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ABSTRACT

The transmission of electromagnetic waves in an idealized coak seam
on slab is analyzed for the case where an adjacent conducton is present.
It is shown that the resulfant attenuation 45 Less than for the mode
in a conducton-gree seam. The approximations made are appropriate gor

Low and medium frequencdies.



I. TINTRODUCTION

In mine communication at medium frequency range (IMHz or below), it
has been observed that the attenuation of guided radio signals in a coal
seam is substantially reduced in the presence of conducting rails and
cables in the adjacent tunnel [Austin, 1978]. This fact is certainly consis-
tent with the analysis by Wait and Hill [1974] for an axial conductor located
anywhere inside a circular tumnel with lossy walls. A related analysis was
carried out by Mahmoud and Wait [1974, 1976] for a rectangular tunnel Wall.
Such a phenomenon was also discussed by Lagace and Emslie [1978] in terms
of the excitation efficiency of the induced current on a conducting rail or
cable due to a vertical loop, but they did not actually calculate the propa-
gation characteristics.

In this work, we consider the mathematical model of a thin wire (cable

or rail) located inside a lossy dielectric slab tunnel (coal seam) of

permittivity € and width, h. The slab is then

r 1

surrounded by a highly conducting medium (rock or slate bed) of

1 and conductivity ©

permittivity €,y and conductivity 02, as depicted in Figure 1. For a signal

frequency of w = 27f, the wave number of the tunnel medium is given by

1 1

k1 = [-iwuo(o1 +iw€l)]2 and that of the surrounding medium, k2 = (—iwuocz)I
= (l—i)d;1 where dS is defined as the skin depth. The complex propagation

constant of the fundamental slab mode [Wait, 1971; Wait, 1976] in the

absence of cables for nonzero h, is known to have a rather simple form
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Figure 1

Basic slab configuration showing location
of axial conductor, cable, pipe or rail in
seam or tunnel.



when the conditions that |k2-l2 >> ikllz and klh <<1 are invoked.
Provided that the width of the slab is small compared with the skin depth
of the surrounding me&ium, the attenuation and propagation constants for
this mode are found explicitly from (1) as Fs =a_ + iBS, where

1
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on the assumption that kl "is effectively real. Actually, (2) are rather

crude approximations, but they illustrate very simply the functional de-
pendence of the two parametérs dS and h. A more detailed discussion is
given elsewhere [Wait, 1976], including the case where the slab width h
approaches zero. The field distribution of this mode resembles that of a
TEM-mode of a paraliel—plate waveguide, with the exception that a significant
amount of leakage into the surrounding medium may be possible when the width
h is small compared to the skin-depth. Thus, the attenuation constant of
this mode depends to a large extent on the penetration depth of the surroun-
ding medium as indicated by (2). | |

The insertion of cables in the slab certainly will complicate the si-
tuation, since the field now has to redistribute itself in order to match
the boundary conditions not only at the slab interface with the surrounding
medium, but also on the caﬂle surfaces. Depending upon the proximity of
the cable to the slab, the amount of penetration into the surrounding medium
can be very different, at least in principle. The purpose of this work is to

investigate this specific problem.



II. AVERAGE AXIAL ELECTRIC FIELD ON A THIN-WIRE SURFACE

Our objective is to derive an expression for the attenuation and pro-
pagation constants, o and B, of a slab mode in the presence of a thin-
wire which has a radius a and is at a distance x, from the center (or
a distance & below the upper interface, as indicated in Figure 1). We
first need to know the average axial field on the wire due to an equivalent
current of the form Ijexp(iwt - T'z) uniformly distributed on the wire surface.
Later the complex propagation constant I = o + if is to be determined.

Provided that we can invoke the thin-wire approximation, 1i.e. 22 >> az
and Iklal2 << 1, the formal expression for the average axial field on the
wire, as shown in Appendix A, consists of a primary field wp and a

secondary field ws .
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The first term in the integrand of ws 5 in the spectral
domain, represents exactly the contribution of the partial
image due té a line source located at a distance £ = h/2 - X
above the upper surface. Together with the actual source, they yield
a train of images (as a result of multiple reflections between the
upper and lower interface), having a total contribution of fhe form
given by the second term in the integrand.

