for each
Configuration.

when the physical and fluid characteristics of the problem lead to a finite Kn number.

5.3.2 Critical Kn number

In Section 5.2, we showed that for Kn < 10−3, the Kn-slip boundary condition begins to have an impact on

the flow in the rotating cylinders problem. To identify the critical Kn number at which the Kn-slip boundary

condition should be accounted for in a topology optimization process, we consider constraint configuration

(iii) and determine the optimum design for different Knudsen numbers, for 10−5 ≤ Kn ≤ 10−2.

Figure 10a shows the performance of the no-slip design and design optimized for various Kn numbers.

Figure 10b shows the relative difference between the two curves in Figure 10a. For Kn < 10−3, there is

little difference between the no-slip design and the design optimized for Kn-slip. Near Kn = 10−3, the

difference then starts increasing rapidly. Figure 11 overlays the optimal designs for the no-slip (dotted black

line), and the Kn-slip boundary condition with Kn = 0.01 (solid black line) and the various transitional Kn

numbers (shades of red). The Kn-slip designs agree with the no-slip design when Kn < 10−3. The design

with Kn = 5 × 10−3 begins the transition from the no-slip design to the design with Kn = 10−2. These

results agree well with the one of Section 5.2: when Kn > 10−3, the Kn-slip boundary condition will lead

to differences, however small, in the design.
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Figure 10: Performance difference study for Configuration (iii) of the splitting manifold problem.
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∑
ṁout,i, (h1, h2)

Design

w/ the J{n,t} terms w/o the J{n,t} terms

Case
Kn = 0.01 3.854, (0.265%, 0.456%) 3.850, (0.397%, 0.869%)

Kn = 0.02 4.368, (0.047%, 0.161%) 4.358, (0.693%, 1.453%)

Table VI: Performance of designs in Configuration (i) when analyzed with the J{n,t} terms.

5.3.3 Effect of the normal and tangential vector gradients

In Section 5.2, we showed that the J{n,t} terms are necessary to fully recover an analytical solution, but

that their omission results in only a small error for small Kn numbers. Having shown that design differences

arise when the Kn-slip boundary condition is ignored for Kn > 10−3, we now study the effect of omitting

the J{n,t} terms during the optimization process. Recall that including the J{n,t} terms requires projecting

the gradients of the level set field when low-order elements are used.

We optimize each of the Kn-slip problems, i.e. Cases (b) and (c) within constraint configuration (i),

with and without the J{n,t} terms, and compare the results. Figure 12 shows the designs for each Kn

number; for compactness, we do not display the part of the design below the symmetry plane. Table VI

shows the total mass flow rate through both designs when analyzed with the J{n,t} terms, for Kn = 0.01

and Kn = 0.02, as well as the constraint violations. When the designs obtained without the J{n,t} terms

are analyzed with those terms in place, they violate the outflow constraints and have worse performance in

terms of the objective. The differences in performance are admittedly small, but the largest violation is close

to three times the tolerance allowed during the optimization process.

We further consider constraint configurations (ii) and (iii). In the worst case scenario, Configuration

(iii) with Kn = 0.02, the difference in design with and without the J{n,t} terms is most noticeable. For

brevity, we do not show the resulting designs in constraint configuration (ii). Figure 13 shows an overlay of

the designs obtained with and without the J{n,t} terms; note that the constriction on the horizontal outlet

moves upward to more accurately redirect the flow. Table VII shows the performance and mass constraint

violations for these designs when analyzed with the J{n,t} terms as part of the Kn-slip boundary condition.

While the difference in performance are again small, < 1%, the violation on the mass flow rate constraint is

more noticeable at approximately 2%, which is four times the tolerance set during the optimization process.

This study shows that the differences in performance or constraint violations resulting from the omission

of the J{n,t} terms are of the same order as the differences resulting from ignoring the Kn-slip boundary

condition altogether. Thus, we suggest that for problems where the Kn-slip boundary condition leads to

important differences in design, the J{n,t} terms should also be considered.
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w/ J{n,t} terms w/o J{n,t} terms

(a) Kn = 0.01 (b) Kn = 0.02

Figure 12: Designs obtained with and without J{n,t} in Configuration (i).

w/ J{n,t} terms w/o J{n,t} terms

Figure 13: Designs obtained with and without J{n,t} in Configuration (iii) with Kn = 0.02.

