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Abstract: 
Raster datasets are important for spatial analysis and modeling as well as for cartographic 

display.  As raster data becomes more readily available at finer spatial resolutions, generalization 

is required to meet project needs.  The modification of detail in Digital Terrain Models through 

the generalization process of smoothing using a Gaussian Filter will be examined. While it can 

be assumed that the smoothing process will simplify the terrain through reduction of attribute 

complexity, the rate of generalization, variations for rough and smooth terrain, and differences in 

specific landscape conditions, as well as any intermediate spatial resolutions are unknown after 

iterative filtering. 

The theoretical contribution of this thesis is to systematically explore the concept of 

“implicit” resolution (attribute resolution) change, defined in the thesis as a modification to 

resolution which is the consequence of data processing or modeling without knowing in advance 

of the operation what is the precise resolution of the output.  Several concerns arise after 

smoothing regarding data resolution and vertical integration with other datasets. 

This thesis will compare filtered Digital Elevation Models (DEM) to other National 

Elevation Datasets and National Hydrography Datasets of various spatial resolutions.  A standard 

deviation and semivariogram analysis will relate the attribute resolution of a filtered DEM to a 

known spatial resolution, which can then be linked to a target mapping scale.  A conflation 
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analysis will determine the success rate of vertical data integration between a filtered DEM and 

an external, vector dataset. 

Results of this analysis have identified that aggressive smoothing can have a large, global 

impact on the spatial dependencies within the DEM.  This suggests that smoothing is only useful 

for small changes in scale or resolution.  Additionally, smoothing can have strong impacts on the 

rate of vertical integration on flat landscapes, where features (i.e. valleys) are only defined by a 

low relief. 
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Chapter 1. Problem Statement 
 

1.1 Introduction 

Raster datasets are important for spatial analysis and modeling as well as for cartographic 

display.  As raster data becomes more readily available at finer spatial resolutions, generalization 

is required to meet project needs pertaining to small scale mapping or GIS analysis over large 

geographic extents.  This thesis will focus on terrain generalization through attribute 

modification (specifically filtering) for a cartographic purpose.  However, several concerns arise 

regarding data resolution and vertical integration and topological alignment with other datasets.  

In creation of cartographic products, these concerns are at the heart of cartographic best-

practices. 

The purpose of this thesis is not to define generalization rules for cartographic 

representation of terrain, but rather to provide insight into how the filtering process may alter 

resolution and the ability for a dataset to integrate with others.  Specifically, this thesis will allow 

the cartographer answer specific questions regarding the requirements for generalization of a 

DEM.  These questions may include 1) is a filtered DEM appropriate for my map‟s display; 2) is 

it more appropriate to filter or resample my DEM based on my map‟s scale or requirements or 

how aggressively should I filter my DEM; and 3) will a filtered DEM “fit” or integrate with 

other datasets that have been compiled at a different spatial resolution than my DEM? 

This chapter will first define generalization and resolution.  A key driver of 

generalization is the target mapping scale.  Commonly, cartographers relate spatial resolution to 

a mapping scale.  However, this relationship can become ambiguous, especially after smoothing.  

This chapter will pose several main research questions that will be answered in the remainder of 

this thesis.  These questions will fill the knowledge gap of how generalization changes attribute 
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resolution of a DEM and how this affects the data‟s fitness for use for a specific mapping 

purpose. 

 

1.2 Clarifying key definitions 

1.2.1 Defining Generalization 

Generalization can imply many meanings and is needed for all maps.  From a 

cartographic standpoint, generalization commonly refers to a process of modification and 

symbolization of data that results in a reduction of the amount of specific detail carried on a map, 

yet preserves enough information to maintain a conceptual meaning (Dent et al., 2009).  Imhof 

(2007) uses the term more to discuss the interplay of elements on a map that requires 

manipulation to create a cohesive and pleasurable cartographic display.  Others similarly discuss 

the manipulation processes with a focus on map clarity at a given scale and for a given purpose 

(Tyner, 2010; McMaster, 1989; ICA, 1973; British National Committee for Geography, 1966).  

While many of the processes listed here focus on the concept of detail reduction in a map, 

generalization can also introduce detail when interpolating or exaggerating data to improve a 

map‟s message (Buttenfield and Mark, 1991).  All of these definitions here highlight the process 

of data manipulation in accordance with a subjective user to improve a map‟s message. 

Although every map can be considered as an example of this proverbial “generalization 

of reality”, many things can catalyze further generalization.  Some common catalysts include 

map purpose, scale reduction, and data complexity (Weibel, 1987; Robinson and Sale, 1969).  

The first catalyst, map purpose, is always a driving cause of generalization.  As it is impossible 

to map everything, the cartographer must choose what to represent.  This form of generalization, 

through selection and omission, clarifies the purpose of a map and falls within the scope of many 

definitions of cartographic generalization.  The second catalyst, scale reduction, is heavily 
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dependent upon the amount of page space which is available after a scale change.  Data must be 

simplified, aggregated, or displaced in order maintain the same amount of information. The final 

catalyst, data complexity, refers to the level of geographic detail in the data.  It is frequently 

broken up into either spatial complexity or attribute complexity, which is either reduced or 

enhanced to improve the fitness of use per the map‟s scale and purpose (Goodchild and Proctor, 

1997; McMaster and Shea, 1992). 

Spatial data complexity is the amount of geographic detail in a dataset.  Datasets with 

high levels of spatial data complexity will require more generalization when scale is reduced.  

Spatial data complexity is often, but not always, related to a data‟s collection scale which will 

permit varying amounts of detail.  Exemplified by this concept is the National Hydrography 

Dataset (NHD) which is delivered nationwide in multiple forms of varying spatial data 

complexity (Simley and Carswell, 2009) (Figure 1.1).  The left panel of Figure 1.1 is the high 

resolution data, collected at a scale of 1:24,000, and contains many more stream features and has 

more detail in the features (number of vertices).  Conversely, the medium resolution data (right 

panel of Figure 1.1), compiled at a scale of 1:100,000, has fewer streams and relatively straighter 

or less complex line features.  Through scale reduction, the high resolution NHD will either have 

to be generalized more aggressively or replaced with a dataset of lesser detail.  

 
Figure 1.1: A portion of the National Hydrography Dataset (NDH) that exemplifies spatial data complexity. 
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Attribute complexity can refer to either quantity of attribute information or the attribute 

precision.  Attribute complexity and spatial complexity can be related.  Aggregating attribute 

data will often change the spatial complexity and symbology of the representation of the data.  

The National Land Cover Database (NLCD) is an example that demonstrates levels of attribute 

complexity (Homer et al., 2012) using a hierarchical land cover classification system (Anderson 

et al., 1976).  Figure 1.2 illustrates a portion of the NLCD and its legend.  The data‟s attributes 

are coded based on eight different classes.  The attribute detail is then enhanced as each of these 

eight classes then has further subcategories, forming a total of twenty classes.  Figure 1.2 shows 

four classes of developed area which demonstrate a relatively high degree of attribute detail.  As 

scale is reduced, these four levels of development may be aggregated to the single “Developed” 

category.  This reduction in attribute detail will immediately impact the spatial complexity. 

 
Figure 1.2: An example of raster attribute complexity shown as nested attributes in the National Land Cover 

Database (sample taken from Longmont, CO). 
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It is important to note the potential problems that can arise by altering attribute data, 

especially when generalizing raster data.  Raster based datasets can be generalized through 

modification of spatial detail (cell size) or by modifying the attributes (or cell values) of the grid.  

The direct results of these generalization methods can be more easily measured and observed 

when dealing with categorical data such as the NLCD.  However, the direct effects become 

ambiguous when dealing with continuous datasets such as elevation, temperature, or population 

density.  It is important for the cartographer to understand how this attribute generalization 

affects a dataset.  

Though many reasons have been defined for generalization, little has been studied about 

creating a standardized process to generalize geospatial data.  This is understandable given the 

vast array of purposes for geospatial data.  Imhof (2007) reflects on how terrain should be 

generalized, but does not explicitly mention how or when to manipulate the terrain data.  The 

generalization processes and the order in which processes occur will vary over space to reflect 

the local landscapes (Stanislawski and Buttenfield, 2011).  Common generalization processes are 

frequently exemplified in the definitions of generalization including selection and simplification 

(Tyner, 2010).  Others add to this list by including combination, displacement (Weibel, 1987), 

classification, and even symbolization (Dent et al., 2009).  In this thesis, the purposes of 

generalization include the modification to reduce or systematically introduce (enhance) spatial or 

attribute detail (Buttenfield and Mark, 1991). 

 

1.2.2 Defining Resolution 

Resolution can be divided into three categories which include temporal, spectral, and 

spatial (Longley et al., 2005).  Temporal resolution is the frequency with which data is collected 
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and references the data‟s currency.  Spectral resolution refers to the part of the electromagnetic 

spectrum in which the data is collected and is related to the number of bands in a raster image.  

Spatial resolution references the pixel dimensions for gridded data, or alternatively refers to the 

shortest distance between two items in a data set. 

Resolution will be examined in this thesis and can be broken into two categories 

including attribute and spatial resolutions.  Attribute resolution refers to the precision or level of 

detail in the variables contained in the data set.  For terrain data, attribute resolution refers to the 

details in the z-values, essentially the vertical resolution; and for other types of raster data, it 

refers to the thematic characteristics stored in each grid cell.  Considering Figure 1.2, the NLCD 

data has 22 unique land cover values.  These values are further categorized into 8 classes, 

simplifying the attribute resolution.  The attribute resolution is linked to the level of detail that 

can be extracted from a dataset (Slocum et al., 2009; Wade and Sommer, 2006; Tomlinson, 

2003).  Spatial resolution is often defined as the ground measurements of cell size or pixel of a 

remotely sensed image or the distance between two objects within a dataset (Bolstad, 2008; 

Wade and Sommer, 2006; Tomlinson, 2003; Lee, 1991).  The spatial resolution can also be 

exemplified in Figure 1.1 by evaluating the number of feature vertices in the main river stems.  

Spatial resolution is also identified as the minimum mapping unit (MMU), which is the smallest 

detectable feature in the dataset. 

The spatial resolution can manifest itself differently between vector and raster datasets.  

In a vector dataset, spatial resolution manifests as the minimum mapping unit, which is 

dependent upon the dataset and the scale at which the data is being used.  An example of this 

would be changing an aggregation unit from states to counties in order to represent some data.  

In a raster dataset, the attribute and spatial resolutions are much more interrelated because 
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attributes are imbedded into the pixels.  Spatial resolution manifests itself into the size of the 

pixels and the granularity of the dataset (i.e. are ridges and valleys readily detectable within the 

data?).  DeMers (2002) suggests that the minimum mapping unit or granularity, should be used 

to define the pixel size, where the pixel size is 25% the size of the MMU.  While the cell size is 

frequently determined by the collection sensor, cell sizes can also be defined using interpolation 

methods to conform to model needs, or to integrate with other vector data (DeMers, 2002).  

Figure 1.3 represents spatial resolution.  The left panel shows a DEM and hillshade with fine 

spatial resolution.  The pixel size is 3 meters.  The middle panel shows a coarse spatial resolution 

with a pixel size of 100 meters.  The fine spatial resolution shows too much detail and appears 

noisy.  Conversely, when the spatial resolution is too coarse, the result appears blurry or aliased. 

 
Figure 1.3: Examples of spatial resolution in a DEM.  The right panel combines the two spatial resolutions to make a 

more appropriate display (discussed in section 1.3.1). 

 

The second is the attribute resolution, or the apparent feature granularity (Figure 1.4).  

Both panels in Figure 1.4 have a spatial resolution of 3 meters.  The left panel has a fine attribute 

resolution.  The right panel is the same DEM as represented in the left panel, but has been 

filtered.  This has reduced the attribute detail and coarsened the attribute resolution.  Minor 

stream tributaries and braids can be seen in the fine attribute resolution image.  Much of this 

detail is lost, or blurred, in the image with coarse attribute resolution, but the major features still 
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remain.  Filtering has not changed the physical spatial resolution (the pixel size) but has modified 

the level of detail that can be extracted from a dataset, which is one definition of attribute 

resolution (Slocum et al., 2009).  The filtered terrain is suitable for some smaller target scale, but 

at present, empirically derived guidelines do not exist for how much to filter data to approximate 

a specific target scale (or range of target scales).    

 
Figure 1.4: Attribute resolution is the amount of detail that can be extracted from an image (granularity). 

 

The main goal of this thesis will be to relate the attribute resolution of a filtered dataset to 

a specific spatial resolution in order to guide cartographic data processing for terrain mapping at 

reduced scales.  The USGS hosts DEMs in three spatial resolutions.  Because terrain data is 

sensitive to scale change, it is likely that a target mapping scale will be out of the useable range 

for these spatial resolutions.  If the DEM resolution is too fine for the mapping scale, it will 

appear too detailed and distract from the map‟s purpose.  In order to accommodate some 

intermediate or small mapping scale, cartographers frequently filter DEMs to remove excess 

detail.  However, no systematic exploration has been done to identify how filtering can alter the 

data or how much filtering is needed to create a terrain representation for a specific scale.  This 

leads the cartographer to filter by trial and error, causing an inefficient and inconsistent 

methodology for terrain generalization. 
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1.3 The central problem – matching spatial resolution and mapping scale 

Terrain generalization is a common practice in GIS data processing and is becoming 

more important as raster data collection improves to finer spatial resolutions.  Digital Elevation 

Models (DEMs) are increasingly available with spatial resolutions of roughly 3, 10 and 30 

meters (1/9, 1/3, and 1 arc-second respectively), for the conterminous United States. However, 

terrain is acknowledged to be a data layer which is extremely sensitive to scale (Mark, 1991).  A 

question arises, specifically, which spatial resolution is appropriate for integrating DEMs with 

existing vector data sets at a given mapping scale?   

 

1.3.1 The effects of resolution on DEM representation 

For cartographic displays, using a dataset at too fine a resolution for a given mapping 

scale yields a busy appearance, while using a dataset at too coarse a resolution can appear aliased 

or blurry (Figure 1.3). Cartographers must generalize data to an appropriate resolution for proper 

display based on the controls of generalization (Robinson and Sale, 1969).  In manual shaded 

relief, the cartographer determines which landscape features to show.  Imhof (2007) offers some 

general guidelines about removing the smallest landscape features first (gullies, alluvial deposits, 

etc.), then removing larger features such as ridges, and finally combining mountain chains and 

exaggerating height.  However, these decisions are both subjective and manual and difficult to 

implement in a fully automated system.  At present, cartographers implement these processes 

digitally by heuristic methods and generalization of structure lines.  Other methods have also 

been created such as “resolution bumping” (Patterson, 2001), which combines coarse spatial 

resolution data with fine spatial resolution data to represent the largest landscape features and 

enrich them with minor detail.  The rightmost panel in Figure 1.3 demonstrates how resolution 



10 

 

bumping is accomplished.  By overlaying the fine and coarse spatial resolutions, a more 

appropriate representation of the terrain can be achieved for cartographic display. However, this 

method of terrain representation is subjective and requires trial and error to develop an 

appropriate display. 

Other methods filter the attribute resolution, or resample to a coarser spatial resolution, to 

reach a target mapping scale.  Generally, these methods are applied uniformly, which can 

homogenize detail and remove some important but smaller terrain features preserved in manual 

strategies.  Filtering the data will smooth out and gradually “erase” minor landscape features.  

Iterative filtering or filtering with increasingly large focal windows will gradually smooth out 

much of the landscape detail to be clearly represented at smaller scales (Leonowicz et al., 

2010a).  Vertical exaggeration can emphasize high-relief areas, creating clear boundaries 

between landscape types at small scales (Patterson, 2000; Patterson, 2001) but this method does 

not work as well in less rugged terrain.  

Cartographers need to understand the filtering process, and how it may affect the 

granularity of a raster dataset.  Appropriate DEM representation requires that terrain integrates 

vertically with other data layers (especially hydrography and transportation networks).  

Depending on landscape characteristics (aridity, terrain roughness, etc.), different amounts of 

filtering may be required.  Using coarse resolution data for rugged terrain may not be adequate to 

integrate with other data; using fine resolution data may appear too detailed in low-relief areas. 

 

1.3.2 Relating resolution to scale 

Relating data resolution to an appropriate mapping scale is an ongoing research question.  

The question is commonly answered in the Remote Sensing literature by using the term of 
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minimum mapping unit (MMU).  The MMU is the smallest areal object to be mapped at a given 

scale (Lillesand et al., 2007; Goodchild and Proctor, 1997).  However, this relates to either 

vector-based data or discrete raster data where a specific minimum size can be established (the 

smallest size feature encountered or expected to be encountered in a dataset).  The National 

Wetlands Inventory defines the MMU of any [feature] to be displayed on a 1:24,000 scale map 

to be at least 1 to 3 acres in size (U.S. Fish and Wildlife Service, 2004).  Of course, this MMU 

specification must be altered when displayed at different scales.  For raster-based data, DeMers 

(2002) suggests that the intended MMU should be four times the spatial resolution to provide 

enough detail for modeling purposes. 

The use of the minimum mapping unit becomes difficult, if not impossible, to apply to 

continuous raster data because finite boundaries become ambiguous in gridded data.  

Cartographers have sought other ways to relate the spatial resolution of data to a mapping scale.  

Similar to the principles of a minimum mapping unit, Tobler (1988) first identifies the detectable 

size of a dataset, which is the smallest feature to appear on the map or in a dataset.  Alternatively, 

Kimerling (2011) uses an output media resolution (on-screen display, hardcopy print, etc.) to 

establish a spatial resolution for a raster dataset.  This strategy optimizes the amount of detail in 

the raster dataset for the best display quality but it constrains the use to a particular media type.  

MMU and scale-to-resolution conversions do not completely solve the problem.  First, 

these methods rely on a known spatial resolution of the dataset, which becomes ambiguous after 

filtering.  Second, the scale-to-resolution relationships characterize data as a homogeneous 

granularity and ignore local characteristics such as terrain roughness. 
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1.3.3 Generalization 

Since much of the readily available data is produced for large scale purposes, raster data 

must be generalized to accommodate smaller scales to improve processing times or create 

appropriate visual displays. Many projects, especially those dealing with global models, require 

smaller mapping scales and generalized data.   

Large scale maps are considered to range between 1:5,000 or larger scales and are used 

for local mapping or project-specific needs (Steward, 1974).  At that time, the U.S. Geological 

Survey (USGS) made large scale maps at a scale of 1:24,000.  Larger scale maps and project 

specific data were often created elsewhere.  Since then, data used for USGS maps and datasets 

have increasingly fine spatial resolution.  For example, the U. S. Geological Survey‟s National 

Elevation Dataset is continuing to improve availability of 3-meter DEMs nationwide and in 

Alaska (Gesch et al., 2009). 

 

1.4 Problem Statement 

Few generalization guidelines have been proposed that offer insight into how 

aggressively a dataset must be smoothed to conform to a given mapping scale.  A better 

understanding of how the generalization process, specifically filtering, affects the attribute 

resolution of a dataset will help to lay a framework in which guidelines can be formed.  

However, these guidelines will differ from project to project based on the controls of 

generalization. Therefore, a set of comprehensive guidelines is beyond the scope of this thesis. 

Nonetheless, the information produced by this work will help to define specific filtering 

thresholds based on a desired target scale or map purpose. 
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To gain the knowledge to formulate the framework for these guidelines, this thesis will 

explore the relationship between terrain filtering and attribute resolution for a range of landscape 

types.  The result of this work will address the question of how DEM attribute resolution changes 

through iterative spatial filtering.  This thesis will explore two specific facets of terrain data 

including 1) the rate of attribute resolution change, and 2) the problems of integration of 

generalized data with other datasets. 

The theoretical contribution of this thesis is to systematically explore the concept of 

“implicit” resolution change, defined in the thesis as a modification to attribute resolution.  

Filtering provides an example of implicit resolution change, as do vector forms of cartographic 

generalization by enhancement (Buttenfield and Mark, 1991), such as refinement or 

exaggeration.  These generalization processes often alter attribute resolution in order to 

manipulate the geometric representation of a dataset.  In contrast, resampling is a generalization 

operator that has a pre-determined output spatial resolution, which is an explicitly stated 

parameter. 

 

1.5 Research questions 

Since the filtering process alters attribute resolution but does not alter the spatial 

resolution, the output resolution is unknown.  Without knowing this information, the appropriate 

spatial resolution for a given mapping scale is also unknown.  This thesis will iteratively filter 

DEMs to explore the relationship between filtering, detail homogenization, and attribute 

resolution for a range of landscape types.  The result of this work will address two key questions: 

1. What is the rate of attribute resolution change during filtering and how does it 

differ between various landscape characteristics? Is the rate of change constant for 
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all filtering iterations, or do certain iterations exist where dramatic changes occur?   

This will aid in determining appropriate mapping scales for a filtered dataset, and 

the appropriate number of filtering iterations to apply to reach a given level of 

attribute granularity.   

2. How well does the filtered dataset integrate with other vector layers at a given 

target scale?  A filtered dataset must still integrate with other existing vector data.  

If it cannot, the filtering process that leads to the new attribute resolution is not 

adequate for the target scale.   

In respect to the first research question, this thesis will iteratively filter fine spatial 

resolution DEMs for a selection of landscape types (rugged and smooth, in dry or humid 

conditions).  The resulting filtered output will be compared to known coarser spatial resolution 

benchmark datasets using the standard deviation of elevation, and semivariogram analysis.  By 

comparing many filtering iterations to coarser spatial resolution benchmarks, the rate of attribute 

resolution change can be studied in the context of landscape characteristics (ruggedness, aridity, 

etc.).  The vertical integration of the filtered DEMs will be examined by using a Coefficient of 

Line Correspondence metric (Stanislawski, 2009) which will measure how well an existing 

vector dataset integrates with the DEM.  Through these questions, this thesis will explore the 

relationships between spatial and attribute resolution in the context of filtering raster terrain and 

clarify the impact of filtering on creation of cartographic products. 

 

1.6 Significance of research 

Terrain is one of the most frequently included data layers used in GIS spatial analysis.  It 

is frequently used as a foundation for base mapping to represent relative elevations and macro-
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scale landforms.  Terrain is also an important data layer for analytic purposes, across a range of 

geographic footprints that span several hundred square meters to the entire globe, requiring a 

wide range of spatial and attribute resolutions.  Most applications require a coarser resolution 

than is readily available.  To accommodate the need for coarser resolution, digital terrain is 

generalized to improve vertical data integration and sometimes improve processing times.  To 

date, a numeric relationship between source spatial resolution, number of filtering iterations, and 

attribute resolution has not appeared in the literature. A lack of understanding about the rate at 

which filtering modifies rough or smooth terrain has led to poor cartographic and analytic 

practice, where inappropriately filtered terrain layers do not integrate with other data and thus 

distort mapping and modeling results. 

