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ABSTRACT

It is shown that there exist context free languages which are not
deterministic ETOL languages. The proof is based on an analysis of the

structure of derivations in deterministic ETOL systems



I. INTRODUCTION

L systems and languages become now a fashionable area of formal
language theory (the reader is referred to Herman and Rozenberg [7]
and to Rozenberg and Salomaa [9] for a more tutorial and a more
research oriented texts respectively).

Among various families of L languages one of the central families
is this of ETOL languages (see, e.g., Christensen [2], Downey [3],
Rozenberg [8] and Salomaa [11]). On the other hand the family of
deterministic ETOL languages turned out to be the very cemntral sub-
family of the family of ETOL languages (see, e.g., Ehrenfeucht and
Rozenberg [4] and Ehrenfeucht and Rozenberg [6]).

The question of existence of context free languages which are not
deterministic ETOL languages became recently quite vigorously investi-
gated (see, e.g., Salomaa [12], Skyum [14] and Siromoney and Krithivasan
[13]). There are at least two reasons for this:

1) The answer to this question puts a difference between sequential
grammars of Chomsky and very parallel in nature L systems in a better
light, and

2) The existence of context free languages which are not deterministic
ETOL languages would imply (see Ehrenfeucht and Rozenberg [4]) the
existence of indexed languages (see Aho [1]) which are not ETOL languages.
This in turn would solve a quite important open problem (see, e.g.,
Salomaa [11]).

In this paper we prove the existence of context free languages which
are not deterministic ETOL languages. (Among these languages are, almost
all, Dyck languages.)

Throughout the paper we shall use the standard formal language



theoretic terminology and notation. Also we use:

u(x) to denote the smallest positive integer n such that any two
disjoint subwords of x of length n are different,

#ax to denote the number of occurrences of the letter a in the word
x, and

[‘m{l to denote the absolute value of an integer m.



II. EDTOL SYSTEMS AND LANGUAGES

In this section we introduce the class of EDTOL systems (and languages)
and provide some examples of them.

Definition 1. An extended deterministic table L system without

interactions, abbreviated as an EDTOL system, is defined as a construct

G={V, P, w, I7such that
1) V is a finite set (called the alphabet of G).

2) P is a finite set (called the set of tables of G), each element of

which is a finite subset of V x V%, Each P in P satisfies the following
conditions: for each a in V there exists exactly one o in V* such that
<a,o> is in P,

3) weV' (called the axiom of G).

(We assume that V, I and each P in P are nonempty sets,)

We call G propagating, abbreviated as an EPDTOL system if each P in P is
a subset of V x V+‘

: +
Definition 2. Let G = <:V, P, w, 2*7 be an EDTOL system. Let xeV

X = a5 . o 3, where each aj, 1< j %k, is an element of V, and let yeV*.

1

We say that x directly derives y in G {(denoted as Xmmé%ﬁy) if and only if

there exist P in P and Pys + + = Py in P such that Py = <ak,mk>, N

*
<a o> and y = a.. . .0,. We say that x derives y in G (denoted as X ====3>y)
k 1 k G

X

if and only if either (i) there exists a sequence of words Xgs Xps o v o5 X

in V# (n > 1) such that Xg = Xy, X =y and Xowmﬁ%'xlﬁm@? e o o ==X, OF

e e ¢ ¢
(ii) x =y.

Definition 3. Let G = <5V, P, w, Z‘> be an EDTOL system. The language

. *
of G, denoted as L(G), is defined as L(G) = {xel*:w ====>x},
G

Notation. Let G = iy, Py w, Et} be an EDTOL system.

1) If <a,o> is an element of some P in P then we call it a production and write



a->¢o is in P or a - o.

P
2) 1If x-==py using table P from P, then we also write x-==>7y,
G P
3) 1In fact each table P from P is a:finite substitution. Hence we can use

m
a "functional" notation and write P for an m-folded composition of P, Pm?m-l

.« « « P for a composition of tables P , then P

1 r 1 22 07

finally Pm), etc. In this sense Pm . e . Pl(x) denotes the (unique) word

. e ey Pm (first P

y which is obtained by rewriting x be the sequence of tables Pl, P2, o o s Pm.