∑
ṁout,i, (h1, h2)

Design

w/ the J{n,t} terms w/o the J{n,t} terms
Case Kn = 0.02 4.196, (0.047%, 0.014%) 4.162, (2.045%, 0.869%)

Table VII: Performance of designs in Configuration (iii) when analyzed with the J{n,t} terms.
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5.4 Design of a fixed-valve fluid diode

Having shown the effect of the Kn-slip boundary condition on the manifold problem, we now seek to study

its effect on the design of a fixed-valve fluid diode, commonly referred to as a Tesla valve. A Tesla valve

has the property of allowing flow in one direction but restricting it when reversed. For a shape optimization

study of the traditional Tesla valve, the reader is referred to [62]. Alternatively, a Tesla valve can have axially

aligned ports, which was studied for small Re in [63] and for large Re in [64]. Finally, it is also possible to

consider valves with axially aligned but offset ports, as depicted in Figure 16. The example in this paper is

similar to the one previously used for flow topology optimization by Pingen et al [65].

The difference in the required pressure drop to realize the same mass flow rate in forward and reverse

directions is captured in the valve’s diodicity, which is defined as:

Di =
∆T fwd
∆T rev =

T fwd
Γf
1

− T fwd
Γf
2

T rev
Γf
2

− T rev
Γf
1

, (48)

where T fwd
Γf
i

is the total pressure at port i with flow in the forward direction and similarly for T rev
Γf
i

in the

reverse direction, and Γf1 and Γf2 are the external surfaces of the two ports, e.g. in Figure 14a. The total

pressure on a port surface is defined as:

Ti =

∫

Γf
i

(
pf +

ρf |uf |2
2

)
dΓ. (49)

We enforce a parabolic inlet velocity, which can be generalized for the Kn-slip boundary condition as:

û(y) = Uc

(
1−

(
y

rc

)2

+
2

rc

Kn

1 +Kn

)
, (50)

where rc is the radius of the port and Uc is the characteristic velocity. The outlet in each flow direction has

a traction-free boundary condition. To achieve the desired valve effect, the diodicity is less than one; smaller

values of Di indicate valves that better restrict the reverse flow. Figure 14aa shows a typical design for a

Tesla valve.

5.4.1 Analysis of a Traditional Valve

Before considering topology optimization, we illustrate the characteristics of a traditional Tesla valve for

various Reynolds numbers and use this insight to setup your optimization problem. The traditional Tesla

valve, shown in Figure 14a, features a 45◦-bend and a redirecting manifold. The radii of the redirection

manifold are given with respect to the reference length, r = 0.2L and R = 0.4L. We analyze this design
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Figure 14: Problem setup (a) and body-fitted unstructured mesh (b) for the traditional Tesla valve.
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Figure 15: Forward (top) and reverse (bottom) flows through the traditional Tesla valve for various Re
numbers.

using a body-fitted, unstructured mesh, shown in Figure 14b, with 14526 elements, where h ≈ 0.013 is the

average width of each element.

Figure 15 show the flow solution for the forward and reverse flows through the traditional Tesla valve.

For small Re numbers, there is no appreciable difference in the forward and reverse flow, aside from flow

direction; however, for Re > 100, the manifold begins to truly hamper the reverse flow. The diodicity of

this design at each Re number is given in Table VIII; these agree with those reported in [63]. For large Re

numbers, the traditional Tesla valve offers considerably favorable diodicities; however, recalling the discussion

in Sec5.1, for smaller Re numbers in the range that would also have finite Kn numbers (33), the diodicity

is very near unity. Thus, a new design is needed for low Re numbers.
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Re Di

1 0.999994

10 0.999993

50 0.999831

100 0.996436

200 0.967686

500 0.816144

Table VIII: Diodicity of the traditional Tesla valve for various Re numbers.