The answer to the rate of attribute resolution change in iteratively filtered DEMs through 

various physiographic regions can support analytical and graphical guidelines to setting 

generalization thresholds.  The rate at which attribute resolution changes may be directly applied 

to modify such resolution-to-scale relationships as Kimerling‟s (2011) formula, and in so doing, 

to assist users in deciding how much filtering is required.  For many modelers who work with 

larger geographic footprints (for example global climate modelers), knowing how attribute 

resolution is changed through iterative filtering can assist in vertical data integration, setting 

target resolutions, and better interpretation of results to examine a given scale-specific 

geographic process (e.g., erosion, migration, or urbanization).  

Maintaining the spatial relationships among various GIS data layers and data integration 

between vector and raster datasets is critical for GIS analysis and proper cartographic displays 

(Piwowar et al., 1990).  Data that is mismatched will yield poor model results or produce 

misleading map displays.  The USGS‟s The National Map portal provides nationwide datasets 
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for eight themes (Sugarbaker and Carswell, 2011).  While the USGS is not responsible for 

creation of all eight, integration problems are commonplace among themes.  With users 

expecting quality data, problems with data integration can cause errors in planning, management, 

and safety decisions.  To improve data integration, The National Map program is actively 

interested in and researching integration between multiple geospatial data layers (Usery et al., 

2009).  An assessment of raster – vector data integration after generalization will improve 

understanding of how these layers interact with one another through generalization and how data 

can be mapped across multiple scales. 

 

1.7 Summary 

The remainder of this thesis is organized as follows.  Chapter 2 situates this work in the 

context of existing literature.  This expands upon topics including why cartographers generalize 

raster and terrain data, and what methods exist to generalize terrain.  Chapter 2 will overview 

specific cases of raster generalization and what the known effects of generalization are on terrain 

data.  Chapter 3 will introduce the data to be used during the analysis of the thesis.  It will 

describe the research framework and methodology for the analysis including how the DEMs will 

be filtered, how the rate of attribute resolution change will be measured, and how the vertical 

integration will be assessed.  Chapter 4 presents the results of the analysis.  Finally, Chapter 5 

presents implications for the research, limitations of the study, and directions for future work. 
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Chapter 2. Literature Review 
 

2.1 Introduction 

The purpose of this thesis is to gain an understanding of how the process of 

generalization affects terrain data to be displayed at a given mapping scale.  Smoothing data to 

reduce detail is useful in its own respect, but can become problematic because the process alters 

the attribute resolution without altering spatial resolution of the data.  Linking spatial resolution 

to a mapping scale ensures the data is displayed appropriately.  The disconnect between spatial 

and attribute resolution here makes the resolution-to-mapping scale relationship ambiguous. 

To understand the complexity of relationships between spatial and attribute resolutions, it 

is first important to understand the history of digital cartographic generalization, which evolved 

from hundreds of years of manual generalization.  This chapter provides a brief chronology of 

terrain representation followed by a detailed explanation of digital generalization practices that 

are applied to terrain.  Because terrain is frequently represented in grid format, a relatively new 

technology to the field of cartography, it is important to first understand the generalization 

practices and frameworks that have been developed for raster based generalization.  Next, a short 

discussion is provided on easily accessible terrain data and an explanation of why U.S. 

Geological Survey (USGS) data is used in this thesis.  Appropriate mapping scales of available 

data are explored with an in depth discussion of the resolution-to-scale relationships.  Finally, 

documented impacts of the generalization process on raster data are provided.  

 

2.2 Terrain representation – a brief chronology 

Terrain representation has been a part of cartographic design for centuries and has gone 

through many methods of depiction.  Some of the earliest representations of terrain were simple 
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molehills that portrayed an oblique view of a ridgeline on a planimetric map that often was 

incomplete or filled empty map space rather than depicting terrain structure accurately.  Over 

time, these became more detailed and complete.  The pictoral molehill symbols transitioned into 

more accurate depictions using slope lines and shadow hachures.  Increases in accuracy evolved 

into slope hachuring, shaded relief, and contours (Imhof, 2007) as well as inclined plane 

contours (Robinson and Thrower, 1957) and physiographic symbols (Raisz, 1931).   Currently, 

automated shaded relief is the predominant form of representation showcasing the intensity of 

light cast by a point light source to produce a three-dimensional effect (Brassel, 1974).   

In order to create a map at an economic and pragmatic size, some generalization or 

removal of detail must occur.  In the past, generalization was manual and required specialized 

expertise that incorporated a degree of subjectivity to support scale change and map purpose.  

Patterson and Jenny (2012) exemplify the subjectivity in terrain generalization through shaded 

relief examples of similar regions by different cartographers (Figure 2.1).  While all of these 

maps were compiled at small scales, he main landscape features are all present and easily 

detectable (i.e. Appalachian Mountain Chain versus Great Plains versus Rocky Mountain Chain), 

yet they all have subtle differences and are intrinsically unique despite having identical subject 

matter. 

It is the objective of the cartographer to generalize map data to harmonize the amount of 

detail within the map without causing the data to become unrecognizable.  To this, Erwin Raisz 

(1962) stated that no rules can be given for generalization, implying that it is a wholly subjective 

matter.  Steward (1974) claimed that many would disagree with Raisz‟s proclamation, urging 

cartographers to establish defined rules for the generalization process.  
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Figure 2.1: Manual shaded relief renderings by three North American Cartographers: Richard Edes Harrison (upper 

left) originally published at a scale of 1:7,500,000; Herwig G. Schutzler (upper right) unknown published scale; Bill 

von Allmen (lower left) unknown published scale; and a digital shaded relief by Gail Thelin and Richard Pike 

(lower right) originally published at a scale of 1:3,500,000. 

 

2.3 Analytical Cartography 

As GIS and graphical software developed, cartographers have continued to experiment 

with replication and automation of manual cartographic practices, especially after the automation 

of shaded relief for very small scales, shown in Figure 2.1 (Pike and Thelin, 1990).  As 

cartographers begin to simulate manual terrain representation using digital techniques (for 

example, Leonowicz et al., 2010a; Jenny and Hurni, 2006; Patterson and Kelso, 2004), and 

DEMs become widely available, the need to automate and formalize the generalization process 

also increases. 

Analytical cartography evolved out of this need to automate generalization (Tobler, 

1976).  Analytical cartography applies a theoretical structure to the specific implementation of 
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some digital cartographic process and today is influenced by many external fields including 

mathematics, computer science, and image analysis (Moellering, 2000; Clarke and Cloud, 2000).  

Rooted in this subfield is a need to understand the underlying data structures and properties to 

apply mathematical solutions to a spatial problem (Franklin, 2000).  While analytical 

cartography will help to induce best standard practices for automated generalization and allow 

results to be replicable, the main purpose is to help cartographers automate processes involved in 

data and map production at intermediate and smaller scales.  By understanding the effects of a 

generalization process on a dataset, cartographers can defend design choices and select 

appropriate generalization thresholds for a map‟s purpose.  As Eckert (1908, p.347) once 

defended the use of scientific judgment applied to map production, his statement can also be 

related to the need for a deep understanding of the automated generalization processes used 

today: “[This] will prevent any erratic flight of the imagination and will impart to the map a 

fundamentally objective character where generalized maps should be products of art, clarified by 

science.” 

Similarly, as Tóth (2010, p. 26) reminisces on his career as a relief artist, he declares that 

“… there is no definite work routine to … digital relief production.  Each project presents a 

different set of challenges and will require its own unique solutions.”  The benefits of manual 

terrain representation and generalization allow great flexibility in localized generalization 

decisions.  The downside is the results may not replicate and geographic accuracy is often an 

“inconvenient afterthought” (Patterson, 2001).  However, complete automation coupled with a 

lack of knowledge of the generalization process could result in inappropriate solutions to terrain 

generalization.  The uses of generalization guidelines are useful in determining a starting point 

for generalization with a cartographer‟s intuition to guide the final product‟s design from there.  
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A solid foundation of knowledge, derived by mathematical transformations of the data will 

improve replicability and minimize the effects of accuracy being an afterthought while allowing 

unique solutions to be applied for a given map‟s purpose or scale. 

 

2.4 What is generalization: when and how do we use it? 

2.4.1 Defining generalization 

As discussed in the previous chapter, generalization is the process of systematically 

reducing or introducing (enhancing) spatial or attribute detail (Buttenfield and Mark, 1991) of a 

dataset for the purpose of a scale change to a cartographic product.  One critical element within 

many of the formalized definitions of generalization mention the use of multiple generalization 

operators (e.g. generalization algorithms) that combine to form a process of generalization.  By 

treating generalization as a process, a flow of tasks can be implemented, often iteratively, to 

ensure the generalized product matches the requirements for its use. 

The process of generalization can be organized several ways.  Some categorize the 

process into two steps that include simplification, the removal of excessive data, and 

amplification, the enhancement of sparse data (Wright, 1942).  Others include more categories 

that deal with how the data will be modified and include selection, classification, simplification, 

and symbolization (Dent et al., 2009).  Alternatively, the generalization process can be 

categorized based on whether attributes or geometry is altered (McMaster and Shea, 1992).  

While the generalization operators are critical components to modifying detail to clarify a map‟s 

purpose, the order in which these operators are applied is just as important and is frequently an 

iterative process (Beard and Mackaness, 1991).  The sequencing or repetition of tasks is often 

strongly dependent upon the cartographer to ensure the generalization process has been 
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completed successfully or adequately (Bard, 2004).  Morrison (1974) even designates some 

generalization operators as a pre-processing step. 

Controls of generalization determine why and how generalization operations must be 

applied.  These include map objective, map scale, data quality, graphic limits (Robinson and 

Sale, 1969; Steward, 1974; Brassel and Weibel, 1988), and more recently, expected audience 

(Slocum et al., 2009).  Target map scale is the single most influential control as it directly relates 

to the amount of generalization that must occur to allow all map content to fit in the allotted 

space.  The map‟s objective reflects what purpose the map serves, and thus what types of detail 

must be displayed most prominently.  The objective is closely related to the map‟s expected 

audience.  A map must be designed differently for children compared to adults or general users 

compared to specialized users.  Data quality can reference spatial or attribute precision (Weibel, 

1987).  Finally, the graphic limits refer to the output medium, which controls how much detail 

can be displayed on the map.  The graphic limits of different types of data vary.  For instance, 

terrain and hydrography must be generalized more intensely than transportation due to the detail 

inherent within the datasets and inability to be pushed through a large change in scale (Mark, 

1991; Buttenfield, 1995).  

 

2.4.2 Operators of raster generalization 

Raster generalization focuses on the modification of attribute values of the gird cells 

(McMaster, 1989).  Raster datasets can be organized into two data structures including 

continuous and discrete data.  Continuous raster datasets are grids in which each cell has a 

floating point value, that represent volumetric data (elevation, temperature, or population 

density).  Discrete raster datasets represent categorical data with integer values, classed 
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attributes, and abrupt boundaries (e.g., land use, soil type, or rural/urban zones) (MacEachren, 

1995).  Because a DEM is commonly distributed as a continuous raster dataset, this type of raster 

will be discussed in more detail.  McMaster and Monmonier (1989) identify four ways in which 

raster data can be generalized.  Structural generalization is appropriate for either continuous or 

discrete data and involves changing the size (structure) of the grid cells.  Numerical 

generalization involves altering the attribute detail through spatial filtering.  The other two raster 

methods are less relevant to this thesis, and include numerical-categorization generalization 

which is used for converting a continuous data type to a categorical (discrete) data type and 

categorical generalization, which is only appropriate for discrete datasets.  

Structural generalization alters the cell size and/or shape systematically, while not 

changing the size of the grid as a whole.  This spatial resolution change aggressively generalizes 

data to be suitable for a new scale, but can corrupt an underlying structure.  When changing 

spatial resolution directly, care must be taken in determining how new cell values are assigned.  

A commonly applied method of structural generalization is resampling, which modifies pixel 

sizes.  Resampling involves combining values in original cells into the new cell sizes, and is 

usually accomplished by interpolation.  Nearest neighbor and majority resampling are most 

appropriate for discrete data because it maintains the original cell values of the source raster.  

Bilinear and cubic-convolution are appropriate resampling methods for continuous data and take 

a weighted average over four or eight neighboring cells respectively to approximate new values 

(Wade and Sommer, 2006).  Additionally, structural generalization can involve either vector-to-

raster or raster-to-vector data conversions.   

Numerical generalization, frequently referred to as spatial filtering, generalizes raster data 

locally by focusing on a defined neighborhood (commonly 3x3 cells), called a kernel, to smooth 



24 

 

the data which concurrently reduces the variance within the dataset.  Larger neighborhood sizes 

filter more aggressively by removing local characteristics. Several types of filtering can 

generalize raster details in varying ways.  This is commonly done through frequency filters that 

suppress specific parts of a raster‟s frequency and focuses on modifying the variance within the 

kernel. High-pass filtering attenuates low frequency changes, and emphasizes differences 

between neighboring cells, thus highlighting boundaries between features.  It is also known as 

edge enhancement because it highlights areas of rapid change, essentially increasing the variance 

within the kernel.  Low-pass filtering conversely attenuates high frequencies, which removes 

noise in the data via two kinds of averaging. Arithmetic averaging blurs the image systematically 

while weighted averaging reduces the variance of data values, yet retains local characteristics.  

Filtering can improve visual quality for reduced scales, but should only be used for small scale 

changes (Weibel, 1992).   

Other methods of raster based generalization have also been derived which are analogous 

to vector-based enhancement; these include interpolation and heuristic generalization.  

Interpolation is used to recreate a surface from structure points (spot heights and benchmarks) by 

assuming some relationship between the structure points and estimating the values between each 

point (Burrough and McDonnell, 1998). Interpolation can preserve critical features; and 

converting the raster terrain into a triangulated irregular network (TIN) greatly reduces data size.  

Data reduction through TINs greatly improves processing time and reduces file size, but can 

create artifacts which can omit local characteristics if the interpolated structure points have been 

poorly selected (Wang and Lo, 1999).  Heuristic generalization extracts vector structure lines 

from an existing raster.  These features are then generalized using vector-based operators.  The 

generalized structure features are then interpolated to recreate the raster surface.  However, 
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heuristic methods generally are not based on statistical threshold and require significant input 

from the cartographer (Weibel, 1992).  Others have focused on alternative methods of detail 

enhancement and feature exaggeration (Leonowicz et al., 2010b; Imhof, 2007; Patterson, 2001). 

 

2.4.3 Raster based generalization framework 

One of the earliest raster-based frameworks (Weibel, 1992) divides the generalization 

process into categories of methods that are partially determined by terrain characteristics.  

Terrain is defined as any type of surface, described by continuous data.  The categories include 

heuristic and filtering methods and are based on the Brassel and Weibel (1988) framework.  A 

critical part of the framework is the inclusion of a feedback loop after the generalization process; 

if the generalization results do not meet the needs for the map, the generalization process is 

repeated. 

Heuristic generalization methods involve the generalization of extracted structure 

features in the terrain.  The feature extraction and identification is often related to manual 

methods opposed to decisions based in well-founded theory (Weibel, 1992).  Therefore, this type 

of generalization can emulate manual generalization decisions for terrain data, but can be 

difficult to replicate.  The first step of this method is to identify „significant‟ structure features 

and extract them from a terrain.  The set of the structural features forms a vector „terrain 

skeleton‟ which is generalized using vector operators.  After the terrain skeleton is generalized, 

the terrain is interpolated to convert back to a raster format.  Due to the dependence of the 

cartographer to make feature extraction decisions, heuristic methods are difficult to implement in 

an automated environment (for more detail see Zhou and Chen, 2010; Ai and Li, 2009; Zaksek 

and Podobnikar, 2005; Weibel, 1992). 
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The second category of terrain generalization is filtering, which is used for minor scale 

reductions or for low-relief terrain.  The filtering category can be selective or global.  Selective 

filtering is considered a structural process (McMaster and Monmonier, 1989) because it changes 

the structure and spatial resolution of the data by systematically using selection and elimination 

to reduce detail.  Global filtering is a numerical process because it retains the number of samples 

points within the data, but changes the attribute values to reduce detail. 

Selective filtering is useful for terrain with mixed low-to-high relief and is accomplished 

via elimination until the terrain is adequately generalized.  In selective filtering, critical terrain 

points (peaks, pits, saddles) are selected.  Other elevation points are systematically compared to 

these critical points and eliminated if similar to the critical point.  The raster terrain is then re-

created from the remaining points.  Alternatively, Heller (1990) proposes a similar approach 

where sample points are systematically added to the surface in a hierarchical manner until the 

desired amount of detail is acquired.  This method is useful in removing minor details and 

reducing the files size of the data while preserving the true structure points of the source data. 

Global spatial filtering can be effective for minor scale reductions or for flat terrain 

because it slowly reduced or highlights specific areas within the data by applying an attribute 

transformation to the sample points within the grid.  This is commonly referred to as frequency 

filtering and is most commonly done by transforming a cell value by averaging its neighbors.  

Neighbors are commonly defined as a 3x3-, 5x5-, or 7x7-cell matrix around a focal cell 

(Burrough and McDonnell, 1998; Wade and Sommer, 2006).  However, these are not the only 

dimensions to define a neighborhood and can be much larger, where the larger the focal window, 

the more intense the generalization (McMaster, 1989).  The neighborhood definitions can also 

take various shapes.  Commonly, the neighborhoods are defined using a queen (nearest 8 cells) 
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or rook (nearest 4) cells contiguity.  However, other shapes and configurations can be used 

including circles, wedges, or concentric rings (donut).  Low pass frequency filtering averages 

values within a defined neighborhood or focal window.  This effect squeezes out extreme values 

and reduces the variance of the dataset by increasing local minima and decreasing local maxima 

(McMaster and Monmonier, 1989).    Other forms of global filtering include other types of 

statistical transformations including minimum, maximum, quintile, median, or mode statistics 

and frequency filtering to sharpening or edge detection using high-pass or Laplacian filters 

(Leonowicz and Jenny, 2011; Jain et al., 1995).  This project focuses on the effects of low pass 

filtering on a DEM‟s attribute resolution.   

 

2.4.4 Raster generalization in use: examples of terrain representation 

Significant work on terrain generalization has been conducted in all three of these 

categories defined in Weibel‟s framework (1992), most of which involve an integration of 

multiple methods.  Leonowicz et al. (2010a) attempt to mimic very small scale manual relief 

shading by using arithmetic mean filtering techniques to smooth the terrain and heuristic 

techniques to replicate the exaggeration of landforms.  Data is also masked to take advantage of 

local terrains characteristics and to generalize the terrain types differentially.  A later study 

utilizes quartile filters to generalize low relief and high relief landscapes for different effects to 

produce a smooth hypsometric tinting for very small scale mapping (Leonowicz and Jenny, 

2011). 

Other generalization methods with an emphasis on local terrain variations (selective 

filtering and heuristic generalization) have also been studied for large scale mapping purposes.  

Ai and Li (2009) use structure lines and watershed characteristics to identify insignificant valley 
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features.  These features are then removed by a filling procedure to smooth the terrain.  They 

claim that the process can be done iteratively to accommodate larger scale changes.  Others try to 

examine selective filtering methods on the effects of visual display while trying to minimize 

database size.  Based on critical point extraction, it is possible to maintain legible topographic 

structures while using a small fraction of the original sample points (Zhou and Chen, 2010). 

 

2.5 Data availability 

Terrain data is commonly obtained in a raster grid format and is widely available from 

many sources.  This section will discuss some of the most prevalent data that is available by 

providing a brief history of the dataset and comment of strengths and weaknesses of each. 

Digital elevation data has become far more available and accessible in recent decades.  

Global data is freely available from many sources and users have seen improvements in accuracy 

and spatial resolution.  Some of the most common global datasets available are derived from 

remote sensing technology and include SRTM, ASTER, and GTOPO30.  The United States‟ 

National Elevation Dataset (NED) is available at fine spatial resolutions for the conterminous 

United States and some of its territories.  Several of these datasets are available in multiple 

spatial resolutions, which vary from about 3-meters to 1000-meters.  Alternatively, very fine 

spatial resolution datasets are available that can have sub-meter spatial resolutions.  Project 

specific initiatives can collect Light Detection and Ranging (LiDAR) data, but LiDAR data 

availability is extremely limited and not often freely available.  Figure 2.2 compares samples of 

elevation datasets reviewed in this thesis that are freely available for public use. 

The Shuttle Radar Topography Mission (SRTM) is a joint collaboration between NASA 

and the National Geospatial-Intelligence Agency to produce a fine spatial resolution global 
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elevation model.  The data was collected in 2000 by using interferometric synthetic aperture 

radar (InSAR), which uses two radar images to measure topography (Farr et al., 2007).  The data 

is collected at a 30-meter sampling interval between 60° north and south, known as SRTM-1.  

The data was then processed to SRTM-3, with a 90-meter spatial resolution.  SRTM-3 was 

created by resampling the SRTM-1 dataset by averaging a 3x3-cell neighborhood.  The SRTM-1 

dataset is only available for the United States while SRTM-3 is available on a global scale.  The 

error sources in the datasets have been thoroughly studied (Rodríguez et al., 2005) and are 

frequently introduced by positioning of the space shuttle during the collection process and can 

easily be accounted for.  However, due to the use of radar imaging techniques, dense vegetation 

can obscure bare-earth measurements, which can cause high degrees of error in vegetated areas. 

Since 2000, NASA‟s Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) satellite has been collecting near infrared stereo images of the Earth 

between 83° north and south.  In 2009, a joint project between the United States (NASA) and 

Japan (METI), begun to combine the stereo images to create a Global Digital Elevation Model 

(GDEM).  Upon release, GDEM had an effective spatial resolution of about 120-meters and was 

plagued with artifacts from data gaps in high latitude areas, cloud cover, water masking, and 

canopy displacement (ASTER GDEM Validation Team, 2011). At the end of 2011, a revised 

version of GDEM was released, called GDEM2.  GDEM2 improved the spatial resolution to 

about 30-meters and reduced many of the artifacts inherent in GDEM1.  The methods used to 

enhance the spatial resolution of the data have also increased the presence of high-frequency 

noise, which add improper detail to shaded relief images (compare GDEM to NED in Figure 

2.2).  The ASTER GDEM Validation Team recommend the use of the ASTER GDEM2 product 
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as a fine spatial resolution global product, but caution users to be aware of the existing artifacts 

that have been addressed in the new release, but not completely removed.  

 
Figure 2.2: Four freely accessible elevation datasets at varying spatial resolutions displayed at a scale of 1:250,000.  

