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The ability to quickly and accurately understand pixel-level scene semantics is a key capabil-

ity required for various robotics applications such as autonomous driving. Until now, the temporal

aspect of this problem has been largely overlooked. Therefore, the focus of research in this dis-

sertation is to study the impact of temporal information in perception-related tasks and investigate

whether it is useful to be included, more specifically for semantic scene understanding.

In this thesis, we first propose a set of novel techniques for unsupervised spatio-temporal

segmentation in video sequences to obtain regions that are coherent in space and time. We then

extend our method to exploit other strong cues present in the scene such as the depth signal or

object parts to further improve the accuracy. The bottleneck in studying the temporal data is

caused by both the limitations in computing resources and/or the lack of existing comprehensive

labeled data. We tackle these issues by introducing a simple and efficient unsupervised label

propagation algorithm that transfers the pixel-wise semantic labels from a groundtruth frame to its

adjacent neighbor frames and produces auxiliary temporal groundtruth. Finally we take a further

step towards the ultimate goal of holistic scene understanding and present a deep, recurrent multi-

scale network that is capable of leveraging the temporal information present in the video data. We

show that our model can be easily extended to the related problem of prediction to estimate the

expected semantics of the scene a small number of frames into the future. We achieve promising

state-of-the-art results on various datasets and prove that our temporal approach is superior to the

non-temporal baseline.
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Chapter 1

Introduction

1.1 Objective

A significant part of humans cerebral cortex is devoted primarily to processing visual in-

formation which enables us to infer the meaning of what we see without the need for proximity

involved in other senses. Humans learn to perceive the world around them by observing different

cues such as motion, color and depth from very early during their perceptual and cognitive devel-

opment. Also our capacity to comprehend the dynamics of visual scenes is continuously improved

over time. As humans, we have a stunning ability to understand complex scenes in details and

fairly quickly. We are able to accurately identify the objects, interact with them, understand the

scene structures, navigate ourselves in the places that we have seen before, recognize and describe

actions. However, this very basic set of skills still poses a lot of questions and challenges for ma-

chines. It is interesting to note that the supervision involved in the human learning process is rarely

given on still images. We are extremely good at processing large amount of data and utilizing our

prior knowledge about the world to reason about the unseen. In contrast, current computer vision

systems are limited in their ability to process large amount of complex data and in their ability to

leverage the temporal coherency present in the video data to build more accurate semantic models

of the environment.

This thesis studies the impact of using temporal information for the task of holistic scene

understanding. The goal is to develop an efficient and simple method that can be used in a wide

variety of applications such as autonomous driving, robotic exploration of environments, video
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Figure 1.1: Illustration of free-space estimation.

analysis and surveillance and augmented or virtual reality. Figure 1.1 shows an application of

semantic understanding in autonomous driving. Here, the hero is estimating the free-space for

each frame where the planner is always ensuring that the estimated trajectory is lying within the

green area. The free-space is obtained by processing different semantic categories in the scene

such as the road, sidewalk, lane markings and etc.

1.2 Challenges

Nevertheless, the task of scene understanding in videos faces several challenges that needs

to be overcome. Below is a list of few important challenges:

Temporal Coherency. Image segmentation techniques applied to each frame of a video se-

quence independently produce unstable segmentation results due to the fact that the scene structure

might drastically change from one frame to another. Therefore, posing temporal segmentation as
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spatial region matching between individual frames does not enforce temporal consistency of re-

gions over time. Therefore, it is important to model the temporal variations of sequential data for

scene understanding in videos.

Causality. Often image based segmentation techniques ignore the causality and redundancy

available in the sequential data when being applied on each frame individually. The fact that each

frame in a video is temporally related to its neighboring frames should be efficiently exploited in

video based algorithms.

Object Appearance. The appearance of objects in the scene can drastically change due to

several challenging conditions. Changes in camera viewpoint, illumination and lighting, scale and

rotation preserve the visible parts of the objects in the scene. However, the actual appearance of the

scene in terms of its pixels, can be changed quite significantly from one frame to another frame.

Scene Dynamics. Temporal scene understanding methods need to take into consideration

the dynamics of the scene. In addition to the changes in the appearance of objects, the underlying

motion in the video scene is of enormous importance mainly due to changes in object visibility.

Occlusions and re-appearance can be caused by moving objects quite often in video sequences.

Also changes in the camera view point might reveal parts of objects that were not previously

visible in the scene.

Memory and speed Constraints. Given the large amount of pixels in a video, temporal

segmentation approaches tend to be very slow and often require a large memory footprint. Hence,

most of existing approaches focus on sequences that are short to reduce the complexity of the

algorithm and also the computation time. For this reason, developing reliable and scalable algo-

rithms that are memory efficient and produce accurate segmentation in videos is very valuable and

challenging.

Supervision. Although huge amount of video data is easily accessible, they are mostly

unlabeled due to the laborious task of human annotation. Therefore, it is necessary to design

efficient unsupervised or semi-supervised algorithms that are able to benefit from processing large

unlabeled video datasets.
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Lack of large scale annotated datasets. The performance of deep learning algorithms

depends greatly on the breadth and diversity of the examples in the training data. Image scene

understanding has been widely studied in the literature but temporal algorithms are rare. This is

mainly due to the fact that there exists no public dataset with labellings for all the frames in videos.

1.3 Thesis outline

This dissertation attempts to address the challenges mentioned in the previous section and is

structured as the following:

In Chapter 2, we adapt an existing graph-based image segmentation and present an efficient and

simple unsupervised technique for spatio-temporal segmentation. Our method is based on a low-

rank spectral clustering algorithm. The complexity of graph-based spatio-temporal segmentation

is dominated by the size of the graph, which is proportional to the number of pixels in a video

sequence. In contrast to other works, we avoid over-segmenting the figures into super-pixels and

instead generalize a simple graph based image segmentation. Our graph construction encodes

appearance and motion information with temporal links based on optical flow. For large scale data

sets naı̈ve graph construction is computationally and memory intensive, and has only been achieved

previously using a high power compute cluster. We make feasible for the first time large scale

graph-based spatio-temporal segmentation on a single core by exploiting the sparsity structure of

the problem and a low rank factorization that has strong approximation guarantees. We empirically

demonstrate that constructing the low rank approximation using a subset of pixels (30%-50%)

achieves performance exceeding the state-of-the-art on the Hopkins 155 dataset, while enabling

the graph to fit in core memory. Figure 1.2 shows an illustration of our proposed method for

spatio-temporal segmentation.
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Figure 1.2: The overview of our spatio-temporal segmentation algorithm

In Chapter 3, we present a novel framework for spatio-temporal segmentation from RGBD

video. The method employs both low-level (intensity, color) and high-level (deformable parts

model) appearance features. Depth cues are incorporated in the similarity metric to provide an

informative cue for object boundaries at depth disparities. We further explore structured local

connectivity patterns to give high performance at low computational cost. Also we propose a novel

context-aware aggregation method that uses a deformable parts model to group the detected parts

of the object as a single segment with an accurate boundary. Detailed experiments on the NYU

Depth Dataset and TUM RGBD Dataset is performed to compare against previous large-scale

graph-based spatio-temporal segmentation techniques which shows the substantial performance

advantages of our framework. Figure 1.3 shows an illustration of our object-centric segmentation

method that uses Deformable Parts Model to segment out the background of chair in the detected

bounding box.
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Figure 1.3: An example of our object-centric segmentation method

In Chapter 4, we present an unsupervised framework for simultaneous appearance-based

object discovery, detection, tracking and reconstruction using RGBD cameras and a robot manip-

ulator. The system performs dense 3D simultaneous localization and mapping concurrently with

unsupervised object discovery. Putative objects that are spatially and visually coherent are manip-

ulated by the robot to gain additional motion-cues. The robot uses appearance alone, followed by

structure and motion cues, to jointly discover, verify, learn and improve models of objects. In-

duced motion segmentation reinforces learned models which are represented implicitly as 2D and

3D level sets to capture both shape and appearance. We compare three different approaches for

appearance-based object discovery and find that a novel form of spatio-temporal super-pixels gives

the highest quality candidate object models in terms of precision and recall. Live experiments with

a Baxter robot demonstrate a holistic pipeline capable of automatic discovery, verification, detec-

tion, tracking and reconstruction of unknown objects. Figure 1.4 shows the result of tracking and

reconstruction of a verified object using our method. In this scenario, the robot grasps an object

on the desk and moves it around the scene (for 500 frames). A complete 3D model of the object is

learned after the robot has enough observation of the object.
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Figure 1.4: An example of our unsupervised object discovery, tracking and reconstruction tech-

nique

In Chapter 5, we propose a simple unsupervised method for transferring pixel-wise dense

labels from finely annotated frames of video sequences to the rest of unlabeled frames. We are

motivated by the fact that recent progress in computer vision has been driven by high-capacity

models which are trained on large datasets. However to our knowledge, there is no public dataset

that has groundtruth annotation for all the frames in a video sequence. Unfortunately, creating large

datasets with pixel-level labels has been extremely costly and expensive due to the amount of hu-

man effort required. Our algorithm provides an efficient tool to reduce the cost of mundane manual

labeling, therefore producing abundant amounts of usable groundtruth data. A novel application

of this algorithm is for semantic segmentation and scene parsing especially in temporal semantic

segmentation where having groundtruth for each individual frame in the sequence is beneficial.

We also introduce a simple web-based video annotation tool which is based on the techniques

introduced in previous chapters. Using this tool, we are able to acquire a rapid propagation of

semantic labels within and across images of a video sequence. We validate the presented approach

by producing dense pixel-level semantic annotations for about 18K images extracted from CamVid

dataset where there is only 701 groundtruth frames are available. We also demonstrate qualitative

results for Cityscapes dataset for which we generated about 105K auxiliary groundtruth. Fig-
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ure 1.5 shows several samples of auxiliary groundtruth generated by our method from cityscapes

dataset[33]. The middle highlighted frame is the clean groundtruth and the rest of frames are the

outputs of our method.

Figure 1.5: Examples of our label propagation algorithm

In Chapter 6, we present a deep, recurrent multi-scale network that is capable of leveraging

information present in temporal data to improve the accuracy of semantic scene understanding. We

propose using temporal information in two ways. Firstly, we formulate an approach that integrates

semantic segmentation into a recurrent architecture where the model is given access to the previous

frames in a sequence. We show that our model outperforms single frame segmentation when given

access to this data even when groundtruth information is not provided for intermediate frames.

Secondly, we show that our model can be easily extended to the related problem of prediction:

estimating the expected semantics of the scene a small number of frames into the future. This is a

crucial capability for many robotics applications, where planning needs knowledge of the probable

near future as well as the present. Our architecture for semantic temporal segmentation has three
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key components: 1) an encoder that extracts the spatial features of frames using CNNs; 2) an

convolutional LSTM module that integrates temporal features over many frames while preserving

the spatial correlation; and 3) a decoder that combines different scale feature maps and produces

final pixel-wise predictions for either the input sequence or the predictive future sequence. Figure

1.6 shows the scheme of our network for temporal and predictive semantic segmentation.

Figure 1.6: The network architecture of our temporal and predictive semantic segmentation model

Our spatio-temporal CNNs achieve promising result as demonstrated for the CamVid and

Cityscapes datasets without resorting to more complex random-field inference or instance detection

driven architectures. To our knowledge, our work is the first to exploit deep learning techniques

for temporal semantic segmentation and prediction in image sequences. Our proposed module

can be used in contemporary networks with little modification in order to exploit the temporal
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information.

1.4 Publications

Most of the contributions described in this dissertation have first appeared as the following

publications:

• Chapter 2: “Unsupervised spatio-temporal segmentation with sparse spectral clustering”,

which is presented in British Machine Vision Conference (BMVC), 2014. [53]

• Chapter 3: “Efficient, dense, object-based segmentation from RGBD video”, which is

presented in Robotics and Automation (ICRA), 2016. [54]

• Chapter 4: “Simultaneous localization, mapping, and manipulation for unsupervised ob-

ject discovery”, which is presented in Robotics and Automation (ICRA), 2015. [103]

• Chapter 5: “Generating Auxiliary Groundtruth via Label Propagation in Sequences”,

Under submission.

• Chapter 6: US Patent Application Serial Number 15/409,841 entitled “Spatial and Tem-

poral Information for Semantic Segmentation”, which is the work done during internship

at Zoox Inc, 2016.

• Chapter 6: “Temporal pyramid Networks for Semantic Scene Understanding”, Under

submission.



Chapter 2

Unsupervised spatio-temporal segmentation with sparse spectral clustering

Spatio-temporal cues are powerful sources of information for segmentation in videos. In

this work we present an efficient and simple technique for spatio-temporal segmentation that is

based on a low-rank spectral clustering algorithm. The complexity of graph-based spatio-temporal

segmentation is dominated by the size of the graph, which is proportional to the number of pixels

in a video sequence. In contrast to other works, we avoid oversegmenting the figures into super-

pixels and instead generalize a simple graph based image segmentation. Our graph construction

encodes appearance and motion information with temporal links based on optical flow. For large

scale data sets naı̈ve graph construction is computationally and memory intensive, and has only

been achieved previously using a high power compute cluster. We make feasible for the first time

large scale graph-based spatio-temporal segmentation on a single core by exploiting the sparsity

structure of the problem and a low rank factorization that has strong approximation guarantees.

We empirically demonstrate that constructing the low rank approximation using a subset of pixels

(30%-50%) achieves performance exceeding the state-of-the-art on the Hopkins 155 dataset, while

enabling the graph to fit in core memory.

2.1 Introduction

The analysis of videos is a central task in computer vision. Videos encode useful infor-

mation in appearance, motion cues, and temporal continuity, which can be leveraged to improve

performance on a wide range of applications. Spatio-temporal segmentation is defined as the prob-
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Figure 2.1: Approach overview: given a sequence of figures a) we construct a graph b) connecting
pixels in a neighborhood and also to their temporal correspondences. This is represented as a
very large sparse matrix, from which we select a random subset of columns (which correspond
to pixels) – only the randomly selected pixels are used for graph and matrix construction. d) we
employ spectral clustering segmentation based on efficient and accurate low rank factorization
based on the Nyström method to approximate the graph Laplacian.

lem of partitioning a sequence of figures into coherent regions using motion and appearance cues.

This is an essential step for different tasks such as tracking, object detection and video analysis.

Spatio-temporal segmentation is a challenging problem because there are different factors that may

change throughout the sequence such as camera motion, scale, illumination, viewpoint, deforma-

tion of objects, occlusion, etc.

In this paper, we improve on a family of methods that generalize graph based image segmen-

tation to the spatio-temporal case. Such methods build a graph based on an affinity matrix with

connectivity between neighboring pixels, as well as temporal links computed using optical flow.

While such techniques have been applied previously, they have either been based on a sparse set of

pixels, super-pixel segmentation, or have made use of extensive computing power to exhaustively

compute a dense graph based segmentation. The central contribution of this paper is to introduce

a set of strategies that enable us to compute a dense graph based segmentation using a single pro-

cessor and fitting in core memory. This is done primarily through two innovations: (i) we exploit

the sparsity structure of the spatio-temporal graph, and (ii) we make use of an efficient and accu-

rate low rank factorization based on the Nyström method to approximate the graph Laplacian in a

spectral clustering approach.
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We randomly sample a subset of pixels in the sequence of figures and build a sparse approx-

imation of the full affinity matrix. The sampled pixels are the nodes of the similarity matrix and

edges encode appearance and motion cues. Next we perform spectral clustering on this subset sim-

ilarity matrix as it provides optimal global solutions and use the solution to segment all the pixels.

Our results show that not all of the pixels contain meaningful information about figures, and just a

subset of pixels can be a good representation of the entire scene.

2.2 Related work

A number of video segmentation techniques has been proposed in recent years. Existing

video segmentation approaches may differ in the assumptions they make and can be divided into

different categories. One category include layered motion segmentation techniques [162, 141, 119]

which assume that a scene can be represented with a number of overlapping layers, and each layer

has a motion model that can be obtained by some reasoning process and therefore is capable of

capturing moving objects in the scene. One drawback is that they may not perform very well on

non-textured regions. However, they are capable of segmenting objects when there is occlusion in

the scene due to their global motion model.

Another category of video segmentation techniques which is based on sparse number of loca-

tions with point trajectories [126, 17]. For example in [126], a robust subspace separation method

has been developed that uses Agglomerative Lossy Compression (ALC) for motion segmentation.

The advantage of this method is that it can successfully deal with corrupted or incomplete trajec-

tories where most of other methods in this category fail. In [17], long term point trajectories based

on dense optical flow are clustered into temporally coherent moving segments. However, a major

drawback is that these techniques only consider up to 4% of the pixels in the video which is not

enough for segmenting the entire video including non-moving objects. Hence, compared to dense

video segmentation, the number of labeled points obtained by these sparse methods is considerably

smaller.

There are also spatio-temporal segmentation methods which represent the video in a spatio-
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temporal domain and generalize from image segmentation. For example, in segmentation by hyper-

graph cuts [72], first the image is over-segmented into regions, then the regions are taken as the

nodes of a hyper-graph that represents the relationship among regions and finally the hyper-graph

is partitioned to get the video segmentation. Also in hierarchical graph-based segmentation [59],

a volumetric video graph is over-segmented into spatio-temporal regions, and then a region graph

is constructed by merging the similar regions obtained from previous over-segmentation. This

process is repeated iteratively to create a hierarchical segmentation of the video. Hierarchical

mean shift analysis [41], is another method that maps pixels of a video stack into a 7D feature

space (three color, two motion and two position component) and then uses mean shift repeatedly

to achieve hierarchical clustering of the points in the video. In [90], the concept of spatio-temporal

closure over a graph of temporal super-pixels has been introduced which is an extension of closure

detection techniques in 2D figures. Motion aware hierarchical image segmentation (MAHIS) [52],

is another technique that obtains super-pixels from different variety of pixel-based affinities such

as brightness,color and texture and then in the next step obtains video segmentation from a variety

of super-pixel-based affinities. Another recent work [23], finds temporally consistent super-pixels

in a video using a generative probabilistic model.

Spectral clustering has been used for image and video segmentation, and our work is closely

related to [137, 51]. We aim to partition a graph that encodes appearance and motion similarity

in a sequence of figures and obtain robust perceptual group which are coherent in time. However,

spectral clustering is computationally expensive which makes it often impractical for large scale

data set such as spatio-temporal data. In [51], the Nyström method has been applied as a numerical

solution for speeding up the spectral clustering. They consider the video as a space time volume

and partitioned the volume into coherent segments. In [149], they gained more computational

power by parallelism in GPUs and perform video segmentation more efficiently. We instead use

an algorithm proposed by [93], which is a time and space efficient spectral clustering algorithm for

estimating the rank k approximation of normalized Laplacian. This forms the core of our method

to perform spatio-temporal segmentation in memory on a single CPU.
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2.3 Approach

2.3.1 Creating the Graph

Given an image I, we create a graph G = (V,E,W ), where the graph nodes V are the pixels in

the image and are connected by edge E if they are within distance r from each other. As discussed

in [34], in general choosing a smaller r makes the segmentation faster and choosing a larger r helps

with propagating local grouping cues across larger neighborhood which is useful for detecting faint

contours in the image. W measures the similarity of pixels connected by an edge. We define W as

the following:

Wi j = exp
−d2(si,s j)

σiσ j

where Wi j = 0 for i=j, and si denotes pixel color and d(si,s j) is the Euclidean distance. σ is a local

scaling parameter [172] which takes into account the local statistics of the neighborhood around

pixels i and j. Local scaling parameter is defined by:

σi = d(si,sk)

where sk is the K’th neighbor of pixel i.

In order to extend this to video, we make use of optical flow and add temporal motion infor-

mation to the graph. We use optical flow [96] to compute the motion vectors between frames.

Then we connect pixel (x,y) in frame t to its 9 neighbors along the backward flow (u,v) in

frame t − 1, e.g. (x+ u(x,y)+ δx,y+ v(x,y)+ δy) for δx,δy ∈ {−1,0,1}. The similarity matrix

for the video is a sparse symmetric block diagonal matrix of the size n = number of frames×

number of pixels in one frame.