Equation (5) as it stands obviously is too complicated to yield
any physical insight regarding the behavior of wS. However, simpli-
fication to the integral is possible with the assumption that the width
of the coal seam is small compared with the skin-depth of the sur-
rounding medium, i.e.,
|2 h2

|k < |k2|2 n? << 1 (8)

1

This is because the contribution to the integral in this case comes
mainly from large ) where the two reflection coefficients Re and

Rm can be approximated by
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The corresponding integral under this approximation is then given by
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which is evaluated analytically in Appendix B. From (B73 ), %t is
clear that wi has only a rather weak, logarithmic dependence on h.
Thus, unless the slab width is exceedingly small, one needs to retain
the next higher order term in wS , which is independent of h. To do
that, we first subtract and add wz from the expression of q? in

(5). The difference of the two is then evaluated at h = 0, so that

ws = wi + § and

§ = lim ° - 1)
b0
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Interestingly, the integral actually can be carried out analytically

once the relationship that

2[F2 2 e 2.2

m

is recognized. Substitution of this expression into the integrand

yields immediately

b

2

2 2.,.2
§ = [kl(F + kz)/kz] n

which can then be combined with the expression for

wP in (4) to give a delightfully simple result for the axial field on

the cable surface as
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where the parameter QO is given by (B.4) as
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and, therefore, involves only the geometric ratio of 2% and h, and

Reo' It is of interest to note that the derivation leading to (12) so
2

far only involves the assumption of |k2|2h2 <<'1 and 22>>a.. In

actual application, the additional condition that |k2{2>>lkﬂ2 also

applies so that (12) and (13) can be further simplified to

LTI 2 2 e o
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with the effective height Re defined as
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The result, as given by (14), is identical in férm with the case of a
thin—wireylocated at a distance Qe above a conducting half-space [Chang

and Wait, 1974]. Since the actual distance to the upper interface is £ and
Qelﬂ = exp(—ﬂ2A2/6) < 1 according to (16), one might conclude that

the net effect of the interaction between upper and lower interfaces

is to bring the cable a little closer to the upper interface. Obvious-

ly, the periodic nature of the partial "images" in the spectral do-

main is insignificant in the spatial domain when the tunnel width is

small compared with the skin-depth.



ITT. ATTENUATION AND PROPAGATION IN A CABLE-TUNNEL SYSTEM

For the case of a cable which is located inside a coal seam, hav-
ing a known series impedance Zi’ the complex propagation constant T' of the
fundamental mode can be obtained by enforcing the boundary condition on
the cable surface. Because we have assumed the cable radius is small, we
can replace equivalent current I0 by 2ma times the average angular magnetic
field, <H,>. The use of the impedance condition, <EZ> = ZwaZi<H¢> and (15)

¢

then provides an appropriate expression for T as follows:

2%
rzzn —& 4 iwe¥ [oy (Rnik,a/2 + C) + 21Z.] = O
a 1 o 2 i
' (16)
or .
2
'™ = YZ 17
where . -1
Y = iZﬂwef[XHZQG/a] (18)
and -1
z = ~qwp (2r) “[en(ik,a/2) + C] + z, (19)

-

Equation (17) resembles that for a lossy transmission-line system, with
Z,Y being the distributed series impedance and shunt admittance, respectively.
Since we have assumed that the slab (coal seam) width is very small compared
with the skin-depth, it is not surprising to see that the series impedance
Z consists mainly of the self-inductance of the cable immersed in the ambient
medium (slate), and the surface impedance Zi' On the other hand, because of
the high conductivity contrast between the slate and the coal seam, the shunt
admittance is essentially that of a wire located in a perfectly-conducting
parallel-plate region. As we mentioned before, the series of images produced
by the multiple reflection between the two plates results in an apparent image
at a distance ZQe away from the cable itself. For a conducting rail, Zi =0