We end this section with some examples of ETOL systems and languages.
Example 1. Let G = (?V, P, w, £ > where V = {A, B, a}, & = {a}, w = AB

and P = {Pl’ PZ}’ where

Pl=‘{A+A2,B—>B3,a—>a,P2

Gl is an EPDTOL system where L(Gl) = {a

={A~+a, B> a, a~ al.

n
2043 :tn > 0}.

Example 2. Let G, =<{a, b, A, B, C, D, F}, P, CD, {a, b}j}, where

P = {Pl’ P, P3} and
Pl ={a-+F, b>F, A> A, B> B, C~+ ACB, D+ DA},
1>2='{a—>F,b—>F,A+A,B->B,c->CB,D->D},
P3='{a+F,b~>F,A+a,B+b,C~>A,D—+A}.

. . . . CIR
G2 is an EDTOL system which is not propagating, and L(Gz) ={a'b a:

n >0, m>n}.



DERIVATIONS IN.EDTOL. SYSTEMS

In this section various notions and theorems concerning derivations
in EDTOL systems are introduced. They will be very essentially used in the

sequel of this paper.

Definition 4. Let G = <V, P, w, ;} be an EDTOL system. A derivation
(of y from x) in G is a construct D = ((xo, e e ey xk), (TO, C e ey Tk-l)’égﬁ
where k > 2 and

1 x ey X

. are in V¥*,

O’ « o

2) T are in P

0+ v e T

3) 5%’18 an unambiguous description which tells us, for each j in‘{O, . e ey

k-1}, how each occurrence in Xj is rewritten using Tj to obtain Xj+l’

4) Xy = X and X, =Y.

If x = w then we simply say that D is a derivation (of y) in G.

Definition 5. Let G = <fV, Ps w, Z:>be an EDTOL system and let D =

((xo, e e e Xk), (TO, . e ey Tk—l)’é%) be a derivation in G. For each

occurrence a in Xj’ 1< 3j< k, by a contribution of a in D, denoted as

ContrD(a), we mean the whole subword of X, which is derived fxrom a. (Then

if x is an occurrence of a word in Xj’ ContrD(x) has the obvious meaning.)

Also, for each Tj’ 1g3j< k-1, Tj(m)‘denotes both the word 8 such that o= 8

J

and the contribution to Xj+l by an occurrence (of a word) o in Xj’ but this

should not lead to a confusion.

Definition 6. Let G =<V, P, w, £ be an EDTOL system and let D =

((xo, e e, Xk)’ (TO, . e s Tk~l),é%§ be a derivation in G. A subderivation

of D is a construct D = ((X, 5 « « o5 X, )y (P, 4 « « .y P. ),4) where
1 1 1 1
0 q 0 q-1

1) 0.§io<il< ...<iq.§k—l,

2) for each j in {0, . . ., gq-1}, Pi = Ti T, e o . T,

b j i+l



3) is an unambiguous description which tells us, for each j in {0, . . .,

q-1}, how each occurrence in X, is rewritten by Pi to obtain X, .
] 3 L

Remark

Although a subderivation of a derivation in G does not have to be a
derivation in G we shall use for subderivations the same terminology as for
derivations and this should not lead to confusion. (For example we talk
about tables used in a subderivation.) It is clear that to determine a
subderivation D of a given derivation D it suffices to indicate which
words of D form the sequence of words of D. We will also talk about a
subderivation %zof a subderivation D of D meaning a subderivation of D
the words of which are chosen from the words of D. (In this sense we have
that a subderivation of a subderivation of a derivation D is a subderivation
of the derivation D.) Given a subderivation D of D and an occurrence a in a
word of D we talk about ContrD(a) in an obvious sense.

Definition 7. Let G = £V, P, w, T be an EDPTOL system and let f

]

be a function from ﬁg into,%f . Let D be a derivation in G and let D
pos pos

((xo, o e ey xk), (TO, e ey Tk—l)’ /%) be a subderivation of D. Let a be

an occurrence (of A from V) in X, for some t in {0, . . ., k}.

1) a is called (f,D)—Eig‘(igixt), if ]ContrD(a)i;> f(n),

2) a is called (f,D)-small (ig_xt), if |ContrD(a) < £,

3) a is called unique (1glxt) if a is the only occurrence of A in X
4) a is called multiple (gg_xt) if a is not unique (in xt),

5) a is called D-recursive (ig_xt) if Tt(a) contains an occurrence of A,

6) a is called D-nonrecursive (ig_xt) if a is not D-recursive (in xt).