2.3.2 Partitioning the Graph

2.3.3 Spectral Clustering

Spectral clustering has been widely used for partitioning the similarity graphs which is also

the core of our algorithm. Below we provide the details of the algorithm presented in [116]:



16

Given a set of n points S = {s1, · · · ,sn}, cluster them into K clusters as follows:

(1) Form the affinity matrix W ∈ Rn×n (described above)

(2) Define D to be a diagonal matrix with Dii =∑
n
j=1Wi j and construct the normalized affinity

matrix L = D−
1
2WD−

1
2 .

(3) Select a desired number of groups K.

(4) Find v1, · · · ,vK , the K largest eigenvectors of L, and form the matrix X = [v1, · · · ,vK] ∈

Rn×K

(5) Re-normalize the rows of V to have unit length yielding U ∈ Rn×K , such that Ui j =

Vi j

(∑ j V 2
i j)

1
2

(6) Treat each row Y as a point in RK and cluster using k-means.

(7) Assign the original point si to cluster k if and only if the corresponding row i of the matrix

U was assigned to cluster k.

It is worthy to note that the O(n3) complexity of eigen decomposition of L and also storing

the similarity matrix often makes it expensive and impractical when n is large.

2.3.3.1 Nyström Method

The Nyström method used by [51] is a popular technique to tackle the mentioned problem

by approximating a low-rank matrix of W , since we only need a number of eigenvectors. Given a

symmetric matrix W ∈ Rn×n, first m� n columns of the matrix will be sampled. For simplicity,

we assume that these sampled columns are the first m columns of W . Matrix W can be represented

as follows:

W =

W11 W21

W T
21 A22
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and

W:1 =

(
W11 W21

)
where W11 ∈ Rm×m, W21 ∈ Rn−m×m, and W22 ∈ Rn−m×n−m. The Nyström approximation of W is

defined by:

ˆWnys =W:1W−1
11 W T

:1

The normalized cut requires the computation of the k smallest eigenvectors of the normalized

Laplacian L = I−D−1/2WD−1/2, which are the same as the k largest eigenvectors of the n× n

matrix

M = D−1/2WD−1/2

As we mentioned earlier, the direct decomposition of M takes O(n3) and can be extremely expen-

sive when n is large. In [51], this problem is tackled by using the Nytröm method as follows. First

to avoid using the whole W , the degree matrix is approximated as:

D̂ = diag( ˆWnys1)) = diag(W:1W−1
11 W T

:1 )

by using the Nyström approximation of W . Let D:1 = diag(AT
:11). The sub-matrices in M are:

M11 = D−1/2
:1 W11D−1/2

:1

and

M:1 = D−1/2W:1D−1/2

Using D̂, M:1 can be reformulated as:

M̂:1 ' D̂−1/2W:1D̂−1/2

and M as

M̂ = M̂:1M−1
11 M̂T

:1

where M̂:1 now has the approximate eigenvectors of M. In general, M̂:1 is not orthogonal and

orthogonalization precedure needs to be done is W is positive semi-definite(psd), we can define S
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as:

S = M11 +M
− 1

2
11 M̂21M̂21T M

− 1
2

11

and perform singular value decomposition (SVD) on S to get

S =USΛSUS
T

The approximated L̂ then can be defined as L̂ =V ΛV T and V TV = I, where

V = M̂:1M−1/2
11 USΛS

−1/2

But if A is indefinite, a more complicated process is required. We define Z as:

Z = ŪSΛ
1
2

And ŪS
T as:

ŪS
T
=

[
UT

S Λ
−1
S UT

S B

]
so M̂ = ZZT . If singular value decomposition of ZZT = FΣFT , then V = ZFΣ

− 1
2 has the orthog-

onalized eigenvectors of M̂. This algorithm is expensive for large scale data sets, since the time

complexity of this algorithm is O(nm2 +m3) and it requires keeping W11 and W:1 in the memory.

Hence, we are using a time and space efficient spectral clustering via column sampling [93], that is

similar to Nyström method, but with a further rank-k approximation of the normalized Laplacian

using the sampled sub-matrix of the similarity matrix. This algorithm has shown promising results,

since it reduces the time and space complexity of Nyström method and also it is able to recover

all the degree information of the selected points. Here we briefly review the algorithm proposed

in [93]. First we form the sampled sub-matrix W11 ∈ Rm×m and compute the degree matrix D∗ for

W11. Next, we define M∗ ∈ Rm×m as

M∗ = D
− 1

2∗ W11D
− 1

2∗

and S∗ ∈ Rm×m based on the rank-k approximation M∗,k of M∗ as

S∗ = D
− 1

2∗ M−1
∗,k D

− 1
2∗
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M∗,k is computed by performing eigen decomposition of M∗ and find the k largest eigenvalues Λ

and the corresponding eigenvectors V . Finally the approximated Ŵ is obtained by

Ŵ =W:1S∗W T
:1

By having M∗,k =V ΛV T and replacing it in above formulas, we get Ŵ = QΛQT , where

Q =W:1D
− 1

2∗ V Λ
−1

Lastly, rank-k approximation of L is obtained by following

M̂k = D̂−
1
2Ŵ D̂−

1
2 =UΛUT

where U = D̂−
1
2 Q and D̂ is the degree matrix of Ŵ . The time complexity of this algorithm is

O(nmk) and there is no need to store large similarity matrix W or its sampled columns in the mem-

ory. Also we are using the proposed inexpensive algorithm by [93] to orthogonalized estimated

eigenvectors U .

2.3.4 Post Processing

After performing spectral clustering on the similarity graph and obtaining the clusters, we

first quantize each cluster into 256 bins (16 bins for each channel) and compute the RGB his-

togram. Then we find the Euclidean distance between adjacent clusters and merge them repeatedly

if their similarity is more than a threshold τ to achieve the final segmentation. Figure 2.2 shows an

illustration of this step.

Figure 2.2: Illustration of post processing step
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2.4 Results

To evaluate the performance of our segmentation method, we run several experiments and

provide quantitative and qualitative results. We compare our method against motion segmentation

techniques such as [126, 17], which cluster point trajectories in the sequence of figures and also

other dense video segmentation techniques such as [149, 59]. In all of our experiments, we ran-

domly select a subset sample of size 30%-50% for approximating the similarity matrix. The quality

of our segmentation highly relies on the selected number of clusters for k-means and also distance

r for computing pixel similarities. Choosing larger numbers for these parameters makes the overall

segmentation better. However, the disadvantage is that it creates unsmooth boundaries and cap-

tures most of the undesired details in the scene and also increases the size of matrix rapidly. We

found that by choosing a distance size of 11-15 and cluster size of 300-500, we achieve reasonable

performance.

We use an annotated dataset by [17] for motion segmentation. This dataset includes 26

sequences which is annotated sparse in time and dense in space. We ran our method on three

scenarios and show the numerical result in Table 1. The first section shows the segmentation result

for the first 10 frames of all 26 available sequences in the dataset, the second section shows the

segmentation result for the first 50 frames of 15 selected sequences in the dataset and the third

scenario shows the result for the first 200 frames of 7 selected sequences. The density shows the

percentage of pixels for which a label is reported. The overall error is the number of mislabeled

pixels over the total number of labeled pixels. the overall accuracy is the number of correctly

labeled pixels over the total number of pixels. The average error is similar to the overall error but

computed separately for each region first and then the average across all the regions is reported.

The over-segmentation error indicates the number of clusters that needs to be merged to fit the

ground truth regions. Also the number of regions with less than 10% error is reported as the

extracted objects.

In this experiment, we aimed to compare our method against the method in [149]. The
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Table 2.1: Comparison of dense and sparse segmentation methods

Method Density
Overall
Error

Overall
Accuracy

Average
Error

Over
segmentation

Extracted
Objects

First 10 frames (26 sequences)
Ours (Sample:50%) 100% 5.06% 94.94% 22.31% 6.12 22
Sundaram et al[149] 100% 6.97% 93.03% 19.72% 7.15 20
Brox et al[17] 3.34% 7.75% 3.08% 25.01% 0.54 24
Rao et al[126] corrupted 2.98% 7.88% 2.74% 24.05% 0.15 26
Rao et al[126] incomplete 3.34% 11.20% 2.97% 26.73% 0.54 19

First 50 frames (15 sequences)
Ours(Sample:50%) 100% 7.63% 92.37% 32.24% 14.9 5
Sundaram et al[149] 100% 8.42% 91.58% 28.76% 13.0 5
Brox et al[17] 3.27% 7.13% 3.04% 34.76% 0.53 9
Rao et al[126] corrupted 1.53% 7.91% 1.41% 42.13% 0.36 8
Rao et al[126] incomplete 3.27% 16.42% 2.73% 49.05% 6.07 2

First 200 frames (7 sequences)
Ours(Sample:50%) 100% 13.24% 86.76% 47.83% 5.3 6
Sundaram et al[149] 100% 15.46% 84.54% 45.05% 5.86 3
Brox et al[17] 3.43% 7.64% 3.17% 31.14% 3.14 7
Rao et al[126] corrupted 0.20% 0.00% 0.20% 74.52% 0.40 1
Rao et al[126] incomplete 3.43% 19.33% 2.77% 50.98% 54.57 0
Grundmann et al[59] 100% 20.77% 79.23% 40.37% 10.42 0
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reason is that in contrast with their method which achieves good performance by using GPUs and

heavily depending on parallelization, we exploit numerical algorithms to make our method fast

and efficient. The density of both methods is 100% but we achieved comparable errors while using

just a subset of pixels (30%-50%) to label all of the pixels as compared with their method that

uses all the pixels for clustering. Compared to the motion segmentation methods [126, 17], our

over-segmentation error is higher but that is due to the fact that these methods only use sparse

number of points to label about 4% of the data while we are labeling all the pixels and achieve

better accuracy.

2.5 Discussion

There are several avenues for future research based on the methods presented in this work.

Sparse spectral clustering algorithms are designed to be agnostic to the problem domain. However,

we have a substantial amount of domain knowledge we can exploit to expedite the clustering.

The matrix factorization employed uses uniform sampling to select columns. However,

selective sampling strategies generally decrease the approximation error for a given number of

columns. As the error rate of our method is comparable to using 100% of the columns, this in-

dicates that we may achieve an even higher savings in memory using selective sampling. An

additional likely source of improvement is through the use of similarity measures based on feature

functions that encode texture or other information sources in addition to color.
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Figure 2.3: Results form the Army Men sequence. Notice the fine detail around the top-right gun

figure.

Figure 2.4: Results from Ice-skater Yu-Na Kim, 2009 World Championships, ©2009 NBC

Olympics.
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Figure 2.5: Comparison of our technique vs motion segmentation by [149] and [59]. Left-to-right

shows video frames 1 and 50. Second row: results from Hierarchical graph segmentation [59];

third segmentation with the full graph using a cluster of GPUs [149]; fourth row, our result runs

on a single core, does not employ contour smoothing or texture similarity.

2.6 Summary

In this work, we have demonstrated a novel method for spatio-temporal segmentation of

dense pixel trajectories based on spectral clustering. We found that fully connecting pixels to their

spatial neighbors within a given radius is an effective strategy for improving segmentation accu-

racy. Additionally, we use optical flow to more accurately compute temporal connectivity than a

simple method based on an interpretation of the video sequence as a 3D volume. In contrast to

previous work, we do not resort to super-pixel segmentation to achieve computational tractability

and memory efficiency. Instead, we exploit the natural sparsity structure of the graph, and em-

ploy a low rank approximation of the Laplacian closely related to the Nyström method. We have

found that sampling 30-50% of the pixels to index columns of the low rank approximation leads

to comparable performance with a method that uses 100% of the columns. This strategy results

in a spectral clustering method that can run on a single processor with the graph representation
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fitting in core memory. For instance, a 100 frame 640x480 sequence naively requires 6.8GB of

memory, while with our method we are able to reduce this to 2.1GB and still retain accuracy.

We have demonstrated the effectiveness of the approach on the Hopkins 155 data set, where we

have achieved the best reported results for dense segmentation using an order of magnitude less

computation than [149].



Chapter 3

Efficient, dense, object-based segmentation from RGBD video

Spatio-temporal cues offer a rich source of information for inferring structural and seman-

tic scene properties. A particularly useful representation in computer vision is a spatio-temporal

video segmentation. Together with motion, knowledge of depth can substantially improve super-

pixel segmentation. In this work we present a novel framework for spatio-temporal segmentation

from RGBD video. The method employs both low-level (intensity, color) and high-level (de-

formable parts model) appearance features. Motion is incorporated through the use of optical flow

to construct the temporal connections in the graph Laplacian. Depth cues are incorporated in the

similarity metric to provide an informative cue for object boundaries at depth disparities. Naı̈ve

application of spectral clustering to dense spatio-temporal graphs leads to a high computational

cost that is typically addressed through the use of GPUs or computer clusters. By contrast, we

build upon a recently proposed Nyström approximation strategy for spatio-temporal clustering that

enables computation on a single core. We further explore structured local connectivity patterns to

give high performance at low computational cost. Also we propose a novel context-aware aggrega-

tion method that uses a deformable parts model to group the detected parts of the object as a single

segment with an accurate boundary. Detailed experiments on the NYU Depth Dataset and TUM

RGBD Dataset is performed to compare against previous large-scale graph-based spatio-temporal

segmentation techniques which shows the substantial performance advantages of our framework.
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3.1 Introduction

Figure 3.1: Approach Overview: (left-to-right) Given a sequence of RGBD figuress, We first

construct a similarity graph using appearance and depth information, we also add the temporal

links computed using optical flow, then we use Nyström method to obtain an over-segmentation

of the figuress, and finally we use a hierarchical aggregation method to obtain the final spatio-

temporal segments in the video

Video segmentation is defined as the problem of grouping a sequence of figuress into coher-

ent regions with similar appearance, motion and temporal continuity. The goal of video segmenta-

tion is to represent figures sequences through homogeneous regions where the same object should

carry the same unique label along the whole video. Spatio-temporal cues are essential to obtain

good performance in video segmentation, as appearance-based cues may be ambiguous in regions

of low texture and similarity between foreground and background. An important additional infor-

mation source has come in the form of RGBD cameras. These cameras have become ubiquitous

in recent years, and are being incorporated in a large variety of entertainment systems, user inter-

faces, robotic sensors, etc. The information provided by depth is complementary to that provided

by motion cues: motion can provide information about points that (do not) move together, while
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depth sensors provide information about depth disparities even in the absence of motion. This

provides an excellent opportunity to boost spatio-temporal segmentation accuracy through the use

of potentially noisy depth information. Spatio-temporal segmentation of RGBD videos has numer-

ous applications in sub-fields of computer vision. In robotics, RGBD cameras are more-and-more

frequently employed to infer environment structure and to identify individual objects that can be

manipulated [2]. Self-driving cars must be able to accurately determine scene components, their

spatial extents, and their trajectories [106]. Consequently analysis of RGBD figuress and videos is

becoming an important problem in robotics [50].

High level vision tasks often require, or can be aided by knowledge of the spatio-temporal

relationship between objects inherent in a high-quality RGBD video segmentation. In object track-

ing, frequent difficulties such as occlusion handling can be alleviated through segmentations that

account for both appearance motion cues and depth disparities. Action recognition has been shown

to be substantially aided through the incorporation of depth cues [82] and spatio-temporal segmen-

tations with depth information is a rich representation for this task.

In this paper, we show that the inclusion of depth and deformable part-model information

can greatly improve video segmentation. We are interested in unsupervised spatio-temporal seg-

mentation of the RGBD video sequence. Our approach extends prior work on graph-based spatio-

temporal segmenation [53] by adding depth information, parts-based aggregation, and also a novel

technique for connecting pixels within a neighborhood. The central strategy is to build a pixel level

spatio-temporal graph that encodes appearance, depth and motion information with temporal links

based on optical flow and then cut the graph to obtain segments that are coherent over time. We

present two different aggregation methods for merging the over-segmentation result. One is a hier-

archical approach and the other is based on the deformable part models for an object of interest. We

employ a recently proposed Nyström approximation strategy to ensure computational tractability,

resulting in a method that is both accurate, and tractable to run on a single core. We believe this to

be the first demonstration of dense spatio-temporal segmentation from RGBD videos that does not

make use of extensive computational infrastructure such as GPUs or compute clusters. At the same



29

time, we demonstrate substantially improved performance over a variety of approaches. Advan-

tages of the proposed method are demonstrated using the NYU Depth Dataset [112] and the TUM

RGBD Dataset [147] as well as on our own dataset. This paper makes three main contributions:

(i) a novel extension of a spatio-temporal graph Laplacian based spectral clustering technique is

introduced that incorporates depth information, (ii) a randomized strategy is proposed for the struc-

ture of a pixel neighborhood in the construction of the spatio-temporal graph Laplacian, and (iii)

a context aware aggregation strategy that employs an object detection system is employed to find

object-centric segmentations.

3.2 Related Work

Techniques for spatio-temporal segmentation can generally be grouped into several cate-

gories based on the assumptions made by the approach. One category of techniques is based on

tracking and clustering a sparse number of point trajectories (up to 4% of the pixels) into temporally

coherent moving regions [126, 17]. Another category is dense video segmentation in which the

video is presented as a spatio-temporal volume. One popular method is hierarchical graph-based

segmentation [59], which builds on graph-based figures segmentation proposed by [49], in which

a volumetric video graph is over-segmented into spatio-temporal regions. These regions form a

region graph which is used to merge similar regions repeatedly into larger regions and creates a

hierarchical segmentation of the video. In [41], hierarchical mean shift analysis is introduced,

which maps pixels of a video stack into a 7D feature space and then uses mean shift repeatedly to

achieve hierarchical clustering of the points in the video. Another recent work [23], uses a gener-

ative probabilistic model to find temporally consistent superpixels in a video stream. Normalized

cuts for graph partitioning has been widely used in both figures and video segmentation [137].

Since the underlying spectral clustering is computationally expensive, it is often impractical to use

for large scale data. The Nyström method [160, 51], is a numerical solution for approximating

p.s.d. matrices, which can be used to speed up spectral clustering. In [53], an efficient method is

applied to randomly select a subset of pixels and estimate a rank-k approximation of the similar-
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ity matrix which enables the performance of spatio-temporal segmentation in memory on a single

CPU. In [149], GPU clusters are necessary to perform spectral clustering naı̈vely on the original,

unapproximated Laplacian. These described methods are based on only appearance cues.

In [158] a depth-adaptive supervoxel video segmentation technique is proposed that uses

color and depth information to compute the supervoxels and then applies spectral clustering to

partition them into spatio-temporal segments. Another algorithm [1] uses a GPU based parallel

Metropolis algorithm to combine color and depth information and segment the figuress. They use

real-time optical flow to warp obtain segment labels and track them to the next frame. Also in [68],

an efficient hierarchical graph based segmentation is presented for segmenting 3D RGBD point

clouds. They consider a moving window over a point cloud that segments the similar points into

regions which later are merged together repeatedly. A bipartite graph matching is used to obtain the

final segmentation at a given level of the hierarchy. Other methods for 3D segmentation of point

clouds such as [70, 132, 146] do not consider time and are focused on static scenes, or require

strong supervision [62].

3.3 Spatio-Temporal Segmentation

Our approach has three main steps, as shown in Figure 3.1. First, we randomly sample a

subset of pixels in the video sequence and form a sparse affinity matrix, which is later used to

estimate a low rank approximation of the full affinity matrix. Next, we perform spectral clustering

on the affinity matrix to obtain an over-segmentation of the sequence. Finally, we apply ultra-

metric contour maps [3] on the resulting over-segmentation to obtain a smaller number of regions.

3.3.1 Spatio-temporal Graph

For each frame in an RGBD video sequence, we create a similarity graph G = (V,E,W ),

where each pixel is a vertex vi ∈V and is connected to v j by an edge ei j if they are within distance

r from each other. The edge ei j is weighted by wi j that shows the similarity between pixels vi and
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v j. W is defined as the following:

wi j = exp

(
−d2(pi, p j)

σ2
p

)
(3.1)

Where wi j = 0 for i = j, and d(pi, p j) is a linear combination of the difference in intensity, color

and spatial position of two pixels:

d(pi, p j) = α×dc(pi, p j)+β ×dl(pi, p j) (3.2)

Also σp is a scaling factor, and we set σp = 0.01, α = 0.4 and β = 0.6 a priori. dc is the color

distance of pixels pi and p j, measured by the euclidean distance in the CIELAB color space, and

dl is the euclidean distance between 3D position of pi and p j in camera coordinates, which is

computed using a pinhole camera model:

xyzp = depthp× (
x− cx

f
,
y− cy

f
,1)T (3.3)

where x and y are the position of pixel p in figures plane and f , cx and cy are the camera parameters.

