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Understanding the small-dust component of protoplanetary disks is key to understanding the

conditions for planet formation. Small dust grains, particularly at large distances, provide our

primary observational window into the physics of protoplanetary disks, being much more easily

observed than the gas component. Furthermore, the distribution of these grains must ultimately

control the timing and locations for planetesimal formation, the first major step toward planet

formation. For my thesis work, I have used numerical simulations to model the radial distribution

of dust grains as they are acted upon by the gas disk, including the evolution of the disk (outward

expansion and inward accretion), radial and azimuthal drag of the gas flow on the particle orbits,

and turbulent mixing of the particle ensemble radially within the disk. I have run simulations using a

range of particle sizes and disk-model parameters and consider primarily two phenomena: the radial

diffusion of hot, inner disk particles outward to large AU, relevant to the compositional makeup of

bodies within our own solar system, and the time evolution of the global dust-to-gas ratio, which

dictates the supply of solid material to the planetesimal- and planet-forming regions. I find that,

while the degree out outward mixing depends sensitively on a number of disk-model parameters, the

behavior of the global dust-to-gas distribution is relatively uniform between different disk-model

simulations, suggesting that, while still mysterious, the conditions for planetesimal formation are

commonly met across a range of disk configurations. Observed disk compositions correlate poorly

with most observable disk parameters. However, my simulations suggest compositional properties

are most-strongly controlled by the initial conditions of young disk systems.
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Chapter 1

Introduction and the Early Solar
Nebula

Understanding the small-dust component of protoplanetary disks is vital if we are to understand

planet formation. It is the small-dust component that links two of the biggest mysteries of the

field: How should we model the disk turbulence and viscosity that drive both a disk’s evolution and

its structure? And how do planetesimals, the precursors of planets, form, from what, and in what

environments? While fluid-dynamic theory is able to broadly sketch the shape and evolution of gas

disks around young stars, observations of such disks, as well as the physical and chemical evidence

of our own solar system primarily trace the solid material, comprising only about 1% of these

systems. These observations are filled with seeming contradictions: hot-melt minerals embedded in

comets along-side pristine ices; large grains orbiting their stars within the tenuous outer reaches of

their disks. In this thesis, I use numerical simulations to trace and explore the aerodynamic radial

transport of dust particles within evolving protoplanetary disks. The questions I have focused on

are these: How is protoplanetary dust distributed? And how is it mixed? Ultimately, the question

is: What is it, really, that builds planetary systems?

Protoplanetary disks are an integral component of the star-formation process. As prestellar

material from a parent molecular cloud begins to collapse, the intrinsic angular momentum of the

cloud dictates that a substantial portion of that material falls into a flattened disk structure, rather

than directly onto a central point mass. Mass infalling at later times will tend to fall across wider

radial extents of the disk while viscosity within the disk simultaneously allows for the rapid inward

accretion of most of the disk material as well as the outward spread of some at the outer disk edge.

This disk of material is termed the protoplanetary disk (called the Solar Nebula for that of our own
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Solar system). It persists for some millions of years as gas continues to accrete onto the central star

and provides the environment in which dust solids may be processed to larger sizes and perhaps

eventually into planets. Eventually, all the gas of the disk will be stripped away, either through

accretion or loss mechanisms such as photoevapration, leaving only the large bodies, rocky and icy

material, behind. Such later disks of solid material are often collisional and are termed debris disks.

However, observationally, all disks of material surrounding stars may be called circumstellar disks,

including gas-rich protoplanetary disks and debris disks both.

Circumstellar disks of all types are often first detected as excess in the infrared emission coming

from a star, resulting from the heating and re-radiation of stellar light by the disk material. Some

large, nearby debris disks can be resolved in optical images that show starlight reflecting off of the

tenuous debris-disk surface, much as we view the rings of Saturn. Young protoplanetary disks,

however, are often optically thick and dense, observed as dark dust lanes obscuring the light of

their central star (if viewed nearly edge on) or as silhouettes against the background illumination

of their parent star-forming cloud.

Despite this dense, robust presence within their star-forming environment, the gas densities and

pressures at the midplane of a protoplanetary disk are so low as to be classified as medium to high

vacuum by absolute Earth standards, with pressures at the midplane ranging from ∼ 10−4–10−13

bars between the innermost and outermost regions of the disk. Furthermore, the dust particles

that I consider in my simulations are mostly microscopic; millimeter-sized particles are considered

quite large in the context of my results, though other studies have called grains up to centimeter

scales ”well-coupled” to the gas flow. The disk-evolution timescale is broadly set by the lifetimes of

the gas disks, which range from around 3–6 Myr. Therefore, transport processes or loss of material

that occur on much shorter timescales, ∼50,000 years or less, are often termed ’rapid’ and are of

particular interest.

The chronology of a planet-forming system falls into three broad stages:

1. The initial collapse of the parent cloud to form a solar-mass star proceeds on roughly 105 yr

timescales (Lin & Pringle, 1990; Enoch et al., 2009), and in this time the bulk of the central

mass and disk system is assembled.

2. The lifetime of the gas disk is on the order of 3–6 Myr before it dissipates due to accretion onto
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the star as well as via photoevaporation to free space. Recent theory suggests that the earliest

disk accretion proceeds in episodic, high-intensity bursts, as most commonly measured rates

are too low to build solar masses on the above timescales (Kenyon et al., 1990; Evans et al.,

2009), but by about 106 years, accretion through the disk drops down to around 10−8M¯ per

year (Hartmann et al., 1998). In general, gas disks are no longer observed by around 5–10

Myr years (Haisch, Lada, & Lada, 2001) and therefore gas-giant planets, if they form, must

do so within that time period.

3. Terrestrial-planet formation is a longer process, typically requiring around 100 Myr in current

simulations of solar-system formation (Raymond et al., 2009). The Kuiper belt and Oort cloud

are also created during this time as the giant planets scatter planetesimals near their orbits

outward. The Nice model for solar-system history (Morbidelli et al., 2009a) predicts that

large scale instability in the planet orbits lasted through around 700 Myr at least.

These timescales are in contrast with the 10 Gyr expected lifetime of our sun, the ∼4.5 Gyr age of

our Earth, and the hundreds of millions of years for which complex life has existed on its surface.

For the above planet-formation chronology, the first, collapse stage is dominated by fluids

theory and gas dynamics and is probed primarily by astronomical observations of star-forming

clouds. Within this stage, the dust component exists either as an uncondensed vapor (at high

temperatures near the forming star) or as fine, sub-micron-sized grains like those observed within

the interstellar medium (ISM). As such, the dust is therefore treated as a well-coupled component,

dynamically inseparable from the gas. In the last, terrestrial-planet–building stage, the physics is

dominated by large-body orbital dynamics, the gas presumed to either be gone or to have largely

negligible final impact on the outcome of events. In this stage, scientific nuances are drawn largely

from the orbital architecture of both our own and extra-solar planetary systems, and the important

particle components are believed to be at minimum tens of kilometers in size.

The middle, protoplanetary-disk stage, then, is an interface for both gas dominated and solid-

body, celestial-mechanics–dominated disk dynamics, as well as simultaneously the transition from

very small to very large solid particle sizes, including the process of planetesimal formation, which

addresses the transition from cm-sized pebbles up to hundreds-of-kilometer sized bodies suitable for

planet building. For this interface stage, observations of dust distributions in extra-solar protoplan-

3



etary disks offer some insight. But, the physics of dust-gas interactions in low-pressure, orbiting

systems is difficult to probe with laboratory experiments. However, physical clues to the processes

and chronologies of our own Solar Nebula do exist in the form of the mineralogies and compositions

of meteorites, asteroids, and comets. Some important clues include:

* Calcium-Aluminum-rich Inclusions (CAIs). These (sub)mm-sized grains are formed by

condensation at some of the highest temperatures found within the early Solar-Nebula gases.

They are the oldest dated solids in the solar system, with ages of ∼4,568 Myr (Morris &

Desch, 2010), but are found within many meteorites with bulk ages 1–3 Myr younger (Cuzzi,

Davis, & Dobrovolskis, 2003).

* Chondrules. These are submm–cm sized spheres of apparently shock-melted rock that make

up 30–80% of primitive meteorites and appear to have formed at least 1 Myr after CAIs (Cuzzi,

Davis, & Dobrovolskis, 2003). They are one of the primary building-blocks of the earliest large

solar-system bodies and age-dating techniques indicate their formation persisted for at least

2.5 Myr (Amelin et al., 2002).

* Iron-core meteorites. These are meteorites formed from fragments of the core of one or

several differentiated-asteroid(planetesimal) parent bodies. Recent evidence suggests some

may have ages almost as old as CAIs (Kleine et al., 2005; Bottke et al., 2006), implying the

formation of massive solid bodies at the earliest times of Solar-Nebula history.

* Stardust samples. In 2006, the Stardust mission returned to Earth with samples of material

captured from the comet 81P/Wild 2 (Brownlee et al., 2006). This comet is believed to have

formed beyond the orbit of Neptune and was originally thought to be composed of pristine

Solar-Nebula material. However, many of the dust grains recovered are distinctly larger than

those observed in the ISM. Furthermore, a large fraction of the silicate grains are crystalline,

implying processing at high temperatures almost certainly at disk radii much less than where

the comet formed. One of the grains recovered by Stardust is CAI-like in nature, and other

particles appear to contain chondrule fragments (Brownlee, Joswiak, & Matrajt, 2011).

The results of the Stardust mission provided the primary motivation for the first part of my thesis

research: to study the viability of outward mixing of Stardust-sized dust grains within a turbulent,
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protoplanetary gas-disk environment. While some studies had already explored turbulent mixing as

a means to explain crystalline silicates in comets, most were performed within static disk models and

neglected the specific dependence on grain size of aerodynamic-transport properties. For my initial

approach, I considered force-balance trajectories of individual grains orbiting and experiencing gas

drag within a laminar disk flow. I then added a random walk to these trajectories to simulate the

turbulent diffusion of a large ensemble of simulation particles. Tracking an ensemble of particles

rather than modeling the dust as a fluid, as is most-commonly done, allows me to examine mixing of

dust grains from multiple source regions within a single simulation. While I model one-dimensional

(radial) transport only, this simple approach is fairly computationally inexpensive and has allowed

me to explore transport of dust-grains over a wide range of parameter space, while still including

disk evolution within the computation.

Many studies of grain motion and planetesimal and planet formation employ steady-disk mod-

els for simplicity. However, the constraints imposed by observations tell us that disks are not

steady systems. Furthermore, characteristics of evolving-disk models (particularly those important

to grain transport, such as mass-density profiles and gas-flow velocities) can differ substantially

from those with a steady-disk configuration. That the elements of planetary systems form over a

range of time (as demonstrated by the age-distributions of chondrules within meteorites), rather

than instantaneously, means that forming systems sample a wide range of protoplanetary-disk con-

ditions and must survive within these changing environments. These factors have been especially

emphasized by the simulations pertaining to the second focus of my thesis research: using aerody-

namic drag and diffusion calculations to consider the global distribution of dust solids within an

evolving disk.

Observations of dust populations in disks around other stars, the chondrule-dense nature of

most meteorites, and current theories of planetesimal formation all point to large (mm–cm sized)

particles being an important, resilient component of protoplanetary disks and the Solar Nebula.

However, the fairly straight-foward theories of headwind drag predict that these particles will fall

in onto the central star on rapid timescales so-far incompatible with the evidence from CAI and

chondrule chronology discussed above. This rapid-infall behavior is a robust outcome of virtually

all aerodynamic grain-transport calculations, including those presented in this thesis, and I explore

the universality and ramifications of this effect using my transport simulations.
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This thesis is roughly divided between the physics and methodology used for my particle-

transport simulations and the investigations performed using those simulations. In Chapter 2, I

describe the model I use to define the evolving disk environment in which my simulation particles

experience transport and include a discussion of the relevant observational parameters used to

define and constrain my disk models. Next, in Chapter 3, I discuss my model for radial transport

of dust grains within the disk model. I describe both the relevant physics involved, and include

test cases showing that drag-advection and particle-diffusion within my model conform well to

high-precision numerical calculations and analytic solutions, respectively.

In Chapter 4, I present the first results of my particle-transport simulations and include an

overview discussion of how the different pieces of my model setup affect the simulation results.

In this chapter, I focus on the outward mixing of inner-disk particles pertinent to the Stardust

results and observations of extra-solar disk crystallinity. I find that the transport of 20 µm-sized

grains (like those of Stardust) to the comet-forming region is compatible with turbulent mixing

within a Solar-Nebula model disk, though there is a sharp decline in outward mixing for mm-sized

grains. While observations of disks around other stars show few correlations between crystallinity

and other physical observables of the system, I show that the observations are compatible with a

spread in mixing resulting from scatter in the initial compactnesses of disks just after formation

of the star-disk systems. In Chapter 5, I explore outward mixing for a number of other disk-

model parameters. Qualitatively, these results also agree disk observations. The degree of outward

mixing is found to be dependent on a few poorly-constrained model parameters, such as the disk

radial-temperature profile, and on disk conditions at times too early to be readily observable within

other disk systems. However, outward mixing is found to be independent of the global baseline

disk temperature, as well as largely independent of the α-scaling of the disk viscosity and the initial

mass of the disk, in agreement with non-correlations between disk mass and crystallinity observed

for disks around other stars.

Finally, in Chapter 6, I focus on the global distribution of dust grains relative to the evolving

gas profile. Several recent theories of planetesimal formation suggest that this process may be

greatly aided by local increases in the dust-to-gas surface-density ratio (disk metallicity) above solar

values. Radial drift of grains due to headwind drag has been proposed as a mechanism to produce

such enhancements at small disk radii, and early calculations gave promising enhancement results.
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In this chapter, I test this radial-drift hypothesis including disk evolution and radial diffusion

of the dust population. I find this mechanism non-viable to produce the required enhancement

values, which can be substantial in an evolving-disk scenario. These simulations also highlight the

long-standing problem of the rapid loss of mm-sized grains from a smoothly defined disk model,

incompatible with observations. I therefore suggest that axisymmetric disk models are insufficient

to represent dust transport on a fully global scale and that non-axisymmetric structure and local

enhancements likely play an important role in the evolving solids distribution.

A glossary is included at the end of the manuscript in Appendix C as a reference for the various

symbolic variables used throughout the text. In Appendix A, I derive analytic solutions for the

diffusion of a contaminant within a gas disk, while in Appendix B, I specify some of the particular

numerical methods used within my code.
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Chapter 2

Building a 1D Disk-Evolution Model

There are two primary models used in this work. The particle-transport model described in Chap-

ter 3 tracks the motions of an ensemble of particles radially within a protoplanetary gas disk. The

model I describe in this chapter defines that gas disk. It is a 1D, vertically isothermal, α-disk model

that evolves in time due to viscous spreading and accretion, where it’s primary outputs are the disk

surface-density distribution as a function of radius, Σg (R), and the disk temperature distribution,

T (R), which, for the earlier runs, is held fixed to a static R−1/2 profile. From Σg (R) and T (R),

the model also calculates bulk properties like the local gas density, ρg, as well as the radial and

azimuthal (orbital) gas velocities, vr,g and vφ,g, important for computing gas-drag effects on dust

particles within the disk. A parameterization of EUV photoevaporation is also included, but is

important only near the end of the disk lifetime when accretion rates fall to a few×10−10 M¯ yr−1.

The primary parameters I use to distinguish between different disk models are: MD,0, the initial

disk mass, Rd, which defines the initial compactness or spatial size of the disk, and α, which scales

the magnitude of the disk viscosity. All three of these parameters have a strong impact on the

lifetime and evolution of the disk structure (§2.5). My fiducial disk model uses MD,0 = 0.03M¯,

Rd = 20AU, and α = 10−2.

In this chapter and generally, when I refer to the disk and disk evolution, I am speaking primarily

about the gas component of the disk which, while harder to access observationally than the dusty

component, is easier to model and describe using basic physics and fluid dynamics and forms the

bulk (∼99%) of the disk material. The mechanics of protoplanetary-(gas)disk physics are still not

well understood and I use the α model (described in §2.2 and first described by Shakura & Sunyaev

(1973)) to parameterize disk turbulence, viscosity and evolution. Nevertheless, many observations
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exist to constrain the evolutionary timeline of a disk, and I discuss these constraints and observed

properties in §2.1. In §2.2, I outline the properties of the model disks used in this thesis and discuss

the disk structure that results from the vertically-isothermal assumption. In §2.3, I discuss the

theory used to calculate the model-disk evolution. While some of my work uses a disk model with

a static disk-temperature profile, other simulations include the evolution of disk temperature due

to energy-balance of stellar flux and heating by accretion. I describe the model for calculating

evolving disk temperatures in §2.4. In §2.5, I present some diagnostics for comparing the model

disks to observed disks and therefore selecting appropriate values for some of the intrinsic model

parameters. Finally, in §2.6, I describe the method for calculating various disk-gas velocities that

provide aerodynamic drag in my particle-transport simulations. I summarize the main points of

my disk-evolution model in §2.7.

2.1 Observational Understanding and Constraints

While some of our understanding of the Solar Nebula and protoplanetary disks comes from studying

solar-system bodies and debris, most of the constraints on disk physics come from observations of

disks around other stars. It is from observations that we derive statistics on the sizes of disks, the

rate at which disk matter is accreted onto host stars, and the average disk lifetimes. I will sketch

the observational constraints on disk characteristics here, and also briefly discuss what is termed

the minimum-mass Solar Nebula, which can be used as a tool for placing our own past disk in

context with those we observe today.

Probably the disk properties that are the most straight-forward to measure are disk lifetimes

and the rates of mass accretion onto disk-host stars. Disk properties are highly variable, even among

same-age samples born into the same cluster, but an understanding of disk lifetimes can be gathered

via statistics and large surveys of star-forming regions. These surveys tell us that, in general, most

solar-type stars less than 1 Myr old have disks, and that most lose them by the time they are

3–6 Myr old (Haisch, Lada, & Lada, 2001; Luhman et al., 2010; Manoj, 2010). Furthermore, disk

dispersal appears to be quite rapid, on the order of a few ×105 years, though near-IR signatures

of disk material persist somewhat longer than do accretion signatures (Fedele et al., 2010). There

are several well-known disk examples (e.g., TW Hydra, ∼ 8 Myr old) that are longer-lived than

the mean (Manoj, 2010), but little to no evidence for active disks persisting beyond 10 Myr (Fedele
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et al., 2010). From the fall-off rate of the statistics, some stars must lose their disks on 1 Myr

timescales, and both disks born into either low metallicity environments or into the denser star

clusters appear to be shorter lived (Yasui et al., 2009; Luhman et al., 2010). However, my disk

models are aimed at solar-type systems not including external, cluster-environment-type effects.

Therefore, model disks with very short lifetimes are probably not good fits to the observations for

my purposes.

Accretion signatures of disk material falling onto host stars can be measured via excess lumi-

nosity seen in the stellar spectra, and these measurements fall into a fairly well-established range

of values, most commonly 10−9–10−7M¯ yr−1 (Gullbring et al., 1998; Isella, Carpenter, & Sargent,

2009). While any given age bin may see as much as an order-of-magnitude scatter in mass-accretion

rates, statistically, these rates fall off over time, being commonly ∼ 10−8M¯ yr−1 in 1–2 Myr old

systems (Hartmann et al., 1998), a few×10−9M¯ yr−1 in some 4 Myr old systems (Sicilia-Aguilar,

Henning, & Hartmann, 2010), and as low as a few×10−10M¯ yr−1 in some 5 Myr old systems

(Dahm, 2010). These accretion rates do not, however, account for the formation of the host star on

the timescales that the star-disk systems typically become well-established (< 1Myr), and recent

evidence points to accretion rates being time-variable with episodic bursts of high-accretion (up to

10−4M¯ yr−1), at least at early times when the star-forming envelope is still loading mass onto the

outer disk (Dunham et al., 2010; Manoj, 2010).

Combining the simple alpha-disk model of disk evolution (discussed in §2.2) with observed disk

lifetimes and accretion-rates has allowed for estimates of the model-viscosity-scaling parameter, α,

with typical values found on the order of α = 10−2 (Hartmann et al., 1998). The alpha-model

presumes that disk turbulence is the primary driver of disk viscosity, and while belief has long held

that turbulence is fundamental to protoplanetary-disk physics, recent measurements are only just

reaching the sensitivety necessary to describe the levels of turbulence present in accreting disks

around other stars. Tentative measurements of turbulent linewidths measured are a few to a few

tenths the local sound speed, consistent with α ∼ 10−2 estimates (M. Hughes et al., 2011).

The masses and spatial extents of disks are also important parameters for defining these systems,

but are more difficult to pin down observationally. Most disk observations are in the form of

spectral-energy-distributions (SEDs) and disk dust (only about 1% of the disk mass) emits more

clearly than the gas, both for SED and spatially resolved observations. Power-law fits to dust
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emission tend to show disks extending out to a few hundred AU, while observations of CO emission

in the same systems more than double those disk radii, detecting gas as far out as 1000 AU (M.

Hughes et al., 2008) (though small disks may show gas detection only out to a couple hundred AU

(Öberg et al., 2010)). Because CO may be seen to emit at quite low gas densities (Beckwith &

Sargent, 1993), this apparent discrepancy in disk-radius measurements has been largely explained

by applying a similarity-solution to the disk-structure model that accounts for the viscous expansion

of the disk and an exponential drop-off in surface density at the outer disk edge (M. Hughes et al.,

2008). Models of disk structure using similarity solutions report a characteristic radius for the disk,

rather than an outer radius. This characteristic radius is typically about half the power-law dust

emission measure of the radius and so on the order of a quarter or less the gas-emission radius.

Characteristic radii of this type reported in the literature show quite a range in disk sizes, with

characteristic radii of < 20 to ∼200 AU (M. Hughes et al., 2008; Isella, Carpenter, & Sargent,

2009; Andrews et al., 2010). Furthermore, some observations support the idea of disk expansion

over time, noting increases in these radii over the range of disk ages (Isella, Carpenter, & Sargent,

2009).

Observational estimates of disk masses typically require some assumptions about the disk dust-

gas composition as well as some model for the dust-particle size distribution. Nevertheless, many

estimates of disk masses have been made, and these also point to distinct variation between disks

born into similar environments. Typically, the numbers range from ∼ 0.1–40% M¯ (Jørgensen et

al., 2009; Watson et al., 2009; Öberg et al., 2010; Andrews et al., 2010), and again, there is clear

evidence that disk mass falls off with the age of the system. Jørgensen et al. (2009) measured

disk masses of 1.7–46% M¯ for Class 0 sources where the disks are still being fed by the infalling

envelope, but of only 0.81–5.3% M¯ for Class I sources about 1 Myr old, while Dahm (2010)

measured disk masses of 3.7 × 10−6–6.5 × 10−3M¯ for a set of 5 Myr old sources. The range of

typical, young disk masses seems to be somewhere around 1–10% M¯. Interestingly, this is also the

range given by Weidenschilling (1977b) for his estimate of the minimum-mass Solar Nebula. This

is an estimate of the minimum mass needed in our solar-system-forming disk to be able to form our

planets. It is based on taking the masses of the planets (and the asteroid belt) and then adding

extra volatile mass to reach solar composition. The estimate has such a wide range due mostly

to uncertainties in the compositions of the giant planets. Another commonly cited minimum-mass
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model is the Hayashi-1981 model (see Armitage (2010) pp 4–5), which contains a mass interior to

30 AU of 0.01 M¯.

2.2 Basic Setup and Properties

While some studies use static, steady disk models, where the disk surface-density profile is in a

steady-state balance with the viscosity and the inward flow of accretion (defined in §2.3.1), one of

the primary uses of the disk model that I use is to explore the effects of the evolution of the disk

surface-density. I do use a steady disk as a comparison case in Chapter 4, but otherwise, the model

disks that I use begin with a t = 0 surface-density profile

Σg (R, t = 0) =
Ṁ0

3πν

(

1 −
√

Rin

R

)

exp

(

− R

Rd

)

, (2.1)

where Σg is the surface density, R is radial distance from the central star, t is time, Ṁ0 is the t = 0

accretion rate onto the central star, ν is the local disk viscosity, Rin is the inner-disk boundary

(set equal to the inner-grid boundary, R1/2 = 0.099 AU), and Rd is a variable controlling the

compactness of the t = 0 profile. The ν−1
(

1 −
√

Rin/R
)

terms do reference the steady-disk

solution to the primary disk-evolution equation (with irrevocable mass loss, and therefore Σg →

0, past Rin). However, the exp (−R/Rd) term references the similarity solution for a viscously

expanding disk and allows for a finite disk-mass distribution. The calculation for the initial disk

mass for this distribution is given in §2.5, and I primarily define the disk models that I use with

the initial total disk mass, MD,0, and the initial compactness, Rd (as well as α).

This surface-density profile is evolved numerically due to viscous spreading and photoevapo-

ration, as described in §2.3. This evolution is shown in Figure 2.1 for the fiducial disk models of

Chapters 4, 5, & 6 where MD,0 = 0.03M¯, and Rd = 20 AU (and α = 10−2). Chapters 4 & 5 disks

use a static temperature profile with T ∝ R−1/2, appropriate for slowly accreting, passive, flared

disks, while the Chapter 6 disks evolve from initially steeper, hotter profiles. However, both sets

scale to a passive-disk temperature at 1 AU of 278.9 K. As each disk evolves, the surface density

drops (due to accretion onto the central star), and the disk spreads outward before dissipation via

photoevaporation occurs after ∼5.5 Myr. I define Σg (R) and T (R) on a radial grid of 600 cells

spaced logarithmically in R. Innermost and outermost grid points are placed at 0.1 and 15,000 AU,
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Figure 2.1: Surface-density profiles at different times for the two fiducial disk models of Chapters 4,
5, & 6. Both use α = 10−2, and t = 0 values of Rd = 20 AU and MD,0 = 0.03 M¯. However,
the Chapters 4 & 5 fiducial models use a static power-law disk-temperature profile, whereas the
Chapter 6 fiducial model uses an evolving power-law temperature profile that is initially hotter and
steeper. Nevertheless, the evolution of the two models is very similar except that the evolving-
temperature model evolves slightly more quickly near t = 0 and has a slightly longer lifetime before
inside-out clearing via EUV photoevaporation, with gap-opening at t = 5.47 × 106 yr.

respectively.

The vertical structure of the disk comes from basic hydrostatic force-balance:

− GM?z

(R2 + z2)3/2
− 1

ρg

∂P

∂z
= 0 , (2.2)

where G is the gravitational constant, M? is the mass of the central star, z is the height above the

disk midplane, and ρg and P are the local gas-density and pressure, respectively. The first term on

the left-hand side corresponds to the vertical force of gravity from the central star (for simplicity

and because my disks are usually not massive enough for it to matter, my models do not include

the self-gravity of the disk), and the second term corresponds to the gaseous pressure support. For

an ideal gas, P = nkBT = ρgkBT/µmH , where kB is Boltzmann’s constant, T is temperature, and

µ is the average mass of a gas particle in proton masses (mH). For a vertically isothermal disk in

the thin-disk limit, (z/R)2 ¿ 1, the local gas density is given by

ρg = ρg,0 exp

(

R2

H2
g

[

1 − 1

2

z2

R2
+ ...

])

≈ ρg,mid exp

(

− z2

2H2
g

)

(2.3)

where ρg,mid is the gas density at the mid-plane, and the local disk-gas scale height is now defined
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Figure 2.2: Midplane gas-density profiles for the two fiducial disk models of Chapters 4, 5, & 6.
Companion plot to Figure 2.1.

here as

Hg =

√

kBT

µmH

R3

GM?
=

cs
ΩK,mid

, (2.4)

where cs is the sound speed of the gas, and ΩK,mid is the Keplerian angular velocity at the disk

midplane.

Next, in order to derive the midplane density from the surface density, I use the definition of

the surface density:

Σg =

∫

∞

−∞

ρg dz ≈
∫

∞

−∞

ρg,mid exp

(

− z2

2H2
g

)

dz . (2.5)

As Hg does not depend on z, and

∫

∞

−∞

e−ax2

dx =

√

π

a
, we have

ρg,mid =
Σg√
2πHg

; (2.6)

ρg (z) =
Σg√
2πHg

exp

(

− z2

2H2
g

)

. (2.7)

Unless the disk temperature falls off very steeply in R (T ∝ R−3 or steeper), the disk scale-height

will increase with distance from the star and ρg,mid will fall off more steeply than Σg. Figure 2.2

plots the evolving midplane-density profiles for the fiducial disk models shown in Figure 2.1.

Equation (2.4) shows a clear relationship between temperature and scale-height for a vertically

isothermal disk. Next is to relate these quantities to the disk viscosity.
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The concept of α-viscosity, put forth by Shakura & Sunyaev (1973), assumes that the viscosity in

the disk is driven by turbulence and is approximately governed by the size and turnover velocity of

the largest eddies. It assumes that “the scale of the eddies is less than the disc thickness (certainly

true) and that the turbulence is subsonic (probably true)” (Pringle (1981); parenthetical comments

original). This then leads to

ν = αcsHg (2.8)

where ν is the viscosity, and α ≤ 1 is a dimensionless scaling parameter. Using Equation (2.4), this

is often re-written

ν = αΩK,midH
2
g . (2.9)

For a passive, flared disk temperature of T ∝ R−1/2, Equation (2.8) leads to ν ∝ R and therefore

steady-disk models with Σg ∝ 1/R. For my fiducial models, I adopt α = 10−2. This value falls

within the range of values estimated observationally (Hartmann et al., 1998; Hueso & Guillot, 2005;

King, Pringle, & Livio, 2007) and allows dissipation of my model disks in less than 10 Myr, as

discussed in §2.5.

Other models of disk viscosity used in the literature include, e.g., the beta-prescription for

viscosity, which assumes that viscosity is dependent only on local orbital parameters within the disk;

viscosity based on gravitational-instability criterion within the disk; and dead-zone disk models,

based on phenomena predicted for magnetorotational models of disk turbulence. Like the alpha-

prescription, a beta-prescription is most-often used as a simple power-law-in-radius prescription for

disk viscosity. Viscositity models based on gravitational instability are often used in conjunction

with an alpha-prescription, evaluating local disk conditions for Q-parameter gravitational instability

and assigning generally a higher viscosity parameter to those regions based on gravitational overturn

properties. Finally, a dead-zone disk model is often described in terms of an alpha-prescription,

but with a radial jump in the assumed alpha-value. A deadzone model assumes that ionization

rates in the densest inner regions of a disk are incompatible with MRI-driven viscosity, creating an

inner-disk dead-zone region where the total-disk viscosity is lower and mass is subsequently piled

up relative to the higher-visocisity disk beyond the dead-zone. In a 2D model, the dead-zone is

confined to near the midplane of the disk, with active-viscosity zones in the disk surface-layers

where ionization remains efficient.
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Returning to the alpha-prescription and disk model used in this work, for my vertically-

isothermal disk-evolution model, the disk temperature is the fundamental parameter, so that the

primary parameters of interest may be summed up with

Hg =
1

ΩK,mid

√

kBT

µmH
;

ν = αΩK,midH
2
g ;

and ρg ≈ Σg√
2πHg

exp

(

− z2

2H2
g

)

.

If the temperature is defined by a power law, then T , Hg, and ν can be written interchangeably as

T (r) = T◦ r
qT ;

Hg (r) = H◦ r
qH ;

ν (r) = ν◦ r
qν , (2.10)

where

qT = 2qH − 3 = qν − 3

2
. (2.11)

For the temperature-static disk models that I run, qT = −1/2, qH = 5/4, and qν = 1, appropriate

for a passively heated, flared disk.

2.3 Modeling Disk Evolution

In this section, I discuss the mechanics of modeling 1D gas-disk evolution, including the basic theory

and numerical approach for viscous spreading of mass and angular momentum in a cylindrical,

gravitationally bound system, as well as the parameterization used to include loss of disk mass due

to photoevaporation. This model for disk evolution assumes that the star and disk are already

formed at t = 0, with a fixed, central, gravitational mass (and a fixed stellar luminosity), as initial

infall and system formation are beyond the scope of the studies of this thesis. The model also

assumes that disk evolution occurs in isolation, neglecting radiative or gravitational interactions

that might take place with members of the system’s birth cluster.
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2.3.1 Theory

The derivation for the most basic form of the 1D (radial) disk evolution equation can be found in

Pringle (1981) and results in an equation for the evolution of the disk surface density, which is:

∂Σg

∂t
=

3

R

∂

∂R

[

R
1
2
∂

∂R

(

νΣgR
1
2

)

]

(2.12)

Equation (2.12) is derived by invoking conservation of mass and conservation of angular momentum

within the disk and assuming azimuthal symmetry. Conservation of mass gives:

R
∂Σg

∂t
+

∂

∂R
(RvRΣg) = 0 , (2.13)

where vR is the radial velocity of the disk material. Conservation of angular momentum gives:

R
∂

∂t

(

ΣgR
2Ωg

)

+
∂

∂R

(

RvRΣg R
2Ωg

)

=
1

2π

∂Gν

∂R
, (2.14)

where Ωg is the orbital angular velocity of the disk gas, and Gν is the local torque of an outer

annulus of material acting on the annulus of material immediately interior. It is given by

Gν (R, t) = 2πR2dFν = 2πR2νΣgA = 2πR2νΣg R
dΩg

dR
, (2.15)

where dFν is the viscous force per unit length, and A is the rate of the shearing.

Assuming that the disk is slowly varying and ∂Ωg/∂t = 0 for simplicity, expanding the second

term in Equation (2.14), and substituting in Equation (2.13), eliminates the ∂Σg/∂t term and

provides an equation for RvRΣg. Plugging this equation back into Equation (2.13) eliminates the

unknown vR and yields the disk-evolution equation (Pringle, 1981) (2.9):

∂Σg

∂t
= − 1

R

∂

∂R

[

(

∂

∂R

(

R2Ωg

)

)−1 ∂

∂R

(

νΣgR
3∂Ωg

∂R

)

]

. (2.16)

Equation (2.16) is a more general form of the 1D disk evolution equation, and yields the more

tractable, standard-case form of the equation given in Equation (2.12) for the assumption that

Ωg = ΩK,mid =

√

GM?

R3
. Therefore, the standard disk-evolution equation (which is used to evolve
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the model-disk surface-density profile in my disk evolution model) assumes a) Keplerian velocities

for the disk gas, b) zero gravitational contribution from the disk gas, and c) a constant stellar-mass

value.

Equation (2.12) can be made more compact by using a change of variables: X =
√
R (Pringle,

Verbunt & Wade, 1986). This compact form is useful for numerical applications (§2.3.2 & Ap-

pendix B.1) and has:

∂Σg

∂t
=

3

4

1

X3

∂2

∂X2
(νΣgX) . (2.17)

The disk-evolution equation (2.12) is best physically represented by instead expanding the

second derivative in R, to produce

∂Σg

∂t
= 3

∂2

∂R2
(νΣg) +

9

2

1

R

∂

∂R
(νΣg) . (2.18)

Here, the change in disk surface density is broken into a diffusive and an advective component,

showing that the disk as a whole will tend to spread out, but with a preferred direction of flux for

the mass and angular momentum (mass inward and angular momentum outward). Importantly, it

is clear that for the special case when the product νΣg equals a constant in R, that the surface-

density will remain unchanged. Σg ∝ 1/ν is then the steady-state solution that (for a fixed viscosity

profile) an evolving disk profile will approach over time.

One modifier to the simple νΣg = C steady-disk profile comes from the inner edge of the disk,

where a zero-torque boundary condition at Rin provides a pinch-off of the disk surface density. The

steady-disk profile derived by Pringle (1981) (Eq. 3.9) is:

νΣg =
Ṁ

3π

(

1 −
√

Rin

R

)

(2.19)

where Ṁ is the uniform rate of mass accretion through the disk at all R.

Pringle (1981) derives an analytic solution for disk evolution from the standard equation (2.12)

for the case of a constant, uniform viscosity. However, the derivation is easily expanded for any

radial power-law relation for the viscosity, ν = ν0R
b. The derivation is performed for the simplest-
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case initial condition of a delta function in Σg:

Σg (R, t) = Σg,0δ (R−R0) . (2.20)

Because this derivation follows much of the same form as the derivation for the diffusion of a

contaminant within a steady accretion disk that is outlined in Appendix A, I will not detail it here.

A summary of the derivation is as follows

1. Changing variables with X =
√
R produces the compact form of the equation (2.17).

2. Because the viscosity has been defined as independent of time and a power-law in R, the

equation is now separable in R and t.

3. The time component yields exponential decay in time scaled by λ2, the square of the constant

of separation.

4. The spatial component requires another change of variables to produce a Bessel equation with

Bessel-function solutions, Jn (x), dependent on λ.

5. Using the δ-function initial condition, integrating over all λ, and using a Hankel transform

finally switches things over to a modified Bessel function, Iβ (x).

The final, general solution, assuming initial-condition (2.20) and power-law viscosity (b 6= 2, as

b = 2 will not produce a Bessel equation), is given by

Σg (R, t)δ(R−R◦) =
Ṁ

4π
√

3ν◦

[

4β√
3ν◦

]4β R−b/2

t

(

R◦

R

)
1
4
+ 1

2
b

(2.21)

∗ exp

[

−4β2R
αc
◦ +Rαc

3ν◦t

]

Iβ

[

8β2 (R◦R)αc/2

3ν◦t

]

αc = 2 − b

β =
1

2 (2 − b)

where Iβ is the modified Bessel function of the first kind of order β. In the case where the viscosity

is uniform everywhere in the disk (b = 0) the final solution reduces to:

Σg (R, t) =
Ṁ

12πν◦t

(

R◦

R

)1/4

exp

(

−R
2
◦ +R2

12ν◦t

)

I1/4

(

R◦R

6ν◦t

)

, (2.22)
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which is precisely equivalent to Pringle’s expression (Pringle, 1981) (2.13) if one perfoms the coor-

dinate transforms into his notation:

χ =
R

R◦

; τ =
12νt

R2
◦

In Appendix B.1, I detail my numerical method for disk evolution and include test comparisons

between the output of my code and this simple-case analytic solution.

2.3.2 Numerical Approach

In this subsection, I give an overview of the numeric setup for disk evolution in my code. The

detailed discussion of numerical disk evolution is presented in Appendix B.1, along with tests

for convergence, fidelity to the analytic test-case solution, and conservation of mass and angular

momentum. This is a fairly standard setup for 1D disk evolution and grid-spacing (see, e.g., Lin

& Pringle (1990); Hueso & Guillot (2005)).

The disk-evolution model uses the most compact form of the basic disk-evolution equation,

∂Σg

∂t
=

3

4

1

X3

∂2

∂X2
(νΣgX) ,

whereX =
√
R. This form is both the most tractable numerically and leads to the best convergence,

since the addition of multiple terms is a large source of error in numerics. Because of taking this

form of the equation, some studies (e.g., Pringle, Verbunt & Wade (1986); Hueso & Guillot (2005))

have therefore used constant ∆X grid spacing. However, a logarithmic grid spacing provides the

best conservation of mass and angular momentum and that is what I use in my disk evolution

model (this also provides the grid spacing for the total disk-evolution + particle-transport model

as a whole).

Ri = Rmin

(

Rmax

Rmin

)(i−1)/(ngrid−1)

Xi =
√

Ri , (2.23)

where ngrid is the total number of points on the grid, Rmin = R1 is the innermost grid point, and

Rmax = Rngrid
is the outermost grid point. In my fiducial disk models I use ngrid = 600, Rmin = 0.1
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AU, and Rmax = 15000 AU (a large radial extent is best for preventing loss of disk mass past the

outer grid boundary).

Disk evolution is evaluated using a standard time-explicit finite-difference scheme, which, for

the basic disk-evolution equation (with uneven grid spacing), looks like this (Press et al. (1992)

§19.2):

Σj+1
g,i − Σj

g,i

∆t
=

3

4

1

X3
i

1

∆Xi

[

(νΣgX)j
i+1 − (νΣgX)j

i

∆Xi+1/2
+

(νΣgX)j
i − (νΣgX)j

i−1

∆Xi−1/2

]

, (2.24)

where i and j are the spatial and temporal indices, repsectively, ∆Xi = Xi+1/2 − Xi−1/2 is the

width of grid cell i and ∆Xi+1/2 = Xi+1 −Xi is the distance from grid point i to i+ 1. Numerical

stability for this first-order scheme is given by the condition,

∆t ≤ 2

3
min

(

∆Xi∆Xi−1/2X
2
i

νi

)

, (2.25)

and for my disk-evolution model I use

∆t = ζ∆t ×
2

3
min

(

∆Xi∆Xi−1/2X
2
i

νi

)

, (2.26)

where ζ∆t = 1/2. This time-stepping constraint is the primary draw-back to using logarithmic grid

spacing; the very small grid cells in the inner-disk regions require the evolution be calculated with

a very small global time-step (∆t ∼ 0.05 years in my fiducial models). The effect is counter-acted

a bit by the fact that the viscosity values tend to be lowest in the inner disk (the turbulence is

smaller-scale). However, since the time-stepping does go as 1/ν, simulations using larger values of

α for the disk-viscosity parameterization are proportionally more expensive to run.

2.3.3 Parameterized EUV Photoevaporation

To include EUV photoevaporation in my disk-evolution model, I use the parameterization presented

in Alexander & Armitage (2007) of the work of Font et al. (2004). Because I am interested in only

the surface-density profile as the disk evolves, photoevaporation is treated as simply a mass-loss
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term, so that the basic equation is

∂Σg

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

νΣgR
1/2
)

]

− Σ̇wind (R, t) , (2.27)

where Σ̇wind is the rate of surface-density loss due to photoevaporation. Numerically, the viscous and

photoevaporative disk evolution are performed separately, so that the surface-density profile is first

viscously evolved as outlined in §2.3.2 to produce a Σvisc (R)j+1 profile. Then the photoevaporation

component is subtracted following

Σj+1
i = (Σvisc)

j+1
i − ∆t

(

Σ̇wind

)j

i
. (2.28)

If the calculated mass loss is greater than the available mass remaining in a grid cell, the surface-

density in that cell is set equal to zero.

Following Alexander & Armitage (2007), Σ̇wind (R, t) is broken into two components, which

essentially define a first and second stage of EUV photoevaporation. The two components are

called the diffuse wind, Σ̇diffuse, and the direct wind, Σ̇direct, referring to the respective sources of

ionizing radiation.

The diffuse wind dominates in the beginning and is caused by radiation that scatters off the

disk atmosphere and ionizes the surface layers of the disk. It is easy to see how a wind will be

launched at and beyond a disk radius where the high temperature of the ionized layer allows it to

be gravitationally unbound. This radius is given by

Rg =
GM?

c2s,ionz

, (2.29)

where cs,ionz = 10 km s−1 is the sound speed of the ionized gas. However, interior to this point,

there is also a subsonic flow of material that, for this parameterization, may cause loss of disk gas as

far inward as
R

Rg
= χR = 0.1. Therefore, the diffuse wind is set equal to zero interior to χR = 0.1.

Exterior to this boundary, the equation used for the diffuse wind is given by

Σ̇diffuse (R, t) = Kdiff

√

Φdiff (t)

(

2

χ
15/2
R + χ

25/2
R

)1/5
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∗ (χR − 0.1)Dph exp [Bph (χR − 0.1)] , (2.30)

where Kdiff is a constant containing numerical fit parameters for the diffuse wind density and

wind launch velosity, Φdiff is the ionization flux, and Dph = 0.2457 and Bph = −0.3612 are fitting

constants for the the launch velocity of the diffuse wind. Kdiff is given by

Kdiff =

√
3C1,phAph µionzmH cs,ionz

√

π αB R3
g

, (2.31)

where µionz = 1.35 is the average mass of an ionized wind particle in proton masses, mH , αB =

2.6 × 10−13 cm3 s−1 is a recombination coefficient for atomic Hydrogen, and C1,ph ' 0.14 and

Aph = 0.3423 are, once again, numerical fitting factors. Aph scales the wind launch velocity relative

to cs,ionz, and C1,ph scales the base density profile.

In the first stage of EUV photoevaporation, when the wind is diffuse-wind dominated, Φdiff =

Φ = 1042 photons s−1 (Alexander, Clarke, & Pringle, 2005; Alexander & Armitage, 2007). How-

ever, once the viscous accretion rate drops low enough that photoevaporated material is no longer

replaced by inward-flowing gas, a gap opens in the disk at R = Rgap
1, and photoevaporation tran-

sitions from the diffuse-wind regime, to the direct-wind regime. During the transition from diffuse

to direct wind,

Φdiff (t) = Φ

(

Rthin (t)

Redge (t)

)2

, (2.32)

where Rthin (t) < Rgap < Redge (t), Rthin is the transition radius from the inner-disk material

to the optically thin gap, and Redge is the inner edge of the outer disk outside the gap. EUV

photoevaporation is driven by ionization of hydrogen, and the optically-thin limit used to define

the edges of the gap, Rthin and Redge is given by Σg < mH/σ13.6eV, where σ13.6eV = 6.3 × 10−18

cm2 is the absorption cross-section for ionizing photons. Once the inner disk has viscously drained

onto the central star, Rthin = 0 and the diffuse wind is completely shut off.

The direct wind is due to ionizing radiation that directly strikes the flared inner edge of the

1Note that in Alexander & Armitage (2007), Rgap is defined as Rcrit ≈ 1.4 (M?/M¯) AU, tech-
nically independent of where the gap actually opens (usually somewhat interior to 1.4 AU). While
there seem to be other photoevaporative physics involved in defining Rcrit, because of this discrep-
ancy, my disk-evolution code simply waits to define Rgap until a gap is opened and sets it equal to
that initial gap location.
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disk, just beyond the gap. Interior to the gap there is zero direct-wind photoevaporation. For

R > Rgap, the direct wind is given by

Σ̇direct (R, t) = fph (R, t) KdirR
aph−3/2
edge (t)

√

Φdir (t)

√

R1−2aph

Hg (R)
, (2.33)

where fph (R, t) is a smoothing function, used to prevent the direct-wind component from diverging

(unphysically) at small R, Kdir is made up of constants from the Σ̇direct-fit relation, Φdir is the

direct-wind ionization flux, and aph = 2.42 is a direct-wind power-law scaling in R with-respect-to

Redge. The fit for the direct wind presented in Alexander & Armitage (2007) is based on the results

of Alexander, Clarke, & Pringle (2006). The smoothing function is given by

f (R, t) =

[

1 + exp

(

− R−Redge (t)

Hg (R = Redge)

)]−1

. (2.34)

And,

Kdir =
C2,ph µionzmH cs,ionz√

π αB
, (2.35)

where C2 = 0.235 is a scaling constant (suitable for Hg/R ' 0.05).

Once the inner disk drains and the direct wind dominates, Φdir = Φ. However, during the

transition from diffuse to direct wind, the direct-wind ionizing flux is filtered by the optical depth

of the inner disk, and

Φdir (t) = Φ exp

[

−σ13.6eV

mH
exp

(

−
χ2

ph

2

)

∫ Redge(t)

0

Σg√
2πHg

dR

]

, (2.36)

where χph = 2.5 accounts for the inclusion of gas-density effects χph scaleheights above the disk

midplane. The initial gap-opening is somewhat sensitive to the evaluation of the integral in Equa-

tion (2.36), as well as to the grid-space resolution of the model in the inner disk, so logarithmic

grid-spacing is a plus for this.

Figure 2.3 shows a replica the gas-disk evolution in Figures 2 & 3 in Alexander & Armitage

(2007) using my disk-evolution code. Compared to their figures, the inner disk drains faster than it

should. However my simulations are not concerned with the dynamics of particles orbiting within

a rapidly clearing inner disk, and so I consider this to be a sufficiently accurate match for my
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Figure 2.3: Disk evolution and EUV-photoevaporation gap opening for disk models mimicking
those presented in Alexander & Armitage (2007): Ṁ0 = 10−10 M¯ yr−1, Rd = 500 AU. The inner
disk drains slightly too fast with my disk model compared with the Alexander & Armitage (2007)
results, but they are otherwise a good match.

purposes.

2.4 Evolving the Disk Temperature

The simulations that I run to examine the outward mixing of inner-disk grains for Chapters 4 &

5 use a static disk-temperature profile for the model-disk structure and evolution. However, at

early times, during disk formation via infall and the initial period of energetic accretion, disks

are believed to be much hotter (Cassen, 2001), particularly in the inner, planet-forming regions.

Therefore, before running simulations of the global dust distribution for Chapter 6, I upgraded the

disk-evolution model to include evolution of the disk-temperature profile. Interestingly, although

in the α model for disk viscosity ν ∝ T , the end result is not a strong effect on the disk evolution

or lifetime. While hot inner disks do drain more quickly, most of the disk mass is held at large

distances from the star where the change in computed disk temperature is small and slightly more-

rapid expansion at early times actually results in a slightly longer disk lifetime.

My disk-evolution code currently allows for two methods of modeling disk-temperature evolu-

tion, the second method being a parameterization of the first and therefore less computationally

expensive. For the first method, I solve for the temperature at the disk midplane according to

energy-balance between radiative cooling and the incident starlight at the disk surface, and heat

generated at the midplane by the dissipation of energy via accretion. For the second method, I fit
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a power-law distribution, T = T0R
qT , (truncated at T = 10 K in the outer disk) to the modeled

distribution and allow T0 and qT to change with time, following a prescribed decay toward a passive-

disk profile. Because my simulations do not closely examine the chemical or mineralogical effects

associated with the range of possible disk temperatures, this second, faster method for calculating

disk-temperature evolution is sufficient for most of my applications. However, one initial run of

disk evolution accounting for the full energy-balanced temperature is first required for a given set

of disk parameters in order to choose an appropriate evolving–power-law approximation.