Remark
1) Note that in an EDTOL system each occurrence of the same letter in

a word is rewritten in the same way during a derivation process. Hence we



can talk about (f,D)-big (in Xt), (f,D)-small (in xt), unique (in xt);
multiple (in Xt)’ D-recursive (in xt) and D-nonrecursive (in xt) letters.

2) Whenever f or D or D is fixed in considerations we will simplify
the terminology in the obvious way (for example we can talk about big

letters (in xt) or about recursive letters (in Xt))'

Definition 8. Let G = {V, P, w, I >be an EPDTOL system and let f be

a function from.ggpos into;%fpos. Let D be a derivation in G and let

D= ((XO, o oes Xk)’ (TO, . e e Tk_l),égi) be a subderivation of D. We
say that D is neat (with respect ot D and £) if the following holds:

1) Min(xo) = Min(xl) =, , ., = Min(xk).

2y If j is in {0, . . ., k} and A is a letter from Min(xj), then A is big
(small, unique, multiple, recursive, nonrecursive) in Xj if and only if A
is big (small, unique, multiple, recursive or nonrecursive respectively)
in X, for every t in {0, . . ., kl.

3) For every j in {0, . . ., k}, Min(xj) contains a big recursive letter.
4) TFor every j in {0, . . ., k} and every A in Min(xj), if A is big then
A is unique.

5) For every j in {0, . . ., k-1}

5.1) Tj contains a production of the form A + o where A is a big letter
and o contains small letters, and

5.2) If A+ g dis in Tj, then

if A is small recursive, then o = A, and

if A in nonrecursive then o consists of small recursive letters only.

6) For every i, j in {0, . . ., k} and every A in V, if a is a small

occurrence of A in x, and b is a small occurrence of A in x, then [ContrD(a)I

= IContrD(b)

7) TFor every big recursive letter A and for every i, j in {0, . . ., k-1},



if Z*“f““*a and ZM“%““%%B then o and B have the same set of big letters

(and inlfact none othhem except for Z is recursive).

Throughout this paper we shall often use phrases like "(sufficiently)
long word x with a property P" or a "(sufficiently) long (sub)derivation
with a property P". This will have the following meaning.
1) By a "(sufficiently) long word x with a property P" we mean a word x
with property P which is longer than some constant C the computation of
which does not depend on x itself.
2) By a "(sufficiently) long (sub)derivation with a property P" we mean a
(sub)derivation D satisfying P of a word x which is longer than |x|C where
C is a constant independent of either x or D.

The following result (proved in Ehrenfeucht and Rozenberg {5]) will

be used to get long subderivations from other long subderivations. Before

we formulate it we need another definition.

Definition 9. Let f be a function fromfﬁ}pos into ﬁDp . We say that

‘A_pos

f is slow if

(‘gfa)wb (Eﬁnd)ﬂ: (kf X) . [if x > n, then f(x) < XQE.
/K- pos /& pos /< pos

log log x are examples

Thus a constant function, (log x)k and (log x)
of slow functions, whereas (log X)log X, xz, VX are examples of functions
which are not slow.

Let G be an EDTOL system and let g be a slow function. Let D be a
long subderivation of a derivation D of x in G. Let us divide the words in

D into classes in such a way that a number of classes is not larger than

g(]x]).

Lemma 1. There exists a long subderivation of D consisting of all the

words which belong to one class of the above division into classes.



The following notion appears to be very useful in dealing with the

structure of derivations in EDTOL systems.

Definition 10. Let I be a finite alphabet and let f be a function

from ﬁzpos into ﬁipos' Let w be in ¥*. We say that w is an f-random word

(over %) if

1727273
luzl > £(|w|), then uy # uéz

o4 s
(&y’wl, Ups Wys Uy, WS)Z* g;f WS WU WU and full > f([w') and

Thus, informally speaking, we call a word w f-random if every two

disjoint subwords of w which are longer than f(lw[) are different.

The following result was proved in Ehrenfeucht and Rozenberg tﬁ}.
Theorem 1. For every EPDTOL system G and every slow function f there
exist r in gzpos and s in /N such that, for every w in L(G), if lw| > s
and w is f-random, then every derivation of w in G contains a neat subderiva-

tion longer than lw[r.

The number of f-random words for a function f which is not "too slow"
over an alphabet consisting of at least two letters is '"rather large'" which
is stated in the following theorem proved in Ehrenfeucht and Rozenberg {5}.