As mentioned earlier, we only measure the similarity of the pixels within distance r in the figures

plane due to the fact that it is more likely that nearby points in 3D with similar colors belong

to the same region. Choosing the graph radius r, is a tradeoff between segmentation quality and

computation cost. As discussed in [35], larger r makes the quality of segmentation better and

smaller r makes the segmentation faster. If we consider a neighborhood around pixel p, the graph

weights have low variance, if there is no edge falling between any two adjacent pixels in the

neighborhood it therefore is redundant information. By considering larger r, the chances of having

an edge in the neighborhood increases which leads to detecting contours and propagating the local

cues across larger figuress regions, however the graph becomes denser and more expensive to

compute. We alleviate this trade-off by considering a mid-range sparse neighborhood around pixels

to benefit from grouping information of a larger area while low cost computation of the sparse

neighborhood (Figure 3.2 and Figure 3.4, implementation details are provided in Section 6.5).

The random pixel-neighborhood pattern in the third column of Figure 3.4 gives an empirically
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superior balance between computational cost and accuracy than either a structured pattern or a

dense neighborhood connectivity.
re
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r

number of edges: r2−1

Figure 3.2: The error based on choice of neighborhood size r = 3, 5, 7, 9, 11, 13, 15, 17, 19
and 21 for structured pattern, random pattern and dense pattern is shown in red, green and blue
respectively. Note that the error is reported for the number of edges between the center pixel and
the pixels in the neighborhood r. The random pixel neighborhood strategy consistently gives the
best performance (cf. Figure 3.4).

Prior to computing the similarity between the pixels, we use a joint bilateral filter [152, 45]

for smoothing the figures and removing the noise in color values. The joint bilateral filter controls

the smoothing weight for color figures with regards to the depth figures and prevents color from

flowing over the depth boundaries. The joint bilateral filter is defined as:

Ipc =
1
k

Σgc(pc− p′c)gd(pd− p′d)I′pc (3.4)

where

k = Σgc(pc− p′c)gd(pd− p′d) (3.5)

is a normalization term and pc is the color value, pd is the depth value and g denotes the Gaussian

kernel. Here, kernel gc sets the weights based on the color difference of the pixels, while the edge

stopping kernel gd computes proper weights for nearby pixels based on the depth differences.
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Figure 3.3: Computation time for eigen-decomposition of the normalized Laplacian is shown for
different sample sizes in efficient Nyström method. Different colors represent different number of
frames used to build the graph. (cf. Figure 3.5).

Figure 3.4: Random, dense, and structured pixel neighborhood patterns and the resulting spatio-
temporal segmentations. In all cases, the number of edges, and thus the computational complexity,
are the same.

After creating the graph for each frame in the RGBD sequence, we need to add the motion

information and extend the graph to the spatio-temporal case. In this step, we use optical flow [96]

to compute the motion vectors between frames. Since the optical flow vector implies that the

source pixel at time t−1 belongs to the same region as the destination pixel in time t, we connect
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Figure 3.5: Over-segmentation quality for different sample size in Nyström method: original
frame, sample size: 10%, 30% and 50%

pixel (x,y) in frame t to its 9 neighbors along the backward flow (u,v) in frame t− 1, e.g. (x+

u(x,y)+δx,y+ v(x,y)+δy) for δx,δy ∈ {−1,0,1}, and then we compute the similarities between

the connected pixels using Equation (3.1).

For processing long sequences, We use a window of 5 consecutive frames with one overlap-

ping frame to build the spatio-temporal graph each time and then use the cluster centers obtained

from over-segmentation of these frames to initialize the centroids of k-means in the next window.

3.3.2 Over-segmentation

Given the similarity graph G, we form the affinity matrix W which is a sparse symmetric band

matrix of size n×n, n is the total number of pixels in the video. W has the following structure:

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W11 W12 0 0 . . . 0

W21 W22 W23 0 . . . 0

0 W32 W33 . . . . . . 0
...

...
...

... . . . ...

0 0 0 . . . . . . Wnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

where Wi,i denotes the affinity matrix between pixels in frame i and Wi, j denotes the affinity matrix

between the pixels in frame i and frame j. After building the spatio-temporal graph, which encodes

appearance,depth and motion information, the spectral clustering algorithm is applied to partition

the graph and obtain the over-segmentation of the video. In short, for spectral clustering, first we



35

need to compute the normalized graph Laplacian of W by L = D−
1
2WD−

1
2 where D is the diagonal

degree matrix defined as Dii = ∑
n
j=1Wi j. Then an eigen-solver is used to find the eigenvectors

corresponding to the k largest eigenvalues of the normalized Laplacian matrix. The complexity

of the eigen decomposition of L is O(n3) which makes it very expensive and impractical for large

datasets like videos. Therefore we apply a time and space efficient Nyström method [93] similar

to [53] that has a complexity of O(nmk). The idea is to randomly select a subset of m pixels in the

video and form the affinity matrix for these selected pixels. Then the normalized Laplacian matrix

M is computed and used to estimate the eigenvectors of a rank-k approximation of the normalized

Laplacian matrix L (Figure 3.5) for the entire set of pixels in the video. Finally another clustering

algorithm such as k-means is used to cluster the estimated eigenvectors of the normalized Laplacian

L. This will give us the cluster assignment for all of the pixels in the video. Further details are

provided in [53]. This gives an over-segmentation of the video in the form of 3D superpixels that

are coherent in terms of appearance and position in space and time. Note that in the context of this

paper, the term superpixel has been used interchangeably with the term 3D superpixel.

3.3.3 Hierarchical Aggregation

The over-segmentation of the RGBD video produces 3D depth-labeled superpixels. For each

of these superpixels we compute a feature vector f . The components of f are the superpixel LAB

color histogram sc, superpixel mean surface normal sn and superpixel centroid sxy. We start by

defining a graph structure where each superpixel is a vertex in the graph and is connected to all

neighboring superpixels with edges. The edges are weighted by the similarity between connected

superpixels, based on the fact that similar superpixels have similar appearance, are spatially close

and have normals that point to the same direction. We measure the similarity of neighboring

superpixels si and s j by:

Si j = exp
(
−d2(si,s j)

σ2
s

)
(3.7)
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where

d(si,s j) = γ×dc(si,s j)+δ ×dn(si,s j)+η×dxy(si,s j) (3.8)

dc(si,s j) is the χ2 distance between the color histograms, dn(si,s j) measures the angle between

surface normals, dxy(si,s j) is the Euclidean distance of the superpixels centroids and σs is a scaling

factor. Also we set γ = 0.4, δ = 0.4, η = 0.2 and σs = 0.01 a priori. Here, the intuition is that we

want the superpixels that have similar color and surface normal to be grouped together but we put

less emphasis on where in the figures they are located (for example superpixels of a background

wall that is occluded with a foreground object should be grouped into one segment). After creating

the neighborhood graph for superpixels, we use an approach similar to the ultra-metric contour

map [3] to merge the superpixels repeatedly. We sort the edges in the neighborhood graph and

start from the edge with highest value of similarity, and merge the two corresponding superpixels.

Then we update the weights and repeat this process until there are no more edges. Also it is

possible to make this process faster by using a bucket sort list in which we go thorough all the

edges in one bucket and merge the corresponding superpixels before updating the neighborhood

graph. This process gives us a hierarchy of segmentation in a bottom-up approach. We can obtain

the final segmentation by using a threshold to stop merging the superpixels either when it reaches

a certain level in the hierarchy or when a desired number of segments is obtained. Figure 3.6

presents the hierarchical aggregation results for different levels of segmentation.
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Figure 3.6: Hierarchical Aggregation using an Ultra-Metric Contour Map approach is shown. Left

column is the original frame taken from TUM RGBD Dataset [147], the second to fourth columns

show different levels of segmentation in the hierarchy with maximum number of clusters: 400,

100, and 50 respectively

3.3.4 Parts-Based Aggregation

In this section, we introduce a novel method for merging the superpixels obtained from the

over-segmentation by applying an object detection technique [48] based on mixtures of multiscale

deformable part models. These models are trained using a discriminative process that requires

bounding boxes. A DPM model for an object with n parts is defined by a root filter and n part

filters. To detect an object in the figures, an overall score for each root location according to the

best placement of the parts is computed. High-scoring root locations define detections while the

locations of the parts that yield a high-scoring root location define a full object hypothesis with

a bounding box. Given these bounding boxes and the filter scores, we want to segment out the

object from the background. To do this, for each superpixel inside the bounding box, we first

find the mean value of the scores given by the filter responses sd pm. Then we build the superpixel
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Figure 3.7: Hierarchical Aggregation vs. Parts-Based Aggregation Approach: (Top-row from left
to right) shows the segmentation result for the chair using hierarchical aggregation, (Bottom-row
from left to right) the root and part filters for “chair”, the filter score for chair detection, detected
edges using Sobel operator, prediction of boundary box and result of aggregating superpixels in
the bounding box. Without the use of the context aware aggregation, the different articulated parts
of the chair are misidentified as belonging to different objects. The incorporation of the parts based
model enables the segmentation framework to correctly group these parts as a single object.

neighborhood graph and compute the edge weights using Equation (3.7) where

d(si,s j) = µ×dd pm(si,s j)+ν×maxx∈B(edge(x)) (3.9)

dd pm(si,s j) is simply the difference between superpixel scores and edge(x) is the edge strength at

pixel x on the boundary of two superpixels. We set µ = 0.6 and ν = 0.4 a priori. If the filter

responses for two adjacent superpixels are high enough, we still want to merge them even if there

is an edge between them, so we set a higher value for µ . We also applied a Sobel operator to detect

the edges using the gradient of the figures. Then the same approach as the previous section is used

to merge the superpixels repeatedly. This method of aggregation can be used if one is interested in

tracking a boundary accurate object in contrast to bounding box methods. To evaluate our results

in this paper, however, we only used the hierarchical aggregation to obtain a dense segmentation

of the sequence. Figure 3.7 shows the difference between hierarchical aggregation and parts-based

aggregation.
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3.4 Results

Several comparative experiments were run to assess the performance of the proposed method

using publicly available RGB-D video sequences. In Table 3.1, ’RGB-D Video’ indicates the pro-

posed method. The second method called ’Depth two-stage’ uses the two-stage strategy proposed

in [68] to incorporate depth information in the spatio-temporal segmentation, while still using the

same appearance based cues as our proposed method. The fundamental difference between this

method and the proposed method is that instead of combining depth and color information lin-

early, first a segmentation of a sequence of frames using depth and motion information is obtained,

and then an over-segmentation of the frames is done using color and motion information while re-

specting the depth boundaries from previous step. The third method called ’RGB Video [53]’ uses

similar appearance cues to those employed in our method, but does not take depth information into

account. The fourth method called ’RGB Video [59]’ uses a similar approach to the graph based

figures segmentation ’RGB figures [49]’, but extends it to the video setting by adding temporal

information. These results show that combining depth information with color and temporal cues

improves the segmentation result significantly and having an initial depth segmentation is not nec-

essary. The presented method tends to maintain the depth boundaries of the objects and avoids

merging them into other parts of the scene. Three further experiments have been performed: two

sequences of size 100 frames and one sequence of size 200 frames have been chosen from NYU

Depth Dataset [112] and one sequence of size 150 frames has been chosen from our own dataset

Fig. 4.5. The qualitative results shown in Figures 3.4, 3.5 and 3.6 are sequences chosen from TUM

RGBD Dataset [147]. Table 3.1 shows the detailed numerical comparison between our method

and the rest of methods. Here, the density of all the methods is 100% which denotes the percent-

age of pixels for which a label is reported. The overall error is the number of mislabeled pixels

over the total number of labeled pixels. The overall accuracy is the number of correctly labeled

pixels over the total number of pixels. All pixels covering their assigned region in ground truth

are counted as correctly labeled pixels, all others count as mislabeled pixels. The average error
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Table 3.1: Comparison between the proposed method and existing methods in the literature.

Method
Overall
Error

Overall
Accuracy

Average
Error

Over
segmentation

Extracted
Objects

2 sequences(100 frames)
RGB-D Video 9.8% 90.2% 15.1% 14 16
Depth two-stage 11.7% 88.3% 16.7% 15.5 16
RGB Video [53] 14.3% 85.7% 17.2% 19.2 14.3
RGB Video [59] 16.4% 83.6% 19.1% 18.3 13
RGB figures [49] 21.7% 78.3% 23.7% 24 10

one sequence(150 frames)
RGB-D Video 11.4% 88.6% 17.4% 16.8 12.4
Depth two-stage 13.9% 86.1% 20.1% 18 10.7
RGB Video [53] 16.3% 83.7% 21.4% 19.2 9.3
RGB Video [59] 16.1% 84.9% 21.8% 18.8 10
RGB figures [49] 23.4% 76.6% 25.2% 26.3 7.8

one sequence(200 frames)
RGB-D Video 12.7% 87.3% 18.9% 18.1 14.1
Depth two-stage 14.3% 85.7% 19.8% 18.8 13
RGB Video [53] 15.8% 84.2% 22.0% 19.8 11.1
RGB Video [59] 17.5% 82.5% 23.1% 19.6 13
RGB figures [49] 24.7% 75.3% 28.2% 25.8 10.8
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is similar to the overall error but computed separately for each region first and then the average

across all the regions is reported. The over-segmentation error indicates the number of clusters that

need to be merged to fit the ground truth regions. Also the number of regions with less than 10%

error is reported as the extracted objects. The same evaluation method has been previously used

in [53, 17]. We can see that an integrated system incorporating RGB-D video gives the best results

by a substantial margin, with an approximately 1/3 reduction in error rate vs. the best performing

video segmentation competitor [53]. Furthermore, we show that the direct inclusion of depth in

the graph segmentation reduces the error rate by a further 16% or more as compared with our im-

plementation that uses the two-stage method proposed in [68]. Also Figure 3.2 and 3.4, compare

the error for different graph radius sizes and patterns. Observe that the best result is achieved by

choosing a larger radius with a sparse random pattern. Note, in all of our experiments, the graph

radius is set to r = 5, which means that the center pixel is connected to 120 pixels in an 11x11

neighborhood (e.g. in the dense pattern). For both structured and random neighborhood pattern,

the center pixel is connected to the same number of pixels as dense pattern but each has a dif-

ferent structure as shown in Fig. 3.4. In all of the experiments in this paper we use the random

neighborhood pattern to build the spatio-temporal graph. Since a random subset of pixels is used

in the video to approximate the normalized Laplacian matrix L, in Figure 3.3 and 3.5 the overall

computation time and accuracy is reported for different sample sizes. It is obvious that selecting

more pixels improves the segmentation result, however there is a trade-off between accuracy and

computation cost. For all the experiments in this paper a random subset of 50% of pixels is cho-

sen. On average, the runtime for the segmentation was about 20 minutes for 100 frames of size

640× 480 on a single CPU. Finally, Figure 4.5 presents a qualitative comparison between the

proposed method and other state-of-the-art methods based on superpixel segmentation.

3.5 Discussion

Experiments systematically show an improvement using the proposed framework, both from

a quantitative, and from a qualitative perspective. Results show a reduction in the overall error
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rate by approximately one third on both the first and second experiments. Of high importance to

unsupervised object detection, the number of extracted objects is increased in both experiments as

well. On the second experiment, the average error increases by one percent, but the first experiment

shows an average error decrease of approximately one quarter. This disparity can be accounted

for by the different distribution of segment sizes in the two sequences, and the overall error is

consistently decreased by our method while using only 50% of randomly chosen pixels from the

entire video. The random pixel neighborhood pattern gave the best result, and did so at a reduced

computational cost compared with the dense segmentation

Figure 3.8: The original frames are added

Segmentation results by the proposed method for a sequence of size 6 shown in the last row. The

first row: our temporal RGB-D, the second row: only RGB [49] and the third row: temporal RGB

[59]. The proposed method has the best performance in terms of precision and recall of object

pixels (scored using motion-verified object boundaries).

Figure 3.2 and Figure 3.4. A structured placement did not perform as well, indicating that the

random structure of the pattern gives a good spatial coverage of the neighborhood. Also incorpo-

rating depth and color in spatio-temporal graph makes our method much more efficient compared

to ’Depth two-stage’ method inspired by [68], since we only apply spectral clustering once to
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obtain the segmentation whereas the other method needs to perform spectral clustering twice. The

effect of the Nyström method is demonstrated in Figure 3.5 and Figure 3.3. We see that the ap-

proximation degrades gracefully with the sparsity, and that qualitatively sensible segmentations

are achieved at a sampling rate of 50% or lower. Also the computation time for spectral clustering

increases drastically with respect to the number of pixels. However, we can observe that choosing

a smaller size window for processing the frames in conjunction with choosing a larger sample size

gives better accuracy and less computation time.

3.6 Summary

In this work, we have proposed a novel framework for spatio-temporal segmentation from

RGBD videos that incorporates a rich set of appearance, motion, object-part and depth cues while

maintaining feasible computation on a single core.

The system employs appearance cues based on low-level information such as intensity and

color, while also incorporating high-level information from a deformable parts model (DPM). In

this way, we are able to compute object centric spatio-temporal segmentations based on semantic

object detection. One interesting area of future work based on the proposed idea is to use this

technique to segment and track the object detected by DPM and improve the performance of object

detection where DPM fails to detect the object due to different factors in the scene.

Several computational innovations are incorporated in order to make feasible a dense spatio-

temporal segmentation on a single core. First, a Nyström approximation is used based that samples

pixels from the dense optic-flow graph. This strategy combines the computational efficiency of the

Nyström approximation with the accuracy of an intelligent sampling strategy that accounts for the

temporal structure of the problem. Additionally, we have incorporated a structured connectivity

pattern for construction of the graph Laplacian. This strategy balances the high accuracy achieved

by a connectivity with high spatial extent with the computational imperative of a similarity matrix

with low degree. The resulting method has a computational efficiency sufficiently low to enable

computation on a single core. Future work will be aimed at decreasing the computation time and
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use an online approach for streaming the video data.

The proposed framework has been validated using two benchmark datasets: the NYU Depth

Dataset [112] and the TUM RGBD Dataset [147]. On both datasets, results show across the board

improvements on a wide range of performance metrics. These include error and accuracy per-

centages, the degree of over-segmentation, and the number of objects extracted. In summary, we

have shown that the addition of depth information, a structured connectivity pattern for the graph

Laplacian, and a deformable parts model all conspire to substantially improve spatio-temporal

segmentation of RGB-D video.



Chapter 4

Simultaneous Localization, Mapping, and Manipulation for Unsupervised Object Discovery

In this chapter, we present an example of simultaneous object DDTR by using the appearance

cue for candidate objects discovery and the motion cues for objects verification (via a robot manip-

ulator). The system performs dense 3D simultaneous localization and mapping concurrently with

unsupervised object discovery. Putative objects that are spatially and visually coherent are manip-

ulated by the robot to gain additional motion cues. The robot uses appearance alone, followed by

structure and motion cues, to jointly discover, verify, learn and improve models of objects. In-

duced motion segmentation reinforces learned models which are represented implicitly as 2D and

3D level sets to capture both shape and appearance. We compare three different approaches for

appearance-based object discovery and find that a novel form of spatio-temporal super-pixels gives

the highest quality candidate object models in terms of precision and recall. Live experiments with

a Baxter robot demonstrate a holistic pipeline capable of automatic discovery, verification, detec-

tion, tracking and reconstruction of unknown objects.