2.4.1 Calculating an Energy-balanced Temperature at the Disk Midplane

For the energy-balanced model, I solve for the gas temperature at the disk midplane for each radial

grid point at each disk-evolution time step. I assume that the disk is everywhere in a steady-

state so that the energy-flux from radiative cooling is balanced exactly by the heating fluxes from

absorption of external radiation and from viscous dissipation within the disk. I assume that the

disk is optically thick in the radial direction so that all energy transport is vertical relative to

the disk midplane and can then solve for the temperature at each radial grid point in isolation.

For simplicity, I assume that all energy loss is radiative and so do not account for some portion

that may be converted into mechanical energy, e.g., in a disk wind. Therefore, the equation for

energy-balance is

Fcool = Fvisc + Fstar + Fcloud , (2.37)

where Fcool is the rate of energy loss per unit area due to radiative cooling, Fvisc is the rate of

heating by viscous dissipation, Fstar is the energy flux of radiation from the central star, and Fcloud

is the energy flux from the background radiation of the cloud in which the disk has formed.

Radiative heating and cooling are straight-forward. Remembering that the disk has two sides,

Fcool = 2σBεT
4
e , (2.38)

where σB = 5.6704 × 10−5 ergs s−1 cm−2 K−4 is the Stefan-Boltzman constant, ε = 1 in the

optically-thick regime is the radiative efficiency of the gas, and Te is the effective temperature at
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the disk surface. Following the approximation used in Ciesla (2009),

Fstar = 2σBεT
4
irr =

L?φ

2πR2
, (2.39)

where Tirr is the effective local temperature of irradiation from the central star, L? is the luminosity

of the central star, and φ is the local angle of incidence between the disk and the starlight. For most

of the science simulations of this thesis, I set L? = 5.0175L¯, in order to match T (1AU) = 278.9K

in the fiducial, passive-disk temperature models of Chapters 4 & 5. I follow Ciesla (2009) in setting

φ = 0.05 everywhere. For the background radiation

Fcloud = 2σBεT
4
cloud , (2.40)

where Tcloud = 10K is the background temperature of the cloud environment.

For heating due to the viscous dissipation of energy, one returns to the equations for viscous

torque and disk evolution discussed in Pringle (1981) and in §2.3.1 above. On an annulus of gas of

area 2πR∆R, work is done by the viscous torque, Gν , at a rate of:

Ωg
∂Gν

∂R
∆R ≡

[

∂

∂R
(ΩgGν) −Gν

∂Ωg

∂R

]

∆R . (2.41)

The first term of the equivalence represents the energy-transport rate, while the second term rep-

resents the rate of energy dissipation as heat within the disk. Using the relation for Gν given in

Equation (2.15), per unit area

Fvisc =
GνΩ

′
g∆R

2πR∆R
= R2νΣg

(

∂Ωg

∂R

)2

. (2.42)

Inserting these energy-flux definitions into the energy-balance Equation (2.37) gives

2σBT
4
e = R2νΣ

(

∂Ωg

∂R

)2

+ 2σB

(

T 4
irr + T 4

cloud

)

. (2.43)

However, that Equation (2.43) is correct only in the optically thick regime, while the outer, optically

thin regions of the disks are also important for my studies of long-distance particle transport. To

27



include optically thin solutions and to solve for the temperature at the disk midplane rather than

the effective, radiative temperature at the surface, I use the approximation derived by Nakamoto

& Nakagawa (1994):

σBT
4
mid =

1

2
R2νΣg

(

∂Ωg

∂R

)2(3

8
τR +

1

2τP

)

+ σB

(

T 4
irr + T 4

cloud

)

, (2.44)

where Tmid is the temperature at the disk midplane, τR is the Rosseland mean optical depth, and

τP is the Planck mean optical depth. Some notes on this deriviation/approximation:

* Nakamoto & Nakagawa (1994) note that in the optically thick regime, the radiative-diffusion

approximation, in terms of the viscous heating, gives T 4
mid = T 4

e +
3τR
16σB

Fvisc.

* In terms of heating by external radiation, re-radiation of that energy is assumed to be ineffi-

cient so that a vertically isothermal approximation can be made for those contributions.

The Rosseland mean optical depth is defined in terms of the disk surface density and the Rosseland

mean opacity, κR.

τR = κRΣg . (2.45)

Note that untangling optical depth and opacity in the literature is a bit tricky due to different

methods used to set up the problem. Some papers use Equation (2.45) as I have shown it (Nakamoto

& Nakagawa, 1994; Stepinski, 1998), whereas others use τR = κRΣg/2 (Ruden & Pollack, 1991;

Hueso & Guillot, 2005; Ciesla, 2009; Rice & Armitage, 2009). However, true contradictions in

theory likely appear in few, if any of these derivations. Finally, Nakamoto & Nakagawa (1994) use

τP /τR = 2.39, citing it as more traditional but with some observational results maybe pointing

to τP /τR ∼ 1 being more accurate — though it is probably also temperature dependent. For

simplicity, in this temperature-evolution model, I use

τP
τR

= 1 . (2.46)

The choice of τP /τR appears to have a negligible impact on temperatures calculated for my model

disks, as shown in Figure 2.6.

Next, solving Equation (2.44) for the midplane disk temperature requires solving two other
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Figure 2.4: Schematic of Bell & Lin (1994) opacity vs. temperature (at ρg = 1 × 10−7 g cm−3).
The opacity is divided into eight temperature domains with four of those domains dependent on
the mean gas density. Grey’ed lines indicate the trends toward lower and lower density.

equations simultaneously. First, the opacity, κR, depends on both the temperature and the mean

density of the gas, the later of which I approximate with the disk-midplane density given in Equa-

tion (2.6) for a vertically isothermal disk, ρg,mid ∝ 1/T . Second, in the α-approximation given in

Equation (2.9), the viscosity is also temperature-dependent, following ν = αΩKH
2
g ∝ T . Therefore,

deriving an energy-balanced disk-temperature requires solving for Tmid, κR (and ρg,mid), and ν

simultaneously. The numerical methodology for this is detailed in Appendix B.3.3.

By far, the most troublesome piece of the solution comes from the Rosseland mean opacity,

for which I use the parameterization of Bell & Lin (1994). In this parameterization, the opacity

is devided into eight regimes dependent on temperature. In each regime, a different mechanism

dominates and

κ = κiρ
ai
g T

bi , (2.47)

where κ is defined in units of cm2 g−1. The boundaries between the different regimes are defined

at κiρ
aiT bi = κi+1ρ

ai+1T bi+1 .

Tbound (i→ i+ 1) =

[(

κi

κi+1

)

ρ(ai−ai+1)

]1/(bi+1−bi)

.

Bell & Lin (1994) also use a smoothing technique to transition between each regime, but for a

basic, 1D disk model, such refinement is not necessary, and my model simply divides the opacity
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Figure 2.5: Bell & Lin (1994) opacities for a range of mean gas densities. Opacities divided into
discreet temperature domains, rather than smoothed as in Bell & Lin (1994).

into discreet temperature domains. These domains are dominated, as defined by Bell & Lin (1994),

by: ice grains; the evaporation of ice grains; metal grains; the evaporation of metal grains; molecules;

H-scattering; bound-free and free-free processees; and electron scattering. Note that above T ∼

2000K, the Bell & Lin (1994) are known to be consistently low. However, such high temperatures

are almost always above the regime of those seen in my model disks.

In fact, not all of the opacity domains are dependent on the mean density, and Figure 2.4 plots

a schematic of the opacity versus temperature, with grey’ed lines indicating the trends toward

lower and lower gas density. As the trend lines shift, the transition points between some domains

cross other domain boundaries. Where this occurs, the middle-most domain is discarded and a

new domain boundary calculated using trend lines from the domains to either side. Figure 2.5

plots the Bell & Lin (1994) opacities vs. temperature for a range of mean-density values. Below

ρ ∼ 10−10 g cm−3, the bound-free–free-free domain is lost, as are the molecules domain below

ρ ∼ 10−18 g cm−3, the metal-grains domain below ρ ∼ 10−25 g cm−3, and the evaporation-of-ices

domain below ρ ∼ 10−26 g cm−3.

The results of solving for the energy-balanced temperature at t = 0 in the fiducial disk model are

shown in Figure 2.6. Note that in the inner regions the temperature is dominated by accretion (with

lower temperatures for lower disk viscosity), while the temperature in the outer disk is dominated
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by stellar and background radiation. Such a non-smooth temperature distribution does have an

observable effect on the evolving surface-density profile at early times, as shown in Figure 2.7 for

the fiducial-disk model. Since (in the α-viscosity model) ν ∝ T , a greater inward flow of material

occurs where the temperature is highest, and the inner disk quickly settles into a quasi-steady state

with lower Σg in regions of high T and a mass flux that is roughly constant in R.

2.4.2 Calculating an Evolving Disk Temperature using a Power-law Parame-
terization

Converting the temperature evolution derived using the energy-balance method to a fitted, evolving,

power-law distribution is a two step (two fit) process. First is to fit the temperature distribution

at each time step with a power-law distribution:

T (R, t) = TAU (t)

(

R

1AU

)qT (t)

.

To make this fit, I have chosen to fix this first power-law fit to the modeled temperature distribution

at the grid points for R ∼ 0.2 & ∼ 200 AU, as shown in Figure 2.8. Therefore,
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Figure 2.8: Plots energy-balanced disk temperatures (thick lines) compared to the first fit to an
evolving power-law temperature (darker, thin lines) where the two are matched at R ' 0.2 and 200
AU at each time step.
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qT (t) = ln

(

T0.2

T200

)

/ ln

(

R0.2

R200

)

, (2.48)

TAU (t) =
(T0.2 − T200)

(RqT
0.2 −RqT

200)
. (2.49)

Because of the complex structure of the energy-balanced temperatures, the qT and TAU functions

derived this way are not entirely smoothly varying in time. In order to run simulations using an

evolving power-law temperature distribution with my code, I next fit qT (t) and TAU (t) in t using a

quasi-exponential decay toward a passive-disk temperature profile. For each power-law parameter

(qT , TAU → x)

x (t) = (x0 − x∞) exp

[

−
(

t

tx

)bx
]

+ x∞ . (2.50)

The fit is made separately for qT (t) and TAU (t) for each disk-evolution model. x0 and x∞ are taken

from the initial and final conditions provided by Equations (2.48) & (2.49) and the disk-evolution

model, discounting sudden discontinuities near t = 0 when the disk surface-density at small R is

first adjusting into a quasi-steady state. This fit is also made by matching the curves at two points

(in t this time). However, these two points, (t1, x1) and (t2, x2), are chosen by inspection separately

for each disk-evolution model to provide a nice fit. Using these points,

A1 = ln

(

x1 − x∞
x0 − x∞

)

, A2 = ln

(

x2 − x∞
x0 − x∞

)

,

bx =
ln (A1/A2)

ln (t1/t2)
, (2.51)

tx =

(

tbx
2 − tbx

1

A1 −A2

)1/bx

. (2.52)

The fits for qT and TAU for the fiducial-disk model of Chapter 6 are shown in Figure 2.9, plotted

beside the Equations (2.48)&(2.49)-derived values. The power-law fit parameters thus chosen for

this disk-evolution model are shown in Table 2.1. Figure 2.10 plots and compares Σg contours

for the fiducial-disk model using the original static temperature distribution, the energy-balanced

temperature distribution, and the power-law fitted temperature distribution. Interestingly, despite

the marked difference in temperatures (and therefore viscosities) in the inner disk at early times, the

large-scale and long-term disk evolution are all quite similar (and the power-law–fitted temperature

parameterization is a decent match for the energy-balanced model). This suggests that the outer
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Figure 2.9: Plots the quasi-exponential fit in t (Equation (2.50) ) against the initial fit at R ' 0.2
and 200 AU for the fiducial disk model.

MD,0 = 0.03M¯, Rd = 20AU, α = 10−2:

TAU,0 = 500K qT,0 =−0.61
TAU,∞ = 279.94K qT,∞ =−0.497683
tTAU

= 3.494091 × 105 yr tqT = 3.9992166 × 105 yr
bTAU

= 0.924903 bqT = 0.965539

Table 2.1: Fitting constants for the evolving, power-law temperature distribution of the fiducial
disk model. For fitting constants of the full set of disk models run with evolving temperature, see
Table 6.1 in Chapter 6.
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disk, housing most of the disk mass and where the temperature variations are smallest, holds

primary control over the global, viscous disk evolution.

2.5 Observational Comparisons for Model Disks

Here I include a brief comparison of the model disks used in this thesis to the observational con-

straints laid out in §2.1, considering specifically: disk mass, mass-accretion rate, outer gas radius,

and lifetime. The fiducial disk model uses MD,0 = 0.03M¯, Rd = 20 AU (similar to a t = 0

characteristic radius of 20 AU), and α = 10−2. In Figures 2.11 & 2.12, I plot Rout, the outer

disk radius estimated based on CO emission, the total disk masses, and the total mass-loss rates

as a function of time for model disks varying Rd, MD,0, and α, as well as for the fiducial model

evolved using each of the three disk-temperature models. Note that I have included an Rd = 80 AU

case, and an α = 10−3 case, neither of which are used in my simulations, due to their longeivity.
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Figure 2.11: Rout for model disks using a range of disk parameters. The baseline model uses
MD,0 = 0.03M¯, Rd = 20 AU, and α = 10−2.

The MD,0 = 0.09M¯ also has an over-long lifespan, but has been included in Chapters 5 & 6 as

a test of the effect of the disk mass on the mixing and global distribution of dust solids in my

simulations. The rapid loss of disk mass at the end of the disk lifetimes is due to photoevaporative

clearing by EUV radiation, rather than accretion onto the central star, and occurs on a timescale

consistent with observations (as these models do not allow for disk clearing by planet formation).

The disk masses are generally consistent with medium-sized disks, and the mass-accretion rates fall

comfortably within the range observed across the progression of disk ages.

To define Rout for Figure 2.11, I follow M. Hughes et al. (2008), who note that the outer radius

as measured by CO emission appears to occur when the midplane surface density drops below the

critical density for the rotational transition. At 20 K, the critical density is ∼ 4.4× 104 CO cm−3.

This is a CO mass density of 2.06×10−22 g cm−3 and, using their interstellar value for the CO-to-H2

mass ratio of 10−4, this comes to a total gas density of 2.06 × 10−18 g cm−3. Therefore, I have

set the Rout plotted in Figure 2.11 at the boundary in the model disks where ρg,mid ≥ 3 × 10−18
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Figure 2.12: Total disk masses and mass-loss rates for models disks using a range of disk parameters.
The baseline model uses MD,0 = 0.03M¯, Rd = 20 AU, and α = 10−2.

g cm−3, using Equation 2.6 for a vertically-isothermal disk structure. In all of my model disks, I

find an outer gas radius of several hundred AU measured for the majority of the disk lifetime, with

some fall-off with time as the disk accretes onto the star and thins.
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2.6 Calculating Gas Velocities

In this section, I overview three calculations for the disk-gas velocities, vφ,g, vr,acc, and vr,merid.

While the particle-transport simulations presented in this thesis are restricted to the midplane,

I include the vertical dependence of these velocities (assuming a vertically isothermal disk) for

completeness.

One of the most important velocities for studying small-particle transport in protoplanetary

disks is the azimuthal (orbital) velocity of the gas. This velocity deviates from Keplerian due to

the radial pressure gradient within the gas, which acts to somewhat offset the gravity of the central

star. The gas orbital-angular velocity, Ωg, is easily derived using radial force balance (Takeuchi &

Lin, 2002) where

RΩ2
g −

GM?R

(R2 + z2)3/2
− 1

ρg

∂P

∂R
= 0 . (2.53)

At the midplane, the pressure gradient is outward, causing the gas to orbit at slower-than-Keplerian

speeds, but in a flared disk, high above the midplane, or just outside a gap in the gas, the pressure

gradient is inward and the gas rotation super-Keplerian.

Using P = ρgkBT/µmH and the definition for ρg in a vertically-isothermal disk (Equation (2.7) ),

one can solve for Ωg for any general disk surface-density and temperature structure:

Ω2
g (R, z) = Ω2

K (z) + Ω2
K,mid

H2
g

R2

[

R

Σg

(

∂Σg

∂R

)

+
R

2T

(

∂T

∂R

)

− 3

2

]

+ Ω2
K,mid

z2

R2

[

3

2
+

R

2T

(

∂T

∂R

)]

,

↓

Ω2
g (R, z) = Ω2

K (z) + Ω2
K,mid

(

H2
g

R2

[

qΣ +
1

2
qT − 3

2

]

+
z2

R2

[

3

2
+

1

2
qT

]

)

, (2.54)

where qΣ and qT are the local radial power-law slopes for the gas surface-density and temperature,

respectively (see Appendix B.2.2 for the numerical calculation), ΩK (z) =

√

GM?

(R2 + z2)3/2
is the

general-Keplerian angular velocity, and ΩK (z = 0) = ΩK,mid.

The actual orbital speed of the gas is given by vφ,g = RΩg. Figure 2.13 plots the deviation

between vφ,g and vK, the Keplerian speed, for several different vertical scale-height positions within

the fiducial disk model of Chapter 6 at t = 0. Note that this variation is extreme near the outer
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Figure 2.13: Plot of the difference between vφ,g and vK for several different heights above the disk
midplane at t = 0 in the fiducial disk model of Chapter 6. Curves at half-scale-height increments
from z = 0 (black) to z = 4Hg (orange). My transport simulations take place at the midplane,
where the gas almost always orbits at sub-Keplerian velocities.

edge of the disk where the surface density drops toward zero, and also that the gas velocity is

greater than Keplerian at the very inner disk edge.

Because the radial-flow velocity of the gas depends on aspects of disk turbulence that cannot

yet be predicted from first principles, my simulations consider two end-case calculations for vr,g.

The first is the 1D, vertically-averaged gas velocity, vr,acc, referred to as the accretion-flow velocity.

This is the bulk radial flow required to maintain mass conservation for 1D viscous disk evolution. It

is derived from the same equations as the basic form of the 1D disk-evolution equation (beginning

of §2.3.1) using the same simplifying assumptions of Ωg = ΩK,mid and ∂Ωg/∂t = 0. Combining

Equations (2.13), (2.14), & (2.15) yields

vr,acc = − 3

ΣgR1/2

∂

∂R

(

νΣgR
1/2
)

, (2.55)

which produces a gas flow that is predominantly inward. Importantly, however, there is a region

of outward-flowing gas in the outer disk where the disk is expanding. The boundary of this region

moves outward as the disk evolves and spreads.
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Almost certainly, an accurate 2D (R, z) depiction of radial gas flow within a disk requires

variation in that flow with height above the disk midplane. One model to calculate such variation

assumes that the viscosity is constant in z and that there is no vertical mixing of angular momentum;

all transfers take place in the radial direction only. The basic property of such a model in a flared

disk is that there is rapid inflow of material in the surface layers of the disk, while at the midplane,

for most disk radii, the flow is actually directed outward (Urpin, 1984; Rózyczka, Bodenheimer &

Bell, 1994). To calculate this flow (the meridional gas velocity, vr,merid), I follow Takeuchi & Lin

(2002) and use the azimuthally symmetric Navier-Stokes equation,

vr,gRρg
∂

∂R

(

R2Ωg

)

+ vz,gRρg
∂

∂z

(

R2Ωg

)

=

∂

∂R

(

R3νρg
∂Ωg

∂R

)

+
∂

∂z

(

R3νρg
∂Ωg

∂z

)

−Rρg
∂

∂t

(

R2Ωg

)

, (2.56)

which at the midplane yields

vr,merid =

[

∂

∂R

(

R2Ωg

)

]−1 [ 1

Rρg

∂

∂R

(

R3νρg
∂Ωg

∂R

)

+
R2ν

ρg

∂

∂z

(

ρg
∂Ωg

∂z

)

−R2∂Ωg

∂t

]

. (2.57)

Note that while Takeuchi & Lin (2002) assume a power law for the gas distribution and use that

to derive a simplified expression for the flow structure of the gas, I use the input of the disk

surface density from my disk-evolution model to solve Equation (2.57) numerically by assuming

vertically uniform temperature and viscosity, as in the expansion for Ωg above. I discuss my numeric

calculations for the R- and t-derivatives in Appendix B.2.2.

Figure 2.14 shows the accretion-flow velocity and the midplane-flow velocity at the midplane

at t = 0 and at t = 1 Myr in the fiducial-disk model of Chapters 4 & 5. Note that the outward

expansion of the disk dominates both velocity models at large disk radii.

In order to derive an expression of vr,merid valid at z > 0, one must solve Equation (2.56)

including some expression for vz,g, the gas vertical velocity. Here I show one simple approach. If

I assume that a given parcel of gas will tend to remain at it’s original scale-height position within

the disk such that
zg
Hg

= K = a constant, then I have

vz,g =
d

dt
(zg) = K

d

dt
(Hg) = K

(

dRg

dt

)(

dHg

dR

)

,
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and

vz,g = vr,g
z

Hg

(

dHg

dR

)

. (2.58)

Using the same vertically-isothermal expansion for ρg (and the z-derivatives of ρg and Ωg), I can

then write

vr,g

[

∂

∂R

(

R2Ωg

)

+
R2z

Hg

(

∂Hg

∂R

)(

∂Ωg

∂z

)]

=

1

R

∂

∂R

(

R3ν
∂Ωg

∂R

)

+R2ν

(

∂Ωg

∂R

)[

1

Σg

(

∂Σg

∂R

)

− 1

Hg

(

∂Hg

∂R

)(

1 +
z2

H2
g

)]

+

R2ν

(

∂2Ωg

∂z2

)

−R2ν
z

H2
g

(

∂Ωg

∂z

)

−R2

(

∂Ωg

∂t

)

. (2.59)

2.7 Summary

In this chapter I have described the model I use for protoplanetary-gas-disk evolution, structure,

and environment properties. This is a 1D (radial) model ultimately defined by radially gridded

values for the disk surface density and temperature. My primary use for this model is to define the

aerodynamic environment experienced by orbiting small grains in a typical Solar Nebula-analog
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disk, and to explore the effects of disk evolution on aerodynamic particle transport.

These disks do not, unfortunately, include the very early stages of star formation and the build-

up of the disk, but do allow for exploration of changes to the initial disk conditions. I use the

Shakura & Sunyaev (1973) alpha-prescription to describe the disk viscosity and viscous evolution

and use a somewhat narrow range for α and the base disk parameters, with a fiducial model of

MD,0 = 0.03M¯, Rd = 20 AU, and α = 10−2. This provides a model disk both of sufficient mass

to act as a credible stand-in for our own Solar Nebula, and having a lifetime and mass-accretion

rate consistent with observations of disks around other stars. While other disk-evolution/viscosity

models do exist applicable within a 1D treatment, these models are often described in terms of

alpha-parameterizations. Using an alpha-prescription, therefore, allows the greatest ease of com-

parison between my simulations and scenarios using others’ disk models.

It is important to note that disks do change dramatically over the course of their lifetimes,

having initially more compact configurations and high rates of accretion that also allow for massive

outflow at the expanding outer edges. This early high accretion means that a substantial fraction

of mass is lost early, and later disks are considerably more tenuous and spread out. While surface-

density profiles in an alpha-model disk tend to approach an inverse with the viscosity profile, only

in the very inner disk (inner few AU) do profiles match well with those of steady-disk models.
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Chapter 3

Building the Particle Transport
Model

The particle-transport model is built separately from the evolving gas-disk model described in

Chapter 2, which is used to define the environment in which the simulation dust particles reside.

While some studies have treated the dust as a fluid (Gail, 2001; Bockelée-Morvan et al., 2002;

Dullemond, Apai, & Walch, 2006; Ciesla, 2009), I have chosen to treat it as an ensemble of discreet

particles and particle trajectories. This choice allows me to examine not only variations in the

distribution of disk solids, but also in the mixing between solids that originate in vastly different

regions of the disk. My particle-transport model tracks an ensemble of particles within the 1D

(radial) gas-disk environment and subjects the particle orbits to two non-gravitational forces: aero-

dynamic drag against the mean gas flow, and turbulent diffusion of the ensemble within the disk

gas. Coagulation and other grain-grain interactions are neglected, as are back-ractions of the solids

on the disk-gas flow or collective effects in the grain motion. However, for some later simulations, I

employ a simple model of early grain-growth processes to place rough constraints on the timescales

for the appearance of larger particles (micron–centimeter sizes) within the disk.

The particle trajectories therefore consist of two components: mean radial motion assuming

drag against the mean disk flow, and a random-walk component due to turbulent diffusion. These

two physical effects are represented numerically by two components to the dust radial velocity:

vsrd, the mean radial velocity induced by gas drag, and vturb, the turbulent random-walk velocity.

These velocities are calculated at each evolutionary time step of the gas-disk model (defined in

§2.3.2) for each grid point of the model disk; values between grid points are linearly interpolated
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as necessary. Together, these velocities are used to integrate the dust-grain trajectory as:

rd (t+ ∆t) = rd (t) + ∆t× (vsrd ± vturb) , (3.1)

where rd is the dust-particle radial position in the disk, and ∆t is the time step. The time step is

chosen locally, to insure accurate integration of particle trajectories, but is capped globally at the

disk model’s disk-evolution time step (or at the output time if the disk model is static).

In the following section, I outline the range of forces and effects a dust grain might experience

within the environment of a protoplanetary disk, with special attention to the aerodynamic forces

modeled by my particle-tranport model. In §3.2, I discuss the basics of gas drag and the advective

component of the model, and in §3.3, I focus on the random-walk diffusive component. In §3.4, I

discuss a set of simple models used to place rough constraints on grain growth in various regions

of the disk, and in §3.5, I summarize the workings of this model.

3.1 Forces on a Dust Grain in a Gas Disk

While I focus in this thesis on aerodynamic effects to drive grain motions within protoplanetary

disks, there are a number of other effects one may consider for their influence over grain transport.

Figure 3.1 shows a schematic of a disk and some of the different regions and regimes where various

transport processes might occur, and in this section, I briefly outline the range of forces acting on

small grains in protoplanetary-disk environments.

Basics aerodynamics interactions, like advection within the bulk flow of the accreting disk and

headwind drag, are familiar and tend to predominate throughout the dense-gas regions of the disk

into which particles are intermixed, such as region E in Figure 3.1. However, gas-flow transport

of grains is not necessarily restricted to the main disk. Some disks are known to exhibit jets or

to experience photoevaporation of their bulk material. A well known model, termed the X-wind

model, proposes that grains very near the central star may become swept up in a magnetocentrifugal

outflow and deposited further out in the disk (Shu, Shang, & Lee, 1996), as depicted for region A

of Figure 3.1.

As indicated by the X-wind model, most disks are believed to be threaded by large-scale mag-

netic fields. Indeed, one of the leading theories to explain disk accretion argues for instabilities in
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Figure 3.1: Disk schematic of a variety of different particle-interaction zones: A) within an outflow,
B) at the edge of an inner cleared region, C) in the optically thin disk-surface layers, D) for settled
particles at the midplane, E) within the main disk flow, and F) within disk-gas turbulent eddies.

the gas flow created by interaction with such a magnetic field (Balbus & Hawley, 1991). This then

raises the question of whether grain charging and interactions with magnetic or electric fields play

an important role in the transport of protoplanetary dust grains. This is known to be the case

in the disk of ring material around Saturn. There, space-craft have captured images of features

termed spokes, short-lived, dark smudges forming radial patterns of considerable extent over the

surface of the B ring (Grün et al., 1983). It is believed that these features form when collisional

events produce a population of small particles that are then lofted above the surface of the rings

within a photoelectrically created surface electric field (Mitchell et al., 2006). One of the keys to

making such a process efficient, however, is the extreme-vacuum environment. Grain charging and

lifting is dependent on the particle’s surface-area-to-mass ratio, which is highest for the smallest

grains, which are therefore electrically transported the most efficiently (e.g., Hughes, Colwell, &

DeWolfe (2008)). However, within a gas disk, it is this same high surface-area-to-mass ratio that

most efficiently couples particles to the gas flow, as discussed in §3.2.1 below. Therefore, trans-
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port of grains via electric or magnetic-field effects is likely potentially important only in the most

tenuous regions of a disk.

In the tenuous surface layers of a disk (C of Figure 3.1), radiation effects become important

because the gas here is optically thin to stellar illumination. This means that fine dust grains at

the disk surface are efficiently heated (Chiang & Goldreich, 1997) and also that forces like radiation

pressure become important. The force of radiation pressure goes as

Frad =
πs2dI

c
, (3.2)

(where sd is the grain radius, and I is the intensity of the incident illumination) and is therefore

most efficient at transporting small grains. Combining the radially outward radiation pressure from

the central star with a buoyant force due infrared radiation from the heated disk, Vinković (2009)

proposes that grains a few microns in size may be transported large distances outward along the

disk surface due to radiation-pressure forces.

Equally restricted to low-optical-depth regions but also dependent on non-zero gas pressure, is

photophoresis, which produces outward motion of a grain due to an illumination-induced temper-

ature gradient over the grain surface. With photophoresis, gas particles absorbed and re-emitted

from the hot side of a grain leave with a faster velocity than those from the cold side, thus impart-

ing momentum away from the light source (Krauss & Wurm, 2005). This is depicted in Figure 3.2

panel-a opposite the standard picture for acceleration due to radiation pressure in panel-b. In the

relatively cold environment of a protoplanetary disk, the force due to photophoresis goes as

Fph =
πs3dIJ1P

kthT
, (3.3)

where J1 is an assymetry parameter, P is the local gas pressure, kth is the thermal conductivity

of the grain, and T is the local temperature. This force can be orders-of-magnitude greater than

radiation pressure and is more efficient for large grains as well as for porous agglomerates, which

have lower kth values, making them better at establishing strong thermal gradients over their

surfaces. While the illumination requirement means that this effect will not operate throughout

the bulk of a radially optically-thick disk, Krauss & Wurm (2005) predict that it may be responsible
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Figure 3.2: Diagram of the mechanics of the force of (a) photophoresis and (b) radiation pressure.
Photophoresis depends on light heating a grain that then interacts with a pressurized gas, whereas
radiation pressure is an interaction between the grain and incoming light directly.

for clearing out optically thin regions of some inner disks. Pushing back all the dust grains from

some inner region would drastically lower the optical depth of that region, allowing photophoresis

to operate at greater radius and push the grains still further out. This could lead to the pile-up of

a sharp-edged dust ring at the radius where photophoresis balances inward drift due to headwind

drag on the particles, as indicated for region B of Figure 3.1.

A somewhat less exotic effect is the settling, usually of larger grains, toward the disk midplane (D

of Figure 3.1). If grains are allowed to settle out, then there is a whole host possible interactions that

may occur, both collective and aerodynamic. Large dust-to-gas density ratios or collective motions

of grains may lead to a slower infall of those grains than is otherwise experienced by individual

particles (Weidenschilling, 2003; Bai & Stone, 2010a). Particles large enough to be only marginally

coupled to the gas may excite streaming instabilities that can lead to particle clumping (Johansen,

& Youdin, 2007; Bai & Stone, 2010a). Furthermore, increasing the density of dust grains will lead

to more frequent collisions, accelerating grain coagulation and fragmentation processes (Dullemond

& Dominik, 2005). While these processes are all interesting, none are explored directly in the

transport simulations of this thesis. This is in part because they each represent separate disciplines

into themselves, and in part because I have focused on the transport of small grains, which tend to

be well-mixed vertically with the disk gas.

Turbulence is expected to be very efficient at mixing small grains to height above the disk
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midplane. Using an alpha-model for disk turbulence (as described in §2.2), the scale-height of

particles, Hp, in a disk is expected to go as (Cuzzi et al., 2005)

Hp ' Hg

√

α

ΩKtstop
, (3.4)

where Hg is the gas scale-height, and tstop is the gas-drag stopping time on the particle (discussed in

§3.2.1). In Figure 3.3, I plot the predicted scale-height of mm-sized grains in the fiducial disk model

of Chapters 4 & 5, which uses an alpha-scaling of α = 10−2. This is more than sufficient turbulence

to produce efficient vertical mixing and even such relatively large dust particles are expected to

be well-mixed throughout the disk structure for a substantial portion of the disk lifetime. Note

that a wide spread in particle heights may have an appreciable effect on the net drag-induced flow

experienced by particles. This effect is discussed in detail in, e.g., Takeuchi & Lin (2002) and Ciesla

(2009). In Figure 3.4, I plot drift velocities for particles at different heights (in units of local disk-

gas scale-height) above the midplane. In a flared disk model, gas actually orbits at super-Keplerian

velocities near the disk surface, causing a tailwind drag that exerts a radially outward pull on

particle orbits. The effect is strongest for slightly larger particles that are marginally coupled to

the disk gas. While an exponential fall-off in the particle distribution with Hp means that few
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Figure 3.4: Drift velocities for grains at height z above the disk midplane in the fiducial disk model
of Chapter 6 for two different times (top and bottom) and two different grain sizes (left and right).

particles will experience this effect, it does act as a caveat to my particle-transport simulations,

which consider gas drag and particle transport only at the disk midplane.

While there are many varied and interesting effects operating to affect grain transport within

protoplanetary disks, those that I am most interested in for the work of this thesis operate

ubiquitously on the bulk of small-dust material to effect large-scale radial transport. Both gas-

drag/advection and turbulent diffusion (just as, if not more, efficient radially as vertically) should

be in effect throughout the bulk of the disk and provide the basic framework for dust-transport

processes. Furthermore, these processes are equally important in the inner, planet-forming regions,

as in the outer-regions best viewed by observations of disks around other stars.
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3.2 The Advection of Particles Due to Gas Drag

In the particle-transport model, the advection of a dust grain is calculated dependent on the size of

the grain and on the local temperature, density, and flow conditions of the gas disk. These conditions

are used in the model to calculate a steady mean-radial velocity for the dust particle at each disk

grid point, which is then used in Equation (3.1) to calculate the individual trajectories of each

grain in the model ensemble. In this section, I first outline the physics of the radial and azimuthal

gas drag acting on the particle orbit (§3.2.1), then discuss how those physics are translated into

a steady mean-radial dust velocity at each grid point (§3.2.2). Finally (§3.2.3), I compare the

particle-transport model trajectories to precision force-balance integrations of the particle motion

to demonstrate the fidelity of my gridded velocities in capturing the radial-transport dynamics of

particles advected within a laminar disk gas flow.

3.2.1 The Basics of Gas Drag in Orbit

The most familiar phenomenon concerning gas drag in a protoplanetary disk is headwind drag.

Because the disk gas is radially pressure-supported, it orbits at a slightly lower velocity than the

dust, which orbits closer to the Kepler velocity. This causes drag against the forward motion of the

orbiting particle, sapping its angular momentum, so that it spirals inward onto the central star,

sometimes quite rapidly (e.g., within ∼ 6× 104 years for a 2 cm grain initiated at 1 AU in a typical

disk and in < 5× 103 years if the inward accretion flow of the gas is included). There are instances

where the gas pressure support may be reversed radially (such as just outside a gap in the disk

surface-density profile caused by a massive planet or by photoevaporation), so that the gas orbits

faster and causes a tailwind drag that boosts particles to wider orbits. However, this is essentially

the same phenomenon as headwind drag, and from here on I use ’headwind drag’ to refer to both.

In many discussions of drag-induced radial migration [e.g., (Youdin & Shu, 2002)] the difference

between the gas and dust azimuthal (orbital) velocities is considered the ∆v of primary importance.

However, as I will show, the difference in the gas and dust radial velocities can have a strong impact

on the particle dynamics. Furthermore, in Chapters 4 & 5 I will highlight potential variations in

the radial gas-flow velocity as a parameter-of-significance for the results of my outward-mixing

simulations.
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When the force of gas drag is linearly proportional to ∆v (Epstein drag), the equations of

motion for a particle in a laminar disk-gas flow, accounting for both the gas-drag force and the

particle orbit, may be written as

dvr,d

dt
=

v2
φ,d − v2

K

R
− (vr,d − vr,g)

tstop
, (3.5)

dvφ,d

dt
= −vφ,dvr,d

R
− (vφ,d − vφ,g)

tstop
, (3.6)

where vr,d and vφ,d are the radial and azimuthal velocities of the dust particle; vr,g and vφ,g are the

local radial and azimuthal velocities of the disk gas; vK is the local Keplerian velocity; and tstop

is the exponential-stopping time, the time over which a constant drag force brings vd a factor of e

closer to vg. Comparing tstop to the local Kepler time (1/ΩK, where ΩK is the Keplerian orbital

angular velocity) provides an assessment of the relative importance between the gas motions and

the Keplerian orbital motions on the particle dynamics, indicating whether a particle is well- or

loosely-coupled to the gas motions. However, the more general form of the particle-motion equations

is

dvr,d

dt
=

v2
φ,d − v2

K

R
+
FD,r

md
, (3.7)

dvφ,d

dt
= −vφ,dvr,d

R
+
FD,φ

md
, (3.8)

where FD,r and FD,φ are the radial and azimuthal components of the force of gas drag; and md is

the mass of the dust particle. Note: all of these are the equations in cylindrical coordinates and

neglect motion in the vertical plane (normal to the disk and the particle orbit).

In general, for fine grains in a protoplanetary disk (up to a few centimeters at 1 AU or tens of

meters at 10 AU), the force FD is in the Epstein-drag regime. Unlike the more familiar ∆v2 drag

laws, Epstein-drag is linear in ∆v, because it applies when the radius of the dust grain, sd, is less

than the mean-free-path of the gas, λmf (and when ∆v ¿ vtherm, the thermal velocity of the gas).

In the Epstein-drag regime, the drag force is given by (Weidenschilling, 1977a)

FD = −md
CR

3
ρgvtherm (~vd − ~vg) (3.9)
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where CR is the particle surface-area-to-mass ratio; ρg is the local-gas volume density, and vtherm is

the gas thermal velocity. Then the equations of motion for the particle may be written (Takeuchi

& Lin, 2002)

dvr,d

dt
=

v2
φ,d − v2

K

R
− 1

3
CR ρgvtherm (vr,d − vr,g) , (3.10)

dvφ,d

dt
= −vφ,dvr,d

R
− 1

3
CR ρgvtherm (vφ,d − vφ,g) . (3.11)

For larger particles or higher gas densities (closer to the star), Stokes drag applies, which

resembles Epstein drag at low Reynolds number (Re) but transitions to the familiar ∆v2 drag force

at Re ≥ 800. Here (Weidenschilling, 1977a)

Re =
2sdρg |~vd − ~vg|

η
, (3.12)

where η is the gas kinematic viscosity (equal to νm/ρg, the molecular viscosity over the gas density).

For gas particles modeled by hard spheres, η is given by (Clarke & Carswell, 2007)

η =
5

16

√
πµmHkBT

σcross
, (3.13)

where µ is the average mass of a gas particle in proton masses (mH); kB is the Boltzmann constant;

T is the local disk temperature; and σcross is the collisional cross section of a gas particle. For my

simulations, I use µ = 2.34 (Nakagawa, Sekiya, & Hayashi, 1986), and σcross ≈ σH2
= 2.4 × 10−15

cm2 (Chapman & Cowling, 1970). σH2
is the cross-section of molecular hydrogen, the dominant

gas molecule in the disk, and, while slightly greater than the cross-section of a more-massive gas

particle, is still sufficiently representative.

From Weidenschilling (1977a), in the Stokes-drag regime

FD = −CDπs
2
dρg

|~vd − ~vg|2
2

, (3.14)

and the drag coefficient is given by

CD ' 24Re−1 =
12η

sdρg∆v
for Re < 1 ,

52



CD ' 24Re−0.6 =
24η0.6

20.6s0.6
d ρ0.6

g ∆v0.6
for 1 < Re < 800 ,

CD ' 24

8000.6
for Re > 800 .

Plugging these equations for Stokes drag into Equations (3.7) & (3.8) and using
πs2d
md

=
CR

4
yields

the following full set for the Stokes-drag equations of particle motion:

Re < 1 :

dvr,d

dt
=

v2
φ,d − v2

K

R
− 3CRη

2sd
(vr,d − vr,g) , (3.15)

dvφ,d

dt
= −vφ,dvr,d

R
− 3CRη

2sd
(vφ,d − vφ,g) ; (3.16)

1 < Re < 800 :

dvr,d

dt
=

v2
φ,d − v2

K

R
−

3CRη
0.6ρ0.4

g

20.6s0.6
d

|vr,d − vr,g|0.4 (vr,d − vr,g) , (3.17)

dvφ,d

dt
= −vφ,dvr,d

R
−

3CRη
0.6ρ0.4

g

20.6s0.6
d

|vφ,d − vφ,g|0.4 (vφ,d − vφ,g) ; (3.18)

Re > 800 :

dvr,d

dt
=

v2
φ,d − v2

K

R
− 3CRρg

8000.6
|vr,d − vr,g| (vr,d − vr,g) , (3.19)

dvφ,d

dt
= −vφ,dvr,d

R
− 3CRρg

8000.6
|vφ,d − vφ,g| (vφ,d − vφ,g) . (3.20)

Note that while these equations for the acceleration in the radial and azimuthal directions require

the respective r and φ velocity components as input into the drag, the Re value and regime-of-

relevance must be calculated using the full magnitude of ~vd − ~vg.

The Stokes-drag and Epstein-drag forces are equivalent at λmf/sd = 64/45π ≈ 4/9 and Fig-

ure 3.5 plots the particle-size boundary where this occurs as a function of R for t = 0 of the

fiducial-disk models used in Chapter 6. From this figure it is clear that Epstein drag usually ap-

plies. The exceptions occur for particles of about centimeter size and larger in the innermost regions

of the disk. The simulations run for this thesis all assume Epstein-regime drag forces.

To investigate gas-drag induced transport of particles, I can consider the simplest case of

laminar-gas flow with no turbulent forcing of the particle motions, and numerically solve for each

particle trajectory directly. To do this, I use a Runge-Kutta-style integrator, where, in the Epstein-

drag regime, Equations (3.10) & (3.11) are coupled with radial acceleration and the full-set of
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integrated equations is

drd
dt

= vr,d ,

dvr,d

dt
=

(

v2
φ,d − v2

K

)

rd
− 4π

3

s2d
md

ρg vtherm (vr,d − vr,g) ,

dvφ,d

dt
= −vφ,d vr,d

rd
− 4π

3

s2d
md

ρg vtherm (vφ,d − vφ,g) , (3.21)

defining the particle motion radially within the 1D disk, where rd is the dust-grain radial location.

The integrator uses step-size adjustment to reach a relative accuracy of 10−5–10−6 in rd, vr,d,

and vφ,d. Note, however, that the integrator becomes numerically expensive when the individual

terms in Equations (3.10) & (3.11) are large but sum to values that are small. Therefore, if the

initially computed acceleration (dvr,d/dt or dvφ,d/dt or both) is very small (< 10−14 cm s−2), the

integrator sets the small acceleration equal to zero. Also, if vφ,d ∼ vK (10−10 relative difference)

then the v2
φ,d − v2

K-term in Equation (3.10) is set equal to zero, but only if
1

3
CRρgvtherm ≥ vK

R
.

If vφ,d ∼ vK but the second condition is not met, then the v2
φ,d − v2

K-term is still important and

the integrator instead calculates the particle trajectory to the lower relative accuracy of 10−5. To
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Figure 3.6: Particle trajectories within a tenuous, photoevaporating disk in the midplane-flow gas-
velocity case for four different particle sizes. (Alexander & Armitage (2007) α = 10−2 disk; ρd = 3
g cm−3.)

maintain stability in this dust-trajectory integration, I scale the called integration time-steps to

≤ 0.1 × 1

ΩK,mid
, which provides well-converged and stable output.

Figure 3.6 plots gas-drag trajectories for the case of outwardly flowing gas at the disk midplane

in the α = 10−2 photoevaporating disk of Alexander & Armitage (2007) (Ṁ0 = 10−10M¯, Rd = 500

AU) discussed in §2.3.3. The trajectories include two different starting locations and a range of

particle sizes, and illustrate two important effects. First, for certain disk locations and particle sizes

(changing in time) particle motion in radially outward, rather than inward. Second, depending on

local conditions, the fastest inward radial-drift migration occurs for a particle of some intermediate

size.

To examine the first effect, consider the case when the particle orbit is stable (dvr,d/dt =

dvφ,d/dt = vr,d = 0). Plugging this condition into the Epstein-drag equations of motion (3.10) &

(3.11) yields

CR,steady =
3
(

v2
K − v2

φ,g

)

vtherm ρg vr,g R
. (3.22)

CR,steady then defines a particle size (surface-area-to-mass ratio), as a function of R and the local

disk conditions, for which the particle orbit is steady. Note that there are two important end cases:

1. If vr,g → 0 then CR,steady → ∞ (“inifinitely small” particles) because only massless particles

will orbit at any forced non-Keplerian gas velocity without experiencing radial acceleration.

2. If vφ,g → vK then CR,steady → 0 (“infinitely large” particles) because only the most massive
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Figure 3.7: (a) Orbital stability boundaries in a photoevaporating disk (Alexander & Armitage

(2007) α = 10−2) with outward-flowing gas, vr,merid. (See reference-Σg profiles in Figure 2.3.) (b)
CR,steady curve at t = 0 and a schematic of radial particle motions. Black-dashed line denotes
vφ,g = vK. Black-dotted line denotes vr,g = 0 (outward-flowing exterior, inward-flowing interior).
Note, larger particle sizes = smaller values of CR.

particles are impervious to radial gas drag, orbiting at vK no matter what.

Figure 3.7 plots CR,steady at the midplane for the photoevaporating disk of Figure 3.6, with

vr,g = vr,merid, at different times (panel-a). The curves are broken where CR,steady < 0 (negatively-

massed particles). Including the boundaries where vr,g = 0 and vφ,g = vK in panel-b for t = 0,

one sees that the steady-orbit curves divide the disk–particle-size parameter space into different

transport zones. We know that very small particles (large CR) can move outward with outward-
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mirrors the disk surface-density profile.

flowing gas, and that super-Keplerian gas at the inner edge of the disk produces tailwind-drag that

can move particles outward. Large particles are most influenced by the difference in vφ,g and vK

(in more tenuous regions of the disk, the definition of large moves to smaller and smaller particle

sizes), and small particles are more likely to be advected radially with the radial gas flow.

Next, to consider the second effect of particle motions demonstrated in Figure 3.6. Weiden-

schilling (1977a) notes that the greatest (azimuthal) drag-induced migration occurs when
tstop
torbit

≈
1

2π
. For Epstein drag, tstop =

3

CRρgvtherm
. Assuming a Keplerian orbit for simplicity, then,

CR,maxv ≈ 3ΩK

ρgvtherm
, (3.23)

where CR,maxv is the particle surface-area-to-mass ratio at which the maximum radial drift will

occur. This particle-size is linked to the well-known radial-drift barrier in grain-growth and particle-

transport studies where particles roughly centimeters to decimeters in size in a model Solar Nebula

drift inward onto the parent star so rapidly that they quickly deplete the disk of solids. Figure 3.8

plots the CR,maxv values for the disk of Figure 3.6 at the midplane at two times, compared with

the CR,steady values. Note that strong-drift forcing for the inner-disk region where the gas is super-

57



Keplerian allows particles of certain sizes to follow a photoevaporating disk edge outward (at least

for a while) as is seen in Figure 3.6 at later times. Also, this strong-headwind-drag effect, as it

depends on the local gas density, comes into play for smaller and smaller particles in more tenuous

regions of the disk.

3.2.2 Calculating a Steady Radial Velocity

For my transport simulations, I solve for the mean radial velocity of the dust grains, vsrd, subject to

Epstein drag against the mean gas flow. In my simulations, I assume that ρg = ρg,mid = Σg/
√

2πHg,

the gas density at the disk midplane. This means that the particle trajectories are calculated for

the maximum coupling between gas and dust motions. While Equations (3.10) & (3.11) represent

the precise equations of particle motion, including both orbital dynamics and gas drag, I follow

Takeuchi & Lin (2002) and simplify these forces by assuming that the radial acceleration of the

grain is zero, dvr,d/dt ≈ 0, and that the azimuthal acceleration corresponds to a change in the

Keplerian velocity with R, dvφ,d/dt ≈ −vKvr,d/2R. The equations for the radial and azimuthal

motions of a grain now produce two equations for the steady mean radial velocity, vsrd, as a function

of its steady azimuthal velocity, vsφd,

vsrd = vr,g +
3
(

v2
sφd − v2

K

)

CRRρgvtherm

vsrd = − 1

3
CRRρgvtherm

(vsφd − vφ,g)

(vsφd − vK/2)
. (3.24)

I solve these equations iteratively for vsrd using the gas-disk bulk flow from my disk model at each

radial grid point. (See Appendix B.3 for details.)

Figure 3.9 shows the mean radial velocities of the dust compared to the radial velocity of the gas.

Very small grains (. 1µm) are well coupled to the gas flow, but for larger grains, at large distances

from the star (tens of AU) and at late times in the disk evolution, the dust motion significantly

departs from the gas flow.