Theorem 2. Let I be a finite alphabet such that #Z = m > 2. Let f
be a function from ﬁ?pos into(ﬁipos such that, for every x in”%zpos’ f(x) >
4 logz. Then, for every positive integer n,

#{wer*:|w| = n and w is f-random} -

n
m

1 -

NS
B
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BINARY BRACKETED LANGUAGES

In this section we introduce binary bracketed languages which are
context free languages but which will be proved in the next section to be
not EDIOL languages.

Definition 11. Let i be a positive integer. A binary i-bracketed

language, Bi’ is the language generated by the context free grammar

H(Bi) = <i{S},'{E, v o o o5 Iy 1s ooy 1,1}, {S>1[s8], ..., s~ [SS],
1 2 i i 2 1 1 1 i i
s>[1,...,8>[1}58>.

11 i i

In fact we will prove that Bl is not an EDTOL language and then using
a very simple fact we will conclude that no Bi’ i > 1, is an EDTOL language.
Thus all our "technical" definitions concern Bi" (To simplify notation we

Write "[" for Il{" and H]H fOI‘.‘ H]".)
1 1

Definition 12. Let xeBl. The depth of x, denoted as Depth(x), is

the depth of the longest nesting of brackets in x. More formally, Depth(x)
is defined inductively as follows:

(1) Depth(A) =0

(i1) For x # A let x denote the word obtained from x by erasing subwords ( )
in x.

If Depth(x) = k then Depth(x) = k+l.

Definition 13. TLet xe{[,]}*. The score of x,]denoted as Score(x),

is defined by Score(x) = #[(x) - #](x).

Now we shall prove two properties concerning scores of words in Bl
and their depths. These properties will turn out to be very useful later on.

Lemma 2. Let w be in Bl where for some Wis Wos W in {[,1}, w=

3

W W W,.  Then ][Score(wzj] & Depth(w).
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Proof

1) Let us note that if ug, U, e{[,]1}* with uy # A, u, # A and
uu, in Bl’ then Score(ul) > 0 and Score(uz) < 0.

This follows from the fact that Score(ul) + Score(uz) = 0 and that in
every prefix v of a word in Bl it must be that #[(v) > #](v) whereas in
every suffix v of a word in B, it must be that #](;5 3’#[(;5.

2) Now let us prove the lemma by induc;ion on Depth(w).

(i) For Depth(w) = 1 the lemma obviously holds

(ii) Let us assume that the lemma holds for all w in Bl such that
Depth(w) < k.

(iidi) LetvwsBl and let Depth(w) = k + 1, for some k > 1. Hence one
can derive w in H(Bl) in k + 1 steps. Consequently one can derive (in
H(Bl)) w in k steps either from [SS] or from [S].

Let w be a subword of w such that ||Score(w)|| is at least as big
as ||Score(a)|| for any subword o of w.

Thus we have three casses
(iii.1) w is a subword of a word derived in k steps from S. Hence by
the inductive assumption ||Score(w)|| < Depth(w)

(iii.2) wis a prefix of a word derived in k steps from [S (or symmetrically,
w is a suffix of a word derived in k steps from S]). Then by inductive
assumption ||Score(w)|| < & + 1.

(iii.3) w is the catenation of a word derived in k steps from [S with

the prefix of a word derived in k steps from S. But if x is a word derived
from S then Score(x) = 0. Thus by inductive assumption }[Score(@bllmf k + 1.

(Note that w cannot be the catenation of a prefix of a word derived
from S in k steps with a suffix of a word derived from S in k steps, because
then it could not be that ||Score(w)|| is not smaller that ||Score(a)|| for

any subword a of w.
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Lemma 3.
(%fn)N(;im)N(\fw)Bl [if w = WV, Wa and 'wzl > m then Wy = Uju Uy with
||Score(u2)|| > nl.
Proof
Let neN. Let m = 22n+2.
Let w be a word in Bl such that |w| > m.
Let Wl’ Wy Wy be such that wlw2w3

Let us consider a derivation tree T for w in.H(Bl).

= w and |§é[ > m.

Let us then consider a subtree T of T obtained by removing from T

all nodes (and edges leading to them) that do not "contribute" to Eé.