We present an unsupervised framework for simultaneous appearance-based object discov-

ery, detection, tracking and reconstruction using RGBD cameras and a robot manipulator. The

system performs dense 3D simultaneous localization and mapping concurrently with unsupervised

object discovery. Putative objects that are spatially and visually coherent are manipulated by the

robot to gain additional motion-cues. The robot uses appearance alone, followed by structure and

motion cues, to jointly discover, verify, learn and improve models of objects. Induced motion seg-

mentation reinforces learned models which are represented implicitly as 2D and 3D level sets to



46

capture both shape and appearance. We compare three different approaches for appearance-based

object discovery and find that a novel form of spatio-temporal super-pixels gives the highest qual-

ity candidate object models in terms of precision and recall. Live experiments with a Baxter robot

demonstrate a holistic pipeline capable of automatic discovery, verification, detection, tracking and

reconstruction of unknown objects.

4.0.1 Introduction

Automatic object model acquisition is a fundamental task in robotics. Recent state-of-the-art

object detection and recognition systems are based on pre-trained detectors [14, 44, 67, 107] and

features [111, 87]. For object learning, most techniques reconstruct sparse 2D models [66, 32]

together with dense 3D shape models. The focus of this paper is an unsupervised pipeline for dis-

covering unknown objects in a scene without any prior information and using robots with manipu-

lators to verify and reinforce model acquisition by robot-object interaction (e.g. poking, grasping).

Hence, a pre-trained object detection technique is not suitable here – indeed, the proposed method

could be used to train such systems.

2D object appearance is highly informative for image based spatio-temporal segmentation

[60, 53]. Typically, per-frame image segmentation results are combined with temporal information

via 2D segment tracking. Instead, we find that using appearance and dense spatio-temporal cues

produces better image segmentation results, which in turn yield a high quality set of likely candi-

date objects. However, these cues are not sufficient for the verification of object-hood, especially

for static objects [104, 105]. In the proposed approach, a mobile robot relies on dense 3D SLAM

to manipulate putative objects, thereby adding possible motion cues to verify object-hood.

Once an object has been verified by poking or grasping, a dense detection, tracking and

reconstruction technique is applied to learn 2D and 3D implicit models of appearance and shape.

In subsequent steps, learned models are automatically detected, tracked, and refined.

Related work demonstrates dense tracking and reconstruction to generate 3D models of static

or moving objects [128, 40, 10]. However, these techniques require a bounding box (or a pre-
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Figure 4.1: The dual-arm Baxter robot equipped with a RGB-D camera automatically discovers
and learns dense 3D model of unknown objects in the scene by manipulation.

trained object detector) as system input to define the target.

This paper extends prior work on unsupervised object discovery, detection, tracking and

reconstruction (DDTR)[104] with a novel form of appearance based object discovery and also

uses a robot manipulator to verify candidate objects. A complete dense 3D model is generated

once the robot has full observation of an object.

The proposed framework is different from most existing frameworks as: 1) it does not require

prior information for object discovery as [107, 14]; 2) it builds models and also subsequently

detects, tracks and refines dense 2D and 3D models which is different from [14, 154, 44, 67, 107,

110] [32]; 3) it learns high quality 3D models of unknown objects via robot-object interaction; 4)

it is also a simultaneous localization and mapping system (SLAM), which enables the potential of

autonomous object discovery; 5) the final learned model of an object can be used for future object

detection tasks, and shared with other robots.

The remainder of this paper is structured as follows: Section 2 briefly covers preliminaries

and introduces our approach. In the following sections we cover appearance-based object discov-

ery, motion-based objects verification, tracking, reconstruction and system integration. Section 6

tests and discusses the system performance. Section 7 addresses failure cases and future work and

Section 8 draws conclusions.
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Figure 4.2: An Object is represented implicitly with a 2D and a 3D model. The 2D model is
represented with a RGB histogram and a 2D SDF Φ(x). The zero level set of Φ(x) segments
the image domain Ω into a foreground Ω f and a background Ωb. The 3D model of the object is
represented by the 3D SDF and can be rendered via ray casting and phong shading.

4.0.2 Overview

4.0.2.1 Preliminaries

The proposed system (Fig.4.1) uses a dual-arm Baxter robot with a calibrated RGBD camera

C mounted on its head, where the world pose of the center of the robot is TwR ∈ SE(3). The camera

C is calibrated with respect to the robot center, with extrinsic matrix TwC ∈ SE(3), and intrinsic

matrix Ki. The transformation between TwR and TwC is calibrated and considered as a known

parameter. An object in the scene is noted as Oi, where its world pose TwO is noted as the center

point of the object, and can be computed by TwO = TwC⊕TCO.

A 3D point in the camera frame is denoted as xc = (x,y,z)> and projects onto the image

plane as π(xc) = (x/z,y/z)> (i.e., dehomogenization). A 2D point u = (u,v)> in the image plane

can be back-projected to a 3D point by χ = 1
d ·K

−1
i · (u;1) with a depth value d. The system uses

T i
wr and T i

wl to represent the camera pose in the reference frame (time k− 1) and the live frame

(time k).

We denote learned objects as O = O /0,O1,O2, · · · ,On. Each object is represented by both a

2D and a 3D model. Figure 4.2 shows the representation of an object’s 2D and 3D model.
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The system uses shape (2D contour) and appearance (RGB histogram) to represent an ob-

ject’s 2D model. A level-set embedding function Φ(xi), namely a 2D signed distance function

(SDF), is used to implicitly represent an object’s 2D contour (shape). xi = xi1,xi2 · · · ,xin is the

set of pixel locations in the coordinate frame of Oi. The zero level-set of the object’s 2D SDF

Φ(x) = 0 is used to represent the shape (2D contour). The 2D contour Φ(x) = 0 segments the

image domain Ω into a foreground Ω f and a background Ωb, with appearance models M f and Mb

respectively. Notice that ΩΦ
f and ΩΦ

b is used to denote the foreground (pixels inside Φ(x) = 0) and

the background segments by the zero level-set of Φ(x).

The system uses the truncated signed distance function (TSDF) to represent the 3D model

Si of an object Oi, Where the shape (geometry) of an object can be rendered by ray casting Si in

different views. The 3D SDF S is stored as a n× n× n volume cube, where n is the number of

voxels in one dimension. The size of each voxel is vm = 2r
n , where r is the radius of the volume.

The 3D SDF is initialized and updated by SDF fusion.

Notice that the 2D contour (Φ(x) = 0) is actually the boundary of the projection of Si. By

using the 2D and 3D models, the system represents objects at different levels and performs 2D &

3D tracking and reconstruction Simultaneously during object learning.

4.0.2.2 System Structure

The proposed pipeline goes through the following stages (Fig 4.3):

Initialization. The system is initialized by creating a 3D model of the first frame (noted as

the dominant object O /0) from the input RGBD video. We use a 512×512×512 volume for Si.

Appearance-based Object Discovery. For the first 200−300 frames, the robot moves its

head (the camera) to explore the scene which collects enough information for the appearance-

based object discovery approach. While the robot explores the scene, the system tracks and

updates O /0 frame by frame, and discovers (Section 4.1.0.1) a set of candidate object contours

C
′
=C

′
1,C

′
2, · · · ,C

′
n by the appearance-based object discovery approach.

Robotic Manipulation. Given a candidate objects contour set C
′
, the system verifies the
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candidate object O
′
i (defined by C

′
i ∈ C

′
) by applying motion (grasping, poking, etc) to O

′
i. This

allow the system generate a verified objects set O = O1,O2 · · · ,On.

Motion-based Object Verification. For a verified object O j ∈ O, the system generates

its contour C j by extracting portions of the scene that fail to match with O /0 via the ICP+RGB

algorithm. The system saves C j to the discovered objects contour set C.

2D Tracking and 2D Reconstruction. For a discovered object O j with a contour C j ∈ C,

the system matches C j with Oi by the appearance, shape and motion cues. This 2D tracking result

gives a rough pose estimation of O j in the image domain of C j where C j defines a foreground

domain Ω
j
f . 2D reconstruction is then achieved by updating Φ(xi) to Φ

′
(xi) in Ω

j
f via LSE.

3D Tracking and 3D Reconstruction. The system uses the ICP+RGB pose estimator for

3D tracking, which estimates the relative camera pose between ΩΦ
f and ΩΦ′

f . Once Oi is tracked,

the system updates Si by fusing every pixel from ΩΦ′
f into Si via SDF fusion.

4.1 Unsupervised Object Discovery

The system uses an appearance driven, motion verification pipeline for unsupervised object

discovery.

4.1.0.1 Appearance-Based Object Discovery

The system uses [53] to discover candidate objects in the RGB video sequence. This tech-

nique generalizes a graph-based image segmentation to the spatio-temporal case.

In short, given a video sequence, a spatio-temporal graph G=(V,E,W ) is constructed, where

the graph nodes V are the pixels in the video and are connected by edge E if they are within distance

r from each other in each frame, and W measures the similarity of pixels connected by an edge.

Also, optical flow is used to add temporal motion information to the graph by connecting pixel

(x,y) in frame t to its 9 neighbors along the backward flow (u,v) in frame t − 1. Affinities are

calculated between pixels that are connected in the same frame and also between frames. The
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Figure 4.3: System flow chart
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overall affinity matrix is a sparse symmetric block diagonal matrix that has the following structure:

W =



W11 W12 . . . 0

W21 W22 . . . 0
...

... . . . ...

0 0 . . . Wnn


(4.1)

Where Wii is the affinity matrix for frame 1, and Wi j is the affinity matrix between frame i

and frame j. Then spectral clustering is applied to partition the affinity graph W by computing

its k eigenvectors corresponding to the k largest eigenvalues. However to make this process more

efficient, only a randomly selected subset of pixels in the video is used to estimate a rank-k ap-

proximation of normalized affinity matrix L = D−
1
2WD−

1
2 , where D is the diagonal degree matrix

defined as Dii = ∑
n
j=1Wi j. Next, k-means is used to cluster the eigenvectors which gives an over-

segmentation of the video in the form of 3D superpixels. Finally, a post-processing step is applied

to merge the 3D superpixels and obtain the final segmentation.

In conclusion, given a RGB image Ik, the appearance-based spatio-temporal object discovery

approach D(·) generates a candidate objects set C
′
=C

′
1,C

′
2, · · · ,C

′
p:

C
′
= D(I), I = I1, I2 · · · IK (4.2)

4.1.0.2 Robotic Manipulation

Given a candidate objects set C
′
, the system (robot and the arms) uses a motion cue to verify

the validation of an object. The system randomly selects an object and then uses the robot arms

to move it (grasping or poking). To interact with the object, the object pose TwO has to be known,

which can be computed by:

TwO = TwC⊕TCO (4.3)

where TCO is estimated by the relative pose between the central point of C
′
i and the camera. The

size of the object can be approximated by estimating the size of C
′
i in x,y,z direction. Given the
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size, a rectangular cuboid is used to approximate the geometry of the unknown object. Given the

object’s pose TwO, a grasp generator determines what grasp and pre-grasp positions are necessary

to move the object. An inverse kinematics solver is used to evaluate the feasibility of the generated

candidate grasps. If no valid grasp is found due to the geometry or reach-ability of the object, a

poking start and end position is generated instead. A joint trajectory to the pre-grasp or poking start

position is generated using the motion planning framework [31]. The trajectory is then executed

by the robot. The robot then performs a straight line motion from the pre-grasp position to the

grasp position, or from the poking start to poking end position.

If grasping, the end effector constrains the object and lifts it to within proper range of the

camera. A pre-defined trajectory of the arm moves (rotates & translates) the object through the

scene under the observation of the camera (head mounted). This trajectory is designed to optimize

the views of the object that can be observed which allows the system to capture enough data for

object learning (tracking and reconstruction).

4.1.0.3 Motion-Based Object Verification

While the robot is manipulating the objects, the system tracks O /0 by estimating the relative

pose T /0
rl of the camera between the reference frame Ir and the live frame Il via the ICP+RGB

algorithm. A virtual image Iv of O /0 can then be generated by:

Iv = ϒ(S /0,T /0
wl) (4.4)

where ϒ(·) is the ray casting operator (Section 4.2.0.4). If any objects have relative motion against

O /0, the system can discover them by extracting portions of the scene that fail to track with O /0:

Io = Iv− Il (4.5)

By searching the disjoint contours with a minimum number of valid pixels d1 in Io, a contour

set C of candidate objects can be obtained:

C = Γ(Iv− Il) = Γ(ϒ(S /0,T /0
wl)− Il),C =C1, · · · ,Cp (4.6)
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Here Γ(·) detects disjoint contours in an image [153].

The motion-based objects verification pipeline allows the system to verify objects from the

candidate objects set and discard negative object discovery results if the expected motion between

the candidate object and the dominant object does not happen. With this process, the system

generates a verified objects set C, which will be used for object learning.

4.2 Tracking and Reconstruction

For a discovered (verified) object, the proposed system tracks and reconstructs it in 2D and

3D simultaneously.

4.2.0.1 2D Tracking

For C j ∈ C that matches (tracks) with O j ∈ O by the appearance, shape and motion cues

[104], C j defines an image domain Ω j:

Ω
j = G (C j) (4.7)

Here, G (C j) inflates the image region defined by C j. Notice that the 2D tracking process only

gives a rough tracking result between C j and O j in the 2D image domain.

4.2.0.2 2D Reconstruction.

Given a discovered object contour Ci ∈C (matches with an object Oi), the system does not

update Si with Ci directly. Instead, it updates the 2D SDF of Oi by level-set-evolution first, and

then uses the updated 2D SDF to track and reconstruct Oi in 3D space.

The system avoids updating Si with Ci directly because: 1) the precision of the Ci is not

guaranteed. Noisy information may be introduced from the object discovery approach to Ci, which

would hamper the final 3D reconstruction result if the system updates Si with Ci directly. 2)

Multiple objects may be overlapping with each other, but it is necessary to extract the precise
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contours from Ci for each object. 3) The system needs to update the object’s 3D model by fusing

pixels that have not yet been observed, where Ci only matches against the known object pixels.

However, LSE solves this by updating the object’s 2D model based on its previous 2D model in Ci.

Φ
′
(xi) = L (Φ(xi),Ω

i) (4.8)

Here L (·) is the level-set-evolution (LSE) operation [104] that updates the object’s 2D SDF Φ(xi)

to Φ(xi)
′ in Ωi = G (Ci). The foreground (in the RGBD space) defines by Φ(xi)

′ is Φ
′
f (xi)

4.2.0.3 3D Tracking.

Once the 2D model of an object is updated via LSE, the system tracks Φ
′
f (xi) against Φ f (xi)

for 3D tracking. This is done by estimating the relative camera pose T i
rl between T i

wr (pose of

Φ f (xi)) and T i
wl (pose of Φ

′
f (xi)) with the ICP+RGB pose estimator E (·). This combined pose

estimator E (·) allows robust tracking for objects with either complex appearance or shape (geom-

etry).

T i
rl = E (Φ f (xi),Φ

′
f (xi)) (4.9)

4.2.0.4 3D Reconstruction.

For an object Oi with the updated 2D SDF Φ
′
(xi), the system updates Si by fusing every

valid point χ = (x,y,z) ∈Φ
′
f (xi) into Si:

S
′

i = F (Si,Φ
′
f (xi),Twl) (4.10)

Here, F (·) is the SDF Fusion operation. Twl is the global pose of Φ
′
f (xi). The system also stores

intensity in S
′

i , where it can render the zero level set surface of S and generate a virtual gray Ig
v

and depth image Id
v by ray casting ϒ(·) [114]:

Iv = ϒ(S ,Twc), Iv = Ig
v ∪ Id

v (4.11)

where Twc is the pose of the virtual camera.
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4.2.1 System Integration

Given input RGBD images I, the system discovers a candidate objects set C
′

in I via the

appearance-based spatio-temporal object discovery approach D(I):

C
′
= D(I),C

′
=C

′
1,C

′
2, · · · ,C

′
n (4.12)

For C
′
i ∈ C

′
, the system verifies it by the motion cue (via robot manipulation) and produces a

verified objects set C.

C = Γ(ϒ(S /0,T /0
wl)− Il),C =C1, · · · ,Cn (4.13)

Here, C j ∈C defines an image domain Ω j that matches with Oi:

Ω
j = G (Ci) (4.14)

where Oi has camera pose T i
wr, 2D SDF Φ(xi) and 3D SDF Si in the reference frame. Φ(xi) can

be updated to Φ
′
(xi) by LSE L (·).

Φ
′
(xi) = L (Φ(xi),Ω

j) = L (Φ(xi),G (Ci)) (4.15)

where the foreground defines by Φ
′
(xi) is:

Φ
′
f (xi) = H (Φ

′
(xi)) = H (L (Φ(xi),G (Ci))) (4.16)

here, H (·) extract pixels inside Φ
′
(xi) = 0. Now, 3D tracking is processed by estimating the

relative pose T i
rl between Φ f (xi) and Φ

′
f (xi) via the ICP+RGB pose estimator E (·):

T i
rl = E (Φ f (xi),Φ

′
f (xi)) (4.17)

3D Reconstruction is then achieved by updating Si with Φ
′
f (xi) by SDF Fusion F (·):



57

Figure 4.4: Test scenario with objects for discovery and modeling by manipulation. The white
piece of paper attached to the the desk is considered as a part of the desk (not a separate object) to
test the object discovery pipeline.

S ′
i = F (Si,Φ

′
f (xi),T i

wl) = F (Si,H (L (Φ(xi),G (Ci))),

T i
wr⊕E (Φ f (xi),L (Φ(xi),G (Ci))))

(4.18)

Equation 4.18 describes how unsupervised object discovery and learning is unified by an appear-

ance driven (C
′
), motion verification (C), tracking (T i

wr) and reconstruction (Φ(xi) and Si) pipeline.

Here, the optimization of the whole system is equivalent to the optimization of each subsystem.

4.2.2 Results

We evaluate the system in an unstructured scenario with different sizes, shapes and colors

of objects. Notice that the white piece of paper attached to the middle-left side of the desk is

considered as a part of the desk (not a separate object), which is used to test the robustness of

the system. The system is tested with RGBD video streams captured at 20 FPS by a Kinect v2

camera. The camera is well calibrated and the RGB and the depth images are aligned during the

experiment. Fig. 4.4 shows an example of the test scenario.

4.2.2.1 Appearance-based object discovery

We compare our appearance-based object discovery method with two state-of-the-art object

discovery approaches [49, 60] by pan/tilt the robot’s head around the scene. Fig. 4.5 shows an
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example of the final discovered objects. As Fig. 4.5 shows, [49] is able to generate good object

discovery results (Fig. 4.5) but its performance is not stable and robust. Meanwhile, [60] generates

stable object discovery results but the quality is not guaranteed (fail to discover the gray box in

all sequences). The proposed method instead generates stable and precise object discovery results,

which gives a good hint for the motion-based object verification pipeline.

Appearance-based object discovery methods are usually used for image segmentation, which

are not designed for indoor scene object discovery. To evaluate such methods, we use a pixel level

per-frame precision and recall curve approach. Here, the ground truth 3D model Si of an object Oi

is approximated once the system learned the complete 3D model of the object, as the motion-based

object discovery and learning pipeline is very robust and precise [104]. In each subsequent frames,

the system uses the virtual image (Dv) of Si to approximate the ground truth label and uses k dif-

ferent appearance-based object discovery methods to generate different discovered objects images

Dk
l . The performance of the system is evaluated at pixel level by comparing each corresponding

object’s pixel p in Dv and Dk
l . The system considers a good match (true positive) if Dv and Dl align

(match).

4.2.2.2 Motion-Based Objects Verification

Taking the appearance-based object discovery results as a hint, the robot verifies each can-

didate object by motion. We test the system with a poking (the gray box, the white paper, the

tape dispenser, the yellow button, the green Android and the blue box) and a grasping (the yellow

cartoon figure) experiment. Fig. 4.6 shows an example of the final verified objects in the poking

experiment. (a grasping example is available at Fig. 4.8).

Due to the limitation of the appearance-based object discovery approach, negative results

(e.g. the white paper on the desk) will be produced as it considers textures (color) to be candidate

objects. However, such negative discovery results can be correctly recognized by the motion-based

verification pipeline. The system will discard negative objects discovery result and only focus on

the positive object discovery results. Notice that the motion-based objects verification pipeline
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Figure 4.5: Appearance-based object discovery results by the proposed method (the first row), [49]
(the second row) and [60] (the third row). The proposed method has the best performance in terms
of precision and recall of object pixels (scored using motion-verified object boundaries).
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2

Figure 4.6: Examples of the verified objects set (the five objects under the scene) via poking in
the test scenario. The white paper from the appearance based objects discovery result (Fig. 4.5)
is detected as invalid object and discarded. The yellow figure in the middle of the desk is verified
and learned by grasping (Fig. 4.8).

does not discover the blue box completely as its initial position (Fig. 4.4) and final position overlaps

(with the same geometry and appearance). However, the system is able recover it via the tracking

and reconstruction approaches and learn its full 3D model (Fig. 4.7).