so that
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Comparison of (20) with (1) now enables us to assess the importance
of the conduiting rails and cables in mine communication. It is clear that,
in the absence of these conductors, waves are guided by the upper and lower
surfaces of the coal seam with the surrounding medium. Thus, the width of
the slab compared with the skin-depth determines the extent of penetration.
into the surrounding medium, and hence the attenuation as well as the phase
constants. With the presence of a parallel conductor, howevef, the field con-
centration is largely controlled by the size of the conductor because a sub-
stantial amount of longitudinal current can now flow on the conductor surface
and the surrounding medium acts more like a return path, As an extreme case,
the propagation constant approaches to the value corresponding to the wave
number of the medium in the immediate vicinity of the conductor in the limit
of a vanishingly small radius. As is evident by the dependence of h in (20)
the width of the slab also becomes a relatively less important parameter in
determining the attenuation and phase constants. Instead it is the ratio of
the radius and height of the conductors. Dependence on height compared with
the skin depth of the surrounding medium is also rather weak because of the
logarithmic nature of this dependence. In fact, the attenuation and propa-

gation constants can be explicitly derived from (20) as ' = o, + ch , with
1
26 8 Lo\ ~
a T
c_ 2 ;. == (.ﬁl) (21)

where La = —(inkzla/Z + C), Lb = Qn(ZQe/a), and k2 = |k2] expﬂ—i¢2) where

¢2 is a phase angle. Again k1 is assumed real.
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To illustrate the nature of the results, we show in Fig. 2 a comparixon
for the case with and without the conductor. The attenuation constant is
plotted as a function of frequency for a special case where the seam width
h = 3m, and the conductor is distance { = lm from the seam surface, the radius

of the conductor a = 0.02m. The conductivity o, of the bounding material

2
(i.e., slate) is 2 x 10_2mhos/m. The dashed line is for the case when the
conductor is absent as computed from (2), and the solid line is when the
conductor is present as computed from (20). For the latter case, the values
based upon a numerical evaluation of the exact expression as given in (3)-(5)
are also included. From the figure, it is clear that for frequencies of prac-
tical interest, attenuation of the guided electromagnetic waves is indeed
substantially reduced as a result of the conducting rail's presence.

Actually, for the results shown in Fig. 2, the seam was replaced by free
space but the results apply qualitatively for an effectively lossless seam
of any permittivity if distances are scaled accordingly, e.g., kld and.kzd are
fixed. Of course, the theory presented is valid for a dissipative seam where

01 is comparable with the displacement term elw but we do not show such results

here.
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APPENDIX A

Derivation of Axial Field Expressiomns

Here we derive an expression for the axial electric field at the surface
of a thin wire carrying a filamental current Ioexp(—Fz). The relevant geo-
metry is indicated in Fig. 1. Following an earlier formulation for a similar
problem [Wait, 1977], it is a fairly simple matter to derive explicit expres-
sions for the x directed electric and magnetic Hertz vectors within the slab
region. These so;called electric and magnetic Hertz potentials T and L

must be of the respective forms:

-ir't - Yu, (x-x_) u.x SuX sy d
T = __9;_.J (+e 1 " tAel! +Be 1 ye t Y _—%—7f (A.1)
e 4mwe] € € A-T
-0
il Fu, (x-x ) u. X “u x|
T o= 2 (e 1 o +Ae1 + B e 1)e ﬂy__)ii)\_z__z_ (A.2)
where Ei =€ - i(Ol/w) and where (¥) designates the region x § X 3 Ae’ Be

and Am, Bm are as yet undetermined constants. However, since in the region

X > X, Be, B, are part of the incoming wave that are incident onto the upper
(o)

interface and Ae, An are the reflected wave, we have

-u, h/2
ulh/Z =R ( eulxo + B )e ‘1 / (4.3)
Ae e = R\ e
u_h/2 u.x -u,h/, 4
A e 1 - R (e 1o , » ) e 1 (A.4)
m m m

where Re and Rm are as defined by (6).