Note that T is at most binary tree "producing"” v, (where !Qé[ > 22n+2)
and so it contains at least one path with at least (2n + 2) nodes that are
binary. Consequently from such a path, let us call one of them p, there

is at least 2n+2/2 branchings to the one side (say the left one) of p. Let

2

us denote the part of w, contributed by these branchings by w

20

ke s s

e e e
w
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Thus we have that HScore(wz)H > (2n#2)/2 - 1 = n, which proves the Lemma.



MAIN RESULTS

In this section we will prove that, for all i % 1, i-bracketed languages
are not EDTOL languages. Also as a corollary we obtain that Dyck languages

are not EDTOL languages.

First we shall prove that for f£(g) = 32 logg g we have arbitrarily long
words in Bl which are f-random but of a 'small" depth.

Theorem 3.
2
(/) (A9 [lyl > n and Depth(y) < 2 log,|y| and u(y) < 32 log,|y|]
1
Proof

Let x be a word in Bl such that its derivation tree in M(Bl) is of the form

] (/11

and it has height n for some n > 1.

(In other words after erasing in this tree all nodes not labeled by S and

erasing all connections leading to them one gets full binary tree.)
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2
defined by h(Bl) =1{ 1] and (B

Let T = {Bl, B,}. Let h be a homomorphism from {B B2}* into {[,]}*

13

[[ 1]. Let w be an arbitrary word over

5)

{Bl, BZ} such that the length of w equals the number of occurrences of the

word [ ] in x. Say w = blbz' . .b with bl, e ey bj in {Bl, B.}. Let

j 2

v(w) € k for some k in N.
Let x(w) be the word (over {[, ]}) which is obtained from x by replacing
the i'"th (from the left) occurrence of [ ] in x by [h(bi)]. (For example if

x=[ L[ T[T [LLITI[11]1 and w = B,B.B.B, then x(w) =

I A A A R R A A A A A A A A I A A D

Let us assume that n > 5.

n-1

1) -Note that |x(w)| > |x| - 2 2", because |x| = 2777, Thus

v

n g logZIX(W)l-

2) As Depth(x) < n-1 and, for i in {1,2}, Depth(h(Bi)) <2,
Depth(x(w)) < n + 1. Thus Depth(x(w)) £ n+n = 2n=2 1og2|x(w)[.

3) Let us note that the longest subword of x which does not contain
[ 1 as its subword is shorter than 2n + 1. This implies that the longest
subword of x(w) which does not contain as a subword [h(Bi)]Z, where
ie{1,2} and Z does not contain [ ] as a subword, is shorter than
2+« (2n+ 1+ 8).

4) 1If x(w) contains a subword o which contains as a subword
B %)
for some i, . . ., i, in {1, . . ., j}, where none of Zis o0 es Z

1
contains [ ] as a subword, then no subword of x(w) disjoint with a is

LICHRILH

i

identical to a.

This follows because if x(w) would contain two disjoint occurrences
of a word o of the form (*) then w would contain two disjoint occurrences
of an identical subword of length k. This however contradicts the

assumption that u(w) & k.
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5) From 3 and 4 it follows that u(x(w)) € k * 2(2n + 9) £
2 -k -2+ 5) <2k . bdng 2k - 4 log,[x(w)|. From Theorem 2 we know
that if f is a slow function such that f(s) > 4 log2 s then almost all long

enough words over I are f-random. Hence choosing n large enough and

choosing an f-random w we could assume that k g 4 logzlw

>

Thus 2k - 4 logzlx(w)[s 2« 4 1og2!w| * 4 logzlx(w)[ <32 logi]x(w)[.

So u(x(w)) < 32 logilx(w)

Consequently if we set y = x(w), the theorem follows.

Next we prove:that.in. an EDTOL:language L which is a subset of Bl
if w is long enough f-random word in L, for every slow function f, then the
depth of w is rather large.

Theorem 4. Let L be an EDTOL language such that L& Bl. Then for
every slow function f there exist a positive integer constant s and a
positive real comstant r such that if w is an f-random word from L longer
than s then Depth(w) > lw!r.

Proof

Let L be an EDTOL language such that I;Q;Bl and let f be a slow function.
Let G = {V, P, w, I » be an EPDTOL system such that L(G) = L. (See Theorem
4 in Ehrenfeucht and Rozenberg [5].) Clearly we can assume that L(G) con-
tains infinitely many f-random words, as otherwise the theorem is trivially
true.