There are a number of methods used in the literature to calculate or estimate the radial-drift

velocities of particles in a disk. The simplest consider the difference between the gas and dust

azimuthal velocities only, sometimes simply adding this drift velocity to the gas radial velocity

assuming direct radial advection. This method can be effective in the inner, dense regions of a disk,
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Figure 3.9: Steady mean-radial velocities for different grain sizes at t = 0 in the fiducial disk model
of Chapters 4 & 5. Assumes gas flow at the disk midplane that is radially outward (see §2.6) and
ρd = 3 g cm−3.

but is much less so where the disk gas is tenuous. In Figure 3.10 panels-a1 and -a2, I plot radial-

dust velocities for two cases according to my methods versus the azimuthal-only–drift limiting cases

presented in Weidenschilling (1977a). The first limit is for tstop ¿ torbit (well-coupled particles),

and is given by (for Epstein drag)

vr,drift =

(

ρdsd

ρgvtherm

)(

1

ρg

dP

dR

)

, (3.25)

where ρd is the internal density of the grain and P is the local gas pressure. This is one of the most-

commonly cited formulations for estimating particle drift lifetimes within a disk, the other being

the same, but substituting cs, the sound speed, for vtherm, often preferred for order-of-magnitude

estimates. The other limit shown is for tstop À torbit (large, decoupled particles), and is given by

vr,drift =
1

Ω2
K

(

ρgvtherm

ρdsd

)(

1

ρg

dP

dR

)

. (3.26)

The above limits can be combined into a continuous equation for vr,drift across the range of

particle stopping times, as given in, e.g. Nakagawa, Sekiya, & Hayashi (1986) and Bai & Stone
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Figure 3.10: Plots of the particle-transport model calculations for radial drift of a 20 µm grain versus
others’ calculations for the drift velocity. Dashed curves denote the calculated velocity + the radial
gas velocity for calculations that neglect the radial gas velocity. Curves shown for two times in
the fiducial disk model of Chapters 4 & 5 for the case of outward-flowing gas at the midplane.
Panels-a1 and -a2 consider the limits to drift velocity presented in Weidenschilling (1977a). -b1
and -b2 consider the velocity from Bai & Stone (2010a) (BS10) for three local dust-to-gas densities
(Z0 = 0.015. -c1 and c2 consider the velocity from Takeuchi & Lin (2002) (TL02).
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(2010a). This combination produces

vr,drift = − 2τs

(1 + ερ)
2 + τ2

s

ηδφvK . (3.27)

Note that the above equation also includes the effect that regions with high dust-to-gas ratios will

experience slower particle drift (when ερ = ρp/ρg is large, where ρp is the local volume density

of solids), as shown in panels-b1 and -b2 of Figure 3.10. In Equation (3.27), τs = ΩKtstop is the

normalized stopping time, and ηδφ references the radial shearing within the disk, usually referenced

as (approximations) ηδφvK = vK − vφ,g or ηδφ = − (∂P/∂R) /2ρgRΩ2
K. However, perhaps because

of the predominance of the order-of-magnitude limit for Equation (3.25), Bai & Stone (2010a) have

chosen to specify τs of Epstein drag using cs in place of vtherm: τs = ΩKρdsd/ρgcs. This has the

effect of off-setting the vr,drift curve from that calculated by my method, as shown in panels-b1 and

-b2 of Figure 3.10, and calculating a somewhat larger inward drift for particles in the main part of

the disk than necessary.

Finally, Takeuchi & Lin (2002) derive a widely used equation for the radial-drag velocity of par-

ticles that includes drag from the radial gas flow explicitly. It continues the simplifying assumptions

used to arrive at Equations-set (3.24) to produce

vr,drag =
vr,g/τs − ηδφvK

τs + 1/τs
, (3.28)

where Takeuchi & Lin (2002) derive their ηδφ directly from radial orbital-pressure balance: ηδφ =

− (∂P/∂R) /RρgΩ
2
K. Plots of the Takeuchi & Lin (2002) radial-velocity values compared to my own

are shown in panels-c1 and -c2 of Figure 3.10. Equation 3.28 provides radial-velocity values very

similar to my own, if somewhat slower, along the range of disk-verus-gas conditions. However, my

particle-transport model continues to use the itterative method to solve for dust radial velocities

rather than this analytical expression largely because, as shown in the next subsection, my method

has been tested and proven against direct-integration trajectories of gas-dragged, orbiting particles.
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3.2.3 Fidelity of Transport Trajectories Compared to Force-Balance Numeric
Integrations

The particle-transport model is constructed to use the gridded, steady-radial dust velocities dis-

cussed above, so that the trajectories calculated are a first-order approximation of the full gas-drag

dynamics. Here I compare these trajectories to their corresponding precision-numerical integra-

tions calculated as discussed in §3.2.1. Most of the comparison simulations presented below are run

using the midplane-flow-velocity case, as defined in §2.6. I begin by presenting particle trajectories

calculated within an initially tenuous disk (Rd = 500 AU, Σg (1AU) ∼ 1 g cm−2 at t = 0) that is

photoevaporatively cleared within .105 years. Such tenuous disks provide loose particle-gas cou-

pling. Combined with an outward-flowing gas velocity, the radial trajectories of the dust particles

can be complex and so provide good tests of my particle-transport model. The dust-grain sizes

quoted assume a rocky internal density of 3 g cm−3.

Figure 3.11 plots, for both numeric integrations and particle-transport simulations, the trajec-

tories and radial velocities of 0.2 mm-sized particles initiated at three different radial locations

within this tenuous disk. Here, such large particles are only loosely coupled to the gas flow, with

exponential-stopping times (tstop) at t = 0 of a few to greater than ten Kepler times (and of no

shorter than 0.1 Kepler times throughout the simulations). Nevertheless, there is good agreement

between my particle-transport simulations and the more precise numeric integrations.

However, the particle-transport model trajectories do lack certain details; as shown in the lower

panels of Figure 3.11, they do not account for orbital eccentricity. Thus, the particle-transport

simulations are limited in their depiction of complex gas-particle interactions. In panels-a2 and -

b2, these interactions pertain to a particle disengaging from an outward-sweeping photoevaporation

front. However, the results of interest to the studies of this thesis (as explored in Chapters 4, 5,

& 6) are not sensitive to such a high level of detail. Most important, instead, are the broad

effects pertaining to variations in particle size and the evolving disk surface density. As a test of

these considerations, I ran simulations for particles of sizes 0.2 µm, 2 µm, 20 µm, and 0.2 mm

in the tenuous disk, from 20 starting locations, 0.5–500 AU. Figure 3.12 compares the numerical

integrations versus particle-transport simulations for those runs initiated at 1 AU and 500 AU. For

the total run set, the exponential-stopping times ranged from less than 10−4 to greater than 10

Kepler times, and in general, the relative radial positions of the simulated trajectories agreed with
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Figure 3.11: Radial position (a1, a2) and radial velocity (b1, b2) of simulated particle trajectories.
Comparison between precision numerical integrations (heavy, dark lines) and the particle-transport-
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Figure 3.13: (a1, b1) Particles initiated at 500 AU within a massive, but initially compact disk
for three particle sizes in the midplane-flow gas-velocity case. (a2, b2) Particles initiated at 15
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model trajectories (light lines). In the right panels, the relative difference in the radial positions
over time between the numerical integrations and the particle-transport simulations. [(simulated -
integrated) / integrated] Note that the time-axes are in log-scale.

the numeric integrations to within 2% or better.

Where my particle-transport simulations deviate the most from the numeric integrations is for

particles experiencing a long period of steady infall. This is true regardless of how well-coupled

the particles are to the gas motions, and is an effect of the particle-transport model repeatedly

overshooting the estimate of the infalling particle trajectory. Panel-a1 of Figure 3.13 plots tra-

jectory comparisons for particles initiated at 500 AU in a massive, but initially compact disk

(MD,0 = 0.05M¯ and Rd = 10 AU). In this scenario, the particles begin very decoupled from the
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gas (tstop > 103 Kepler times), and after their initial infall toward the main disk they become

moderately well-coupled (tstop ∼ 10−2 and smaller). In panel-b1 I plot the relative difference in

the particle radial positions between the particle-transport model trajectories and the numerical

integrations. Here one can see that for each infall (including the final infall of the largest par-

ticle) these two trajectory calculations diverge as the simulated trajectories outpace those of the

numeric integrations. Therefore, exaggerated, rapid infall of particles may be a drawback of my

particle-transport model. However, inspection of all of my simulated trajectories suggests that this

exaggerated infall should have a negligible effect on my general understanding of the timing and

trends of particle transport. As a check I have also run comparison integrations using the accretion-

flow case in the baseline-disk model of Chapter 4. I ran four particle sizes (0.2 µm–0.2 mm) initiated

at 15 AU and the results (trajectory comparisons and relative differences in radial positions) are

plotted in Figure 3.13 panels-a2 and -b2. Initially the particles move outward with the outwardly

expanding disk, but soon they are swept inward as the usual, steady, inward-accretion flow spreads

throughout the main disk. There is good agreement between the simulations and the numerical

integrations, with positional differences of less than 2% for all but the very final stages of infall.

Therefore, in the limit of zero turbulent diffusion, the simulated trajectories produced by my

particle-transport model appear to be a sufficiently accurate representation of radial particle trans-

port in an evolving disk under the influence of gas drag, due to both the pressure-supported–

azimuthal and the radial gas flows.

3.3 Turbulent Diffusion of the Particle Ensemble

Turbulent diffusion of the particle ensemble in my particle-transport model is represented by a

random walk added to the individual grain trajectories. The magnitude of this random walk is

directed by the local radial diffusivity for a particle of a given size, while the inward/outward

statistics of the walk also depend on the local disk-mass distribution and on the time stepping used

in a given simulation. In this section, I first define the physical and numerical setup for effecting

diffusion of the particle ensemble (§3.3.1). Next, I demonstrate the fidelity of my particle-transport

model in reproducing analytical test-case solutions of radial diffusion within a gas disk (§3.3.2).

Finally, I consider two different theories for the scaling of the dust to the gas diffusivities and

compare the basic results of the standard-case simulations (of Chapters 4 & 6) using each (§3.3.3).
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3.3.1 Numerical Calculation of Stocastic Integrations

To model the turbulent diffusion of the particle ensemble, I add a random walk to the individual

grain motion via the addition of a turbulent velocity component, vturb, used in Equation 3.1. This

turbulent velocity is set by the dust-particle diffusivity, Dp, and by the time step of the random

walk motion; it is given by

vturb = ±
√

2Dp

∆t
. (3.29)

In my particle-transport model, the time step of the random walk is limited by the time step of

the gas-disk-evolution model, but is also allowed to be no greater than the local Kepler time, 1/ΩK

(ΩK is the Keplerian angular velocity), and no greater than either ∆R5/vsrd or ∆R5/vturb, where

∆R5 is the radial distance across five grid cells in the direction of particle motion.

For the bulk of my simulations, I follow Youdin & Lithwick (2007) in calculating the radial

diffusion coefficient of the dust grains via

Dp = Dg
1 + 4τ2

s

(1 + τ2
s )2

, (3.30)

where Dg is the gas diffusion coefficient, and τs = ΩKtstop. (See §3.3.3 for a possible alternative to

Equation (3.30).) In the Epstein-drag regime, tstop = 3/ (CRρgvtherm). The dust and gas diffusion

coefficients are equal throughout most of the disk, except in the outermost regions where the gas

surface density is very low, and the dust diffusion coefficient drops to zero. In my fiducial models,

I assume that because the disk viscosity is derived from turbulence within the disk, Dg = ν.

While Equation (3.29) provides an accurate first-order representation of the particle diffusivity,

it is not sufficient for producing accurate diffusion of the particle ensemble in my model gas disk.

Among other things, it does not account for the mass distribution of the disk gas. In a real random

walk, the time and distance of each step vary according to the local properties of the gas environ-

ment. In my model, however, the time step is fixed by other, mostly numerical, considerations.

Therefore, to allow my particle ensemble to diffuse according to the actual gas distribution, I must

calculate an appropriate probability for whether a given particle in the ensemble will step radially

inward (pin) or outward (pout).

The proper weighting between pin and pout is a function of the imposed time step. Instanta-
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neously (∆t → 0), pin/pout = 1, because ∆t = 0 represents only a single random walk encounter.

However, for ∆t > 0, the probability that multiple encounters will occur within that time step

becomes nonzero. Furthermore, additional encounters will occur not at the initial position being

considered, but either inward or outward of that location depending on the outcome of past encoun-

ters. Therefore, the properties of the diffusive medium (the gas) outside the local point of interest

play a role in determining pin/pout for ∆t > 0. The spatial extent of this region of interest is set by

how far particles may travel for a given ∆t. For the particle ensemble, this is the root-mean-square

of the displacement of the diffusing particles, or

∆Rrms =

√

〈

(∆x)2
〉

= vturb∆t =
√

2Dp∆t . (3.31)

The weighting for pin is set by the gas properties between R − ∆Rrms and R; and for pout by

the properties between R and R + ∆Rrms. Asymptotically, the diffusion must yield everywhere a

uniform particles(dust)-to-gas ratio. Therefore, after an infinite time, the region with more gas mass

must also have proportionally more dust particles. However, because regions of higher diffusivity

reach the steady state of uniform concentration more quickly, for a finite time step, proportionally

more particles will also mix into a region of higher diffusivity than into one of lower diffusivity.

Therefore,

pin

pout
=

(MgDp)in

(MgDp)out

=

∫ R

R−∆R
DpΣgRdR

∫ R+∆R

R
DpΣgRdR

. (3.32)

To evaluate Equation (3.32) within my model gas disk, I assume uniform, mean values of

the gas surface density and particle diffusivity between each grid point. Because I calculate pin

once at each disk-evolution time step, but ∆t of the individual particle motions may vary due to

local constraints, I calculate actually pin at each grid point for both ∆tevolve and 1
2∆tevolve, then

interpolate parabolically for other time-step sizes as needed, using pin (∆t = 0) = 0.5.

Figure 3.14 plots the diffusion–time-step caps and corresponding pin values for the static-disk

models used to study mixing in Chapter 4. Both models have a maximum time-cap for data output

of 5000 years, and the static0 disk model has an exponential fall-off of gas mass in the outer disk.

Otherwise both have a roughly uniform mass distribution in radius. From this figure it is clear
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how, in general, the inward/outward-walking probabilities are close to equal, but that the particle

ensemble will probabilistically avoid regions of very low mass density.

Figure 3.15 presents a comparison of the distribution of particles using my particle-transport

model compared to the expected distribution for an analytical example derived by Clarke & Pringle

(1988). While the discreet nature of my particle-transport simulations result in scatter on the

distribution, the overall result is a good match to the analytical theory. In the following subsection,

I compare simulated particle diffusion to other analytical test cases derived in Appendix A.

3.3.2 Fidelity of Model-Ensemble Diffusion

In this section, I present simulations of static-disk test cases of particle diffusion and compare

these simulations to the analytical solutions obtained in Appendix A. I also discuss the effects of

my choice of simulation time-step on the results. Analytical solutions can be found for a mass of

contaminants (particles) given by a delta-function at t = 0 and for cases using fixed power-laws

for the disk-gas surface density, Σg, the disk viscosity, ν, and the radial (advection) velocity of the

diffusing contaminant, vR, when those power-laws follow:

Σg = Σ0R
−a ,

ν = ν0R
b → Dkg = ζν ,

vR = v0R
b−1 .

Σ0, ν0, v0, ζ, a, and b are all constants and Dkg is the local diffusivity.

The analytic cases are solved for C (R, t), the concentration of the contaminant, which is equiv-

alent to σ/Σg, where σ is the local surface density of the contaminant. However, the particle-

transport simulations output the number of particles per radial grid space, so I convert C (R, t)

into an expected mass distribution, mi/mtot, where mi is the contaminant mass in grid cell i, and

mtot is the total mass of contaminant in the disk at t = 0. This can then be directly compared to the

distribution of particles in my simulations. Analytical solutions are given for three separate cases:

simplest radial diffusion, with a constant disk-mass distribution (a = 1) and uniform diffusivity

(b = 0); a steady disk with a logarithmic solution space (a = b = 2); and other random values of a

and b and b 6= 2. Mass-distribution solutions for each of these are listed in Appendix A.
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To compare my particle-transport model to the derived analytic test-case solutions, I have run

simulations of 10,000 particles initiated at 40 AU. I consider cases for both v0 = 0 and v0 = −3/2ν0.

The latter corresponds to the 1D gas-accretion velocity in the steady-disk cases (a = b), but is an

artificially imposed velocity structure in the nonsteady disks. I vary the values of both a and

b (the slopes of the disk surface-density (inverse) and disk-viscosity functions, respectively) to

test my model in both steady and nonsteady-disk environments. All simulations use ν (1AU) =

4.941 × 1014 cm2 s−1 and (unless otherwise stated) ζ = 1. In these test-case simulations, the

values of Σ0 and the particle size are arbitrary, since the background velocity of the particles, vR,

is prescribed.

Panel-a1 of Figure 3.16 plots a comparison between my numerical simulations of particle trans-

port and the analytically expected contaminant-mass distribution for the case of a = b = 1.5 and

zero background velocity (v0 = 0) at two different times. It shows that the overall, evolving dis-

tribution of the particle ensemble is in good agreement with the analytical solution. However, the

scatter produced by the discreet nature of the particle simulations makes it difficult to judge the

accuracy with which the simulations reproduce this analytical test case. Therefore, panel-b1 plots

an alternate comparison of the simulated and analytical mass distributions. Here the values plotted

correspond to a summing of the fractional-mass per grid space either from R = 0 outward, or from

R = R0 = 40 AU inward (for R < R0) and outward (for R > R0). Again, the simulations and the

analytical solutions appear to be in good agreement.

I have simulated particle diffusion with zero background velocity in a steady disk for a range

of a = b-values, and panels-a2 and -b2 of Figure 3.16 display the results at t = 2 × 104 years. In

general, my simulations agree well with the analytical solutions. The exceptions occur for very

steep (a = b = 3), or very shallow (a = b = 1) disk profiles and are caused by the finite nature of

my simulation space. The divergence is easy to see in the steep a = b = 3 case. A steep viscosity

(diffusivity) profile that goes as R3 leads to rapid transport of particles over very large distances

in the outer disk. Therefore, the outer edge of my simulation space acts as a sink for particles. At

early times, before a significant fraction of particles have been lost, the simulations and analytical

solutions are in good agreement, as shown in the lower panels, (-a3 and -b3); they deviate from

each other only at later times. In the shallow a = b = 1 case, it is loss past the inner boundary of

the simulation space that causes the simulations to deviate from the analytical solutions (at later
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Figure 3.16: Steady (a = b disks with zero background velocity. Left panels: comparison of the
mass distributions of the particles (contaminant) between the particle-transport simulations (pale
lines) and the analytical solutions (dark lines). The vertical axis is the fraction of total particles
(total contaminant mass) per radial grid space. Right panels: comparison between simulations (pale
lines) and analytical solutions (dark lines) of the summed-mass distributions. Solid lines represent
the distributions summed from R = 0, and dashed lines represent the distributions summed from
R = R0 = 40 AU. Simulations run using 10,000 particles. For the cases of a = b = 1, 1.5, 2, and
3, simulations were run using global time-step sizes of ∆t = 2 × 104, 2000, 1000, and 2000 years,
respectively. The a = b = 3 simulation for the lower panels-a3 and -b3 was run using ∆t = 100
years. In this simulation at t = 100 years, 100% of the particles remain on the grid, but at t = 500
and 2000 years only 93% and 87% remain, respectively.

71



0.020

0.015

0.010

0.005

0.000
1000.0100.010.01.00.1

F
r
a
c
t
i
o
n
 
p
e
r
 
b
i
n

0.020

0.015

0.010

0.005

0.000

R (AU)
1000.0100.010.01.00.1

a=b=3
a=b=2.1
a=b=2
a=b=1.9
a=b=1.5
a=b=1

a=b=3

a=b=1(a)

t = 104 yr

S
u
m
m
e
d
 
f
r
a
c
t
i
o
n

1.0

0.8

0.6

0.4

0.2

0.0

R (AU)
1000.0100.010.01.00.1

1.0

0.8

0.6

0.4

0.2

0.0
1000.0100.010.01.00.1

a=b=3

a=b=1

(b)

vo = −1.5 visc o

Figure 3.17: Mass-distribution profiles (a) and summed profiles (b) at t = 104 years for several
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case of a = b = 1, the simulation was run using a global time-step size of ∆t = 104 years. For
a = b = 1.5 and 3, ∆t = 1000 years. For a = b = 1.9, 2, and 2.1, ∆t = 500 years.

times than the t = 2 × 104 years shown in the Figure, due to the slower diffusive evolution).

Loss of particles past the simulation-space boundaries does not cause significant deviation from

the analytical solution when I include a background-accretion velocity. In Figure 3.17, I plot

the mass-distribution profiles at t = 104 years for a range of a = b values (steady disks) with

v0 = −3ν0/2. Because the background velocity is inward, it keeps particles away from the outer

boundary, and loss past the inner boundary is a part of the analytical solution as well as the

simulations. All of these cases show good agreement between the simulations and the analytical

solutions.

There is also good agreement for simulations run in non-steady disks (a 6= b). As examples,

panels-a1 and -b1 of Figure 3.18 plot the mass-distribution profiles for the case of a = 1 (a uniform

mass distribution in R), b = 3, and v0 = −3ν0/2, which has a rapidly evolving distribution. And

panels-a2 and -b2 plot the distributions for a = 3, b = 0 (uniform diffusivity), and v◦ = −3ν◦/2,

which is slowly evolving. Simulations were also run for these a 6= b cases with v◦ = 0; they also

agree well with their corresponding analytical solutions.

Next, as a check of the scaling between the diffusivity and the background particle velocity, I

present simulations varying ζ (where Dkg = ζν). The results are plotted in Figure 3.19 for three

disk scenarios, including zero and non-zero background velocity, and steady and non-steady disk
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Figure 3.18: Mass-distribution profiles (a1, a2) and summed profiles (b1, b2) at two times for two
non-steady-disk cases. Comparison between simulations (pale lines) and analytical solutions (dark
lines). In (b1, b2) solid lines represent summing from R = 0, dashed lines from R = R0. The
simulation for (a1, b1) was run using a global time-step size of ∆t = 10 years, and that for (a2,
b2) was run using ∆t = 105 years.

profiles. For all, I see good agreement between my simulations and the analytical solutions. The

only noticable deviation occurs for the shallow disk case — panels-a1 and -a2 — with high relative

diffusivity where there is excess loss of particles past the inner grid boundary.

Finally, I would like to be sure that my particle-transport model correctly simulates diffusion

of the particle ensemble for the global time steps used in the static-disk simulations of Chapter 4

(∆t = 2000 years), as well as for the time steps required by the disk-evolution model in the evolving-

disk simulations (∆t ∼ 0.05 years). As was described in §3.3.1, maximum limits are placed on the

particle time stepping to ensure that disk conditions local to each particle are obeyed. Panel-a of

Figure 3.20 plots these time-step restrictions for a variety of disk scenarios and scaled diffusivities.

The time-cap due to the simulation-output timestep is here set very high (104 years) in order to
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Figure 3.20: Turbulent (random-walk) maximum time steps (a) and the corresponding inward-
stepping probabilities (b) for particles in a variety of disk models and for different scaled diffusivities.
Time caps include all three forms of time-stepping restrictions: capping by the global time step of
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random-walk step, and changes for alterations in the random-walk time-step size.
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show how the other constraints vary with R. A shorter output time or a cap due to an evolving

disk scenario would truncate these curves above that time-step threshold and alter the requisite

pin values where that cap applied. The pin values corresponding to the time-step curves shown are

plotted in panel-b.

Smaller time steps mean more steps to simulate a given amount of time in the disk; therefore,

the probabilities of a particle stepping inward versus outward grow ever closer to 50/50. Cumu-

latively, However, all time-step sizes used must evolve the distribution of the particle ensemble

equally. Therefore, I have run a few test-case simulations using capped time-step sizes ranging

from 10−3 years to 100 years. The resultant distributions versus the analytical solutions are plot-
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Figure 3.21: Mass-distribution profiles (a1, a2) and summed-profiles (b1, b2) for two disk cases: a
steady case of a = b = 1 with v0 = 0 shown at t = 2 × 105 years, and a non-steady case, a = 1,
b = 3, with v◦ = −3

2ν◦, shown at t = 200 years. Simulations were run for a range of global time-step
sizes (colored lines) and are compared to the analytical solutions (black/grey lines). In (b1, b2) the
dark lines represent summing from R = 0, and the pale lines summing from R = R0. The colored
lines of the simulations are largely obscured by the analytical solutions (black/grey) plotted over
top.
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ted in Figure 3.21 for the case of a = b = 1 and v0 = 0 (panels a1, b1), and for the case of a = 1,

b = 3, and v◦ = −3ν◦/2 (panels a2, b2). All of these simulations agree well with their corresponding

analytical solution, and the scatter produced for simulations with different time-step sizes are all

comparable.

However, while the agreement between simulations using different time-step sizes is good for

almost all of the simulations I tested, one set of simulations shows a marked change in the scatter

depending on the size of the time step used. Figure 3.22 plots simulations run for a range of

time-step sizes for the case of a = b = 2 and v0 = −3ν0/2 compared to the analytical solutions at

two times. Looking at the summed-mass distributions (-b1 and -b2), it is clear that all of these

simulations do distribute the particle ensemble appropriately for this diffusion test case. However,

the mass-fraction-per-bin profiles show significant, resonant-like scatter in the ∆t = 10 years and
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Figure 3.22: Mass-distribution profiles (a1 and a2) and summed-profiles (b1 and b2) at t = 5× 103

years (a1 and b1) and t = 104 years (a2 and b2) for the steady-disk case where a = b = 2, and
v0 = −1.5ν0. Simulations were run for a range of global time-step sizes (colored lines) and are
compared to the analytical solution (black/grey lines). In (b1) and (b2), the dark lines represent
summing from R = 0, and the pale lines summing from R = R0. The colored lines of the simulations
are largely obscured by the analytical solutions (black/grey) plotted over top.
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Figure 3.23: Schematics for producing resonant-like scatter of a diffused particle ensemble for (a)
uniform diffusivity and (b) non-uniform diffusivity (increasing to the right). Vertical dotted lines
represent the type of grid-spacing appropriate for observing resonant-like scatter in these systems.

∆t = 1 year simulations; the scatter also appears a bit higher than usual in the ∆t = 10−1

year simulation. Furthermore, the resonant-like-scatter region in the ∆t = 10 years simulation is

restricted to outward of about 15 AU, and this region moves outward with time. As shown above

in Figure 3.20 panel-a, inward of 15 AU in these simulations the Kepler time (1/ΩK) is less than

10 years and decreases toward smaller R; the time-step sizes of individual particles at small AU

are restricted to smaller than the global 10-year time step. Therefore, the resonant-like-scatter

behavior is only observable when the same local time-step size is used for the entire region and

when the source of all the particles is a single point in R. Nonresonant-like scatter at small AU

allows the particle distribution to spread out randomly, following the local diffusivity and removing

the single-source-point condition first at small AU and then moving outward.

In the simplest diffusion scenario, it is easy to produce a distribution displaying resonant-like

scatter. My model for diffusion does not simulate the spread in velocities/step-lengths that real

diffusion produces, but rather uses a fixed diffusion step-length for a given time-step at a given

grid-point (Equation (3.31)). If the diffusivity is spatially constant, there is zero background

velocity, and diffusion occurs with the same time-step across a whole region, then particles from a

single source will only occupy discreet locations within the simulations space, as shown in panel-a

of Figure 3.23. While this will produce resonant-like scatter of the distribution, it will only be

observed if the output grid onto which the grains are deposited is also appropriately spaced. This
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case would require linear spacing in R. Also, the displacement of each particle has to be at least

as long as the width of a grid-cell to be seen. Therefore, the effect should disappear for very small

time-stepping/displacements.

The simulations of Figure 3.22 are not of simplest-case diffusion. There is a non-uniform

background velocity, non-uniform diffusivity, and logarithmically spaced grid cells. However, this

a = b = 2 case is special for two reasons: 1) The natural space for diffusion in this regime

(b = 2 −→ ln (R)-space) is the same as the space wherein my disk-model grid cells are equal

width. Therefore we should be able to observe resonant-like scatter if it occurs. 2) Step-lengths

for diffusion and advection both scale proportional with R: ∆Rturb ∝
√

∆tν ∝ R2/2 = R, and

∆Radvect ∝ ∆tv ∝ R2−1 = R. Therefore, if resonant-like scatter occurs, it should do so over a large

portion of the simulation space.

Because of the non-uniform diffusivity, particles in Figure 3.22 cannot simply take one step

forward and one step back to return to their starting location; they should end up interior to

their starting location, even without background advection. They might, however, take two steps

forward and one back, as depicted in the panel-b schematic of Figure 3.23, depending on the rest

of the parameters of the system and the time-stepping. For the Figure 3.22 simulation, a particle

that moves outward twice and inward once should be at a position:

Rfin = Rstart

[

1 +
√

2 (∆tν0)
1/2 − 13

2
∆tν0 − ...− 27

8
(∆tν0)

3

]

,

where Rstart is the particle’s starting location. Therefore, for ∆tν0 ¿ 1, the system should approach

a resonant-like scatter distribution. Also note that the offset of R ×
√

2∆tν0 is of the same order

as for the scaling of a diffusive step-length, so characterizing a distribution is still rather messy.

The grid spacing for my particle-transport simulations is ∆Rgrid ∼ 0.02R, and ν0 ≈ 2.2×10−12 s−1

for the Figure 3.22 simulations (so ∆tν0 < 1 for ∆t . 1.4 × 104 years). For ∆t = 0.1, 1, 10, and

100 years, the offsets for resonant-like and diffusive stepping are ∼ 0.004R, ∼ 0.012R, ∼ 0.035R,

and ∼ 0.1R respectively. Therefore, we only see resonant-like scatter when the diffusive stepping

and resonant-like offset are on the order of the width of a grid cell. (Recall from Figure 3.22 that

resonant-like scatter is observed for ∆t = 1 and 10 years.

While this resonant-like-scatter behavior is curious and somewhat vexing, it is also a special
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Figure 3.24: Mass-distribution profiles (a1, b1) and summed profiles (a2, b2) at t = 105 years for
particles initiated at 40 AU in the two static disk models employed in Chapter 4 for a variety of
global time-step sizes. These disk models do not have analytical solutions with which to compare
the results, though the steady-disk has a form similar to the a = b = 1, v0 = 0 disk case.

case and not a problem for the science simulations of this thesis. Figure 3.24 presents the results

of time-step testing for particles in the two static-disk models used in Chapter 4; all timestepping

produces essentially the same particle distributions (within the limits of the natural scatter of the

discreet system).

3.3.3 Comparing Two Theories for Dust-Gas Coupling and Radial Particle Dif-
fusion

In the simulations presented in this thesis, I use the most recent equations derived for the radial

particle diffusivity respective to the radial gas diffusivity (Youdin & Lithwick, 2007). However,

in the literature there is still contention over whether the older relation (Cuzzi, Dobrovolskis, &

Champney, 1993) may not be the correct one. Therefore, in this section, I compare simulations

using each of these diffusivity relations and show that for the results of Chapters 4, 5 & 6 the
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specific relation for Dp is unimportant; headwind drag tends to exclude grains from regions where

the two give noticeably different results.

In the papers that derive equations for Dg/Dp, the ratio is referred to as the Schmidt number,

Sc. However, Sc ≡ ν/Dg is the traditional fluid-dynamics definition, and is also an important

parameter in my simulations. Therefore, I retain Sc ≡ ν/Dg and simply refer to Dp and Dg

explicitly. The most important parameters for relating particle and gas diffusivities are: τs = Ωtstop,

which describes the relative importance of gas drag versus orbital motions on the particle motions;

τe = Ωteddy, which describes the frequency of turbulent kicks (one per eddy time) relative to the

orbital timescale; and the Stokes number, St = tstop/teddy = τs/τe, which describes the frequency

of turbulent forcing relative to the gas-drag stopping time.

As given in Equation (3.30) above, the Youdin & Lithwick (2007) relation for radial diffusivity

of particles in the case of isotropic turbulence is

Dp,YL2007 = Dg

(

1 + 4τ2
s

)

(1 + τ2
s )2

. (3.33)

It is noteworthy that the result is independent of τe. Youdin & Lithwick (2007) point out that this

may simply be consistent with long–stopping-time particles also having long mean-free-paths. The

authors also describe the diffusivity for anisotropic turbulence and note that a larger proportion of

azimuthal forcing leads to relatively more radial diffusion of particles. For all simulations, I have

assumed isotropic turbulence.

The older relation for particle diffusivity is given by Cuzzi, Dobrovolskis, & Champney (1993).

Dp,CDC1993 = Dg
1

(1 + St)
. (3.34)

Not only does this relation depend on the eddy time, it also falls off more gradually as Dp ∝

τ−1
s , compared to the Dp ∝ τ−2

s of Equation (3.33). The full equation in Cuzzi, Dobrovolskis, &

Champney (1993) also finds a small decrease in diffusivity in the case of a non-zero mean vertical

velocity for the particles. In my simulations, I assume that the mean vertical velocity is zero.

The two relations for Dp are plotted in Figure 3.25. Note that Youdin & Lithwick (2007) find a

slight up-tick in diffusivity for marginal coupling (τs ∼ 1). This corresponds to a state of resonant
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Figure 3.25: Comparison of the Youdin & Lithwick (2007) (red line) and the Cuzzi, Dobrovolskis, &

Champney (1993) (blue lines) relations for the radial particle diffusivity in a gas disk as a function
of the relative stopping time, τs. For isotropic turbulence, Dp,YL2007 is independent of the eddy
time, whereas Dp,CDC1993 ∝ τe. The grey curve plots an example of the radial-drift velocity of a
particle (scale on the right-hand-side) as a function of τs = πsdρd/2Σg.

forcing with the particle orbit. Figure 3.25 includes an example of the local mean-radial-drift

velocity as a function of τs. Small τs occurs where the disk is denser, so toward smaller disk radii,

and large negative values of the drift velocity correspond to rapid inspiral of the grain toward small

R. Therefore, it is clear from this figure how grains may often be kept interior to regions of the

disk where the two relations for Dp diverge.

Figures 3.26 & 3.27 demonstrate the negligible effect the difference between Equations (3.33)

& (3.34) have on the results of my particle-transport simulations. Often, the eddy time is assumed

to be equivalent to the orbital time, τe = 1, and I have used this assumption for these simulations.

Figure 3.26 plots Md,CDC1993/Md,YL2007, the ratio of the CDC1993-driven dust-mass distribution

to the YL2007-driven distribution for the fiducial model of Chapter 6. The map is for R and t

of the evolving disk, and the green regions correspond to Md,YL2007/Md,CDC1993 ∼ 1. The grey

regions correspond to (R, t) with insufficient resolution to report results. Within the scatter of the

simulations, the two diffusivity relations produce identical dust distributions. Figure 3.27 plots

the average positions and fractions beyond 25 AU for the fiducial model of Chapters 4 & 5 for
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Figure 3.26: Md,CDC1993/Md,YL2007: A map in R and t of the ratio of the CDC1993-driven dust
distribution to the the YL2007-driven distribution. Dust distributions simulated in the fiducial
disk model of Chapter 6. Time-resolution of 25 points averaged per ∆t = 5× 104 years. The black
lines trace the evolving-disk gas–surface-density contours in orders of magnitude.

simulations using both diffusivity relations. Even for the largest particles, which are least-coupled

to the gas motions, the two sets of results are identical within the noise. Therefore, while there is

some disagreement over the correct relation to use for the particle diffusivity, for τe = 1, the choice

has no impact on the results presented in this thesis.

3.4 A Cartoon Model for Grain-Growth Constraints

Judging by observations, protoplanetary disks are sites for rapid growth of dust grains and also

environments that harbor a significant small-grain population over a large fraction of their lifetimes

(Bouwman et al., 2003; Kwon et al., 2009; Sargent et al., 2009). Grains observed in the ISM are sub-

micron in size (Mathis, Rumpl, & Nordsieck, 1977), while every disk for which we have observations

shows signatures of grains that are microns, tens of microns, or even millimeters in size (Testi et al.,

2003). In the global-dust-distribution simulations presented in Chapter 6, I use a pair of cartoon
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Figure 3.27: Simulations run for several particle sizes in the fiducial model of Chapters 4 & 5 for
both the accretion-flow and midplane-flow gas-velocity cases. Red curves plot results using the
YL2007-relation for Dp used throughout this thesis. Blue curves plot results using Dp,CDC1993 with
τe = 1. Particles are initiated between 0.5 and 10 AU. Top panels show the average positions of
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the particles that are beyond 25 AU.
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Figure 3.28: Depictions of grain growth in two cartoon models. The modeled, growing grain is
highlighted in red, while the background grains from which it grows are shown in blue with black
outlines. Arrows depict the relative magnitude and direction (random in the Brownian model)
of grain motions. Growth in the raindrop model is dependent on grain height, z, above the disk
midplane, while the grain growing in the Brownian model is assumed to exist always at z = 0.

models for the early stages of grain growth to place constraints on the timing for which larger

particles (micron–centimeter sizes) may appear at various disk radii. The progression of grain

growth for these two models is depicted in Figure 3.28, and in this section I outline how these

models work, the physical mechanisms they do and do not describe, and how their depictions of

grain-growth vary across different regions of the disk.

Aside from the supply of solid material from which to grow, the two most important parame-

ters influencing grain-growth are the cross-sections for grain collisions, σc (m1,m2), and the rela-

tive velocities of potentially-colliding grains, ∆v (m1,m2), (more generally, the velocity dispersion)

(Dullemond & Dominik, 2005).

dm

dt
∝ σc∆v . (3.35)

For a solid-sphere representation of the dust grains, the collisional cross-section is given by Dulle-
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mond & Dominik (2005)

σc = π (sd1 + sd2)
2 , (3.36)

where sd1 and sd2 are the radii of each of two colliding grains. Some sophisticated grain-growth

models consider grain porosity and collisional compaction (e.g., Ormel, Spaans, & Tielens (2007)),

but the cartoon models I use assume constant-density spheres.

Different regimes of grain-growth are largely described by the method that produces the colliding

grains’ relative velocity. My cartoon models for providing grain-growth/size constraints consider

two methods separately. These methods are Brownian motion, where small particles have a large

velocity dispersion due to their kinetic energy alone; and differential settling, where larger grains

settle toward the disk midplane faster than small grains and so sweep up small grains in their path.

For the cartoon models, I do not consider differential radial drift, turbulent coagulation, collisional

fragmentation, or bouncing (collisions with zero-change in particle size). Many papers discuss these

effects in detail (e.g., Zsom & Dullemond (2008); Okuzumi (2009); Zsom et al. (2010)). The main

points to consider concerning their omission are:

* While the velocity dispersion due to Brownian motion decreases as grains grow, the disper-

sion due to turbulent motions increases for larger grain sizes (less well-coupled to the gas

motions that are forcing them), allowing continued, efficient collision of equal-mass grains

and rapid growth at larger sizes.

* Both fragmentation and bouncing lead to a maximum grain size above which particles do not

grow. This tends to occur where grains are marginally coupled to the gas motions (τs . 1).

* No single grain-growth process occurs in isolation. Therefore, models that consider only one

type of coagulation will tend to underestimate growth rates, no matter the regime.

These are the limitations of using a cartoon-model for grain-growth. However, my needs for these

models are only for setting relative thresholds for when larger grain sizes might appear in a disk,

and so an efficient, simple model set is generally sufficient. They give me upper limits on the

rapidity of grain-growth in the absence of turbulence.

The raindrop-growth model (so called because it mirrors the growth of raindrops falling through

the atmosphere) has ∆v due to differential settling and is described in Dullemond & Dominik (2005),
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where its simplified nature is used to illustrate grain-growth processes. In true growth by differential

settling, ∆v = |vsettle (m1) − vsettle (m2)| and so is strongly dependent on the local distribution (and

vertical distribution) of grain sizes. However, the maximum rate of growth for a single dust grain

via settling is easily defined by assuming that all other grains do not experience growth but remain

small and perfectly suspended in (and mixed with) the disk gas (σc = πs2d1 and ∆v = |vsettle (m1)|).

In this limit, we have Equations (10) and (11) in Dullemond & Dominik (2005):

dz

dt
= vsettle = − 3Ω2

Kz

4csρg (z)

m1

σc (m1)
(3.37)

dm1

dt
= Zρg (z) |vsettle|σc (m1) (3.38)

where z is the height above the midplane, ρg is the local gas density (vertically isothermal profile,

as described in §2.2), cs =

√

kBT

µmH
is the local sound speed, and Z is the assumed dust-to-gas mass

ratio, set to Z = 0.01 for all runs of my cartoon grain-growth model. vsettle is defined for the case of

Epstein drag. These equations are easily numerically integrated using the same integrator used for

the force-balance–integrated radial dust-grain trajectories of §3.2.1. Figure 3.29 matches Figure 1

in Dullemond & Dominik (2005) and plots the change in z, sd, and m for this raindrop–growth

model using the parameters assumed in that paper. The initial grain size, sd (t = 0), is varied, and

while initially larger grains grow somewhat faster, the maximum size achieved by the time the grain

reaches the midplane is the same for each t = 0 size.

For the Brownian-growth model, I use the same assumption that all background grains remain

small, allowing only the particle-of-interest to grow. The collisional cross-section is defined as in

Equation (3.36) (with sd2 = 0.1µm always) and the collisional velocity is set by Brownian motion:

∆vB (m1,m2) =

√

8kBT (m1 +m2)

πm1m2
. (3.39)

For this model, I keep the growing grain fixed at the midplane, where densities are highest and so

growth is fastest, leading to

dm1

dt
= Zρg,mid∆vBσc . (3.40)

Growth in the cartoon-Brownian-motion model is very rapid at small particle sizes when the velocity
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Figure 3.29: Grain growth in the simplified raindrop growth model depicted in Figure 3 of Dulle-

mond & Dominik (2005) and using the simulation parameters of that paper: z (t = 0) = 4Hg, R = 1
AU, Σg = 100 g cm−2, T = 204 K, M? = 0.5M¯, ρd = 3.6 g cm−3, µ = 2.3, and dust/gas-mass =
0.01. Raindrop-growth results are plotted for a range of initial particle sizes in blue. Growth with
the Brownian-growth model (sd (t = 0) = 0.2µm) for these models parameters is plotted in red for
comparison.

dispersion is high and roughly equal-mass grains are colliding. However, even as the cross-section

of the grain-of-interest grows, the mass flux continues to come from only very small particles.

Therefore, Brownian-growth in this model is initially faster than raindrop growth. Raindrop growth

tends to reach the larger sizes fastest, but ceases once the model-particle reaches the midplane, so

if the cartoon-Brownian growth is allowed to persist for long periods of time, it will eventually

surpass the raindrop model in maximum particle size.

In Figure 3.30, I plot raindrop growth and Brownian-motion growth using my cartoon models

for a series of different parameters. For all, the initial particle size is 0.2 µm (sd,0 = 0.1µm). My
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Figure 3.30: Grain growth using the two cartoon-grain-growth models. Blue: the raindrop growth
model. Red: the Brownian-motion growth model. In the upper-left panel, I retain ρd = 3.6 g cm−3

but compare growth in the Dullemond & Dominik (2005) setup to that in the evolving fiducial disk
model of Chapter 6 at R = 1 AU. In that model (used in the rest of the panels), at 1 AU and t = 0,
Σg = 1500 g cm−2, T = 500 K, µ = 2.34, and M? = 1M¯. In the lower panels, ρd = 1 g cm−2, and
in the lower-left panel I plot only variations on raindrop growth as my cartoon Brownian-growth
model assumes the particle remains at the midplane.

fiducial-model disks are denser and hotter than the disk model of Dullemond & Dominik (2005), and

so grain-growth in them is faster. Like Dullemond & Dominik (2005), I find that fluffier particles

(ρd smaller) tend to grow faster and larger due to larger collisional cross-sections. In the raindrop-

growth model, grains grow the fastest and the largest if they are initiated at greater heights above

the disk midplane, but this effect saturates at around z (t = 0) = 4Hg. And finally, because the

inner regions of a disk are hotter and denser, they grow particles the fastest. In my Chapter 6

simulations, I combine runs of a number of different grain sizes. To do this, I define a series of

radial zones and run these two cartoon-grain-growth models in each zone as the disk evolves. I then

initiate each particle size of interest in each zone when either of the growth-models reaches that

grain size or larger. Using this method, mm-sized grains are initiated no further out than 10 AU,
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though they are observed in disks around other stars at hundreds of AU Testi et al. (2003).

3.5 Summary

In this chapter, I have outlined both the numerical setup for the particle-transport model that I use

in my simulations, and the physical basis for its construction. This model operates by calculating

the trajectories of an ensemble of simulation particles influenced by gas-drag advection and drift

and by radial turbulent diffusion within the disk. My methods for calculating both radial-drift

velocities and random-walk diffusion of the particle ensemble have been tested against direct force-

balance integrations and analytical predictions, respectively, and have shown good fidelity to their

test cases.

Considering radial transport of grains within a 1D disk model allows me to explore the interac-

tion between disk evolution and the small-dust distribution without large computational expense.

It does, however, require that I use single values (as a function of R) for the radial advection and

gas-drag velocities, for which I have chosen the midplane values on the assumption that the bulk of

both gas and solid material reside in the near-midplane zone. In reality, both the gas-velocity struc-

ture (likely) and the particle-drag velocities (definitely) vary with height above the disk midplane,

possibly producing an outflow of some small fraction of larger grains near the disk surface layers.

Taking a 1D (radial) modeling approach is considerably less computationally expensive than a 2D

(radial,vertical) approach, but therefore probes only a subset of effects in terms of bulk gas-drag

advection of particles.

Commonly, mixing simulations are performed in the fluid approximation for the dust distri-

bution, so that the diffusion of individual grain populations is each modeled by a separate fluid-

diffusion equation — much as the evolving disk surface-density is modeled as a viscously spreading

fluid. This method makes it simpler to add source/sink terms to the dust distribution, but loses

all information about the statistical history of individual grain motions and numerically must be

carefully handled to avoid problems with mass conservation of the dust solids. By modeling the

dust as an ensemble of particles, I am able to examine the spread of individual grain motions and to

explore and compare mixing between populations originating in different regions of the disk within

a single simulation calculation. This method also provides an additional check and perspective on

results obtained using fluid-mixing calculations.
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Chapter 4

Transport and Outward Mixing of
Particles in Evolving Protoplanetary
Disks: Implications for Results from
Stardust

The majority of this chapter appears in Hughes & Armitage (2010).

Samples returned from comet 81P/Wild 2 by the Stardust mission confirm that substantial quanti-

ties of crystalline silicates were incorporated into the comet at the time of its formation. I investigate

the constraints that this observation places upon protoplanetary disk physics, under the assump-

tion that outward transport of particles processed at high temperatures occurs via a combination

of advection and turbulent diffusion in an evolving disk. I also look for possible constraints on

the formation locations of such particles. My results are based upon one-dimensional disk models

that evolve with time under the action of viscosity and photoevaporative mass loss, and track solid

transport using an ensemble of individual particle trajectories. I find that two broad classes of

disk model are consistent with the Stardust findings. One class of models features a high particle

diffusivity (a Schmidt number Sc < 1), which suffices to diffuse particles up to 20 µm in size out-

ward against the mean gas flow. For Sc ≥ 1 such models are unlikely to be viable, and significant

outward transport appears to require that the particles of interest settle into a midplane layer that

experiences an outward gas flow. In either class of models, the mass of inner disk material that

reaches the outer disk is a strong function of the initial compactness of the disk. Hence, models of

grain transport within steady-state disks underestimate the efficiency of outward transport. Nei-
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ther model results in sustained outward transport of very large particles exceeding a millimeter

in size. I show that in most circumstances, the transport efficiency falls off rapidly with time.

Hence, high-temperature material must be rapidly incorporated into icy bodies to avoid fallback

to small radii. I suggest that significant radial transport may only occur during the initial phase

of rapid disk evolution. It may also vary substantially between disks depending upon their initial

mass distributions. I discuss how my model may inform recent Spitzer observations of crystalline

silicates in T Tauri star-disk systems.

4.1 Introduction

Comets are believed to be some of the most primitive bodies in the Solar System. As such, they

preserve information about Solar Nebula conditions during the early stages of planet formation.

Samples collected from the comet 81P/Wild 2 during the course of the Stardust mission show that

the nonvolatile material of the comet is rich in relatively large grains (∼few–20 µm) of crystalline

silicates (Brownlee et al., 2006; Zolensky et al., 2006; Westphal et al., 2009). Crystalline silicates

are not detected in the diffuse interstellar medium (ISM) and, although there is debate as to

the formation mechanism of these grains in protoplanetary disks, they are not thought to form

as far out in the disk as comet 81P/Wild 2 is believed to have originated. The Stardust results

thus provide direct evidence for the outward transport of particles through protoplanetary disks.

Spectroscopic observations suggest that similar processes may be widespread in T Tauri disks.

Spitzer studies have revealed an apparent link between disk crystallinity, and grain growth and

settling, but otherwise these disks exhibit a wide range of crystalline-to-amorphous silicate mass

ratios and spatial distributions. This is suggestive of a great diversity in protoplanetary dust

processing (van Boekel et al., 2005; Watson et al., 2009; Olofsson et al., 2009).

Because no process has been proposed to form crystalline silicates out as far as the comet-

forming regions, a mechanism is needed that can explain the presence of particles processed through

high temperatures in cold regions of the Solar Nebula. One obvious possibility is radial mixing

induced by turbulence. Turbulence is probably necessary for gas within the disk to accrete (Shakura

& Sunyaev, 1973), and that same turbulence will result in diffusion of gaseous tracers and small

particles coupled to the gas by aerodynamic forces (Morfill & Völk, 1984; Clarke & Pringle, 1988).

It is unclear, however, whether turbulent transport suffices to explain the observations, or whether
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other physical processes are also needed. Examples of such additional mechanisms include the

ballistic launching of particles in a wind from near the inner edge of the disk (Shu et al., 2001),

photophoretic gas-pressure forces acting on grains in an optically thin disk (Krauss & Wurm, 2005;

Mousis et al., 2007), and radiation pressure on larger grains near the surface of the disk (Vinković,

2009).