4.2.2.3 Learning

Once an object is verified, the system learns the 2D and 3D model of the object via the

tracking and reconstruction pipeline. As Fig. 4.7 shows, the system is capable to learn all candidate

objects verified by the poking experiment.

To obtain a complete model of an object, the observation of multi-views of the object is

required. We demonstrate this by a grasping experiment, where the robot grasps an object (the

yellow cartoon figure) on the desk and moves it under the observation of the camera once the

object is discovered by the proposed discovery pipeline. A complete 3D model of the object is

reconstructed when the system has a complete knowledge of the object (takes approximate 500

frames). Fig. 4.8 shows an example of the final learning result of the object via grasping.



61

Figure 4.7: Final learned objects of the poking experiment. The left figure shows the final tracking
results (shown as different color transparent masks). The right figure shows the virtual gray and
the phong shading images of the final reconstruction results.

4.2.2.4 Time Analysis

The system is tested using a single NVIDIA TITAN GPU, Intel i7 CPU desktop, with

640× 480 resolution of input images. Table 1 shows our system run-time in different stages.

Notice that the robotic manipulation, motion-based object verification, tracking and reconstruction

approaches are processed simultaneously. The proposed system has a low running time com-

plexity (22 Hz/object) during the learning (tracking and reconstruction) stages (GPU-based). The

appearance-based object discovery approach is relatively slow, which takes approximately 10 min

to discover objects using 10 frames (CPU-based). However, a similar CPU-based system [59]

has been implemented which runs at 1 Hz. Based on the time analysis above, it is reasonable to

conjecture that our system can run in real-time after optimization.

4.2.3 Failure Cases and Future Work

Although the system is robust to many real-world operating conditions, there are several

limitations of our current work. The appearance-based object discovery method depends on the

difference between the foreground and the background and cannot discover objects under ex-

tremely dark/bright environments. For robot manipulation and motion-based object verification

approaches, due to the limitation of the robot platform we have, the system cannot grasp or poke
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Figure 4.8: Tracking (the first row, shown by blue transparent masks) and reconstruction (the
second row, shown by the virtual image of the object’s 3D SDF) results of a verified object (the
yellow cartoon figure). In this scenario, the robot grasps an object on the desk and moves it around
the scene (for 500 frames). A complete 3D model of the object is learned after the robot has enough
observation of the object. The red arrow shows the object’s estimated velocities.
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Table 4.1: System run-time

Appearance-Based Object Discovery (10 frames) 10 min
Manipulation Path Planning 5 s
Robotic Manipulation 1 min
Motion-Based Object Verification 10 ms
Tracking & Reconstruction (one object) 38 ms

too small, too large, or too heavy objects. Additionally, the learning pipeline requires sufficient

pixels for robust tracking, which means that sometimes the system will not learn the model for

very small objects.

The success of our framework opens many areas of future work. The appearance-based

object discovery pipeline can be improved by integrating object shape information. The system

could use a single RGB camera by using techniques from [115, 113]. The path planning for

the grasping/learning stage can be improved by a feedback system between the vision and the

manipulation pipeline. The learned 3D model of objects could be shared among different robots

for similar object detection by 3D tracking techniques [124].

4.2.4 Summary

We present a novel unsupervised framework for a robot to discover and learn unknown ob-

jects in the scene by manipulation. The system performs dense 3D simultaneous localization and

mapping concurrently with unsupervised object discovery. Spatio-temporal cues and appearance

cues are used to produce a set of candidate objects. A motion-based verification strategy is used to

verify candidate objects, and object appearance and shape is subsequently learned by grasping and

poking. We compare three different approaches for appearance-based object discovery and find

that a novel form of spatio-temporal super-pixels gives the highest quality candidate object models

in terms of precision and recall.



Chapter 5

Generating Auxiliary Groundtruth Via Label Propagation in Sequences

In this chapter, we propose an unsupervised method for transferring pixel-wise dense la-

bels from finely annotated frames of a video sequences to the rest of unlabeled frames. We are

motivated by the fact that recent progress in computer vision has been driven by high-capacity

models which are trained on large datasets. However to our knowledge, there is no public dataset

that has groundtruth annotation for all the frames in a video sequence. Unfortunately, creating

large datasets with pixel-level labels has been extremely costly and expensive due to the amount

of human effort required. In this work we show that the auxiliary groundtruth obtained from label

propagation can be used to train and improve the performance of deep learning methods, more

specifically for the task of temporal semantic segmentation.

Here, the idea is to leverage the temporal coherence between adjacent frames in videos for

label propagation. Given a limited set of sparse hand labeled frames, our method propagates labels

through the rest of unlabeled frames in the video sequence based on color and motion. The end

result is a conservative labeling of the video, where large parts of the scene are labeled into the

known predefined classes, and a void label is assigned to all the pixels that we are not sure about

their class due to issues like occlusion or moving objects. Our algorithm provides an efficient

tool to reduce the cost of mundane manual labeling, therefore producing abundant amounts of

usable groundtruth data. A novel application of this algorithm is for semantic segmentation and

scene parsing especially in temporal semantic segmentation where having groundtruth for each

individual frame in the sequence is beneficial. Previous video label propagation algorithms largely
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avoided the use of dense optical flow estimation due to their computational costs and inaccuracies,

and relied heavily on slow and complex appearance models. Here, we introduce a method based on

our spatio-temporal segmentation framework for dense pixel label propagation. We also introduce

a simple web-based video annotation tool which is based on the techniques introduced in previous

chapters. Using this tool, we are able to acquire a rapid propagation of semantic labels within and

across images of a video sequence.

We bring out the advantages and drawbacks of our approach. We demonstrate the efficacy of

our proposed approach using extensive qualitative and quantitative experiments. Also we compare

our results with pure motion based propagation methods. It also enables us to take a step fur-

ther and study the impact of incorporating temporal information for semantic segmentation. Our

main contribution is to demonstrate the use of noisy generated groundtruth along with groundtruth

to improve the performance of deep learning models. We provide recommendations on how to

train these models properly when dealing with large corpus of noisy groundtruth. We validate the

presented approach by producing dense pixel-level semantic annotations for about 18K images

extracted from CamVid dataset [16] where there is only 701 groundtruth frames are available. We

also demonstrate qualitative results for Cityscapes dataset [33] for which we generated about 105K

auxiliary groundtruth.

5.1 Introduction

Recently deep learning has driven tremendous success in computer vision tasks such as im-

age classification [140], object detection [129, 127] and semantic segmentation [100, 117, 7]. More

precisely, convolutional neural network (CNN) based models are achieving outstanding perfor-

mance by training deep models on datasets with millions of labeled images such as [85] for clas-

sification problems. However, creating large datasets with pixel-wise semantic labels is known

to be very challenging due to the amount of human effort required to follow object boundaries

accurately. High-quality semantic labeling was reported to require 60 minutes per image for the

CamVid dataset [16] and 90 minutes per image for the Cityscapes dataset [33]. Since producing
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Figure 5.1: Illustration of our approach for generating auxiliary groundtruth.

precise pixel-wise annotations is labor-intensive, detailed and comprehensive semantic segmenta-

tion datasets are orders of magnitude smaller than image classification datasets. This problem is

also referred to as the “curse of dataset annotation”[165]. One option to overcome this problem is

to initially train semantic segmentation models for image classification, for which large annotated

datasets are available, and then fine-tune them on semantic segmentation datasets, which have

smaller dataset. The other option is to produce simulated dataset for which it is much faster to

obtain the semantic labels, however creating photo-realistic and diverse imagery is known to be a

hard problem on its own. We are therefore interested in creating large datasets with pixel-accurate

semantic labels. This will eliminate the need for pre-training semantic segmentation models on

image classification datasets. They may also significantly improve the accuracy of semantic seg-

mentation models, which appear to be constrained by the amount of available data rather than their

capacity to learn. Also having access to the annotation of consecutive frames might be beneficial

for the tasks that study the temporality of data such as temporal semantic segmentation, action
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recognition or video analysis.

In this work, we explore the use of our spatio-temporal segmentation framework for creat-

ing large-scale pixel-accurate groundtruth data that is suitable for training deep learning models.

We use the CamVid dataset [16] as an example. The CamVid dataset has high quality annota-

tion (720× 960) of street scenes. The annotated frames are picked at 1 f ps from a set of videos

recorded at 30 f ps. Our goal is to transfer the semantic labels from these annotated frames to all

the intermediate unlabeled frames (See Figure. 5.1 for an illustration). Using our spatio-temporal

based approach, we have generated pixel-level groundtruth for about 18K frames extracted from

CamVid dataset where there is only 701 annotated frames available. The labeling process was

completed in only less than 3 days which compared to the numbers reported by the dataset (60

minutes per frame) is orders of magnitude faster and more efficient. Needless to say, the gener-

ated groundtruth is inherently noisy compared to the original groundtruth which is an artifact of

automatic label propagation. Typically street scenes (i.e CamVid dataset) have a lot of occlusion

and motion in them which makes it very challenging to infer the pixel values of the middle frames

from only the two labeled end of the sequence.

The experiments in this work perform a comparative study of naive methods for label propa-

gation using optic flow based methods and demonstrates both quantitatively and qualitatively that

the proposed label propagation method are superior to naive solutions. Also we show that train-

ing existing deep learning models with additional noisy data outperforms the baseline. We also

provide recommendations on how to train such models with noisy data effectively. Our baseline is

obtained by training the Fully Convolutional Network (FCN) only on the groundtruth which results

in 87.9% pixel accuracy. We show that auxiliary groundtruth in addition to the original groundtruth

helps FCN to increase the pixel accuracy by 1.5%.

The main contributions of this work are: i) We propose a simple and efficient unsupervised

method to propagate semantic labels in the video sequences. ii) We show that generated auxiliary

groundtruth to supplement the CamVid dataset increases accuracy on the respective dataset and

can be used for pre-training semantic segmentation models. iii) We present a web-based video
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annotation tool for semantic segmentation that reduces the burden of hand-labeling. iv) We analyze

the usefulness of auxiliary training data for deep learning models.

The remainder of this paper is organized as follows. Section 6.2 discusses the literature

related to our problem. Our proposed method is presented in Section 6.4, which is followed in

Section 5.4 by a demonstrating our results. In section 5.5, we introduce our web-based video

annotation tool. Section 6.6 provides some final conclusions and directions for future work.

5.2 Related Work

In the recent years, many research has been devoted to label propagation both in the spa-

tial and temporal domain. One of the pioneers [97] introduces an “image matching”method to

transfer label from training images to similar test images. In particular, for a given query image,

their system first retrieves its nearest neighbors from a large database of annotated images. Then,

dense correspondences between the input and the nearest neighbors are computed using the dense

SIFT flow algorithm [98]. Finally, based on these correspondences, the system warps the exist-

ing annotation and uses Markov random field to segment and categorize the query image. They

argue that their method is similar to optic flow correspondences for non-sequential data. Similar

to the aforementioned work, [173] proposes a supervised label transfer method for the semantic

segmentation of street scenes. They establish dense correspondence between the query image and

found images with a KNN-MRF matching scheme. It is followed by a matching correspondences

classification to reduce the number of semantically incorrect correspondences. Also [27] proposes

a semantic label transfer method using supervised geodesic propagation (SGP). They learn a joint

boost model on the similar image set of the query image.

Another well known method is that of [177]. They design a method for assigning soft labels

to nodes of a fully connected graph with few labeled nodes. Their system assigns weights to the

graph edges based on the proximity of the corresponding nodes in the graph and an iterative update

is used to propagate labels to the unlabeled nodes. This method is shown to perform well in assign-

ing labels to a handwritten digits database. Furthermore, [18] proposes a directed graphical model
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for label propagation in video sequences. A variational EM based inference strategy propagates

the labels either one of several class labels or the void label for unknown. Then they use these

labels to train a multi-class classifier. The pixel labels estimated by this classifier are injected back

into the Bayesian network for another iteration of label inference. In [78], label propagation has

been considered as the problem of learning the correlation between multiple class labels. Although

contextual information is meaningful, the main disadvantage of such techniques is their reliance

on large amount of training data, which is difficult to obtain.

In [24] proposes a probabilistic framework that estimates the reliability of the sources and

automatically adjusts the weights between them[6] proposes a probabilistic graphical model that

jointly models appearance and semantic labels using a coupled-HMM model in video sequences.

However, their model does not have a mechanism for occlusion handling. In our method, after

propagating the labels from one end to the other, we perform a reverse propagation to fill the pixels

that are being dis-occluded in the reverse setting. Later on, [19] extended this model to include

correlations between non-successive frames by using a tree structured graphical model. In another

work, [5] introduces a mixture of trees probabilistic graphical model for semi-supervised video

segmentation. They provide a variational inference scheme for this model to estimate super-pixel

labels, their corresponding confidences, as well as the confidences in the temporal linkages.In

contrast to these supervised approaches, we propose an unsupervised method that does not need

to be trained for label propagation. More recently, [131] proposes a novel approach for creating

pixel-accurate annotations for images extracted from modern computer games. They show that

the associations between image patches can be reconstructed from the communication between the

game and the graphics hardware. Using their technique, it is possible to rapidly propagate semantic

labels within and across images synthesized by a game.

Our work is also closely related to the research that has been done on learning deep learn-

ing models from noisy data. In [121], the authors study the problem of semantic image seg-

mentation from either weakly annotated training data such as bounding boxes or image-level la-

bels or a combination of few strongly labeled and many weakly labeled images. They develop
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Expectation-Maximization (EM) methods for semantic image segmentation model training under

these weakly supervised and semi-supervised settings. Their experiments on PASCAL VOC 2012

dataset have shown that relying on only weak annotation at the image-level is insufficient to train

a high-quality segmentation models. However, good performance is achievable when combining a

small number of pixel-level annotated images with a large number of weakly annotated images in

a semi-supervised setting. [39] proposes a method that achieves competitive accuracy that requires

bounding box annotations. The idea is to iterate between automatically generating region propos-

als and training convolutional networks. These two steps gradually recover segmentation masks

for improving the networks. Moreover, [122] proposes an approach to learn a dense pixel-wise

labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of

a Convolutional Neural Network (CNN) classifier. Also [164] addresses the problem of training

a CNN classifier where millions of easily obtained noisy labels is available with only a limited

number of clean label.with a massive amount of noisy labeled training data and a small amount of

clean annotations for the image classification task. They model the relationships between images,

class labels and label noises with a probabilistic graphical model and further integrate it into an

end-to-end deep learning system.

5.3 Approach

Given a groundtruth labeling Lt for a frame It , our goal is to propagate the semantic labels of

frame It to the rest of frames in the sequence and obtain their “noisy”groundtruth. Figure. 5.1 gives

an overview of our label propagation. In this section, we first show a naive flow-based propagation

model and then we discuss the details of our spatio-temporal appearance based model.

5.3.1 Motion Based Model

As mentioned in [24], using only motion information there are two possible ways to infer the

label of a pixel in frame It+1 from frame It : 1) forward flow from It to It+1 and 2) backward flow

from It+1 to It . Here, we use the SIFT flow [98] due to its efficiency and relative effectiveness.
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The task of propagating labels with forward flows alone is to determine the proper label L() for

each pixel n in It+1 by using:

L(It+1
n ) := L(It

n′) where f f wd(n′) = n (5.1)

In simple words, we read the label of pixel n from pixel n′ where n′ is connected to n along its

forward motion vector. For the task of propagating labels with the backward flows,

L(It+1
n ) := L(It

n′) where fbwd(n) = n′ (5.2)

Here, the read the label of pixel n from pixel n′ where n is connected to n′ along its backward

motion vector.

Figure 5.2: The holes in forward flows and the dragging effect in reverse flows.

At first glance, this solution seems very easy and straight forward. However, a simple exper-

iment on the Camvid dataset shows otherwise. This is due to the fact that the forward and inverse

flow functions f f wd(.), fbwd(.) are neither injective nor surjective. As demonstrated in the Fig. 5.2

inspired by [24], this method creates holes in It+1 when taking labels from It along the forward mo-

tion vector. In particular, when occlusion happens it is likely that more than one pixel in It point

to the same position in It+1 which makes holes. Moreover, the label value of the pixels in It+1

that reappear again after occlusion can not be inferred easily from It . With backward-flow-based

propagation, the dragging effect occur because a reappearing (previously occluded) pixel It+1 is

forced to take some uncorrelated label from It label by the backward flow, while in theory it has no

corresponding label. It is also shown in [6] that deterministic optic flow based label propagation
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is inferior to probabilistic patch based methods. In addition, naive motion based methods will be

further challenged over lengthy sequences. Figure. 5.3 shows an example of label propagation

with this approach for both forward motion and backward motion on Cityscapes dataset.

Figure 5.3: Sample of label propagation via motion only

5.3.2 Appearance and Motion Based Model

Our proposed approach starts with over-segmenting the video sequence to to very fine 3D

superpixels. To do so, we apply the techniques introduced in previous chapters. Then for each 3D

superpixel in the groundtruth frame It , we take the label that is covering the majority of the pixels

and transfer the value to the rest of pixels inside of the 3D superpixel which extends to the consec-

utive frames. We found that best result is achieved when the video is process incrementally in a

sliding window fashion instead of processing the entire video at once. More precisely, staring with

the first groundtruth frame I0, we consider a window of size n frames (n = 5 in our experiments),

and by this method we propagate the labels from I0 to the next n−1 frames and obtain their noisy

annotations. We process the rest of the video as if the last frame with the noisy annotation, It , is
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the next reference groundtruth. In the sequences where there are rapidly moving objects with large

regions of occlusion, it is recommended to process the video incrementally and even in smaller

batches. However, if there is not a lot of motion in the scene, it is possible to use larger batches of

frames to perform over-segmentation.

Occlusion Handling. Typically, the groundtruth label is given for both the start and the end of the

sequence, for example in CamVid dataset[16]. This can be leveraged to tackle the occlusion/dis-

occlusion problem. Our method processes each sequence twice: First, in the original order of

frames where we infer the labels and propagate them with only using the information from Lstart

(the start groundtruth). Second, in the reverse order where we perform the same process but only

use the information from Lend . Therefore, we receive two potential labels for each pixel It
n in the

sequence suggested by Lstart and Lend . These labels are then given a score based on pixel It
n’s

distance from the two ends of the sequence which is also normalized by the length of sequence.

Finally, for each pixel, we choose the label with the maximum score. This way, we are capable of

labeling the reappearing pixels that were previously occluded in the scene. We assign the unknown

label to the pixels that wither take unknown label through propagation automatically or receive two

different labels with the same probability.

One drawback of our approach is that the performance degrades over time in the datasets

with only one groundtruth per sequence such as Cityscapes dataset. This is due to the fact that

we are only able to transfer the labels for the objects that are present in the groundtruth frame

and gradually when the objects move out of the scene, we will not be able to infer the labels any-

more. The comparison between the naive label propagation method based on motion only and our

approach is shown in Figure 5.5 and Figure 5.4 for CamVid and Cityscapes datasets respectively.
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Figure 5.4: Comparison of our method and motion only label propagation on Cityscapes dataset
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Figure 5.5: Groundtruth frames are provided at 30 hrtz frequency starting from frame 0. Propa-

gated groundtruth for frames 10, 25, 70, 110 and 145 are shown for comparison between motion

based model and our model. Note that our method captures the details much better and preserves

a more accurate boundary compared to the motion only label propagation method.

5.3.3 The Reliability of Generated Auxiliary Groundtruth

The focus of this research is to reduce the burden of hand-labeling and create large-scale

auxiliary groundtruth. However, we need to ensure that the the quality of generated groundtruth is

appropriate for training deep learning models. We are therefore interested in establishing strategies

to use the produced data in the most effective way for semantic segmentation. As demonstrated

in Figure. 5.6, the groundtruth labeling for the intermediate frames can be erroneous around

the object boundaries but for the majority of the scene, the quality is acceptable. Also adding

the generated groundtruth frames that are farther away from the original groundtruth provides

more diversity in the training set. This will help us to train more robust models that are better in

generalizing data and enhance the overall performance. Due to the inherent noise caused by label

propagation, the generated groundtruth can not be completely trusted when it is being trained on.