Let w be an f-random word long enough so that each derivation of w in
G contains a long enough neat subderivation (see Theorem 1). Thus let
D= ((xps « + +5 %) (Tgs « v o5 T,_1), )

be a derivation of w in G and let

L]

D (2, 5 « o« o3 % )y (T, 5 « v o, T. ),
1 10 lq 10 1q-l 1

be a sufficiently long neat subderivation of D.
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In fact we assume that
1) If A is a small letter in Dl’ then
Score(ContrD(Tk(A))) = Score(ContrD(EE(A))),
for every i, j in {io, e e e iq—l}’ and
2) There eixsts a big recursive letter R in Dl’ such that either, for
. e s . = N G D ONI & D I (3
every j in {10, e e s lq—l}’ Tj(R) = ap” RBy with ag # A,

P . = N & D ON & D I (1)
or, for every j in {10, . e e 1q—l}’ Tj(R) = ap”'RBy with B # A,

(We will assume, without the loss of generality, that for every j in
s . = NN & DN & D I (3 i
{10, e ey 1q—1}’ Tj(R) = oy RBR with o # 0.
3) For every big recursive letter B in Dl’ and for every i, j in

}, if B*—%fé'ulBuzf and B“j%?“levz then u; and v,

. i A i .
contain the same set of big letters and u, and v, contain the same set of

{iO, o e ey iq—l
big letters.
We can assume the above conditions because if they would not hold in

Dl’ we could apply Lemma 1 and obtain from D, a sufficiently long subderi~-

1
vation of D satisfying these conditions. (Note that Score(ContrD(E;(A)))‘S
IContrD(Tg(A))[§ £(|w|) 1f A is a small letter, and to have the conditions
2 and 3 satisfied one has to divide the words in Dl into a constant,
dependent on #V only, number of classes.)
Lemma 4. For every j in‘{io, N iq—l
I]Score(ContrD(Tﬁ(qé?))))}I > 0.

Proof of Lemma 4.

Let us assume, to the contrary, that Score(ContrD(is(aé?)))) = 0,

Note that %3(&&3)) contains small recursive letters only and so

(by changing D in such a way that after applying Tjrwe iterate Tj,an

arbitrary number of times before applying the next table from Dl and

continuing in the manner tables were used in D) for every n > 0 there
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is a word in L(G) which contains (ContrD(Tj(aé?))))n as a subword. But
(with our assumption that Score(ContrD(Eg(aé?)))) = 0) if v is a subword

A G DI :! = . (@) .
of (ContrD(Tj(ocR )))  then Score(y) < Z!ContrD(Tj(aR ))I. This however
implies that L(G) would contain words with arbitrarily long subwords the
score of which is bounded by 2|ContrD(fg(aéJ)))] which contradicts Lemma 3.

Thus Lemma 4 holds.

Lemma 5. For every i, j in‘{io, Y iq—l}’
= o (1) I = (0 (3)
'sign(Score(Contr (T, (az"")))) = s1gn(Score(ContrD(Tj(aR )))).

Proof of Lemma 5.

Let us assume, to the contrary, that
sign(Score(Contr (T'(a(i))))) = sign(Score(Contr (E‘(a(j)))))
D*i" R D*j R
for example that
sign(Score(ContrD(Ti(aél))))) >0 and
sign(Score(Contr (E:(a(J))))) < 0.
D" R
We will describe now (an infinite) sequence Tgs Tys voee of compositions
of tables. Each of these compositions Tj may be used to change D into D(j)
in such a way that after applying E& we apply T before continuing apply-
ing tables in the manner they are used in D. (To better see what follows,
= @y = @)y 7o, @) = (. (1) .
recall that Ti(uR ), Ti(uR ), Tj(aR ) and Tj(aR consist of small

recursive letters only.)

0) Ty = Ti'
1)y = (@, (D) *
TO(aR R) = Ti(ocR )aR R60, for some GOEV .
1) T, = TjTi.

_m o Wym o @)y (G) I
Tl(aR R) = Ti(aR )Tj(ocR )aR R§, for some &, in V.

