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Abstract
To evaluate an innovation in computer systems, performance
analysts measure execution time or other metrics using one
or more standard workloads. The performance analyst may
carefully minimize the amount of measurement instrumen-
tation, control the environment in which measurement takes
place, and repeat each measurement multiple times. Finally,
the performance analyst may use statistical techniques to
characterize the data.

Unfortunately, even with such a responsible approach, the
collected data may be misleading. This paper shows how
easy it is to produce poor (and thus misleading) data for
computer systems due to observer effect and measurement
bias. Observer effect occurs if data collection perturbs the
behavior of the system. Measurement bias occurs when
a particular environment in which the measurement takes
place favors some configurations over others. This paper
demonstrates that observer effect and measurement bias have
significant impact on performance and can lead to incorrect
conclusions. These effects are large enough to easily mislead
a performance analyst. Nevertheless, in our literature survey
of recent PACT, CGO, and PLDI papers we found that papers
rarely acknowledged or used reliable techniques to avoid
observer effect or measurement bias.

We describe and demonstrate techniques that help a perfor-
mance analyst identify situations when they have poor quality
data. These techniques are based on causality analysis and
statistics which natural and social sciences routinely use to
avoid the observer effect and measurement bias.

1. Introduction
To evaluate an innovation in computer systems, performance
analysts measure execution time or other metrics using one
or more standard workloads (e.g., the SPEC benchmarks).
The performance analyst may carefully minimize the amount
of measurement instrumentation, attempt to control every-
thing in the environment that can influence performance (the
measurement context), and repeat each measurement multiple
times. Finally, the performance analyst may use statistical
techniques to characterize the data.

Unfortunately, even with such a responsible approach, the
collected data may be misleading. This paper shows how
easy it is to produce poor (and thus misleading) data for

computer systems research, explores two common causes of
poor-quality data, and discusses two techniques that can help
to identify poor-quality data.

What is poor-quality data? We define poor quality data as
data that may cause us to draw invalid conclusions. High
quality data, on the other hand, allows us to draw valid
conclusions about the system that we are evaluating. High-
quality data does not mean that the data is perfect: it just
means that it was good enough for our needs. Thus, high-
quality is not an absolute characterization of the data; instead
it depends on the particular task for which one is using the
data. In this paper, we explore two common causes of poor-
quality data.

First, we may get poor-quality data if our data collection
alters the performance of the system being measured; the
scientific literature calls this the observer effect. We show
that even a seemingly insignificant measurement probe can
dramatically alter system behavior. We found in our literature
survey of recent PACT, PLDI, and CGO papers, that it is rare
(1 out of 72 papers) to find a paper that acknowledges and
uses reliable techniques for avoiding the observer effect.

Second, we may get poor-quality data if we compare
two systems (or two variants of the same system) and the
measurement context favors one system (or variant) over
the other; the scientific literature calls this the measurement
bias. We show that different measurement context (e.g.,
settings of environment variables) favor different systems (or
variants) differently. Thus, the measurement context can show
a particular system or variant in an optimistic or a pessimistic
light; we cannot tell which one it will be in advance. We found
in our literature survey that none of the 72 papers reviewed
acknowledge or use reliable techniques for avoiding the type
of measurement bias we describe in this paper.

The implications of observer effect and measurement bias
are profound for experimental work in computer systems. The
observer effect can mislead a performance analyst about the
true cause of a system’s poor performance: as a hypothetical
example, the data may suggest that the system has poor
performance due to L1 data cache misses but in reality
the measurement probes (directly or indirectly) caused the
cache misses. The measurement bias can lead to misleading
conclusions about the benefit of a new idea. For example,
consider a performance analyst who wants to determine if
idea, I , is beneficial for system, S. If the performance analyst



measures S and S + I in a measurement context that favors
S+I , she may conclude that I is beneficial even when it is not.
We show that the above examples are not rare hypothetical
scenarios; instead both the observer effect and measurement
bias are frequent and large enough to cause a performance
analyst to draw invalid conclusions.

We do not claim that the measurement bias and observer
effect are the only causes of poor-quality data; there may
be other causes as well. In this paper, we focus on the
measurement bias and observer effect, because, even though
they seem obvious in hindsight, they are largely ignored by
systems researchers.