Likewise, for the lower interface

u h/2 L -u X -u,h/2
1 R_(e Yo, A e 1 (A.5)

1]

B e
e .
ulh/2 -u_Xx -u_h/2

B e = R (e Lo, a e 1 (A.6)
m m m
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Using (A.3) to (A.6), we solve for the A's and B's:

B -u. X u, (x +h) 7]
—2u1h Re o e 1o + e 170
Ae,m - Re,m ¢ ~2u.h (A.7)
2 1
1 -R e
L e,m -
B u. X u, (h-x )]
—2u1h + R, @ o, ¢! ©
B =R e 2 (A.8)
e,m e,m 1 - R2 e—2u1h
L ¢,m 4

Substitution of (A.7) and (A.8) into (A.3) to (A.6) then yield the

-

expression for T, and L To obtain the axial electric field, we only
need to use the relationship

82

Ez T Tox oz e *oiuu

o 3y ™m

to obtain from (A.3) to (A.6) the following expression

. ——ifg—-{ékz +F2)J e:ul(xﬁxo) e-ixy )
z . ATwe 1 a
1 o 1
1 I +I2uiRe -2u;h -u;h
+ 2 J Z 2 ) i [Ree cosh ul(x—xo)-e coshul(X+xo)]
wA-TT o e
, v .
* —7;———-[Rme cosh Ul(X-XO) + e cosh ul(x+xo) ;
(A.9)
where _zulh
A =1 -R € (A.lO)
e,m e,m

2 2 2 2
In deriving (A.9), the identity qui + szi = (A" -T )(k1 +T7) was used

. . ml 2
in obtaining the first integral which is known to be 2§£1r[T +k1]%);

Nf=

r = [(x —xo)2 + y2] and KO is the modified Bessel function of the
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second kind. On the wire surface, the average axial field is then

obtained by setting r =a, X =X and y =0:

1, {2' 2 2. 2.%
- _ 9 . 2
<Ez> = g (kl+ T )Ko(laH‘+k1] )
p=a o |
+T2u%R w.h KA%R “u.h
+ [—————lii R e 1 -cosh 2u_x ) + 1 m (R e 1 :
Aé e 1o A m (A.11)
o m
-u.h
+ cosh 2u1xoi]e 1 ““%é—fb
(A"-T9)

1
Provided the radius is small, KO can be approximated by -2n[ ﬂ{F2+ki)E].
On the other hand, the terms inside the square bracket can be rearranged

according to

-u,h -u, (h-2x )

17 - - 1 o
(R e + cosh 2u,x ) =% R e
e, €e,m 1o e,m
-u (h+2x : )
- e,m © ' ° —ul(h-2xo) ?
* = -2huy [1-R, ,© ] (A.12)
-Re’me '

where the upper sign is for the Re and lower sign for Rm. Substitution of

(A.12) into (A.11) yields immediately the expressions given in (3) - (5).

APPENDIX B

Evaulation of ﬁ
ZOo

The integral given in (10) is evaluated in this appendix. Recog-
nizing that !Reo exp(—2u1h)| < 1, we can first expand the denominator

in series to obtain
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so that each term in the series can be integrated analytically accor-

ding to the identity

1 © -1 X
K &II2k2]%) = J e 1 A
o 1 0 Uy

Consequently, we obtain from (10) the alternative expression

T - |
q,z = I"r__|®_ (¢, [h-2x 1) + mZO RC{K_([(2m+D)ht2x_1T))

2
- 2ReoKo(2[m+1]hZ;1) + ReoKo([(2m+3)h-2xo]cl)ﬂ (B.1)

where C1= i(F2+k%)€. Now since we have assumed the seam size is
small compared with the guided wavelength as well as the wavelength of

the medium, [Cllh generally is much smaller than 1. A small-argument

expansion of KO then yields approximately,

s _ 2 2 2.2%, ]
EZo = =T Reo (1+Réo>[ﬁn 2h (T +K1) ifn/2 + C - ¢n2| + n(h - ZXO)/Zh
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+ RZOJLn[ (2m+1)h—2x6]/2h]] (B.2)

1 %o )
£/h = ( 5 - E—-) as the ratio of the distance to the upper

Defining A
boundary and the tunnel width and using the explicit expression of

R in (9), we have from (B.2) the simplified result

eo
s 2 kzz'kzl 2.2 % 2
E = -I" [—==[[2n2n(T+k)*+in/2+ C - 2n2] - T°Q (B.3)
z0 2 1 o
k
2
_ T 2m-1 , 2
where £ =R  fnA + Z R [fn(m-8) - 2R nm+ R fn(m+A)] (B.4)
(o] eo eo eo eo

m=1

Expression (B.3) can then be used with the expression JE derived in
(11), and Ez in (4) to obtain the total axial electric field expres—

sion given in (12).
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