SRTM spatial resolution shown is 90-meters.  GDEM spatial resolution shown is 30-meters.  The GMTED2010 

spatial resolution shown is 250-meters.  NED spatial resolution is 30-meters for the coterminous United States and is 

the only dataset shown here that does not have global coverage. 

 

Coarser spatial resolution elevation data is available through the Global Multi-resolution 

Terrain Elevation Data 2010 (GMTED2010) and is available in spatial resolutions of 1000, 500, 

and 250 meters (Danielson and Gesch, 2011).  This product was designed to replace the outdated 
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U.S. Geologic Survey‟s (USGS) GTOPO30 elevation model, which had a spatial resolution of 

1000 meters.  While being a primary source for continental-wide data, the data quality varied 

greatly and had no metadata associated with it.  The GMTED2010 elevation data is a composite 

of eleven data sources, with the primary being SRTM.  Other datasets are used to fill in data 

outside SRTM collection latitudes and fill in voids. 

The final elevation dataset of discussion is the USGS‟s National Elevation Dataset 

(NED), a fine spatial resolution, seamless, national coverage product for the conterminous 

United States (Gesch, 2007; Gesch et al., 2002). The NED project began in the 1970‟s and was 

designed to have a 30 meter spatial resolution. As time passed, the NED was refined to 1/3-, 1-, 

and 2-arc-second spatial resolutions (or about 10, 30, and 60 meter spatial resolutions, 

respectively). In 1999, full U.S. coverage of 1-arc-second data was completed and in 2002, 1/3-

arc-second (about 10m) spatial resolution began construction to conform to vertical and 

horizontal accuracy standards (USGS, 1999). The datasets were derived from photogrammetric 

and Digital Line Graphic (DLG) interpolations methods and are now edited for hydrological 

enforcement rules to improve data integration (Osborn et al., 2001).  Due to the DLG 

interpolation methods of contours, which were produced individually on a 7.5-minute grid, 

several aliasing artifacts exist in the 1- and 1/3-arc-second datasets along compilation grid 

boundaries.  The NED currently is being updated to 1/9-arc-second (about 3m) spatial resolution 

but is not yet available for the entire conterminous United States (Gesch et al., 2002). 1/9-arc-

second data are derived by LiDAR and IFSAR remote sensing methods which, because of the 

finer spatial resolution, are not hydrologically enforced. 

While all of the DEM data sources discussed above are useful in their own regard, the 

USGS‟s NED will be used for the remainder of this thesis.  First, the NED contains several 
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spatial resolutions, each of which was compiled independently.  Second, accuracy standards for 

the NED are standardized between spatial resolutions and enforced and well documented.  By 

using several spatial resolutions of the NED, expectations can already be made about where and 

how errors may occur.  Third, the USGS also supplies other data themes that are of similar 

spatial resolutions to the NED and follow similar standards requirements.  This will be discussed 

in more detail in the next chapter. 

Overall, several trends can be identified when looking at the history of these DEM 

products.  First, spatial resolutions are becoming increasingly fine.  Second, the data is becoming 

better quality.  Both of these trends are promising for cartographers because of increased 

availability in terms of coverage and spatial resolutions.  However, a key questions yet remains 

as to what spatial or attribute resolution is appropriate for a given mapping scale or purpose? 

 

2.6 Relating resolution to scale 

As the availability of today‟s spatial data is always being updated to finer spatial 

resolutions, the need for generalization is therefore growing in importance more so than ever 

before.  Cartographers frequently alter a dataset‟s spatial resolution in order to match its 

appropriateness at a target mapping scale.  There are options in which cartographers perform this 

task.  Kimerling (2011) recently posted an equation to help answer the question that relates the 

spatial resolution of a raster dataset to a map‟s anticipated output resolution.  Kimerling cites a 

common, smooth rendering for mapping occurs at a display resolution of roughly 40 pixels/cm 

(or about 100 pixels/in) for a computer display.  Using these expectations, the applicable scales 

for USGS DEMs compiled at 1/9, 1/3 and 1 arc second are 1:12,000, 1:40,000 and 1:120,000.  
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Due to the changing relationship between arc-seconds and ground distance, smaller map scales 

are applicable at higher latitudes.   

Tobler (1988) posed a similar mathematical formula that converts mapping scale to a 

corresponding spatial resolution for a dataset.  An intermediate step is to calculate the detectable 

size of a feature within the map.  This is the smallest object on the map that is expected to be 

identifiable.  Similar to a minimum mapping unit, he defines this as the detectable size and that 

the data‟s spatial resolution should be half of this value.  A 1/9-, 1/3-, and 1-arc-second DEM can 

be displayed at scales of 1:6,000, 1:20,000, and 1:60,000 respectively.  The objective in this 

equation is to match data spatial resolutions, which should support improved data integration 

within a database. 

A third relationship, defined by Patterson (2012), relates the spatial resolution of a raster 

to mapping scales for a Web Mercator display.  This is the only relationship specifically 

designed for raster data display.  Spatial resolution is calculated by determining the number of 

pixels that are required to circle the equator at a given zoom level.  The number of pixels at the 

equator can be calculated as 2(zoom level).   For the USGS DEMs, mapping scales of 

approximately 1:9,000, 1:36,000, and 1:144,000 are appropriate.  The downside to this equation 

is that the scale isn‟t a direct input.  Instead, it depends on the display resolution, which for a 

Web Mercator map can be directly related to a mapping scale.  Although this isn‟t likely to be 

the go-to solution for many cartographers, it provides insight into an alternative method of 

relating data‟s spatial resolution to mapping scale. 

All three of the suggestions have slightly different mapping scales due to the differences 

in which the data is expected to be used.  While the use of these formulas can be helpful in 

providing insights, they do not completely solve the problem.  Firstly, these methods rely on a 
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known spatial resolution of the dataset, which becomes ambiguous after altering the attribute 

resolution.  Secondly, the scale-to-resolution relationships characterize data as a homogeneous 

unit and ignore data-specific characteristics such as terrain roughness or attribute detail.  Without 

acknowledging terrain characteristics, inappropriate or unexpected over-generalization or under-

generalization may occur per the map‟s purpose.  In other words, these equations only address 

one specific control of the generalization process and must be adjusted according to the others. 

 

2.7 Documented effects of generalization and needs of generalization products 

Raster datasets that represent natural features are susceptible to changes in scale and 

resolution.  Some note that terrain is only effective for a scale change of 2 times the compilation 

scale without generalization being applied (Brewer and Buttenfield, 2010; Mark, 1991).  Steward 

(1974) identifies several agencies that define scale ranges where large scale maps are frequently 

considered to range between 1:5,000 and 1:100,000.  The appropriate mapping scales for USGS 

DEMs calculated above mostly fall within this range.  Therefore, the process of generalization is 

becoming an increasingly important requirement for cartographic products.  

In today‟s era of Google Maps and other map viewers, multiple representations of data 

layers are used to provide a smooth and effective transition through scale.  To meet this goal, 

multi-resolution databases are used that store duplicate pieces of data with varying detail which 

call for different Levels of Detail (LoDs) based on the current mapping scale (Brewer and 

Buttenfield, 2007; Frank and Timpf, 1994; Kilpeläin and Sarjakoski, 1995).  It is understood that 

many types of data (terrain, hydrography, road networks, urban areas) have structural scale 

dependencies.  Some researchers have used these dependencies in a way to create multi-scale 

databases that hold the critical structure features of these data (Clarke, 1988; Chaudhry and 
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Mackaness, 2010) to easily create LODs for multiple scales.  The multiple representations of 

data require a seamless transition between layers of the same theme (i.e. terrain to terrain or 

hydrography to hydrography) and support of vertical integration between themes (i.e. terrain to 

hydrography). 

With the use of generalization well established in creating multiple representations of 

data, it is just as important to understand what types of uncertainties or error are introduced to the 

data through the generalization process.  While cartographic generalization results should never 

be used for model purposes, a brief examination can provide insight into expectations of vertical 

data integration.  Barber and Shortridge (2005) resample very fine spatial resolution DEMs to 

coarser spatial resolutions and make comparisons to USGS derived DEMs.  When hydrologic 

modeling was conducted on the resampled DEMs, comparisons were equivalent to that derived 

from USGS DEM data, implying that such fine spatial resolution data can be effectively 

generalized when comparing to third party datasets of similar spatial resolutions.  However, as 

discussed earlier, USGS DEMs still have a relatively fine spatial resolution.  An initial 

generalization of a fine spatial resolution data tends to improve feature delineation (Clarke and 

Lee, 2007) however, the results tend to become worse if the generalization is too aggressive or 

the spatial resolution change is too great (Wu et al., 2005; Usery et al., 2004). 

Few works have studied this effect directly on hillshades, but some work has examined 

the effects of spatial resolution on output terrain derivatives (Chang and Tsai, 1991; Carter, 

1992; Kienzel, 2004).  It is common practice to generalize a DEM before generating a 

cartographic derivative (i.e. hillshade).  By studying the resulting terrain derivatives, insights into 

how a hillshade may react after constructed from a generalized surface can be derived.  One of 

the critical aspects identified in these studies were the sensitivity of landscape type.  Slope 
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calculations were frequently more deranged in areas of steep slope while aspect was deranged in 

areas of low slope.  Like a shaded relief, both of these terrain derivatives are continuous datasets 

however, aspect is often represented as discrete data.  Identifying some assumptions here may 

provide insight into expected effects on generalized hillshades.   

While extensive literature exists on exploring the effects of generalization on data, until 

recently, little has been done to on generalization evaluation to ensure the generalization process 

was successful and meets the cartographer‟s needs.  In response, Bard (2004) implements a sort 

of quality assessment using three steps including characterization, evaluation, and aggregation 

functions.  The characterization defines how features should appear at multiple scales in terms of 

individual characteristics and geometries.  Evaluation assesses if the generalization process has 

met the criteria set forth by the characterization definitions.  The final function, aggregation, 

compiles the feature-by-feature evaluations into a report of the effectiveness of the 

generalizations.  If the results are unsatisfactory, the process must be redone or refined to 

produce an adequately generalized map, formalizing a sense of an iterative process via a 

feedback loop. Mackaness and Ruas (2007) also suggest that in addition to evaluation of the 

generalization process, the efficacy of the symbolization in the map‟s design is just as important.   

 

2.8 Summary 

This chapter has provided an overview of the generalization process for terrain data.  To 

accommodate the generalization for scale change, it has been shown that many cartographers 

focus on the resolution-to-scale relationship.  However, this relationship becomes ambiguous 

when the generalization process involves numerical generalization operators that alter the 

attribute resolution opposed to spatial resolution.  The following chapter will identify a 
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methodology that will alleviate some of this ambiguity of the resolution-to-scale relationships 

when numerical generalization such as smoothing is applied.  
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Chapter 3. Methodology 
 

3.1 Introduction 

As cartography has shifted from manual to digital practice, cartographers have created 

and refined digital software to perform generalization. From this, a vast literature pool has been 

developed on raster based generalization including many “best-practice” guidelines.  Included in 

these guidelines are the mathematical relationships developed that relate spatial resolution with 

scale.  Yet, little attention has been paid beyond this, such as how the operators of generalization 

specifically alter attribute resolution. 

The modification of attribute detail in Digital Terrain Models through the generalization 

process of smoothing will be examined. While it can be assumed that the smoothing process will 

simplify the terrain through reduction of attribute complexity, the rate of generalization, 

variations for different landscape conditions, and any intermediate attribute resolutions are 

unknown after iterative filtering.   

This chapter will lay out the framework used in this thesis to examine how attribute 

resolution is changed after filtering a DEM.  Data used in this project will consist of the U. S. 

Geological Survey‟s National Elevation Dataset and will be taken from various parts of the 

United States to understand how the effects of generalization vary in different landscapes.  Data 

will be iteratively filtered using a Gaussian filter and will be compared to coarser spatial 

resolution data using statistical and geostatistical methods.  When a generalized DEM can be 

declared as structurally similar to a coarser spatial resolution, the attribute resolution can be 

considered to have changed.  A final step to analyze data integration will be conducted.  Here, an 

un-generalized vector line dataset will be overlaid with the generalized DEM and checked for 
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percentage of line correspondence, or how well the vectors align with the DEM, effectively 

measuring vertical integration. 

 

3.2 Data and Study Sites 

As discussed in the previous chapter, there are many elevation datasets that are readily 

available, varying in terms of data quality and spatial resolution.  Data used in this thesis are part 

of the National Elevation Dataset (NED), a multi-resolution, seamless, national coverage product 

developed by the U. S. Geologic Survey (USGS) (Gesch, 2007; Gesch et al., 2002).  Currently, 

USGS‟s The National Map portal hosts three layers in the NED, including 1-, 1/3-, and 1/9-arc-

second data, referred to as 30-, 10-, and 3- meter through the remainder of this thesis (Gesch et 

al., 2009).  These three NED layers are an optimal choice for analyzing the effects of 

generalization because of the large range of spatial resolutions available and their conformity to 

existing accuracy standards. 

 

3.2.1 The NED and Study Site Selection 

One goal of this project is to identify how the generalization process differs among 

landscapes.  The need to tailor generalization processing to specific landscape characteristics has 

been demonstrated for hydrography (Buttenfield et al., 2011; Stanislawski and Buttenfield, 

2011), for transportation networks (Stanislawski et al., 2012 a; c), and for elevation-derived 

streams (Stanislawski et al., 2012b).  In order to understand how the generalization differs 

among landscape characteristics, a total of eight study areas are used (Figure 3.1). 
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Figure 3.1: The distribution of the eight study areas to be used. 

 

The study areas were chosen based on aridity and terrain ruggedness and guided  by the 

landscape characteristics and partitions defined by Buttenfield et al. (2011) and Stanislawski et 

al. (in press).  “Runoff estimates in millimeters per year (mm/year) for the 5-km cells were 

obtained from James Falcone and Dave Wolock of the USGS. Estimates were developed using 

the water balance model (Wolock and McCabe, 1999) that estimates watershed annual runoff 

mean from 1951 to 2000.  The model only considers the effects of precipitation and temperature, 

but not other factors, such as land use, water use, or regulation” (Stanislawski et al., in press). 

Because the 3-meter spatial resolution of the NED is available only for specific portions 

of the conterminous United States, the selection of study areas are somewhat restricted.  The 

study areas are categorized into four landscape partitions including humid-rugged (Vermont, 

West Virginia), humid-flat (Louisiana, North Carolina), dry-rugged (Colorado, Oregon), and 

dry-flat (New Mexico, Texas).  

Base map source: naturalearthdata.com  
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Each landscape partition consists of two study areas and each study area consists of two 

neighboring USGS 7.5 minute quadrangles (Figure 3.2).  The duplication in each study area and 

landscape partition will allow for comparison and quality checking, ensuring consistency of 

results. 

 
Figure 3.2: Sample shaded relief of each study site categorized by landscape characteristics.  Maps shown here are at 

a scale of 1:365,000. 
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3.2.2 Benchmark Data 

The thesis will accomplish the task of identifying new attribute resolutions by comparing 

filtered data with other datasets, referred to as “benchmarks”.  A vector and raster benchmark 

will be used during the analysis.   

The analysis will use the 10-meter and 30-meter DEMs that exist in the NED as raster 

benchmark.  The benefits of using the NED as the benchmark dataset is that it provides a large 

range (3x to10x change) in cell size. These benchmark DEMs will be useful because they were 

generated independently from DLGs, yet all conform to similar national mapping accuracy 

standards.  

The vector benchmark will be provided by the National Hydrography Dataset (NHD), 

which consists of streams for the conterminous United States at two compilation scales (1:24,000 

or high resolution, and 1:100,000 or medium resolution), along with densification of selected 

1:24,000 streams to 1:5,000 scale (local resolution). These represent spatial resolutions of 12- 

and 50-meters respectively (2.5-meters for the 1:5,000 densification), and feature detection 

resolutions of 24- and 100-meters respectively (Tobler, 1987); and are therefore similar to that of 

the DEMs provided in the NED.  The NHD benchmarks will be used during the vertical 

integration analysis. 

 

3.3 Processing 

The 3-meter DEM will be used as the test dataset and will be iteratively filtered 100 

times.  Common filters used for image processing include frequency filtering and spatial 

filtering.  Spatial filtering passes a moving window to calculate a new value for the central cell 

using a kernel, or set of weights.  This type of function is commonly referred to as convolution 
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(Burrough and McDonnell, 1998).  Examples of commonly applied filters are band-pass filters 

that either preserve low frequencies (smoothing) or high frequencies (edge enhancement).  This 

thesis will focus on low-pass frequency filters. 

 

3.3.1 Focal Smoothing – The Gaussian Filter 

Gaussian filters use a weighted average kernel that represents a two-dimensional normal 

distribution.  Because it is a radial kernel, the smoothing is performed in all directions equally, 

removing directional biases.  The Gaussian filter is effective for preserving local features (Jain et 

al., 1995).  When considering small terrain features, it is especially important that local maxima 

and minima are not completely removed after multiple filtering iterations. 

The Gaussian filter that will be used in this thesis will be a 3x3 weighted average using σ 

= 0.8.  The sigma value determines the shape, or spread, of the normal distribution to be used.  

Values greater than 1.0 yield a distribution with a larger spread (i.e. the weights are spread over a 

larger focal window); values less than 1.0 yield a distribution with weights are spread over a 

smaller focal window.  A sigma value of 0.8 produces a weights matrix of: 

0.062 0.124 0.062 

0.124 0.249 0.124 

0.062 0.124 0.062 

 

This weights matrix is useful with using a 3x3 kernel because the sum of weights is 

0.995.  Maintaining a sum of weights close to 1.0 will minimize distortion of original data 

values.  Gaussian filters traditionally take into account all data values in a dataset with the kernel 

becoming less and less influential with distance.  Using a sigma of 0.8 allows the weights to 
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taper off to about 0.0 after about one annulus, allowing excess values to be truncated without 

greatly impacting the result of the weighted average.  The 3-meter spatial resolution DEM will 

be filtered through 100 iterations (Figure 3.3a).   

 
Figure 3.3: Workflow for DEM filtering and attribute resolution detection. 

 

The filtered outputs will be used as inputs for the subsequent filtering iterations to create 

a cascading Gaussian filter.  Computing many filter iterations can be computationally expensive, 

so many cartographers and image processors filter with a large filtering window.  This problem 

can be addressed using the Gaussian filter‟s ability to cascade (Jain et al., 1995). Cascading 

describes how a filter window scales, or how multiple filter iterations of a given window size 

relate to a single filter of a larger window.  Jain et al. (1995) define this relationship as the square 

root of the sum of squares of the filtering spread.  Because this thesis is using the same filter 

window each time, the equation can be simplified as: 
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  √     
  Where: 

   R is the radius of the single, larger filter window; 

   n is the number of times the smaller filter is applied; 

   and r is the radius of the smaller filter window that is iteratively applied 

 

The radius of the Gaussian Filter is equivalent to half of the filtering window.  In the case 

of using a 3x3 cell neighborhood definition, the radius would be 1.5 cells.  The cascading 

property will permit iterative filtering using smaller focal windows to achieve the same effect as 

a single, larger focal window.  Data will be filtered iteratively using a 3x3 cell focal window (r = 

1.5).  After 100 iterations (n = 100), the output result will be comparable to a single filter 

iteration using a 550x550 cell focal window (R = 225). 

 

3.3.2 Potential Problems of Processing 

A negative impact from filtering spatial data iteratively is the edge effect.  Edge effects 

become problematic when performing a spatial analysis on a study area with an arbitrary border 

where neighbors outside of the study boundary may influence a process within the study 

boundary (Fotheringham and Rogerson, 1993; Griffith 1980).  This is most common in point 

pattern analysis, but can also impact a non-stationary process encoded as a continuous surface. 

The boundary problem arises from arbitrarily created boundaries which do not take into 

account the patterns of the underlying data, which is particularly important for this project which 

uses a gridded 7.5 minute quadrangle boundary that ignores terrain features.  A more proper 

designation of study areas would use watershed boundaries that follow ridge lines and 

encompass an entire drainage unit.  While this would have been a better mapping unit to identify 

study areas, the shapes and sizes of the watersheds would be inconsistent and possibly ignore 

opposing sides of the defining ridgelines.  Quadrangles remain the best choice for bounding 
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areas due to manageable processing sizes and built in NED edge effects.  Since the NED is 

compiled on a quadrangle-by-quadrangle basis, the data does not synchronize exactly, causing a 

slight aliasing-appearance (stair step) along quadrangle boundaries (Gesch, 2007). 

The boundary problem is part of the Modifiable Areal Unit Problem (MAUP) 

(Openshaw, 1983).  MAUP is derived from data collected at arbitrary spatial units and can be 

considered in terms of scale and shape.  At various scales and levels of aggregation, descriptive 

statistics will systematically vary.  At larger aggregation units, much of the variance within the 

underlying data is lost.  The shape of the aggregation unit re-addresses the boundary problem in 

terms of appropriately capturing directional trends within the aggregation area.  The focal 

question of determining the shape of an aggregation unit is, „how well is the variance retained 

within the aggregation shape?‟   Openshaw (1983) states that MAUP is often thought of as an 

“insolvable problem” or can be effectively ignored by “assuming it away” but goes on to argue 

that it is “endemic to spatial studies” and methodology should be developed to handle MAUP in 

a purposeful way.  Some techniques have been developed to mitigate effects of MAUP such as 

image buffering and the use of decay functions for image processing and filtering (Ge and 

Cheng, 2007). 

The problems of edge effects will be addressed in several ways.  To reduce the impact of 

edge effects in the filtering process, a one-cell border will be removed from the DEM each time 

it is filtered.  This will prevent errors caused by the border edges and inappropriate filtering 

weights from creeping into the center of the DEM through the iterative filtering process.  Since 

each study area is approximately 4000x4000 cells, removing 100 cells from all sides (~0.1% of 

total cells) should not impact any global calculations. 
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3.4 Detecting Attribute Resolution Changes 

Each filter iteration will be compared to the benchmark DEMs provided in the NED 

(Figure 3.3b, c).  Comparing filtered data to DEMs with known coarser spatial resolution will 

determine the rate of attribute resolution change and how many filtering iterations (which 

Gaussian window size) are required to produce these coarser spatial resolutions.  This 

methodology will involve a two-step sequential process by comparing local variance within the 

data using descriptive statistical (standard deviation) and geostatistical (semivariogram) methods. 