2) 1, = TT.T..

a(i)R) = Ei(aéi))ig(aé%))TSCQé?>)aéq)R62,.for some 62 in V*,
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Py

Py Py FTj) o . : N s

Tpl(aél)a> = T, oy DT, I T D) Eg(ué?))qéJ)RGPl,

for some apl in V¥, where Py is the‘smallest pos;t%ve integer such that

sign(Score(ContrD(Pl)(T;(aél))fg(aél)) T <o
Pt Tyt ) T | | -

Tpl+l(uél)R) = TG DT, 8 L 53(aéi))3;<aé3)>aél)aspl+l

for some églfi'igli*‘

O IO S I T o VT (o Ty (o g s,

for some 6P1+1 in V¥,
PP Tpap, T {55>P2<T,>plf.. | | .

Tpl+p2(aél)a) T, T, @) L T IOT, D) L

iR R pl+p2’

for some § in V#*, where P, is the smallest positive integer

P1*Py
such that
sién(Score(ContrD(pl+p2)(Ti(aéi)) .. .‘Ej(a§j>> c @M >0
L) e, = (O (T A,
Tpl+p2+p3<a§i)a> =T DT, ) L T eHT )

oo (W)=, (1) (1)
T. (o )Tj(a Y ... op R6p1+p2+p3,

for some § in V¥, where Py is the smallest positive

P1*Py Py
integer such that

Sign(Score(ContrD<P +p.+p )(Ti(aéi))ig(qéi)) .. Tﬁ(uéj))ﬁg(aéj))
D(py¥P)TPy -,
- T;(uél)>53<a§1>> e T <o

and so on.
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Thus what we are doing is alternating sequences of applications of

Ti and E} in such a way that the signs of scores of contributions of

corresponding substrings (consisting of small recursive letters) of strings

derived from aél)R alternate.

But in this way L(G) contains strings with arbitrarily long substrings
the scores of which are limited by 4 - maX{IE;(aél))l, lfﬁ(aél))l,
lﬁg(aé?))l, ]Tg(aéj))l}. This however contradicts Lemma 3.

Thus Lemma 5 holds.

To avoid notational troubles with double indices, for the rest of this

proof we change a denotation for the subderivation Dl'

Thus
Dy = (s + = s )5 (Bps v v o5 B ), 7))

where in fact

yo = xio, e e ey yq = xiq, PO =T 0, « o+ o5 P = T,q_l.
Thus we have now, for each i in {0, . . ., q-1}, Pi(R) = aél)RBél)

with aéi) # A

Note that the word x derived in the derivation D has the word

(Q"z))

Pl(aéo))Pz(aéz)) R N

g-1

as a subword.

Let
- (0) (1) (g-2)
61 = Score(ContrD(Pl(aR )Pz(aR ) I Pq—l(aR )).
Let A be a sequence of tables which form the "tail" of D in the sense
that A = T, T, « « o T
i i
q q-1
Let

q=2

- E D
62— J Score(A(Pj(aR ).

j:



21

Let us estimate @l~®2. (Note that Gl represents -the .score:of asubword
of a word in L(G), whereas @2 was chosen just for "computational" reasons.)

Let for a word Z over the alphabet of letters which occur in words of
Dl’ Big(Z) denote the word obtained from Z by erasing all small letters from
Z and Small(Z) denote the word obtained from Z by erasing all big letters
from Z.

Thus

q-1

Q= :mem Score(ContrD(Pj(m§J-l))) -
j=1

q-1

= Score(ContrD(Pj(Big(aéé*l))))) +
=1

q-1_
+ ;:” Score(Contr._ (P (Small(a(j_l)))))
DYy R ’

pesm——

3=1

and

-2
Q.= § | Score (A(P (Big(u(j))))) +
2 VA ] R
j=1

o

+ z;ﬂ Score(A(Pj(Small(aé;))))) =

Score(A(Pj(Big(aé;))))) +
i=1

A
3

-2

-1
Score(A(Pj(Small(aéé—l)))))

=2

(because of the Condition 1 satisfied by Dl).
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Thus
0,-0, = Score(Contr (P (Big(a(q_z))))) + Score(Contr (P (Small(u(o)))))
172 D\ q-1 R D\l R y
(0) _
Now let ap " = ZlBlZZBZ . e . ZQBQZ£+1, where Zl, e e ey 22+l do not
contain big letters and Bl’ . . BQ are big letters. (Note that & < #V.)
Then
0.-0. = Score(Contr. (P . (Big(a 172’))))
172 DY g~-1 R
241
+ Score(ContrD(Pl(Zi)))
i=1
Let a(q—Z) =u.Cu,C, .. .uCu where u e e ey U do not
R 1717272 tt t+1’ 1’ > T4l
contain big letters and Cl’ . . Ct are big letters. (Note that t < #V.)
Then
£
61—62 = g Score(ContrD(Pq_l(Ci))) +
i=1
241
Score(ContrD(Pl(Zi))).
i=1
Thus
- 941
Ol - E Score(ContrD(Pq_l(Ci))) + 5 B Score(ContrD(Pl(Zi))) = 92.
i=1 i=1