Our literature survey indicates that the primary approach in
prior work to eliminate observer effect is to run experiments
on a lightly-loaded system while using minimal instrumen-
tation. We show that even minimal instrumentation (a few
added instructions) can cause a significant observer effect. To
avoid the measurement bias, most researchers use, not a sin-
gle workload, but a set of workloads (e.g., all programs from
a SPEC benchmark suite) in the hope that the bias will statis-
tically cancel out. For this to work, we need large and diverse
set of workloads. Unfortunately, most benchmark suites have
biases of their own and thus will not cancel out the effects
of measurement bias; e.g., the DaCapo group found that the
memory behavior of the SPECjvm98 benchmarks was not
representative of typical Java applications [4].

In this paper, we discuss two techniques that can help de-
tect observer effect and measurement bias. First, we propose
and demonstrate the use of causal analysis [18] to detect mis-
leading data. The basic idea is to use intervention to test the
conclusions that we have drawn from our data. For example,
if our data indicates that the poor performance of our system
is due to a particular data structure not fitting in the cache, we
need to find a way to make the data structure fit in the cache
(the intervention) and confirm that the poor performance does
actually go away. In this way we gain confidence that our
conclusions are valid and not an artifact of poor-quality data.
This approach is labor intensive but that is unavoidable in
general. We demonstrate (Section 5.1) this approach using a
realistic example from our own research.

Second, we also describe variant generation, an approach
that is not as labor intensive as causal analysis but is also
less powerful. The basic idea is to generate many measure-
ment contexts, collect data in all the contexts, and reason
with the data using standard statistical techniques. The ef-
fectiveness of this approach depends on how thoroughly we
are able to explore the space of measurement contexts; if the
generation of measurement contexts is itself biased then this
approach is ineffective. Variant generation helps only with
the measurement bias and is ineffective against the observer
effect.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the state-of-the-art of performance measure-
ment in systems research. Section 3 presents our experimental
methodology. Section 4 studies observer effect and measure-
ment bias, and shows how easy it is to get “poor-quality”
data. Section 5 suggests ways of detecting with them. Sec-
tion 6 compares this paper to related work, and Section 7
concludes.

2. Literature Review
When we show our data to systems researchers, their first
reaction is: “This was all known”1. In this section we show
1 This is a quote from a review of an earlier version of this paper.

that even if these phenomena are well known to systems
researchers, almost none of the papers in 2007 CGO [1],
PACT [16], and PLDI [17] explicitly address the observer
effect (Section 4.1) and measurement bias (Section 4.2). Thus,
while systems researchers may be knowledgeable about the
phenomena, perhaps they do not realize how severe they are.

We picked CGO, PACT, and PLDI for our literature survey
because they are all highly selective outlets for experimental
computer science work. In fact, of the 102 papers in these
three conferences, 72 had at least one section dedicated to
experimental methodology and evaluation. The remainder of
this section focuses on these 72 papers. When in doubt, we
always gave the benefit of the doubt to a paper’s methodology.

2.1 Papers that use simulations
Many researchers use simulations since they enable them
to try out hypothetical architectures. Simulations can also
avoid the observer effect, though as we show in Section 4.3,
they do not help with measurement bias. 25 of the 72 papers
we reviewed used simulations. Unfortunately, simulations
themselves can be inaccurate [5]. Thus using simulations
trades off observer effect for simulator inaccuracy.

2.2 Papers that report speedups
If the ideas in a paper offer huge speedup then it can be
argued that the speedup is immune to observer effect and
measurement bias. For example, if a technique gives a many-
fold speedup for real applications, it is unlikely that the
speedup is due to the observer effect. Of the 72 papers we
surveyed, 53 presented speedups. The mean speedup reported
by these papers was 9.3% ± 2.6% which is small enough
that it can easily be overwhelmed by the observer effect or
measurement bias.

2.3 Papers that acknowledge the observer effect
Of the 72 papers we reviewed, 46 papers reported data
for real hardware (i.e., not simulations) and thus these 46
papers are amenable to the observer effect. 14 of those
papers mentioned the amount of overhead their measurement
infrastructure incurred (usually a few percentage increase in
run time). As we show in this paper, a minimal increase in
runtime can drastically alter benchmark performance. Of the
14 that mention overhead, only one paper[11] actually did
anything to understand the complexities of their measurement
infrastructure and how it influenced collected metrics.