 

3.4.1 Standard Deviation Analysis 

Standard deviation is frequently used in measuring surface roughness because it is a 

stable metric for assessing vertical ruggedness of terrain compared to the range or inter-quartile 

range of the data (Evans, 1972).  Mark (1975) overviews several vertical and horizontal 

measures of surface ruggedness including relief, slope, slope and aspect dispersion, and 

hypsometry.  He identifies several measures within each category and which of these can often 

be skewed by local extremes that hide major relief characteristics.  Standardizing data by 

examining standard deviation of these metrics is a common practice in analyzing surface 

roughness and is still done today (for example, see Frankel and Dolan, 2007; Grohmann et al., 

2010). 

Standard deviation is defined as the square root of the average of the squared deviations 

about their mean (Burt et al., 2009).  Just like the mean, the standard deviation is sensitive to 

skewed data and can be highly influenced by outliers.   As data is filtered using a mean function, 

the standard deviation of data will continue to become smaller.  Thus, the standard deviation is a 

useful measure for assessing homogenizing attribute complexity.  As elevation values are 
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incrementally homogenized within a focal window, a new attribute resolution can be considered 

to have been created.  The question is, how many iterations introduce sufficient change in 

standard deviation to incur a meaningful change in spatial resolution? 

Due to the ecological fallacy problem, calculating the global standard deviation for an 

entire DEM will be inappropriate.  As the aggregation unit increases in size, the summary 

statistics will become biased (Robinson, 1950; Diez-Roux, 2003).  The 3-meter grids used for 

each study site are about 4000x4000 cells in size. A global metric from a grid this large will 

essentially be grouping 16 million individual observations.  To overcome this, a local (focal) 

standard deviation will be examined.  This will aggregate individual pixels into larger units and 

will likely be more “true” to the micro-scale heterogeneity created by the filtering window.  In 

order to compensate for edge effects, the focal standard deviation will only be calculated for cells 

whose focal window will be fully contained within the data.  In a similar manner to the cell 

removal in the filtering process, if a focal window of 3x3 is used, the focal cell must be 1 cell 

away from the DEM boundary; if the focal window is 10x10, the focal cell must be 4 cells away 

from the DEM boundary. 

The rate of change in attribute resolution after each filtering iteration is dependent upon 

the filtering algorithm used and the landscape type, and is unknown before the application of the 

filter.  Calculating standard deviation within the focal window will help to describe the rate of 

change by measuring the variation of attribute values, or the rate of homogenization of the data.  

The assumption in using 100 iterations is that changes to attribute resolution will be insignificant 

beyond 100 filtering steps.   To associate filtered data with a specific attribute resolution, focal 

standard deviations of the filtered datasets will be compared to focal standard deviations of the 

benchmark DEMs.  By relating the attribute resolution of a generalized dataset to the attribute 
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resolution of a known spatial resolution, one can identify when the appropriate scale of use has 

changed and identify the rate of spatial resolution change. 

A 3x3 cell focal standard deviation will be calculated for the 10- and 30-meter 

benchmark DEMs.  In order to make comparisons more interpretable, the mean of these values 

will be used to generate a single, aggregate focal standard deviation statistic that can be used as a 

benchmark value.  When comparable focal standard deviation values are observed between the 

filtered DEM and benchmark DEM, the attribute resolution will be considered to have changed 

enough that the filtered DEM is appropriate for representation at the benchmark DEM spatial 

resolution(s). 

If the focal standard deviation of the 3-meter DEMs are calculated using a 3x3 cell 

window, accurate comparisons to coarser spatial resolutions will not be possible.  In this case, 

the ground distance of a 3x3 cell window will cover an area of 9x9 meters, while a 3x3 cell 

window will cover areas of 30x30 meters and 90x90 meters for the 10- and 30-meter DEMs.  To 

nest DEM pixels among filtered and benchmark DEMs, two focal standard deviation statistics 

will be calculated for each filtered DEM.  The first focal window will be 10x10 cells in size, 

which will cover an area of 30x30 meters, equivalent to the 10-meter benchmark DEM.  The 

second window will be 30x30 cells in size, which will cover an area of 90x90 meters, equivalent 

to the 30-meter benchmark DEM.  This conformity will help in overcoming varying areal sizes 

when calculating an aggregated statistic based on individual samples. 

Although using standard deviation can be useful for approximating attribute resolution 

change, it will be unable to precisely predict change due to edge effects and the nature of 

“implicit” resolution change.  Spatial autocorrelation will help to refine the prediction by 

measuring the similarities between the filtered DEM and benchmark DEMs at a range of scales 
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(local to global).  Once the focal standard deviation statistic identifies the change in attribute 

resolution, that filter iteration will be examined more closely.  Since spatial autocorrelation is 

scale dependent, the use of a semivariogram will describe the autocorrelation at varying lag 

distances. 

 

3.4.2 Semivariogram Analysis 

A semivariogram plots the semivariance against distance (Cressie, 1993; Isaaks and 

Srivanstava, 1989).  The semivariance at a given lag distance is defined as: 

   
∑        

  
   

  
 

  Where: 

     is the semivariance; 

   n is the number of sample points; and 

   x and y are a pair of sample points 

 

When plotted, the semivariogram describes the variation of all data points from one 

another.  However this can be extremely computationally expensive, generating a total of (n)*(n-

1)/2 data points (Burt et al., 2009).  Experimental, or empirical, semivariograms do not take into 

account all the points of a dataset, but only a subset or sample.  These can be useful because they 

are frequently a good estimator of the theoretical semivariogram‟s characteristics.  A model is 

fitted to the empirical semivariogram to describe the rate at which semivariance changes with 

distance. 

The semivariogram model is made up of three “parts” including the nugget, sill, and 

range.  The nugget represents micro-scale heterogeneity within the data and is frequently used as 

an error term for the variogram model.  The sill is the largest semivariance reported in the 

semivariogram, and is often noted by a “leveling-off” of the variogram model under a stationary 
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process.  The range is the lagged distance in which the sill occurs.  This is an important value 

when considering the sphere of influence in autocorrelation.  The range represents the maximum 

distance in which the value at one point will influence the value of another.  This can be 

interpreted as the “characteristic length of the geographic distribution of a variable” (Goodchild 

and Proctor, 1997).  Because it is unlikely to observe a sill empirically, the range will be the 

maximum lagged distance (Burt et al., 2009). 

Semivariograms carry the assumption of stationarity, or the assumption that a process 

does not change over space (O‟Sullivan and Unwin, 2010).  Stationarity is often broken into two 

categories including 1st-order and 2nd-order.  First order stationarity indicates that there is no 

variation in intensity of a process over space while second order stationarity indicates that there 

is no interaction between samples over space (O‟Sullivan and Unwin, 2010; Cressie, 1993).  

Conversely, a non-stationary process indicates that the process is changing over space and results 

in a semivariogram with the semivariance increasing indefinitely with lag distance. 

Non-stationarity indicates an underlying process that influences the sample values which 

has not been accounted for and is often referred to as spatial drift. (Chilès and Delfiner, 1999).  

The effects of spatial drift can often be handled by recalculating the semivariogram based on the 

residuals of a trend surface.  Alternatively, non-stationarity may be avoided by accounting for an 

underlying anisotropic trend in the data. 

Two sets of semivariograms will be created.  The first will be within the focal window of 

the standard deviation analysis.  This will allow for a focused examination of how the iterative 

filtering will alter the DEM at a local scale.  The second will be across the entire study site which 

will allow for examining how the filtering affects the DEM at a global scale. 
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Comparing empirical semivariograms between filtered DEMs and benchmark DEMs will 

provide insight into how the attribute resolution matches at various scales, from within the focal 

standard deviation window to the entire study site.  The degree to which the variograms interact 

will confirm the appropriateness of attribute resolution change defined by the standard deviation.  

Because creating semivariograms can be computationally intense, only the filtered DEMs that 

are defined as being most similar to the benchmark DEMs will be used in this stage of the 

analysis.  By examining the filtered DEM semivariance to the benchmark DEM semivariance, 

the autocorrelation can be assessed across the DEM as a whole. 

The empirical semivariograms will be calculated by randomly selecting 10,000 points 

and finding a paired neighbor at a randomly generated angle.  The semivariance will be 

calculated among the 10,000 point pairs and will be recorded.  This process will provide the 

semivariance value at a given lag distance and will be repeated for each lag.  The process will be 

repeated 500 times to create a distribution of semivariances for each lagged distance.   

In order to calculate the lag distance or the number lags required to build an appropriate 

semivariogram, the following rule of thumb (Burrough and McDonnell, 1998) will be used: 

        
 

 ⁄                             

            
 

 

The maximum distance between any point pair will be along the diagonal of the DEM, 

and is 16,970 meters for all study sites.  Burrough and McDonnell (1998) suggest that the 

number of lags necessary to achieve a stable semivariogram is at least 50 to 100.  This implies 

that the lag sizes will appropriately range between 85 meters and 170 meters. 

Due to the amount of time required to build a semivariogram, 50 lags will be used when 

calculating the semivariogram of the entire study site.  This means that the lag distances will be 
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170 meters.  This should provide enough lags to represent the spatial dependencies within the 

data.  When calculating the semivariograms within the focal standard deviation window, a lag 

distance of 1 cell will be used.  This will relate to a distance of 3-meters, 10-meters, or 30-meters 

depending on the source DEM‟s spatial resolution.  Therefore, the number of lags will vary.  The 

10- and 30- meter benchmark DEMs will each have 3 lags.  The 3-meter DEM will either have 

10 or 30 lags depending on what benchmark the semivariogram will be compared against.  The 

number of lags and lag distances for the semivariograms within the focal standard deviation 

window don‟t conform to traditional ways of constructing a semivariogram.  However, the 

purposes of constructing these are to closely examine the micro-scale fluctuations of 

semivariance and better understand the spatial structure for each filtered DEM and how it 

compares to the benchmark DEMs. 

By plotting the maximum and minimum observed semivariance values for each lag 

distance, a semivariance envelope (similar to a confidence interval) of the “true” semivariance 

can be approximated for every DEM.  This will be done for the filtered DEM and its benchmark 

counterpart.  By comparing the semivariogram of a filtered DEM to the semivariogram of a 

benchmark DEM, the attribute resolution can be compared at many lag distances, or scales.  

When the semivariogram envelope of the filtered DEM nests completely within the envelope of 

the benchmark DEM, one can accept that the attribute resolution is appropriate at all lags.  When 

the filtered DEM semivariance is greater than the benchmark, the data can be considered to be 

under-generalized leaving too much detail; when the filtered DEM semivariance is less than the 

benchmark, the data can be considered to be over-generalized and too much detail has been 

smoothed away (Figure 3.4). 
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Figure 3.4: A semivariogram envelope of a benchmark DEM will be used to approximate generalization 

appropriateness of a filtered DEM. 

 

It is expected that the semivariograms calculated for the DEMs will show similar 

characteristics as represented in Figure 3.4, where there is a small range between minimum and 

maximum semivariance for small lags and a large range for large lags will exist.  In this case, it 

may be difficult to interpret the best match at all scales.  While the level of match for the entire 

semivariogram will represent overall similarity, the degree of match at small lags is much more 

important because it will represent the micro-scale homogeneity that is being created by the 

filtering window. 

The semivariograms will be compared in two ways.  The first way is to visually compare 

the general shapes of the semivariogram models.  Questions to consider here include: 1) are the 

semivariogram models similarly structured in terms of the nugget, sill, and range; 2) are the 

slopes of the semivariogram models comparable; and 3) what is the relative placement of the 

semivariogram models to one another.  The semivariogram structure will provide information on 

whether the similar features are being identified in the DEMs.  The slope of the variogram 

models will provide insight into the overall rate of change in attribute resolution across multiple 
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scales within the DEMs.  The relative placement of the semivariogram models in relation to one 

another will suggest the appropriateness of the generalization by comparing the similarity of 

spatial dependency at a given lag distance.  The second method to compare the semivariograms 

will be to compute the overlap of the semivariogram envelopes.  This will provide an empirical 

way to compare the similarity of the semivariograms.  If the envelopes overlap with a rate of 

100%, they will be considered to be identical in terms of spatial dependency within each DEM. 

 

3.5 Assessing Vertical Data Integration: Conflation Analysis 

The effects of cartographic generalization are often unknown before generalization and 

tend to be much more serious than the effects caused by model generalization (João, 1995).  To 

understand and quantify these effects, many types of generalization evaluation tools have been 

developed.  Mackaness and Ruas (2007) divide evaluation tools into three categories, including 

evaluation for tuning (before), controlling (during), or assessing (after) the generalization 

process.  Because this thesis is devoted to understanding the repercussions of iteratively filtering 

terrain, an assessment tool will be used to explore the generalized data‟s fitness for use. 

A final requirement of terrain on a map is the ability to vertically integrate with other 

datasets, or how well multiple data layers, for example hydrography or transportation, 

synchronize with terrain.  Filtering data and changing attribute resolution will slightly alter the 

position of landscape features. This could be exemplified by a minor shift in a ridgeline that 

forces a stream headwater to start on one side of a ridge and flow to the other side.  This shift in 

position may corrupt the alignment of overlaid vector layers (transportation, hydrography, 

contours) that may have been generated at a different spatial resolution.  It is important to 
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understand how topology is changing and to what degree vertical data integration problems are 

introduced by filtering in the various landscape types. 

Positional distortion will be measured by extracting vector streams from the filtered 

terrain and applying a conflation metric to compare extracted, or elevation-derived, streams with 

a vector benchmark at standard mapping scales.  A comparison of the elevation derived streams 

(EDS) from filtered DEMs to benchmark NHD streams will estimate the degree of successful 

data integration.  The conflation metric to be applied is the Coefficient of Line Correspondence 

(CLC) (Stanislawski, 2009), which is an analytical form of vector overlay, analogous to the 

Coefficient of Areal Correspondence (CAC) (Taylor, 1977).  The CAC measures the percentage 

of polygon overlap between two datasets.  Similarly, CLC measures the percent match between 

two polyline datasets.   

Conflation was examined using the CLC toolbox developed, researched, and distributed 

by Buttenfield et al. (2011).  Specifically, CLC measures the length of matching confluence-to-

confluence stream channels as a proportion of omissions and commissions.  Omissions are 

defined as channels that are present in the benchmark NHD but not the elevation derived streams 

layer; commissions are the channels that are present in the elevation derived streams layer but 

not in the benchmark NHD dataset.  The coefficient is computed as follows: 

    
∑           

∑              ∑                       
 

Where: 

conflations is the length of matching channels 

omissions is the length of channels in benchmark but not in test data 

comissions is the length of channels in test data but not in benchmark 

 

The first step of the conflation assessment is to extract EDS from the filtered DEMs.  

These streams will be compared against the NHD high and medium resolution flowlines.  To 
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ensure consistency, the EDS are extracted to have similar characteristics (i.e. total length and 

number of confluence-to-confluence features).  Filtered DEMs have sinks removed and flow 

direction computed.  A weighted flow accumulation is then created and tailored to preserve 

physiographic variation in hydrology (Buttenfield et al., 2011; Stanislawski et al., in press).  

Stream lines are then iteratively extracted from the flow accumulation until their characteristics 

are within a given threshold of the benchmark lines.  The EDS are then enriched with stream 

order, confluence identifier, and upstream drainage area.  Short first-order tributaries are pruned 

to remove excessive detail and simplified to reduce aliasing from the raster to vector conversion. 

The second step of the vertical integration evaluation is to compute the CLC between the 

NHD benchmark and the EDS streams layer.  Line segments will be defined as matching if they 

are within a given buffer area of one another.   This buffer distance conforms to USGS accuracy 

standards (USGS, 1999) of 0.5 millimeter, at scale, which is approximately 12 meters on either 

side of the line for a 1:24,000 map or 50 meters for a 1:100,000 map.  Confluence-to-confluence 

features that are more than 50% within this buffer distance are considered to be matches.  

Mismatches can be categorized based on omissions or commissions. 

Filter iterations that have been identified to match the attribute resolution of the 10-meter 

benchmark DEM will have the CLC performed using the high resolution (12-meter) NHD 

benchmark at a mapping scale of 1:24,000.  Filter iterations that have been identified to match 

the attribute resolution of the 30-mter benchmark DEM will have the CLC performed using the 

medium resolution (50-meter) NHD benchmark at a mapping scale of 1:100,000.  While the 

anticipated DEM attribute resolution doesn‟t exactly match that of the NHD benchmarks, they 

are sufficiently close to be used for comparison.  
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The CLC metric ranges between 1.0 (perfect line match) and 0.0 (no line match). CLC 

values of 0.7 and better have been acknowledged to be an acceptable level of consistency 

(Buttenfield et al., 2011; Buttenfield et al., 2010), but the metric lacks a known distribution for 

inferential purposes.  For this reason, CLC can be computed for a sample of points within 200 

grid cells overlaid on the study area to support a bootstrap computation that permits computation 

of a confidence interval. This additional step has not been undertaken in this analysis and thus 

the evaluation is exploratory rather than confirmatory.  The CLC metric will identify the degree 

of conflation between the NHD benchmark streams and the valley lines within the filtered 

DEMs.  The rate of vertical integration will provide a sense of appropriateness of the generalized 

DEMs at matching the benchmark DEMs.  

Because the CLC metric is being used for exploratory purposes, mapping the spatial 

distribution of conflations, omissions, and commissions will assist in manual interpretation of 

matches and mismatches.  By visualizing the results, spatial patterns of omissions and 

commissions can be observed.  Many factors can influence the CLC results including NHD 

benchmark compilations, presence of complex hydrographic features (braided streams, pipelines, 

agricultural ditches, etc.), and complete containment of natural watershed boundaries.  The 

mapped streams that match and mismatch and can be further categorized into such groups and 

better describe and understand the resulting CLC values. 

 

3.6 Summary 

This chapter has laid out the framework of the methodology used in this thesis to 

determine attribute resolution change and fitness for use of generalized products.  A 3-meter 

DEM will be iteratively filtered with a 3x3 cell focal window using a weighted (Gaussian) mean.  
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The filtered datasets will be compared coarser spatial resolution DEMs from the U.S. Geological 

Survey‟s National Elevation Dataset.  To determine if the attribute resolution of a filtered dataset 

has become similar to that of the coarser spatial resolutions, focal standard deviation and 

semivariogram analyses will be used to determine filtering iterations that are most similar.  The 

filtered DEM‟s fitness for use, vertical data integration, will be explored using the Coefficient of 

Line Correspondence to measure the degree of conflation between stream features derived from 

the filtered DEM to an NHD benchmark dataset at a known and similar spatial resolution. 

The next chapter will explore the results of filtering and examine how smoothing alters 

DEM attribute resolution.  These results will supply evidence to answer the key questions of this 

thesis including the rate of attribute resolution change and vertical integration with other vector 

datasets.  
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Chapter 4. Results 
 

4.1 Overview of the Analysis 

In Chapter 1, two research questions were posed about the impacts of DEM filtering on 

attribute resolution: 

1. What is the rate of attribute resolution change during filtering and how does it 

differ between various landscape characteristics? Is the rate of change constant for 

all filtering iterations, or do certain iterations exist where dramatic changes occur?  

2. How well does the filtered dataset integrate with other vector layers?   

In the last chapter, the methodologies for analysis were discussed to address these 

questions and examine attribute resolution change. This chapter reports on results of the analysis.  

In order to examine how DEM attribute resolution is affected by generalization, data was 

iteratively smoothed 100 times.  A number of metrics were applied to assess the change in 

attribute resolution and compare it to independently compiled benchmarks of equal accuracy.  

These methods include a focal standard deviation, semivariogram, and conflation analysis.  The 

analyses will determine how the generalization process is altering the DEM‟s attribute resolution 

locally and globally as well as how the resulting DEM may integrate with other datasets. 

The remainder of this chapter will present results of the analysis.  These results will 

ultimately provide information for matching generalization through filtering to a specific spatial 

resolution and an appropriate mapping scale. 

 

4.2 Benchmark Datasets 

Attribute resolution can be difficult to measure.  However, attribute and spatial 

resolutions are intrinsically related.  As DEMs are filtered, a disconnect occurs between spatial 
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and attribute resolutions.  This disconnect was measured by systematically comparing a filtered 

DEM (of unknown attribute resolution) to a benchmark dataset (of known spatial resolution) to 

identify how many filtering iterations bring the DEM to an attribute resolution most similar to 

the benchmark data‟s spatial resolution. 

Raster and vector benchmarks were used throughout the analysis.  The raster benchmark 

was taken from the National Elevation Dataset (NED) (top panels of Figure 4.1).  Though the 

NED consists of several products of varying spatial resolution, only two were used as 

benchmarks, including the 1/3 arc-second and 1 arc-second, or 10- and 30-meter DEMs 

respectively.  These spatial resolutions were compiled independently using photogrammetric 

methods and Digital Line Graph interpolations.  They are hydrologically enforced and conform 

to vertical and horizontal mapping accuracy standards (USGS, 1999).  The NED benchmarks 

will be used to directly compare a filtered DEM to known spatial resolutions. This will be done 

using the standard deviation and semivariogram analyses.   

The vector benchmark was taken from the National Hydrography Dataset (NHD) (bottom 

panels of Figure 4.1).  “The NHD is a comprehensive set of digital spatial data that represents the 

surface water of the United States using common features such as lakes, ponds, streams, rivers, 

canals, stream gages, and dams.” (Simley and Carswell, 2009 p.1)  As such, it consists of point, 

line, and polygon datasets and is mainly used for mapping and analysis due to its rich attribute 

detail.  The NHD is currently available in two spatial resolutions, known as high resolution, 

based on a 1:24,000 topographic mapping scale, and medium resolution, based on a 1:100,000 

topographic mapping scale (Simley and Carswell, 2009; USGS, 2000).  In 1999, full coverage 

for the conterminous United States was made available for these two spatial resolutions.  

Currently, a local scale resolution is becoming available in select areas and is intended for use at 
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a 1:5,000 mapping scale.  This is frequently a densification of the high resolution data and has 

been compiled at scales ranging from 1:2,400 to 1:12,000 (Simley, 2012; Simley, 2011).  Like 

the NED benchmarks, the NHD also conforms to horizontal and vertical mapping accuracy 

standards.  The NHD benchmarks will be used to assess the degree of conflation between the 

filtered DEM and an existing vector dataset to measure vertical integration.  Only a subset 

(flowlines) of the NHD feature layers will be used during this analysis. 

Figure 4.1 shows the benchmark data for Jay Peak, VT (see Appendix A for the other 

study sites).  Upon close comparison of the two upper panels, the 10-meter benchmark shows 

more detail than the 30-meter benchmark due to the difference in spatial resolutions.  This can be 

identified through the slight blurriness of the 30-meter benchmark.  The lower two panels show 

the vector benchmarks.  The lower left map is of the 1:24,000 compilation (high resolution) 

flowlines.  The lower right map is of the 1:100,000 compilation (medium resolution) flowlines.  