But, for some positive real constant ;; the length of D, is larger than

1

lwlr and each component in the formula

[}

Nal

Score(A(Pj(aéj))))

™

It
=

J

is different from O and is of the same sign (Lemmas 4 and 5). Thus

el ] > fw|™™™.
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Consequently, the absolute value of the one of the following:
@l,
Score(ContrD(Pqnl(Ci))) for 1 ¢ i< t,
Score(ContrD(Pl(Zi))) forlgigr+1

must be larger than lw[r_l/Z(#V).

This together with Lemma 2 yields us Theorem 4.

Now we can prove the following result.
Theorem 5. If L is an EDTOL language such that L Bl then L # Bl.
Proof.
Theorem 3 says that Bl contains arbitrarily long f-random words
(for a slow f(ly|) = 32 logglyl) of a rather small depth (Depth(y) <
2 log2|Y|). But Theorem 4 says that in every EDTOL language L which is
included in Bl if an f-random word y (for every slow f) is long enough
then Depth(y) is rather large (Depth(y) > [y|r for a positive real constant
r). Thus L cannot contain all the words from Bl and Theorem 5 holds.
We leave to the reader the easy standard proofs of our next two results.
Theorem 6. If L is an EDTOL language and h is a homomorphism, then

h(L) is an EDTOL language.

Theorem 7. Every regular language is an EDTOL language. If L is an

EDTOL language and R is a regular language then L N R is an EDTOL language.

Now we can prove three main results of this paper.

Theorem 8. For every i > 1, Bi is not an EDTOL language.

Proof

As a direct corollary from Theorem 5 we have that Bl is not an EDTOL
language. But then from THeorem 6 it follows that for every i > 0 Bi is

not an EDTOL language.
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Let us now recall the notion of a Dyck language (see, e.g., Salomaa
[10], p.68). Let, for i > 1, Vi = {al,a'l,az,a'Z, o e e an,ag}.~ The
context free language Di generated by the context free grammar

{{s}, vi‘, {s>1, s+8s, 8>a8a", ..., 8>asall, s>

1 1
is termed the Dyck language over the alphabet Vi'

Theorem 9. For every i z 8, Di is not an EDTOL language.

Let us first recall the following well-known result (see, e.g.,
Salomaa [10], Theorem 7.5): for an alphabet I of m letters there exists an
alphabet Vi of 1 = 2m + 4 letters and a homomorphism h from Vi* onto I* such
that, for every context free language L over I, there is a regular language
R over Vi with the property L = h(Difﬂ R).

But Bl is a context free language over an alphabet I consisting of
m = 2 letters and by Theorem 8, Bl is not an EDTOL’language. Thus from
the above and Theorem 7 it follows that D8 is not an ETOL language. Hence

by Theorem 6 it follows that for no i > 8 Di is an EDTOL language which

proves the theorem.

As a corollary from either Theorem 8 or Theorem 9 we have the following

result.

Theorem 10. There exist context free languages that are not

EDTOL languages.
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DISCUSSION

We have shown that there eixst context free languages which are not
EDTOL languages. This result is directly used in Ehrenfeucht and Rozenberg
[4] to show existence of indexed languages (see Aho [1]) that are not ETOL
languages.

In fact our results have further implications.

1) They settle a controversy on the existence of context free languages
that are not parallel context free languages (see Siromoney and Krithivasan
[13] and Skyum [14]). Because the class of parallel context free languages
is clearly contained in the class of EDTOL languages we have provided an
alternative proof to this of Skyum [14] that, almost all, Dyck languages are
not parallel context free languages.

2) Following Salomaa [12], our Theorem 10 implies that {(we use here the
Salomaa's notation four [12]):

the pairs (CF, IP), (ED, PPDA), (ED, ETOL) are incomparable, IP is properly
contained in RP, ER is not contained in ETOL and ED is not contained in RP.

As the most important open problem in connection with results presented
in this paper we consider the problem of giving a characterization of context

free languages which are not EDTOL languages.
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