We address this by assigning a confidence weight to each generated groundtruth sample which is

an indication of how much we can trust the labels. We use these values to compute a weighted
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cross-entropy loss. The prediction scores made by the semantic segmentation model are being

passed through a Softmax function that maps these scores to a probability distribution over K

classes. Softmax classifier is defined as:

p̂nk =
exnk

K
∑

k′=1
exnk′

for k = 1, . . . , K

And the cross-entropy loss has the form:

L =
−1
N

N

∑
n=1

log(p̂n,ln) (5.3)

Where n is the sample and ln is its corresponding label. We update the cross-entropy loss to:

L =
−1
N

N

∑
n=1

wn log(p̂n,ln) (5.4)

Here, wn shows the importance of sample n. Effectively, We want the model to treat each sample

differently based on the quality of their annotation during training. It is important to ensure that

errors in predicting the clean samples is “amplified”when computing the loss. This can be done by

providing a larger weight for the clean samples to encourage the model not to miss these examples.

All the groundtruth samples have a weight w > 1 that is chosen based on the ratio of noisy and

clean groundtruth. For example, if the size of noisy groundtruth dataset is 5 times bigger than the

size of clean groundtruth we set w = 5 for clean samples.

5.4 Evaluation

In this section, we evaluate the presented label propagation technique using extensive exper-

iments, followed by a discussion of the results.

5.4.1 Training Datasets and Optimization

We use the standard implementation of FCN-8s [100] in all the experiments. We set the

base learning rate to 10−5 and used Stochastic Gradient Descent for optimization. The momentum



77

Figure 5.6: Quality of some pseudo groundtruth labellings with our method. All of these examples
chosen to be the 10th frame after the available groundtruth for the CamVid dataset. Overall, the
quality of label propagation is good but the zoomed-in version illustrates the noisy labellings

and weight decay are set to 0.9 and 0.0001 respectively. Additionally, we initialize the weights

using pre-trained VGG-16 [140] on ILSVRC dataset. The training data is first resized to half the

resolution and then augmented with random crops and mirroring to resist over-fitting. We train the

network for 80K iterations on CamVid dataset.

We perform our experiments on two prominent datasets of road scene understanding: the

CamVid [16] and Cityscapes [33] datasets. Both datasets provide video input along with pixel-

level semantic annotations of selected frames. Regardless of the size of the groundtruth dataset,

the main difference between the two is the frequency in which the frames are chosen for annota-

tion. CamVid is a dataset for urban scene understanding. We used the split and image resolution

from [7], which has been adopted in a number of prior works. The split consists of 367 frames

for training, 101 frames for validation and 233 frames for test. The frame resolution is 720×960

and each pixel belongs to any of defined 11 semantic classes namely Building, Tree, Sky, Car,

Sign, Road, Pedestrian, Fence, Pole, Sidewalk, Bicycle. Over 10 min of high quality 30 Hz video

footage is available for this dataset, with corresponding semantically labeled images at 1 Hz and in

part, 15 Hz. Similarly, Cityscapes is a benchmark suite and large-scale dataset for semantic scene

understanding. It contains 5,000 high quality (1024× 2048) pixel-level finely annotated images

collected from 50 cities in different seasons. The images are divided into sets with numbers 2,975,
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500, and 1,525 for training, validation and testing. In addition, 20,000 additional images with

coarse annotation is available to enable methods that leverage large volumes of weakly-labeled

data. Pixels belong to 19 semantic classes, including road, car, pedestrian, bicycle, etc. These

classes further belong to 7 categories, i.e., flat, nature, object, sky, construction, human, and ve-

hicle. Each annotated image is the 20th frame from a 30 frame video snippets, and proceeding

and trailing video frames for each annotated image are available upon request. Using our efficient

and simple label propagation method, we produced about 18K auxiliary groundtruth from CamVid

dataset and about 105K labeling from Cityscapes dataset. The qualitative results is shown in Figure

5.5 and 5.4 for comparison against naı̈ve motion based approaches.

5.4.2 Experiments

Table 5.1: Comparison of training FCN on the auxiliary groundtruth by the naı̈ve flow-based model

and our proposed model

Method Mean IOU Overall Pixel Accuracy Dataset Size

Only GT 54.6% 75.8% 367

GT + Flow based AGT 55.1% 76.3% 5505

GT + Our AGT 56.8% 78.2% 5505

In the first experiment, we performed a preliminary experiment to compare our approach

with the most naı̈ve flow-based label propagation model. The results have been reported on the

CamVid dataset. For this experiment we created a training set with all the clean groundtruth and

incrementally added the noisy groundtruth in the order of frames for the first 10 frames. The cross-

entropy loss is computed with a fixed weight (w = 1) for all the samples. Table 5.1 gives a detail

comparison of the mean IOU and pixel accuracies for both methods. We observed the the accuracy
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sharply decreases as we move away from groundtruth frame in both methods, however the change

is more dramatic for the flow-based approach compared to ours. These results show that simple

flow-based models are more erroneous, especially in the presence of rapid motion in the scene, and

therefore are not suitable for label propagation on their own.

Table 5.2: Comparison of training FCN for different weights in computing the cross-entropy loss

Method Mean IOU Overall Pixel Accuracy Dataset Size

Only GT 54.6% 75.8% 367

GT + weighted AGT (w = 1 for all) 55.7% 76.2% 1835

GT + weighted AGT (w = 4 for GT) 57.1% 79.1% 1835

In the second experiment, we investigate the impact of weighted cross-entropy loss in train-

ing. Our baseline is the FCN network trained on only the clean groundtruth. We compare the

baseline with FCN trained on a noisy dataset that is consisted of the clean groundtruth and the next

4 noisy groundtruth after it. We train FCN on the noisy dataset in two different configuration: 1)

with w = 1 for all the samples (default weight), 2) with w = 4 for all the clean samples. The results

is shown in Table 5.2. It is evident that when a larger weight is chosen for the clean samples, the

performance improves over time. This can be due to the fact that the size of noisy groundtruth is

multiple times larger than the clean groundtruth, so it is necessary to encourage the model to pay

more attention to the prediction errors on the clean samples.
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Table 5.3: Comparison of training FCN for various experiments, frames are being added incremen-

tally (1st: all the first frames after the groundtruth, 2nd: all the second frames after the groundtruth

and so on)

Method Mean IOU Overall Pixel Accuracy Dataset Size

Only GT 54.6% 75.8% 367

GT + 1st 55.3% 76.0% 734

GT + (1st,2nd) 56.4% 76.8% 1101

GT + (1st,2nd,3rd) 56.8% 76.7% 1468

GT + (1st,2nd,3rd,4th) 57.1% 79.1% 1835

GT + (1st,2nd,3rd,4th,5th) 57.0% 78.7% 2202

GT + first 15 frames 56.8% 78.0% 5505

In the third experiment, we incrementally add the noisy samples to the groundtruth. We

want to investigate whether it is better to have a smaller training set that has better quality or to

have a larger, much noisier dataset that is also more diverse. Table 5.3 shows that the performance

improves slightly as model sees more samples that are farther apart from the groundtruth but it is

not a significant improvement dues to the increasing noise.
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Table 5.4: Comparison of training FCN for various experiments; frames are chosen one set at a

time (1st: all the first frames after the groundtruth, 2nd: all the second frames after the groundtruth

and so on)

Method Mean IOU Average Pixel Accuracy Dataset Size

Only GT 54.6% 75.8% 367

GT + 1st 55.3% 76.0% 734

GT + 2nd 55.8% 76.8% 734

GT + 3rd 55.9% 77.2% 734

GT + 4th 56.5% 77.9% 734

GT + 5th 56.1% 77.4% 734

GT + 6th 55.6% 76.7% 734

The results in the previous experiment motivated us to analyze the diversity alone without

changing the size of groundtruth. In this experiment, we train the FCN on the groundtruth and only

one set of noisy groundtruth at a time. Interestingly we observe the same trend in the performance

as before. Table 5.4 shows that the accuracy increases in the beginning but degrades afterwards.

We observe that diversity in the training set help with the performance but also having a descent

quality is important.
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Table 5.5: Comparison of training FCN with the same size auxiliary dataset; frames are chosen

either in consecutive order or randomly

Method Mean IOU Average Pixel Accuracy Dataset Size

Only GT 54.6% 75.8% 367

GT + consecutive frames 57.1% 79.1% 1835

GT + random frames 55.8% 75.5% 1835

We also experimented with choosing the noisy samples in random. In this experiment, we

train the FCN with 1) a training set that consists of the clean groundtruth and the next 4 noisy

groundtruth frames after it. 2) a training set that consists of the clean groundtruth and randomly

chosen noisy groundtruth where the final size is the same as case 1. As it can be seen in the Table

5.5, the random selection of noisy groundtruth is inferior to the selection of consecutive frames

which again reinforces the importance of having good quality data.

Table 5.6: Comparison of the best results on pixel accuracies per class

Method
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GT + Auxiliary 57.6 75.0 70.6 88.2 70.7 36.9 93.3 43.0 37.5 10.8 74.8 36.0

Only GT 54.2 73.4 69.8 87.9 66.8 34.0 92.6 38.2 33.1 8.0 74.0 43.0

Overall performance In this experiment, we compare the overall performance of FCN

trained on the original groundtruth against the best results obtained on our auxiliary groundtruth.

We provide the pixel accuracies per class for both models. The details of comparison is shown in
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Table 5.6. From Table 1, it can be seen that the FCN trained with extra auxiliary outperforms the

FCN trained only on GT in all the classes. In this configuration, we are using the groundtruth and

the next 4 noisy groundtruth after it, with w = 4 for the clean samples. The mean IoU accuracy is

57.6% that is 3.4% higher than baseline FCN trained on only the groundtruth .

5.5 Online Video Annotation Tool

Figure 5.7: Video annotation tool snapshots

Our proposed algorithms for label propagation is very well suited for creating large amount

of labeled video data. Inspired by the recent success of online image annotation applications such

as LabelMe Mechanical Turk [171] by MIT, InteractLabeler by Cambridge University and Vatic

[157] of University of California Irvine, we developed an online video annotation tool based on

the proposed framework in this chapter. Our tool is fundamentally different from these previously

developed ones. We provide a temporal dense labeling of the scene(i.e. not only bounding boxes).
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and also there is no need to include advanced tracking or motion analysis during annotation which

makes the process seemless, more user-friendly and real-tiime. Our goal is to speed up and auto-

mate the process of video annotation where there is only minimal human interaction is necessary.

Figure 5.8: Video annotation tool snapshots

Our tool works as follows: For a given sequence of interest, we first over-segment the en-

tire video offline to produce the superpixels in different hierarchical levels. The results are then

uploaded on our server in conjunction with the raw frames. The annotator is then asked to color

the scene with predefined semantic categories. When the annotator starts coloring the scene in say

first frame of the sequence, the tool automatically transfer the coloring to the rest of frames in the

sequence. So when the annotator navigates through the frames, they only need to either correct

the erroneous propagated labels or color the new regions that have not been previously colored.

This significantly increases the annotation speed mainly for two reasons: 1) superpixels are used

instead of pixels that cover larger spatio-temporally coherent regions 2) By only annotating one

frame in the sequence, automatically the rest of frames are being annotated for the majority of

the scene that is common between them. We can also utilize this tool by uploading pre-annotated

frames (i.e obtain from our label propagation pipeline) and ask the annotator to only correct the

bad annotations. Figure 5.5 demonstrates a snapshot of our video annotation tool, the outline of

superpixels is shown in white. In Figure 5.5 a sample of user annotation is shown. On the left, user

has annotated the first frame on the sequence. On the right, user has navigated to another frame
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in the sequence (the 10th frame) and the labeled regions (previously annotated in the first frame)

have already been propagated.

5.6 Summary

In this work, we have investigated the possibility of using auxiliary groundtruth to produce

more training data for CNNs. Our key contribution is to introduce a novel and efficient unsuper-

vised method to propagate labels from groundtruth to the unlabeled frames in the sequence. We

also analyze in details how the auxiliary groundtruth can be used to enhance the performance of

a CNN-based semantic segmentation framework. We also proposed a simple weighting system to

account for noisy data while computing the cross-entropy loss. We showed that when the number

of generated noisy groundtruth samples is multiple times larger that the clean groundtruth samples,

it is important to add more diversity to groundtruth data. We also observed that it is necessary to

have much less reliance on the noisy groundtruth samples and encourage the network to pay more

attention to the clean data. Moreover, we found out that accumulating the noisy groundtruth data

does not necessarily improves the performance of semantic segmentation by a considerable amount

whereas including more diversity almost always helps. It is important to note that in cases such as

temporal semantic segmentation, labeled data has to be presented for the sequential data to train

the deep learning models. Additionally, there are many exciting avenues for future research. One

direction is to come up with ways to improve the quality of groundtruth data generation. Another

interesting area of research would be to design algorithms that can handle large noisy groundtruth

where there is little clean groundtruth is available more effectively.



Chapter 6

Temporal and Predictive Semantic Scene Understanding

The ability to quickly and accurately understand pixel-level scene semantics is a key ca-

pability required for robotics applications such as autonomous driving. Until now, the temporal

aspect of this problem has been largely overlooked due to the expensive computation and sub-

stantial amount of effort required for labeling temporal data. In this work, we present a deep,

recurrent multi-scale network that is capable of leveraging information present in temporal data to

improve the accuracy of semantic segmentation. We propose using temporal information in two

ways. Firstly, we formulate an approach that integrates semantic segmentation into a recurrent

architecture where the model is given access to the previous frames in a sequence. We show that

our model outperforms single frame segmentation when given access to the temporal data even

when groundtruth information is not provided for all the intermediate frames. Secondly, we show

that our model can be easily extended to the related problem of prediction: estimating the expected

semantics of the scene a small number of frames into the future. This is a crucial capability for

many robotics applications, where planning needs knowledge of the probable near future as well

as the present.

Our architecture for semantic temporal segmentation has three key components: 1) an en-

coder that extracts the spatial features of frames using CNNs; 2) a convolutional LSTM module

that integrates temporal features over many frames while preserving the spatial correlation; and

3) a decoder that combines different scale feature maps and produces final pixel-wise predictions

for either the input sequence or the predictive future sequence. Our spatio-temporal CNNs achieve
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Figure 6.1: Free-space estimation for autonomous driving. The hero (in green) is directly ap-
proaching the vehicle (in yellow). (a) depicts the free-space inference at time t = 0. (b) if we do
not consider the estimated state of free-space at t = 5 then our planner would consider trajectories
that would be violated by the approaching vehicle. (c) only by considering predicted free-space
we can correctly plan in this situation.

promising results as demonstrated for the CamVid and Cityscapes datasets without resorting to

more complex random-field inference or instance detection driven architectures. Our proposed

methodology can also be used for other visual tasks to benefit from temporal information with

little modification. To our knowledge, our work is the first to exploit deep learning techniques for

temporal and predictive semantic scene understanding.

6.1 Introduction

Pixel-level semantic labeling is becoming increasingly crucial for real-world robotics appli-

cations such as autonomous driving. The goal is to assign each pixel in the image a semantic label

and provide complete understanding of the scene. These semantics can be leveraged for multi-

ple tasks such as obstacle detection, odometry, and free-space estimation for trajectory planning.

Standard approaches to semantic segmentation focus on improving the quality of single frame in-
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ference, but do not consider how to leverage temporal consistency (which is a very strong signal

frame-to-frame) over video sequences to improve accuracy. Another reason to use temporal in-

formation when estimating pixel-level semantics is for the important task of prediction: this is

crucially important for robotics planning tasks, where one needs to know not only the state of the

world at the current time-step but also the estimated state of the world in the near-future. For

instance, for autonomous driving a crucial task is free-space estimation where the planner needs

to ensure that any proposed trajectories (both nominal and emergency) lie within the envelope

estimated from predicted freespace. This freespace task is depicted in figure 6.1.

One of the main obstacles that makes temporal semantic segmentation a challenging problem

is the lack of finely annotated temporal data due to the substantial manual effort involved in pro-

ducing pixel-accurate annotations. The existing efforts [86, 155] in video semantic segmentation

mostly focus on the structure prediction from single frames and rely on random field optimiza-

tion. This highlights the need for introducing methods that are capable of learning a meaningful

representation of videos when groundtruth information is not available for each individual frame.

The typical architecture used in image semantic segmentation literature has two main com-

ponents: (1) an encoder that downsamples the data and extract low-resolution coarse semantics, (2)

a decoder that reconstructs the original input resolution from learned featured through either up-

sampling predictions or deconvolutions. Instead, we propose a simple and efficient model that uses

RNNs for modeling the temporal correlation between learned coarse semantics. We use convolu-

tional LSTMs to preserve the spatial dynamics while modeling the sequence temporally. Further-

more, our model utilizes the inherent hierarchical architecture of ConvNets in the encoder, forms a

pyramid of feature maps that have strong semantics at different scales and strategically aggregates

them to obtain the final prediction. We combine low-resolution, semantically strong features with

high-resolution, semantically weak features via a top-down pathway and lateral connections.

Although conceptually simple, our method is able to combine temporal, local and global

features in one unified architecture. Our objective is to investigate if it is beneficial to see the

preceding frames to the current frame of interest while making prediction on it. Moreover, we
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show how our model can fully take advantage of the predictive nature of RNNs to generate a rough

future estimation of the semantics of the scene based on what has been observed so far. We use

an encoder-decoder convolutional LSTM architecture to first learn a representation of the input

frames and then we generate a corresponding expected future.

We evaluated our method for both temporal and predictive semantic segmentation. Our

results show that it is possible to train effective models using noisy data by leveraging inherent

temporal information present in videos. We report a state-of-the-art result on challenging urban

scene parsing datasets. Our method improves the average pixel accuracy score of the baseline

non-temporal model by 4% on CamVid dataset and by 3% on Cityscapes dataset.

In summary, the main contributions in this work are:

(1) We propose a temporal pyramid network that utilizes multi-scale resolution feature maps

and is capable of modeling the temporal dependencies.

(2) We show that our framework is suitable for the task of semantic scene understanding and

achieves promising result.

(3) We demonstrate that our model can be extended easily to the problem of prediction where

the semantics of the scene are estimated for the future frames.

The rest of this paper proceeds as follows: After an overview of related work in Sec. 6.2, we

provide an overview of our noisy generated dataset used for temporal semantic segmentation in Sec

6.4.1. Sec. 6.3 provides some background on Recurrent Neural Nets, LSTMs and convolutional

LSTMs and other relevant topics. We then introduce our proposed architecture in details in Sec.

6.4.3 and Sec. 6.4.4 for both temporal and predictive semantic segmentation. We then demonstrate

the efficacy of the architecture for both methods through our experiments and show the qualitative

and quantitative results in Sec. 6.5, and conclude with discussion in Sec. 6.6.
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6.2 Related Work

Our temporal semantic segmentation work relates to a variety of research areas in computer

vision such as image-based semantic segmentation and more remotely, to (unsupervised) video

segmentation and temporal modeling for action recognition. In this section, we will only briefly

review the vast literature with some attention towards formulations based on deep architectures

which represent the foundation of our approach.

Semantic Segmentation. In recent years, deep neural networks have been extensively used

in segmentation and achieved promising results on the accuracy and execution time. The most suc-

cessful methods for semantic image segmentation are based on CNNs. In [143], color and texture

features from oversegmented regions are merged by Recursive Neural Networks. This work has

been extended by [142] who combined it with convolutional neural networks. [47] introduced

multi-scale CNNs to learn scale-invariant features, but had problems with global contextual coher-

ence and spatial consistency. These problems were addressed by combining CNNs with several

post-processing algorithms, i.e., super-pixels, CRF, and segmentation trees. Likewise, [95] pro-

posed a method which combines CNNs and CRFs to exploit complex contextual information for

semantic image segmentation. We formulate CNN based pairwise potentials for modeling seman-

tic relations between image regions. In [84], the reconstructed depth is used as a guide to produce

a scale-invariant representation in which the appearance is decoupled from the scale. Also [99]

addresses semantic image segmentation by incorporating rich information into Markov Random

Field (MRF), including high-order relations and mixture of label contexts. In [26] applied the

“atrous convolution”with upsampled filters for dense feature extraction and extended it to atrous

spatial pyramid pooling, which encodes objects as well as image context at multiple scales.