The high resolution flowlines have a finer detail because more stream features are represented. 

Medium resolution streams tend to lack headwater channels for included streams (relative to the 

high resolution data), and this is due in part to the compilation process.  Additionally, when 

flowlines are represented in both benchmarks, the high resolution features often have more 

geometric complexity (vertices) in the lines, or show variations in the number of vertices across 

any quadrangle. Additional vertices reflect local density variations in the stream channels and are 

evident in the high resolution NHD but largely missing from the medium resolution. 
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Figure 4.1: Raster and vector benchmark datasets. 

 

4.3 Using focal standard deviation to estimate attribute resolution of filtered DEMs 

A focal standard deviation was calculated for each DEM filter iteration on the premise 

that as smoothing iterations continue, elevation values will more closely approximate a local 

average. Standard deviations will drop as values become more similar, and the terrain surface 
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will more closely approximate a terrain surface compiled at a coarser spatial resolution. In order 

to estimate attribute resolution, the filtered data was compared to National Elevation Dataset 

(NED) benchmark DEMs of 10-meter and 30-meter spatial resolution.  Two focal standard 

deviations were computed on the filtered 3-meter DEMs.  The first is a 10x10 cell window, 

which covers the same ground size as a 3x3 cell window for the 10-meter DEM.  The second is a 

30x30 cell window, which covers the same ground size as a 3x3 cell window for the 30-meter 

DEM. 

Table 4.1 shows the focal standard deviations for the benchmark DEMs.  When 

examining the 3x3 cell focal window calculations of all DEMs, the focal standard deviation for 

the 3-meter DEM is always lower than the 10-meter benchmark, which is always lower than the 

30-meter benchmark.  The reason for this result is the areal coverage of a 3x3 cell window that 

has been applied to each DEM.  The areal extent of a 3x3 cell window over the 30-meter 

benchmark DEM is much larger than the 3x3 cell areal coverage of a 3-meter DEM.  It is 

obvious that the terrain will experience more change over a larger area and potentially have a 

larger range in data values, especially for rugged terrain. 

By modifying the area of the focal window, the standard deviation can be standardized 

and compared more easily with the two benchmark DEMs.  A 10x10 cell window used on the 3-

meter DEM covers the same areal extent as the 3x3 window for the 10-meter benchmark DEM.  

Likewise, a 30x30 cell window used on the 3-meter DEM covers the same areal extent as the 3x3 

window for the 30-meter benchmark DEM.   
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Table 4.1: Local standard deviation values of the source (i.e., unfiltered) and benchmark DEMs. 

 

To understand why the focal window sizes need to be modified, examine the focal 

standard deviations for Blackbird Knob, WV.  The standard deviation for the 3-meter test DEM 

using a 3x3 cell window is 0.49.  The standard deviation for the 10-meter benchmark DEM using 

a 3x3 cell window is 1.45.  The 10-meter benchmark standard deviation is much larger than that 

of the 3-meter DEM but these two values are not comparable due to the differences in areal 

extent of the window sizes.  A 3x3 cell window on a 3-meter DEM covers 81 square meters. A 

3x3 cell window on a 10-meter DEM covers 900 square meters.  By increasing the focal window 

size to 10x10 cells for the 3-meter DEM, the focal area now covers 900 square meters and 

produces a standard deviation value of 1.69 for a comparable focal window size.  The standard 

Quadrangle Location 

3-m DEM 

(3x3 cell 

window; 9m 

ground size) 

10-m DEM 

(3x3 cell 

window; 30m 

ground size) 

3-m DEM 

(10x10 cell 

window; 30m 

ground size) 

30-m DEM 

(3x3 cell 

window; 90m 

ground size) 

3-m DEM 

(30x30 cell 

window; 90m 

ground size) 

Granby, CO 0.44 1.28 1.49 3.62 4.23 

Strawberry Lake, CO 0.77 2.27 2.65 6.51 7.60 

Bryceland, LA 0.19 0.52 0.60 1.34 1.54 

Sailes, LA 0.18 0.51 0.59 1.33 1.53 

Falkland, NC 0.07 0.17 0.20 0.42 0.48 

Greenville, NC 0.07 0.16 0.19 0.34 0.39 

Los Griegos, NM 0.14 0.25 0.41 0.72 0.98 

Volcano Ranch, NM 0.16 0.35 0.47 0.92 1.16 

Six Corners, OR 0.42 1.22 1.43 3.52 4.10 

Wolf Mountain, OR 0.53 1.58 1.84 4.56 5.32 

Brady South, TX 0.12 0.31 0.37 0.85 1.00 

Voca, TX 0.15 0.41 0.48 1.11 1.30 

Jay Peak, VT 0.61 1.78 2.08 5.10 5.97 

Richford, VT 0.35 0.99 1.16 2.77 3.24 

Blackbird Knob, WV 0.49 1.45 1.69 4.15 4.90 

Maysville, WV 0.51 1.51 1.76 4.26 5.01 
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deviation of the 3-meter DEM is now greater than that observed in the 10-meter benchmark.  

Again, this is an expected result since the 3-meter DEM has a higher attribute resolution.   

Now that a comparison baseline has been established between resolutions of source and 

benchmark DEMs, the next objective is identifying rates of attribute resolution change.  As the 

3-meter DEM is filtered, the two focal standard deviations (10m and 30m) are calculated.  The 

focal standard deviations of each filter iteration were compared to the benchmark DEMs 

(columns 3 and 5 in Table 4.1) to identify when the filtered attribute resolution approaches the 

benchmark spatial resolution.  When the focal standard deviation of the 3-meter DEM exceeds 

that of the benchmarks, the attribute resolution will be considered to be finer.  When the focal 

standard deviation of the 3-meter DEM is less than that of the benchmarks, the attribute 

resolution will be considered to be coarser. 

Figure 4.2 compares the standard deviation after each filtering iteration of the 3-meter 

DEM (solid line) against the benchmark DEMs (dashed line) for Blackbird Knob, WV (See 

Appendix B for the other study sites).  The benchmark spatial resolution lines are flat because 

this data isn‟t filtered, that is, these are only intended to be used as a baseline to identify when 

the filtered 3-meter DEM standard deviation intersects the benchmark standard deviations.  

These graphs have been separated because they show very different data.  As described earlier, 

the areal extent being examined in each case is different, making comparison difficult between 

the two graphs‟ standard deviation values and apparent slopes.  What can be compared between 

the graphs are general trends. In all observed cases, the standard deviation of the 3-meter DEM 

behaves similarly as the number of iterations increase.  The filtering initially removes significant 

attribute detail (observed by quickly decreasing standard deviation values). However, this trend 

gradually decays (shown by a flattening curve).  This indicates that the rate of decreasing 
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standard deviation is slowing down or terminating altogether.  It is likely that the rate of attribute 

resolution change would eventually reach zero and that the DEM would become a homogeneous 

set of elevation values, but this would require an immense amount of filtering, well beyond the 

scope of this thesis. 

 
Figure 4.2: Plot of the changing focal standard deviation of the 3-meter DEM through filtering iterations. 

 

Where the two lines cross, the filtered DEM standard deviation is similar to the 

benchmark value, meaning the attribute resolutions can be associated with a coarser spatial 

resolution.  

Table 4.2 shows all of the study sites ranked by the order in which the attribute resolution 

is comparable to the 10-meter and 30-meter benchmark spatial resolutions.  While the number of 

filtering iterations required for the 3-meter DEM to match the spatial resolution of the 10-meter 

benchmark vary (from 5 iterations to 29 iterations), the number of additional filtering required to 

match the 30-meter benchmark are relatively small.  On average, the number of additional 

filtering iterations for the 3-meter DEM to be comparable to the 30-meter benchmark is 3.25.  

The two Texas study sites need the most filtering iterations for the 3-meter DEM with a 10-meter 

attribute resolution to match the 30-meter attribute resolution.  However, they only need 5 (Voca, 

TX) or 7 (Brady South, TX) more iterations.  This suggests that, initially, the rate of attribute 

resolution change is increasing through filtering iterations. 
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Overall, the flat landscape types approach their 10 meter spatial resolution counterparts in 

fewer filter iterations than the rugged landscapes.  However, there is no clear division in the 

number of filtering iterations required for an attribute resolution change between flat or rugged 

landscapes.  Two exceptions to the observed trend are the pair of New Mexico study sites 

(defined as flat and dry), which require the largest number of filtering iterations to match the 10 

meter benchmark.  The Los Griegos study site also matches the 10- and 30-meter benchmark‟s 

spatial resolution at the same filtering iteration.  This result may reflect the ways in which the 

benchmark datasets were generated in that the landscape may not contain landscape features of a 

size which can be differentiated when generalized from a 10-meter to 30-meter dataset.  

Table 4.2: The number of filtering iterations required for a 3-meter DEM to match a coarser attribute resolution. 

Climate Terrain 
Quadrangle 

Location 

Standard Deviation 

matches 10-m DEM 

(# of filter iterations) 

Standard Deviation 

matches 30-m DEM 

(# of filter iterations) 

Order 

Displacement 

humid flat Greenville, NC 5 7 --- 

humid flat Falkland, NC 7 11 --- 

humid flat Bryceland, LA 10 14 --- 

humid flat Sailes, LA 11 15 --- 

dry flat Voca, TX 12 17 --- 

dry flat Brady South, TX 12 19 -2 

humid rugged Richford, VT 14 18 +1 

dry rugged Granby, CO 15 18 +1 

humid rugged Maysville, WV 17 20 --- 

humid rugged Jay Peak, VT 17 21 -1 

dry rugged 
Strawberry Lake, 

CO 
18 20 +1 

dry rugged Six Corners, OR 18 21 --- 

dry rugged 
Wolf Mountain, 

OR 
19 21 --- 

humid rugged 
Blackbird Knob, 

WV 
19 22 --- 

dry flat 
Volcano Ranch, 

NM 
20 22 --- 

dry flat 
Los Griegos, 

NM 
29 29 --- 
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The last column in Table 4.2, “Order Displacement” is the relative change in order if the 

data were sorted based on matching the 30-meter benchmark attribute resolution.  The order 

remains fairly consistent with what was observed for the 10-meter rankings.  The dry, flat study 

site of Brady South, TX becomes similar to its 30-meter spatial resolution counterpart after 

several of the rugged study sites. The lack of major order displacements indicates that the 

filtering is being applied consistently through the filtering iterations across all the study sites.  

This result also suggests that all study sites are experiencing equivalent rates of attribute 

resolution change. 

The other aspect to the question of the rate of change is how this may differ across 

physiographic regions.  Figure 4.3 illustrates the standard deviation curves for all study areas 

through the first 100 filtering iterations.  The focal standard deviations for all study sites are 

plotted and colored according to landscape characteristic (dry/humid and rugged/flat).  This 

shows a clear trend with focal standard deviation for rugged study sites consistently higher than 

for flat sites, and a muddied trend intermixing focal standard deviations among humid and dry 

study sites. The reader is cautioned that y axes are not comparable in the left and right panels. 

The dramatic differences in trends between rugged and flat terrain becomes apparent in 

Figure 4.3: rugged areas are characterized by higher standard deviation values for both 10m and 

30m spatial resolutions.  The plots of rugged study areas also display a much greater overall 

change in standard deviation rate (2 to almost 4 meters difference for 30m cells, versus less than 

1 meter difference for any flat DEM).  Conversely, the slope of the standard deviations for flat 

areas levels off after only a few filtering iterations. This indicates that the rate of attribute 

resolution change is greater for rugged areas.  However, this should be qualified with earlier 
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observations that rugged areas generally have to undergo a larger change in attribute resolution 

before matching that of a coarser spatial resolution benchmark. 

 

 
Figure 4.3: Comparison between the focal standard deviations for all study sites grouped by terrain characteristics. 

 

Climatic variables such as precipitation have often been included when modeling and 

characterizing terrain.  By categorizing the lower panels of Figure 4.3 into humid and dry 

conditions, some interesting insights can be identified.  First, the mixing of plotted lines for 10m 

and 30m plots implies that wet or dry conditions have little distinguishing effect on the filtering 

process for rugged terrain.  Climatic conditions have a much larger impact on the characteristics 

of flat terrain. The two DEMs for flat study areas with the highest standard deviation in lower 

panels are the Louisiana study sites.  This region is extremely dendritic with well-defined flow 

channels.  This characteristic creates a large local standard deviation for changing attribute 

resolution during filtering.  In the remaining three flat study areas (TX, NM and NC), the 

hydrographic landscape isn‟t as dendritic.  There appears to be a strong impact from these 
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climatic characteristics in transforming the landscape, similar to flash flood channelization of 

arid regions.  This suggests that while climatic conditions may have a profound effect on the 

characteristics of the landscape, and thus on the expected rate of attribute resolution change 

through generalization, the effect can often be distorted in the presence of other prevailing 

characteristics. 

 

4.4 Measuring the scope of attribute change in a DEM using semivariograms 

The semivariance of a dataset describes the autocorrelation in the data set.  In this thesis, 

semivariograms are used to compare the filtered DEM to the benchmark DEMs after the number 

of filtering iterations identified by the standard deviation.  The semivariance describes how the 

generalization process affects DEM variance at various lag distances.  It will help to answer the 

rates of attribute resolution change and whether iterative filtering only affects a localized area or 

if the impacts of filtering can have global implications on the resulting DEM resolution. 

The semivariogram analysis was calculated for the two filtering iterations identified by 

the standard deviation analysis.  Two sets of semivariograms were generated for the specified 

filtering iterations.  The first was within the focal standard deviation window.  This is important 

because it demonstrates the effects of filtering at a local scale.  The second was across the entire 

study site to demonstrate the effects of filtering at a global scale.  The need to create two 

semivariograms is required because of the scale at which trends can be observed.  The effects of 

the filtering within the focal standard deviation window (maximum of 90 meters) will not be able 

to be seen when the semivariogram is created across the entire DEM (about 16,000 meters) 

Five hundred (500) experimental semivariograms were calculated for each DEM, with 

10,000 point pairs being used at each lag distance.  A lag distance of 1 cell (3 meters, 10 meters, 
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or 30 meters depending on the DEM being used) was used to create the semivariograms within 

the focal standard deviation window.  This causes 90 or 30 lags for the 3-meter DEM and 3 lags 

for the other benchmark DEMs.  Conversely, a lag distance of 170 meters was used when 

creating a semivariogram across the entire study site.  This equates to 50 lags. 

The maximum and minimum semivariance values for each lag distance were used to 

create an envelope of possible realizations of the true semivariogram, analogous to a confidence 

interval.  This envelope is useful for examining how well the semivariance of the filtered 3-meter 

DEM replicates the semivariance of a benchmark DEM at the iterations specified in the standard 

deviation analysis.  In all cases, the distribution of the 10,000 semivariance values at each lag 

distance for each of the 500 semivariograms created was normally distributed. 

Figure 4.4 shows the semivariograms calculated within the focal standard deviation 

windows.  The red lines represent the semivariance envelope for the benchmark DEM.  The blue 

lines represent the semivariance envelope for the filtered DEM. Note that the lag distances (x-

axis) of each graph vary and comparisons direct comparisons cannot be made between the two 

panels.   

 
Figure 4.4: Semivariogram plots of DEM elevation values within the focal standard deviation window. 

 

Figure 4.4 shows the semivariances within the standard deviation filtering window for 

Falkland, NC (see Appendix C for the other study sites).  The nugget for the 3-meter DEM that 
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has been filtered 7 times is 0.003 and 0.002 for the 11th filtering iteration.  The nugget for the 

10-meter benchmark is 0.036 and for the 30-meter benchmark is 0.222.  The nugget is an artifact 

of the DEM‟s spatial resolution and is greater for the benchmark DEMs because the variance 

measured at a smaller distance would be 0.0 since the pixel value would be compared against 

itself.  Figure 4.4 demonstrates that the iterative filtering has appropriately altered the attribute 

resolution of the Falkland, NC, DEM to match that of the benchmark DEMs because the 

semivariogram envelopes overlap.  However, the overlap with the 30-meter benchmark isn‟t as 

large and the data is more likely to be over generalized.  The filtered DEMs can be identified that 

it is over generalized because the semivariance is less than that of the benchmark. 

In fact, for many of the study sites, the 3-meter DEM is shown to be over generalized 

(see Appendix C).  Few of the study sites are considered to be possible realizations of a coarser 

10-meter attribute resolution with a high degree of semivariance envelope overlap.  These results 

suggest that the DEMs have been systematically over generalized which contradict the findings 

of the standard deviation analysis.  However, it is important to remember that the standard 

deviation is only a snapshot at one scale.  The semivariograms of 10 of the 16 study sites 

intersect the 10-meter DEM semivariance at a lag distance of 30 meters (the focal standard 

deviation window size), some of which just slightly intersecting.  Only 6 of the 16 study sites 

intersect the 30-meter semivariogram envelope at a lag distance of 90 meters. 

Despite localized fluctuations in the slopes of the semivariogram lines, the shapes and 

patterns remain consistent between the filtered DEM and its benchmark.  While the 

semivariograms do not perfectly match, there are no instances where the slope of one 

semivariogram greatly deviates from that of the semivariogram it is being compared to.  While 
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this seems like a trivial observation, it suggests that the filtering process is maintaining the key 

characteristics of the data. 

Now that the semivariograms have been examined within the filtering window, the next 

step is to examine semivariograms over a larger distance to see if overlap occurs beyond the 

focal window.  This would demonstrate how far-reaching the filtering impacts are on the filtered 

DEMs.  Figure 4.5 shows the semivariograms up to 8000 meters (170 meter lag distance, 50 lags, 

and half the diagonal distance of each study site).  Appendix D shows the semivariograms of the 

remaining study sites.  Note that these cover a much larger distance than what was shown in 

Figure 4.4.  The semivariograms shown in Figure 4.4 cover a small portion of the lag distances in 

Figure 4.5.   

The relationship between the filtered DEM and the benchmark can differ dramatically 

from what was observed when examining the semivariance within the focal windows shown in 

Figure 4.4 (see Richford, VT or Los Griegos, NM in Appendix D).  Only the North Carolina 

study sites (Falkland, NC shown in Figure 4.5) have filtered DEM semivariances that continue to 

match the benchmark resolutions through the 8000 meter distance.  Several other study sites also 

show close resemblances between filtered DEM semivariograms and benchmark 

semivariograms.  In many other cases, the filtered DEMs appear to be overgeneralized and none 

show possible under generalization.  Unlike the short lag distance semivariance slopes, the 

semivariance of the filtered DEM can differ dramatically from the observed semivariance of the 

benchmark resolution.  This result suggests that iteratively filtering in a small window can 

dramatically affect the global characteristics of the DEM. 

The parts of the semivariograms can also describe the data and help define how different 

landscapes may behave differently or similar.  The first part of the semivariogram to check for is 
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a sill which will describe the size of the features represented in the DEMs.  Only five study sites 

reach a sill.  Jay Peak, VT, for example, approaches a sill at approximately 7,500 meters.  This 

suggests that size of the features captured by the semivariogram is about this size.  This is likely 

the large valley that runs from the northwest corner to about the center of the study site.  Other 

study sites that show interesting semivariogram characteristics include Falkland, NC, and Sailes, 

LA.  In both of these study sites, a pseudo-sill is encountered and can be observed by a change in 

the semivariance slope.  This type of a features suggests that multiple scales of features can be 

observed in the data. 

The second characteristic used to compare the semivariograms is the maximum 

semivariance values.  For example, Jay Peak, VT, and Bryceland, LA, have very similar 

semivariogram shapes.  However, the maximum semivariance value of Jay Peak is 600,000 

meters.  The maximum semivariance value of Bryceland is only 600 meters.  The maximum 

semivariance is indicative of the relative relief seen in the DEMs.  It also implies a scaling factor 

for landscape features.  The semivariograms are suggesting that even though these two study 

areas are defined differently in terms of landscape relief, the structure of the terrain is similar. 

 
Figure 4.5:  Semivariogram plots of DEM elevation values across half of the study site. 

 

Table 4.3 explores the interaction between the two semivariance envelopes by examining 

the percentage of overlap.  If the filtered DEM‟s attribute resolution exactly matches that of the 
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benchmark, the overlap should be a 100% match.  The maximum overlap observed when 

comparing to a 10-meter DEM was 87% (Greenville, NC).  The majority of the mismatch in this 

study site occurs at larger lag distances, suggesting that the filtering process is having a global 

effect on the DEM.  Overall, the flat study sites have higher overlaps between the 

semivariograms than the rugged study sites.  There is no clear trend in semivariogram overlap 

between climatic regimes. 

Table 4.3:  The measured overlap between the filter and benchmark semivariograms that span half of a study site. 

Climate Terrain Quad Location 
10-m Variogram 

Overlap 

30-m Variogram 

Overlap 

flat humid Greenville, NC 86.74% 66.99% 

flat humid Falkland, NC 74.08% 20.84% 

flat dry Brady South, TX 64.67% 0.00% 

flat dry Voca, TX 55.98% 2.59% 

flat humid Bryceland, LA 52.05% 0.00% 

rugged humid Richford, VT 47.24% 0.00% 

flat dry Los Griegos, NM 45.75% 25.54% 

flat dry Volcano Ranch, NM 35.43% 18.01% 

rugged dry Granby, CO 34.88% 0.00% 

flat humid Sailes, LA 34.05% 0.00% 

rugged humid Maysville, WV 19.68% 0.00% 

rugged dry Wolf Mountain, OR 10.65% 0.00% 

rugged humid Blackbird Knob, WV 10.14% 0.00% 

rugged dry Six Corners, OR 0.00% 0.00% 

rugged humid Jay Peak, VT 0.00% 0.00% 

rugged dry Strawberry Lake, CO 0.00% 0.00% 

 

Additionally, only four of the study sites have overlap greater than 2.6% when comparing 

the 30-meter semivariograms.  This is consistent with examination of the semivariograms within 

the focal standard deviation window.   Filtering to match a target attribute resolution that is very 

different from the source attribute resolution may lead to results that greatly deviate from the 

intended attribute resolution.  It is evident that iterative filtering is more effective when slightly 
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modifying the attribute resolution.  When a large change in attribute resolution is required, 

alternative methods of generalization may be more appropriate. 

 

4.5 Conflation analysis to test vertical integration 

Conflation will be assessed using a Coefficient of Line Correspondence (CLC) 

(Stanislawksi, 2009) to measure the vertical integration of the terrain with vector streams.  