The radial transport of both gaseous and particle species within a turbulent disk has been

studied by several authors (Gail, 2001; Bockelée-Morvan et al., 2002; Keller & Gail, 2004; Boss,

2004; Dullemond, Apai, & Walch, 2006; Ciesla, 2007; Alexander & Armitage, 2007; Garaud, 2007;

Boss, 2008; Dullemond et al., 2008; Ciesla, 2009; Turner, Carballido, & Sano, 2010). Here, I use

a particle-based approach to model the advection and turbulent transport of non-interacting dust

grains within evolving protoplanetary disks. My goals are to identify the conditions under which

significant outward transport of particles can occur, bearing in mind the range of uncertainty in disk

physics and evolution. I quantify the extent of radial transport as a function of the size of the grains,

the initial compactness of the disk, the relative diffusivity of disk-gas tracers, and on the vertical

profile of the gas flow and particle distribution. Initially compact configurations that expand rapidly

appear to have the greatest promise to explain the Stardust results, though unambiguous predictions

require accurate knowledge of the internal disk-flow structure and of crystalline-silicate formation

mechanisms. I find that the importance of the advection of solids within the gas flow means that

the outward transport efficiency drops significantly for larger particles (∼few millimeters), and at

later times, thereby limiting the extent of mixing uniformity achievable within the disk.

In §4.2 I provide a summary of the relevant observations of silicates in both primitive Solar

System bodies and in other protoplanetary disks. In §4.3 I describe the modeling setup used for

these outward-mixing simulations. In §4.4, I step through a set of examples designed to illustrate

the basic effects of various model parameters. In §4.5, I present and analyze results for a baseline

case of particle transport in two scenarios of radial gas flow, then consider the effects of varying the

size of the particles, the diffusivity, and the initial compactness of the disk. I present my conclusions

in §4.6.
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4.2 Observational Constraints

Observations of dust in the diffuse ISM show that the vast majority of silicates there are amorphous,

with sub-micron grain sizes and a generally balanced Mg-Fe composition (Molster & Kemper, 2005;

Wooden et al., 2007). Therefore, the crystalline silicates that we observe in the Solar System and

in disks around other stars are expected to have formed after the onset of the star-disk–system for-

mation. Several mechanisms have been proposed: (1) The evaporation and condensation of silicate

vapor, requiring gas heated to temperatures of T ∼ 1250–1450 K (probably at less than an AU

from the parent star) (Lodders, 2003; Gail, 2004; Wooden, Harker, & Brearley, 2005; Bell et al.,

1997); (2) Annealing of amorphous silicate grains, requiring T & 1000 K, (possibly occurring as far

out as ∼2–3 AU in very hot, early disks) (Nuth & Johnson, 2006; Wooden et al., 2007; Westphal et

al., 2009); and (3) Shock-heating and annealing in disk spiral arms. The first two of these are equi-

librium processes, whereas the third relates to transient events that rely on the disk being massive

enough to produce spiral arms. It may, however, result in the production of crystalline silicates out

as far as 10 AU (Harker & Desch, 2002; Scott & Krot, 2005; Wooden et al., 2007)1. These mecha-

nisms have different chemical signatures. Grain formation in long-lived, high-temperature regions

of the disk is most likely to produce Mg-rich silicates due to the low oxygen fugacity expected to

prevail in those regions. Fe-bearing and Fe-rich crystalline silicates likely require a water-rich region

of the disk in which to form, produced perhaps by migration and sublimation of icy bodies interior

to the snow line, or in shocks in the outer disk (Wooden, 2008). They may also require transient

heating mechanisms to form without evaporating, unlike Mg-silicates, which can crystallize below

short-time-scale–evaporation temperatures (Nuth & Johnson, 2006). Pyroxene is thermodynami-

cally favored over olivine when these minerals are formed by condensation, and, while annealing

will tend to produce olivine from forsterite and pyroxene from enstatite, forsterite will convert

to enstatite in long-lived (∼ 106 years to completion), high-temperature conditions (Gail, 2004;

Wooden, Harker, & Brearley, 2005).

Observationally, it has been known for some time that Oort Cloud comets contain crystalline-

silicate material (Hanner et al., 1994; Harker et al., 2002; Honda et al., 2004; Wooden, Woodward,

& Harker, 2004). These comets are believed to have formed primarily at distances of ∼ 5− 10 AU

1Note that although the strength of spiral shocks is expected to be greatest at many tens of AU
(Clarke & Lodato, 2009), the gas in these regions is too tenuous and cold to anneal silicate grains.
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from the Sun, in a region of the disk that may have overlapped that where in situ crystalline silicate

formation was possible. The high amounts of crystalline silicates recovered by Stardust, nonetheless,

came as a surprise, since 81P/Wild 2 is a short period comet, that most probably formed in the

outer disk, around the current orbits of Uranus and Neptune (Wooden, Harker, & Brearley, 2005).

This is beyond any plausible source region for crystalline silicates. Subsequently, observations of

the comet 9P/Tempel 1 have confirmed crystalline silicates to be an important component of that

Jupiter-family comet as well (Lisse et al., 2006). The compositional evidence from the Stardust

samples points to diverse formation environments for the high temperature materials (Wooden,

2008). A predominance of Mg-rich silicate grains, together with the recovery of three calcium-

aluminum (CAI-type) minerals that almost certainly formed by evaporation and condensation at

T > 1400–2000 K, suggest a substantial contribution from the innermost, hottest, disk regions.

However, some Fe-bearing and Fe-rich crystalline silicates were also recovered. There are also hints

of igneous and aqueous alteration among some grains (Joswiak et al., 2010; Stodolna, Jacob &

Leroux, 2010), which, if confirmed, would place additional constraints on the timing of the outward

transport and incorporation of these materials into the 81P/Wild 2 cometesimals.

Direct comparison between the Stardust Solar System results and observations of other disks

is difficult. Astronomical measurements are primarily sensitive to smaller orbital radii, and thus

provide more important constraints on the degree and nature of processing than on radial transport.

The observed mass ratio of crystalline-to-amorphous silicates varies greatly, both between disks (van

Boekel et al., 2005; Watson et al., 2009; Olofsson et al., 2009) and likely radially within a single

disk (van Boekel et al., 2004; Olofsson et al., 2009). A study by Watson et al. (2009) measured

crystalline mass fractions in the inner disks (.10 AU) of 84 classical T Tauri stars in the Taurus-

Auriga star-forming region. The measured mass fractions ranged from less than 0.5% to more than

80% despite the fact that the systems were all of similar ages, 1–2 Myr, and all were observed

within a single star-forming cluster. A significant correlation is observed between the crystalline

mass fraction and the extent of dust settling toward the disk midplane. This may be related to the

link other studies have found between disk crystallinity and grain growth (van Boekel et al., 2005;

Olofsson et al., 2009), with characteristic crystalline grain sizes of a few microns. No correlations

were found relating to the mass or luminosity of the star, the mass of the disk, or the mass ratio

of the star-disk system, all properties expected to affect heating and thermal processing within the
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disks. These results agree with a previous study of Herbig Ae-star disks by van Boekel et al. (2005)

who found a correlation between disk crystallinity and stellar mass/luminosity that disappeared

for M? . 2.5M¯.

In terms of composition, silicates within other protoplanetary disks show the same predominance

of Mg-rich grains as in the Stardust samples (van Boekel et al., 2004, 2005; Molster & Kemper,

2005; Watson et al., 2009; Olofsson et al., 2009). There are also marginally significant correlations

between crystallinity and stellar accretion rate. Watson et al. (2009) found that for pyroxene, the

trend in crystalline mass fraction was inverse to the mass-accretion rate onto the star, whereas for

olivine, the trend was proportional to the accretion rate. A study by Olofsson et al. (2009) found

that disks of higher crystallinity tend to be dominated by enstatite (pyroxene-type) grains, and

of lower crystallinity by forsterite (olivine-type) grains. Olofsson et al. (2009) also suggest very

heterogeneous mixing of silicate particles in disks, reporting a higher rate of crystalline-feature

detection for the cold (.10 AU) than the warm (.1 AU) spectral features. I will discuss later

how some of these trends may be interpreted within the context of a turbulent transport model for

grains within the disk.

4.3 Methods

The simplest model for studying the radial redistribution of particles within a disk assumes that the

disk surface density is static and that the particles are small enough as to be perfectly coupled to the

gas. Even in this limit, a range of other physical effects can be important and have been explored,

e.g., mixing by (marginal) gravitational instability (Boss, 2004, 2008), the thermal evolution and

production of annealed silicate grains (Gail, 2001; Bockelée-Morvan et al., 2002), and vertical mixing

and settling in an MHD model that includes dead-zone effects (Turner, Carballido, & Sano, 2010).

Many of these studies agree that turbulent mixing can, in principle, be strong enough to explain

the presence of crystalline silicates in comets.

My goal in this work is to systematically incorporate a range of additional physical processes

into what is still a relatively simple one-dimensional model for the evolution of particles within a

gas disk. I focus on three effects:

(1) Imperfect coupling of particles to the gas. The largest particles captured by Stardust (about
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20 µm) may – depending upon the gas density – be only marginally well-coupled. Indeed,

prior work that includes grain size and settling effects has found that large grains may settle

out to the midplane and experience outward advection in a 2D stratified disk model (Ciesla,

2007, 2009). Here I consider imperfect coupling to examine the feasibility of transporting large

grain sizes radially outward into the more tenuous outer disk and comet-forming regions.

(2) Disk evolution. The formation of material processed at high temperature almost certainly

commenced early in the disk lifetime, when the disk would have been more massive, hotter,

and more compact than the typical T Tauri disk. As I will show later, the evolution of

such disks can have a substantial impact on the radial transport of particles. This has been

demonstrated explicitly by Dullemond, Apai, & Walch (2006) and Dullemond et al. (2008),

who found that disks that form in initially more compact configurations produce greater

outward mixing of hot material.

(3) Uncertainties in the radial flow of gas at the midplane. Although the vertically integrated

flow of gas in an active disk is assuredly inward at small orbital radii, the actual magnitude

(and even direction) of flow at the midplane depends upon unknown aspects of the angular

momentum transport within the disk. Indeed a flared viscous disk model with little to

no vertical mixing yields an outward midplane flow (Urpin, 1984; Takeuchi & Lin, 2002;

Tscharnuter et al., 2009), which could be very important for the transport of particles large

enough to have partially settled (Keller & Gail, 2004; Ciesla, 2007, 2009).

4.3.1 Model Disk Setup

For the work presented in this chapter, I implement these effects using the simplest-case–1D model

for the gas-disk evolution. In this model, described in §2.2, the disk-temperature distribution

is static, and everywhere T ∝ T0R
−1/2 (T = 278.9K at 1 AU). This temperature structure is

appropriate for a passive, flared disk after most of the gas infall has occurred and the initial

rapid phase of accretion has slowed. Note that very-early disk temperatures are expected to be

much higher (Kenyon & Hartmann, 1987; Bell et al., 1997; Tscharnuter et al., 2009). However,

as described in §2.4, a more precise treatment of disk temperature requires models or assumptions

involving, for example, disk chemistry and disk-forming infall rates. As described in §2.5, the
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disk is chosen so as to be consistent with observational estimates of the lifetime and accretion-rate

evolution of protoplanetary disks around low-mass stars, where final-stage clearing is effected by a

1042 photons s−1 EUV-flux-driven photoevaporation. I do not here study the evolution of particles

during photoevaporation (long after the presumed epoch when crystalline material must have been

incorporated into comets or their progenitor bodies); I include photoevaporation only because it is

essential for providing reasonable model-disk lifetimes.

As discussed in Chapter 2, the disk-evolution model uses a non-steady t = 0 surface-density

profile given by:

Σg (R, t = 0) =
Ṁ0

3πν

(

1 −
√

Rin

R

)

exp

(

− R

Rd

)

, (4.1)

where where Σg is the surface density, t is time, R is radial distance from the central star, ν is

the local disk viscosity, Ṁ0 is the t = 0 accretion rate onto the central star, Rin is the inner-disk

boundary (set equal to the inner-grid boundary, R1/2 = 0.099 AU), and Rd is a variable controlling

the compactness of the t = 0 profile. Having assumed T ∝ R1/2, Equation (2.9) for the disk viscosity

leads to ν ∝ R. I adopt α = 10−2. This is also important for establishing the turbulent diffusion

properties for the particle ensemble, as discussed in §3.3. In my fiducial-disk model, Rd = 20 AU,

and the initial disk mass of 0.03 M¯ dictates Ṁ0 = 1.8 × 10−7M¯ yr−1. The evolution of this

model is shown in Figure 4.1. Dissipation via photoevaporation occurs after ∼5.5 Myr.

In §4.5.4 I vary Rd (retaining Md,0 = 0.03M¯) to consider the effects of varied disk-forming

conditions on the transport of particles. To facilitate a comparison with others’ models, I also

consider two models of dust motion within a static disk, including a steady-disk model where

Rd = ∞ (retaining Ṁ0 = 1.8 × 10−7M¯ yr−1). As shown in Figure 4.1, this steady-disk model

results in a disk profile that is matched to my t = 0 fiducial-disk profile in the inner-disk regions,

but maintains a shallower profile and much larger gas surface densities in the outer disk.

The mean radial flow of gas experienced by solid particles within the disk depends on aspects

of disk turbulence that cannot yet be predicted from first principles. The outward-mixing studies

of this chapter maintain this uncertainty explicitly by considering two bounding cases for the gas

flow, the predominantly inward “accretion-flow” case (Equation (2.55) ) and the predominantly

outward “midplane-flow” case (Equation (2.57) ). Recall from §2.6 that the accretion-velocity case

includes a region of outward-flowing gas in the outer disk where the disk is expanding, and that
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Figure 4.1: Plots of the local properties of the disk gas, including Σg, the gas-mass distributions,
ρg,mid, and the local gas-particle number density at the disk midplane. The purple curves (A1, A2,
A3) track the time evolution of the fiducial-disk model. The yellow curve (B) is the t = 0 profile
for the most compact (Rd = 5 AU) disk model. The thick grey curve (C) is the profile of the static
steady-disk model.

the boundary of this region moves outward as the disk evolves and spreads. The transition from

inward to outward flowing in the midplane-flow case, meanwhile, is roughly fixed at ∼ 0.33 AU in

the fiducial disk model. This flow is therefore highly conducive to the transport of inner-disk grains

to the outer disk. Note, however, that the outward expansion of the disk dominates both velocity

cases at large disk radii.

4.3.2 Particle Transport Setup

All of the particles run in these outward-mixing simulations are small enough that transport is

calculated (following the methods outlined in Chapter 3) for the case of Epstein drag only. This

does not, however, mean that the gas and dust motion are everywhere well-coupled; headwind drag

dominates in the outer, tenuous regions of the disk.
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The force of drag scales directly with the local gas density, ρg, and in my model, I assume that

ρg = ρg,mid = Σg/
√

2πHg, the gas density at the disk midplane. (Hg is the local scale-height of the

disk gas.) In the accretion-flow case, inputting the midplane density into the drag-force equation

is an approximation that selects for the tightest possible coupling between the gas and the particle

ensemble at a given R; it leads to the most conservative estimate of outward mixing in this gas-flow

case. However, the midplane density is the most appropriate choice for use in the midplane-flow

case, which presupposes that the entire particle ensemble has settled to the disk midplane.

As discussed in §4.5.2 (and depicted in Figure 4.9), very small grains are well coupled to the

gas flow, but the crystalline silicates larger than 10 µm associated with the Stardust collection are

large enough that at large distances from the star (tens of AU) (and also at late times in the disk

evolution) the dust motion significantly departs from the gas flow.

Turbulent diffusion of the particle ensemble is calculated as outlined in §3.3. In this chapter’s

fiducial models, I assume that because the disk viscosity is derived from turbulence within the disk,

Dg = ν, where Dg is the gas diffusivity. Recall that the dust (Dp) and gas diffusion coefficients are

equal throughout most of the disk, except in the outermost regions where the gas surface density

is very low, and Dp drops to zero. In §4.5.3, I vary Sc = ν/Dg to evaluate the impact of this

assumption on the potential for the outward mixing of inner-disk grains.

4.4 Effects of Individual Transport Processes

To illustrate how each of the model components influences particle transport, I first consider a set

of reduced models of successively greater complexity. I begin with a diffusion-only case for perfectly

coupled particles, which I run keeping the gas disk profile fixed at its fiducial t = 0 form. I then

add in the effects of radial gas velocity, particle size, and disk evolution. Unless otherwise stated,

these simulations use 1000 particles initiated at 1 AU within the fiducial-disk model.

Figure 4.2 (a) displays an image of the relative number of particles in each radial bin over time

for the diffusion-only simulation2. Diffusion results in rapid (within ∼ 105 yr) radial spreading

over tens of AU, such that the particle distribution closely approximates that of the gas within a

fraction of the disk lifetime. While some particles become lost past the inner edge of the simulated

2Note that the bin size increases exponentially with R, so this representation looks somewhat
different from a plot of the particle surface density or concentration.
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Figure 4.2: Basic diffusion: (a) Map of the number of particles per grid space as a function of radial
position and time. I initiated 1000 well-coupled particles at 1 AU (denoted by the green line) in
a static disk with zero radial-gas velocity. (b) The number of particles per radial grid space at
two times, compared to the static gas-mass distribution (t = 0 profile of the fiducial-disk model).
Vertical scale is arbitrary. Note that the gas-mass distribution appears to peak at a distance of
several tens of AU from the central star. This appearance is an effect of grid spaces that increase
exponentially in size with R. In fact, the gas-mass-per-AU function peaks slightly at around 2 AU,
falls off gently in the main disk, and exponentially from beyond a few tens of AU

disk, the particle distribution comes to closely mirror that of the gas, as shown in Figure 4.2 (b).

Next, I include the effects of gas velocity by using the two cases for radial gas velocity, vacc and

vmerid. The distribution maps for these simulations are shown in Figure 4.3 (a1, a2), and here the

gross effects of mostly inward versus mostly outward gas velocities are clear. In the accretion-flow

case, where most of the gas flow is inward, the majority of the particles are quickly lost onto the

central star. Only ∼2% of the particles remain in the simulation after 104 years. However, the

particles that do remain in the disk reach the outer-disk region and continue to move outward,

because the steep gas distribution in the outer disk causes the accretion flow there to be outward.

In the midplane-flow case, less than 10% of the particles are lost. Particles are instead swept rapidly

outward with the gas flow and become trapped at the edge of the static disk-gas distribution, where

the value of the disk surface density falls rapidly toward zero (at about 340 AU).

After turbulent diffusion and gas velocity, I add in the effects of particle size. The results of

simulations using 20 µm particles are shown in panels-b1 and -b2 of Figure 4.3 . The effects of

particle size are most clearly visible in the midplane-flow case where particles are still advected

outward as before, but pile up at smaller radial distances (around 90 AU) than in the simulations

with the well-coupled particles. What is happening here is that beyond ∼115 AU, the disk gas
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Figure 4.3: Diffusion scenarios: Maps of the diffusion of particles as in Figure 5.2(a) where the green
line denotes starting location. The right-side panels all include gas velocity in the accretion-flow
case, and the left-side are for the midplane-flow case. The simulations in (b1) and (b2) add in the
effects of non-zero particle size. In (c1) and (c2) the disk surface density is also evolved with time,
and the (d1), (d2) simulations are just like those above, but with the particles initiated at 10 AU.
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is too diffuse to support the outward advection of particles of this size. Instead, headwind drag

dominates the particle motion, pushing particles inward. In the accretion-flow case, the effects of

a non-negligible particle size are similar. Though the dominant behavior of particle motion here

remains the loss of most of the particles inward onto the parent star, those 20 µm particles that

do reach the region of outward accretion flow are also confined to smaller radii than their massless

counterparts.

Finally, I include the effects of disk evolution. As the disk evolves, the surface density drops.

Panels-c1 and -c2 of Figure 4.3 show that in the accretion-flow case, this drop in density results

in a sustained inward loss of the particles; in the midplane-flow case, the majority of particles are

still retained and advected outward. In fact, some particles reach greater distances than in the

static-disk model, because, as the disk expands, the surface density no longer drops off as steeply

around 100 AU. However, after about t = 0.5 Myr, the decrease in disk surface density begins to

dominate over the effect of the disk expansion. The gas can no longer support 20 µm particles at

such large distances, and the particle distribution begins to move inward.

So far, I have presented simulations of particles initiated quite close to the parent star (R = 1

AU). In panels-d1 and -d2 of Figure 4.3 I see that if the particles are initiated further out in the

disk, the particle motions are roughly the same, with the major exception that significantly more

particles are retained in the accretion-flow case. For particles initiated at 10 AU in this case, about

60% remain in the disk after 105 years. In the midplane-flow case, particles initiated at 10 AU reach

the furthest regions of the disk slightly faster, but otherwise behave the same as when initiated at

1 AU. Therefore, while both gas-flow cases can turbulently diffuse particles over wide regions of the

disk, the accretion-flow case selectively retains particles initiated at larger radii and rapidly loses

particles initiated at smaller radii.

To summarize, the basics of particle mixing in these transport simulations are that:

1. Turbulent diffusion rapidly spreads the particle distribution over many tens of AU.

2. Where advection tends toward the loss of particles inward onto the parent star, there will be

a preferential rapid depletion in grains initiated close to the parent star.

3. Even in the case of outward-flowing disk gas (the midplane-flow case), small dust grains may

still spiral inward at radii (or epochs) where the disk is locally tenuous.
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Figure 4.4: The position of 20 µm particles at two times in the fiducial-disk model plotted against
their starting locations. The black line marks R = 25 AU, and the yellow line denotes the particle-
starting locations (from 0.5 to 10 AU).

Figure 4.4, which plots particle positions versus their starting positions at two times, demonstrates

how these effects will be reflected both in the availability of inner-disk particles in the comet-forming

regions and in the source-region composition of those particles.

4.5 Results

In this section, I study how several parameters of the system affect the efficiency of mixing inner-

disk particles out to large distances. The parameters examined include the structure/direction

of the radial gas flow, the sizes of the dust particles, the diffusivity relative to the disk viscosity,

and the initial distribution and evolution of the disk gas mass. I vary these parameters relative

to a fiducial model that assumes 20 µm particles (all particle sizes assume a dust-particle internal

density of 3 g cm−3), a Schmidt number of Sc = 1 (Dg = ν), and an evolving fiducial-disk model.

The fiducial disk begins with a total gas mass of 0.03 M¯ and an exponential fall-off radius of

Rd = 20 AU, so that at t = 0, 61% of the disk mass is concentrated within 20 AU of the star. All

simulations presented here use α = 10−2.

In each model, the particles (10,000 for the accretion-flow runs, 2,000 for the midplane-flow) are

initialized with a uniform radial distribution between 0.5 and 10 AU. Although this is not an exact

match to the initial gas distribution at these radii, it allows me to fully sample the likely source

regions for crystalline silicates within the disk. Figure 4.5 demonstrates how the evolution of the
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Figure 4.5: Map of 20 µm particles per bin for the fiducial disk simulations. Particles initiated
between 0.5 and 10 AU. The black line indicates R = 25 AU. The accretion-flow simulations use five
times as many particles as the midplane-flow simulations, so the color-scales have been adjusted
accordingly.

particle distribution proceeds for this configuration of initial positions, in contrast to the R0-fixed

runs of Figure 4.3. I am interested, primarily, in the question of what fraction of these particles

reach the “comet-forming region” (defined, for this paper, as the disk beyond 25 AU) at any time

during the evolution of the disk. However, in some physical models, crystalline silicate formation

is confined to smaller radial extents. Therefore, I also consider a subset of my simulation particles

divided into three smaller source regions: the inner-quarter region (0.5–2.5 AU, 2106 particles in

the accretion-flow simulations, 421 particles in the midplane-flow simulations), the inner-half region

(0.5–5 AU, 4737 and 947 particles), and the outer-half region (5–10 AU, 5263 and 1053 particles).

The particle-transport simulations presented below were run on a 2.4 GHz Intel Core2Duo (used

to run two simulations simultaneously when work-resource allocation permitted; my code does not

use parallel processing). Run-time for a simulation depends primarily on particle size, as this affects

the fraction and duration of simulation particles that persit within the disk throughout its lifetime.

Runs with larger, 0.2 mm particles required roughly half-a-day of processing, while simulations of

well-coupled, 0.2 µm grains required up to about five days. Simulations within a more-compact disk

configuration run faster, roughly consistent with the shorter disk-lifetime of these systems. Also,

particles persist for a smaller fraction of the disk lifetime in the accretion-flow cases simulations,
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and so these simulations also tend to be slightly less computationally expensive.

4.5.1 Transport in Different Radial Gas-Flow Cases

Figure 4.6 shows the baseline results for particle mixing if the effective gas velocity seen by the

particles is that of the accretion-flow case. I plot the fraction of 20 µm particles beyond 25 AU that

originate from each of the source regions, together with the same quantity for perfectly coupled

particles (i.e. of negligible size). I also show the gas fraction beyond 25 AU. As expected from the

reduced models, diffusion is fast enough to mix some particles upstream into the comet-forming

region. Indeed, the first particles pass 25 AU in less than 20,000 years. However, loss of particles

by accretion onto the star is also rapid, especially close to the inner edge of the disk. After 105

years only ∼30% of all 20 µm particles remain in the disk, and most of those originated in the outer

half of my total source distribution (the peak fractions of particles in the comet-forming region are

2.6% from the inner-half zone, but 11% from the outer-half zone). The lifetime of particles that

do manage to attain large radii is also limited, first by the fact that the transition radius that
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divides gas inflow from outflow itself moves out as the disk evolves, and second because declining

gas densities in the outer disk eventually preclude retention of 20 µm particles. These effects mean

that by t = 106 years, less than 1% of 20 µm particles exist in the disk beyond 25 AU, even if they

started in the outer-half source region. By t = 2.1 Myr, all have been lost inward onto the parent

star.

To quantify the effect of these mixing patterns on the abundance of hot, inner-disk grains in

the comet-forming regions, I plot in Figure 4.7 the normalized concentration, CN , of source-region

particles beyond 25 AU as a function of time. I define the normalized concentration as the number

of particles in a region divided by the gas mass in that region, then normalized by the initial number

of source-region particles divided by the t = 0 gas mass of that source region:

CN =
(number particles)outer disk / (gas mass)outer disk

(number particles)source, t=0 / (gas mass)source, t=0

(4.2)

With this definition, CN is like a scaled dust-to-gas ratio, where CN = 1 means that the ratio of
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particles-of-interest–to–gas in the region of interest (the outer disk) is the same as where those par-

ticles originated at the time that they formed. I note that while the denominator of Equation (4.2)

is almost constant across my source region (i.e. the initial dust to gas ratio is a fixed value to

within 10%), the normalized concentration beyond 25 AU is an average over a broad region. The

local values can vary widely, depending upon the parameters of the disk. For the accretion-flow

case simulations, the highest local values of the normalized concentration typically lie just outside

of 25 AU, with a lower local CN in the regions hundreds of AU from the parent star.

From Figure 4.7, note that the peak values of the normalized concentration – and thus the

maximum extent to which the outer disk can be contaminated by particles from the hot inner

regions – is relatively modest. For 20 µm particles, the peak in CN from the all source region

is approximately 6%. This is actually higher than the value obtained from the outer-half source

region, reflecting the fact that although a greater fraction of particles mix outward from the outer-

half region, there is less total mass there to start with. Observe also that particle size strongly

influences the lifetime of particles in the outer disk. For well-coupled particles, CN declines only

modestly from its peak at a few hundred thousand years out to several Myr. This reflects the fact

that well-coupled particles that survive the initial evolution have thoroughly mixed with most of

the entire disk gas mass, so that their subsequent loss is largely in proportion with the disk-gas

accretion rate. By contrast, 20 µm particles are lost much faster, and only significantly contaminate

the outer disk between ∼ 5 × 104 and 8 × 105 years.

Dramatically higher efficiencies of particle retention are obtained if, instead of experiencing

the mean gas flow, vacc, the particles settle and experience an outward flow at the disk midplane

(recall that this requires little or no vertical mixing of angular momentum, so that the steep radial

density gradient at the midplane results in outflow). Results for this midplane-flow case are plotted

in Figure 4.8. In this limit, few 20 µm particles are initially lost inward onto the parent star.

98% remain in the disk after 105 years, and around 90% of particles from each source region are

transported to beyond 25 AU, with only a slight selection against particles from the innermost

regions of the disk. This means that the normalized concentration curves for the different source

regions are all nearly the same, only scaled relative to a given source region’s innate ability to

contaminate the outer disk - the relative fraction of t = 0 disk mass in that source region.

Because 20 µm and well-coupled particles are swept to large distances and remain there for
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a long time, there is a period when the change of normalized concentration beyond 25 AU is a

function solely of the loss of disk gas mass via accretion. Without the concurrent loss of accreting

particles, the particle-to-gas ratio reaches values even higher than in the original 0.5–10 AU source

regions. This is particularly so for the well-coupled particles, which never leave the outer disk once

they have entered it. The normalized concentration of 20 µm particles drops to half-maximum at

around t ∼ 2.6 Myr, about three times the contamination time-window given in the accretion-flow

simulations.

Note, however, that my model cannot account for the radial mixing that would occur in the

presence of vertical mixing and a vertically stratified gas flow. If the gas flow is rapidly inward far

from the midplane and outward near the midplane, then vertical mixing will lead to radial mixing,

even in the absence of radial diffusion. Ciesla (2007, 2009) discusses in detail how a given degree

of vertical mixing can lead to enhanced mixing of grain populations or to the partial segregation of

inward-flowing and outward flowing populations. Therefore, the normalized concentration for the

midplane-flow case merely represents the extreme upper limit on the extent and duration of the
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contamination of the outer disk by inner-disk material.

The results imply that the efficacy of the fiducial disk model (Rd = 20 AU, Sc = 1) for outward

transport of 20 µm grains depends upon both the location (and extent) of the the source region

for crystalline silicates, and upon the radial gas flow experienced by the particles. In the accretion

flow case, the peak of contamination of the outer disk (beyond 25 AU) would result in a crystalline-

to-amorphous ratio of ∼6%. Attaining this limit requires that at t = 0 all silicate grains in the

entire inner disk out to 10 AU were crystalline (and likewise assumes that all beyond that were

amorphous). If, instead, the source of crystalline silicates is confined to inward of 2.5 AU then the

peak CN beyond 25 AU is only about 0.2%. Moreover, I find that even these modest degrees of

contamination are relatively short-lived. 20 µm-sized grains (matched to the upper-size end of the

Stardust grains) only have a contamination lifetime in the outer disk of . 1 Myr. Unless the timing

of the epoch when grains became assembled into cometary material happened to coincide with the

peak of the contamination, the crystalline fraction would be diluted, either by grains grown locally

in the cold comet-forming region or by those raining inward from the even-colder outer regions of

the disk. Finally, my results for the accretion flow case might be yet further reduced by the fact

that some crystalline silicate formation mechanisms may not yield 100% crystalline fractions out

to large radii. For example, if the primary source of crystalline silicates is shocks out to ∼10 AU,

but a sizable fraction of silicates in that region remain amorphous, then that cuts into the potential

maximum in the crystalline-to-amorphous ratio produced in the outer disk.

In the midplane-flow case, on the other hand, substantial outward transport can occur almost

irrespective of the location of the source region. If there is an outward flow of gas at the disk

midplane, then grains that are sufficiently well-settled will readily reach large distances (Ciesla,

2009). An outward-midplane flow also allows material that has been transported outward to persist

there for a longer period of time. My midplane-flow simulations produce an upper-limit maximum

CN in the outer disk of 30% for the inner-quarter source region. Even if vertical mixing means that

only a fraction of the maximum can be achieved, it is still plausible to believe that the CAI-like

grains captured during the Stardust mission may have reached the outer disk via mixing within the

disk gas alone. This scenario may also be consistent with the observations of Watson et al. (2009),

who find higher crystalline-to-amorphous silicate mass ratios in disks where the grains appear more

settled toward the disk midplane, and of Olofsson et al. (2009), who find that possibly a large
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fraction of crystalline silicates exist in the outer regions (.10 AU versus .1 AU) of some disks.

4.5.2 Transport of Differently Sized Particles

In §4.4, I demonstrated that non-negligible particle size bars particles from the outermost regions

of the disk, because at large distances, the gas is so tenuous that the particles decouple from the

gas motions, and inward-pointing head-wind drag dominates. Figure 4.9 plots the dust-mean-radial

velocities for several different particle sizes in the fiducial-disk model at t = 0 for the accretion-flow

case. (In the midplane-flow case, the curves are similar, only shifted toward outward velocities,

as in Figure 3.9 and following the pattern of Figure 2.14.) Though turbulent diffusion can send

particles upstream of their average radial-velocity flow, grains are effectively barred from the regions

of the disk beyond where their average-radial velocity falls to large, inward-pointing values. It is

clear from Figure 4.9 that the range within the disk that dust grains may occupy depends strongly

on the particle size, and that the mixing achievable out to the comet-forming regions will become

sharply limited as one approaches millimeter particle sizes. Also, where this cutoff occurs varies,

not only in time as the disk thins, but also from disk to disk depending on the total mass and mass

distribution of each system.
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Figure 4.10: Maximum values of normalized concentrations beyond 25 AU as a function of grain
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I parameterize the outward mixing of grains as a function of size by plotting in Figure 4.10

the peak values of the normalized concentration of grains beyond 25 AU as a function of grain

size. The error bars show statistical errors based on the number of particles beyond 25 AU in each

run. I plot the maximum values of CN from each of the different source regions, as well as the

upper-limit values provided by the midplane-flow simulations (dashed lines with black markers).

While the magnitude of outward mixing varies by orders of magnitude across these populations,

the trends with grain size are the same across all sets: as seen previously, the highest normalized

concentrations of inner-disk particles in the outer disk occur for the smallest grain sizes, up to a

few tens of microns, and the peak-CN values drop off sharply at around millimeter grain sizes. The

results of Ciesla (2007, 2009) for a vertically stratified disk flow suggest that the loss of larger grain

sizes may be partially mitigated by settling toward the midplane, thereby increasing the relative

outward transport and retention of these particles. Still, the concurrent drop in my midplane-flow

upper-limit concentrations suggests that this can only hold back the loss of large grains from the
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Figure 4.11: Time-windows for the peak values of normalized concentrations beyond 25 AU as
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outer disk to a point. For 2 mm-sized particles, for example, even the midplane-flow runs yield a

peak normalized concentration beyond 25 AU for all simulation particles of only ∼3.4%.

The other important variable to consider is the timing of these mixing events. In Figure 4.11,

I depict, as a function of particle size, the time-frame over which the normalized concentration

of inner-disk particles in the comet-forming region is at a value of half-maximum or greater. For

each source region (for the accretion-flow case simulations) I plot the latest time of half-maximum

concentration prior to the peak and the earliest time of half-maximum after the peak. (Due to

limited particle statistics, some of these quantities are quite noisy.) I also include the bound-

ary of post-peak half-maximum concentration in the midplane-flow simulations to illustrate when

headwind-drag inspiral will overwhelm other physical effects even in the most extreme gas-flow

scenario.

Figure 4.11 demonstrates that the smallest inner-disk particles remain mixed into the outer disk

for millions of years, and that even inner-disk grains as large as 20 µm may be noticeably present at
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Figure 4.12: Normalized concentration beyond 25 AU at t = 1 Myr as a function of grain size. The
largest particles are all depleted from beyond 25 AU by 1 Myr. Dashed lines with black markers
denote the midplane-flow simulations. Fiducial disk model.

large distances for ∼1–2 Myr. However, while the mixing of all grains outward is relatively rapid in

these simulations, not only do the larger particles experience relatively less outward mixing, but that

mixing is similarly short-lived. Even in the midplane-flow simulations, post-peak half-maximum

concentration is reached by t ∼ 6.2 × 105 years for 0.2 mm particles and as soon as t ∼ 1.1 × 105

years for 2 mm particles. The fact that larger inner-disk particles are short-lived in the outer disk is

demonstrated more bluntly in Figure 4.12, where I plot the normalized concentration as a function

of grain size at t = 1 Myr. While the mixing effects are relatively uniform for small particles at

this time, no particles 0.2 mm and larger remain in the outer disk in the accretion-flow simulation,

and the upper-limits of the midplane-flow simulations suggest that even in that extreme those

large-grain populations are in rapid decline, if not already disappeared.

These results imply that it is the upper envelope of particle sizes recovered by Stardust that

provides the most stringent constraints on disk evolution and particle transport. In my simulations,

particles at least as large as 2 µm appear to behave as though well-mixed with the disk gas. There-

fore, the presence of high-temperature particles in this size range within a Jupiter-family comet
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can be largely explained by outward mixing of disk material aided by some disk expansion from an

initially compact state. However, the particles recovered by Stardust include crystalline silicates as

large as 20 µm. While the outward transport of 20 µm particles to the comet-forming region does

occur in my models, these particles do not remain well coupled to the disk gas indefinitely. This

suggests that either (1) mixing of particles and planetesimal formation in the Solar Nebula occurred

in a disk massive enough for 20 µm particles to remain well coupled to the gas motions, or that

(2) the formation of comets or cometesimals occurred within the first million years or so of disk

evolution. This second constraint may be in agreement with Stardust results. Early studies found

no aqueous minerals in the Stardust materials, suggesting that the outward transport and incorpo-

ration of these materials into the 81P/Wild 2 cometesimals occurred very early, before the primary

accretion and fragmentation of the chondritic-asteroid parent bodies (Wooden, 2008). However, the

possible identification of igneous materials in the Stardust samples may contradict this scenario or

else put interesting time-line constraints on the formation time-scales of planetesimals and cometes-

imals across the range of Solar System radii (Stodolna, Jacob & Leroux, 2010; Joswiak et al., 2010).

Another constraint linked closely with time is the large-end grain size for which my model predicts

measurable outward mixing. Not only do the peak (and midplane-flow–upper-limit peak) values of

CN beyond 25 AU drop off markedly for grains a few millimeters in size, but the time-frame for

that outward transport is also restricted (to barely more than 105 years for 2 mm-sized grains), so

that comet-formation would have to be quite rapid to capture such large inner-disk grains if they

did appear in the comet-forming regions.

The transport of different-sized particles is also of interest for models that include the effects

of grain growth. Some observational studies of disks suggest a link between disk crystallinity and

grain growth (van Boekel et al., 2005; Olofsson et al., 2009), with characteristic crystalline grain

sizes of a few microns (distinctly larger than typical ISM grains). At the very least, grain growth

and crystallization likely occur on similar time scales. The results presented here suggest that

as dust grains grow, they should become less likely to enter and more likely to leave the outer

regions of the disk. Large grains become mostly confined to small disk radii where the disk gas is

still dense enough to support them. We know that growth at centimeter and meter scales poses a

constraint to disk models and planetesimal formation, because particles of this size are expected to

fall inward toward the parent star very rapidly, depriving the disk of these solids. However, growth
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to millimeter scales may also place constraints on cometesimal formation if the outer regions of the

disk cannot support particles of even these sizes. At the very least, it could restrict the composition

of bodies formed in the outer disk, if most of the particles available are those falling inward from

large AU.

4.5.3 Transport Varying the Diffusivity

Next, I explore how the outward mixing of inner-disk grains depends on the Schmidt number, which

is the ratio of the disk viscosity to the gaseous diffusivity (so that a lower Schmidt number means

more relative diffusivity.) In Pavlyuchenkov & Dullemond (2007) the authors argue for an Sc lower-

limit of 1/3. Therefore, I have run simulations of particle transport varying the Schmidt number by

a factor of three, and in Figure 4.13 I plot the values of maximum normalized concentration beyond

25 AU for four particle sizes and two source regions as a function of Sc. The primary effect shown in

Figure 4.13 is that a higher diffusivity can lead to a substantially higher degree of outward transport

in the general accretion-flow case of my particle-transport simulations. Here there are variations

of an order-of-magnitude or more in the peak outer-disk normalized concentrations between the
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Figure 4.13: Maximum values of normalized concentration beyond 25 AU as a function of Schmidt
number for a range of grain sizes and two source regions. Low diffusivity (large Sc) tends to restrict
particles from reaching the outer disk. Dashed lines with black markers denote the midplane-flow
simulations. Fiducial disk model.

116



highest (Sc = 1/3) and lowest (Sc = 3) diffusivity simulations across the range of particle sizes

considered. This is less than the variation predicted in the model scenario of Pavlyuchenkov &

Dullemond (2007) (σSc=1/3/σSc=3 ∝ (R/Rsource)
4), but is still quite a substantial effect considering

that my normalized concentrations are reported for the whole of the outer disk and that my pool

of contaminants is limited to those present in the source regions at t = 0 only.

More generally though, the Schmidt number controls the relative importance of advection versus

diffusion of particles. When the diffusivity is low, advection dominates, so that more grains reach

the outer disk if the bulk flow is outward, and fewer do so if their bulk flow is inward (including

the case of 2 mm particles in the outward-flowing–gas midplane-flow case whose radial advection is

dominated by headwind drag). Conversely, high diffusivity pushes the system in the direction of a

flow-independent state where diffusion, both within the disk gas distribution and inward onto the

parent star, is the dominant term. The diffusivity can also have an important effect on outer-disk

contamination from the inner-most source regions. For 20 µm-sized particles from the inner-quarter

source region, Sc = 1/3 simulations produce a peak normalized concentration in the comet-forming

region of 1.7%, up from 0.2% in the baseline Sc = 1 simulations. In the low-diffusivity simulations

inner-quarter source grains of all sizes are completely absent from the comet-forming region unless

directly advected there by outward-flowing gas in the midplane-flow simulations.

Finally, to some degree, the diffusivity also affects the timing of outward mixing. This is plotted

for 20 µm-sized particles in Figure 4.14. The higher diffusivity simulations allow higher normalized

concentrations in the outer disk to occur sooner and to last longer (∼ 4 × 104–1.1 × 106 years

half-max to half-max), whereas for lower diffusivity the outer-disk normalized concentration peaks

later and more briefly (∼ 9 × 104–5.5 × 105 years).

My results for the variation in transport efficiency with Schmidt number suggest that two

distinctly different disk models could be consistent with observations. One possibility is that the

diffusivity is high, as suggested by Pavlyuchenkov & Dullemond (2007). In this case, it seems

plausible that a significant fraction of grains, formed in high temperature regions close to the star,

can end up in the comet-forming region, even if the disk is highly turbulent and no significant settling

occurs. The recovery of CAI-type grains by Stardust – whose condensation requires especially

high temperatures – poses the strongest constraint on this scenario, and I have not demonstrated

explicitly that it is possible. However, given that the early disk was certainly hotter than the disk
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Figure 4.14: Time-windows for the peak values of normalized concentration of 20 µm particles
beyond 25 AU as a function of Schmidt number (Sc ≡ ν/Dg). Lower solid curves mark the lastest
pre-peak time of half-maximum concentration in the accretion-flow simulations. Upper curves mark
the earliest post-peak time of half-maximum concentration for the accretion-flow (solid lines) and
midplane-flow (dashed lines) simulations. Fiducial disk model.

which I have modeled, it is plausible that enough material from the innermost disk could reach

large enough radii. Hot outflows near the disk midplane, which Tscharnuter et al. (2009) find very

early in the star/disk formation process, would assist outward transport from the innermost disk.

A qualitatively distinct disk model with low diffusivity is also conceivable. My results suggest

that if Sc is significantly larger than unity, there is negligible transport of crystalline silicates subject

to the accretion flow to the region where Jupiter family comets form. This is true even if silicates

can form at radii as large as 10 AU. A low diffusivity disk, however, could potentially be favorable

to the establishment of an outward midplane flow, which is able to move settled particles outward

efficiently. Ciesla (2009) showed that a transport scenario dominated by high-altitude–inward and

low-altitude–outward advection can lead to segregated grain populations with different processing

histories. This is possibly compatible with disk observations of Olofsson et al. (2009) that suggest

some disks are more crystalline at larger distances.
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4.5.4 Transport in More/Less Compact Disks

Finally, I assess the role of the disk mass distribution and its evolution on outward transport. First,

I contrast the results of runs assuming a static disk with those of the evolving disk, and then move

on to exploring the effects of the initial compactness of the disk in the evolving-disk model. Of my

two static-disk models, the first uses the t = 0 profile of the fiducial-disk held static (the static0-disk

model). The second is the steady-disk limit of the t = 0 fiducial-disk profile, where the disk surface

density follows Equation (4.1), with Rd = ∞ (the steady-disk model).

Results from the two static-disk models are shown in Figure 4.15, which plots in the top panel

the total-fraction and in the bottom panel the normalized-concentration of 20 µm particles beyond

25 AU with time for two different source regions. The mass per AU of the gas disk does not drop

off in the outer disk for the steady-disk model but is instead continuous out to the edge of my

simulation space. Therefore, the normalized concentrations beyond 25 AU for this disk model are

calculated using the disk gas mass only out to 100 AU (for a total 0–100 AU disk mass of 0.162 M¯;

note that 0.03 M¯ of gas is contained within the first 21 AU in the steady-disk model). Figure 4.15

includes the results for the evolving fiducial-disk model for comparison. In a static disk, the upper-

limit outward transport set by the midplane-flow case is that virtually all grains are advected out

to the outer disk and remain there.

The most obvious result from Figure 4.15 is that the two static-disk models, together with the

fiducial evolving-disk model, form a hierarchy in outward mixing that is based on disk structure.

In the static0-disk model the region of outward-flowing accretion flow remains fixed relatively close

to the central star, and those outward velocities are fairly rapid. Therefore, more than twice the

peak fraction of fiducial-disk particles move to the outer disk (and stay there, as per the static-

disk-model tendencies seen in §4.4). The surface-density structure in the steady-disk model means

that in the accretion-flow case the gas radial-velocity is everywhere inward, and hence the number

of 20 µm particles beyond 25 AU peaks at less than 40% of the value for the corresponding fiducial

evolving-disk simulations, and those particles eventually all fall back inward onto the parent star,

— and more rapidly than in the evolving disk simulations. Roughly 23% remain in the disk after

105 years (when 30% remain in the fiducial-disk accretion-flow simulations).

However, in terms of the normalized concentration of inner-disk particles in the outer disk, the
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disk-gas mass distribution also really sets the steady-disk simulations apart from the rest. With so

much more mass in the outer disk than the other two models, the steady-disk model is that much

less intrinsically capable of contaminating the outer disk with inner-disk grains than are the disks

with a more compact disk mass distribution. Finally, for the upper limits placed by the midplane-

flow simulations both static-disk models send more than 90% of the simulation particles from all

source regions to beyond 25 AU; the outward advection is only more rapid in the static0-disk

model. Therefore, the upper bounds on the mixing in these models are set only by their relative

source-region and comet-forming region disk-gas mass ratios.

Although some trends are the same for static as compared to evolving disk models, the results

imply that the evolution of the disk – particularly at early times – has a substantial impact on par-

ticle transport. Steady-disk models tend to underestimate the degree of outward particle transport

possible in protoplanetary disks in the early stages of disk evolution, when the most processing

of high-temperature materials occurs. The outward transport of particles is substantially more

efficient at early times, consistent with the results of Bockelée-Morvan et al. (2002) and Ciesla

(2009), even here assuming a fixed diffusivity. How strong the effects of evolution are will depend,

of course, on the details of the initial conditions for the disk. To examine this dependence, I vary

the initial compactness of my evolving-disk model (parameterized by Rd in Equation (4.1) ). I

consider Rd = 5, 10, and 40 AU, in contrast to Rd = 20 AU in the fiducial-disk model. I retain 0.03

M¯ as the starting mass of the disk, so that the lifetimes of the model disks vary between 3.6–6.9

Myr, and the t = 0 mass accretion rates between 8.3× 10−7–8.6× 10−8M¯ yr−1. I do not consider

possible variations in heating for disks forming in more or less compact configurations, retaining

the static temperature profile described in §4.3.13.

Reducing the compactness of the model disk has two consequences: the disk initially expands

more rapidly, and it does so from an initial state where a greater fraction of the mass is at small

radii (and thus hot and potentially able to form crystalline material). The combined magnitude of

3I also continue to employ the same uniform radial distribution to initiate my simulation particles.
One should note, however, that the gas-mass–per-AU is no longer roughly uniform across the source
regions in the Rd = 10 and 5 AU disks, as shown in Figure 4.16. For Rd = 10 AU, the ratio of
the average-gas-mass–per-AU for the inner-quarter source region to the outer-half source region is
∼ 1.5, and for Rd = 5 AU it is ∼ 2.6. This affects the accuracy of the normalized concentration
values that I report for these disks (especially for the widest source regions), but it does not alter
the trends with Rd repeated across source-region populations.
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these effects is shown in Figure 4.17, where I plot first (a) the simple peak-fraction and second (b)

the peak normalized-concentration of 20 µm particles beyond 25 AU as a function of Rd. Variations

of approximately one order of magnitude in Rd result in nearly two orders of magnitude difference

in the peak concentrations for each source region. For the smallest disk – with Rd = 5 AU –

the normalized concentration of all simulation particles peaks at ∼68%, more than an order of

magnitude in excess of the value for the fiducial simulations. A substantial part of this increase is

due to the larger reservoir of mass that a compact disk has at small radii, which can potentially

contaminate the (proportionally less massive) outer disk. That this mass-distribution effect is

important is made clear by the fact that even the upper-limit concentrations from the midplane-flow

simulations show a strong (order-of-magnitude) trend with Rd. However, as shown in Figure 4.18,

there is little variation in the timing of outer-disk contamination with Rd. The timing may be

slightly faster for smaller Rd. However, this is largely an effect of the disk lifetime, which is

noticeably shorter for an initially more compact configuration.