Many semantic segmentation methods start with the VGG-16 network in [140] and refine it

for semantic segmentation. In [169], they presented a module that replaces the pooling layers by

dilated convolutions to systematically aggregate multi-scale contextual information without losing

resolution. The architecture is based on the fact that dilated convolutions support exponential
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expansion of the receptive field without loss of resolution or coverage. DeconvNet [117] learns

deconvolution for semantic segmentation and is composed of deconvolution and unpooling layers,

which identify pixel-wise class labels and predict segmentation masks. Similarly, SegNet [7] is

composed of an encoder (stack of convolutions and pooling layers) followed by a decoder (stack of

corresponding mirrored-convolution and unpooling layers) which perform the opposite operations.

The decoders help map low resolution feature maps at the output of the encoder stack to the full

input image size feature maps. [100] transformed pre-trained classification networks [140] into

fully convolutional form to perform dense predictions. They augmented the architecture with a

skip architecture that takes advantage of the full feature spectrum that combines deep, coarse,

semantic information and shallow, fine, appearance information. In [65] residual connections are

used making it possible to increase depth substantially. Another successful approach is to apply a

dense conditional random field (CRF) [81] as a post-processing step on top of individual pixel or

frame predictions. [25] use a fully convolutional network to predict a segmentation and then apply

the dense CRF as a post processing step.

Video Segmentation. Video segmentation has received significant attention starting from

early methodologies based on temporal extensions to normalized cuts [137], random field models

and tracking [155, 91], motion segmentation [118] or efficient hierarchical graph-based formula-

tions [59, 167, 53]. However, much of this work has been done to address the problem of seg-

mentation in videos and the focus has not been on learning the semantics. .[86] used the dense

CRF of [81] for semantic video segmentation by using pairwise potentials based on aligning the

frames using optical flow. Nonetheless, these methods are not suitable for real-time or the complex

multi-class, multi-object scenes in the real world problems.

Recurrent Convolutional Neural Networks. In order to improve modeling of long range

dependencies, [123] first revealed the use of large input patches to consider larger contexts. How-

ever, that would reduce the resolution of the final label image, and a huge redundancy of overlap-

ping regions would make the learning inefficient. Hence, they introduced Recurrent Convolutional

Networks (RCNNs) for scene labeling. RCNNs train different input patch sizes (the instances)
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recurrently to learn increasingly large contexts for each pixel, whilst ensuring that the larger con-

texts are coherent with the smaller ones. LSTMs of recurrent neural networks [69] were originally

introduced for sequence learning. These networks include recurrently connected cells to learn the

dependencies between two time frames, then transfer the probabilistic inference to the next frame.

The LSTM memory block stores and retrieves this information over short or long periods of time.

LSTM networks have been successfully applied to many tasks such as handwriting [57] and speech

recognition [55, 56], machine translation [150, 30], and caption generation for images [156].

They have also been applied on videos for recognizing actions and generating natural language

descriptions [43]. A general sequence to sequence learning framework was described by [150]

in which a recurrent network is used to encode a sequence into a fixed length representation, and

then another recurrent network is used to decode a sequence out of that representation. In [145]

used multilayer Long Short Term Memory (LSTM) networks to learn representations of video se-

quences. In [166] By extending the fully connected LSTM (FC-LSTM) to have convolutional

structures in both the input-to-state and state-to-state transitions, they proposed the convolutional

LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation now-

casting problem. In [125] proposed a strong baseline model for unsupervised feature learning

using video data. By learning to predict missing frames or extrapolate future frames from an input

video sequence, the model discovers both spatial and temporal correlations which are useful to

represent complex deformations and motion patterns.

Action Recognition. Temporal modeling using deep architectures is also an important topic

in action recognition. [75] proposes 3D convolutional neural networks which are a natural ex-

tension of a standard 2D convolutional network for action recognition. However, it increases the

learning complexity, as the filters need to model both appearance and motion variations. To avoid

having to deal with this added complexity of spatio-temporal convolutional filters, [139] proposed

a two streams architecture to predict actions. They process images and optical flow independently

in two different streams which is merged at a later stage in order to predict the final action label.

To account for the lack of training data a multi-task setting is proposed, where the same network
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is optimized for two datasets simultaneously. Later, [170] implemented a network in which the

output of the two streams is sent into a recurrent neural network, where, at later stages the features

are pooled to produce a final labeling. [80] uses frames at different time-steps and merges them

as input to a neural network in different fashions. [148] attempt to make the problem of learning

spatio-temporal features easier by using separable filters. More specifically, they apply spatial fil-

ters first and then temporal filters after that to avoid learning different temporal combinations for

every spatial filter. [9] spatio-temporal filters by stacking GRUs at different locations in a deep

neural network and iterating through video frames.

6.3 Preliminaries

In this section, We first briefly review feature learning by convolutional networks. Then,

we introduce the fundamentals of recurrent networks in Section 6.3.1, in particular those built on

Long Short Term Memory(LSTM) units, which are well suited to model temporal models. In Sec-

tion 6.3.2, we review Convolutional LSTM units which are the core of our temporal architecture.

Finally, we review Batch Normalization in Section 6.3.3.

6.3.1 Learning via Deep Neural Networks

A multilayer perceptron, is a feedforward computational neural network that processes in-

formation through interconnected nodes and maps a set of input data onto a set of desired output.

A layer is formed by grouping these computational nodes together and connecting them with some

weights. These nodes are called neuron units which mainly transform the information between

layers by applying non-linear operations on it to create a decision boundary for the input. Here

the goal is to stretch and squish the input data by applying a series of non-linearities and finally

projecting it into a space where it preserves the topological properties but becomes linearly separa-

ble. These networks have been successfully applied to many classification problems by supervised
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training. Formally, units are defined in terms of the following function [120]:

X l+1 = σ(W lX l +bl) (6.1)

where X l denotes the activation map in layer l (X l
i is the activation for the unit i in layer l), W

is a weight matrix, where W l
i j i j represents the parameter associated with the connection between

unit j in layer l, and unit i in layer l +1, bl is the bias associated with units in layer l and σ is the

activation function. X is the input data of the network when l = 1. The activations of the units in

the deepest(last) layer will give the the output of the network. It is common to fully-connect the

neurons in these networks, in which each node in layer l +1 connected with every node in layer l.

On the other hand, a Convolutional Neural Network (CNNs) [89] with a single layer extracts

features from the input by applying a convolution operation on the input and kernel filter. In

CNNs, the activations in each layer show the result of the convolution of the kernel and the input

image. similar to sliding window approaches, it is possible to detect a particular pattern captured

by a specific filter, regardless of where the pattern occurs by computing the activation of a unit on

different regions of the same input which results in feature maps. The advantage of CNNs is that

the weight matrix and bias parameters are shared between units. Therefore, CNNs have the ability

to learn complex data representation by passing the information through multiple layers of feature

hierarchies which increases the levels of abstraction in deeper levels.

Even though these networks are very powerful for learning complex systems, one major

limitation is that they assume that all inputs and outputs are independent of each other in time. To

overcome this problem, Recurrent Neural Networks (RNNs) are proposed which use a recurrent

connection in every unit. Here the idea is to learn the dynamics of temporal data by feeding back

the activations of a layer to itself by some time delay. This is similar to having a memory that

keeps track of past activations. A representation of a single recurrent unit is shown in Figure 6.2.

Given a temporal input sequence X l = (X l
1, ...,X

l
T ) of length T (being X l

ti the activation of the

unit i in hidden layer l at time t), an RNN maps it to a sequence of hidden values hl = (hl
1, ...,h

l
T )

and outputs a sequence of activations X (l + 1) = X (
1l + 1), ...,X (

T l + 1) by iterating the following
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recursive equation [120]:

hl
t = σ(W l

xhX l
t +hl

t−1W l
hh +bl

h) (6.2)

where σ is the non-linear activation function, bl
h is the hidden bias vector and W terms denote

weight matrices, W l
xh being the input-hidden weight matrix and W l

hh the hidden-hidden weight

matrix. The activation for these recurrent units is defined by:

X (l+1)
t = hl

tW
l
hx +bl

x (6.3)

where W l
hx denotes the hidden-activation weight matrix and the bl

x terms denote the activation bias

vector. Notice that the weight matrix W l defined for the multilayer perceptron is equivalent to the

W l
xh matrix in Equation 6.2.

Figure 6.2: The internal structure of RNN and LSTM units

Furthermore, Long short term Memory(LSTM) units extend RNN with memory cells that

enables us to learn temporal relationships on long sequences. LSTMs introduce the concept of

gating and cell state. The LSTM updates the cell state, according to the activation of its internal

gates. The input provided to an LSTM is fed into different gates: The forget gate f , decides what

parts of the input data are not necessary and need to be forgotten, the input gate i decides what parts

need to be updated and written to the cell state based on the input, whether the latest cell output c

will be propagated to the final state h is further controlled by the output gate o.. The activation of
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the LSTM units is calculated as in the RNNs. See Figure 6.2 for a detailed illustration of LSTM

units. The computation of the hidden values ht and ct of an LSTM cell is updated at every time

step t. The below equations show the update of an LSTM layer [120] :

it = σ(Wxixt +Whiht−1 +Wci� ct−1 +bi) (6.4)

f t = σ(Wx f xt +Wh f ht−1 +Wc f � ct−1 +b f ) (6.5)

ct = ft� ct−1 + it� tanh(Wxcxt +Whcht−1+bc) (6.6)

ot = σ(Wxoxt +Whoht−1 +Wco� ct +bo) (6.7)

ht = ot� tanh(ct) (6.8)

where i, f , o and c are respectively the input gate, forget gate, output gate and cell activations,

and they all have the same size as vector h defining the hidden value. Terms σ and tanh represent

non-linear functions used in LSTM units. The term xt is the input to the memory cell layer at

time t. W s are weight matrices, with subscripts representing from-to relationships (Wxi being the

input-input gate matrix, Whi the hidden-input gate matrix, and so on). bi , b f , bc and bo are bias

vectors. � denotes element-wise product of vectors.

One important innovation of LSTMs is the memory cell ct which essentially is an accumu-

lator of the state information through time. RNNs are known to have exploding gradient problem

whereas LSTMS use memory cells to trap the gradients in the cell and prevent them from van-

ishing or exploding too quickly. Therefore, LSTMs are capable of modeling long-range temporal

dependencies in sequences. Every time a new input comes, the internal gates control what part

of information is necessary to be kept and forgotten and its information will be accumulated to

the cell. In order to model more complex temporal structures, usually multiple LSTM layers are

stacked on top of each other similar to multi-layer CNNs.

The combination of CNNs and LSTMs in a unified framework is able to capture time depen-

dencies on features extracted by convolutional operations which has already showed state-of-the-

art performance in the speech recognition domain [135].
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6.3.2 Convolutional LSTMs

Figure 6.3: Illustration of Convolutional LSTM networks

The conventional fully connected LSTMs (FC-LSTMs) explained in the previous section

have one major drawback when dealing with spatio-temporal data. Since conventional LSTMs

use dense connections, the spatial information of the data will not be preserved. To overcome this

problem, we are using a different architecture called Convolutional LSTMs (Conv-LSTMs) that are

first introduced in [166]. Although the FC-LSTMs have proven to be powerful tools for modeling

temporal correlations in temporal data, they are incapable of maintaining the locality and spatial

structure of the data. This is specially very important for the task of semantic scene understanding,

since we do not want to lose the spatial information existent in the scene. Moreover, FC-LSTMs

generally have a large number of parameters and are prone to over-fitting. Conv-LSTMs replace the

internal dense, fully connected layers of the unit with convolutional operations. The Conv-LSTM

determines the future state of a certain cell by the inputs and past states of its local neighbors [166].

In other words, the Conv-LSTM learns to model the temporal information by looking at the learned

spatial representation of its neighbors instead of a flat representation that does not preserve spatial

information. The key equations of Conv-LSTM are shown below, where ∗ denotes the convolution

operator and ◦, as before, denotes the Hadamard product [166]:
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it = σ(Wxi ∗ xt +Whi ∗ht−1 +Wci� ct−1 +bi) (6.9)

f t = σ(Wx f ∗ xt +Wh f ∗ht−1 +Wc f � ct−1 +b f ) (6.10)

ct = ft� ct−1 + it� tanh(Wxc ∗ xt +Whc ∗ht−1+bc) (6.11)

ot = σ(Wxo ∗ xt +Who ∗ht−1 +Wco� ct +bo) (6.12)

ht = ot� tanh(ct) (6.13)

where σ and tanh are the non-linear functions. Respectively, it , ft , ot , ct and ht are vectors

to represent values of the input gate, forget gate, output gate, cell activation, and cell output at time

t. W s are the filter matrices connecting different gates, and bs are the corresponding bias vectors.

The main difference is that shows a convolution operation, where in a FC-LSTM is a matrix

multiplication. Figure 6.3 shows the internal structure of a convolutional LSTM inspired by [166].

Using Conv-LSTMs instead of FC-LSTMs, we expect to learn better temporal representations for

the task of semantic segmentation while being less prone to over-fitting.

6.3.3 Batch Normalization

Batch normalization (BN) [73] is a widely used technique in the computer vision community

which helps with to accelerate the training process and also improves generalization. Given a layer

with output x, it is implemented by normalizing each layers inputs such that:

BN(x) = γ
x−E[x]

(Var[x]+ ε)1/2 +β (6.14)

where γ and β are the parameters being learned. The idea is to compute the mean and variance

statistics across all timesteps in the batch. During inference, these statistics are being used to

further improve the results.
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6.3.4 Baseline Semantic Segmentation Networks

Fully Convolutional Networks. In [100], previously designed classification networks such

as AlexNet [85], the VGG net [140], and GoogLeNet [151] were adapted into fully convolutional

networks by replacing the fully connected layers. They augment these networks for dense predic-

tion and transfered the learned representations by fine-tuning to the segmentation task. They obtain

a coarse label map from the network by classifying every local region in image, and perform a sim-

ple deconvolution, which is implemented as bilinear interpolation, for pixel-level labeling. Also

by using a skip architecture, they combine semantic information from a deep, coarse layer with in-

formation from a shallow, fine layer to produce accurate and detailed segmentations. Conditional

random field (CRF) can also optionally be applied to the output map for fine segmentation [81].

The main advantage of the methods based on FCN is that the network accepts a whole image as an

input and performs fast and accurate inference.

Encoder-Decoder Networks. Networks such as SegNet[7] and DeconvNet [117] are com-

posed of a stack of encoders followed by a corresponding decoder stack which feeds into a soft-

max classification layer. The encoder network corresponds to feature extractor that transforms the

input image to multidimensional feature representation, whereas the decoder network is a shape

generator that produces object segmentation from the feature extracted from the convolution net-

work. The decoders help map low resolution feature maps at the output of the encoder stack to full

input image size feature maps. Each encoder performs dense convolutions, ReLU non-linearity, a

non-overlapping max pooling and finally down-sampling. Each decoder upsamples its input using

the memorized pooled indices and convolves it with a trainable filter bank. The final output of the

network is a probability map in the same size to input image, indicating probability of each pixel

that belongs to one of the predefined classes. The key learning module is an encoder-decoder net-

work where the encoder consists of a filter bank convolution, tanh squashing function, max pooling

followed by sub-sampling to obtain the feature maps. The main difference between SegNet[7] and

DeconvNet [117] is the implementation details in the decoder network. They both employ VGG-
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16 net [140] for the encoder part where SegNet removes all the layers after pool5 and DeconvNet

only removes the last classification layer. In the decoder network, They both mirror the convolution

network of the encoder network. They both have unpooling and rectification layers in conjunction

with these layers. Pooling in convolution network is designed to filter noisy activations in a lower

layer by abstracting activations in a receptive field. Unpooling layers on the other hand, perform

the reverse operation of pooling and reconstruct the original size of activations. It records the lo-

cations of maximum activations selected during pooling operation in switch variables, which are

employed to place each activation back to its original pooled location. The output of an unpooling

layer is an enlarged, yet sparse activation map. SegNet applies convolutional layers whereas De-

convNet uses deconvolution layers for this purpose. Contrary to convolution network that reduces

the size of activations through feed-forwarding, The deconvolution layers densify the sparse ac-

tivations obtained by unpooling through convolution-like operations with multiple learned filters.

However, contrary to convolutional layers, which connect multiple input activations within a fil-

ter window to a single activation, deconvolutional layers associate a single input activation with

multiple outputs.

Deep Residual Networks. Residual connection were introduced in [65] in which they de-

scribe the advantages of applying additive merging of feature maps both for image recognition,

and especially for object detection. They proposed a residual learning framework to facilitate the

training of networks that are much deeper compared to the previous networks. They formulate the

layers as learning residual functions instead of learning unreferenced functions. The motivation

behind this work is to deal with the common degradation problem in deep networks. The authors

argue that the degradation is not caused by over-fitting surprisingly and address this problem by

introducing a residual learning framework. Instead of trying to fit a desired underlying mapping

for each few stacked layers directly, they explicitly let these layers fit a residual mapping. For-

mally, lets denote the desired underlying mapping as H(x). Then the stacked nonlinear layers fit

another mapping of F(x) := H(x)x and the original mapping is converted to F(x)+ x. They show

that it is easier to optimize the residual mapping compared to the original, unreferenced mapping.
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The formulation is in nature very similar to shortcut connections. Here, the shortcut connections

simply perform identity mapping, and their outputs are added to the outputs of the stacked layers.

See Figure 6.4 for the details of residual learning blocks.

Figure 6.4: Building block of residual learning

6.4 Approach

6.4.1 Data Augmentation

The enormous success of deep architectures has been gained by training on very large

datasets. Due to the substantial human effort involved in producing pixel-accurate annotations,

semantic segmentation datasets with precise and comprehensive label maps are orders of magni-

tude smaller than image classification datasets. High-quality semantic labeling was reported to

require 60 minutes per image for the CamVid dataset [15] and 90 minutes per image for the

Cityscapes dataset [33]. Note that the labeled images in these datasets are either chosen randomly

(Cityscapes) or at a fixed Hz (CamVid) from a video sequence which makes it not suitable for

tasks that require all the frames in the video sequence. The inherent lack of temporal labeled data

motivated us to design a fast and simple method for propagating the semantic labels from the la-

beled frames to unlabeled ones in a sequence. This gives us the opportunity to incorporate the

temporal information of all the frames in the sequence and also generate orders of magnitude more
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Figure 6.5: Our label propagation scheme

data to overcome problems such as overfitting. The main difference between the two dataset is that

the annotation is available for only one frame in a sequence of size 30 (20th frame) in Cityscapes

dataset whereas the annotation is available for both the beginning and the end of a sequence in

Camvid dataset.

Our label propagation pipeline starts with oversegmenting the sequence of frames to obtain

superpixels that are coherent in time and space (see [53] for more details). After that we transfer

the semantic labels from the groundtruth annotation to all the pixels that belong to the same spatio-

temporal superpixel. Using this method, we produced approximately 105K annotated frames from

available annotated frames in the CityScapes dataset and 18K annotated frames from CamVid

dataset in significantly smaller amount of time compared to the reported numbers for these datasets.