Elevation derived streams (EDS) are extracted from the filtered DEMs that were identified in the 

standard deviation analysis and compared with National Hydrography Dataset (NHD) 

benchmark flowlines of similar spatial resolution.  The CLC metric measures how well 

corresponding flowlines in the two datasets (EDS and NHD) match.  CLC ranges between values 

of 0.0 to 1.0 where 0.0 indicates no match and 1.0 indicates a perfect match.  From a 

cartographic perspective, higher rates of vertical integration (values closer to 1.0) will result in 

better cartographic products.  From an analytic perspective, higher rates of conflation indicate a 

better match between datasets and a model output that is has less systematic error. 

The filtering iterations that were designated to match 10-meter spatial resolution were 

compared to the NHD high resolution (24K) flowlines.  The filtering iterations that were 

designated to match the 30-meter spatial resolution were compared to the NHD medium 

resolution flowlines.  This was done because the high resolution flowlines were compiled at a 

spatial resolution of 12 meters while the medium resolution flowlines were compiled at a spatial 

resolution of 50 meters (Tobler, 1988; Simley and Carswell, 2009).  The resolutions do not 

match exactly, but are close enough to be used together. 

Tables 4.4 and 4.5 show the results of the CLC analysis between the filtered dataset and 

the NHD benchmarks.  The CLC values in Table 4.4 range from 0.24 to 0.82.  Previous research 
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has identified a CLC greater than 0.70 to demonstrate an acceptable tolerance for vertical 

integration (Buttenfield et al., 2011).  This threshold value was identified when measuring the 

CLC value over an entire hydrologic subbasin, which can range from about 2 times to 70 times 

the size of the study areas used in this thesis.  Therefore, it is likely that acceptable CLC values 

will range slightly due to the quality of NHD data being more consistent (better or worse quality) 

through the 7.5 minute quadrangle.  Nonetheless, there appears to be a natural division between 

high and low CLC values at about 0.65.  This suggests that 11 of the 16 study sites have a high 

degree of vertical integration with the high resolution NHD benchmark. 

In all cases, the CLC values are lower for the filtered DEMs that match a 30-meter 

benchmark than the filtered DEMs that match a 10-meter benchmark.  While this appears to 

reinforce the prior findings that the 3-meter DEM with 30-meter attribute resolution performs 

poorly, this is not completely true.  Lower values are partially an artifact of the higher degree of 

spatial resolution mismatch between the 30-meter elevation derived streams to the 50-meter 

NHD benchmark.  As discussed earlier in this chapter, the 100K NHD lacks variations in local 

feature density that would be resolved in the 3-m DEM, and the lower CLC could also be 

indicative of the lack of natural feature density differences in the medium resolution benchmark.  

There is a natural division between high and low CLC values between 0.61 and 0.56.   

When examining the CLC of the filtered DEMs with 10-meter attribute resolution, no 

clear trend is apparent between climatic or terrain characteristics yielding a higher or lower CLC 

value.  A trend between terrain characteristics does emerge in the CLC values of the filtered 

DEMs with 30-meter attribute resolution (Table 4.5).  Here, the rugged study sites generally 

exhibit higher CLC values.  This is likely due to the filtering process eroding small ridges and 

valleys that would be more prominent in the flat study sites.  Because many of the flowlines in 
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the rugged study areas are located in well-defined valleys, these areas will be less affected by the 

generalization and therefore preserved. 

Table 4.4: CLC results of conflation of the 10-meter filtered DEM compared to the 24K (12m) flowline benchmark. 

Climate Terrain Quad Location 
Filtering 

Iteration 

Matching 

Length(km) 

Commission 

Length(km) 

Omission 

Length(km) 
CLC 

dry rugged Six Corners, OR 18 212.10 24.26 22.76 0.82 

dry flat Brady South, TX 12 215.99 30.43 12.29 0.79 

dry flat Voca, TX 12 273.67 44.90 43.89 0.76 

dry rugged Wolf Mountain, OR 19 170.17 38.19 14.48 0.75 

humid flat Sailes, LA 11 221.80 62.48 35.53 0.73 

humid rugged Richford, VT 14 216.52 70.31 41.30 0.69 

humid rugged Maysville, WV 17 168.53 43.86 23.21 0.68 

humid rugged Jay Peak, VT 17 189.73 51.93 28.49 0.67 

humid flat Bryceland, LA 10 210.15 71.66 49.84 0.67 

humid rugged Blackbird Knob, WV 19 134.72 29.60 23.49 0.66 

dry rugged Strawberry Lake, CO 18 152.44 49.21 34.52 0.65 

dry rugged Granby, CO 15 167.47 95.66 71.26 0.54 

humid flat Falkland, NC 7 184.11 100.55 87.14 0.51 

dry flat Volcano Ranch, NM 20 90.25 108.15 42.81 0.38 

humid flat Greenville, NC 5 165.15 203.57 185.42 0.31 

dry flat Los Griegos, NM 29 106.02 187.86 112.88 0.26 

 

Table 4.5: CLC results of the 30-meter filtered DEM compared to the 100K (50m) flowline benchmark. 

Climate Terrain Quad Location 
Filtering 

Iteration 

Matching 

Length(km) 

Commission 

Length(km) 

Omission 

Length(km) 
CLC 

dry rugged Strawberry Lake, CO 20 71.84 17.34 1.42 0.72 

humid rugged Blackbird Knob, WV 22 95.33 13.84 4.52 0.67 

humid rugged Maysville, WV 20 112.32 34.62 12.20 0.64 

humid rugged Richford, VT 18 63.69 24.67 4.42 0.64 

dry rugged Wolf Mountain, OR 21 101.21 39.89 6.12 0.63 

dry rugged Six Corners, OR 21 107.57 43.36 14.05 0.62 

humid flat Falkland, NC 7 118.56 26.86 25.72 0.61 

dry rugged Granby, CO 18 102.46 38.95 16.49 0.56 

humid flat Bryceland, LA 14 67.81 27.77 19.38 0.56 

dry flat Brady South, TX 19 82.37 40.77 3.40 0.55 

humid flat Sailes, LA 15 60.32 22.50 6.23 0.53 

dry flat Voca, TX 17 86.81 47.83 21.04 0.51 

humid rugged Jay Peak, VT 21 51.90 28.44 3.44 0.51 

humid flat Greenville, NC 7 142.55 84.13 63.99 0.50 

dry flat Los Griegos, NM 29 113.68 147.66 41.61 0.32 

dry flat Volcano Ranch, NM 22 39.75 72.99 16.75 0.24 
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The results of the CLC analysis are mapped in Figure 4.6 and in Appendix E, where 

reasons for high and low CLC values are described in further detail for other DEMs.  Figure 4.6 

shows the CLC results of Los Griegos, NM, which has one of the lowest CLC values.  A braided 

stream runs through the southeastern corner of the map.  This feature causes an inappropriate 

increase to the total length of flowlines to be extracted from the DEM.  However, the process of 

extracting elevation derived streams isn‟t well suited to extracting braided features, so excessive 

headwater channels are extracted.  The red lines show many of the braided channels that were 

missed in the EDS extraction.  The length of braids was then extracted from the western part of 

the DEM.  Due to the presence of the braided stream, EDS were poorly extracted which caused a 

low CLC value to be calculated.  Similar artifacts are caused in channelized, urban areas (see 

Greenville, NC in Appendix E) or from poor benchmark compilations (see Voca, TX in 

Appendix E). 

 
Figure 4.6: Map of the stream matches, omissions, and commissions between the elevation derived streams and the 

NHD benchmark flowlines. 
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Frequently, the study sites with low CLC values demonstrate poor vertical integration for 

the reasons given above.  Higher CLC values demonstrate better feature conflation, and better 

integration of terrain with hydrographic data layers. Despite the semivariogram analysis 

suggesting that the filtering has widespread global impact, the CLC analysis identifies that the 

generalized DEMs are still suitable for vertical integration and the impacts of filtering aren‟t 

altering the terrain‟s local structure. 

 

4.6 Summary 

This analysis of iterative filtering results has incorporated several measures to assess the 

relationship of low-pass filtering with attribute resolution.  The standard deviation metric 

identified that rugged areas require more filtering to achieve an attribute resolution similar to a 

benchmark than do flat areas.  However, the semivariogram analysis showed that the rugged 

study sites appeared to be over-generalized relative to flat areas when compared with the 

benchmark DEMs.  The rugged study sites also had a smaller degree of overlap when examining 

the semivariograms across a larger lag distance.  While this doesn‟t precisely contradict the 

results of the standard deviation, caution should be used and the two metrics should be 

considered together rather than in isolation. 

The semivariogram analysis shows that the filtering process has maintained key 

characteristics of the DEM.  It was also identifies a large impact on global attribute resolution 

when performing many filtering iterations.  As the number of filtering iterations increases, the 

discrepancy in attribute resolution increases between the filtered datasets and benchmark DEMs.  

Because of this, it appears that iterative filtering is most effective for small changes in attribute 

resolution. 
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The conflation analysis with NHD benchmark flowlines has shown that iterative low-pass 

filtering of DEMs preserves large and smaller features required for vertical integration with 

independently compiled datasets.  Highest values of CLC were identified to range from about 

0.61 to 0.65 for 11 of the 16 study sites when filtered to a 10-meter spatial resolution.  Only 7 of 

the 16 study sites conflated at this CLC level when filtered to a 30-meter spatial resolution.  

Some low CLC values can be argued to be artifacts of inappropriately extracting complex 

features (braided channels or urban channelization), data compilation problems of the NHD 

benchmark, or poor boundary definitions where a single quadrangle crosses multiple watersheds. 

Overall, the flat study areas achieved a coarser attribute resolution after fewer filtering 

iterations.  Within flat study sites, the climatic characteristics seem to have a much more 

profound effect on the filtering process, with humid areas achieving a benchmark attribute 

resolution before the dry areas.  This suggests that while climatic conditions can have a strong 

effect on the characteristics of the landscape, these effects can be augmented in the presence of 

other landscape characteristics, such as relative relief.  Rugged terrain types have generally 

higher rates of vertical integration with vector benchmarks.  This suggests that the filtering 

process is affecting the underlying structure of the flat study areas.  Since the flat areas have a 

smaller local relief, these minor ridges and valleys are becoming homogenized such that flow 

patterns are being distorted. 

The next chapter will discuss the implications of this analysis.  The results identified here 

will be expanded upon to discuss what was learned and how these results may affect DEM 

generalization for cartographic display.  The discussion will conclude by exploring ways in 

which this thesis can be expanded and improve.  
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Chapter 5: Implications of Results 
 

5.1 Introduction 

In the previous section, results of the standard deviation, semivariogram, and conflation 

analysis were identified as useful tools for identifying how attribute resolution changes as a 

DEM is iteratively filtered.  The CLC shows that even though the attribute resolution was 

reduced, it did not corrupt the data‟s structure and ability to integrate with other vector datasets. 

In this chapter, the implications of these results will be discussed.  The first thing 

discussed will be the lessons that can be taken away from this research by expanding upon the 

results identified in the previous chapter.  Next, possible applications of this work will be 

identified and how these results can be implemented into real world mapping scenarios.  Some 

weaknesses of this thesis will also be documented.  The thesis will then conclude with future 

work and how to expand upon the methodology presented in this thesis.  

 

5.2 Implications of the research 

The work in this thesis confirmed the known limitation of spatial filtering which is that it 

is most applicable for a small change in scale.  While the focal standard deviation identified 

filtering iterations that match the attribute resolution of a benchmark resolution DEM, the 

semivariograms showed that this generates results which become increasingly overgeneralized 

when performing a larger change in attribute resolution.  A different generalization approach 

(resampling instead of filtering) is likely more appropriate for generalizing with a larger scale or 

resolution change in mind. 

The topic of star and ladder generalization strategies is rooted in this observation (Stoter, 

2005), something that has been omitted earlier from this document.  In a star-based 
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generalization, data is aggressively generalized to reach a target resolution.  A ladder based 

strategy gradually alters data through several incremental generalization steps.  This thesis uses a 

ladder based approach that iteratively generalizes an intermediate dataset until a target resolution 

is reached.  The semivariogram and CLC analyses determined that the filtering can perform 

poorly when compared to a known benchmark that is designed to be used at a target resolution 

that is much coarser than the source scale.  This finding suggests that when a large change is 

required, a star based approach may be more useful to match the characteristics of the known 

benchmark (i.e. through resampling). 

Generally, all study sites in this thesis achieved the next coarser spatial resolution (10-

meter) by 20 filtering iterations, with flat areas achieving this by 12 filtering iterations.  Similar 

trends are identified when the data is filtered to an even coarser attribute resolution (30-meter).  

To do this, the number of filtering iterations required is only slightly higher.  The flat study areas 

take up to 20 iterations to achieve the 30-meter attribute resolution; the rugged study sites require 

up to 22 iterations.  The focal standard deviation plots demonstrate that the rate of generalization 

initially happens at a fast rate, gradually decaying through later filtering iterations.  However, the 

opposite trend appears when the filtered DEM matches the benchmark DEM.  This is likely due 

to the same compilation source of the benchmark DEMs. This point should be explored further, 

perhaps by using other data sources for the benchmark DEMs. 

As noted in the previous chapter, the filtering process modifies the attribute resolution of 

flat study areas at a faster rate than rugged study areas because the local relief in these areas is 

smaller.  The CLC results reinforce this argument because the conflation between NHD 

flowlines and elevation derived flow (EDS) is lower in flat areas.  Conversely, the filtering 
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process preserves the valleys and streams in rugged areas because of the higher relief and well-

defined valley lines. 

These results suggest that flat study areas are more susceptible to significant landscape 

alterations through the filtering process.  The addition of breaklines or stream burning prior to 

the generalization process may improve the rate of vertical integration of vector datasets.  

However, this strategy applies a heuristic generalization approach that may be difficult for 

cartographers to implement programmatically.  Therefore, care should be taken when filtering 

data with low relief, as locally important landscape characteristics may be negatively impacted. 

Often, climate characteristics play an important role when performing model 

generalization.  The results indicate that climate conditions play a negligible role in filtering 

rugged areas.  However, climatic characteristics play a stronger role in flat areas.  Dry, flat study 

areas behave similarly to what has been observed when filtering rugged areas.  Channelization in 

dry areas creates a higher local relief that better defines flow lines.  This can also be seen in the 

CLC rates for the 10-meter attribute resolution.  For example, the Texas study sites have a higher 

conflation than do the highly dendritic Louisiana sites. 

 

5.3 Applications of this work 

5.3.1 Landscape Characterization 

As expected, the global and local relief of the DEM was a prevailing factor in identifying 

differences among the effects of filtering.  For example, the standard deviation values were 

higher, the semivariograms had a higher degree of mismatch, and the CLC showed higher 

conflation errors.  The study sites used in this thesis were selected based on pre-existing 

landscape partitions that might not be readily available to all cartographers.   A question arises as 
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how to characterize data so it can be appropriately filtered.  This thesis demonstrated that a 

semivariogram can be useful in identifying features and landscape characteristics of a DEM.  

Other researchers have argued a similar point (see for example O‟Sullivan and Unwin, 2010; 

Goodchild and Proctor, 1997).  

The range, sill, and slope of the semivariogram model permit several inferences about the 

landscape.  The range indicates of the size of features that are observed in the study area.  

However, some study sites in this thesis arguably contain more than one sill, or a partial sill.  

Sailes, LA, demonstrates a sill at about 2000 meters; the semivariance increases dramatically at 

about 7000 meters.  Heterogeneity in the DEM (many small features and valleys) exists in the 

terrain of Sailes, LA.  The semivariogram picks up on this detail.  The larger trend valleys 

(running from the west to east and from the southwest towards the north east) aren‟t picked up as 

readily because their length exceeds the maximum lag distance.  Therefore, the range of the 

semivariograms provides an estimate of the generalization decisions to be made based on feature 

size. 

The sill provides information about the DEM‟s ruggedness.  The sill is the point where 

the spatial dependence in the data stops and is noted by the semivariance coming into 

equilibrium, or the maximum semivariance observed when no equilibrium is reached.  Rugged 

landscapes have sills at a higher semivariance than flat landscapes.  Despite the apparent 

difference in semivariance values, landscapes can share similar structures in terms of spatial 

dependence (for example, compare Bryceland, LA, with Jay Peak, VT).  The relief differs 

dramatically between the study sites.  However, the relative shapes of the semivariograms mimic 

one another.  Although the Bryceland, LA, semivariograms are more similar when comparing the 

filtered and benchmark envelopes, filtering process augmented the spatial dependence equally 
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within these sites.  This result suggests that generalization decisions can be based on the size of 

features to be maintained instead of the relief. 

 

5.3.2 Relating attribute resolution to spatial resolution 

The results of this work will aid cartographers in generalizing DEM data to an 

appropriate resolution for display or analysis at a target scale.  Several methods exist to convert 

data‟s spatial resolution to map scale, but can become complicated when generalizing raster 

attribute resolution through filtering.  This complication can be avoided by changing the spatial 

resolution of a raster through resampling.  However, this strategy sometimes maintains too much 

attribute detail or performs poorly in tandem with the landscape granularity or the display 

resolution of the map.  Spatial filtering simplifies the appearance of a DEM and maintains the 

source cell size.  The characteristics of a landscape help a cartographer to understand how 

filtering a DEM will alter the attribute resolution and thus, its performance as a base map. The 

relationship between attribute and spatial resolution of a generalized DEM assists in 

identification of a target scale. 

In addition, the results of this thesis can assist in decision making for intermediate scale 

level-of-detail (LoD) datasets.  The U.S. Geological Survey (USGS) currently makes large scale 

maps with fine spatial resolution DEMs through The National Map and small scale maps with 

coarser spatial resolution through The National Atlas.  Historically, the USGS made intermediate 

scale maps (e.g. 100K, 250K), which are still available but are no longer being updated (USGS, 

1985).  A user requirement has demanded data availability for elevation datasets at many 

intermediate scales (Sugarbaker et al., 2009).  The rate of attribute resolution change through 
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generalization provides guidelines on generalizing current DEMs to match a desired LoD that 

integrates with existing vector datasets. 

The attribute resolution of a DEM can be efficiently implemented into the construction of 

a Multi-Resolution Database (MRDB).  An MRDB is a spatial database that contains data with 

several levels of detail (LoD) in order to represent data across a wide variety of scales.  An 

MRDB portray data appropriate for several given scales and integrate with other data layers that 

may have been generated at different scales (Bobzien et al., 2008).  The generalization process 

may augment the degree of vertical integration.  Appropriate vertical data integration leads to the 

successful construction and implementation of MRDBs.  A seamless transition of data through 

scales is accomplished by precisely relating the attribute resolution of raster data to a given 

spatial resolution which increases the level of integration and is tied to specific mapping scales. 

 

5.4 Weaknesses and Limitations of the thesis 

This thesis identifies attribute resolution change by comparing data to a benchmark DEM 

having a known spatial resolution.  The original intent of this thesis was to identify how DEM 

attribute resolution may change through low-pass filtering.  The direct results of this thesis are 

applicable by helping a cartographer to understand what terrain types may be more or less 

affected by the generalization process and how aggressively these data need to be generalized. 

A methodological concern arises when comparing the semivariograms.  A striking 

similarity exists between the semivariance envelope values of the benchmark DEMs.  More 

research is required to understand this problem, but is likely an artifact of the DEM compilation.  

The benchmark DEM compilation methods both used DRG contour lines to interpolate elevation 

values.  The contours may not have been sparse or dense enough to create truly independent 
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datasets.  This hypothesis can be evaluated by using a DEM from a different data source as 

another benchmark.  The Global Digital Elevation Model (GDEM), which is offered in a 30-

meter spatial resolution, can be used as a control to provide another estimation of the spatial 

dependence at this spatial resolution.  If the semivariograms are drastically different, the results 

derived from the standard deviation analysis may be biased.  The standard deviation identified 

that more filtering iterations are required to match a 3-meter attribute resolution DEM to a 10-

meter benchmark‟s spatial resolution than to match the 10-meter attribute resolution (filtered 3-

meter DEM) to a 30-meter spatial resolution.  The 90-meter SRTM DEM could be used as a 

third benchmark to evaluate how the attribute resolution of the filtered DEM compares to another 

spatial, coarser resolution. 

This thesis lacks of any examination of terrain derivatives.  The generalization process 

affects various terrain derivatives (see Kienzle, 2004; Chang and Tsai, 1991).  For a cartographic 

purpose, the DEM is most often present used on a map to provide a hypsometric tint.  This 

feature layer is less susceptible to resolution derived problems because it is symbolized using a 

continuous, monochromatic color ramp.  Changes in resolution augment the representation of 

terrain derivatives, such as shaded relief or slope and aspect, because they rely on some type of 

classification.  While the hillshade layer relies on a monochromatic color ramp, it is divided into 

areas of illumination or shade.  In areas of complex relief change (i.e. the frequent, rugged 

valleys in Strawberry Lake, CO), raster pixels coalesce and can create a poor map quality when 

attribute resolution is too fine.  This thesis has not performed any analysis on the terrain 

derivatives and future research could perform some of the standard deviation metrics on the 

hillshade instead of the DEM.  It would be interesting to see if the results agreed or contradicted 

those discussed here. 
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One limitation that was overlooked in this thesis was the lack of widespread availability 

of 3-meter DEMs provided in the NED.  This impacted the ability to select study sites.  

Additionally, the lack of data impacted some of the analysis conducted in this thesis, most 

notably the conflation analysis.  Figure 5.1 shows the data availability of the 3-meter DEMs.  

The top image shows the data availability in October, 2011, which was around the time initial 

study sites were selected.  The lower image shows the data availability in October, 2013.  The 

lower image shows that new patches in dry regions were added including all of Iowa. 

 
Figure 5.1: 3-meter NED availability at the start and conclusion of this thesis. 

 

5.5 Continuation of work 

5.5.1 Expansion of Research Design 

This thesis filtered data using a Gaussian kernel.  The Gaussian filter is a common spatial 

filter and has a unique ability to cascade.  Iteratively filtering data can be computationally 

1/9-arc-second NED Availability 
October 2011 

1/9-arc-second NED Availability 
October 2011 



91 

 

expensive and often cartographers filter once with a large window.  The cascading ability of the 

Gaussian kernel allows a cartographer to relate the number of filtering iterations used in this 

thesis with a given window size to a single filter of a larger window size.  However, some GIS 

systems don‟t offer the Gaussian kernel out-of-the-box, and frequently a focal mean is used 

instead.  Unlike the Gaussian kernel, the focal mean kernel treats all neighboring cells with equal 

weight.  It is important to understand how other filters alter the rate of attribute resolution change 

as was identified here.  In the future, research should replicate the methodology proposed in this 

thesis with using alternative filtering algorithms to examine how and why different filters may 

alter the rate of attribute resolution change.  It is unlikely that different filters will generate 

identical results, but it is unknown if the general rates of attribute resolution change will remain 

similar (i.e. flat study areas experience a faster rate of attribute resolution change, etc.). 