The fact that the outer disks of the initially more-compact-disk models are less massive (and
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more tenuous) does place some constraints on the outward mixing of large grains in my particle-

transport simulations. In Figure 4.19 (b), I plot the peak normalized concentration of 2 mm

particles beyond 25 AU as a function of Rd. All of the disks, of course, have less outward transport

of these larger grains, but in my simulations, the peak in the fraction of particles sent to beyond 25

AU occurs for Rd = 10 AU (as shown in panel-a), which sends up to 0.25% of all 2 mm-simulation

particles beyond 25 AU (4% in the midplane-flow case) compared to less than 0.1% for Rd = 5

AU (less than 2% in the midplane-flow case). Because of the larger source-region mass for Rd = 5

AU, this drop in fractional outward transport constitutes a leveling off in the maximum-achievable

normalized concentrations of inner-disk particles in the outer disk.

Comparing these results to observations of crystalline silicates in other disks allows us to con-

struct a possible scenario for the formation and transport of high-temperature minerals in those

disks. In the Watson et al. (2009) survey, the disks observed were around T Tauri stars ∼1–2 Myr

old and showed a slight correlation between the crystalline-silicate mass fraction and the measured

accretion rate onto the star. As shown in Figure 4.20 for my model disks, t = 1 Myr corresponds to

a time when those disks that were initially most compact (with high t = 0 accretion rates) now have

lower accretion rates than the initially more-extended disks. Therefore, small grains that formed

at small AU near t = 0 should be more broadly distributed in disks that now have lower accretion
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rates. However, lower accretion rates also mean disks that are more tenuous. The initially most

compact disks lose mass the fastest, causing their outward transport efficiency to drop rapidly with

time. Therefore, grains that formed at small AU after t ∼ 2 × 105 yr may be better distributed in

the initially more-extended disks, which now have higher accretion rates.

These properties could potentially explain the opposing trends between crystallinity and ob-

served accretion rate reported by Watson et al. (2009). Pyroxene is favored over olivine when the

minerals are formed by condensation (Gail, 2004; Wooden, Harker, & Brearley, 2005). Therefore, a

possible scenario is that pyroxene formed primarily at very early times when the disks were hottest

and became most broadly distributed throughout the initially most-compact disks. Most of the

olivine, on the other hand, may have formed over a longer period of time. It might, therefore,

have become more broadly distributed within disks that retained significant surface densities for

longer times (the initially more-extended disks). This hypothesis does not, however, explain why

the Watson et al. (2009) survey found no correlation between crystalline mass fraction and disk

mass.
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4.6 Conclusions

Observations of comets (Hanner et al., 1994; Wooden, Woodward, & Harker, 2004) and sample

return from the Stardust mission (Brownlee et al., 2006) suggest that outward transport of high-

temperature solids to the comet-forming regions is a necessary component of any successful model

of the early Solar Nebula. Some proposed mechanisms for such outward transport include the

launching of grains from near the star out to large distances in a disk jet or wind (Shu et al.,

2001), the outward flow of mid-sized particles along the surface of the disk due to photophoretic

heating and gas-pressure forces (Mousis et al., 2007), and the outward diffusion of the hot grain

population within the disk gas due to turbulent mixing. I have focused on this last mechanism, as

turbulence is believed to be intrinsic to protoplanetary disks of all types, and therefore tubulent

mixing of grain populations is likely important within all disks, reguardless of the degree of outer-

disk contamination finally achieved. A turbulent mixing hypothesis is also free of concerns regarding

grain survivability within potential wind launch flows initiated extremely closely to the central

star, and of potential special-condition local optical-depth requirements for grains to reach large

distances due to photophoretic forces. This is not to say, however, that these other mechanisms

play no roles protoplanetary disk compositions; they are simply neglected here in favor of more

univeral disk-turbulence and gas-drag effects.

I have constructed a 1D model of viscous disk evolution and particle transport that I use to

study the relationships between the evolving disk mass distribution and the local conditions that

are supportive of the aerodynamic outward mixing of grains, specifically including self-consistent

treatment of the dust grains’ surface-area-to-mass ratios in my aerodynamic transport terms. I

have examined patterns of outward mixing considering variations in the radial gas-flow structure,

the sizes of dust grains, the model’s Schmidt number, and the initial compactness of the model

disk’s gas mass distribution. The differences in outward transport and outer-disk contamination

according to these parameters are summarized in Figures 4.21–4.24 for both the 1D-gas-accretion-

velocity and outward-midplane-flow scenarios.

I find that a range of disk models are able to account for the presence of high-temperature–

inner-disk particles in the comet-forming region. As in Dullemond, Apai, & Walch (2006), the most

favorable models involve rapid early expansion of initially quite compact disks. These conditions can
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Figure 4.21: Accretion-flow case; Total fraction beyond 25 AU, each panel varying a different
set of parameters. Unless otherwise marked, the baseline is: 20 µm particles from the “all” source
region (0.5–10 AU) simulated in the fiducial (Rd = 20 AU) evolving disk model with diffusivity
equal to the disk viscosity (Sc = 1).

result in inner-disk material flowing to the outer disk on a short time scale. In agreement with Ciesla

(2009), I find that outward transport is more efficient at early times due largely to stronger gas

radial outflows. Even more favorable are cases involving outward-flowing gas at the disk midplane

(Keller & Gail, 2004; Ciesla, 2007, 2009), which are capable of delivering substantial fractions of

grains inward of 1 AU to the outer regions of the disk. It is not known whether such outward flows

exist in real disks (or, whether the particles are sufficiently settled to experience them consistently).

Whether such midplane flows are required to explain the Stardust results depends upon the Schmidt

number, which at its lower limit (highest relative diffusivity) could allow for a relatively high degree

of general outward mixing, even from relatively near the parent star. While the mean accretion flow

is less efficient at transporting particles outward, significant outward contamination by crystalline

material would be possible if the disk were initially both compact and able to form silicates out to
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Figure 4.22: Midplane-flow case; Total fraction beyond 25 AU. Unless otherwise marked,
the baseline is: 20 µm particles from the “all” source region (0.5–10 AU) simulated in the fiducial
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a distance of several AU.

My results suggest that it is the largest particles recovered by Stardust that place the tightest

constraints on the evolution of the early Solar Nebula. Particles as large 2 µm are well coupled to

the disk gas, and plausible levels of turbulent diffusivity allow them to reach the outer disk from

small radii in a wide variety of models. My simulations show that 20 µm particles can also reach

the outer disk — consistent with the Stardust results — as long as they were incorporated into

larger bodies within the first 1–2 Myr of the disk evolution. For even larger particles, those of a few

mm or larger, none of my disk models admit significant outward transport to the comet-forming

region, regardless of the proposed source region. Even grains of a few hundreds of microns in size

should be rare, since their residence time in the outer disk is very limited. Discovery of such grains

would, within the context of the model developed here, require a more massive disk during the time
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Figure 4.23: Accretion-flow case; Normalized concentrations beyond 25 AU. Unless other-
wise marked, the baseline is: 20 µm particles from the “all” source region (0.5–10 AU) simulated in
the fiducial (Rd = 20 AU) evolving disk model with diffusivity equal to the disk viscosity (Sc = 1).

of their formation, transport, and incorporation into cometesimals.

The existence of substantial uncertainties in the disk physics currently precludes an observa-

tional determination of the characteristic radii at which crystalline silicate formation occurs. The

strongest constraints come from observations of CAI-like grains, which probably formed at fractions

of an AU from the Sun. Only a subset of my accretion-flow simulations are likely compatible with

this finding. A broader range of models in which the midplane gas flow is outward are viable, since

these models retain particles in the disk for a longer period of time and facilitate the co-existence

of grain populations of markedly different processing histories. Generically I expect that, provided

sufficient outward transport is possible, turbulent diffusion will cause particles to become radially

well-mixed over tens of AU, so that incorporation of CAI-like grains and Fe-rich crystalline silicates

(possibly formed in water-rich shocks out to 10 AU) into the same body is plausible.
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For astronomical observations, my results suggest that the mass and size of the disk at an

early epoch are critical parameters in determining the viability and extent of outward particle

transport. These disk properties are inherited from the mass and angular-momentum structure of

the cloud that collapses to form the star, and would vary from system to system. I expect this

to result in variations in the crystalline fraction at large radii in disks around different stars. I

have also noted that the time scale during which conditions allow substantial outward transport

is only a small fraction of the disk lifetime. A limited time for outward mixing is both interesting

and puzzling when paired with the emerging evidence for aqueous and/or igneous grains among the

Stardust samples (Wooden, 2008; Joswiak et al., 2010; Stodolna, Jacob & Leroux, 2010). However, it

may allow the Stardust results to be reconciled with other observations that require compositional

gradients within the disk to be maintained. A possible scenario is that an early stage of rapid
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expansion drove particles into the outer disk where they were rapidly locked up into larger icy

bodies. Once the disk had expanded, the gas flow became more uniform, limiting the outward

transport of solids.
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Chapter 5

Particle Mixing and Outward
Transport: Extended Parameter
Study

In Chapter 4, I explored the outward mixing of dust grains due to aerodynamic forces within a

protoplanetary gas disk in the context of the Stardust results, specifically underlining the advantages

and constraints imposed by protoplanetary disk evolution. I explored outward mixing as a function

of some of the most obviously relevant parameters: the relative diffusivity of the particle ensemble,

the particular sizes of transported grains, the relatively unknown gas-velocity structure of the disk,

and the initial compactness (and subsequent expansion) of the evolving disk. All of these parameters

are important to the outcome of outward mixing via gas-drag advection and turbulent diffusion. In

this chapter, I use the same models and simulation setup to expand my exploration of parameter

space in relation to outward mixing. Here, I consider those parameters not as immediately obvious

to the basic question posed in Chapter 4, but equally fundamental to the efforts of modeling

particle-transport within a gas disk. I find that constraints imposed by these new parameters

on aerodynamic outward mixing of hot grains remain in keeping with the observations of disk

crystallinity in disks around other stars. I also find that the results outlined in Chapter 4 are

not unique to the disk models used in those simulations, and that my conclusions remain robust

within the context of a one-dimesional, evolving-disk-model scenario: Disk mass distribution and

contaminant production at the earliest times are the primary factors determining disk composition,

and the process of disk evolution is tightly coupled to the outcome of particle transport within a

protoplanetary disk.
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5.1 Introduction

In this chapter, I continue to explore the outward mixing of hot grains in relation to the Stardust

results and observations of disk crystallinity discussed in Chapter 4. Therefore, the simulations

in this chapter are performed using the same disk-model and particle-transport setup as described

for the Chapter 4 simulations. I continue to use a static, power-law disk-temperature profile and

normalize my results to the same fiducial-disk model where MD,0 = 0.03M¯, Rd = 20 AU, and

α = 10−2. See §4.3 for details. In some instances, I also use the initially-most-compact disk setup as

a baseline (Rd = 5 AU) but always in parallel with the fiducial model, and I include in this chapter

results of varying MD,0 and α explicitly. I use the same model-disk grid setup as in Chapter 4,

except in §5.2.2, where I test the effect of moving Rin outward by removing grid cells from the inner

edge of the grid (so that the grid as a whole is static for these tests).

As in Chapter 4, the primary measure I use to assess the degree of outward mixing in these

simulations is the normalized concentration of source particles in the outer disk (beyond 25 AU),

CN , as a function of time, or as the peak value of that curve. Please refer back to §4.5.1 and

Equation (4.2) for the definition and discussion of this quantity. Again, the source regions that

I consider for outwardly-mixed grains are the inner-quarter source region, extending from 0.5–

2.5 AU, the inner-half source region, 0.5–5 AU, the outer-half source region, 5–10 AU, and the

all source region, 0.5–10 AU. Simulation particles are initiated evenly spaced between 0.5 and 10

AU, and I continue to assume a rocky internal density for the particles of ρd = 3 g cm−3. Once

again, I implement 10,000 particles within the mostly inward-flowing accretion-flow case, and 2,000

particles within the outward-flowing midplane-flow case. See §2.6 for details of the disk-gas radial

velocities represented by these two cases. In general, the accretion-flow case should be thought of

as providing the primary results of the simulations, tracing grain transport within the bulk flow of

the disk, whereas the midplane-flow case provides the extreme upper limit on both the magnitude

and temporal extent of grain transport to the outer disk.

Because I would like to test the results of outward transport not only on disk characteristics but

also on my model setup, I begin in §5.2 by varying a couple (mostly) numerical parameters, namely

the seed number used to initialize random-walk diffusion of the particle ensemble, and Rin = Rmin,

the inner boundary of both the model-disk grid and disk surface-density profile. In §5.3, I explore
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outward transport as it depends on the time (according to the clock of my disk-model evolution) at

which grains are initiated. In §5.4 and §5.5 I vary MD,0 and α, respectively, and in §5.6 I explore

outward transport as a function of the disk-temperature–model parameters. I provide conclusions

in §5.7, tying the results of this chapter to those of Chapter 4, the compositions of extrasolar disks,

and solar-system comets.

5.2 Some Numerical Considerations

While the simulations of Chapter 4 tested the results of outward transport on a number of different

effects, they neglected to examine the effects of the simulation set-up itself. In this section, I test

the results for outward transport under the influence of two effects: the random error introduced

by using a relatively small particle sample, and the location chosen for the inner-disk edge, which

is set to Rin = 0.1 AU in the fiducial runs but which has a relatively minor effect on the evolution

of the global gas disk.

5.2.1 Randomized Diffusion

To look for effects of statistical error on the output of my particle-transport simulations, I have run

simulations in the fiducial-disk model varying the seed number inputed into the random-number

generator that controls the random-walks for diffusion of the particle ensemble. In the fiducial

simulations, I use an input seed of -34. For this section, I consider also runs with seeds of -33 and

-35.

Figure 5.1 plots the normalized concentration beyond 25 AU as a function of time for 20 µm-

sized grains from the all and inner-quarter source regions. From these curves, one can see that each

of the separate runs produce qualitatively the same results, but that quantitatively the curves may

differ by several percent at least at any given time-step. Unsurprisingly, this type of divergence is

strongest for grains from the inner-quarter region in the accretion-flow case, for which the smallest

fraction as well as the smallest total number of grains reach the outer disk (despite having five

times more simulation particles initiated than in the midplane-flow case).

However, the primary quantitative result that I have used to characterize the outward-transport

results of my simulations is the peak value of the individual CN curves. As shown in the plots of

Figure 5.2, this peak value is fairly well-characterized using the fiducial setup of my transport
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Figure 5.1: Normalized concentration beyond 25 AU for 20 µm grains in the fiductial disk model
from the all and inner-quarter source regions. Three separater run-sets varying the seed number
used to initialize random-walk diffusion of the particle ensembles.

n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

seed #
−32−33−34−35−36

outer half
inner half
inner quarter
all

a)

20 microns

n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

grain size (microns)
10510410310210110010−110−2

seed # = −33
seed # = −34
seed # = −35b)

Figure 5.2: Panel-a) Peak CN values for 20 µm particles in the fiducial disk model as a function of
randomization seed number. Panel-b) Peak CN values as a function of grain size for the three sets
of initializing seed number. Thick lines plot values for the all source region, thin lines for the inner-
quarter region. Both panels) Accretion-flow case: solid lines and colored markers. Midplane-flow
case: dashed lines and black markers.

simulations. In panel-a, I plot the peak values for each of the source regions as a function of the

simulation seed number and find that the spread in values is within the error-bars estimated using

Poisson statistics. In panel-b, I plot the CN -max curves as a function of grain size for each of the

seed-number run sets, with results that suggest the peak CN value I extract from a simulation is

fully adequate for describing trends in outward grain-transport across simulation parameters.
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Another measure I have used for examining outward transport in my simulations is the time-

window between half-maximum values of the CN curve. As the scatter in previous time-window

plots has suggested, this measure is less well characterized in my simulations, and this is verified

in Figure 5.3. While the source regions that send large fraction of grains to beyond 25 AU, such

as those in the midplane-flow case, have well-characterized boundaries for the peak in outer-disk

concentrations, small-number statistics in some other cases leads to extremely poorly character-

ized boundaries. The boundary for post-peak half-maximum for the inner-quarter region in the

accretion-flow case ranges from < 3 × 105 to nearly 106 years across the 20 µm-grain runs using

three different seed numbers. Therefore, trends deduced from time-window plots should mostly

consider the largest source-region sets in the accretion-flow case, and the upper-bounds given by

the midplane-flow case.

5.2.2 Varying the Location of the Inner Disk Edge

The inner edge of the grid and model disk in my simulations is set, somewhat arbitrarily, to

Rin = 0.1 AU. As the mass flux from large AU has primary control over the disk evolution, varying

this inner edge by a few tenths of an AU changes the computed disk lifetime by a percent or less.

However, as I have set the inner edge of my total-particle-ensemble distribution to 0.5 AU, the
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relative position of Rin may have a noticeable effect on the fraction of particles that reach large

distances, particularly for the inner-quarter source region. In this section, I test outward mixing

in both my fiducial-disk model and in the initially compact, Rd = 5 AU-disk model for cases when

Rin = 0.2 and 0.3 AU. (Note that shifting Rin outward is less expensive than inward because

the disk-evolution time-step is controlled by the size and viscosity of the inner-most grid cell.)

Figure 5.4 provides plots of the disk surface-density and accretion-flow velocities for Rin = 0.1, 0.2

and 0.3 AU. Shifting Rin outward also increases the rate of inward-flow of the gas in the inner disk.

It seems plausible, then, that for larger Rin, the combination of a nearer sink boundary and faster

inward advection should lead to faster inward loss of particles, to some degree, and that therefore

larger Rin should correspond to somewhat less mixing to the outer disk. It is surprising, then, that

this is not precisely the case.

In Figure 5.5, I plot peak CN values as a function of Rin for the fiducial and Rd = 5 AU disks

for 20 µm and 2 mm sized grains. Each simulation run in the accretion-flow case for each source

region (except the inner-quarter region for 20 µm grains when Rd = 5 AU) shows a peak in outward

transport for Rin = 0.2 AU. Note that I plot here the CN values for consistency with the results

reported in other sections, but that this peak occurs equally if I plot the simple fraction of particles

transported to beyond 25 AU; this is not an effect of disk-mass redistribution. Note also, that this

peak-at-Rin=0.2-AU effect is dominant for generally inward-flowing populations. It is more marked
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for the 2 mm grains and is evident even in the midplane-flow case for these large grains. It is only

for the dominantly outward-flowing populations (20 µm grains in the midplane-flow case) where

intuition holds and increasing Rin provides a steady, if minor, decrease in peak outward transport.

One possible explanation for these results relates to the headwind drag experienced by particles

in the inner disk. Headwind drag is strongest for the larger particle sizes (dominate over radial-

advection drag) and could be lessened somewhat by shifting Rin outward (because this lowers Σg

in the inner disk and also shifts azimuthal gas velocities to slightly closer to Keplerian at the inner

edge of the particle-source region). Potentially, then, larger grains may be able to last slightly

longer in the inner disk and so remain available for turbulent diffusion to the outer disk. Perhaps,
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then, the nearness of the innward-loss boundary in the Rin = 0.3 AU case overcomes whatever

advantage is presented by lessing this headwind drag.

This explanation is not entirely sufficient, however, to explane the results shown in Figure 5.6

that, even for the outward-flowing grains in the midplane-flow case, transport to beyond 25 AU

is also markedly faster for Rin = 0.2 AU than for the fiducial setup. Because the probability of

outward versus inward diffusion is dependent on the gas mass available in both directions, it is

possible that preferential outward diffusion is playing a role in the speed with which grains reach

the outer disk. It is still surprising that such effects could be so strong for such a small redistribution

to the disk mass, but for Rin = 0.3 AU at least, faster inward advection does appear to dominate,

allowing fewer particles to reach the outer disk, as expected.

As a summary, I plot in Figure 5.7 the peak CN curves as a function of grain-size for the

139



n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

grain size (microns)
10510410310210110010−110−2

Rin = 0.3 AU
Rin = 0.2 AU
Rin = 0.1 AU

Accretion Flow Case

n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

grain size (microns)
10510410310210110010−110−2

Midplane Flow Case

Figure 5.7: Maximum concentration beyond 25 AU as a function of grain size for the fiducial-disk
model, varying Rin, for the all and inner-quarter source regions.

different Rin cases of the fiducial-disk model. In general, Rin has a fairly minor effect on the trends

for outward mixing simulated. However, Rin = 0.2 AU seems to provide a peak in outward mixing

for large grain sizes, therefore possibly shifting the cut-off grain size for outward transport to a

slightly larger value. In general, this seems to be a ”fine tuning” sort of effect, that is mostly

mysterious but should not affect the larger-scale trends reported for these simulations.

5.3 Varying the Time of the Particle Initialization

In this section, I examine outward mixing of grains initiated at different times during the evolution

of the fiducial disk model. Under the simulation setup used in Chapter 4, I essentially assumed that

all crystalline silicates and high-temperature minerals were already formed in the disk at t = 0, with

no further production at later times. While this assumption makes testing over a wide parameter

set more tractable, it is flawed on a number of fronts, neglecting many of the nuances that make

disentangling the compositions of bodies in our solar system such an interesting puzzle.

* First, of course, is that the creation of high-temperature minerals may have occurred over

a relatively extended period, though still likely near the beginning of the disk evolution.

Formation via condensation requires temperatures over 1000 K and so likely takes place only

within the high-temperatures generated while the disk is initially forming. However, some

theories predict the formation of crystalline silicates via annealing within disk shocks (Harker
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& Desch, 2002), and this could conceivably occur over a longer period.

* Next, when minerals formed and when they experienced transport to the outer disk may

represent two different epochs. Some of the samples gathered from the comet 81P/Wild 2

show possible signs of minor aqueous processing (Stodolna, Jacob & Leroux, 2010), which

would imply residence on an asteroid-like body, one both large enough and warm enough to

contain liquid water. Depending on where and how such bodies may have formed and become

disrupted, this could potentially represent a significant delay between the formation of the

disk and the transport of some minerals out to the comet-forming regions.

* Finally, disk formation itself was not an instantaneous event, and by testing outward transport

starting from t > 0, one may get a sense of how a disk’s (t < 0) formation affects it’s later

composition. This is particularly important considering that the high temperatures providing

some of the best conditions for forming crystalline silicates occur before the t = 0 of my model

disks.

Figure 5.8 shows the primary results for outward transport of grains initiated at different times,

t0 > 0, during the model-disk lifetime for grains that are 20 µm and 2 mm in size. It plots the peak

in the normalized concentration beyond 25 AU (defined in §4.5.1, Equation (4.2)) as a function
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of t0 for the four source regions considered and for both gas-flow cases. From this, one can see

a steady fall-off in outer-disk contamination achievable for grains formed/initiated at later times.

There is more than an order-of-magnitude difference between peak contamination of 20 µm grains

formed between t = 5× 104 and 106 years, and no transport of 2 mm grains to the outer disk after

2 × 105 years.

Furthermore, the window of time during which peak outer-disk contamination occurs shrinks as

a function of t0. In Figure 5.9 panel-a, I plot the CN curves as a function of time for 20 µm grains

in the general accretion-flow case. In panel-b, I plot the times of CN half-maximum before and

after the peak as a function of t0, bounded by a grey line indicating the times of particle initiation.

This time-window, for the accretion-flow case, narrows considerably for larger t0, though the whole

is shifted to slightly later times for t0 = 5 × 105 and 106 years. After-peak half-maximum for the

maximum-transport, midplane-flow case, however, presents a fairly fixed barrier in time (t ∼ 2.6

Myr for this disk model). Mid-sized dust grains do not remain in the outer disk once it has evolved

(viscously accreted and thinned) past a certain state.

Finally, in Figure 5.10, I plot the CN peak values as a function of grain size for three different

t0-simulation sets. The limited state of outward transport at late times in the fiducial disk model
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can best be summed up here, where one sees that by t0 = 0.5 Myr the outer-disk contamination

achievable by all grains initiated between 0.5–10 AU is about the same or less than the contami-

nation from the inner-quarter region alone for t0 = 0. Therefore, outward mixing at later times is

still possible, but must be understood to be significantly less efficient.

These results agree with Ciesla (2010), who found that at some late time more CAI-type grains

within a disk are those formed at earlier rather than later times. This is due to the greater

prevalence of CAI formation at early times, but also to the stronger outflows produced in a hotter,

expanding, young disk. In this way, comparing outward transport as a function of t0 is similar to

the study of §4.5.4 considering transport as a function of Rd, the compactness of the disk at t = 0;

both greater source mass and outflow are in favor of greater outward mixing. The question, then,

is how this might extend back in time to include the initial cloud collapse and formation of the

star-disk system. Dullemond, Apai, & Walch (2006) found in their simulations of disk formation

that heating and outflows were so extensive, they questioned primarily why not all disks aren’t

mostly crystalline, as opposed to the huge range (0–80%) of disk crystallinity observed (Watson

et al., 2009). Ciesla (2010) found the greatest outward mixing for the peak in disk mass, rather

than the very earliest times, so the true answer, as indicated by observations, lies in some happy
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medium. However, it is clear that disk formation and the earliest times likely play an important

role in later-disk composition.

5.4 Varying the Initial Disk Mass

In this section, I consider the range in outward mixing achievable if I vary the initial mass of my

model disk. For my fiducial model, I have used a disk with mass at t = 0 of MD,0 = 0.03M¯.

This is a reasonably average choice in terms of both the minimum-mass Solar Nebula (lower bound

of ∼ 0.01M¯) and in terms of the masses of disks observed around other stars. Furthermore,

my fiducial model has a disk lifetime, within the rest of the disk parameters I have chosen, that

matches well the frequency of disks observed around stars of different ages. I have chosen such

a disk as my fiducial model both in order to produce results widely applicable to observations of

disks around other stars and because the prevalence of stars with debris disks and of stars found

to host extra-solar planetary systems (Currie, Plavchan, & Kenyon, 2008; Cumming et al., 2008;

Sierchio et al., 2010; Wittenmyer et al., 2011) suggests a low probability that our own solar system

formed under special-case circumstances.

However, the range and variety in disk masses observed is high, even for neighboring stars of

similar ages (e.g., Watson et al. (2009); Dahm (2010)), and the gas mass of the early Solar Nebula

cannot truly be known at this time. Furthermore, the study by Watson et al. (2009) found no

correlation in a census of 84 classical T Tauri stars between the observed disk crystallinity and

either the mass of the disk or the disk-star mass ratio. In order to offer aerodynamic mixing

as a viable option to explain the crystalline compositions of disks, this mechanism must meet

this non-correlation criterion, else invoke some counter-balancing mechanism, such as unknowns

in the production rate of crystalline minerals. To study outward transport as a function of MD,0,

I have run simulations in the fiducial-disk setup and in the compact-Rd = 5AU setup for disk

masses of MD,0 = 0.01 and 0.09M¯. For the fiducial setup, MD,0 = 0.09M¯ produces a disk

that is somewhat longer-lived than 10 Myr under the constant-viscosity processes modeled in my

disk-evolution model. However, for the purposes of characterizing dependences observable for my

simulation setup, it offers a decent range in the MD,0 parameter space.

In Figure 5.11 panel-a, I plot the peak values of normalized contaminant concentration in the

outer disk as a function of MD,0 for 20 µm grains in the fiducial setup, where Rd = 20 AU and
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Figure 5.11: Panel-a) Peak CN values as a function of MD,0 for 20 µm particles and the four source
regions. Panel-b Times of half-maximum CN before and after the peak for the accretion-flow case
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α = 10−2. From this plot, it is clear that outward mixing is largely independent of MD,0. A

slight slope toward higher peak CN for higher MD,0 is noticeable in the results of the midplane-

flow simulations, but this represents less than a factor of two difference between transport in the

0.01M¯ and 0.09M¯ disks. The amount of time over which the disks experience high outer-disk

contamination, however, is strongly dependent on the initial disk mass, as shown in Figure 5.11

panel-b. Initially more massive disks are longer lived, with similarly longer-lived conditions in which

outer-disk surface densities are sufficient to sustain a population of mid-sized 20 µm particles.

Furthermore, when it comes to the large particle sizes, variation in outer-disk surface densities

means there is a strong dependence of MD,0 on outward mixing. This is shown in Figure 5.12

panel-a wherein I plot peak CN values as a function of MD,0 for 2 mm sized grains. For an initially

0.01 M¯ disk, these grains do not reach the outer disk at all, even under the influence of outward

advection in the midplane-flow case. Therefore, the influence of MD,0 on outward mixing is summed

up in panel-b. Here, I plot maximum CN for the all source region as a function of grain size for

the three MD,0 disk models in the fiducial setup. In general, small grains experience equal levels

of mixing independent of the initial disk mass. However, the max-CN curves diverge toward larger

grain sizes and the upper-limit in grain size that can be transported to beyond 25 AU is notably

smaller for the less massive disk than for the more massive one.
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of grain size in the all source region for different disk masses (panel-b). Accretion-flow case: solid
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The figures I have shown here are only for the fiducial disk setup with Rd = 20 AU, but the

results of this experiment using a more compact disk configuration with Rd = 5 AU are essentially

identical. These results suggest that a lower-mass disk with MD,0 = 0.01M¯ should be equally

consistent with the transport of 20µm sized grains to the comet-forming regions as the fiducial-disk

model and so conform to the Stardust results equally well. This is reassuring given our uncertainties

in the mass of the Solar Nebula, though this model cannot then offer new constraints to reduce

those uncertainties. Holding the other disk-model parameters constant, a lower-mass disk offers a

smaller window in time in which to form a comet enhanced in hot minerals via turbulent mixing.

However, the disk lifetime as a whole is shorter and so a lower-mass disk offers a smaller window

of time for forming most solar-system architecture.

Qualitatively, these simulation results are also a good match to the observed non-correlation

between disk crystallinity and mass for systems around other stars, though there are a number of

caveats. Using MD,0 as a mixing measure presumes that the correlations that exist for that initial

condition will hold for disk masses measured at a later given time, despite the fact that the rates

of evolution and disk-mass loss between different-MD,0 disks may vary. In the static-temperature

viscous-disk model, at least, the rate of relative mass loss is set by the initial distribution of mass

(Rd), rather than its sum (MD,0). Also, because of the Stardust results with their clear constraints
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on grain size, I have focused on transport of hot grains to the outer disk, defined as beyond 25 AU.

However, observations of disk-composition for extra-solar disks tend to probe smaller distances,

10 AU or less. While this likely shifts the maximum grain size for which my results predict no-

correlation to slightly larger sizes, it is still not known what grain-sizes transport and mix the bulk

of material in disks around other stars. My simulations suggest that turbulent mixing is consistent

with the compositions of extra-solar disks if most high-temperature material is held and transported

within the small-grain population.

5.5 Varying the α-scaling of the Disk Viscosity

The most poorly constrained parameter of the disk-evolution model is the α-parameter of the disk

viscosity, whose biggest effect is on the rate of mass transfer through the accreting disk. Assuming

the Shakura & Sunyaev (1973) model to describe the viscosity, many attempts have been made to

test and to measure α through observations and modeling of disk outburst events (e.g., Pringle,

Verbunt & Wade (1986)) or through censuses of disk masses, ages, and accretion rates (Hartmann

et al., 1998; Kitamura et al., 2002). In the simplest disk-evolution models, including the one used

in this thesis, α is held spatially and temporally constant. However, some studies pairing disk-

evolution–similarity-solution models and disk observations suggest α should decrease toward larger

radii (Isella, Carpenter, & Sargent, 2009), while models involving episodic accretion events to

explain rapid assmebly of stellar masses necessarily require short periods of time when the effective

disk-evolution α is quite high relative to the mean (e.g., Dunham et al. (2010)). Models that attempt

to replicate disk viscosity through phenomena such as the magneto-rotational instability (MRI)

(Balbus & Hawley, 1991) sometimes predict α s that seem inconsistent with observations (King,

Pringle, & Livio, 2007), but also predict phenomena such as time-variable turbulence (Reyes-Ruiz,

2007), and effective α s that varying with height above the disk midplane (e.g., Flaig, Kley, &

Kissmann (2010); Kretke & Lin (2010)). The dead-zone model of MRI turbulence predicts a region

near the midplane in the inner disk where the effective α drops toward zero (e.g., Hasegawa &

Pudritz (2010)).

For the fiducial-disk model and the majority of simulations presented in this thesis, I have used

an α-viscosity (always) with α = 10−2 (almost always). This value produces a relatively high level of

turbulence which may or may not be compatible with grain settling observed in some disks (Miyake
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Figure 5.13: Maximum normalized concentration beyond 25 AU as a function of α for two grain
sizes. Accretion-flow case: solid lines and color markers. Midplane-flow case: dashed lines and
black markers.

& Nakagawa, 1995; Dullemond & Dominik, 2004) and that modeled for some particle-interaction-

dynamics simulations (e.g.Cuzzi, Hogan, & Shariff (2008)). However, α = 10−2 is compatible with

disk-census observations and produces a reasonable 5.5 Myr lifetime for my fiducial-disk model.

On the other hand, my particle-transport model assumes that the diffusivity of the ensemble is

directly proportional to the disk viscosity (meaning Dp ∝ α) and in §4.5.3, I showed that varying

the magnitude of the diffusivity by less than half an order-of-magnitude produced strong variation

in the outward mixing of the particle ensemble. Therefore, in this section, I test the dependance of

outward mixing on α by running particle-transport simulations in disks with α = 10−3, 5 × 10−3,

and 2 × 10−2 (and otherwise retaining MD,0 = 0.03M¯ and Rd = 20 AU, as usual).

In Figure 5.13, I plot the peak outer-disk concentration for these simulations for 20 µm and

2 mm-sized grains as a function of α. For the 20 µm grains, the dependance on alpha is small.

There is a slight increase in peak outward mixing for higher α, but it is less than a factor of two

across more than an order-of-magnitude in α for the accretion-flow case and about a factor of

two across one order-of-magnitude in the midplane-flow case. For 2 mm-sized particles, however,

outward mixing depends strongly on α. In low-α disks, any particles from the inner source regions

are less likely to reach the outer disk in the accretion-flow case, and no 2 mm particles in either

gas-flow case reach the outer disk for α = 10−3. Therefore, as seen with the initial disk mass,

148



n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

grain size (microns)
10510410310210110010−110−2

alpha = 2x10 −2
alpha = 10 −2
alpha = 5x10 −3
alpha = 10 −3

Figure 5.14: Maximum normalized concentration beyond 25 AU for the all source region as a
function of grain size. Simulations run in the fiducial disk setup with MD,0 = 0.03M¯ and Rd = 20
AU, but varying α. Accretion-flow case: solid lines and color markers. Midplane-flow case: dashed
lines and black markers.

varying α primarily changes the upper-limit in grain-size that can be transported to beyond 25

AU, as summarized in Figure 5.14.

α is directly proportional to the diffusivety of the particle ensemble and also to the outward-

flow velocity of the gas in the midplane-flow case. That the dependence on α of general outward

mixing of well-coupled grains is so low then, suggests that these effects are largely counteracted

by the more-rapid disk evolution that also takes place in higher-α disk models. Particles well-

mixed with the gas will be rapidly accreted onto the central star at the rate of that disk mass. As

with lower-mass disks, higher-α disks have shorter lifetimes and so the time-window for outer-disk

contamination is also shorter. Unlike in low-mass disks, however, the high diffusivity that comes

with high α means that outward mixing is also faster, so that the entire transport scenario shifts

to earlier times for higher-α disks. This is shown in Figure 5.15, where I plot, for 20 µm sized

particles, both the outer-disk contamination as a function of time, and the time-window for peak

contamination as a function of α.

The primary conclusions, then, about outward mixing as a function of α are that the α-
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dependence is small, but not non-existent. For the moment the α model for disk viscosity and

diffusivity is likely sufficient for the purposes of particle-mixing simulations — as long as diffusiv-

ity and disk evolution are considered together. However, more complete models of disk viscosity

will likely yield at least one or two interesting results from future work, perhaps particularly as

researchers come to better understand the earliest, potentially outburst-driven stages of disk for-

mation and evolution.

5.6 The Disk Temperature Distribution

For all of my outward-mixing simulations, including those discussed in Chapter 4, I use a static,

power-law model for the disk temperature distribution that roughly corresponds to the temperature

profile of a passive, flared disk around a 5 L¯ star (see §2.4). This temperature model has only two

parameters, the temperature of the disk at 1 AU, TAU, and the slope of the disk-temperature as

a function of R, qT . In this section, I explore the dependence of the outward mixing of inner-disk

grains on these two parameters.
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5.6.1 Varying the Baseline Temperature

The primary reasons to consider varying the baseline disk temperature, TAU, are that: 1) disks

around stars of various luminosity will be heated by stellar irradiation to various base temperatures;

and 2) accretional heating in the disk at the earliest times when accretion rates are high tends to

raise a disk’s temperature, particularly in the inner disk (see §2.4). Varying TAU is similar to

varying the α parameter of the disk viscosity. Since, from §2.2,

ν = αΩK,midH
2
g ,

where ΩK,mid is the Keplerian angular velocity at the disk midplane and Hg is the disk-gas scale-

height:

Hg =
cs

ΩK,mid
=

1

ΩK,mid

√

kBT

µmH
,

where cs is the sound speed in the gas and µmH is the average mass of a gas particle. Therefore,

ν ∝ αTAU , (5.1)

and it is the αTAU combined quantity (in the static, power-law–temperature disk model) that

determines the rate of viscous evolution of the disk surface density.

Using Equation (5.1) and the results of §5.5, one might then predict that outward mixing

depends on TAU in the same way it depends on α: that generally mixing of well-coupled grains is

mostly independent of TAU, but that a colder, more slowly evolving disk will mix fewer large grains

to the outer disk. However, Figure 5.16, shows that this is not the case, that instead the outer-disk

contamination achievable within a particle-transport simulation is essentially independent of TAU,

no matter the particle size. TAU affects disk evolution and particle diffusivity in the same way as

α. However, disk temperature also plays an important role in the drag a particle feels against the

gas flow, particularly in the Epstein-drag regime where (from §3.2.1)

FD = −md
CR

3
ρgvtherm∆v ,

where md and CR are the particle mass and surface-area-to-mass ratio, ρg and vtherm are the local

151



n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

TAU (K)
1000100

outer half
inner half
inner quarter
all

20 microns

n
o

rm
a

liz
e

d
 d

u
st

/g
a

s 
b

e
yo

n
d

 2
5

 A
U

102

101

100

10−1

10−2

10−3

10−4

10−5

TAU (K)
1000100

2 mm

Figure 5.16: The maximum nomralized concentration beyond 25 AU as a function of the baseline
disk temperature, TAU for two particle sizes. In the fiducial disk model, TAU = 278.9 K. Accretion-
flow case: solid lines and color markers. Midplane-flow case: dashed lines and black markers.

gas density and thermal velocity, and ∆v is the difference between the particle and gas velocities.

Next,

vtherm = cs

√

8

π
∝

√
T ,

and, in a vertically isothermal disk like that used in my model,

ρg ∝ Σg

Hg
∝ 1√

T
.

Therefore, varying the disk temperature has no effect on the gas drag a particle feels in the Epstein-

drag regime, so this aspect of the particle transport also remains balanced.

The balance, when varying TAU, between disk evolution, and particle advection and diffusion is

shown in Figure 5.17, where I plot both the outer-disk contamination as a function of time varying

TAU and the time-windows for peak contamination as a function of TAU. Because disk evolution

is faster in a hotter disk, the function for outward mixing is also shifted to earlier times, but the

shape of that function remains essentially unchanged. The timing of outward transport still varies,

but the net result is the same. This is a good illustration of why it is important to consider tem-

perature/viscosity/diffusion and disk-evolution simultaneously. Higher disk temperatures should

produce faster outward mixing, but not necessarily more.
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5.6.2 Varying the Radial-slope of the Disk Temperature

The fiducial, static-temperature model uses qT = −0.5, which is appropriate for a simple passive

model of disk temperature where the disk is heated only by intercepted radiation from the central

star and where the disk flares, increasing scale-height with distance from the star so that the disk

surface sees the starlight at the same interception angle for all disk radii (Armitage (2010), pp 45–

47). (A flat disk structure where the incidence of starlight becomes ever shallower with increasing

R has qT = −0.75, Armitage (2010), pp43–45.) Even the energy-balanced temperature model

discussed in §2.4.1 that includes accretional heating also includes a temperature-slope of qT = −0.5

in the cold outer disk where stellar irradiation still dominates the temperature profile. However, as

discussed in §2.4.1, how a disk is heated can be fairly complex and there are a number of reasons

to consider variations in qT . These include:

* Dominance of different heating mechanisms: As shown in the evolving-temperature models

of §2.4.1, the dominance of accretional heating in the early, inner disk while the outer disk

remains cold, can lead to relatively complex temperature structure. In these models, such

as the one shown in Figure 2.6, both the innermost disk and the outermost disk heated by

the ambient temperature of the parent molecular cloud have shallow temperature gradients,
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while the transition region between accretion and radiant heating has a sharp fall-off in disk

temperature and a steep qT .

* Variations in types of disk opacity: As suggested by some of the complex temperature struc-

ture in the evolving temperature model (Figure 2.6), regional variations in disk opacity, largely

dominated by dust opacities, can strongly affect the fall-off rate of disk temperature. For the

models of Keller & Gail (2004) (assuming the flat disk-structure model normalized around

qT = −0.75), the authors report qT ≈ −1 where ice-coated grains dominate the opacity, and

qT ≈ −0.62 where bare grains do so.

* Dust settling to the midplane: Many disk observations suggest that for some disks the dust-

grain population has settled toward the midplane (e.g.,Miyake & Nakagawa (1995); Furlan

et al. (2006); Tsukagoshi et al. (2011)). This is often attributed to grain growth, but could

also occur if disk turbulence dropped to relatively low levels. In either case, the lack of small

grains in a disk’s atmosphere means that the disk structure flattens (Dullemond & Dominik,

2004) and less starlight is intercepted, providing a disk with a steep qT .
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To test the dependence of outward mixing in my simulations on qT , I have run particle-transport

simulations in disks with qT ranging between -1 and -0.4. One important note is that varying qT

also varies the surface-density structure of the disk. In the α model for disk viscosity with a power-

law disk structure, qν , the power-law constant of the viscosity, goes as qν = 3/2 − qT . And, in the

steady-state approximation of disk structure, Σg ∝ 1/ν. Therefore, a steeper temperature profile

leads to a shallower surface-density profile. This is illustrated in panel-a of Figure 5.18, where I

plot the disk–surface-density profiles for these simulations at t = 0 and t = 1 Myr. In these disk

models, I have left TAU fixed to the fiducial value of 278.9 K. Therefore, the disks with steeper

qT are also generally colder and evolve more slowly than the fiducial model. This leads to both

slower outward flow at the outer disk edge, and slower main-inward accretion, as shown in panel-b

of Figure 5.18.

In some ways, varying qT can be compared to varying the initial disk compactness, Rd, (discussed

in §4.5.4). Both initially compact disks and disks with shallow qT (steep qν and Σg) have more mass

distributed at small disk radii and so have faster outer-disk outflows and evolve more rapidly. This

can lead to a greater degree of outer-disk contamination, as shown in Figure 5.19 panels-b1 and -b2.

However, while §4.5.4 showed that outward mixing is strongly dependent on Rd, Figure 5.19 shows

that it is only moderately dependent on qT . This is because qT , also has a strong affect on the

probability for a particle diffusing outward versus inward and on the relative strength of headwind

drag on a particle orbit, both of which favor outward transport in steep, rather than shallow, qT

disks.

In the fiducial disk model with qT = −0.5, the roughly Σg ∝ 1/R profile in the main, quasi-

steady part of the disk produces an even distribution of mass per AU. This means that for a given

diffusivity (proportional to the disk viscosity) a particle in the ensemble is equally likely to diffuse

inward as outward. However, if Σg follows a shallower profile, as with steep qT , then in the main

disk there is locally more disk mass outward and a particle is more likely to be diffused outward.

A steep qT and cold outer disk do mean that diffusion in the outer disk is slower, but the mass

distribution still strongly influences where well-mixed particles are held within the disk.

Also, if qT is steep, leading to a shallow disk–surface-density profile, then the radial-pressure

gradient is relatively more shallow as well. (Even if the surface-density profile is unchanged, colder

temperatures still lead to denser gas at the disk midplane and a shallower radial pressure gradient).
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Figure 5.19: Panels-a1 and -a2) Maximum fraction of source particles mixed outward to beyond
25 AU as a function of qT . Panels-b1 and -b2) Maximum normalized concentration of particles
beyond 25 AU as a function of qT . Accretion-flow case: solid lines and color markers. Midplane-flow
case: dashed lines and black markers. Note that a steeper disk-temperature profile (qT ) corresponds
to a shallower disk surface-density profile.

Steep radial-pressure gradients cause disk gas to orbit more slowly than Keplerian and lead to

headwind drag, so steep qT and shallower pressure gradients means a lessening of the headwind-

drag effect. This is demonstrated most clearly in panel-a2 of Figure 5.19, plotting the peak fraction

of 2 mm grains transported to the outer disk. In the accretion-flow case, a larger portion of these

larger grains reach the outer disk for steep qT because their range within the disk is less restricted

due to headwind drag. This does not lead to more outer-disk contamination of 2 mm grains in the

steep qT cases, however, because shallow qT , with more mass distributed into the hot, inner disk,

still has a larger source mass with which to contaminate the outer disk.
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Figure 5.20: Panel-a) Normalized concentration beyond 25 AU of 20 µm particles from the all
and inner-quarter source regions in the accretion-flow case in disks varying qT . Panel-b) Maxi-
mum normalized concentration beyond 25 AU as a function of grain size for the all source region.
Accretion-flow case: solid lines, colored markers; Midplane-flow case: dashed lines, black markers.

The results of the outward-mixing dependence on qT are summarized in Figure 5.20. General

outward mixing, particularly of small grains, is stronger for shallower disk-temperature profiles

because a hotter disk has faster outflows and disk expansion and, importantly, because more mass

is initially distributed toward small AU, creating a larger source mass for outer-disk contamina-

tion. However, the outward mixing of larger, more poorly coupled grains, is less dependent on qT ,

because a cold outer disk has a shallower radial pressure gradient providing weaker headwind-drag

confinement of the particle ensemble. Colder disks also evolve more slowly and may retain grains

at large AU for longer periods of time. This suggests that disks with grains settled toward the disk

midplane may retain a larger mass reservoir (of both gas and dust) in the outer disk, than hotter

flared disks. However, in terms of the Stardust results, a hotter disk with a shallower qT would be

more likely to process a larger mass of grains at high temperatures and to send moderately coupled

20 µm grains out to contaminate the comet-forming regions.

5.7 Conclusions

The primary motivation for examining the aerodynamic outward mixing of dust grains in proto-

planetary disks came from the results of the Stardust mission that found grains processed at high

temperatures mixed within the material of a comet formed in the cold regions beyond the orbit

157



of Neptune. Another important motivation has been the large scatter and poorly defined trends

in crystallinity (the relative fraction of observed silicates processed at high temperature) observed

in disks around other stars. Therefore, the primary focus of these two chapters has been to sys-

tematically tie together aerodynamic transport processes with disk evolution in order to take into

account the effect of the variable dynamic nature of disk systems on mixing-transport outcomes.

In Chapter 4, I examined the dependence of outward mixing on four parameters most directly

tied to the questions of particle-transport and disk evolution. Two of the biggest unknowns tying

protoplanetary disk models to particle-transport effects are (1) the velocity structures of evolving

disks, directly important for the advection of grains, and (2) the portioning between diffusivity

and viscosity within the disk. Next, (3) the actual physical sizes of dust grains not only help

to tie transport results to the Stardust findings, for which real grain sizes are provided, but also

link directly to disk aging; an older disk will no longer support larger grain sizes as it loses mass

and becomes more tenuous. Finally, (4) the initial compactness of the disk is a direct example

of variation between different disk systems that also has a strong influence on how disk evolution

proceeds.

All four of the parameters explored in Chapter 4, were found to have important impacts on the

degree of outward transport and outer-disk contamination achievable within a particle-transport

simulation. This, then, begs the question of what other parameters might be equally important,

both in terms of the physical properties of disks and of the particular model used to calculate the

disk structure and evolution. Therefore, in this chapter, I have extended my search of parameter

space to include other disk-model parameters of concern. My primary conclusions are these:

1. The relative mass of source material is the primary factor controlling resultant

outer-disk contamination. In terms of the parameters tested, this source-mass importance

is demonstrated relating to: the initial compactness of the disk, Rd, the timing of particle

formation/initiation, t0, the slope of the disk temperature (and therefore initial-mass) dis-

tribution, qT , and, of course, the various possible source regions for hot grains transported

within disks.

2. However, a number of disk-model and transport parameters are as yet poorly constrained

and several of these also have a strong impact on simulated outward mixing. Therefore, to
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rank the parameters I have tested that have the strongest impact on outer-disk

contamination: The initial compactness of the disk has the strongest impact on the amount

of hot material that may be mixed into the outer disk. Of next greatest importance are the

uncertainly constrained diffusivity of a dust-grain population and the velocity structure of

the disk gas. The most outward mixing occurs for an initially compact disk with regions

of outward-flowing gas and high diffusivity relative to the disk viscosity. Finally, from this

chapter, early-time (t0 . a few ×105 years) production of hot minerals is also key to reaching

high crystallinity fractions. Crystalline silicates formed at small AU at late times simply will

not reach the outer disk in sufficient quantities to match observations.