5.4.2 Optimization

The problem setup is shown in Figure 16. The design domain is defined as the space between the two ports,

i.e. Ωd = {(x, y)|0 ≤ x ≤ Lc, 0 ≤ y ≤ 2Lc}, for some characteristic length scale, Lc. In this work, we

formulate the optimization problem (3) as:

Z =
∆T fwd
∆T 0

+ wP
P
P0

(51)

where the superscript “0” denotes the values of the initial design and wP is a constant scaling factor. This

objective is equivalent to maximizing the mass flow rate when the pressure difference through the fluidic

device is prescribed. A constraint on the diodicity is given by:

g1 =
∆T fwd
∆T rev −Di

∗ (52)

where Di∗ is a chosen target diodicity. We seek to reproduce the diodicity at Re = 200 of the traditional

Tesla valve but at Re = 40, where the incompressibility condition, (33), allows for Kn = 0.01; thus, the

target diodicity is set to Di∗ = 0.97. Finally, a volume constraint (43) may be included to discourage trivial

solutions. While the optimization problem can alternatively be defined to minimize the valve’s diodicity,

e.g. [64], this paper follows the formulation found in [63], which performed a topology optimization using

density methods for low Re number flows with no-slip boundary conditions.

We perform a topology optimization for the cases of (i) fV = 1, i.e. no volume constraint, (ii) fV = 0.6,

and (iii) fV = 0.4, all with the (a) no-slip and (b) Kn-slip with Kn = 0.01 boundary conditions. In all cases,

Uc = 40 in the parabolic velocity distribution (50) at the inlet and the outlet has a traction-free boundary

condition, in both the forward and reverse flows. The remaining parameters for this problem are shown in

Table IX. The design is initialized with a 6× 3 array of circular inclusions of radii 0.09L, as shown in Figure

16.

Figure 17 shows the velocity magnitude in the forward and reverse flows through the optimized designs,
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Figure 16: Problem setup and initial design for the Tesla valve example.

Value

Mesh size 123× 82

Element size h = 0.0244L

Characteristic length L = 1

Fluid density ρf = 1

Fluid viscosity µf = 1

Characteristic speed Uc = 40

Port radius rc = 0.2L

Perimeter scaling factor wP = 0.1

Target diodicity Di∗ = 0.97

Volume constraint factor fV = {1, 0.6, 0.4}
Nitsche velocity parameter αN,u = 1

Viscous ghost-penalty αGP,µ = 5× 10+0

Pressure ghost-penalty αGP,p = 5× 10−1

Relative Optimization Step ∆s = 0.05

Design variable bounds sLi = −0.0244L, sUi = +0.0244L

Smoothing radius rφ = 2.4h

Number of design variables 3, 176

Table IX: Parameters for the fixed-valve problem.
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for each boundary condition and volume constraint configuration. The inlet and outlet ports are not shown

for brevity. Without a constraint on the fluid volume, the reservoir in the no-slip design mostly retains

its rectangular shape with some minimal constrictions (see circles marked by A) in the main body of the

valve to create a large vortex in the reverse flow. Further, there is a pronounced vertical constriction (B)

on the bottom port. In contrast, the Kn-slip design naturally reduces the volume of the reservoir, favoring

a narrower channel (C) in the main body without a constriction near the bottom port, resulting in smaller

vortices to redirect the flow through the valve.

With a 60% volume constraint, the design differences are more pronounced. Again, the design with

the no-slip condition relies on a constriction on the bottom port (D), whereas the design with the Kn-slip

condition uses small vortices (E) to achieve the target diodicity.

In the case of a 40% volume constraint, the design with the no-slip condition introduces a narrow

horizontal constriction (F) and brings the second constriction (G) closer to the top port. The design with

the Kn-slip is similar in this respect, but the two constrictions (H) are further apart, one near each port.

The recirculation region near the top port is larger in the no-slip design (I). While the two designs have

similar features, their relative placements and orientations vary to a greater extent than in the splitting

manifold problem. Figure 18 overlays the design contours for each volume constraint case for a more direct

comparison.

Table X summarizes a comparison study, similar to that in Section 5.3.1, where, within each volume

constraint configuration, we analyze each design with the other boundary condition. We find that, for all

Configurations, the Kn-slip design performs better than the no-slip design regardless of which boundary

condition is used to analyze it. However, the Kn-slip design fails to reach the target diodicity when analyzed

with the no-slip condition. Similarly, we find that the no-slip design offers a better diodicity than the Kn-

slip design; however, this comes at a worse performance in terms of the objective and is not the goal of the

optimization problem.