In the scenes that there was no fast motion, we were able to recover the semantic labels for most

of the pixels. However for the pixels that are not present in the groundtruth annotation and emerge

or disappear later in the future, we use the void label.
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6.4.2 Network Architecture

While state-of-the-art networks, FCN [100], SegNet[7] and DeconvNet [117] use the iden-

tical convolutional(encoder) network based on VGG-16 layers [140], they approach deconvolu-

tion(decoder) differently. FCN performs a simple deconvolution using a single bilinear interpola-

tion layer, and produces coarse, but clean overall shape segmentations, because the output layer is

closely connected to the convolution layers preventing the loss of spatial information. The absence

of a deep deconvolution network trained on a large dataset makes it difficult to reconstruct highly

non-linear structures of object boundaries accurately. DeconvNet and SegNet on the other hand,

mirror the convolution process with multiple series of unpooling, deconvolution, and rectification

layers, and generates detailed segmentations at the cost of increased noise. Instead, We combine

the ideas from both of these approaches and develop a deep recurrent multi-scale convolutional

network for semantic segmentation. We exploit the inherent multi-scale, pyramidal hierarchy of

convolutional networks and combine them with recurrent layers to model the input both in space

and time. The convolutional layers act as spatial feature extractors and provide abstract represen-

tations of the input data whereas the convLSTMs model the temporal dynamics of the scene. Our

network is able to capture both spatial and temporal dynamics of the scene, and uses a pyramidal

structure to benefit from the multi-scale contextual information. The output probability map result-

ing from a bilinear interpolation of different levels of the pyramid are then fused together before

a final convolutional layer merges them into a single high-fidelity output map. In Sections 6.4.3

and 6.4.4 we provide the details of our proposed network for temporal and predictive semantic

segmentation.
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6.4.3 Proposed Temporal Network

Figure 6.6: Details of our temporal semantic segmentation model; Green, purple, yellow gray, pink

and blue are 3×3 convolution, pooling, convolutional LSTM, 1×1 convolution, upsampling and

Softmax layer respectively.

Our network is designed based on a VGG-16 architecture. However, further modifications

to the VGG network is needed in order to combine the temporal information and prediction of

different levels in our network. The detailed configuration of our proposed network is shown in

6.6. For the encoder network, we keep all the convolution layers of VGG-16, followed by batch

normalization and ReLu layers. We remove the fully connected layers and add multiple layers of

convLSTMs in the bottleneck. We use a pyramidal multi-scale architecture to combine the feature

maps obtained in the encoder part to obtain the final prediction. First we apply a 1× 1 convolu-

tion to the feature map of each pooling layer in the network to change their dimensions into the

same size (c = 256) and form a pyramid of feature maps in different scales. The convLSTM layers

are added to middle of the network with a skip connection to preserve the the spatial information

learned from previous layers. While the original FCN uses the last fully connected layer as the

coarsest prediction, we instead use the output of the convLSTM layer, as the coarsest level. We

start by the coarsest level that has the lowest resolution feature map , and sequentially upsample
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the activations to be aligned with the previous feature map and fuse them together. We add an-

other 1×1 convolution to the resulting feature map before upsampling it since it enable us to learn

blending weights between the two activations as convolution parameters. We also add a loss layer

to each individual layer and obtain a prediction to ensure that the network is learning meaningful

representation of data at each level.

6.4.4 Proposed Predictive Network

Figure 6.7: Details of our predictive semantic segmentation model; Green, purple, yellow gray,

pink and blue are 3×3 convolution, pooling, convolutional LSTM, 1×1 convolution, upsampling

and Softmax layer respectively.

Our predictive semantic segmentation network has been shown in Figure 6.7. Here, the

motivation is to learn a representation that extracts all that is needed to extrapolate the motion and

appearance beyond what has been observed. The model works as follows, the encoder CNNs learn

the spatial features of the input sequence and then it runs through an encoder convLSTMs to add

the temporal features and compresses it into hidden state representation. This representation is
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then being unfolded by the decoder convLSTMs and generates an output sequence which again

runs through the decoder CNNs to map the low resolution spatio-temporal feature to the full input

resolution. Both encoder and decoder networks are formed by stacking several convLSTM layers.

We fully adapt VGG-16 network and remove the fully connected layers after the last pooling layer,

add the encoder/decoder convLSTM layers in the bottleneck. We simply mirror the convolutional

layers of the encoder to recover the resolution of input in the decoder network. We trained the

model to predict the output sequence that has the same dimensionality as the input. Since the

network has multiple stacked ConvLSTM layers, it has strong representational power which makes

it suitable for giving strong predictions. This structure is also similar to the LSTM future predictor

model in [145] and [166]. The frames in the input sequence of our model may correspond to

every nth frame of the video, as long as there is enough resemblance in the structure of the scene

shared by the frames. The details of our network is shown in 6.7

6.5 Experiments

Datasets. The Cityscapes dataset [33] contains high quality pixel-level annotations of im-

ages collected in street scenes from 50 different cities. The training, validation, and test sets con-

tain 2975, 500, and 1525 images respectively. This dataset contains labels for 19 semantic classes

belonging to 7 categories of ground, construction, object, nature, sky, human, and vehicle. The

images of Cityscapes are high resolution (1024× 2048) which makes training challenging due to

limited GPU memory. We trained our models on random crops of size 256× 512 of the resized

images. The CamVid dataset [15] has over ten minutes of 30Hz high quality 720× 960 footage,

with 701 pixel-level annotated images chosen at 1Hz and in part, 15Hz. We trained our models on

random crops of size 360×480 of the resized images. For both of these datasets, we increased the

amount of training data by transferring the labels with the method explained in Sec. 6.4.1.

Training and Optimization. Figure 6.6 and 6.7 show the detailed configuration of the pro-

posed temporal and predictive networks in details. All models were trained and tested on a single

NVIDIA TITAN X GPU. The network parameters are optimized by minimizing the cross-entropy



107

loss function (Softmax classifier) using mini-batch stochastic gradient descent. As per suggested

by the experiments of Chapter 5, we are using weighted cross-entropy loss when using the noisy

groundtruth. We set base learning rate to 10−3 and decreased the learning rate over time where

current learning rate equals to the base one multiplying by (1− iter
maxiter

)power. We set the power

to 0.9 and use a weight decay of 0.0001 with a momentum of 0.9 for optimization. Batch normal-

ization is used in all of our experiments and the batch size is set to be 4. We initialize the weights

using pre-trained models for classification in all the networks. We also use a dropout layer on the

output representation of multi-layer convLSTMs, as a form of regularization. Our implementation

is based on the public platform Caffe [76] . The number of parameters to optimize varies according

to the type of layers it comprises and has great impact in the time and computer power required

to train the networks. To prevent overfitting, we augment our dataset with additional images using

random perturbations of translation, scale, mirroring and cropping. We also randomly resize the

input images from the original image resolution prior to randomly crop them to the input size for

the network. This comprehensive data augmentation scheme makes the network resist overfitting.

For the auxiliary loss, we set the weight to 0.4 in all experiments.

Temporal Segmentation. In order to show the benefits brought by our network, we compare

it to “baseline”non-recurrent deep CNN that shares the same architecture but without the convL-

STM layers as well as contemporary CNNs that are widely used for semantic segmentation such

as FCN, SegNet and ResNet. The input to our network is a sequence of n consecutive frames, and

the output is the semantic segmentation of the last frame. Due to the memory limits, we could

not experimeent with large sequences. We set n to be a random length between 1 and 4. Here,

the goal is to investigate whether incorporating the temporal information of the prior frames is in

fact improving the accuracy of prediction or not. The main difference between our architecture

and the baseline CNNs is the topology of layers in the bottleneck. In the case of ours, the units

of these layers are convLSTM recurrent cells, and in the case of the baseline model, the units are

non-recurrent and either convolutional or fully connected. Therefore, performance differences be-

tween the models are a product of the architectural differences and not due to better optimization,
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preprocessing or ad-hoc customization. In Table 6.2 and 6.3 the accuracy of segmentation for

each semantic class in Cityscapes dataset is shown. Also the mean IOU and overall pixel accuracy

scores have been detailed in 6.3. We achieve 94.7% pixel accuracy on Cityscapes dataset and

91.3% pixel accuracy on CamVid dataset that is 3-5% higher than the baseline. We showed that

our temporal method is superior to both our non-temporal baseline and also other state-of-the-art

methods for both datasets. Examples of semantic segmentation results on the validation images

are shown in Figure. 6.9 on Cityscapes dataset for a sequence of frames. Also Figure. 6.11 and

Figure. 6.10 show the comparison of our approach with Segnet and FCN respectively. Figure 6.8

shows the qualitative results of our approach and other methods on CamVid dataset.

Table 6.1: Comparison of the mean IoU and pixel accuracy on CityScapes dataset.

Method IOU Pixel Accuracy Precision Recall

FCN-8 44.0 88.3 63.1 60.4

Segnet 45.4 90.1 64.1 57.4

ResNet-50 55.1 92.1 71.1 67.5

Our baseline model 55.8 92.5 73.9 66.8

Our temporal model 57.4 94.7 78.4 70.3

Predictive Segmentation. For the task of predicting future frames, we consider a sequence

of n consecutive frames preceding to the groundtruth. We feed the first half of the frames to our

network and ask the network to predict the semantic segmentation for the second half. during

training, network only sees the first half of frames and the groundtruth labels for the second half

(i.e it does not have access to the ground truth of the first half or the raw frames of the second

half). This forces the network to learn a meaningful representation of the video and also gives us

the opportunity to evaluate our predictive result by comparing against the available groundtruth
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for the last frame in the sequence. In our experiments n is set to be 8 for both Cityscapes and

CamVid dataset. We achieve 87.4% pixel accuracy on Cityscapes and 85.1% pixel accuracy for

CamVid dataset. Figure 6.12 shows qualitative result for out predictive semantic segmentation in

Cityscapes dataset. Note that the network has nicely captured the dominant motion in the scene

and predicted a reasonable future scene in most cases (i.e the car that is moving to the left in the

first row of Figure 6.12). We believe that it is possible to achieve even better results by having

larger and more diverse datasets.

Table 6.2: Comparison of the results on CamVid dataset

Method
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Segnet 75.0 84.0 91.2 82.7 36.9 93.3 55.3 37.5 44.8 74.1 16.0

FCN 70.3 79.0 88.9 78.8 31.8 90.1 56.0 0.38 45.3 70.5 14.5

ResNet 78.2 85.8 92.5 84.2 36.4 93.0 56.6 40.1 44.9 78.0 18.3

Our baseline model 79.1 85.2 93.0 85.1 35.8 94.7 57.3 40.1 43.8 81.2 16.9

Our temporal model 81.7 87.1 93.7 86.3 37.6 94.3 60.2 39.2 45.1 81.9 18.7
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Table 6.3: Comparison of class IoU on CityScapes dataset.
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FCN-8 86.1 53.2 74.3 12.4 15.2 18.5 10.8 41.0 77.1 40.7 89.0 48.9 29.8 83.9 20.3 31.0 11.1 13.1 48.3

Segnet 87.9 57.9 77.3 20.8 23.4 30.9 17.8 39.2 83.4 40.9 87.6 54.5 31.1 80.3 22.2 35.2 9.7 12.7 50.9

ResNet-50 89.9 62.5 80.4 39.3 31.0 35.1 33.5 42.3 86.0 49.0 87.8 57.6 38.5 86.7 47.3 61.1 45.7 25.8 54.1

Our baseline model 89.6 65.0 81.9 30.5 29.7 42.4 38.7 53.8 86.9 43.3 88.6 65.8 41.6 88.7 39.7 50.1 25.9 33.1 58.4

Our temporal model 90.1 70.5 86.8 33.5 31.4 43.8 41.2 55.9 88.1 47.0 91.8 63.1 46.4 91.7 44.2 50.3 28.3 35.6 59.3

6.6 Summary

We have proposed an effective network for understanding and labeling urban scenes. We

combined convolutional layers with LSTMs in a pyramidal architecture. The CNNs are used to

reduce the spatial variation of the input features and the LSTM layers are used for modeling the

temporal dynamics of the scene. Moreover, we use a pyramidal structure to combine the predic-

tion of different scale feature maps to capture contextual information at different in the network

to obtain the final prediction. Our method shows significant improvements over several strong

baselines. We show that our model can be easily extended to the related problem of prediction

to estimate the expected semantics of the scene a small number of frames into the future, this is

helpful for robotic applications such as free-space estimation in autonomous driving. We achieve

promising state-of-the-art results on various datasets and prove that our temporal approach is su-

perior to the non-temporal baseline. The strategies introduced in this work, can be easily applied

to other contemporary networks designed for other visual tasks such as detection. We believe that

using the temporal information along with spatial features in different scales helps to improve the

performance of deep learning models.
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Figure 6.8: Comparison of qualitative results on CamVid dataset
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Figure 6.9: Qualitative results of our model on CityScapes
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Figure 6.10: Qualitative results on Cityscapes for FCN(on the right) and our model(on the left)
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Figure 6.11: Qualitative results on Cityscapes for SegNet(on the right) and our model(on the left)
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Figure 6.12: Qualitative results on Cityscapes for Predictive Semantic Segmentation, the rows with
RGB images show the input to the system and the rows below each represent the predictive output
for each input sequence
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Figure 6.13: Qualitative results on Cityscapes for Predictive Semantic Segmentation, the rows with
RGB images show the input to the system and the rows below each represent the predictive output
for each input sequence



Chapter 7

Conclusion

In this chapter, we summarize the contributions of the work in this dissertation and discuss

promising directions for future research.

7.1 Contributions

The focus of research in this thesis is on the problem of holistic scene understanding in

videos. In particular, we proposed methods for accurate, efficient and temporally coherent seman-

tic segmentation in videos. While typical approaches to these problems usually involve utilizing

laborious annotations and significant amount of computing power, we are able to take advantage

of the causality and data redundancy in videos to develop unsupervised approaches that effectively

improve the segmentation performance over the baseline systems and give state-of-the-art results.

We have also addressed the challenge of obtaining groundtruth for temporal data and presented

methods to handle automatic groundtruth generation from existing annotated data. Furthermore,

we presented algorithms that give temporally consistent and detailed semantic segmentation of

video scenes and are able to predict the scene structure in near future. We see semantic segmen-

tation not only as a goal in itself, but also as a tool for use in gaining a higher level of scene

understanding which can be used in a variety of applications such as autonomous driving, robot

navigation, 3D reconstruction and recognition, motion estimation, free-space estimation, etc. More

concretely, the key contributions of this work are as follows:

Unsupervised Spatio-Temporal Segmentation. We proposed a novel method to incorpo-
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rate time for segmentation. We improved on a family of methods that generalize graph based image

segmentation to the spatio-temporal case by proposing a set of strategies that enable us to compute

a dense graph based segmentation in a very computationally efficient way. We exploited the natu-

ral sparsity structure of the spatio-temporal graph, and employed a low rank approximation of its

Laplacian closely related to the Nyström method. We only sampled 30-50% of the pixels in the

video sequence to obtain dense segmentation for all the pixels and showed that the performance

is comparable with a method that uses 100% of the pixels. Our method is simple, efficient and

effective and does not require supervised learning or any complex post-processing. The input to

our system is a sequence of frames, and the output is a dense segmentation of the frames into 3D

super-pixels, coherent in time and space, with different levels of granularity.

Context-aware Segmentation We presented an algorithm to include high-level information

from depth and deformable parts model for video segmentation and object discovery. We used a

context aware aggregation strategy that employs an object detection system to find object-centric

segmentations. This way, we are able to process the objects within the detected bounding-box,

segment out the background and obtain accurate boundaries for them. We also experimented with

various connectivity patterns in the construction of spatio-temporal graph and showed that a ran-

domized strategy helps with the accuracy.

Unsupervised Object Discovery, Detection, Tracking and Reconstruction We proposed

a unified and scalable framework for unsupervised dense object discovery, detection, tracking and

reconstruction using RGBD cameras and a robot manipulator. The system simultaneously localizes

a moving sensor and discovers a set of candidate shape and appearance models for multiple objects,

including the background. This single framework performs dense simultaneous localization and

mapping as well as unsupervised object discovery and detection for both the whole scene and each

object within it. Spatio-temporal cues are used to produce a set of candidate objects. A motion

based verification strategy is used to verify the candidate objects, and object appearance and shape

is subsequently learned by grasping and poking.

Generating Large Auxiliary Groundtruth Datasets We proposed a simple and efficient
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method to automatically propagate semantic labels from densely labeled frames to the rest of un-

labeled video frames. Our simple method helps with reducing the cost of annotating videos and

creates large-scale datasets very efficiently. We show that the auxiliary groundtruth in addition

to the groundtruth can increase the accuracy of semantic segmentation techniques where there

is enough diversity in the data and also the quality of generated groundtruth is generally good.

We also developed a web-based video annotation tool for semantic segmentation that reduces the

burden of hand-labeling.

Temporal and Predictive Semantic Scene Understanding We proposed a novel temporal

pyramid network that utilizes multi-scale resolution feature maps of CNNs and is also capable of

modeling temporal dependencies. We showed that our framework is suitable for the task of dense

prediction and semantic segmentation. We also extended our network to the problem of prediction

where the semantics of the scene are estimated for the future frames. We showed that using tem-

poral variations along with spatial features in different scales helps to improve the performance

of deep learning models. Our results show a significant improvement in performance over several

strong baselines.

7.2 Future Work

We have presented video scene understanding algorithms, and have developed comprehen-

sive datasets to evaluate future studies in this area. There were not many temporal scene under-

standing studies in literature before but the algorithms, and datasets developed in this thesis should

help to accelerate research not only for video scene understanding but also to combine the above

algorithms to solve other problems in compute vision. There are several possible directions for

future work that can be made based on the material presented in this work:

Selective Sampling: We randomly sample the columns of graph Laplacian to perform the

low-rank approximation in our spatio-temporal segmentation framework. However, selective sam-

pling strategies generally decrease the approximation error for a given number of columns which

means it is possible to increase the accuracy of our approach even more.
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Fast Eigen Decomopsition: A major bottleneck in our super-pixel segmentation algorithm

is the expensive eigen decomposition phase of spectral clustering. Even though we make the

computation of eigenvectors orders of magnitude faster by using a further low-rank approximation

of the Laplacian, it is still slow for the domain of video data. Therefore, improving this stage by

designing algorithms that are able to find the eigenvectors efficiently would speed up our method

considerably.

Online Spectral Clustering: Another possible way to reduce the complexity of our seg-

mentation algorithm is to process the video incrementally and only consider a small number of

frames at a time. This will drastically decrease the computation time. Hence, comping up with

algorithms that can update the previously computed eigenvectors as we receive new frames would

be extremely beneficial.

Label Propagation: The quality of our label propagation can be further improved by apply-

ing a post-processing step such as CRF. Also designing algorithms that can effectively learn from

large noisy groundtruth where there is only small number of clean groundtruth is available would

be very helpful.

Datasets: The number of annotated datasets for semantic segmentation is still relatively

small compared to classification or categorization datasets. Creating larger and more diverse

datasets should give results which are more consistent and accurate.

Improve Training One problem encountered while training semantic segmentation models

is that over-fitting can quickly become an issue. It would be interesting to investigate what is

causing this issue even when we have a large-scale noisy dataset with relatively good quality. One

possible reason is that much of training data is not independent when dealing with sequential data,

so lots of examples give no extra information. Developing techniques to find good training samples

for such techniques could make learning much more efficient.

Improved Detection algorithms: Understanding the scene should help with improving the

detection and recognition techniques. For example when a sliding window car detector scans the

entire scene to detect cars, it might return falsely detected cars on the sky, or trees. We can reduce



121

these false positives effectively by introducing constraints on the structure of the semantic regions.

Also semantic segmentation can help bounding box detection systems to segment out the detected

object from the background with a fine and accurate boundary.

Monocular Depth Estimation: Existing monocular depth estimation methods either work

on pixels or on super-pixels obtained from images. Since our spatio-temporal super-pixels are

shown to preserve the object boundaries much better, we believe that our proposed method can be

effectively used to estimate depth and surface normals in complex dynamics scene.

Semantic Optical Flow: Current optical flow estimation methods make generic, spatially

homogeneous, assumptions about the structure of the flow in the scene. However, optical flow

varies across an image depending on the semantic category of the objects. For example, the motion

on roads is different than the motion of trees, cars or pedestrians. One interesting area of future

research is to model the category based motions independently for the problem of flow estimation.

Therefore, our temporal semantic segmentation method can be used to obtain an accurate and

detailed segmentation of the scene that can be exploited in these semantically aware flow estimation

techniques.

Semantic 3D Mapping and Reconstruction The temporal semantic scene segmentation can

be used to guide the 3D reconstruction in videos by learning semantic class based priors. Having

a semantically annotated dense 3D model gives a much richer representation of the scene than just

the geometry and is useful for variety of robotic applications.
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