3. Finally, each parameter I have tested emphasizes the importance of including

disk evolution along-side particle-transport and mixing calculations. For example,

my simulations measure faster outward mixing at t = 0 for both a more compact disk (small

Rd) and a hotter baseline disk temperature (TAU ). However, I measure no dependence in peak

outer-disk contamination on TAU . A static-disk simulation would reveal only that increase

in initial mixing rate and could lead to the conclusion that, for example, disks orbiting more

luminous stars should experience a greater degree of outward mixing, when in fact more rapid

disk evolution for higher TAU entirely counter-balances the mixing-rate effect over the lifetime

of the system.

Next, to specifically relate the parameters tested in this chapter to the results from Stardust

and ongoing attempts to define our Solar Nebula, I find that:

1. The discovery of tens-of-microns crystalline silicates in comet Wild 2 material does not help

to constrain α of our Solar Nebula (presuming the α-model of disk viscosity to be well repre-

sentative of protoplanetary disks). The α parameter has a low impact on the outward mixing

of grains, as long as a direct correlation between disk viscosity and dust-particle diffusivity is

maintained, as the simulations presented here assume.

2. Outward mixing of 20 µm grains is compatible with a range of disk masses, down to at least

MD,0 = 0.01M¯. Outward mixing in my simulations is largely independent of initial disk

mass. This means that one need not invoke a special case wherein our Solar System formed
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from an unusually massive disk. However, aerodynamic mixing in this case also does not

supply constraints as to what the mass of our Solar Nebula may have been.

3. In agreement with the findings of Ciesla (2010), high temperature minerals found within

comet material are statistically more likely to have formed at the earliest times of Solar

Nebula history. Not only does formation of the highest-temperature material (such as CAIs)

require a young, hot disk, but transport of inner-disk material outward is significantly more

efficient at early times.

These points are in addition to the Chapter 4 findings that: (1) outward transport of grains in

the size-range relevant to the Stardust crystalline silicates (up to tens of microns) is feasible via

aerodynamic mixing processes, but that (2) grains formed very near the sun, such as, probably,

CAIs, likely require some outward gas flow for aerodynamic effects to explain their presence in a

comet like Wild 2.

For comparison to observations outside our Solar system, the results of Chapter 4 found a

potentially favorable comparison between increased outward mixing in more compact disks and

the potential disk-crystallinity–accretion-rate correlation observed by Watson et al. (2009). Disk

parameters tested in this chapter also show favorable comparisons between mixing trends and the

Watson et al. (2009) survey results. Specifically, outward mixing appears largely independent of

both the initial mass of the disk and the baseline disk temperature, while the Watson et al. (2009)

survey found no correlations between disk crystallinity and either observed disk mass or stellar

luminosity (which sets the baseline disk temperature in a passive-disk model). As discussed by

those authors, such non-correlations are puzzeling, as both disk mass and heating by the central

star are believed to be potentially important for the production of crystalline silicates. However,

the results of my simulations suggest that the resolution of these puzzles should not require taking

basic aerodynamics-mixing effects into account.

One note, however, is that comparing my simulation peak-mixing results to these survey results

possibly may not properly account for timing effects present within the observations. The surveyed

disks are observed at 1–2 Myr of age, which generally falls during the infall stage of 20 µm and

larger grain sizes in my simulations. However, more massive disks, for example, support slower

infall and higher outer-disk concentrations at a given time than simulated less massive disks. This
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could have consequences for the relative observed crystallinities between different disk-mass cases,

though the extent of the effect is unclear as crystalline and non-crystalline grains should experience

infall roughly equally. However, my simulations do predict that the early-time outward mixing of

the hot-grain population should proceed roughly identically for disks of different masses.

Whether or not aerodynamic mixing is the primary explanation for the existence of hot minerals

in the cold outer-regions of disk systems, my simulations show that it is an important aspect de-

termining the composition and compositional gradients found within a disk. Furthermore, through

aerodynamic mixing, variation between the initial conditions found within young disks (e.g., mass

distribution, timing and location of mineral formation) should lead to a wide range in disk compo-

sitional properties observed at later times. This prediction agrees well with studies that find wide

scatter in observed disk compositions even within disk populations believed to have formed within

relatively quiescent environments, such as those of the Taurus-Auriga young cluster (Watson et al.,

2009).

I have shown that the interactions between turbulence and evolving disk structure must have

important consequences within a protoplanetary system. However, the precise outcome of mixing

within a given, naturally evolving disk environment remains poorly resolved, largely due to pre-

sistent uncertainties concerning disk structure and mechanics. Nevertheless, there are a number

of possibly important effects, not explored here, that should and can be pursued in future studies.

Some specific avenues of research include:

* Mixing within a 2D disk structure. Mixing and transport of grains within a 2D (ra-

dial,vertical) disk structure have been explored by a number of authors (e.g., Takeuchi & Lin

(2002); Keller & Gail (2004); Ciesla (2009)). However, these studies have either focused on

the bulk transport of grains, or have neglected the specifics of grain-size effects. Of particular

interest for the outward mixing of large grains is the outward “tail-wind” drag on particles

high within a flared-disk atmosphere. Large grains are expected to mostly settle-out to the

disk midplane, as discussed by Ciesla (2009). However, moderate to high turbulence (such as

assumed in the α = 10−2 disk models used in my simulations) should allow a non-negligible

fraction of grains at least tens-of-microns in size to experience outward drag at high z within

the disk (§3.1). Turbulent vertical diffusion of grains should then lead to some degree of
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circulation-style radial diffusion (Pavlyuchenkov & Dullemond, 2007) of grains in excess of

the radial diffusion employed within my simulations. Whether such excess outward transport

is significant remains to be tested.

* Mixing during disk formation. Work by, e.g., Tscharnuter et al. (2009), Dullemond, Apai,

& Walch (2006), and Ciesla (2010), as well as simulations presented in this chapter, all suggest

that the greatest outward transport should occur early in a disk’s lifetime, possibly as the star-

disk system is forming. Therefore, mixing of imperfectly coupled grains during disk formation

merits further study. While disk-formation simulations tend to be computationally expensive,

the window of interest for such a study would be on the order of 105 years, rather than the

several 106 year disk lifetimes explored in my current simulations. Furthermore, current

theories of star formation suggest that the birth of star-disk systems may be characterized

by episodic-accretion events of high mass processing set within a more quiescent accretion

environment. High-accretion events would provide periods of stronger gas inflow, but also

higher disk temperatures and enhanced turbulent diffusion. Both the formation of crystalline

silicates and the transport of grains within such a changeable early-disk environment are prime

candidates for future study that could shed new light on dust processing with protoplanetary

systems and our own Solar Nebula.

* Mixing within new and alternative disk models. While a large focus of my work has

been the influence of disk evolution and a changing disk environment on grain transport, I

have used a single, simple model (the α-disk model) to describe that evolution, and study

of particle mixing within alternative as well as more-sophisticated disk models is warranted.

For example, Boss (2004) considered the mixing of trace particles within a marginally self-

gravitating disk, and disks involving the magnetorotational instability and possible dead-zones

of low turbulence at the disk midplane are often discussed in the literature as, for example,

structures that might preserve larger grain-sizes within the disk for longer periods of time

(Jacquet, Fromang, & Gounelle, 2011). Dead-zone disk models, however, have yet to be

fully explored in terms of their particle-transport properties. Also, it is likely that our own

Solar Nebula was born within a rich star-cluster and experienced periods of strong external

photoevaporation (Throop & Bally, 2005). As low surface-density in the outer disk can drive
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outward gas flows, such episodes may have been important for the transport of Solar System

minerals and should be explored in terms of their particle-mixing characteristics.

Limited understanding of disk structure is not the only obstacle to achieving a full understanding

of the observed distribution of high-temperature grains within our own and other circumstellar

systems. Formation mechanisms for high-temperature materials must also be more clearly outlined.

Given the variety of material recovered by the Stardust sample-return mission, these processes

likely relate not only to the local temperature evolution within a disk, but also to grain-growth and

possibly even early planetesimal-formation processes. Furthermore, as will be discussed in the next

chapter, our understanding of the transport of marginally-coupled grains remains incomplete. That

mid-sized particles experience headwind-drag infall as a disk ages and thins is potentially in direct

conflict with mm-sized grains observed at large distances within many extrasolar protoplanetary

disks (Testi et al., 2003). Until this conflict is resolved, mixing of large grains within a disk will

remain an open area of study.

163



Chapter 6

The Necessity of Local Structure and
Small-scale Concentration for
Planetesimal Formation

Several recent theories of planetesimal formation (e.g., Youdin & Shu (2002); Johansen et al. (2007))

consider the formation of large bodies directly from the collapse of ensembles of small (millimeter–

decimeter) dust grains and rocks. Some of these theories either require or are greatly aided by

enhancements above solar composition in the local dust-to-gas ratio of the disk, and early calcu-

lations suggest that radial drift of small grains due to headwind drag against the disk gas might

easily supply such an enhancement (Youdin & Shu, 2002). Here, I test the radial-drift hypothesis by

running simulations of radial particle transport within a viscously evolving gas disk, including both

advection with the gas accretion flow and turbulent diffusion of the particle ensemble. I find for a

range of disk conditions (varying the disk mass, initial disk size, and α-scaled viscosity) that the

dust-to-gas ratio throughout most of the disk remains roughly uniform for the first 40–60% of the

disk lifetime, excepting a tapering-off depletion of solids in the outer disk. Enhancements, where

they do occur, are generally insufficient to drive collapse of solids into large bodies, even consider-

ing recent evidence for possibly lower values of the critical Richardson number (Lee et al., 2010).

Therefore, enhancements necessary to drive planetesimal formation must come from local, non-

axisymmetric disk structure and solids concentration. Furthermore, previous studies have noted

that the rapid aerodynamic inspiral of large grains (∼ 1mm) fits poorly with observations of large

grains at large AU in disks around other stars (e.g., Brauer et al. (2007)). My simulations corrobo-

rate this result, and also indicate that combined advection and headwind drag lead to a rapid loss
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of large grains from the inner disk as well. In my simulations, all mm-sized grains are lost onto the

central star within half a million years, even though current understanding of chondrule-bearing

meteorite parent bodies is that these bodies formed over a 1–3 Myr period, incorporating both

calcium-aluminum-rich inclusions (CAIs) and chondrules with at least 1 Myr difference between

their ages of formation (see, e.g., Cuzzi, Davis, & Dobrovolskis (2003)). I discuss the implications

of these results for efforts of protoplanetary-disk modeling and the necessity of considering complex

local structure and local concentration.

6.1 Introduction

Understanding the growth evolution of the small dust population in protoplanetary disks has long

been troublesome, particularly for studies seeking to understand the formation of planetesimals,

the building-blocks of planets, tens to hundreds of kilometers in size. Early research identified two

primary problems: First, the headwind drag on particles of roughly meter size should cause these

bodies to spiral in to the parent star on time-scales of a thousand years, and therefore growth across

this size regime must be rapid to avoid large-scale depletion of solids from the early Solar Nebula.

Second, the settling of solids toward the disk midplane where they might rapidly form large bodies

via gravitational collapse will be stymied by the Kelvin-Helmholtz instability. This instability is

created by the shear between a layer of solids (orbiting at Kepler velocities) and the disk gas, which

is pressure supported and orbits at sub-Kepler velocities (Weidenschilling, 1995; Youdin & Shu,

2002).

Currently, many models of collisional grain growth find that often, around centimeter–meter

sizes, colliding particles may not stick, or may collisionally fragment, leading to a bottleneck rather

than rapid growth across this size range (e.g.,Brauer, Henning, & Dullemond (2008); Zsom et al.

(2010)). However, recent refinements in the understanding of aerodynamics in disks have led to

several theories of planetesimal formation via the concentration and mass collapse of small particles

(millimeters–decimeters in size) into large bodies. These theories include turbulent concentration

(Cuzzi, Hogan, & Shariff, 2008; Johansen et al., 2007), shearing-instability binding of local clumps

of solids (Johansen, & Youdin, 2007; Johansen, Youdin, & Mac Low, 2009; Bai & Stone, 2010a),

and the precipitation of bound clumps at the disk midplane under conditions of solid over-density

(Youdin & Shu, 2002). Planetesimal formation by these sorts of mechanisms is supported by
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recent dynamical studies that suggest the asteroid-belt population formed at 100–1000 km sizes

(Morbidelli et al., 2009b), rather than building up incrementally, as in the traditional coagulative-

accretion picture of planetesimal formation.

While not strictly a requirement for the Cuzzi, Hogan, & Shariff (2008) model of planetesimal

formation, most of the formation-via-collapse models require local enhancement of the height-

averaged dust-to-gas ratio (the local disk metallicity) above solar values in order for the clumping

of solids to overcome the dispersive forces of the gas. These enhancement requirements vary between

roughly 2–10 times standard metallicity (Youdin & Shu, 2002; Johansen, Youdin, & Mac Low, 2009;

Bai & Stone, 2010a), though either a local buildup of solids or a local depletion of gas (such as

by photoevaporation, as suggested for planetesimal formation by Throop & Bally (2005)) are often

cited as equally effective. Furthermore, early calculations by Youdin & Shu (2002) suggest that

headwind-drag infall of outer-disk solids could lead to large-scale radial-concentration of solids well

above the threshold necessary to produce precipitation of bound solids at the midplane, thereby

using the headwind-drag effect to advantage. However, this early calculation was performed within

a static, steady-disk model, neglecting turbulent diffusion of small solids, which might counteract

the inward sedimentation of the dust population, and neglecting any radial dependence on the

initial grain-size distribution.

In this chapter, I test the hypothesis of large-scale dust concentration via headwind-drag infall

by performing simulations of global particle transport within a viscously evolving protoplanetary

disk model. My model for particle transport includes turbulent diffusion of the particle ensemble,

as well as precisely-calculated radial velocities that account for both headwind drag and radial-

advection drag within the flow of inwardly accreting disk gas. While each model run considers only

a single grain size, I combine runs for a range of particle sizes into a composite map of the global

evolving distribution of dust solids. For each grain size, I use a simplified model of grain growth to

constrain the radial extent and the timing that grown solids will appear within the model disk.

In §6.2, I outline the specific models used in these simulations, including the disk-evolution and

particle-transport models, as well as my method for combining simulations of individual grain sizes

into a composite whole. In §6.3, I show the dust distributions resulting from my simulations and

in §6.4 compare those distributions to the dust-to-gas enhancements thought necessary to lead to

precipitation of large bodies. I find that dust particles in the larger size bins are lost inward onto
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the parent star increasingly rapidly, and I discuss the implications of this effect and my results on

the whole in §6.5, providing conclusions in §6.6.

6.2 Methods

Several previous studies have focused on a range of mechanisms for accomplishing large-scale en-

hancements of the dust-to-gas ratio that could potentially drive planetesimal formation. These

include: headwind drag in a static disk (Youdin & Shu, 2002), infall of settled solids under the

influence of collective effects (Weidenschilling, 2003; Bai & Stone, 2010a) (most important once

dust-to-gas ratios are already high), and the photoevaporative loss of disk gas at large AU (Throop

& Bally, 2005) (most important at the outer disk edge or near the end of the disk lifetime), with

a range in potential outcomes reported. Because the focus of this chapter is to test radial dust

concentration via aerodynamic forces within an evolving disk, I have focused my modeling efforts

on three primary effects:

1. Self-consistent treatment of gas drag on particles of a specified size within the evolving pro-

toplanetary disk structure. For this, I use the same particle-transport code described in

Chapter 3 and employed in the outward-mixing studies of Chapters 4 and 5. I also use

the updated model for the disk structure and viscous evolution that includes an evolving

disk-temperature profile.

2. Diffusion of the particle ensemble. Turbulent diffusion can be important for moving grains

both radially inward and outward within a protoplanetary disk structure. In the outward-

mixing simulations of the previous two chapters, the degree of particle diffusivity was found

to have an important impact on the large-scale mixing of grains. Likewise, diffusivity should

not be neglected in calculations of the global dust-grain distribution, and I have included

diffusion of the particle ensemble in the simulations of this chapter, using the random-walk

method set up in my particle-transport model.

3. Placing constraints on grain-growth and allowing for a radial dependence to the grain-size

distribution. While grain growth in disks is believed to be quite rapid, both theoretical

models and observations (e.g., Birnstiel, Dullemond, & Brauer (2009); Kwon et al. (2009))

suggest that it is more rapid in the denser regions of the disk close to the central star. The
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full treatment of coupled radial transport and grain growth is beyond the scope of this work.

However, I consider that coagulation should produce the largest grains only at small disk

radii, and that their appearance at larger radii must not occur until later than t = 0 times.

I use the cartoon grain-growth model described in §3.4 to place constraints on the initiation

timing and radial extent of the various grain sizes followed in these transport simulations.

Below I describe the specifics of the disk-evolution model used in these large-scale dust-distribution

simulations, the setup of the particle-transport model and the initial distributions of simulation

dust-grains of various sizes, and the method used to combine simulations of separate grain sizes

into a composite map of the evolving dust-mass distribution.

6.2.1 Model Disk Setup

For the work presented in this chapter, I continue to use the 1D, viscously evolving model for the

disk surface-density profile discussed in §2.3, but lift the static-temperature constraint of Chapters 4

& 5. As discussed in §2.4, I can calculate an energy-balanced temperature for the disk midplane

that accounts for heating from both external illumination and energy dissipation by accretion.

However, running the model to calculate this energy-balanced temperature is computationally

expensive. Therefore, for the particle simulations run for this chapter, I run disk models using the

time-evolving, power-law fit to the temperature distribution discussed in §2.4.2. For this fit

T (R, t) = TAU (t)

(

R

1AU

)qT (t)

, (6.1)

(truncated to greater-than or equal-to the local-cloud background temperature, Tcloud) where

TAU (t) and qT (t) both follow the functional form

x (t) = (x0 − x∞) exp

[

−
(

t

tx

)bx
]

+ x∞ . (6.2)

The x0, x∞, tx, and bx constants for both TAU (t) and qT (t) are chosen to match the temperature

evolution produced for disks run using an energy-balanced temperature. For the energy-balanced

models, I assume that Tcloud = 10K, L? = 5.0175L¯ (which, in the absence of accretional heating,

matches the static-temperature value at 1AU used in the previous chapters), and that the starlight

strikes the disk at an angle of φ = 0.05 at all disk radii (see §2.4.1). Table 6.1 provides the
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MD,0 (M¯) Rd (AU) α TAU,0 (K) TAU,∞ (K) tTAU
(yr) bTAU

qT,0 qT,∞ tqT (yr) bqT

0.01 20 10−2 458.184 279.94 1.9471788e5 1.02847
-0.59066 -0.497683 2.2240062e5 1.08899

0.03 5 10−2 500 279.94 2.3981058e5 0.966192
-0.61 -0.497683 2.7206114e5 1.00691

0.03 20 2 × 10−2 500 279.94 2.2784514e5 0.917239
-0.61 -0.497683 2.6107508e5 0.958942

0.03 20 10−2 500 279.94 3.494091e5 0.924903
-0.61 -0.497683 3.9992166e5 0.965539

0.03 20 5 × 10−3 500 279.94 5.066708e5 0.906569
-0.61 -0.497683 5.8107436e5 0.942996

0.03 40 10−2 472.431 279.94 5.0936365e5 1.0102
-0.596439 -0.497683 5.8878103e5 1.07481

0.09 20 10−2 600 279.94 7.2640871e5 1.00336
-0.65 -0.497683 8.1425523e5 1.02683

Table 6.1: Disk parameters and power-law temperature fitting constants (Equations (6.1) & (6.2) )
for the disk models used in this chapter. The t = 0 temperature is lower if there is initially much
less disk mass at small AU. The time-scaling constants, tTAU

and tqT give a sense of the relative
lifetimes of the various disk models, though the lifetimes are more than an order-of-magnitude
longer than either of the scaling-constants. The parameters of the fiducial model are in bold.

values of the fitting constants used for each of the disk models run in the simulations of this

chapter. While the disk surface-density evolution is very similar using either the energy-balanced

or the parameterized-power-law temperature models, changes in disk temperature also correspond

to changes in diffusivity for the particle ensemble. Therefore, in §6.3, I include for comparison

a simulation of particle distributions run using the fully energy-balanced temperature disk model

within the fiducial setup for MD,0, Rd, and α.

As previously, I use t = 0 disk profiles that follow the form

Σg (R, t = 0) =
Ṁ0

3πν (R)

(

1 −
√

Rin

R

)

exp

(

− R

Rd

)

, (6.3)

where, for this initial profile, I use an assumed function for the t = 0 viscosity: ν (R) = ν0αR.
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With this ν (R) profile, I can constrain the initial mass of the disk as

MD,0 =
2Ṁ0Rd

3ν0 α

(

1 −
√

πRin

Rd

)

, (6.4)

and define the magnitude of the t = 0 surface-density profile appropriate to my chosen initial disk

mass. In these simulations of particle (re)distribution, I consider results for a range in the disk-

model parameters. From the fiducial state (fiducial-model parameters shown in bold), I vary the

initial disk mass: MD,0 = 0.09, 0.03, and 0.01M¯, the initial disk compactness: Rd = 5, 20, and

40AU, and the alpha-scaling of the disk viscosity: α = 5 × 10−3, 10−2, and 2 × 10−2.

Unlike in Chapters 4 & 5, I consider only the accretion-flow case for the radial velocity of

the disk gas (§2.6) with gas-drag parameters set to the midplane values (as in Chapters 4 & 5).

While the flow structure of both gas and dust is most certainly complex with height above the

disk midplane (as discussed in §3.1), these choices represent the simplest with which to examine

global dust distributions within a 1D disk model. Furthmore, as I am testing the hypothesis that

headwind-drag infall of particles may trigger planetesimal formation, it is appropriate to consider

gas drag at the midplane, where headwind-drag motions are most consistently inward and where

said planetesimal formation takes place.

6.2.2 Particle Transport Setup

For the simulations of this chapter, I consider grain sizes of 0.2 µm – 2 cm (with ρd = 1 g cm−3),

meant to represent the general range of grain sizes produced by coagulative grain-growth processes.

Above centimeter sizes, bouncing and collisional fragmentation represent possible barriers to further

growth (Brauer, Dullemond, & Henning, 2008; Zsom et al., 2010), and so I assume 2 cm as the

upper-limit grain size for tracking a global dust distribution. Here, I continue to calculate grain

trajectories based on Epstein-drag forces only, as described in Chapter 3, though there is a brief

period near t = 0 where 2 cm grains for all disk models (and 2 mm grains for the initially most-

compact disk model, Rd = 5 AU) are technically in the Stokes-drag regime (§3.2.1) for peak gas

densities (at . 1 AU in the fiducial disk model) at the disk midplane. As I am here interested in

global transport over much larger than AU scales, however, the use of Epstein drag throughout is

taken as sufficiently accurate.
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There are two primary differences between the simulations of this chapter and those of Chap-

ters 4 & 5. The first is that here I consider motions of globally distributed dust grains, rather

than only those initiated close to the parent star. The second is that, rather than examine the

distributions of individual grain of a given size separately, here I build a simulation set from a

compilation of simulations run for a a range of grain sizes: 0.2 µm–2 cm, spaced per decade in

grain size. I describe the method for building these composites of the dust-grain distribution in

§6.2.3. Here, I will elaborate on the initial distribution of dust grains in these simulations as it

depends on particle size.

Both observations and models (e.g. Kwon et al. (2009); Dullemond & Dominik (2005)) support

the idea that grain growth is more rapid in the inner, denser regions of a disk, than the outer,

colder, more tenuous regions. Subsequently, one would expect a time lag in the formation of grains

of a certain size as one moves out in the disk. In these dust-distribution simulations, I represent

this lag to first order by dividing the model disk up into radial zones and initiating grains in each

zone according to the cartoon model of grain-growth described in §3.4 (which predicts when grains

of a given size should appear at a given location in the disk). I run this grain-growth model at

a representative radial location for each zone for each simulated particle size from 2 µm to 2 cm;

all 0.2 µm grains are initiated at t = 0, randomly distributed throughout the entire disk gas-mass

distribution, under the assumption that 0.2 µm is the base size of the grains. I run a total of 20,000

particles for each grain-size transport simulation.

For the zone-initiated grain sizes, I consider 10 zones in the disk, with representative points

spaced logarithmically from 0.5–1000 AU. The zone boundaries are places logarithmically between

the representative points, though the inner-most zone boundary is extended to the full inner-

boundary of the disk grid. The number of grains initiated in each zone, is taken as 20,000 divided

by the number of zones used for that grain size. No growth to 2 µm or above is found to occur past

zones 7 or 8 (depending on the disk model used), extending out to 121 or 282 AU, respectively. 2

cm-sized grains are initiated only out as far as zones 3 or 4, extending to 4.1 or 9.6 AU. The zone

ranges used for each disk model and particle size (dictated by the grain-growth model of §3.4) are

given in Table 6.2. Naturally, the smaller grain sizes are initiated the most quickly, with 2 µm-sized

grains initiated out to 22 AU within the first 2000 years for the fiducial-disk model, and the full

121 AU within 4000 years. Alternately, in the fiducial-disk model, 2 cm grains aren’t initiated into
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MD,0 (M¯) Rd (AU) α 2 µm 20 µm 0.2 mm 2 mm 2 cm

0.01 20 10−2 1–7 1–6 1–5 1–4 1–3

0.03 5 10−2 1–7 1–6 1–5 1–4 1–3

0.03 20 2 × 10−2 1–8 1–7 1–6 1–4 1–3

0.03 20 10−2 1–7 1–7 1–6 1–4 1–3

0.03 20 5 × 10−3 1–8 1–7 1–6 1–5 1–4

0.03 40 10−2 1–8 1–7 1–6 1–4 1–3

0.09 20 10−2 1–8 1–7 1–6 1–5 1–4

Table 6.2: Table of radial zones (right-hand columns) into which grains of different sizes were
initiated for the different disk models used (parameters in left-hand columns). Ten zones are
logarithmically spaced with representative points from 0.5–1000 AU. Parameters for fiducial model
are presented in bold text.

zone 3 (out to 4.1 AU) before t =42,000 years.

6.2.3 Forming Composites of Multiple Single-grain-size Simulations

Here, I outline the method used to combine a set of particle-transport simulations for different

grain sizes into a composite map of the distribution of disk solids. Because one cannot simulate

the full number of particles expected to reside within a disk, this essentially comes down to a mass-

allocation scheme, where each simulation particle represents a large mass of disk solids. Because

the primary focus of this chapter is on changes in the dust-gas composition of the disk, when

assigning mass to simulation particles, I use a gas-equivalent mass, MGE. Gas-equivalent mass can

be compared directly to the disk-gas mass, Mg, in a given region to define the local disk metallicity,

with MGE = Mg for original (solar) metallicity and MGE > Mg in regions enhanced in solids

relative to the gas. For this work, I seek regions of the disk where the enhancement is above a

certain threshold (usually about a factor of 2–10)1. I use MGE to define the enhancement factor as

E =
MGE

Mg
. (6.5)

For this work, I assume that at t = 0, the entire mass of disk solids is in 0.2 µm particles that

1The required enhancements quoted in the results of planetesimal-formation papers often fall
between about 2–10. However, the specific requirements depend on both the planetesimal-formation
model and the specific local conditions within a disk. Required enhancement factors are discussed
in more detail in §6.4.
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are evenly and randomly distributed throughout the entire disk mass (grains observed in the ISM

are sub-micron in size (Mathis, Rumpl, & Nordsieck, 1977)). Radial transport of each dust size

is simulated using an ensemble of 20,000 particles. Therefore, at t = 0, all of the 0.2 µm-sized

particles are assigned mGE = MD,0/20, 000, where mGE is the gas-equivalent mass assigned to an

individual simulation particle, and MD,0 is the total disk mass at t = 0, defined in §6.2.1.

Next, to add in the transport simulations for the larger particle sizes (binned logarithmically,

with bin boundaries placed logarithmically between each size simulated), I consider that grain-

growth occurs separately within the disk zones defined in §6.2.2. Each time new particles are

initiated into a new size bin within a given zone, I first add up the total MGE of the simulation

particles currently located within that zone. I do this for particles up to and including the grain

size that has just locally been initiated. I do not include the mass from any larger particles that

may have been transported into that zone from one at smaller disk radii, as these large-particle

interlopers are considered outside the grain-growth processes occurring within the zone of interest.

Next, I calculate the fraction of the total MGE that should be portioned into each dust-size bin,

based on a power-law distribution of particle sizes

dnp

dsd
∝ sqs

d , (6.6)

where np is the number density of grains of a given radius sd, and qs is the power-law index of the

distribution. For the fiducial simulations, I take qs = −3.5, corresponding to the size distribution

of grains measured for the ISM (Mathis, Rumpl, & Nordsieck, 1977). However, flatter grain-size

distributions are often observed in disks around other stars and interpreted as a sign of grain-growth

within the disk (e.g., Ricci et al. (2011)), while collisional size-distributions tend toward steeper

trends (Dohnanyi, 1969), often approximated as qs = −4 (e.g., Bai & Stone (2010a)). Therefore,

in §6.4, I also present composite simulations compiled with qs = −4 and -2.5 for comparison with

the fiducial qs choice.

To continue, the volume mass density of particles may be found by (Garaud, 2007)

ρp =

∫ smax

smin

dnp

dsd
m (sd) dsd ∝

(

s4+qs
max − s4+qs

min

)

, (6.7)
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where ρp is the local volume density of particles and m (sd) =
4

3
πs2dρd is the mass of a dust particle

of radius sd. Therefore, the fraction of dust mass in a given size bin can be calculated as

ρp,sd

ρp
=

(

s4+qs

bmax − s4+qs

bmin

)

(

s4+qs
max − s4+qs

min

) , (6.8)

where smin and smax are the lower and upper bounds, respectively, on the entire size distribution,

and sbmin and sbmax are the bounds on a given size bin. I define size bins logarithmically, so that,

e.g., redistributing mass between 0.2µm and 2µm size bins (sd = 0.1 and 1µm) has bin boundaries

at sd = 0.0316, 0.316, and 3.16µm. Finally, note that qs = −4 is a special case for which

ρp,sd

ρp
=

[ln (sbmax) − ln (sbmin)]

[ln (smax) − ln (smin)]
, (6.9)

distributing an equal amount of mass into any set of logarithmically defined size-bins.

Once I know the fraction of gas-equivalent mass to be portioned into each size bin, I divide

it up evenly between the particles of that size currently in the initialized zone, and allot the new

mGE to each particle. Note, that because of the wide range in the number of particles in a zone

between different size bins (ranges as large as 230–6666 particles between bins) and the fact that

successive size bins tend to have roughly half-an-order-of-magnitude difference in mass allotted to

them, individual simulation particles may be allotted rather different values of mGE to carry within

the transport simulation. This effect is mitigated somewhat by the fact that the larger size bins

receive a larger share of the mass but also tend to have more particles to distribute it amongst

because their initialization range has a smaller radial extent, dividing 20,000 total particles between

fewer zones.

Finally, once MGE has been allotted among all the particles and particle sizes at each time step,

I can calculate a map in time and disk radius of the local enhancement factor using Equation (6.5)

by adding up the total MGE and gas mass, Mg,i = π
(

R2
i+1/2 −R2

i−1/2

)

Σg,i, in each radial grid

cell. I also combine Ei information in both radial and time bins (Ri and δt) in order to reduce the

noise of this output. I consider the enhancement, E, averaged across (usually) 3 grid cells so that

Ei′ =
(MGE,i +MGE,i+1 +MGE,i+2)

(Mg,i +Mg,i+1 +Mg,i+2)
, (6.10)

174



T
im

e
 (

ye
a

rs
)

6×106

5×106

4×106

3×106

2×106

1×106

0

log 10 R (AU)
43210−1

0.1

1

10

100

E
n
h
a
n
c
e
m
e
n
t
 
o
f
 
d
u
s
t
/
g
a
s

2.0

1.5

1.0

0.5

0.0

6×106

5×106

4×106

3×106

2×106

1×106

0
43210−1

2 microns
6×106

5×106

4×106

3×106

2×106

1×106

0
43210−1

20 microns
6×106

5×106

4×106

3×106

2×106

1×106

0
43210−1

0.2 mm

Figure 6.1: Example composite map of dust/gas enhancement factor (top panel) and maps of some
of the contributing size bins (bottom panels). The black contours trace the evolving gas surface
density spaced by orders of magnitude between 10−4 and 103 g cm−2. The grey regions mask out
bins for which the particle statistics were too low to report dust/gas enhancement values.

where i′ indicates the index value of the resolution-reduced grid, and I average over (usually) 250

output time-steps so that

Ei (∆t) =
1

∆t/δt

∆t/δt
∑

j=1

Ei,j . (6.11)

The transport simulations for this chapter output particle positions every δt = 200 years, so the

composite-enhancement maps in the fiducial case have a time resolution of ∆t = 5 × 104 years.

An example composite map of the enhancement factor is shown in the top-panel of Figure 6.1,

overlain with disk-gas surface-density contours to provide context of the gas disk evolution. The
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bottom-panels plot example maps of the individual grain-size components of the whole. Note that

the scalloped artifacts visible in the composite map mark the boundaries of final particle infall for

successive dust-grain sizes.

Last, while the enhancement factor is probably the more fundamental output of these simulation

composites, it can also be translated into a value for the dust-solids surface-density, Σp, using the

more general definition of the enhancement factor

Ei,j =

(

Σp

Σg

)

i,j

/

(

Σp

Σg

)

¯

, (6.12)

where (Σp/Σg)¯ = Z¯ refers to the initial (solar) dust-gas composition of the disk, the baseline

metallicity. Z¯ used in this work is taken from Lodders (2003) and is broken into two components:

Z¯ = Z0Zrel (T ) , (6.13)

where Z0 = 0.0149 is the total fraction of condensable material thought to be present in a solar-

composition gas, and Zrel (T ) is the fraction of that material believed to actually be condensed

based on the local gas temperature. The values of Zrel used are

Zrel = 0.3289 for T > 182K ,

Zrel = 0.7129 for 182K > T > 41K ,

Zrel = 1 for T < 41K ,

with transitions corresponding to the condensation of water ice (the snow line) and to the conden-

sation of methane (and ammonia) ice. Therefore, from Equations (6.12) & (6.13),

Σp,ij = EijΣg,ijZ¯ Zrel (Tij) . (6.14)

6.3 Results: The Global Distribution of Solids

Note that the simulations presented below were run (like the outward-mixing simulations of Chap-

ters 4 & 5) on a 2.4 GHz Intel Core2Duo. A full set of simulations including runs with 0.2 µm – 2

176



T
im

e
 (

ye
a

rs
)

6×106

5×106

4×106

3×106

2×106

1×106

0

log 10R (AU)
43210−1

0.1

1

10

100

Fiducial
6×106

5×106

4×106

3×106

2×106

1×106

0

log 10R (AU)
43210−1

Energy−Balanced Temp.

Enhancement of dust/gas
2.01.51.00.50.0

Figure 6.2: Enhancment maps for dust transport simulations within the fiducial disk model where
MD,0 = 0.03M¯, Rd = 20 AU, and α = 10−2. The fiducial-model setup uses a fitted–power-law
temperature distribution during the grain-transport simulations. The results of simulations run
using the energy-balanced temperature distribution are included for comparison. Both maps were
compiled using three radial-grid-points for every radial-bin and averaging 250 time-points for every
∆t = 5 × 104 years time-bin. Black on the map indicates regions of ×2 enhancement or greater.
Grey indicates regions where the particle-to-gas resolution was too low to report results. Black
contours range from 10−4–103 g cm−3, tracing the gas-disk surface-density evolution.

cm-sized grains required roughly 2–2.5 weeks of computation time in the fiducial-disk setup. More

massive disks required longer run times due to not only a longer disk lifetime but also to more

extended retention of grains within the denser disk-gas medium. Runs using a larger value of α for

the disk viscosity have model disks with shorter lifetimes (roughly as a function of
√
α) but also

take shorter disk-evolution time-steps (∝ α), and are therefore more computationally expensive on

the whole.

In Figure 6.2, I present the composite–enhancement-map results for the fiducial disk model as

well as the map for the same disk model run using an energy-balanced temperature during the

transport of the grains. The two are quite similar, providing reassurance that the fitted–power-

law temperature distribution allows for the representation of global dust transport to sufficient

accuracy within an evolving disk. In these maps, green areas represent no change from the initial
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bins. Panel-b) Composite enhancements varying the largest grain size assumed for particle-size
distribution. For no grain growth (0.2 µm grains only) the dust-to-gas ratio remains everywhere
near unity. Allowing larger grain sizes also allows inward drift of the dust population.

dust-to-gas ratio, red areas represent depletion of dust relative to the gas, and black areas represent

×2 enhancement of the dust or greater.

From these plots we see that the fiducial-disk simulations do not produce large radial concen-

trations of dust in the main and inner disks until near the end of the disk lifetime. In §6.4, I will

compare these measured enhancement values to predicted requirements for models of planetesimal

formation in more detail. Recall, however, that a common minimum requirement quoted to aid

planetesimal formation is a doubling of the dust-to-gas ratio above solar metallicity and that the

core-accretion scenario for giant-planet formation requires the formation of large cores when a sub-

stantial fraction of the disk gas yet remains. At very early times, some small grains are pulled

outward with the outwardly expanding disk edge. Afterward, one sees that relative inward drift

of the grain population does occur in these simulations, as marked by the depletion of solids in

the outer regions of the disk. However, this influx of mass to the inner disk is simply offset by

concurrent loss, particularly of the large particles, onto the parent star.

The importance of the large amount of dust mass contained in large particle sizes is shown in

Figure 6.3 where, for t = 1.5 Myr, I plot in panel-a the portion of the enhancement corresponding

to each grain-size bin, and (in panel-b) the compiled enhancement-factor for grain-size distributions
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truncated at successively smaller particle sizes. From this second plot, one can see that grain-

growth to roughly 20 µm sizes results in inward drift that depletes the outer disk of dust, and that

growth to larger sizes subsequently depletes the inner disk of dust mass.
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Figure 6.4: Enhancement maps from the fiducial simulations, as well as from simulations with
Sc = 1/2 and 2. The simulations for different Schmidt number were run with output at lower
resolution than the fiducial setup. All composite maps here were compiled using six radial-grid-
points per radial-bin and averaging 25 time-points for every δt = 5× 104 years time-bin. Top-right
panels plots the enhancement values as a function of R at t = 1.5× 106 years for these three cases,
as well as for the energy-balanced-model simulations shown in Figure 6.2. Maps following the same
conventions as in Figure 6.2.
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Next, in Figure 6.4, I plot a comparison between the results for the fiducial simulations, and

simulations run varying the diffusivity of the particle ensemble by a factor of 2 in either direction.

Here one finds little difference between the global dust distributions produced for the different cases.

A lower diffusivity leads to greater segregation of the particle-size distribution and emphasizes

the discreet particle sizes used for these simulations. However, a real disk should have a mostly

continuous particle-size distribution, and therefore the results for the global distribution of solids

cannot be said to be qualitatively different from the other two cases. The higher-diffusivity case
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Figure 6.5: Enhancement maps for simulations run in several different disk models, separately
varying Rd (horzontal), MD,0 (vertical), and α (diagonal). Fiducial-model map (MD,0 = 0.03M¯,
Rd = 20 AU, α = 10−2) shown in the center panel. Maps follow the same conventions as in
Figure 6.2.

180



allows large grains to remain in the disk slightly longer than usual (all 20µm grains are lost after

4.1 Myr rather than by 3.8 Myr as in the fiducial simulations), but again, this is insufficient to

substantially impact the global distribution of solids. That the diffusivity plays such a small role

in the global solids distribution suggests that, on this scale, the outward boundary defined by

headwind drag for each particle size is the stronger of the two effects.

Finally, in Figure 6.5, I plot the composite enhancement maps for simulations run varying the

disk-model parameters, MD,0, Rd, and α. Qualitatively, the patterns of evolving global enhance-

ment are roughly constant across the different disk-model setups. The infall of the smaller grain

sizes causes depletion in the dust relative to the gas at the outer edge of the disk, while in the main

disk enhancement values remain near unity for somewhere between 40 and 60% of the total disk

lifetime. The initially more compact disk shows somewhat greater outer-disk depletion because a

larger fraction of grains are processed to larger sizes at early times, while the disk using α = 5×10−3

shows some of the enhanced segregation of the binned particle sizes typical of the lower-diffusivity

simulations. But the basic shape of dust-to-gas values within the disk as controlled by aerodynamic
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Figure 6.7: Dust surface-density (a) and mass-per-radius (b) distributions for the fiducial disk
simulations.

forces appears fairly universal, and in Figure 6.6, I plot the radial cross-section of E at t = 1.5 Myr

for each of these disk models for comparison. The primary result, of these simulations then, is that

a smoothly-defined, azimuthally-symmetric, evolving disk model tends to lose dust-mass smoothly

inward onto the parent star at a rate that generally keeps pace with the loss of accreting disk-gas

mass, and that variety in basic disk properties/parameters does not tend to produce special-case

disks with respect to this process.

The results presented above all look at the distribution of the dust-to-gas ratio in evolving

protoplanetary disks, which is an important parameter for certain models of planetesimal formation.

However, important to any study of planetary-system formation is simply the distribution of the

solid material itself. In Figure 6.7 panel-a, I present surface-density profiles for the dust solids in

the fiducial-disk simulations at several times. In panel-b, I translate those profiles into distributions

of solid-mass per AU. Jumps in the distributions at around a few AU correspond to the snow-line,

beyond which more material should be condensed into solids for a given disk metallicity. At t = 0,

my fiducial disk has just over 100 Earth-masses of solid material spread throughout the entire disk,

with the greatest concentration just beyond the snow line at around 5–10 AU. As the disk evolves,

the solids distribution spreads outward with the disk and decreases in total quantity, to 40 MEarth

at t = 5 × 105 years, and 10 MEarth at t = 2.5 Myr. Presumably, planetesimal formation at some

earlier time would allow for the retention of a larger fraction of this solid material. However, my
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Figure 6.8: Dust surface-density profiles at two times for variations on the disk-model physical
characteristics. The fiducial model has MD,0 = 0.03M¯ and Rd = 20 AU.

particle-transport simulations record only the loss of material as fine grains along with the accreting

disk gas itself. Of course, different disk models must, by their nature, exhibit different Σp profiles,

and a few of these (corresponding to different disk models of Figure 6.5) are shown in Figure 6.8.

6.4 Comparison with Required Enhancement Factors

While the enhancement factors for the dust-to-gas ratio produced by my transport simulations are

mostly fairly low, there are a number of different factors affecting the enhancement required under

different models of planetesimal formation so that, in Youdin & Shu (2002) for example, very low

to no enhancement may be required for certain disk types and conditions to produce planetesimals.

In this section, I compare my simulated enhancement factors to those required by theories of

planetesimal formation, with emphasis on the Youdin & Shu (2002) collapse/precipitation model,

which has relatively straight-forward theoretical requirements. In §6.5, I include discussion of some

of the specific requirements of the streaming-instability model for planetesimal formation. For the

moment, note that there are multiple parallels between the two and that, for example, both models

require increasingly large enhancement factors to accomplish planetesimal formation in regions of

the disk that have a steep pressure gradient.

In the Youdin & Shu (2002) model, planetesimal formation is accomplished by the gravitational

collapse of solids settled out to the disk midplane. It assumes that the disk is quiescent, with no
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global turbulence to stir the particles upward, but also that, as particles settle, shear between the

mostly Keplerian dust layer and the more slowly rotating gas will produce Kelvin-Helmholtz insta-

bilities that will tend to mix particles upward. A dust disk in equilibrium with Kelvin-Helmholtz

effects should then settle out only to a degree, characterized by the critical Richardson number,

Ric, where the Richardson number in general characterizes the balance between buoyancy and

shearing effects across the vertical profile with Ri ∝ ρgz/ (∂ρp/∂z) (Youdin & Shu, 2002), and the

critical value is typically assumed to be Ric ≈ 1/4 by inspection of conditions for instability (see

Pringle & King (2007) pp144–145). Youdin & Shu (2002) point out, however, that for midplane

dust densities in this regime above a certain mass threshold, the gravity of the dust sub-disk should

dominate and lead to the collapse of solids at the midplane. The criteria for this collapse, given in

their Equation (15), is

Σp,c = 2
√

RicηδφRρgs (ψ) , (6.15)

where Σp,c is the critical surface density of the solids for collapse, ηδφ relates the radial pressure

gradient in the disk and the shear between gas and dust, and s (ψ) is a correction factor accounting

for the self-gravity of the gas. In the paper, these later two variables are defined as

ηδφ ≡ −(∂P/∂R)

2ρgRΩ2
, (6.16)

and

s (ψ) ≡ (1 + ψ) ln

[

(

1 + ψ +
√

1 + 2ψ
)

ψ

]

−
√

1 + 2ψ ;

ψ ≡ 4πGρg

Ω2
K

. (6.17)

Assuming a gas density of ρg ≈ Σg/2Hg, where Hg = csR/vK in a vertically isothermal disk model,

I can convert Equation (6.15) into a critical dust-to-gas ratio:

(

Σp

Σg

)

c

=
√

Ricηδφs (ψ)
vK
cs
. (6.18)

Finally, to report this as a required enhancement factor, I must include the values for solar (initial)
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Figure 6.9: Required Enhancements for midplane precipitation with Ric = 1/4 for the disks of
Youdin & Shu (2002) and my fiducial-disk model.

metallicity and the fraction of solids condensed out at different disk temperatures.

Eprecip ≥ (Σp/Σg)c

(Σp/Σg)¯
=
√

Ric
vK
cs

ηδφs (ψ)

Z0Zrel (T )
, (6.19)

where my conventions for Z0 and Zrel (T ) are defined in §6.2.3.

This collapse criterion is separate from the simpler gravitational-collapse criterion using the

Toomre-Q parameter, Qp < 1. From Youdin & Shu (2002),

Qp ≈ Ω2Hp,c

πGΣp,c
; (6.20)

Hp,c ≡
√

RicηδφRh (ψ) ;

h (ψ) =
√

1 + 2ψ − ψ ln

[

(

1 + ψ +
√

1 + 2ψ
)

ψ

]

.

The enhancement criterion for Q-collapse is then

EQp ≥
√

Ric
v2
Kηδφh (ψ)

πGRΣgZ0Zrel (T )
. (6.21)

In Figure 6.9, I plot the required enhancements calculated using Equations (6.19) & (6.21)

(Ric = 1/4) for the disk models considered in Youdin & Shu (2002) (panel-a) and for my fiducial
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model ΣAU (g cm−2) qΣ TAU (K) qT

H 1700 −3/2 280 −1/2
A 1700 −3/2 170 −0.63
B 1700 −3/2 100 −3/4
Af 1700 −1 170 −0.63
Af5 8500 −1 170 −0.63

fiducial 1176 -1 278.9 −1/2

Table 6.3: Parameters for disk models used in Youdin & Shu (2002) compared to rough steady-disk
equivalents for t = 0 of my fiducial model. In general, Σg (R) = ΣAU (R/1AU)qΣ and T (R) =
TAU (R/1AU)qT . ”H” designates the minimum-Solar-Nebula model of Hayashi-1981 (see Armitage

(2010) pp 4–5).

disk model at several times (panel-b). Panel-a does not provide a perfect replica of the Youdin &

Shu (2002) results, in part because I’ve used my conventions for Z0 and Zrel (T ), taken from Chiang

& Youdin (2010) and Lodders (2003). In Table 6.3, I list the main parameters defining the different

Youdin & Shu (2002) disk models, as well as the roughly-corresponding values (at t = 0) for my

fiducial disk model (Youdin & Shu (2002) use simple power-law disk models while my models have

both a roll-over in Σg at the inner disk edge and an exponential tail-off of the outer disk).

Figure 6.9 demonstrates several interesting features of these enhancement requirements.

* First, note that my fiducial model calls for remarkably high Eprecip in the outer disk, particu-

larly at early times. This is due to the strong dependence of Eprecip on the dust-gas shearing

term, ηδφ. When the radial pressure gradient is steep, as near the outwardly expanding disk

edge, this shearing is strong, requiring large dust-to-gas ratios to be overcome. The similar

importance of ηδφ in streaming-instability models (e.g., Bai & Stone (2010b)) is discussed in

§6.5.

* Second, while the Youdin & Shu (2002) paper de-emphasizes the roles of the disk gravity,

represented by s (ψ), the time-series for Eprecip of my fiducial model, particularly in the inner

disk, demonstrates the importance of the local disk mass for meeting dust/gas-precipitation

requirements. s (ψ) (and therefore Eprecip) becomes large, when ψ is small, which may occur

for either a low local disk surface density, or for a locally hot disk.

* Finally, the Eprecip curves for both sets of disk models emphasize the importance of the
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ice lines, particularly the snow line, as places of potential local minimum in metallicity re-

quirements for planetesimal formation. While my particle-transport model does not treat

evaporation and vapor-transport effects, the simulations of Ciesla & Cuzzi (2006) do show

an additional peak in the dust population just outside the snow line due at least partially to

local concentration of diffused and recondensed vapor. This also corresponds to a peak in the

disk opacity and heating, however, so it is not clear what the degree of advantage the region

just outside the snowline lends to planetesimal formation via gravitational precipitation.

Next, while the calculations above assume Ric = 1/4, it is not entirely clear what the proper

value should be. Lower values of Rimean that the dust is settled more densely toward the midplane.