Further, it is important to note that this paper is not meant to provide strict design guidelines for a

fixed-valve; rather, this study suggests that, for a given target diodicity, the Kn-slip boundary condition

should be included during the design optimization process if the geometric and fluid characteristics lead to

a finite Kn number. while the differences in design and performance where small for the splitting manifold

problem, they are more noticeable in this example. In Configuration (i), there is a 23% increase in the

objective value when using the no-slip design instead of the proper Kn-slip design. Similarly, there is a 15%

and 23% increase in the objective value for Configurations (ii) and (iii), respectively.
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Z, Di Design in Configuration (i): fV = 1.0

(a) No-slip (b) Kn-slip

Case:
no-slip 0.306, 0.968 0.249, 0.986

Kn-slip 0.340, 0.953 0.262, 0.970

Design in Configuration (ii): fV = 0.6

(a) (b)

Case:
no-slip 0.328, 0.970 0.266, 0.989

Kn-slip 0.342, 0.959 0.291, 0.970

Design in Configuration (iii): fV = 0.4

(a) (b)

Case:
no-slip 0.444, 0.969 0.343, 0.988

Kn-slip 0.482, 0.956 0.370, 0.967

Table X: Objective value and diodicity in the comparison study for each configuration in the fixed-valve
problem.

6 Conclusion

Full topology optimization for fluidic devices has been limited to problems in the continuum regime. In this

work, we consider problems in the slip regime by introducing a slip boundary to model the non-zero fluid

velocity at solid walls. The fluid model is the incompressible Navier-Stokes with slip boundary condition

that replace the traditional no-slip conditions in the continuum regime. The Kn-slip boundary model relies

on the precise position and orientation of the fluid-solid interface, which cannot be recovered using density

methods traditionally used for flow topology optimization. We introduce a LSM approach to allow for a

precise description of the interface. The level set field is discretized with bilinear elements. The XFEM

discretizes the flow model using the LSM geometry description. We project the normal vectors to be able

to compute curvature information when low-order elements are used to discretize the level set field. We

consider optimization problems with 2D steady incompressible flow. The optimization problems are solved

using a nonlinear programming method.

The proposed framework for the Kn-slip boundary condition is validated against an analytical solution

for the flow between rotating cylinders. This study suggests that the Kn-slip boundary condition becomes

important around Kn = 10−3 and that the J{n,t} terms are necessary to fully recover the analytical solution.

We consider the effect of the Kn-slip boundary condition on a splitting manifold. The examples in

Section 5.3 suggest that, for flows with Kn > 10−3, the Kn-slip boundary condition begins to impact the

performance of an optimized design in terms of the objective and flow rate constraints. While the differences

in design and performance are small for the problems presented, we expect that the effect of the Kn-slip

boundary condition compounds for larger Kn numbers. This study further suggests that when the Kn-slip
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boundary condition is used, the J{n,t} terms should be included for the most optimal design. The differences

in omitting these terms are largest when the design needs to primarily redirect the flow, e.g. in constraint

configuration (iii).

Finally, we consider the design of a fixed-valve in Section 5.4. While the differences in design and

performance are small in the splitting manifold problem, they are considerably larger in the fixed-valve

problem. We note that this paper is not meant to provide strict design guidelines for a fixed-valve; rather,

this study suggests that, for a given target diodicity, the Kn-slip boundary condition should be accounted

for during the design optimization process for finite Kn number flows. With no volume constraint, there

is a 23% increase in the objective value when using the no-slip design instead of the proper Kn-slip design.

Similarly, there is a 15% and 23% increase in the objective value in the cases of a 40% and 60% volume

constraint, respectively.

We recognize that the topology optimization results in this paper reduce to shape optimization for

the simple manifold problem; however, we note that the fixed-valve problem introduces various features,

including constrictions and recirculation regions, that are not necessarily realizable in a shape optimization

setting. The LSM-XFEM framework presented here allows for the enforcement of the Kn-slip boundary

condition along an arbitrary fluid-solid interface, which would not be possible with density methods. This

framework allows for a design optimization procedure that does not require expensive remeshing after each

design update.

In future work, we plan to further investigate these effects in 3D, as well as investigate the effect of

the analogous temperature jump condition on the optimum design in temperature-dependent problems. A

compressible fluid model should be used to overcome the small Mach number restriction imposed by the

incompressible Navier-Stokes model.
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