Another possible method of analysis incorporates a star generalization approach as 

discussed above.  This thesis demonstrated that the filtered DEM‟s spatial dependencies can 

become quite different from that seen in the benchmark DEMs at large lag distances.  To test the 

star based approach, a resampling of the 3-meter DEM should be applied so that it matches the 

benchmark DEM‟s spatial resolution.  At this point, the focal standard deviation and 

semivariogram analysis can be conducted to compare the attribute resolution of the resampled 

DEM to the benchmark.  As identified earlier, large changes in resolution may require this type 

of generalization. 

A final expansion of the research design conducts a comparison of the terrain derivatives 

of the filtered DEMs to the coarser spatial resolution DEMs.  As mentioned in the previous 

section, the main reasons for generalizing the attribute resolution of a DEM are for the display of 

terrain derivatives.  However, this thesis never directly examined any terrain derivatives.  Results 
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of performing this analysis on the terrain derivatives would have generated a stronger argument 

to support the appropriateness of the attribute resolution for use at a smaller mapping scale. 

  

5.5.2 Improvements of CLC analysis 

Some of the study sites experienced very low CLC values.  As described in the last 

chapter, some of these low values can be defended due to several factors that can affect the 

metric (e.g., the presence of braided streams).  The CLC analysis depends upon extracting stream 

features from the DEM, preferably from an entire watershed where the flow is expected to be 

contiguous.  Some study sites overlapped multiple Hydrologic Unit Codes (HUCs).  This 

fragmentation and focus in headwater regions caused elevation derived stream extraction to be 

negatively impacted.  To compensate, the CLC analysis needs to be expanded to include 

elevation data that surrounds the study area.  Due to 3-meter DEM availability limitations, this 

was not possible for some study sites. 

The elevation derived streams were extracted based on data characteristics of the NHD 

flowlines.  The flowlines contain many types of features including perennial and intermittent 

streams, canals, pipelines, connectors, artificial paths, etc.  Some of these latter examples are 

difficult to model because they are not truly present in the landscape (e.g. underground conduit 

or pipeline; seen in Strawberry Lake, CO) or are too small to be identified in the course spatial 

resolutions DEMs (e.g small agricultural or urban canals as seen in Greenville, NC).  Removing 

these complex features from the NHD benchmark will improve the efficacy of the CLC metric. 

The CLC analysis matched a 10-meter attribute resolution DEM to 12-meter spatial 

resolution hydrographic features.  This is a very close match and likely to be used in a real work 

scenario.  However, the 30-meter attribute resolution DEM was compared to 50-meter spatial 
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resolution hydrographic features.  The difference between these spatial resolutions augments this 

result because both terrain and hydrography are widely acknowledged to be sensitive to scale and 

resolution changes.  Minimizing the difference between vector and raster benchmark spatial 

resolutions will improve the results of the conflation analysis. This could be fit into the above 

discussion of resampling DEMs or identifying an external DEM dataset that more closely 

matches a 50-meter spatial resolution.  Alternatively, implementing third hydrographic flowline 

benchmark can bolster the results of the conflation analysis.  The National Atlas hosts a 

hydrographic dataset at a scale of 1:1,000,000, or with a 500-meter spatial resolution (The 

National Atlas, 2012).  Some elevation datasets exist at this spatial resolution.  Under the scope 

of this thesis, filtering a 3-meter DEM to match a 500-meter attribute resolution was impractical.  

A star-based generalization approach makes this a more reasonable objective. 

 

5.5.3 Data Validation 

This thesis failed to perform any data validation on the generalized products.  It is still 

unknown how filtering may augment the vertical and horizontal positional accuracy.  The 

American Society for Photogrammetry and Remote Sensing defines the vertical accuracy of 

DEMs to be one third the indicated contour interval at scale (ASPRS, 1990).  The National 

Standard for Spatial Data Accuracy determines if elevation values conform to accuracy standards 

by calculating the RMSE error of the data points (NSSDA, 1998).  A difference grid derived 

from the filtered 3-meter and unfiltered 3-meter DEM would help to address the accuracy 

augmentation.  A 95% confidence interval for RMSE error can be calculated and applied to the 

intended mapping scale.  If the accuracy remains within the standard‟s thresholds, the DEM can 

be certified to conform to national mapping accuracy standards.  However, if the RMSE does not 
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conform to national mapping accuracy, the filtering process needs to be re-evaluated or the data 

used with caution that it may not be the best representation on a map.  If the accuracy is 

inappropriate, other methods of generalization should be considered that will maintain proper 

horizontal and vertical accuracy. 

 

5.6 Summary 

The theoretical contribution of this thesis is rooted in a deep literature pool for 

cartographic generalization.  In this context, data are modified to improve a map‟s message and 

is determined on a map‟s purpose, scale, target audience, and data complexity (Weibel, 1987; 

Robinson and Sale, 1969).  Frequently, cartographers relate a minimum mapping unit or spatial 

resolution directly to a mapping scale (Demers, 2002; Tobler, 1988) in order to meet appropriate 

cartographic renderings.  Spatial filtering is a common method to simplify the appearance of a 

DEM.  However, filtering causes a disconnection between the attribute and spatial resolutions 

and makes determining a scale that matches the filtered DEM‟s fitness for use ambiguous. 

This thesis explored the effects of generalization on attribute resolution change and how 

this change can relate back to a target mapping scale.  This was done by comparing smoothed 

DEMs to benchmark datasets within the NED and NHD.  A standard deviation and 

semivariogram analysis were conducted to evaluate the rate of attribute resolution change and 

how the filtering affects the spatial dependency of elevation values within the filtered DEM.  A 

conflation analysis measured the degree of vertical integration with NHD vector stream. 

The results demonstrated the ability to relate the attribute resolution of a filtered DEM 

back to a known spatial resolution, and therefore a target mapping scale.  Additionally, the 

effects of generalization across various physiographic landscapes were explored.  The standard 

deviation and semivariogram analysis demonstrated that the rate of attribute resolution change 
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increases through filtering iterations.  This is contrary to what would have been expected and 

may have been a result of the benchmark DEMs used.  The rate of attribute resolution change is 

faster for flat landscapes and more aggressive filtering is required to change the attribute 

resolution of a rugged landscape.  Climatic characteristics impacted the rate of attribute 

resolution change, but were muddied by other prevailing characteristics.  The semivariogram 

analysis demonstrated that filtering is adequate for a small change in scale or resolution because 

large deviances in spatial dependencies appear when a DEM is aggressively smoothed.  The 

conflation analysis demonstrated that the filtering process has not altered the spatial structure of 

the DEM and that vertical integration is maintained between vector datasets of similar spatial 

resolutions.  However, low relief areas experience lower rates of vertical integration because 

locally significant landscape structures can be eroded through the filtering process. 

 The main weaknesses and limitations noted in this thesis are drawn from the sole use of 

NED elevation data.  Small and infrequent patches of 3-meter DEMs across the United States 

limited the ability to test a wide range of physiographic characteristics and have directly 

impacted the results of the conflation analysis.  Additionally, the benchmark NED datasets were 

specifically chosen because of their independent compilations and conformity to national 

mapping accuracy standards.  Due to their shared source information, a truly independent 

compilation may not have been truly accurate, as seen in the semivariogram analysis. 

The next steps of this work include modifying the methodology to include a comparison 

of multiple smoothing methods.  Most GIS software packages use a focal mean as the default 

filtering algorithm.  This is fundamentally different from the weighted Gaussian kernel used in 

this thesis.  By comparing filtering methods, specific filtering algorithms can be compared and 

contrasted and differences in the implications on a DEM surface can be identified.  
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Appendix A: Benchmark Datasets 
 

To achieve the goal of identifying attribute resolution change in a DEM after iterative filtering, 

data was compared to benchmark data with a known spatial resolution.  Attribute resolution can 

be difficult to measure.  However, attribute and spatial resolutions are intrinsically related.  As 

fine spatial resolution DEMs are generalized through smoothing, a disconnect occurs between 

spatial and attribute resolutions.  This disconnect was measured by systematically comparing a 

filtered data (unknown attribute resolution) to a benchmark dataset (known spatial resolution) to 

identify how the attribute resolution of the filtered data may match that of a known, coarser 

spatial resolution. 

To accomplish this task, a raster and vector benchmarks were used throughout the analysis.  The 

raster benchmark was taken from the National Elevation Dataset (NED).  Though the NED 

consists of several products of varying resolution, only two were used as benchmarks, including 

the 1/3 arc-second and 1 arc-second, or 10- and 30-meter DEMs respectively.  The NED 

benchmarks will be used to directly compare a filtered DEM to a benchmark at a known spatial 

resolution. This will be done using the standard deviation and semivariogram analyses.  The 

vector benchmark was taken from the National Hydrography Dataset (NHD).  The NHD is 

currently available in two resolutions, known as high resolution, based on a 1:24,000 topographic 

mapping scale, and medium resolution, based on a 1:100,000 topographic mapping scale (Simley 

and Carswell, 2009; USGS, 2000).  The NHD benchmarks will be used to assess the degree of 

conflation between the filtered DEM and an existing vector dataset to measure the degree of 

vertical integration.  Only a subset (flowlines) of the NHD will be used during this analysis. 

In the following graphics, the benchmark data is shown for every study site.  All of the maps are 

shown at a scale of 1:157,000.  The upper two images are of the raster benchmarks, taken from 

the NED.  The upper left map is the 10-meter benchmark DEM.  The upper right map is the 30-

meter benchmark DEM.  At first, they look very similar.  However, upon closer inspection, the 

10-meter benchmark shows more detail (finer attribute resolution) than the 30-meter benchmark 

due to the difference in spatial resolutions.  The lower two images are of the vector benchmarks, 

taken from the NHD.  The lower left map is of the 1:24,000 compilation (high resolution) 

flowlines.  The lower right map is of the 1:100,000 compilation (medium resolution) flowlines.  

The high resolution flowlines have a finer attribute resolution because more stream features are 

represented.  Additionally, when flowlines are represented in both benchmarks, the high 

resolution features have more detail (vertices) in the lines.  Study sites are ultimately divided into 

4 physiographic regimes including rugged/dry, rugged/humid, flat/dry, and flat/humid and driven 

by the landscape partitions derived by Stanislawski et al. (2011).  The terrain ruggedness was 

identified based on relative relief.  The aridity was identified using estimated annual runoff 

which was considered to be a useful surrogate for precipitation. 
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A.1: Semivariogram plots for Jay Peak, VT.  This study site is classified as rugged, humid.  The 

relief observed in this study site is 1033.92 meters and the estimated annual runoff is 760 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.2: Semivariogram plots for Richford, VT.  This study site is classified as rugged, humid.  The 

relief observed in this study site is 454.67 meters and the estimated annual runoff is 590 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.3: Semivariogram plots for Blackbird Knob, WV.  This study site is classified as rugged, 

humid.  The relief observed in this study site is 879.28 meters and the estimated annual runoff is 

567 millimeters. The study site intersects 2 HUC08 subbasins. 

 



110 

 

 
A.4: Semivariogram plots for Maysville, WV.  This study site is classified as rugged, humid.  

The relief observed in this study site is 666.35 meters and the estimated annual runoff is 237 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.5: Semivariogram plots for Granby, CO.  This study site is classified as rugged, dry.  The 

relief observed in this study site is 554.86 meters and the estimated annual runoff is 120 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.6: Semivariogram plots for Strawberry Lake, CO.  This study site is classified as rugged, dry. 

The relief observed in this study site is 836.21 meters and the estimated annual runoff is 155 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.7: Semivariogram plots for Six Corners, OR.  This study site is classified as rugged, dry.  The 

relief observed in this study site is 671.97 meters and the estimated annual runoff is 110 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.8: Semivariogram plots for Wolf Mountain, OR.  This study site is classified as rugged, dry.  

The relief observed in this study site is 917.03 meters and the estimated annual runoff is 107 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.9: Semivariogram plots for Falkland, NC.  This study site is classified as flat, humid.  The 

relief observed in this study site is 40.38 meters and the estimated annual runoff is 383 

millimeters. The study site only intersects one HUC08 subbasin. 

 



116 

 

 
A.10: Semivariogram plots for Greenville, NC.  This study site is classified as flat, humid.  The 

relief observed in this study site is 29.36 meters and the estimated annual runoff is 405 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.11: Semivariogram plots for Sailes, LA.  This study site is classified as flat, humid.  The relief 

observed in this study site is 92.72 meters and the estimated annual runoff is 551 millimeters. 

The study site only intersects one HUC08 subbasin. 
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A.12: Semivariogram plots for Bryceland, LA.  This study site is classified as flat, humid.  The 

relief observed in this study site is 105.21 meters and the estimated annual runoff is 591 

millimeters. The study site intersects 2 HUC08 subbasins. 
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A.13: Semivariogram plots for Volcano Ranch, NM.  This study site is classified as flat, dry.  

The relief observed in this study site is 254.48 meters and the estimated annual runoff is 12 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.14: Semivariogram plots for Los Griegos, NM.  This study site is classified as flat, dry.  The 

relief observed in this study site is 221.11 meters and the estimated annual runoff is 11 

millimeters. The study site only intersects one HUC08 subbasin. 
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A.15: Semivariogram plots for Brady South, TX.  This study site is classified as flat, dry.  The 

relief observed in this study site is 125.46 meters and the estimated annual runoff is 54 

millimeters. The study site only intersects one HUC08 subbasin. 

 



122 

 

 
A.16: Semivariogram plots for Voca, TX.  This study site is classified as flat, dry.  The relief 

observed in this study site is 111.07 meters and the estimated annual runoff is 54 millimeters. 

The study site only intersects one HUC08 subbasin. 
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Appendix B:  Standard Deviation Plots for all Study Sites 
 

The first metric used to assess the change of resolution is the local standard deviation.  Standard 

deviation has historically been used as a metric to estimate surface roughness and is a good 

predictor of how similar values are within a dataset.  In this thesis, the standard deviation is used 

to compare the similarity of a neighborhood of cells in a smoothed DEM to a coarser resolution 

benchmark DEM.  When the local standard deviations are most similar to the benchmark, the 

resolution of the smoothed DEM will be considered to have approached the benchmark 

resolution.   

A 10x10 cell focal window was applied to the 3-meter filtered DEM in order to compare the 

standard deviation to the 10-meter benchmark (using a 3x3 cell window).  A 30x30 cell focal 

window was then used on the 3-meter filtered DEM in order to compare the standard deviation to 

the 30-meter benchmark (using a 3x3 cell window).  By altering the sizes of the focal window on 

the 3-meter DEMs, the areal extent of the windows are equivalent and comparisons can be made 

easily.  

In the following graphics, the solid lines represent the focal standard deviation of the filtered 

DEM after each filter iteration.  The dashed lines represent the focal standard deviation of the 

benchmark DEM.  This line does not decrease or increase because it is computed only once, and 

meant to only serve as a standard to identify when the filtered DEM is most similar to the 

benchmark DEMs.  The left panel compares the attribute resolution of the filtered DEM to the 

10-meter benchmark.  The right panel compares the attribute resolution of the filtered DEM to 

the 30-meter benchmark.  It is important to note that the focal standard deviations (y-axis) cannot 

be compared between the two panels because it is calculated over different areal extents.  

 

 
B.1: Standard deviation plot for Jay Peak, VT.  This study site is classified as rugged, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 17 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 21 iterations. 
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B.2: Standard deviation plot for Richford, VT.  This study site is classified as rugged, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 14 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 18 iterations.  This study site 

achieves a coarser attribute resolution before any other rugged study site. This is likely due to the 

terrain being transitional (mixed low-high relief) and containing a wide river basin. 

 

 
B.3: Standard deviation plot for Blackbird Knob, WV.  This study site is classified as rugged, 

humid.  A standard deviation value for the 3-meter DEM is most similar to the attribute 

resolution of the 10-meter benchmark after 19 iterations.  A standard deviation value for the 3-

meter DEM is most similar to the attribute resolution of the 30-meter benchmark after 22 

iterations.  Blackbird Knob, WV requires the highest number of filtering iterations for rugged 

landscapes. 

 

 
B.4: Standard deviation plot for Maysville, WV.  This study site is classified as rugged, humid.  

A standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 
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10-meter benchmark after 17 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 20 iterations. 

 

 
B.5: Standard deviation plot for Granby, CO.  This study site is classified as rugged, dry.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 15 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 18 iterations. Granby, CO, 

achieves a coarser attribute resolution quickly relative to other rugged study sties.  Similar to 

Richford, VT, this study site also has a mixed terrain (low to high relief). 

 

 
B.6: Standard deviation plot for Strawberry Lake, CO.  This study site is classified as rugged, 

dry.  A standard deviation value for the 3-meter DEM is most similar to the attribute resolution 

of the 10-meter benchmark after 18 iterations.  A standard deviation value for the 3-meter DEM 

is most similar to the attribute resolution of the 30-meter benchmark after 20 iterations. 
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B.7: Standard deviation plot for Six Corners, OR.  This study site is classified as rugged, dry.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 18 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 21 iterations. 

 

 
B.8: Standard deviation plot for Wolf Mountain, OR.  This study site is classified as rugged, dry.  

A standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 19 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 21 iterations. 

 

 
B.9: Standard deviation plot for Falkland, NC.  This study site is classified as flat, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 7 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 11 iterations. 
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B.10: Standard deviation plot for Greenville, NC.  This study site is classified as flat, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 5 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 7 iterations.  Greenville, NC, 

is the first study site to reach a 10-meter attribute resolution.  It also reaches the 30-meter 

attribute resolution before any other study site reaches its 10-meter benchmark   Greenville also 

has the lowest relief of any of the other study sites. 

 

 
B.11: Standard deviation plot for Sailes, LA.  This study site is classified as flat, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 11 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 15 iterations. 

 

 
B.12: Standard deviation plot for Bryceland, LA.  This study site is classified as flat, humid.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 10 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 14 iterations. 
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B.13: Standard deviation plot for Volcano Ranch, NM.  This study site is classified as flat, dry.  

A standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 20 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 22 iterations.  Both of the New 

Mexico study sites are the last to achieve a coarser resolution, which is opposite of trends with 

the remainder of the flat study sites.  This may likely be attributed to a large difference in the 

landscape features that have been captured by DEM compilation between the 3-meter benchmark 

and the 10- and 30-meter benchmarks. 

 

 
B.14: Standard deviation plot for Los Griegos, NM.  This study site is classified as flat, dry.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 29 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 29 iterations.  Strangely, this 

study site reaches the 10-meter and 30-meter benchmarks after the same number of filtering 

iterations.  This suggests that there may not be significant differences between the attribute 

resolutions of the 10-meter and 30-meter benchmarks. 
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B.15: Standard deviation plot for Brady South, TX.  This study site is classified as flat, dry.  A 

standard deviation value for the 3-meter DEM is most similar to the attribute resolution of the 

10-meter benchmark after 12 iterations.  A standard deviation value for the 3-meter DEM is most 

similar to the attribute resolution of the 30-meter benchmark after 19 iterations. 

 

 
B.16: Standard deviation plot for Voca, TX.  This study site is classified as flat, dry.  A standard 

deviation value for the 3-meter DEM is most similar to the attribute resolution of the 10-meter 

benchmark after 12 iterations.  A standard deviation value for the 3-meter DEM is most similar 

to the attribute resolution of the 30-meter benchmark after 17 iterations. 
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Appendix C:  Semivariograms within the Focal Standard Deviation Window 

for all Study Sites 
 

Empirical semivariograms are created for the generalized DEM and for the benchmark DEM.  

These semivariograms demonstrate more precisely how well the resolutions of the two DEMs 

match locally.  Where the semivariance of the generalized DEM is greater than the semivariance 

of the benchmark DEM, it is considered under-generalized.  Conversely, when the semivariance 

of the generalized DEM is less than that of the benchmark, it is considered overgeneralized.  The 

standard deviation analysis will be a two-part process.  The first will examine how the filtering 

process has affected the DEM within the focal standard deviation window (local effects).  The 

second will examine how the filtering process has affected the DEM across the entire dataset 

(global effects). 

The semivariograms were calculated at a lag distance of one cell, resulting in a lag distance of 3 

meters for the 3-meter DEM, 10 meters for the 10-meter DEM and 30 meters for the 30-meter 

DEM.  Five hundred (500) experimental semivariograms were calculated within the focal 

standard deviation window.  Ten thousand (10,000) point pairs were sampled to calculate the 

semivariance at each lag distance.  Within the 500 semivariograms, the semivariance values at 

each lag distances were normally distributed.  The minimum and maximum semivariance values 

were extracted from each of the 500 semivariograms at each lag distance to create a 

semivariance envelope, to represent possible realizations of the true semivariance.  

In the following graphics, the red lines represent the semivariance envelope of the benchmark 

(10- or 30-meter DEM).  The blue lines represent the semivariance envelope of the filtered DEM 

after the listed filtering iteration.  The left panel shows the semivariance envelope interaction 

between the filtered DEM and the 10-meter benchmark and has a maximum lag distance of 30 

meters.  The right panel shows the semivariance envelope interaction between the filtered DEM 

and the 30-meter benchmark and ha a maximum lag distance of 90 meters.  It is important to 

note that the semivariance (x-axis) between the panels is not the same because of the difference 

in lag distances between the panels. 

 

 
C.1: Semivariogram plot within the focal standard deviation window for Jay Peak, VT.  This 

study site is classified as rugged, humid.  Within the standard deviation window, the filtered 

DEM is under generalized compared to the 10-meter benchmark.  The filtered DEM is also under 

generalized compared to the 30-meter benchmark. 
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C.2: Semivariogram plot within the focal standard deviation window for Richford, VT.  This 

study site is classified as rugged, humid.  Within the standard deviation window, the 

semivariance envelope of the filtered DEM just touches the envelope of the 10-meter benchmark.  

This intersection could be indicative of why the standard deviation analysis has matched this 

filtering iteration to the 10-meter benchmark.   However, the filtered DEM is under generalized 

when compared to the 30-meter benchmark. 

 

 
C.3: Semivariogram plot within the focal standard deviation window for Blackbird Knob, WV.  

This study site is classified as rugged, humid.  Within the standard deviation window, the 

semivariance envelope of the filtered DEM just touches the envelope of the 10-meter benchmark.  

This intersection could be indicative of why the standard deviation analysis has matched this 

filtering iteration to the 10-meter benchmark.   However, the filtered DEM is under generalized 

when compared to the 30-meter benchmark. 

 

 
C.4: Semivariogram plot within the focal standard deviation window for Maysville, WV.  This 

study site is classified as rugged, humid.  Within the standard deviation window, the 
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semivariance envelope of the filtered DEM just touches the envelope of the 10-meter benchmark.  