Therefore, lower Ric would mean that greater settling was allowed to take place, without stirring by

Kelvin-Helmholz instabilities, thereby increasing the mass of the dust sub-disk and the importance

of its gravitational influence. Lee et al. (2010) ran 3D simulations of vertically-stratified disks with

well-coupled dust particles to test for physical variables of Ric. From these simulations, they find

the onset of Kelvin-Helmholtz instability at

Ric ≈
ερ,0

36
, (6.22)

where ερ,0 is the dust-to-gas volume-density ratio at the disk midplane. This means that for many

values of disk metallicity, the critical Richardson number could potentially be much lower than

1/4, and possibly that the dust/gas requirements for planetesimal formation could be lower as

well. ερ,0 can be written as ερ,0 ≈ (Σp/Σg) / (Hg/Hp) and, assuming Hp follows from Hp,c in

Equation-set (6.20),

Ric ≈
cs (Σp/Σg)

36vKηδφ

√
Rih (ψ)

=
csEZ0Zrel (T )

36vKηδφ

√
Rih (ψ)

. (6.23)

This describes a critical Richardson number that is specific to the midplane density produced for a

given enhancement factor, E, with a vertical dust distribution specified by a given Ri. If, for fixed

E, the dust distribution settles further toward the disk midplane, Ri decreases and Ric given in

Equation (6.23) increases. At some point, defined by Ric = Ri = Ri′c, this effect should balance

out. One may then define a critical Richardson number based on the Lee et al. (2010) simulations
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Figure 6.10: Required Enhancements for midplane precipitation using the results of Lee et al. (2010)
and Equation (6.24) to calculate Ric for the disks of Youdin & Shu (2002) and my fiducial-disk
model.

as a function of the enhancement factor alone:

Ri′c =

(

csEZ0Zrel (T )

36vKηδφh (ψ)

)2/3

. (6.24)

Using Ri′c in Equations (6.19) & (6.21), I define alternate enhancement criteria for precipita-

tion/collapse of solids at the midplane:

E′

precip ≥ vKηδφs (ψ)3/2

6csZ0Zrel (T )
√

h (ψ)
, (6.25)

and

E′

Qp
≥

√
cs vKηδφh (ψ)

6Z0Zrel (T )

(

ΩK

πGΣg

)3/2

. (6.26)

Figure 6.10 plots the required enhancement factors using these new definitions for the same disk

models considered in Figure 6.9. The result is enhancement requirements that are generally some-

what lower than those assuming Ric = 1/4 (about a factor of 2 lower at the snow-line), particularly

at early times. However, in the very-outer-disk regions where radial pressure gradients are high,

Equations (6.25) & (6.26) actually produce somewhat higher enhancement requirements. The en-

hancements required for precipitation in the expanding outer disk are so high in under both Ric
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Figure 6.11: Measured, compiled enhancement values for the fiducial-disk model at several times
and using several particle-size distributions compared to enhancement factors required for precipi-
tation/collapse as given by Equations (6.25) & (6.26).

assumptions, however, as to be virtually unobtainable. Therefore, for the rest of this section, I

compare the dust/gas enhancements produced by my particle-transport simulations to the slightly

more forgiving requirements from Equations (6.25) & (6.26).

The first such comparison is shown in Figure 6.11 for the fiducial-disk model at several times. In
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this figure, I compare enhancement factors required for planetesimal precipitation to enhancement

results from my simulations compiled using three different assumed particle-size distributions. The

fiducial distribution, with qs = −3.5, uses the particle-size distribution measured for the ISM

(Mathis, Rumpl, & Nordsieck, 1977), whereas qs = −4 is often used for a collisional size distribution

(e.g., Bai & Stone (2010a)), and qs = −2.5 corresponds to shallow distributions, used as indicators of

grain-growth, measured in some protoplanetary-disk systems (Ricci et al., 2011). From Figure 6.11,

it is clear that the size distribution used to compile my simulation results has little impact on the

conclusions of the fiducial runs. Radial drift of particles does not produce enhancement sufficient

to lead to planetesimal formation via precipitation for this model disk. The exception occurs at

the very end of the disk lifetime when photoevaporative clearing of the disk leads to an outward-

sweeping pressure-maximum point at large AU where ηδφ goes to zero and Eprecip drops to small

values.

The enhancement maps of Figure 6.5 show that the dust-to-gas distributions for the more

extended or more massive disk models are qualitatively like that of the fiducial model. However,

the enhancement criteria for these disks should differ from the fiducial case and, perhaps, be more

favorable to collapse. In Figure 6.12, I plot measured versus required enhancements for the larger

(MD,0 = 0.03M¯, Rd = 40 AU, & MD,0 = 0.09M¯, Rd = 20 AU) disk models at two times. While

the collapse criteria are slightly less stringent than in the fiducial case, this is generally insufficient

to allow the simulated enhancement factors to cross the threshold for precipitated planetesimal
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formation. At early times, measured E is still close to unity, and near the end of the disk lifetime

both Eprecip and measured E show similar behavior to the fiducial case. Once again, it is just

before and during disk clearing by photoevaporation that precipitation criteria are the closest to

being met, with equally strong potential for this to happen in the smaller-disk cases, as shown in

Figure 6.13. In fact, near the end of the disk lifetime, the smaller disks have a slight advantage in

that the more rapid loss of disk gas allows for infall of the smaller dust-grain population.

Of course, it can be difficult to rapidly pile-up large grains via radial drift when most of those

grains originate at small AU. The observations of Kwon et al. (2009) of a collapsing cloud suggest

that grain-growth may be very rapid indeed, and so the restrictions I have placed on the extent

and timing of the large particle sizes may be too conservative. Furthermore, observations of pro-

toplanetary disks tell us that large grains do exist at large AU (Testi et al., 2003). Therefore,
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I next present a simulation set in which all grain sizes were initiated at t = 0 and entirely ran-

domly (evenly) distributed throughout the mass of the t = 0 gas disk so that the initial grain-size

distribution is entirely independent of R.

In Figure 6.14, I plot composite enhancement maps from this t0 = 0 simulation for two cases:

one in which the particle-size distribution extends from 0.2 µm to 2 cm, and one in which only the

smaller 0.2–20 µm grains are included. Because qs = −3.5 distributes more mass into larger sizes

than small, in the first case, most of the dust-mass in the disk rapidly falls inward to small AU. It

is thus quickly lost onto the parent star, but not before creating a period if distinct enhancement

in the dust-to-gas ratio in the inner-main disk. This enhancement is plotted in Figure 6.15 panel-a

relative to Eprecip. While the enhancement peaks around ×5 at t ∼ 4×104 yr, this is still insufficient

to cross the threshold of Eprecip in the fiducial-disk model. The infall of smaller particle sizes can

also be seen at larger disk radius in the t = 4 × 104 year panel, but the net enhancement in the

disk still declines swiftly after the t = 4 × 104 year peak, and by t = 5 × 105 years the metallicity

across the whole disk is at a fraction its initial value.
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For the smaller-maximum–grain-size t0=0 case shown in the second panel of Figure 6.14, sub-

stantial dust mass remains in the disk for a longer period of time and is not concentrated toward

small disk radii until the disk is tenuous enough for 20 µm sized grains to experience substantial

infall. Again, this infall does cause a distinct increase in the inner-disk metallicity, but again, as

shown in Figure 6.16, it is insufficient to reach the requirements of Eprecip. At later times, more

dust mass in small particle sizes remains in the disk, but peak enhancements toward the end of the

disk lifetime of Emax < 10 remain below Eprecip. Therefore, the potential of dust in these t0 = 0
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simulations to reach Eprecip concentrations are qualitatively the same as in the fiducial simulations

with large grain sizes confined to smaller disk radii at t0.

Finally, in my particle-transport simulations, the majority of dust mass is lost onto the parent

star via simple advection within the accreting disk gas. In order to examine whether the pattern

of this accretion inflow has an important impact on the relative distribution of grains, particularly

on the rapid loss of the large grains, I present in Figure 6.17 a simulation in which particles were

initiated in the standard way based on their grain size, but were then allowed to undergo inward drift

based only on the difference between the dust and gas azimuthal velocities (just due to headwind

drag by itself). The gas disk is evolved as normal so the dust distribution diffuses outward as the

disk expands, as shown in panel-a. However, because the gas disk is rapidly losing mass while the

dust disk is not, the standard measure of E, of course, reaches values of tens and even hundreds.

Therefore, in panel-b, I do not plot the standard E measure. Instead I plot the distribution of

dust mass relative to its t = 0 distribution. This produces extreme enhancement in the outer disk

due to the outward diffusion relative to the t = 0 distribution (though not relative to the evolving

gas distribution), and the mid-disk does show inward drift of the dust. However, this inward drift

does not correspond to a relative increase in solids at small AU. The effects of headwind drag

alone appear sufficient to preferentially remove mass from the inner disk. Radial advection only

normalizes the dust distribution to the gas-disk evolution.
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Figure 6.18: Eprecip versus measured E at t = 7.5×104 years for a simulation in the MD,0 = 0.09M¯

disk model in which the 2 cm-sized particles were barred from reaching the inner disk edge.

6.5 Discussion and mm-size Grains

In all of my simulations, it is the rapid loss of the largest grain sizes that stymies significant

enhancement of the dust-to-gas ratio. Therefore, as in the mixing simulations of Chapters 4 & 5,

the transport processes for large grains at small AU have an important impact on the dust-solids

population as a whole. In Figure 6.18, I plot a simulated enhancement distribution at t = 7.5×104

years in the MD,0 = 0.09M¯ disk for a case wherein the 2 cm-sized grains are given an artificial

barrier to inward drift at small AU. In less that 105 years, they pile up so much mass in the inner

disk as to cross the precipitation threshold of Eprecip > ×10. Without such a barrier, however,

mm–cm sized grains are rapidly lost from the disk, as demonstrated in the fiducial simulations.

This rapid loss of large grains presents problems on two fronts: that of observations of disks around

other stars, and that of theories of planetesimal formation.

In terms of the observations, numerous observational studies of disks around other stars find

evidence for rapid grain growth within disks (e.g., Rodmann et al. (2006); Kessler-Silacci et al.

(2006); Kwon et al. (2009); Ricci et al. (2010a)). Furthermore, observations in the (sub-)mm bands

see evidence for mm-sized grains, not just within disks, but out to 100 AU or farther within those

disks (Testi et al., 2003; Ricci et al., 2010b). The cartoon grain-growth model I use to constrain
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the radial extent of simulation particles does not allow mm-sized grains to be initiated beyond 22

AU an any of the disk models I’ve run, and the inward flow from both accretion and headwind

drag certainly precludes any simulated mm grains from reaching 100 AU. Furthermore, the mixing

simulations run for Chapters 4 & 5 include simulations of particles experiencing outward-flowing

gas at the disk midplane, but less than 6% of mm-sized grains in that gas-flow case reach even 25

AU, and then only for a brief period of time, before the disk experiences substantial accretional

evolution and thinning.

That headwind drag tends to bar large grains from the outer disk, in contradiction with obser-

vations, has been noted and studied by several authors (e.g.,Weidenschilling (1977a); Takeuchi &

Lin (2005); Brauer et al. (2007)). Brauer et al. (2007) specifically focus on attempting to solve the

radial-drift problem by including more and more detailed physics into the transport calculations,

including dust settling and collective effects, and angular momentum exchange between a dust

sub-layer and the main gas disk. The authors find these effects in general insufficient to slow radial

drift of mm-sized grains to velocities compatible with their observed persistence in disks that are

generally 1 Myr old or older. Brauer et al. (2007) relate the problem of the survival of mm-sized

grains in the outer disk to the problem of the survival of m-sized grains in the inner-main disk.

However, one point in this puzzel that my global-dust-distribution simulations emphasize is that

aerodynamic effects not only keep mm-sized grains from the outer disk, but lose them rapidly from

the main and inner disks as well.

It is in the main and inner disks that loss of large grains is problematic for theories of planetes-

imal formation. In streaming-instability models of planetesimal formation, clumping and collapse

of particle ensembles is not only strongly dependent on above-solar disk metallicities (Johansen,

Youdin, & Mac Low, 2009), but occurs specifically for particles that are marginally coupled to the

gas motions (Johansen et al., 2007; Johansen, & Youdin, 2007; Bai & Stone, 2010a). This means

particles with normalized stopping times, τs, preferentially near 1 (though Bai & Stone (2010a)

report that grains as small as τs ∼ 10−2 still participate in the streaming instability), requiring

at least cm-sized grains at around 1 AU. Furthermore, chondrules (∼mm in size) make up a large

fraction of most meteorites (Cuzzi, Davis, & Dobrovolskis, 2003), implying that planetesimals in

the inner-main disk of the Solar Nebula were largely built from mid-to-large sized grains (see, e.g.,

Cuzzi, Hogan, & Bottke (2010) for a discussion). Therefore, planetesimal formation models using
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such grain sizes may be well justified. Of course, τs ∼ 1 requires smaller grain sizes in the outer,

more tenuous parts of a disk. In the Epstein-drag regime,

τs = ΩKtstop =
sdρdΩK

ρgvtherm
, (6.27)

where sd and ρd are the dust-grain radius and internal density, ρg is the local gas density, and

vtherm is the thermal velocity of the gas particles. However, vtherm = cs
√

8/π, where cs is the sound

speed, and, in a vertically-isothermal disk, ρg = Σg exp
(

−z2/2H2
g

)

/
√

2πHg, where Hg = cs/ΩK.

Therefore, at the midplane of a vertically-isothermal disk, in the Epstein-drag regime,

τs =
πsdρd

2Σg
. (6.28)

In Figure 6.19, I plot the grain-size contours matching τs = 1 in my evolving, fiducial disk model,

overlying the dust-enhancement distributions of both 20 µm and 0.2 mm-sized grains in my fiducial
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simulations. From this, one can see that even in the outer disk, grains of all sizes are confined

inward of their τs = 1 contours by at least one and a half orders-of-magnitude, leaving very few

grains within the τs & 10−2 bounds for participation in the streaming instability. This is because

the headwind-drag barrier also operates most strongly near τs = 1. This grain-distribution behavior

is duplicated with minor variation in the Sc = 2 and Sc = 1/2 simulations. Grains of a given size

are entirely confined within τs ≤ 10−1, and enhanced final infall of the population occurs when

local τs contours at the outer edge of the distribution begin to evolve inward within the disk.

As with planetesimal formation via precipitation, simulations suggest that the streaming-

instabillity method is also largely confined to certain regions of a disk by the local value of the

radial pressure gradient. In Bai & Stone (2010b), the authors report simulations of particle clump-

ing via the streaming-instability in which they vary their pressure-gradient term, Πη, between 0.025,

0.05, and 0.1. They find clumping requires τs & 10−2 for most particles and super-solar metallicity

when Πη = 0.05, and a monotonic increase in required metallicity for increasing Πη. Bai & Stone

(2010b) define Πη ≡ ηδφvK/cs, where ηδφ = (vK − vφ,g) /vK. Therefore,

Πη =
(vK − vφ,g)

cs
. (6.29)

In Figure 6.20 panel-a, I plot Πη contours in red overlying the τs = 1 grain-size contours for

the fiducial-disk model. The spatial relationship between the Πη and τs parameter constraints

suggests, then, that the streaming-instabillity model mostly confines planetesimal formation from

this mechanism to the inner-main regions of the disk, where cm-sized particles are required to allow

for marginal-coupling between the solids and the disk gas. This is doubly the case when paired with

my global-transport simulations suggesting that the outer disk will tend to be at least somewhat

depleted in solids relative to the gas, though again, super-solar metallicities and cm-sized grains,

which my simulations are unable to supply simultaneously, are required as well.

The Bai & Stone (2010b) simulations are actually run considering a minimum-mass-style Solar

Nebula disk, with a steeper Σg profile and therefore steeper radial pressure gradient than that of my

fiducial disk model. However, observations suggest that some disks have experienced grain-settling

and flattening (Miyake & Nakagawa, 1995), which will tend to rapidly cool a disk toward larger

radii. As discussed briefly in §5.6.2, this effect may produce shallower surface-density profiles and
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radial-pressure gradients within a disk, and I plot the Πη and τs grain-size contours for such a disk

in panel-b of Figure 6.20. From this, one sees that while a steeper temperature gradient and colder

outer disk does expand the region of low Πη more favorable to streaming-instabillity planetesimal

formation, it also pushes the τs = 1 grain-size contours outward so that large particles are likely still

required, even at larger distances, for the streaming-instabillity mechanism to operate. Because

headwind drag inspiral is weaker for shallower pressure gradients, my mixing simulations of §5.6.2

suggest that the dust population of a given grain size might not be confined so far inward of it’s

τs = 1 contour in such a disk as in the fiducial-disk model. However, inspiral and loss of large

grains is likely to still be problematic, even in a shallow Σg-profile disk model.

Observations of disks around other stars suggest that growth of disk solids to at least tens-of-

microns size is fairly rapid (signs of grain growth are observed for essentially all disks) (Kwon et

al., 2009; Ricci et al., 2010a), and also that disks tend to maintain a small-dust population over a

large fraction of their lifetime (Bouwman et al., 2003; Dominik & Dullemond, 2008). Furthermore,

the fraction of stars observed to have circumstellar debris disks (with scattered-light levels around

a thousand times brighter than that of our own zodiacal dust and Kuiper belt) peaks at around

50% for 20 Myr old B and A stars (Currie, Plavchan, & Kenyon, 2008). These facts lend credence

to the idea that planetesimal formation is a fairly ubiquitous process that can form large bodies

early on and over a decent range of disk radii; collisional fragmentation of large bodies orbiting

within a disk is one of the most efficient mechanisms for maintaining a small-dust population.

However, my global-dust-transport simulations suggest that aerodynamic transport of dust

grains within a smooth, evolving disk model will equally ubiquitously lead to large-scale inspi-

ral and loss of the dust population, directly counter to both observations and current theories of

planetesimal formation. It is unlikely that aerodynamic processes of small grains within a tenu-

ous fluid are so poorly understood as to have falsely represented this general trend in behavior

for the decades of disk study. Furthermore, the general 1D, fluid-dynamic picture of protoplane-

tary disks that is most often represented in models appears to be a reasonably good fit between

known disk-population properties, such as disk sizes, lifetimes, and accretion rates. Even the

mixing simulations I presented in Chapters 4 & 5 are qualitatively consistent with observed disk

compositions. Therefore, I propose that a 1D protoplanetary disk model is simply insufficient to

represent dust-gas interactions at the global-distribution and planetesimal-building level. Likely,
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non-axisymmetric and local structures play an important role in providing locations where dust

can concentrate relative to the gas, and it is possible, furthermore, that such structures may be

integral to understanding the large-scale distribution and transport of large dust grains.

6.6 Conclusions

In this chapter, I have presented simulations of the global (re)distribution of a protoplanetary-

disk dust population that include evolution of the gas-disk surface-density profile, aerodynamic

advection and diffusion of the dust-particle ensemble within the gas, and simulated grain-growth

constraints confining the appearance of the largest grain sizes to the inner and main regions of the

disk. I find that the global distribution of solids within a 1D evolving disk model follows a fairly

uniform evolutionary pattern across a range of disk-model parameter space for simulations varying

the initial-disk mass, MD,0, the initial-disk compactness, Rd, the α-scaling of the disk viscosity,

and the relative diffusivity of the particle ensemble, Sc. Specifically,

* Large, mm–cm-sized particles are lost rapidly onto the the parent star (within 0.5 Myr).

* Growth of dust grains up to microns size and larger leads to the depletion of dust relative to

the gas toward the outer regions of the disk (beyond ∼100 AU).

* And, the dust-to-gas ratio within the main and inner disks remains near solar (near it’s initial

value) for at least the first 40–60% of the disk lifetime.

In general, grains of a given size are confined to regions of the disk interior to at least τs ≤ 10−1 and

experience accelerated infall as τs (∝ Σg) contours near the outer boundary of that dust-population

distribution evolve inward.

In Youdin & Shu (2002), the authors present calculations of dust-to-gas enhancement factors

resulting from radial drift of dust grains within a static disk, finding a steady increase in dust-to-

gas ratios at small disk radii with time. Such increases are not seen in the simulations presented

in this chapter for two important reasons. First, the inclusion of gas-disk accretional evolution

adds a bulk inward flow to both the gas and dust within the disk that is absent from the Youdin

& Shu (2002) calculations. Also, as disk surface-density contours evolve inward, the infall of the

dust grains is accelerated beyond the simple accretion+headwind-drag loss rates. Second, the
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simulations I present include loss of gas and dust past an inner-disk boundary set at R = 0.1 AU.

The Youdin & Shu (2002) calculations extend the disk all the way to R = 0. Without loss of dust

mass, their calculations must produce dust enhancements at small R.

Currently, local enhancement of the dust-to-gas surface-density ratio above solar metallicity is

considered an important component of most active theories of planetesimal formation. Electro-

static and chemical forces appear insufficient to build bodies via sticking of grains above roughly

centimeter sizes. However, in order for ensembles of small grains to collapse into large bodies gravi-

tationally, the local dust density must exceed the Roche density, allowing collapsing solids to resist

tidal disruption due to stellar gravity. This Roche density is commonly 2–3 orders of magnitude

greater than typical midplane densities (Chiang & Youdin, 2010). While significant enhancement of

the dust density may be achieved through settling of the dust toward the midplane and turbulent-

concentration mechanisms such as the streaming instability, these mechanisms have generally been

found insufficient to reach Roche density within a disk of Solar metallicity. Therefore, some increase

in the dust-to-gas surface-density ratios within the disk is also required.

To consider specific proposed planetesimal-formation scenarios: the results of my simulations

suggest that radial drift of particles within an azimuthally-symmetric, evolving disk scenario cannot

produce enhancements in the dust-to-gas ratio in the inner disk sufficient to meet requirements for

large-scale collapse and planetesimal formation via the Youdin & Shu (2002)-precipitation mecha-

nism, particularly not early enough in the disk lifetime to account for the formation of giant-planets

via the core-accretion scenario. The precipitation criteria depend on the local disk mass, tempera-

ture, and radial pressure gradient, and are most favorable to collapse in disks that are substantially

more-massive and colder than a typical Solar Nebula analog. Planetesimal formation via particle

clumping and the streaming instability is less dependent on disk mass, but still requires above-

Solar local metallicites, as well as a substantial population of mm–cm-sized grains. My simulations

suggest that a 1D model of disk evolution and grain transport cannot provide substantial dust

enhancements and a large-grain population simultaneously, owing to the short lifetime of the later

within the disk.

If large-scale radial-drift concentration of solids within a disk is non-viable, it then seems likely

that local structure and local concentration of dust grains play an important role in providing the

conditions necessary for planetesimal formation. Local disk structures that could prove important
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for dust concentration include, e.g., disk-opacity transitions, such as at the snow-line, spiral arms

produced within gravitaionally unstable disks, and vortices within the flow of disk gas. Also,

some simulations of magnetorotationally unstable disks suggest that MRI turbulence produces

local structure sufficiently long lived to concentrate dust particles (Johansen, Youdin, & Klahr,

2009).

However, understanding the global dust distribution is important not only for identifying po-

tential sites of enhanced planetesimal formation. The simulations I present are run within 1D disk

models assuming azimuthal symmetry and a smooth description of the protoplanetary gas disk.

Such models are qualitatively compatible with observational descriptions of global disk structure

and evolution, as well as (demonstrated in my mixing simulations of Chapters 4 & 5) with trends be-

tween disk compositions and evolutionary parameters. However, as in previous studies of headwind

drag and inward grain migration, these simulations are in direct conflict with observations of large

grains at large distances in disks around other stars. Therefore, I conclude that a one-dimensional

picture of disks and grain-transport is insufficient to represent dust transport and distribution on

a global scale, particularly in the regime of marginally-coupled particles. Non-axisymmetric disk

structure then also likely plays an important role in the long-distance transport of large dust grains,

and should be studied with the radial transport/distribution of grains in mind.

Studies of global dust transport as a function of local structure may prove challenging. Numeri-

cally, local strucure is often preferentially captured within small-scale shearing-box-style simulations

often poorly compatible with the inclusion of disk evolution and accretional flows (which I have

shown are centrally important to understanding long-distance grain transport). However, advances

in computing resources and techniques continue to provide ever-richer details concerning disk-flow

dynamics and likely will do so on this front as well.

As with the mixing of dust species, future studies of large-scale grain distributions should also

include dust transport due to height-dependent grain migration and transport within alternative

disk-gas models, such as, e.g., disks that are flattened and colder in their outer regions, and disks

experiencing prolonged or episodic infall of material from their parent molecular clouds. However,

future disk observations will likely play a key role in improving our understanding of protoplanetary-

disk physics. Three areas where further, better observations could prove invaluable include:
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1. Better spatial resolution and more samples of the youngest and forming disks.

Because age-dating evidence suggests that CAIs and iron-core meteorite parent bodies formed

around the same — very early — time in Solar Nebula history, the properties of disks as they

are forming are likely important for the mixing and distribution of high-temperature material,

the earliest growth of solids to larger sizes, and the first-stage opportunities of planetesimal

formation. A spatially resolved, clear picture of the gas and dust distribution, as well as the

dust size-distribution, in the youngest disks could provide great insight into disk properties

relevant to solids processing. Unfortunately, these early times in a disk history are only a

small fraction of the disk lifetime, and so such disks are rarer and often observered at greater

distances. Also, disks that are first forming are still embedded within their parent molecular

cloud and so obscured at many wavelengths (Eisner et al., 2005). However, the Atacama

Large Millimeter Array (ALMA) should provide great sensitivity and spatial resolution at

wavelengths important for the study protoplanetary disks, and the selected study of trace gas

species allows observers to probe some of the densest regions of molecular clouds. Therefore,

new and greater observations of the youngest stages of disk formation are hopefully on the

horizon.

2. Stronger constraints on the large-scale radial surface-density structure of the

gas within a disk. While headwind-drag (apparently wrongly) predicts the rapid loss of

large, mm-sized grains from the outer regions of a disk, that prediction is based on certain

assumptions concerning the disk gas distributions at those large distances. Alternative gas

distributions providing a much shallower radial pressure gradient in the outer disk would be

more likely to retain large grains, and, for example, a scenio of lower disk viscosity leading

to slower accretion and mass pile-up at large distances might also be more condusive to the

formation of such large grains. Therefore, while the dust population provides most of the

optical depth within a disk and is therefore easier to probe than disk gas, more examples and

better statistics about gas-mass distributions out to large distances would prove most useful.

Such information could either confirm the present conundrum of current dust-distribution

observations, or else allow us to rethink our understanding of disk structure in ways that are

more compatible with those observations.
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3. Information about the turbulent velocities/properties of protoplanetary disk gas.

For decades, the viscosity driving disk evolution has been believed to be derived from turbu-

lent motions within the disk gas (Shakura & Sunyaev, 1973). However, the source and nature

of that turbulence, particularly within relatively small, cold protoplanetary disks, have re-

mained elusive, and observations have only recently just reached the threshold of possibly

detecting turbulence within disks (M. Hughes et al., 2011). At present some of the challenges

of observing turbulence include merely separating out turbulent line-widths from signatures

of infall of gas onto or outflow from the disk surface. Ideally, though, observations will

eventually provide us with not just detection of turbulent motion within disks, but spatial

information (radially and vertically within the disk structure) about the varying strength of

that turbulence, to compare to current theories of turbulence generation within disks. The

nature and strength of disk turbulence is essentially the greatest source of uncertainty in any

calculations of disk structure, disk evolution, dust-gas aerodynamic interactions, and dust

transport within a disk. Resolving the nature of disk turbulence would vastly strengthen all

future calculations of solids processing within protoplanetary disks.

Note that while deep observations of the earliest times of disk formation could prove most valuable

for building an understanding of our own Solar system chronology, having a strong understanding of

the gas structure and dynamics of any observed disks would prove equally valuable. The apparent

ubiquity of debris disks and millimeter grains distributed out to large distances in protoplanetary

disks means that there remain problems to solve concerning disk structure and large solids within

disks of all sizes and ages.
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Appendix A

Derivation of Analytical Test Cases
for Diffusion

In this appendix, I follow Clarke & Pringle (1988) and expand the derivation for a set of analytical

test cases for radial diffusion of a contaminant within a gas disk. I demonstrate the fidelity of the

random-walk method in my particle-transport model in reproducing these solutions in §3.3.2 of the

main thesis. Analytical solutions to the diffusion of a contaminant in a disk may be found for a set

of idealized disk scenarios. These scenarios are not always physically meaningful — and so require

nonstandard equations with which to obtain them — but they may all be simulated numerically

with my code. Therefore, they are useful test cases. Second (§3.3.2), I present numerical simulations

of these test cases using my particle-transport model. All solutions and simulations presented below

use static-disk–surface-density profiles.

In Clarke & Pringle (1988), the authors solve for the time-dependent concentration, C, of a

contaminant initiated in a ring at specified radius: C (t = 0) = C0δ (R−R0), where C is the ratio

of the local contaminant mass over the local disk-gas mass, R is the distance from the central star,

and R0 is the initial position of the contaminant. The disk that they consider has a surface-density

profile given by Σg = Σ0R
−a, where Σ0 and a are constants; it is also a steady disk, so that for

disk viscosity, ν = ν0R
b (b and ν0 constants), b = a, and the gas-accretion velocity may be written

as vR = −3ν/2R. For the following derivations, I also consider cases with zero gas velocity and I

relax the steady-disk assumption. I use:

Σg = Σ0R
−a ,

ν = ν0R
b ,
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vR = v0R
b−1 ; v0 = 0 or − 3ν0

2
. (A.1)

Assuming azimuthal symmetry and that the gas and contaminant are vertically well-mixed, the

diffusion equation in polar coordinates may be written (Gail, 2001)

∂

∂t
(ΣgC) +

1

R

∂

∂R
(RΣgCvR) − 1

R

∂

∂R

[

RDkgΣg

(

∂C

∂R

)]

= Pk (R, t) , (A.2)

where Dkg is the coefficient of diffusion of the contaminant within the gas, and Pk corresponds to

the rate of production of the contaminant per radial increment within the disk. Clarke & Pringle

(1988) and the setup of my simulations assume zero production of the contaminant, Pk (R, t) = 0,

and that the diffusivity scales with the disk viscosity, Dkg = ζν, where ζ is a constant. For my

particle-transport simulations using a static disk profile, Equation (A.2) is further constrained by

∂Σg/∂t = 0, and so vR refers specifically to the prescribed dust-mean-radial velocity, irrespective

of the (nonexistent) gas radial velocity. Equation (A.2) then becomes

Σg
∂C

∂t
+

1

R

∂

∂R
(RΣgCvR) − 1

R

∂

∂R

[

RζνΣg

(

∂C

∂R

)]

= 0 . (A.3)

Note that the standard approach (Clarke & Pringle, 1988; Gail, 2001) is to assume inwardly-

accreting–co-moving disk mass and contaminant (with vR) and to then employ the equation for

mass-conservation,

∂Σg

∂t
+

1

R

∂

∂R
(RΣgvR) = 0.

The result is

Σg
∂C

∂t
+ ΣgvR

∂C

∂R
− 1

R

∂

∂R

[

RζνΣg

(

∂C

∂R

)]

= 0 .

I use Equation (A.3) rather than the above equation in order to match the static-disk conditions

used in the simulations of §3.3.2. While my model is capable of evolving the disk surface-density

profile so that the usual conservation-of-mass equation would apply, analytically solving for the

mass distribution of the contaminant within an evolving disk profile if the disk is nonsteady (a 6= b)

is not tractable.
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Next, I combine Equations (A.1) & (A.3), giving

1

ν0

∂C

∂t
+
v0
ν0
Rb−1∂C

∂R
+ (b− a)

v0
ν0
Rb−2C = Ra−1 ∂

∂R

[

ζR1+b−a

(

∂C

∂R

)]

. (A.4)

Note that for a steady disk (a = b), the third term on the left hand side disappears, producing the

same equation as Equation (2.2.2) in Clarke & Pringle (1988).

Following Clarke & Pringle (1988) I next separate variables by assuming

C (R, t) = Rp g (R) exp
(

−ζν0λ
2t
)

, (A.5)

where p is a constant, λ is the separation constant, and the spatial dependence, Rp × g (R), follows

R2 d
2g

dR2
+ R

dg

dR

(

2p+ 1 + b− a− v0
ζν0

)

+ g

[

p

(

p+ b− a− v0
ζν0

)

− (b− a)
v0
ζν0

]

+ g
λ2

ζ
R2−b = 0 . (A.6)

This equation looks like it could be a Bessel equation if I choose the correct value for p, but the

last term needs to go as R2. Changing variables using kx = R1/q, where k is a constant and

q = 2/ (2 − b), I have

x2 d
2g

dx2
+ x

dg

dx

q

2

[

2

(

2p+ 1 + b− a− v0
ζν0

)

− b

]

+ gq2
[

p

(

p+ b− a− v0
ζν0

)

+ (a− b)
v0
ζν0

]

+ gx2q2
λ2

ζk2
= 0 . (A.7)

Equation (A.7) is not valid for the case of b = 2, but for all other cases, when p =
1

2

(

a− b+
v0
ζν0

)

,

it yields

g (R) = Jβ

( |q|λ√
ζ
R1/q

)

, (A.8)

where Jβ (x) is the Bessel function of the first kind of order β =
|a− b− v0/ζν0|

|2 − b| . Therefore,

C (R, t) =

∫

∞

λ=0
exp

(

−ν0λ
2t
)

RpJβ

( |q|λ√
ζ
R1/q

)

A (λ)λdλ , (A.9)
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where A (λ) is a function used to match the solution to the initial conditions.

Next, I use the initial conditions and insert the delta-function for C at t = 0 to write

C0R
−pδ (R−R0) =

∫

∞

λ=0
Jβ

( |q|λ√
ζ
R1/q

)

A (λ)λdλ . (A.10)

By using the variable transform s = |q|R1/q/
√
ζ and keeping careful track of the signs of the limits

on the integral, I can apply a Hankel transform and write

A (λ) =

∫

∞

s=0
C0R

−pδ (R−R0) Jβ (sλ) s ds

=
|q|C0

ζ
R

2
q
−1−p

0 Jβ

( |q|λ√
ζ
R

1/q
0

)

. (A.11)

Plugging Equation (A.11) into Equation (A.9) and solving yields:

C (R, t) =
|q|C0R

1−b
0

2ζν0t

(

R

R0

)p

Iβ

(

q2R
1/q
0 R1/q

2ζν0t

)

exp



−q2
(

R2−b
0 +R2−b

)

4ζν0t



 ,

q =
2

(2 − b)
,

p =
1

2

(

a− b+
v0
ζν0

)

,

β =
|a− b− v0/ζν0|

|2 − b| . (A.12)

where Iβ (x) is the modified Bessel function of the first kind of order β. Note, solving the integral

in Equation (A.9) requires an identity. I have used the relation listed as Equation (3) in §2.12.39

of Prudnikov, Brychkov & Marichev (1986):

∫

∞

0
xe−px2

Jν (bx) Jν (cx) dx =
1

2p
exp

[

−
(

b2 + c2
)

4p

]

Iν

(

bc

2p

)

.

For a = b and v0 = −3ν0/2, Equation (A.12) reduces to Equation (3.2.4) in Clarke & Pringle

(1988). In fact, if I had assumed the usual vR belonging to the gas with mass conservation, as in

Clarke & Pringle (1988), instead of using a static disk, I would have obtained the same solution

given in Equation (A.12) above, except that the order of the Bessel function would change to

β =
|a− b+v0/ζν0|

|2 − b| . In this case, I would then also need to know the time-evolution of the
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nonsteady disk profile in order to convert Equation (A.12) into a contaminant-mass distribution

for a 6= b and nonzero vR.

The general solution in Equation (A.12) is valid for most combinations of a, b, and v0. However,

it is not valid when b = 2, nor in the simplest scenario for diffusion in R: when the mass distribution

is uniform in R (a = 1), the diffusivity is constant (b = 0), and there is zero background velocity

(v0 = 0). But, in that simple-diffusion case, the solution is well known:

C (R, t) =
C0√

4πζν0t
exp

[

−(R−R0)
2

4ζν0t

]

. (A.13)

I do not solve for the general solution when b = 2. However, Clarke & Pringle (1988) present

the solution for the steady-disk case when a = b = 2:

C (R, t) =
C0

R0
(4πζν0t)

−1/2 exp

(

− [ln (R/R0) − v0t]
2

4ζν0t

)

. (A.14)

Because this is a steady-disk case (a = b), the initial diffusion equation used to solve for C (R, t)

in Clarke & Pringle (1988) matches the diffusion equation I have used above for my static-disk

scenario, Equation (A.4). Note, however, that Equation (A.14) does not match Equation (3.1.3) in

Clarke & Pringle (1988) because of a typo in that paper, which accidentally presents the solution

for twice the background velocity, vR → 2vR. Also, when a = b = 2, the natural space to solve the

equation is logarithmic space. This happens to be the space used for the width of my model-disk

grid cells, which is relavent to the only odd behavior that I find in my particle transport simulations

(see §3.3.2).

My particle-transport simulations output the number of particles per radial grid space. There-

fore, to compare the solutions provided by Equations (A.12), (A.13), & (A.14) to my simulations,

I next need to convert the analytic C (R, t) function into an expected fractional-mass distribu-

tion. The concentration can be expressed as the ratio of the contaminant-to-gas surface densities,

C = σ/Σg, where σ is the surface density of the contaminant. Because these test cases assume a

static-disk–surface-density profile, it is then relatively simple to solve for the fractional mass of the

contaminant in a given grid space, mi, where i denotes the grid space, which I will normalize by
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mtot, the total mass of the contaminant in the disk at t = 0.

mtot = 2π

∫

∞

0
RΣgC0 δ (R−R0) dR = 2πR0Σg (R0)C0 .

I write:
(

mi

mtot

)

=
1

R0Σg (R0)C0

∫ Ri+1/2

R=Ri−1/2

RΣg (R)C (R, t) dR , (A.15)

where Ri−1/2 and Ri+1/2 are the inner and outer boundaries of the grid space, respectively. Com-

bining Equations (A.12) & (A.15), and using a variable substitution, s = R1/q, I can write the

general expression for the general-case expected mass distribution as

(

mi

mtot

)

=
q|q|Rγ1

0

2ζν0t
exp

[

−q
2R2−b

0

4ζν0t

]

∫ Ri+1/2

R=Ri−1/2

sγ2Iβ

(

q2s0s

2ζν0t

)

exp

(

− q2s2

2ζν0t

)

ds

γ1 =
1

2

(

a− b− v0
ζν0

)

γ2 =
(2 − a+ v0/ζν0)

(2 − b)

s0 = R
1/q
0 . (A.16)

For comparison with my simulations, I solve the integral numerically using a Simpson integrator

and the Numerical Recipes functions for the modified Bessel functions (Press et al., 1992).

Equation (A.16) represents the expected mass distributions for most cases of a, b, and v0, but

not all. For the simplest diffusion case (a = 1, b = 0, v0 = 0) with C (R, t) given in Equation (A.13),

the expected mass distribution is given by

(

mi

mtot

)

= (4πζν0t)
−1/2

∫ Ri+1/2

R=Ri=1/2

exp

[

−(R−R0)
2

2ζν0t

]

dR . (A.17)

And for the case of a = b = 2 given in Equation (A.14) the expected mass distribution in a static

disk is given by
(

mi

mtot

)

= (4πζν0t)
−1/2

∫ Ri+1/2

R=Ri−1/2

exp

[

−(Y − v0t)
2

4ζν0t

]

dY , (A.18)

where Y = ln (R/R0), and again, I use a Simpson integrator to solve for the expected (mi/mtot)

for these cases.
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Appendix B

Notes on Numerical Techniques

To aid in the transparency of my models, in this chapter, I outline some of the numerical techniques

used within the code built for this thesis. While the techniques discussed here cannot be classified

as new research, they are important tools for implementing the research I have done.

In §B.1, I focus on the numerics of the disk-evolution model, detailing constraints imposed by

numerics, numerical conservation of mass and angular momentum, and the fidelity of the numerical

model to analytic solutions of the disk-evolution equation. In §B.2, I discuss a range of simple

numerical techniques used ubiquitously throughout my code. And in §B.3, I discuss the iterative

solvers used to find radial-drift velocities and midplane disk temperatures within my model disks.

While iterative solving is simple in concept, it becomes more complex in practice, with each solver

tailored to the particular set of equations under consideration.

B.1 Time-Explicit Viscous-Disk Evolution

The material in this section is a supplement to §2.3.2, fully outlining the numeric considerations

pertinent to solving the disk-evolution equation including stability, convergence, and conserved

quantities, and elucidating choices and constraints for time-step sizes, grid-spacing, and the radial

extent of the grid.

B.1.1 Numerical Setup and Fidelity

In setting up the numerical schemes for the disk-evolution code, I have followed Numerical Recipes

(Press et al., 1992), which clearly outlines the most straight-foward, stable methods for approaching

the evolution of basic PDEs. For a diffusion equation, Press et al. (1992) §19.2 provides the single-
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level, Forward-Time-Centered-Space (FTCS) scheme, using a finite-difference approximation of the

relevant derivatives:

∂u

∂t
= D

∂2u

∂x2
,

uj+1
i − uj

i

∆t
= D

[

uj
i+1 − 2uj

i + uj
i−1

(∆x)2

]

.

Therefore, for the most compact form of the disk-evolution equation (2.17), one can write:

Σj+1
g,i − Σj

g,i

∆t
=

3

4

1
(

Xj
i

)3

[

(νΣgX)j
i+x − 2 (νΣgX)j

i + (νΣgX)j
i−1

(∆X)2

]

, (B.1)

(assuming constant ∆X grid spacing) where i and j are the spatial and temporal indices, respec-

tively.

If, on the other hand, one wanted to integrate the expanded form of the equation, with the

diffusive and advective components separate, one would need a different scheme for the advective

component as FTCS is not stable for the advection equation (Press et al., 1992). The simplest

approach for advection provided in Press et al. (1992) (§19.1) is called upwind differencing, which

directly considers the direction of the flow of advection. In this scheme:

∂u

∂t
= −v∂u

∂x
:

uj+1
i − uj

i

∆t
= −vj

i

uj
i − uj

i−1

∆x
, vj

i > 0

uj+1
i − uj

i

∆t
= −vj

i

uj
i+1 − uj

i

∆x
, vj

i < 0

so one could write the advective term in Equation (2.18) as

9

2R

∂

∂R
(νΣg) →

9

2Rj
i

[

(νΣg)
j
i+1 − (νΣg)

j
i

∆R

]

(assuming constant ∆R grid spacing).

For each of the diffusive- and advective-equation schemes there is a stability criterion (taken
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from Press et al. (1992)). For the diffusive scheme it is

2D∆t

(∆x)2
≤ 1 , (B.2)

so that the scheme of Equation (B.1) requires

∆t ≤ (∆X)2
2

3

X2

ν
−→ ∆t ≤ 2

3
(∆X)2 ∗ min

(

X2
i

νi

)

. (B.3)

The stability criterion for the advective scheme is given by the Courant condition (material may

not flow beyond the adjacent grid cells in a given time step):

|v|∆t
∆x

≤ 1 . (B.4)

In my disk-evolution model for numerical integration, I use only the most compact form of

the disk-evolution equation. The scheme outlined by Equations (B.1) & (B.3), using a constant

grid spacing, ∆X, has been used by several authors (e.g., Hueso & Guillot (2005); Alexander &

Armitage (2007)), and I compare it to my preferred scheme below. In my preferred scheme, I do not

use constant grid-spacing, but instead space grid points logarithmically in R (and X), as outlined

in §2.3.2. Very small grid-cells at small R means that this scheme requires more time-steps and so

runs more slowly than the traditional-∆X scheme, but it also requires fewer grid-spaces to reach

convergence and is more conservative (as discussed in §B.1.2). Also, uneven grid-spacing requires a

modification to Equations (B.1) & (B.3) in order to be properly applied; they must be expanded to

consider the finite-differencing between individual grid cells separately. This gives (Equations (2.24)

& (2.25) )

Σj+1
g,i − Σj

g,i

∆t
=

3

4

1

X3
i

1

∆Xi

[

(νΣgX)j
i+1 − (νΣgX)j

i

∆Xi+1/2
+

(νΣgX)j
i − (νΣgX)j

i−1

∆Xi−1/2

]

, (B.5)

∆t ≤ 2

3
min

(

∆Xi∆Xi−1/2X
2
i

νi

)

, (B.6)

where ∆Xi = Xi+1/2 −Xi−1/2 is the width of grid cell i and ∆Xi+1/2 = Xi+1 −Xi is the distance

from grid point i to i+ 1.

224



S
ig

m
a

g
 (

g
 c

m
−

2
)

140

120

100

80

60

40

20

0

R (AU)
14121086420

analytic

ngrid=399
ngrid=200

a1)

S
ig

m
a

g
 (

g
 c

m
−

2
)

140

120

100

80

60

40

20

0

R (AU)
14121086420

analytic

7x104
4x104
2x104
104
4x103
103

ngrid=399
ngrid=200

a2)

time (yr):

(n
u

m
e

ri
c−

a
n

a
ly

tic
)/

a
n

a
ly

tic

0.2

0.1

0.0

−0.1

−0.2

R (AU)
14121086420

constant Delta X

b1)

(n
u

m
e

ri
c−

a
n

a
ly

tic
)/

a
n

a
ly

tic

0.2

0.1

0.0

−0.1

−0.2

R (AU)
14121086420

log−spaced Delta X i

b2)

Figure B.1: Comparison between analytic and numerical solutions for disk evolution of an initial
delta-function in Σg at R0 = 5 AU. Red/Orange simulations run in the constant ∆X numerical
scheme, and Blue/Green simulations run in the log-spaced ∆Xi scheme. Top panels-a1 and -
a2 plot surface-density contours for the analytic solution and the numeric results using two grid
resolutions (grid from 0.1–100 AU). Bottom panels-b1 and -b2 plot the deviation between the
numeric and analytic results. Note that the magnitude of the plotted surface density is dependant
on the width of the R0 grid cell, defining the t = 0 disk mass, and that the ngrid = 200 Σg curves
are plotted at half-magnitude for ease of comparison with the rest.

In Figure B.1, I plot a comparison of disk evolution for the two numeric schemes outlined above

(constant ∆X and log-spacing ∆Xi) versus the analytic solution for the viscous spreading of a ring

of disk material (given in §2.3.1). These examples are run at two spatial resolutions of the grid:

ngrid = 200 and ngrid = 399, extending from 0.1 to 100 AU. While these simulations are not a perfect

match for the analytic solution, they are a still a good match, where inspection shows noticeable

deviation only at the inner-disk edge at late times. Panels-b1 and -b2 plot the deviation between

the numeric and analytic results, and it is clear both that higher spatial resolution does lead to a

closer fit with the analytic solution and that the log-grid-spacing scheme has better convergence

for a given ngrid in the main part of the disk than does the constant ∆X scheme. However, some of
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the deviation appears intrinsic to all of the numerical simulations. This intrinsic deviation is due

both to a finite inner-grid boundary (causing loss of material that otherwise continues to diffuse in

the analytic solution) and to the fact that a discreet grid where Σg is constant across the width of

a grid cell simply cannot completely replicate the delta-function initial condition.

B.1.2 Conservation of Mass and Angular momentum, and the Grid-Spacing
Scheme

In this section, I discuss the link between the choice of grid and grid spacing, and the numerical

conservation of mass and angular momentum in an evolving model disk. In the model disk, the

surface density is considered constant across the width of a grid cell, and I consider two forms for

calculating the mass and (Keplerian) angular momentum of a cell. An approximate formulation:

M1,i = 2πRi∆RiΣg,i ,

L1,i =
√

GM?M1,iR
1/2
i , (B.7)

and a more precise formulation:

M2,i = π
(

R2
i+1/2 −R2

i−1/2

)

Σg,i ,

L2,i =
√

GM?
4π

5

(

R
5/2
i+1/2 −R

5/2
i−1/2

)

Σg,i , (B.8)

where M1,i and M2,i are two expressions for the mass contained in grid-cell i, L1,i and L2,i are two

expressions for the angular momentum, ∆Ri is the width of grid-cell i, and Ri−1/2 and Ri+1/2 are

the inner and outer grid-cell boundaries. The angular-momentum expressions also assume Keple-

rian velocities for the disk, which pressure-support of the gas tells us is not completely accurate.

However, the disk-evolution equation was also derived assuming Ωg = ΩK, so calculating angular-

momentum conservation this way is consistent with investigating numerical fidelity to the base

equation.

In order to track mass and angular-momentum conservation in an evolving disk, one must also

account for the quantities lost past the inner and outer grid-space boundaries. This can be done

easily by creating dummy cells at the inner and outer boundaries, setting the surface-density in

these dummy cells equal to the bounding Σg used in the code, and tracking the mass and angular
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Figure B.2: Diagram of Σg evolution using two dummy grid cells.

momentum deposited into them at each time-step.

Finally, dummy cells are also a useful way to calculate a numerical-scheme’s potential to deviate

from conservation. Consider a grid cell that starts out containing a finite amount of disk mass,

while the (dummy) cells to either side have Σg = 0. After one numerical time-step, all three cells

will have finite Σg, as depicted in Figure B.2, and, if the scheme is conservative, should also have

M j
i ≡Mi,init = Mi,fin ≡M j+1

dummy,i−1 +M j+1
i +M j+1

dummy,i+1 ,

Lj
i ≡ Li,init = Li,fin ≡ Lj+1

dummy,i−1 + Lj+1
i + Lj+1

dummy,i+1 .

Therefore, the potential numerical deviation from mass and angular-momentum conservation can

be calculated for a grid cell as

δMi = Mi,fin −Mi,init ,

δLi = Li,fin − Li,init . (B.9)

Performing these calculations with dummy cells for the two disk-evolution grid-spacing schemes,

produces for constant ∆X:

δM1,i = 0 ,

δL1,i = 0 ,
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δM2,i =
3π

2

∆t∆X3

Xi

(

3X2
i − ∆X2

)

(

X2
i − ∆X2

)2 νiΣg,i,0 ,

δL2,i ≈ 3π

2

∆t∆X3

(

X2
i − ∆X2

)νiΣg,i,0 ,

and for log-spaced ∆Xi:

δM1,i = 0 ,

δL1,i = 0 ,

δM2,i = 0 ,

δL2,i = 0 .