This intersection could be indicative of why the standard deviation analysis has matched this 

filtering iteration to the 10-meter benchmark.   However, the filtered DEM is under generalized 

when compared to the 30-meter benchmark. 

 

 
C.5: Semivariogram plot within the focal standard deviation window for Granby, CO.  This 

study site is classified as rugged, dry.  Within the standard deviation window, the semivariance 

envelope of the filtered DEM slightly overlaps the envelope of the 10-meter benchmark through 

the majority of the lag distances.  This intersection is likely indicative that the filtered DEM is a 

plausible realization of the 10-meter benchmark.   The semivariance envelope of the filtered 

DEM just touches the envelope of the 30-meter benchmark, which indicates that this filtering 

iteration is a less likely realization of the 30-meter benchmark. 

 

 
C.6: Semivariogram plot within the focal standard deviation window for Strawberry Lake, CO.  

This study site is classified as rugged, dry. The semivariogram envelope of the filtered DEM 

never overlaps the envelope of the coarser resolution benchmarks.  This suggests that while the 

attribute resolutions may match, the filtered DEM is not a possible realization of the benchmarks. 
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C.7: Semivariogram plot within the focal standard deviation window for Six Corners, OR.  This 

study site is classified as rugged, dry.  The semivariogram envelope of the filtered DEM never 

overlaps the envelope of the coarser resolution benchmarks.  This suggests that while the 

attribute resolutions may match, the filtered DEM is not a possible realization of the benchmarks. 

 

 
C.8: Semivariogram plot within the focal standard deviation window for Wolf Mountain, OR.  

This study site is classified as rugged, dry.  The semivariogram envelope of the filtered DEM 

never overlaps the envelope of the coarser resolution benchmarks.  This suggests that while the 

attribute resolutions may match, the filtered DEM is not a possible realization of the benchmarks. 

 

 
C.9: Semivariogram plot within the focal standard deviation window for Falkland, NC.  This 

study site is classified as flat, humid.  There is a fairly large degree of overlap between the 

filtered DEM semivariance envelope and that of the 10-meter benchmark.  The amount of 

overlap decreases when compared to the 30-meter semivariance envelope.  Nonetheless, this is 

indicative that the filtered DEMs match the benchmark resolutions well. 
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C.10: Semivariogram plot within the focal standard deviation window for Greenville, NC.  This 

study site is classified as flat, humid.  The semivariogram envelope of the filtered DEM greatly 

overlaps the envelope of the 10-meter benchmark.  The same trend is observed for the 30-meter 

benchmark.  This suggests that there is a high degree of correspondence between the filtered 

DEMs and the benchmarks. 

 

 
C.11: Semivariogram plot within the focal standard deviation window for Sailes, LA.  This study 

site is classified as flat, humid.  Within the standard deviation window, the semivariance 

envelope of the filtered DEM just touches the envelope of the 10-meter benchmark.  This 

intersection could be indicative of why the standard deviation analysis has matched this filtering 

iteration to the 10-meter benchmark.   However, the filtered DEM is under generalized when 

compared to the 30-meter benchmark. 

 

 
C.12: Semivariogram plot within the focal standard deviation window for Bryceland, LA.  This 

study site is classified as flat, humid.  Within the standard deviation window, the semivariance 

envelope of the filtered DEM just touches the envelope of the 10-meter benchmark.  This 
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intersection could be indicative of why the standard deviation analysis has matched this filtering 

iteration to the 10-meter benchmark.   However, the filtered DEM is under generalized when 

compared to the 30-meter benchmark. 

 

 
C.13: Semivariogram plot within the focal standard deviation window for Volcano Ranch, NM.  

This study area is classified as flat, dry.  Within the standard deviation window, the semivariance 

envelope of the filtered DEM slightly overlaps the envelope of the 10-meter benchmark through 

the majority of the lag distances.  This intersection is likely indicative that the filtered DEM is a 

plausible realization of the 10-meter benchmark.   A similar trend can be observed when 

comparing the filtered DEM semivariance envelope to that of the 30-meter envelope.  While 

both of the filtered DEM iterations may match their coarser resolution benchmark counterpart, 

they both appear to be over generalized. 

 

 
C.14: Semivariogram plot within the focal standard deviation window for Los Griegos, NM.  

This study site is classified as flat, dry.  There is a fairly large degree of overlap between the 

filtered DEM semivariance envelope and that of the 10-meter benchmark.  The amount of 

overlap decreases when compared to the 30-meter semivariance envelope.  Nonetheless, this is 

indicative that the filtered DEMs match the benchmark resolutions well. 
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C.15: Semivariogram plot within the focal standard deviation window for Brady South, TX.  

This study site is classified as flat, dry.  This study site is classified as flat, dry.  Within the 

standard deviation window, the semivariance envelope of the filtered DEM slightly overlaps the 

envelope of the 10-meter benchmark through the majority of the lag distances.  This intersection 

is likely indicative that the filtered DEM is a plausible realization of the 10-meter benchmark.  

However, the filtered DEM is under generalized when compared to the 30-meter benchmark. 

 

 
C.16: Semivariogram plot within the focal standard deviation window for Voca, TX.  This study 

site is classified as flat, dry.  Within the standard deviation window, the semivariance envelope 

of the filtered DEM slightly overlaps the envelope of the 10-meter benchmark through the 

majority of the lag distances.  This intersection is likely indicative that the filtered DEM is a 

plausible realization of the 10-meter benchmark.   A similar trend can be observed when 

comparing the filtered DEM semivariance envelope to that of the 30-meter envelope.  While 

both of the filtered DEM iterations may match their coarser resolution benchmark counterpart, 

they both appear to be over generalized.  
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Appendix D:  Semivariograms for all Study Sites 
 

Empirical semivariograms are created for the generalized DEM and for the benchmark DEM.  

These semivariograms demonstrate more precisely how well the resolutions of the two DEMs 

match locally.  Where the semivariance of the generalized DEM is greater than the semivariance 

of the benchmark DEM, it is considered under-generalized.  Conversely, when the semivariance 

of the generalized DEM is less than that of the benchmark, it is considered overgeneralized.  The 

standard deviation analysis will be a two-part process.  The first will examine how the filtering 

process has affected the DEM within the focal standard deviation window (local effects).  The 

second will examine how the filtering process has affected the DEM across the entire dataset 

(global effects). 

The semivariograms were calculated at a lag distance of 50 meters.  Five hundred (500) 

experimental semivariograms were calculated within the focal standard deviation window.  Ten 

thousand (10,000) point pairs were used to calculate the semivariance at each lag distance.  

Within the 500 semivariograms, the semivariance values at each lag distances were normally 

distributed.  The minimum and maximum semivariance values were extracted from each of the 

500 semivariograms at each lag distance to create a semivariance envelope, or possible 

realizations of the true semivariance.  

In the following graphics, the red lines represent the semivariance envelope of the benchmark 

(10- or 30-meter DEM).  The blue lines represent the semivariance envelope of the filtered DEM 

after the listed filtering iteration.  The left panel shows the semivariance envelope interaction 

between the filtered DEM and the 10-meter benchmark and has a maximum lag distance of 30 

meters.  The right panel shows the semivariance envelope interaction between the filtered DEM 

and the 30-meter benchmark and ha a maximum lag distance of 90 meters.  

 

 
D.1: Semivariogram plots for Jay Peak, VT.  This study site is classified as rugged, humid.  The 

overlap between filter iteration 17 and the 10-meter benchmark is 0.00% while the overlap 

between filter iteration 21 and the 30-meter benchmark is 0.00%.  This suggests that the attribute 

resolution has been overgeneralized at both local and global scales.  This is one of three rugged 

study sites that experience no semivariance overlap.  This is likely due to the filtering process 

altering minor valleys such that they no longer match what exists in the coarser resolution 

benchmark DEMs. Additionally, this is one of five study sites that show a sill in the 

semivariogram and is one of the two rugged study sites to do so. 
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D.2: Semivariogram plots for Richford, VT.  This study site is classified as rugged, humid.  The 

overlap between filter iteration 14 and the 10-meter benchmark is 47.24% while the overlap 

between filter iteration 18 and the 30-meter benchmark is 0.00%.  Richford, VT, demonstrates 

the highest rate in overlap with the 10-meter benchmark than any other rugged site.  This is 

likely due to the transitional landscape within the area.  Additionally, this is one of five study 

sites that show a sill in the semivariogram and is one of the two rugged study sites to do so. 

 

 
D.3: Semivariogram plots for Blackbird Knob, WV.  This study site is classified as rugged, 

humid.  The overlap between filter iteration 19 and the 10-meter benchmark is 10.14% while the 

overlap between filter iteration 22 and the 30-meter benchmark is 0.00%.  This is the lowest 

overlap rate among the 10-meter benchmark study sites that have any overlap.  The parts of the 

semivariance envelope that overlap occur at lag distances less than 2000 meters.  This suggests 

that the filtering is altering the attribute resolution at a localized scale in a manner that best 

matches the 10-meter benchmark.  However, at large lag distances, the attribute resolution is 

becoming overgeneralized. 
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D.4: Semivariogram plots for Maysville, WV.  This study site is classified as rugged, humid.  

The overlap between filter iteration 17 and the 10-meter benchmark is 19.68% while the overlap 

between filter iteration 20 and the 30-meter benchmark is 0.00%.  The semivariogram 

experiences a dramatic change in semivariance slope at about 1500 meters.  While the two 

semivariance envelopes don‟t overlap much, they remain very close to the semivariance values 

shown by the benchmark envelopes. 

 

 
D.5: Semivariogram plots for Granby, CO.  This study site is classified as rugged, dry.  The 

overlap between filter iteration 15 and the 10-meter benchmark is 34.88% while the overlap 

between filter iteration 18 and the 30-meter benchmark is 0.00%. 

 

 
D.6: Semivariogram plots for Strawberry Lake, CO.  This study site is classified as rugged, dry. 

The overlap between filter iteration 18 and the 10-meter benchmark is 0.00% while the overlap 

between filter iteration 20 and the 30-meter benchmark is 0.00%. This suggests that the attribute 

resolution has been overgeneralized at both local and global scales.  This is one of three rugged 

study sites that experience no semivariance overlap.  This is likely due to the filtering process 

altering minor valleys such that they no longer match what exists in the coarser resolution 

benchmark DEMs.  Strawberry Lake is the only study site in which the filtered semivariance 

envelope changes slope relative to what is seen in the benchmark.  At about 6000 to 7000 meters, 

the filtered semivariance envelope dips away from the benchmark before changing slope again to 

wind up nearly intersecting the benchmark envelope at the 8000 meter lag. 
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D.7: Semivariogram plots for Six Corners, OR.  This study site is classified as rugged, dry.  The 

overlap between filter iteration 18 and the 10-meter benchmark is 0.00% while the overlap 

between filter iteration 21 and the 30-meter benchmark is 0.00%.  This suggests that the attribute 

resolution has been overgeneralized at both local and global scales.  This is one of three rugged 

study sites that experience no semivariance overlap.  This is likely due to the filtering process 

altering minor valleys such that they no longer match what exists in the coarser resolution 

benchmark DEMs.  Despite that the semivariance envelopes don‟t experience any overlap, the 

filtered envelope hovers extremely close to that of the benchmarks. 

 

 
D.8: Semivariogram plots for Wolf Mountain, OR.  This study site is classified as rugged, dry.  

The overlap between filter iteration 19 and the 10-meter benchmark is 10.65% while the overlap 

between filter iteration 21 and the 30-meter benchmark is 0.00%. 

 

 
D.9: Semivariogram plots for Falkland, NC.  This study site is classified as flat, humid.  The 

overlap between filter iteration 7 and the 10-meter benchmark is 74.08% while the overlap 

between filter iteration 11 and the 30-meter benchmark is 20.84%.  Falkland shows the second 
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highest overlap in semivariogram envelopes.  It also is the only study site that shows signs of 

potentially being under generalized at a large lag distance.  This result suggests that the filtering 

process is altering the attribute resolution equally at local and global scales. 

 

 
D.10: Semivariogram plots for Greenville, NC.  This study site is classified as flat, humid.  The 

overlap between filter iteration 5 and the 10-meter benchmark is 86.74% while the overlap 

between filter iteration 7 and the 30-meter benchmark is 66.99%.  Greenville shows the highest 

rate of overlap between the filtered DEM and both benchmark DEMs.  However, the areas of 

least overlap are seen at large lag distances.  This study site is one of five study sites that show a 

sill in the semivariogram. 

 

 
D.11: Semivariogram plots for Sailes, LA.  This study site is classified as flat, humid.  The 

overlap between filter iteration 11 and the 10-meter benchmark is 34.05% while the overlap 

between filter iteration 15 and the 30-meter benchmark is 0.00%.  This study site has the lowest 

amount of semivariance envelope overlap of all flat sites.  This may be caused by the highly 

dendritic landscape in the area.  While the relief is low, it seems to behave more similar to 

rugged study sites. 
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D.12: Semivariogram plots for Bryceland, LA.  This study site is classified as flat, humid.  The 

overlap between filter iteration 10 and the 10-meter benchmark is 52.05% while the overlap 

between filter iteration 14 and the 30-meter benchmark is 0.00%.  This study site shows a 

relatively high degree of overlap between the filtered DEM and the 10-meter benchmark.  

However, this isn‟t focused in one area (small lag distances versus large lag distances).  Instead 

the semivariogram envelopes overlap slightly though all lag distances. 

 

 
D.13: Semivariogram plots for Volcano Ranch, NM.  This study site is classified as flat, dry.  

The overlap between filter iteration 20 and the 10-meter benchmark is 35.43% while the overlap 

between filter iteration 22 and the 30-meter benchmark is 18.01%. 

 

 
D.14: Semivariogram plots for Los Griegos, NM.  This study site is classified as flat, dry.  The 

overlap between filter iteration 29 and the 10-meter benchmark is 45.75% while the overlap 

between filter iteration 29 and the 30-meter benchmark is 25.54%.  Despite many filtering 

iterations, this study site shows the second highest rate of overlap between the filtered DEM and 
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the 30-meter benchmark.  However, this overlap occurs at small lag distances.  The 

semivariogram envelopes are quite different at large lag distances. 

 

 
D.15: Semivariogram plots for Brady South, TX.  This study site is classified as flat, dry.  The 

overlap between filter iteration 12 and the 10-meter benchmark is 64.67% while the overlap 

between filter iteration 19 and the 30-meter benchmark is 0.00%.  Despite the high percent 

overlap between filtered DEM and the 10-meter benchmark, there is no overlap between the 

filtered DEM and the 30-meter benchmark.  This suggests that the effects of filtering and rate of 

resolution change occurred quickly after the filtered DEM reached the 10-meter benchmark.  

This study site is one of five study sites that show a sill in the semivariogram. 

 

 
D.16: Semivariogram plots for Voca, TX.  This study site is classified as flat, dry.  The overlap 

between filter iteration 12 and the 10-meter benchmark is 55.98% while the overlap between 

filter iteration 17 and the 30-meter benchmark is 2.59%.  This study site is one of five study sites 

that show a sill in the semivariogram. 

 

 

  



144 

 

Appendix E:  CLC Result Maps Showing Matching, Omission, and 

Commission Stream for all Study Sites 
 

The ability to identify a dataset‟s resolution allows a cartographer to display the data at an 

appropriate range of mapping scales.  However, being able to generalize data to a given 

resolution may still not be enough for proper cartographic representation.  The generalized data 

must integrate with other layers in the same way it was able to in an un-generalized state.  A 

third metric will be used for evaluating possible problems that might arise with vertical data 

integration of the smoothed data.  The Coefficient of Line Correspondence (CLC) will be 

calculated to describe the conflation between the hydrography of a known resolution to that 

derived from the generalized DEM.   

The CLC analysis is conducted by extracting stream features from the DEM with similar 

characteristics (total length and number of confluence-to-confluence features) to the NHD 

benchmark.  Once streams are extracted from the filtered DEM, buffers are applied to the 

elevation derived stream and NHD benchmark.  An overlay is performed to measure the degree 

of match or conflation between the two stream datasets.  Finally, the CLC metric is computed 

based on the length of stream matches, commissions, and omissions.  Commissions are features 

that exist in the benchmark dataset, but not in the elevation derived stream.  Omissions are 

features that exist in the elevation derived streams, but not in the NHD benchmark. 

In the following graphics, the stream matches (gray lines), omissions (blue lines), and 

commissions (red line) are shown.  Visualizing the distribution of these features can help 

describe why a relatively high or low CLC value was calculated. 

 

 
E.1: Semivariogram plots for Jay Peak, VT.  This study site is classified as rugged, humid.  The 

CLC for iteration 17 is 0.67 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 21 is 0.51 (comparison to medium resolution NHD benchmark).  Iteration 21 does not 
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perform as well as expected.  The stream extraction process is extracting more headwater 

streams than it should. 

 

 
E.2: Semivariogram plots for Richford, VT.  This study site is classified as rugged, humid.  The 

CLC for iteration 14 is 0.69 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 18 is 0.64 (comparison to medium resolution NHD benchmark). 
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E.3: Semivariogram plots for Blackbird Knob, WV.  This study site is classified as rugged, 

humid.  The CLC for iteration 19 is 0.66 (comparison to high resolution NHD benchmark).  The 

CLC for iteration 22 is 0.67 (comparison to medium resolution NHD benchmark). The CLC 

values are very similar which indicates the generalization process is being applied consistently as 

the attribute resolution changes. 

 

 
E.4: Semivariogram plots for Maysville, WV.  This study site is classified as rugged, humid.  

The CLC for iteration 17 is 0.68 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 20 is 0.64 (comparison to medium resolution NHD benchmark).  The omissions (blue 

lines) demonstrate that the stream extraction process is continuing to extract too many small 

headwater channels. 
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E.5: Semivariogram plots for Granby, CO.  This study site is classified as rugged, dry.  The CLC 

for iteration 15 is 0.54 (comparison to high resolution NHD benchmark).  The CLC for iteration 

18 is 0.56 (comparison to medium resolution NHD benchmark). This study site has a braided 

stream present.  It is highlighted by the commissions (red lines) in iteration 15.  The stream 

extraction process has difficulty extracting complex features such as braided channels.  The CLC 

for iteration 18 is slightly higher.  This is likely do to the braided channels not being present in 

the medium resolution NHD. 
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E.6: Semivariogram plots for Strawberry Lake, CO.  This study site is classified as rugged, dry. 

The CLC for iteration 18 is 0.65 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 20 is 0.72 (comparison to medium resolution NHD benchmark). Iteration 18 has a lower 

CLC value than iteration 20.  By examining the CLC map, especially the commissions, of the 

high resolution NHD, there are several artificial connectors or pipelines that are present in the 

vector benchmark but not resolved in either the 10m or the 30m NED.  Since these aren‟t easily 

modeled, they were not identified in the stream extraction process. 

 



149 

 

 
E.7: Semivariogram plots for Six Corners, OR.  This study site is classified as rugged, dry.  The 

CLC for iteration 18 is 0.82 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 21 is 0.62 (comparison to medium resolution NHD benchmark). 

 

 
E.8: Semivariogram plots for Wolf Mountain, OR.  This study site is classified as rugged, dry.  

The CLC for iteration 19 is 0.75 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 21 is 0.63 (comparison to medium resolution NHD benchmark). 
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E.9: Semivariogram plots for Falkland, NC.  This study site is classified as flat, humid.  The 

CLC for iteration 7 is 0.51 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 11 is 0.61 (comparison to medium resolution NHD benchmark).  The CLC value for 

iteration 7 is rather low.  While there appears to be some urbanized channels in the southeast of 

the map, this doesn‟t seem to be the main cause for the low CLC value.  There is a mixture of 

omissions and commissions, suggesting that the stream extraction process isn‟t collecting the 

correct flowlines.  This is likely due to the low relief of Flankland. 
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E.10: Semivariogram plots for Greenville, NC.  This study site is classified as flat, humid.  The 

CLC for iteration 5 is 0.31 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 7 is 0.50 (comparison to medium resolution NHD benchmark).  The CLC for iteration 5 

is very low.  This is likely due to the presence of the urban area in the northern part of the study 

site.  Since urbanized channels of flow aren‟t easily picked up by the stream extraction process, it 

causes a relatively low.  Many of the channels have been removed in the medium resolution 

NHD and as a result, has a much higher CLC value. 
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E.11: Semivariogram plots for Sailes, LA.  This study site is classified as flat, humid.  The CLC 

for iteration 11 is 0.73 (comparison to high resolution NHD benchmark).  The CLC for iteration 

15 is 0.53 (comparison to medium resolution NHD benchmark). 

 

 
E.12: Semivariogram plots for Bryceland, LA.  This study site is classified as flat, humid.  The 

CLC for iteration 10 is 0.67 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 14 is 0.56 (comparison to medium resolution NHD benchmark). 
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E.13: Semivariogram plots for Volcano Ranch, NM.  This study site is classified as flat, dry.  

The CLC for iteration 20 is 0.38 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 22 is 0.24 (comparison to medium resolution NHD benchmark).  Volcano Ranch has a 

very low CLC.  There could be two reasons for this.  The first is that the study site straddles two 

watersheds, making the stream extraction process attempt to identify very small headwater 

streams that continue out of the study site.  The second is the flatness of the study site.  The 

filtering process may have eroded the stream channels to the point where the stream extraction 

process was inappropriately identifying streams. 
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E.14: Semivariogram plots for Los Griegos, NM.  This study site is classified as flat, dry.  The 

CLC for iteration 29 is 0.26 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 29 is 0.32 (comparison to medium resolution NHD benchmark).  Los Griegos, NM has 

a braided stream that runs through the southeastern corner.  Because the stream extraction 

process has difficulty extracting complex features such as braided channels, additional headwater 

streams were extracted instead.  This can be observed when performing the CLC for both NHD 

resolution benchmarks since many braided channels exist in both datasets. 
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E.15: Semivariogram plots for Brady South, TX.  This study site is classified as flat, dry.  The 

CLC for iteration 12 is 0.79 (comparison to high resolution NHD benchmark).  The CLC for 

iteration 19 is 0.55 (comparison to medium resolution NHD benchmark). 

 

 
E.16: Semivariogram plots for Voca, TX.  This study site is classified as flat, dry.  The CLC for 

iteration 12 is 0.76 (comparison to high resolution NHD benchmark).  The CLC for iteration 17 

is 0.51 (comparison to medium resolution NHD benchmark).  The artifact of data compilation of 
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NHD benchmark data can be observed when examining iteration 12 and the high resolution 

NHD benchmark.  There is a well-defined border between streams identified as commissions and 

omissions.  This suggests an error on the part of the NHD benchmark where an editor densified 

one area of the data. 

 

 