This method, therefore, predicts that both disk-evolution grid-spacing schemes are conservative to

first order, but that only the log-spaced ∆Xi scheme is conservative in the more precise formulation.

To verify that this is so, Figure B.3 plots the various mass and angular-momentum quantities and

their sum as a function of time for three evolving-disk scenarios using each of the disk-evolution

grid-spacing schemes. Of particular interest, are the heavy lines in the figure, which plot a total

accounting of all the mass (or angular momentum) in the disk, adding the mass within the disk,

the net mass which has been lost inward past the grid, the net mass which has been lost outward

past the grid, and substracting and estimated excess deviated mass. This curve is flat for all cases,

showingthat this calculation accounts for all of the real or numerically added mass of the systems.

Finally, the curves summing the excess-deviated mass (angular momentum) for the constant ∆X

scheme, do show this value to be fairly low, and further investigation reveals that this scheme does

deviate less from conservation for a higher grid-space resolution. However, a higher grid-space

resolution is also needed for the result to reach convergence, as suggested by the difference in disk-

evolution produced by the two schemes, particularly when there is significant mass to process in

the inner disk.

Finally, consider the fact that Figure B.3 shows a non-negligible amount of mass being lost

past the outer-grid boundary (except, of course, where the outer boundary is the mass source).

Of course, it is preferable that, in most disk simulations, such loss have only a negligible effect

on the overall disk evolution. However, early simulations with MD,0 = 0.05M¯ disks, ngrid = 500
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Figure B.3: Plots of the total mass and normalized angular momentum (l = L/
√
GM?) in three

different evolving-disk scenarios using the constant ∆X (red curves) and log-spaced ∆Xi (blue
curves) numerical schemes. Curves plotted include the total mass (angular momentum) on the
disk at a given time, the total lost inward past Rin, the total lost outward past Rout, the total
excess mass (angular momentum) from deviation (δM or δL) (for the constant ∆X scheme only),
and the total+lost-inward+lost-outward−deviated-excess values. Panels-a1 and -a2 show a disk
with constant Σgν (full disk) at t = 0 and an outer boundary of Σg = 0.1 g cm−2. Panels-b1
and -b2 show a full disk with a (silly) inner boundary of Σg = 105 g cm−2. And panels-c1 and
-c2 show a scenario where the disk is initial empty and is fed entirely by the Σg = 0.1 g cm−2

outer-boundary condition.
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Figure B.4: Comparison of disk evolution between two grid extensions: Solid lines: ngrid = 500,
Rout = 2000 AU; Dashed lines: ngrid = 581, Rout = 9981.4 AU. MD,0 = 0.05M¯, Rd = 10 AU,
α = 10−2.

and R = 2000 AU outer-grid boundaries suggested that the Σg profile was being influenced by the

location of the outer boundary. Therefore, I ran a comparison simulation with and extra 81 grid

points, extending the grid out to R = 9981.4 AU, and the results are plotted in Figure B.4. This

plot suggests that loss of disk mass past the nearer outer-grid boundary is significant enough to

substantially alter the disk evolution near the end of the disk lifetime, causing the disk to thin and

dissipate more rapidly than it otherwise would. In light of this result, I have chosen a fiducial grid

for the simulations of this thesis that uses ngrid = 600 and is extended out to R = 15,000 AU.

B.2 Some Simple Numerical Tools

In this section, I discuss some simple numerical tools that each have multiple applications within

the code used for this thesis. These tools are simple enough that there is nothing particular about

my use of them, and my purpose for discussing them here is simply to clearly specify the ways they

are applied within my code.
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B.2.1 Interpolation: Trajectories and Probabilities

Everything used to calculate particle trajectories in my particle-transport model is defined at each

discreet grid point of my model-disk grid, and the code outputs the grid-binned particle distribution

in order to retain smaller output-file sizes. However, the particles within the simulation exist along

the R continuum, and not just at discreet locations. Therefore, it is often necessary to interpolate

transport values between two grid points in order to calculate trajectories. This is especially so for

the code discussed in §3.2.1 that directly integrates particle trajectories via force-balance. In that

code, each of the terms in Equations (3.10) & (3.11) are linearly interpolated between grid points

to give values for specific rd at a given t. However, this direct-integration code is used only to verify

the fidelity of my primary transport code. In my primary transport code I use interpolation in two

places:

* For 1st-order (linear) interpolation of particle trajectories according to gridded values of radial

dust velocities (§3, Equation (3.1) ).

* For 2nd-order (parabolic) interpolation of the probability that a particle will (diffusively)

random-walk inward versus outward for a given time-step, ∆t (§3.3.1).

First-order interpolation, to find a local value between two grid points, simply assumes a linear

function for that value between points (a and b):

y (R) = y (Ra) + (R−Ra)
[y (Ra) − y (Rb)]

(Ra −Rb)
. (B.10)

In order to use interpolation to calculate particle trajectories in my code, I use Equation (B.10) to

calculate the local radial-drift velocity, vsrd,0, and and turbulent-stepping velocity, vturb,0 (for the

primary particle time-step, ∆t) at R0. If these velocities will carry the particle beyond the next

forward grid point, Ri, or ∆t > ∆tnext ≡ (Ri −R0) /vtotal, then I first advance the particle to that

grid point following Equation (3.1), then use the local advection velocity at that point, vsrd,i to

calculate the particle motion for the rest of the time step. To complete the trajectory step this way,

I do not adjust to vturb,i at the grid point, because the diffusion-stepping properties are calculated

for the whole ∆t step at the starting point, R0. Therefore, for a trajectory step completely within
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the bounds of two grid points

Rfin = R0 + ∆t (vsrd,0 + vturb,0) ,

and for a trajectory-step that crosses grid-point i

Ri = R0 + ∆tnext (vsrd,0 + vturb,0) ,

Rfin = Ri + (∆t− ∆tnext) (vsrd,i + vturb,0) .

I use this simple, first-order interpolation rather than a higher-order scheme because a) lower-order

schemes are less computationally expensive, b) a second-order scheme cannot be employed between

grid-points with oppositely-directed velocities, and c) as shown in §3.2.3, this first-order scheme

reproduces the direct-integrated trajectories to sufficient accuracy.

To calculate the probability of diffusively stepping inward (versus outward) for a given time-step

at each grid point, I do use second-order interpolation, this time in ∆t. Second-order interpolation

assumes a parabolic function, requires three points (a, b, and c), and in general

y (x) = Ax2 +Bx+ C , (B.11)

A =
(ya − yb) / (xa − xb) − (yb − yc) / (xb − xc)

(xa − xc)
,

B =
−ya

(

x2
b − x2

c

)

+ yb

(

x2
a − x2

c

)

− yc

(

x2
a − x2

b

)

(xa − xb) (xb − xc) (xa − xc)
,

C =
yaxbxc (xb − xc) − ybxaxc (xa − xc) + ycxaxb (xa − xb)

(xa − xb) (xb − xc) (xa − xc)
.

For calculating pin (∆t), these equations are somewhat simplified because I calculate pin at each

grid point for ∆tevolv and ∆tevolv/2 (where ∆tevolv is the global constraining time-step of the disk-

evolution model), and I know pin (∆t = 0) = 1/2. Then

pin (∆t) = A∆t2 +B∆t+ C , (B.12)

A =
2pin,e − 4pin,he + 1

∆t2evolv

,

B =
−pin,e + 4pin,he − 3/2

∆tevolv
,
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C =
1

2
,

where pin,e ≡ pin (∆tevolv) and pin,he ≡ pin (∆tevolv/2). This equation is used the find pin (∆t) for

the bounding grid points of a particle’s starting location, and then linear interpolation is used to

find pin for the precise location.

B.2.2 Time Derivatives, Radial Gradients, and q-values

Outside of the disk-evolution equation discussed in §2.3.2 and §B.1, a few other model calculations,

particularly equations for the various gas velocities (§2.6), require knowing the gradient of some

disk property or properties. In general, for time derivatives, I use a first-order approximation:

(

∂y

∂t

)

j

=
yj+1 − yj

∆t
, (B.13)

where j is the time-stepping index, and y is the property-of-interest. For spatial derivatives, I

generally use a second-order approximation:

(

∂y

∂R

)

i

=
1

2

[

(yi+1 − yi)

∆Ri+1/2
+

(yi − yi−1)

∆Ri−1/2

]

, (B.14)

where i is the grid-space index, and ∆Ri+1/2 = Ri+1 − Ri. This allows the calculation for the

derivative at a given grid point, rather than half-way between two grid points. (Note that the

z-derivatives needed for vr,merid (Equations (2.56)–(2.59) ) are calculated analytically within the

context of a vertically-isothermal disk structure.)

However, many of the spatial derivatives needed to calculate gas velocities come in the form of

R

y

(

∂y

∂R

)

. This is a special case of R-derivatives that has the added numeric pitfall of diverging at

grid points where y → 0. For a simple power-law function in R

y = y0R
q ,

q =
R

y

(

∂y

∂R

)

,

where q is a constant. Therefore, for these special-case derivatives in the gas-velocity calculations,

I calculate a separate grid-vector of what I term ’local q-values’, that are simply an extension of
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the second-order spatial derivative above:

qy,i =
Ri

2yi

[

(yi+1 − yi)

∆Ri+1/2
+

(yi − yi−1)

∆Ri−1/2

]

, (B.15)

and the subroutine for calculating qy,i sets qy,i = 0 where yi = 0 to avoid local divergences.

B.2.3 Large Summing Sets

One of the trickiest of the most basic numerical operations is summing, particularly of large sets

with component values that range over orders of magnitude. This is simply because of the finite

accuracy of even double-precision numbers that cannot record a change to the base value that is

too many orders-of-magnitude less than the whole. The places that I have had to be wary of this

in my code are in the summing up of mass, both of gas and dust.

The simplest way to correct for errors in summing is to add a loop within the summing that

causes the code to first add up subsets of the data and then to add those subsets together:

Mtot =

n/nset
∑

i′=1

Mi′ ,

Mi′ =

nseti′
∑

i=(i′−1)nset+1

Mi (B.16)

where Mtot is the total mass sought, Mi is the mass in, e.g., grid-cell i, n is the total number of

cells being summed, and nset is the number of cells in a subset. For a very large set, one might

need to use multiple nested loops, but in the code used for this thesis, I generally use a single set,

as shown here.

Using a scheme like this is important if I want to calculate the total gas mass of my model

disk. My disks are on a grid with n = ngrid = 600. The inner-most cells are small, due to the

logarithmic spacing of grid points, so each contain small amounts of mass. While the outer-most

cells are large, the disk surface-density drops off exponentially at the outer edge, so those, too,

contain small amounts of mass. Therefore, summing the mass from either direction will lead to the

situation of trying to add small-mass values to a large summed total. For this type of summing, I

tend to use a subset with nset = 20. It is possible that this still does not capture gas added from

the very outer edge of the disk at thousands of AU, but such mass is negligible for these purposes.
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For the dust-mass–allocation scheme used to assign masses to each representative particle in

the Chapter 6 global-distribution runs, it is important to use subsets to learn both how much dust

mass is currently in a zone-of-interest, and how many particles of each size. For these sets, I use

nset = 200, because of the large number of particles in the simulation and that could be in given

zone (from a few hundred to several thousand). For these, I also sum up the dust mass in each size

bin separately, before adding all of that together. For a large range in particle size, there are several

orders-of-magnitude difference in the mass allocated between the bins of largest and smallest size,

and therefore a wide range in masses assigned to each individual particle.

B.3 Instances of Itterative Solving

There are two important aspects of the disk and particle-transport models that do not have direct,

analytic expressions and must be solved for iteratively. These are the the steady-radial-drift ve-

locities of the particles vsrd, and the midplane disk temperature in the models using an evolving,

energy-balanced temperature profile. Solving for vsrd is simpler than for the midplane temperature,

because vsrd requires only two equations and two unknowns (vr,d and vφ,d), whereas the tempera-

ture requires three equations and three unknowns (Tmid, κR, and ν). Both cases also require some

trickiness to obtain a full solution set, but in the most general cases encountered in the disk are

reasonably well-behaved.

B.3.1 Itteration Strategies and the Early Model for Finding Epstein-drag Ve-
locities

There are two, simple numerical techniques used in my code for iterative solvers. The first is a

loop/walk method diagramed in Figuere B.5. This method involves picking a starting-guess solution

(x0), and then alternating back and forth between the equations to be solved (e.g., y = f (x) and

x = g (y)) until convergence to a solution of sufficient accuracy. However, unless I want only to

investigate the direction that this solution carries me in parameter space, my code does not use

this method with a pure loop, where

* y0 = f (x0)

* x1 = g (y0)
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Figure B.5: Diagrams for iterative-solving with a loop/walk method. Blue and teal curves rep-
resent two equations to be solved, the orange arrow represents the initial guess, and red arrows
represent the motion through parameter space of the solver routine. Direct-looping can lead to
non-convergence as shown in panel-a1, and loop/walking in some directions may be non-tractable
or lead to divergence, as shown in panels-b1 and -c1.

* y1 = f (x1)

* x2 = g (y1)

* etc...

As shown in panel-a1 of Figure B.5, there are cases where a pure loop will not converge, or will

be too slow to converge to be numerically useful. Therefore, I modify the loop by only taking a

half-step in one of the parameter dimensions, as shown in panel-a2, and prescribed by

* y0 = f (x0)
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* x1 = g (y0)

* y1 = f (x1) → y1a = 0.5 (y0 + y1)

* x2 = g (y1a)

* y2 = f (x2) → y2a = 0.5 (y1a + y2)

* etc...

With this method, the solver may converge to a centralized solution much more quickly. However,

as shown in panels-b1 and -c1 of Figure B.5, even this half-step method will not work at all if

loop/walking causes the solutions to diverge rather than converge. When solving for vsrd caused

by Epstein drag, this problem can be circumvented by inverting the two equations (to produce

x = f ′ (y) and y = g′ (x)) and loop/walking in the opposite direction, as shown in panels-b2 and

-c2, with:

* y0 = g′ (x0)

* x1 = f ′ (y0)

* etc...

However, panel-c2 also shows the primary drawback of the loop/walk method, which is that it can

sometimes be quite slow to converge, with poor constraints on the accuracy of that convergence.

The second iterative-solver method, which is much faster to converge, is the bisection method,

diagramed in Figure B.6. This method requires two initial guesses for the solution (x0a and x0b), one

on either side of that solution. At each guess, the direction to the other curve and the magnitude

of the separation are calculated. As long as the solution lies between the two guesses, the next

guess is made half-way between them, the direction and magnitude to the other curve calculated,

and the distance halved again. It goes as:

* y0a = f (x0a) ; y0b = f (x0b)

* ∆x0a = g (y0a) − x0a ; ∆x0b = g (y0b) = x0b

* for ∆x0a∆x0b < 0:
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Figure B.6: Diagram for iterative-solving with a bisection method. Blue and teal curves represent
the equations to be solved. Dotted lines represent guesses with arrows pointing to the magnitude
and direction of separation at each guess. Guesses moving inward from dark to light toward
convergence (sufficiently small separation between curves).

* x1a = 0.5 (x0a + x0b)

* y1a = f (x1a)

* ∆x1a = g (y1a − x1a)

* for ∆x1a∆x0a < 0:

* x1b = x0a ; ∆x1b = ∆x0a → x2a = 0.5 (x1a + x1b)

* etc...

* else for ∆x1a∆x0b < 0:

* x1b = x0b ; ∆x1b = ∆x0b → x2a = 0.5 (x1a + x1b)

* etc...

This method always converges as fast as possible, and convergence is judged directly by when the

separation between the two curves is sufficiently small. It never requires that the equations-to-be-

solved are invertible, but it does require knowing ahead of time the general region of parameter

space in which the solution exists.

While the loop/walk method is the most computationally expensive of these two methods, as

long as f (x) and g (y) are invertible, it can, however, be applied relatively blindly and still usually

produce stable, reliable results. Therefore, the earlier simulations of particle transport (presented
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Figure B.7: Diagram of iterative solving by loop/walk method (panel-a) and bisection method
(panel-b) for a case in Epstein-drag vsrd when there are no solutions. One of the vsrd equations has
an asymptote at vK/2 with curves open in these directions when vφ,g < vK/2. Black dotted lines
denote asymptotes. Left of the black axis line vφ,d < 0, non-viable solution space.

in Chapters 4 & 5) use Epstein-drag vsrd values derived from a loop/walk-only iterative solver, with

Equation-set (3.24):

vsrd = vr,g +
3
(

v2
sφd − v2

K

)

CRRρgvtherm
, (B.17)

vsφd =

(

CRRrhogvtherm

3
vφ,g +

vsrdvK
2

)

/

(

vsrd +
CRRρgvtherm

3

)

, (B.18)

and inverse equations:

vsφd =

√

v2
K +

CRRρgvtherm

3
(vsrd − vr,g) , (B.19)

vsrd = − 1

3
CRRρgvtherm

(vsφd − vφ,g)

(vsφd − vK/2)
. (B.20)

Using a loop/walk-only method with these equations is almost always well-behaved. However,

because one of the vsrd equations is hyperbolic, there is one case, sometimes appearing, for which

no steady vsrd solution exists. This is diagramed in Figure B.7. Note, that neither the loop/walk

method, nor the bisection method can handle this no-solution situation on their own. A better

iterative solver does not simply switch to a faster solving method, but instead takes the input

equations into account and is carefully designed to search for solutions where they are likely to be

found. Such a map for finding the full solution set to the vsrd equations is outlined in §B.3.2.
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B.3.2 The Mapped Approach to Iteratively Solving for Steady Radial Drift
Velocities

Here I present the schematic for finding the full solution set for vsrd under the influence of Epstein

drag using the equations (B.17)–(B.20) given above and the schematic map (in vsrd versus vsφd

space) shown in Figure B.8. Due to the nature of hyperbolic equations, solutions for vsrd are

broken into two regimes.

The assymptotes for the hyperbolic exist at

vsφd = vφH =
vK
2

(B.21)

vsrd = vrH = −vdrag , (B.22)

where vdrag = CRRρgvtherm/3 and is so-named because it scales the Epstein-drag force and has the

units of velocity. While in general vφ,g < vK, it is almost always greater than vK/2, and therefore

solving for vsrd usually falls into the simpler of the two regimes. In this vφ,g > vK/2 regime, there is

always a solution (A) intersecting the upper-RH branch of the hyperbolic equation, and sometimes

vsphid

vsrd vphi,g > vK

B

A

A

vsphid

vsrd vphi,g < vK

G

F

E

D

C

Figure B.8: Schematic for the vsrd solutions with Epstein drag (Equations (B.17)–(B.20) ). Note,
curves have been exaggerated for clarity. Dashed lines mark the assmpytotes of the hyperbolic
equation (green curves). Green x’s mark where the hyperbolic equation crosses the zero axes
(vsφd = vφ,g for vsrd = 0) and blue x’s mark where the parabolic equation (purple curve) intersects
the vsφd = 0 axis.

240



also a solution (B) for the lower-LH branch as well. The hyperbolic intersects the vsφd = 0 axis at

vH0 = −2vφ,gvdrag

vK
. (B.23)

The parabolic intersects the axis at

vP0 = vr,g −
v2
K

vdrag
. (B.24)

Solution (B) exists if vH0 ≥ vP0. Finally, both solutions (A) and (B) can be found with the

bisection method, bisecting in vsrd — the parameter of most interest. Solution (B) must exist at

vP0 ≤ vsrd,(B) ≤ vH0, and so the bisect bounds are already defined. If solution (B) exists, then one

bisect bound for solution (A) should be placed at vsrd = 0. The other bound must be searched

for both toward lower vsrd approaching (but not crossing) the hyperbolic assymptote, and toward

greater vsrd, since it cannot be known before hand in which direction the solution will lie. If,

however, solution (B) does not exist, then a bound for (A) can be placed at vP0 and the other

searched toward larger vsrd. In the case that both (B) exists and there are two solutions to chose

from, I choose the solution closest to (vr,g, vφ,g), almost always solution (A).

Searching for vsrd solutions in the vφ,g < vK/2 regime is rarer (but not negligibly so, as the

gas may orbit very slowly just interior to a gap or at the very outer disk edge), and also more

complicated, and there may be no solution at all. If in this regime vH0 < vP0, then there is generally

one solution (C) on the upper-LH branch of the hyperbolic that can be found using the same bisect

method as for (A) but with the upper-bound already given by where the parabolic crosses the

vK/2 assmpytote. However, it is conceivable that vH0 < vP0 harbors three solutions (C1,C2,C3), as

depicted in Figure B.9. If three solutions do exist, then the bisect search will locate either (C1) or

(C3). Therefore, solution one must search for a possible (C2) using the loop-walk method - starting

just above or below the found solution (based on the requested accuracy for convergence), and then

loop/walk searching in both directions (which is one reason why the invertible equations for the

Epstein-drag case are very nice). (Note that this search will fail incorrectly if two of the solutions

are with the error-margine of each other.) Moving toward larger values will not provide (C2) if the

loop/walk goes past vsφd = vK/2. Moving to small values will not provide (C2) if the loop/walk
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vsphid

vsrd vphi,g < vK

C3

C1
C2

Figure B.9: Map of the solution-space for finding vsrd due to Epstein drag when there are three
possible solutions (in the vφ,g < vK/2 regime). Same conventions as in Figure B.8.

goes below vsrd = vP0. Therefore, this search method has clear failure criteria. If, however, (C2) is

found, then a third solution must also exist, either between (C2) and vP0 or (C2) and where the

parabolic crosses vK/2. This provides clear bounds for a bisect method. However, numerically, the

(C2) bound must be placed at least one error-margine away. If these later two solutions are within

an error-margin of each other, then they will have to be treated as a single solution.

Next, in the more difficut vφ,g < vK/2 regime, when vH0 > vP0, there are either 0 or 2 solutions

(either both on the upper-LH branch of the hyperbolic (D and E) or both on the lower-RH branch

(F and G)). Fortunately, there are clear criteria for determining whether there are no solutions

in this regime, and if that is the case, my code simply sets the radial-drift velocity equal to the

assymptote vrH = −vdrag. The schematic for seeking the first solution in this regime is shown in

Figure B.10. The first step is to start at the point where the parabolic crosses the vK/2 assymptote

and loop/walk toward smaller values. If the walk crosses below vH0, then solutions (D) and (E)

do not exist. Otherwise, loop/walking will locate solution (D). Solution (E) may then be found

with bisection, setting on bound at vH0, and searching for the other at vsrd < vsrdD. If solutions

(D) and (E) do not exist, next is to loop/walk toward larger values from vP0. If the walk crosses
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vsphid

vsrd

E

D

vsphid

vsrd

G

F

Figure B.10: A map seeking vsrd solutions in the case that vφ,g < vK/2 and vH0 > vP0. Looping
forward from two limits will either find the first of two solutions, (D) or (F), or will identify the
criteria for zero solutions. Plot uses same conventions as in Figure B.8.

above the assymptote vrH = −vdrag, then solutions (F) and (G) do not exist (and there are no

solutions). Otherwise, the loop/walk will reach solution (F), and solution (G) can be found by

bisection. Setting the bisection bounds for (G) are a bit tricky, however, as they must be > vsrdF

and < vrH and not actually at either.

As complex as these schematics may seem, there are really quite clear paths to reaching all

obtainable solutions. Making a map to solve for vsrd in the case of Stokes drag would be harder.

This is primarily for two reasons. First, because the vsrd equations for Stokes drag are made more

complex by being spread over three regimes in Re (see §3.2.1), and the boundaries of those regimes

depend on one’s position in both vsrd and vsφd parameter space. And second, the Stokes-drag

equations cannot be easily inverted, making the direction loop-walking fixed and even some of

the axis intersection bounds troublesome to locate. One possible approach would be to solve the

equations in each of the thee Re regimes separately, and then sort out which solutions were viable.

However, each regime would still have its individual challenges.

243



B.3.3 To Solve for the Disk Temperature at the Midplane by Balancing Energy
Flux

Here, I present my schematic for finding an energy-balanced midplane-temperature solution (see

§2.4). Because of the number and complexity of equations involved, my code does not account for

finding the full solution set. Instead, I have taken a simplified approach generally appropriate to

my protoplanetary-disk models, wherein there are usually only 1 or 3 possible solutions, as depicted

in Figure B.11.

The primary equations to itterate to find an energy-balanced midplane temperature are (see

§2.4)

σBT
4
mid =

1

2
R2νΣg

(

∂Ωg

∂R

)2(3

8
τR +

1

2τP

)

+ σB

(

T 4
irr + T 4

cloud

)

,

κR = κiρ
aiT bi ; with 8 regimes forκi, ai, and bi ,

ν = α
1

ΩK

√

kBT

µmH
,

also remembering that

ρg,mid =
ΣgΩK√

2π

√

µmH

kBT

τR = κRΣg

τP
τR

≈ 1 (B.25)

This set of equations is not invertible, so, in the case of itteratively loop/walking to find a solution

in the space shown in Figure B.11, motion toward the energy-balance (blue) curve must be for a

given κR (and ν) and is left-right only, while motion toward the Bell-Lin opacity (green) curve

must be for a given T and is up-down only.

To begin looking for an energy-balanced temperature solution, I first mark a minimum guessed

temperature, Tmin, taken from the energy-balanced curve due to external luminosity only (ν = 0).

This then also gives a first guess for ν and κR. With this guessed minimum temperature, I next

consider the resultant κR (T ) curve and each of the intersection points between the different opacity

regimes. For each intersection point, I consider the (left-right) direction to the local energy-balance

temperature, TEB, and flag each point for which Tmin < Tpoint < TEB. (The change in the κR (T )
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Figure B.11: Schematic for iteratively solving for an energy-balanced midplane disk temperature
plotted in κR versus T space. However, the solution must actually be found in three parameters,
including the disk viscosity, ν. Green curves plot the Rossalind-mean opacities κR obtained from
Bell & Lin (1994) for a higher (dark) and lower (light) gas density, ρg,mid ∝ T−1/2. Blue curves
plot instances of the energy-balance equation (2.44) (for lower (darker) to higher (lighter) disk
viscosity, να ∝ T ).

slope at intersection points means that there is a chance for multiple crossings of the energy-balance

and opacity curves under that condition.) In Figure B.11, only the left-most set of blue curves would

have no flagged intersection points (so I would need to look for one solution (A) only).

Finally, I first seek a solution to the set using the simple loop/walk method of itteration starting

at Tmin. For each guessed T , I advance both κR and ν before seeking the next T . This loop/walk

method then produces either solution (A) or (C). If the solution is at T greater than any of the

flagged points, then it is solution (C) and I assume this is the only solution (as in the right-most

blue curve of Figure B.11). Otherwise it is solution (A) and, if there are flagged points, I next

search for solutions (B) and (C).

Solution (C) is at T greater than any of the flagged points, so the greatest flagged T marks

one of the bounds for a bisection search. The other bound must be searched for toward larger T .

Solution (B) can only be found using bisection, but the only clear bounds are that TA < TB < TC .

Therefore, the first bound must be guessed between TA and TC , and a second bound searched left

and right toward those solutions. And (B), of course, cannot be found separately if it is within an

accuracy margin of one of the other solutions.
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Last, if there are multiple solutions found, my code picks the temperature solution closest to

the the previously calcuated temperatre (or Tmin if this is the first calculation).
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Appendix C

Glossary of Physical Constants and
Symbolic Variables

SPECIAL FUNCTIONS

Symbol Function Example Use

Iβ
Modified Bessel function of the First Kind of
order β

Equations (2.21) & (A.12)

Jβ Bessel function of the First Kind of order β Equation (A.8)

δ (x− x0) Dirac-delta function Equations (2.20), before (A.1)

Table C.1: Table of Special Functions
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PHYSICAL CONSTANTS

Symbol Value Name Example Use

AU 1.4959787066 × 1013 cm astronomical unit

c 2.99792458 × 1010 cm s−1 speed of light Equation (3.2)

G 6.6742 × 10−8 cm3 g−1 s−2 the gravitational constant Equation (2.2)

kB 1.3806505x10−16 ergs K−1 Boltzmann’s constant Equation (2.4)

L¯ 3.846 × 1033 ergs s−1 solar luminosity

M¯ 1.988 × 1033 g Solar mass

MEarth 5.9723 × 1027 g Earth mass

mH 1.67262171 × 10−24 g proton mass Equation (2.4)

αB 2.6−13 cm3 s−1 recombination coefficient of
atomic Hydrogen

Equation (2.31)

σ13.6eV 6.3×10−18 cm2 absorbing cross-section for
EUV ionizing radiation

after Equation (2.32)

σB
5.6704×10−5 ergs s−1 cm−2

K−4 Stefan-Boltzman constant Equation (2.38)

σH2
2.4 × 10−15 cm2 collisional cross-section of

molecular Hydrogen

π 3.1415926.... pi

Table C.2: Table of Physicals Constants
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SYMBOLIC VARIABLES

Symbol Common Units Description Example Use

a –
(negative) power-law constant
for power-law disk surface den-
sity

Equation (A.1)

A s−1 local rate of shearing in the
disk

Equation (2.15)

A (λ) ***
initial-condition fitting func-
tion for contaminant-diffusion
distribution

Equation (A.9)

ai –
power-law for ρg in the Bell &

Lin (1994) opacity parameter-
ization

Equation (2.47)

aph –
fitting constant for EUV pho-
toevaporation

Equation (2.33)

Aph –
fitting constant for EUV pho-
toevaporation

Equation (2.31)

b –
power-law constant for power-
law disk viscosity

Equation (A.1)

bi –
power-law for T in the Bell &

Lin (1994) opacity parameter-
ization

Equation (2.47)

Bph –
fitting constant for EUV pho-
toevaporation

Equation (2.30)

Table C.3: Table of Symbolic Variables
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Symbol Common Units Description Example Use

bqT –
power-law for time-scaling for
qT in the TPR fit to disk tem-
perature

Equation (2.50), Table 2.1

bTAU
–

power-law for time-scaling for
TAU in the TPR fit to disk
temperature

Equation (2.50), Table 2.1

bx –
power-law of time-scaling of
TAU or qT for TPR fit to disk
temperature

Equations (2.50) & (2.51)

C –

concentration (local
contaminant-to-gas mass
ratio) of diffusing contami-
nant

Equation (A.2)

C0 ***
scaling constant for t = 0 con-
taminant concentration

before Equation (A.1)

& (A.10)

C1,ph –
fitting constant for EUV pho-
toevaporation

Equation (2.31)

C2,ph –
fitting constant for EUV pho-
toevaporation

Equation (2.35)

CD – coefficient of Stokes drag Equation (3.14)

CN –
the normalized concentration
of a contaminant in a region
(the outer disk in this thesis)

Equation (4.2)

CR cm2 g−1 surface-area-to-mass ratio of a
dust particle

Equation (3.10)

CR,maxv cm2 g−1 CR that gives fastest inward
drift from headwind drag

Equation (3.23)

CR,steady cm2 g−1 CR that balances drag for a
stable orbit

Equation (3.22)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

cs km s−1 local sound speed Equation (2.4)

cs,ionz km s−1 sound speed of ionized gas Equation (2.29)

Dg cm2 s−1 diffusivity of the gas Equation (3.30)

Dkg cm2 s−1 diffusivity of a contaminant Equation (A.2)

Dp cm2 s−1
diffusivity of the particle en-
semble

Equation (3.29)

Dp,CDC1993 cm2 s−1
particle-ensemble diffusivity
according to Cuzzi, Dobrovol-

skis, & Champney (1993)
Equation (3.34)

Dp,YL2007 cm2 s−1
particle-ensemble diffusiv-
ity according to Youdin &

Lithwick (2007)
Equation (3.33)

Dph –
fitting constant for EUV pho-
toevaporation

Equation (2.30)

E –
local enhancement factor of
the dust-to-gas ratio

Equation (6.5)

Eprecip –
enhancement required for col-
lapse/precipitation

Equation (6.19)

E′

precip –
enhancement required for pre-
cipitation using Ri′c

Equation (6.25)

EQp –
enhancement required for di-
rect collapse of particle layer

Equation (6.21)

E′

Qp
–

enhancement required for di-
rect collapse of particle layer

Equation (6.26)

dFν g s−2 viscous force per unit length Equation (2.15)

Fcloud ergs s−1 cm−2 energy-flux of molecular-cloud
illumination

Equations (2.37) & (2.40)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

Fcool ergs s−1 cm−2 energy-flux of disk cooling Equations (2.37) & (2.38)

FD g cm s−2 force of gas drag below Equation (3.8)

FD,r g cm s−2 radial component of the gas-
drag force

Equation (3.7)

FD,φ g cm s−2 azimuthal component of the
gas-drag force

Equation (3.8)

fph –
smoothing function for the
direct-photoevaporation wind

Equations (2.33) & (2.34)

Fph g cm s−2 force of photophoresis Equation (3.3)

Frad g cm s−2 force of radiation pressure Equation (3.2)

Fstar ergs s−1 cm−2 energy-flux of stellar illumina-
tion

Equations (2.37) & (2.39)

Fvisc ergs s−1 cm−2 energy-flux of disk viscous
heating

Equations (2.37) & (2.42)

g (R) ***
R-dependence of variable-
separated C (R, t)

Equation (A.5)

Gν g cm2 s−2 local viscous torque Equations (2.14) & (2.15)

h (ψ) –
gravitational scaling for criti-
cal particle layer

Equation (6.20)

H0
scaling constant for power-law
disk scale-height

Equation (2.10)

Hg AU local disk-gas scale-height Equations (2.3) & (2.4)

Hp AU
particle scale-height in the
disk

Equation (3.4)

Hp,c cm height of critical particle layer Equation (6.20)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

i –
index variable of disk-model
grid cells

Equation (2.23)

i′ –
index variable contracted grid-
space: one i′ corresponds to
several i

Equation (6.10)

I ergs s−1 cm−2 intensity of incident light Equation (3.2)

j –
index variable for disk-
evolution time steps

Equation (2.24)

J1 –
assymetry parameter for cal-
culating photophoresis

Equation (3.3)

k *** change-of-variables constant Equation (A.7)

Kdiff g cm−2 s−1/2 scaling constant for the
diffuse-photoevaporation wind

Equations (2.30) & (2.31)

Kdir g cm−1/2 s−1/2 scaling constant for direct-
wind photoevaporation

Equations (2.33) & (2.35)

kth ergs s−1 cm−1 K−1 thermal conductivity of a
grain

Equation (3.3)

l (L) g cm1/2 normalized angular-
momentum measure

Figure (B.3)

L? L¯ stellar luminosity Equation (2.39)

L1,i g cm2 s−1
less-precise angular-
momentum calculation in
grid-cell i

Equation (B.7)

L2,i g cm2 s−1
more-precise angular-
momentum calculation in
grid-cell i

Equation (B.8)

m g mass of a (growing) dust grain Equation (3.35)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

m1, m2 g
masses of two collid-
ing/coagulaing dust grains

before Equation (3.35)

M1,i g
less-precise mass calculation in
grid-cell i

Equation (B.7)

M2,i g
more-precise mass calculation
in grid-cell i

Equation (B.8)

M? M¯ mass of the central star Equation (2.2)

Ṁ M¯ yr−1 local accretion rate Equation (2.19)

Ṁ0 M¯ yr−1 initial disk accretion rate Equation (2.1)

md g mass of a dust particle Equation (3.7)

MD,0 M¯ initial disk mass Equation (6.4)

Mdummy g
mass viscously transfered into
a dummy grid-cell with no
mass initially in it

before Equation (B.9)

Mg g disk-gas mass Equation (3.32)

Mg,i g gas mass in grid-cell i Equation (6.10)

mGE g
gas-equivalent mass of a dust
particle

after Equation (6.5)

MGE g
(source-) gas-equivalent mass
of dust particles

Equation (6.5)

MGE,i g
gas-equivalent mass of dust
particles in grid-cell i

Equation (6.10)

mi g
contaminant mass in grid-cell
i

Equation (A.15)

mtot g
total mass of diffusing contam-
inant

Equation (A.15)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

n cm−3 gas particle number density after Equation (2.2)

ngrid –
number of disk-model radial
grid cells

Equation (2.23)

np # cm−3 number density of particles Equation (6.6)

P g cm−1 s−2 local gas pressure Equation (2.2)

p –
power-law–index variable
change for diffusion-of-a-
contaminant solution

Equation (A.5)

pin –
probability of a particle diffu-
sively stepping radially inward

Equation (3.32)

Pk g cm−2 s−1 production rate of a contami-
nant

Equation (A.2)

pout –
probability of a particle dif-
fusively stepping radially out-
ward

Equation (3.32)

q –
change-of-variables power-law
constant

Equation (A.7)

qH –
disk scale-height power-law
constant in R

Equation (2.10)

Qp –
Q-collapse criterion of particle
layer

Equation (6.20)

qs –
grain-size distribution power-
law index

Equation (6.6)

qT –
disk temperature power-law
constant in R

Equation (2.10)

qT,0 – qT at t = 0 Equation (2.50), Table 2.1

qT,∞ – qT at t = ∞ Equation (2.50), Table 2.1

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

qν –
disk viscosity power-law scal-
ing in R

Equation (2.10)

qΣ –
local power-law constant for
the disk surface density

Equation (2.54)

R AU
radial distance from the cen-
tral star

Equation (2.1)

R0 AU
initial radial position of a dif-
fusing quantity

Equation 2.20

rd cm
dust radial distance from the
star

Equation (3.1)

Rd AU
initial-disk exponential fall-off
radius

Equation (2.1)

Re – Reynold’s number Equation (3.12)

Redge AU
outer edge of photoevapora-
tive gap

Equation (2.32)

Rfin cm
radial position of a particle at
the end of a time-step

§3.3.2

Rg AU
radius where an ionized (hot)
gas is gravitationally unbound
from the star

Equation (2.29)

Rgap AU
location where EUV photoe-
vaporative gap opens

before Equation (2.32)

Ri – Richardson number before Equation (6.15)

Ric – critical Richardson number Equation (6.15)

Ri′c –
critical Richardson number
scaled to E following Lee et al.

(2010)
Equation (6.24)

Ri AU or cm radial position of grid-cell i Equation (2.23)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

Ri+1/2 cm
radial-position of the outer-
boundary of grid-cell i

Equation (B.8)

Rin AU (steady) inner edge of gas disk Equation (2.1)

Rmax AU
outer-most disk-grid-cell posi-
tion

Equation (2.23)

Rmin AU
inner-most disk-grid-cell posi-
tion

Equation (2.23)

Rout AU
∼ outer observable edge of a
gas disk

§2.5

Rstart cm
radial position of a particle at
the beginning of a time-step

§3.3.2

Rthin AU
inner edge of photevaporative
gap

Equation (2.32)

s ***
spatial change-of-variables
for contaminant-diffusion
distribution

Equation (A.11)

s0 ***
s for R0 for contaminant-
diffusion distribution

Equation (A.16)

s (ψ) –
gravitational scaling for col-
lapse criterion

Equation (6.15)

sbmax cm
maximum grain radius of a
given grain-size bin

Equation (6.8)

sbmin cm
minimum grain radius of a
given grain-size bin

Equation (6.8)

Sc –
the Schmidt number: ratio of
disk viscosity to the gas diffu-
sivity

before Equation (3.33)

sd cm radius of a dust particle Equation (3.2)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

sd1, sd2 cm
radii of two collid-
ing/coagulating dust grains

Equation (3.36)

smax cm
maximum grain-radius for the
dust-size distribution

Equation (6.7)

smin cm
minimum grain-radius for the
dust-size distribution

Equation (6.7)

St –
the Stokes number: ratio of
the gas-drag stopping to the
eddy turn-over times

Equation (3.34)

t years time Equation (2.1)

t0 yr

time (relative to t = 0 of the
disk evolution) that particles
are initiated in the transport
simulations

§5.3

teddy s
time-scale for one eddy turn-
over

before Equation (3.33)

torbit s orbital period before Equation (3.23)

tstop s
gas-drag stopping time of a
particle

Equations (3.4) & (3.5)

tTAU
years

time-scaling for TAU in the
TPR fit to disk temperature

Equation (2.50), Table 2.1

tqT years
time-scaling for qT in the TPR
fit to disk temperature

Equation (2.50), Table 2.1

tx years
time-scaling for TAU or qT in
the evolving-power-law fit of
disk temperature

Equations (2.50) & (2.52)

T K local disk temperature Equation (2.4)

T0 ***
scaling constant for power-law
disk temperature

Equation (2.10)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

TAU K disk temperature at 1 AU Equation (2.49)

TAU,0 K TAU at t = 0 Equation (2.50), Table 2.1

TAU,∞ K TAU at t = ∞ Equation (2.50), Table 2.1

Tbound K

boundary temperature be-
tween opacity regimes in the
Bell & Lin (1994) parameteri-
zation

after Equation (2.47)

Tcloud K
temperature of the (molecular
cloud) disk environment

Equation (2.40)

Te K
effective radiative temperature
of the disk

Equation (2.38)

Tirr K
effective temperature from
stellar irradiation

Equation (2.39)

Tmid K midplane disk temperature Equation (2.44)

v cm s−1 background contaminant ra-
dial velocity

§3.3.2

v0 ***
scaling-constant for power-law
radial velocity

Equation (A.1)

vK cm s−1 Keplerian velocity Equation (3.5)

vR cm s−1 1D disk-model or contaminant
radial velocity

Equations (2.13) & (A.1)

vr,acc cm s−1 vr,g in the accretion-flow case Equation (2.55)

vr,d cm s−1 radial dust velocity Equation (3.5)

vr,drag cm s−1 dust radial velocity induced by
gas drag

Equation (3.28)

vr,drift cm s−1 dust radial-drift velocity from
headwind drag

Equation (3.25)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

vr,g cm s−1 radial gas velocity Equation (2.56)

vr,merid cm s−1 vr,g in the midplane-flow case Equation (2.57)

vsettle cm s−1
settling (toward the midplane)
velocity of a dust particle in a
gas disk

Equation (3.37)

vsrd cm s−1 dust steady mean-radial veloc-
ity

Equations (3.1) & (3.24)

vsφd cm s−1 steady azimuthal dust velocity Equation (3.24)

vtherm cm s−1 thermal velocity of the gas
particles

Equation (3.10)

vturb cm s−1 dust turbulent random-walk
velocity

Equations (3.1) & (3.29)

vz,g cm s−1 vertical (midplane normal) gas
velocity

Equations (2.56) & (2.58)

vφ,d cm s−1 azimuthal (orbital) dust veloc-
ity

Equation (3.5)

vφ,g cm s−1 azimuthal (orbital) velocity of
the disk gas

after Equation (2.54)

x ***
spatial change-of-variables for
contaminant diffusion

Equation (A.7)

x0 K or – TAU or qT at t = 0 Equation (2.50)

x∞ K or – TAU or qT at t = ∞ Equation (2.50)

X cm1/2 spatial variable used in the
disk-evolution equation

Equation (2.17)

Xi

√
AU or

√
cm

X-spatial position of grid-cell
i

Equation (2.23)

Table C.3 continued: Symbolic Variables

260



Symbol Common Units Description Example Use

Y ***
spatial change-of-variables for
contaminant-distribution solu-
tion

Equation (A.18)

z cm
height above the disk mid-
plane

Equation (2.2)

Z –
disk metallicity (dust-to-gas
surface-density ratio)

Equation (3.38)

Z¯ –
solar/initial dust-to-gas ratio
(metallicity)

Equation (6.13)

Z0 –
ratio of all-condensibles-to-gas
(base metallicity)

Equation (6.13)

Zrel –
relative fraction of all conden-
sibles solid at a given disk tem-
perature

Equation (6.13)

α – alpha-scaling for disk viscosity Equation (2.8)

αc –
power-law constant used in so-
lution for analytic diffusion

Equation (2.21)

β –
order of the modified Bessel
function solution to diffusive
evolution

Equation (2.21)

χph – scaling constant for Φdir Equation (2.36)

χR – radial position scaled by Rg Equation (2.30)

δLi g cm2 s−1

extra angular-momentum cre-
ated (or destroyed) in one nu-
meric viscous-evolution time-
step from grid-cell i

Equation (B.9)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

δMi g

extra mass created (or de-
stroyed) in one numeric
viscous-evolution time-step
from grid-cell i

Equation (B.9)

∆Radvect cm
displacement of particle due to
gas-drag advection

§3.3.2

∆Ri cm width of grid-cell i Equation (B.7)

∆Rrms cm
root-mean-square of particle
diffusive translation

Equation (3.31)

∆Rturb cm
displacement of particle due
to diffusive random-walk step-
ping

§3.3.2

∆t years or s size of various time-steps Equations (2.24) & (2.25)

∆tevolv years or s
time-step of disk-model vis-
cous evolution

after Equation (3.32)

∆v cm s−1 collisional velocity for dust-
grain coagulation

Equation (3.35)

∆vB cm s−1
collisional velocity for dust co-
agulation via Brownian mo-
tion

Equation (3.39)

∆Xi
√

cm width in X of grid-cell i Equation (2.24)

∆Xi+1/2

√
cm

distance in X between grid-
cells i and i+ 1

Equation (2.24)

ε –
radiative efficiency of the disk
gas

Equation (2.38)

ερ –
local-dust-to-gas volume-
density ratio

Equation (3.27)

Table C.3 continued: Symbolic Variables
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Symbol Common Units Description Example Use

ερ,0 –
dust-to-gas density ratio at the
midplane

Equation (6.22)

φ –
incidence angle between disk
surface and stellar illumina-
tion

Equation (2.39)

Φ photons s−1 EUV ionization flux Equation (2.32)

Φdiff photons s−1 ionization flux for diffuse-wind
photoevaporation

Equation (2.30)

Φdir photons s−1 EUV ionization flux for direct-
wind photoevaporation

Equations (2.33) & (2.36)

γ1 –
power-law constant in
contaminant-distribution
solution

Equation (A.16)

γ2 –
power-law constant in
contaminant-distribution
solution

Equation (A.16)

η g cm−1 s−1 kinematic viscosity of the gas Equation (3.13)

ηδφ –
normalized difference between
Keplerian and gas orbital ve-
locities

Equation (3.27)

κi cm2 g−1
local opacity scaling in the
Bell & Lin (1994) parameteri-
zation

Equation (2.47)

κR cm2 g−1 Rossalind mean opacity Equation (2.45)

λ –
separation constant for separa-
tion of variables

Equation (A.5)

λmf cm
mean-free path of a gas parti-
cle

below Equation (3.20)

Table C.3 continued: Symbolic Variables
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µ – average gas-particle mass Equation (2.4)

µionz –
mH -scaled mass of an ionized
gas particle

Equation (2.31)

ν cm2 s−1 local disk viscosity Equations (2.1) & (2.8)

ν0 ***
scaling constant for power-law
viscosity

Equation (A.1)

Ωg s−1 local gas orbital/azimuthal ve-
locity

Equation (2.14)

ΩK s−1 Keplerian azimuthal angular
velocity

Equation (2.54)

ΩK,mid s−1 local Keplerian velocity at the
midplane

Equation (2.4)

Πη –
radial-pressure-gradient pa-
rameter

Equation (6.29)

ρd g cm−3 dust-particle internal density Equation (3.25)

ρg g cm−3 local disk gas density Equations (2.2) & (2.3)

ρg,mid g cm−3 midplane gas density Equations (2.3) & (2.6)

ρp g cm−3 local dust-particle volume
density

Equation (6.7)

ρp,sd
g cm−3 volume density of particles in

a given sd size bin
Equation (6.8)

σ g cm−2 surface density of diffusing
contaminant

before Equation (A.15)

Σ0 ***
scaling constant for power-law
disk surface-density

Equation (A.1)
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σc cm2 collisional cross-section for
dust-grain coagulation

Equations (3.35) & (3.36)

σcross cm2 collisional cross-section of a
gas particle

below Equation (3.11)

Σ̇diffuse g cm−2 s−1 loss rate of Σg due to diffuse-
wind EUV photoevaporation

Equation (2.30)

Σ̇direct g cm−2 s−1 loss rate of Σg due to direct-
wind EUV photoevaporation

Equation (2.33)

Σg g cm−2 local disk-gas surface density Equation (2.1)

Σg,0 ***
initial scaling for a delta-
function in surface density

Equation (2.20)

Σj
i g cm−2 disk surface density in grid-cell

i at time-step j
Equation (2.28)

Σp g cm−2 surface density of dust solids Equation (6.12)

Σp,c g cm−3 critical particle surface density
for collapse/precipitation

Equation (6.15)

Σvisc g cm−2 the disk surface-density that
results from viscous evolution

Equation (2.28)

Σ̇wind g cm−2 s−1 loss-rate of disk surface den-
sity due to photoevaporation

Equation (2.27)

τe – the normalized eddy time before Equation (3.33)

τP – Plank optical depth Equation (2.44)

τR – Rossalind mean optical depth Equations (2.44) & (2.45)

τs –
normalized gas-drag stopping
time

Equation (3.27)

ψ – gravitational scaling constant Equation (6.17)
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ζ –
scale-constant between gas dif-
fusivity and disk viscosity

after Equation (A.2)

ζ∆t –
scaling of disk-evolution time-
steps relative to the stability
criterion

Equation (2.26)

Table C.3 continued: Symbolic Variables

Units marked as:

– These variables are unitless.

***
These variables have units that may change depending on the parameters of

their equations, or units that are important only within their given equations.
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