2.4 Papers that acknowledge measurement bias
Unlike the observer effect, measurement bias affects data
collected on real hardware and on simulators (Section 4.3). In
this paper, we focus on two specific instances of measurement
bias (shell environment state and linking order of the .o files
of a benchmark) and demonstrate that they can cause poor-
quality data and result in invalid conclusions.

Although none of the papers we reviewed said anything
about bias due to environment variables or linking order, most
(65) papers used more than one benchmark or input sets for
their evaluation, which partially solves the measurement bias.
If we use a sufficiently large and diverse set of workloads
along with careful statistical methods, most measurement
bias should get factored out. Unfortunately, there is no reason
to believe that our benchmark suites are diverse; indeed there
is some reason to believe that they themselves are biased. For
example, the designers of the DaCapo benchmark suite found
that the commonly used benchmark suite, SPECjvm98 was



Benchmark Description Cycles× 1e+09
perlbench Scripting language interpreter 1.5
bzip Compression algorithm 49
gcc C compiler 1.4
mcf Single-depot vehicle scheduler 210
gobmk Go program 400
hmmer Computational biology DNA sequence search 390
libquantum Quantum computer simulator 30
h264ref Video encoding 110
sjeng Chess program 910

Table 1. Benchmarks used in our experiments.
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Figure 1. Variation of execution time (in cycles) across runs
of the SPECint C 2006 benchmarks.

unrepresentative of real workloads in terms of their memory
usage pattern [4].

2.5 Summary
In summary, while researchers might know about observer
effect and measurement bias, we were unable to find any
paper that used a comprehensive strategy for avoiding these
issues.

3. Experimental Methodology
We now describe our benchmark programs, hardware infras-
tructure, and approach to measurement

3.1 Benchmarks
We use the SPECint 2006 [20] benchmarks (Table 1) with
the train inputs for our experiments. All benchmarks were
compiled with gcc version 4.2.1 and optimization level O2.

Figure 1 shows inter-run variation for all our benchmark
programs: each violin plot [7] shows the variation of a single
benchmark between identical runs of the benchmark (15 runs
per benchmark in total). The y-axis gives the ratio of a given
the median time to a particular run time. The white dot in
each violin plot gives the data for the median run (and thus
the ratio is always 1) and the thick line through the white
dot gives the inter-quartile range. The width of the violin
plot at y-value y is proportional to the number of runs with
ratio y. From this graph we see that all benchmarks with the
exception of libquantum have tight inter-run variation: in
other words, the run time of the benchmark varies little from
run to run.

This graph gives a baseline for all other graphs in this pa-
per; for example, if the difference between the performance
of a program compiled with O2 and compiled with O1 is

Parameter Dual-Core Xeon 5160 Pentium 4
Operating System Linux 2.6.17 Linux 2.4.21
Tool Chain gcc 4.1.1 gcc 4.2.1
Micro-architecture Core NetBurst
Clock Frequency 3 GHz 2.4 GHz
memory 8G 2G
L1 32K Ins., 32K Data 12K Ins. 8K Data
L2 128K Unified 512K Unified
L3 4096K NA
TLB entries 512 64

Table 2. Machines used to collect data.

smaller or comparable to the inter-run variation then we can-
not credit the difference to the difference between O2 and
O1. The inter-run-variation quantifies random error. Statis-
tical rigor (performing multiple measurements, computing
the mean, and using the confidence intervals for the mean)
addresses this error. The remainder of this paper is concerned
with systematic error, a form of error that no amount of sta-
tistical rigor can overcome.

3.2 Hardware infrastructure
We conducted our experiments on two machines: a Pentium 4
and a Dual-Core Xeon (Table 2). Unless we state otherwise,
all data in this paper is for the Pentium 4 workstation; we
picked the Pentium 4 for the majority of our experiments
since the Pentium 4 has the best support for collecting
performance data (hardware performance monitors) of any
recent computer. For example, the Pentium-4 can collect up
to 18 hardware metrics at a time; in contrast the Core Duo
can only collect 2 at a time. To confirm that the phenomena
explored in this paper are not specific to the Pentium 4, we
will also present results from the Dual-Core Xeon and from
the m5 simulator using the O3CPU model [3].

3.3 Our approach to measurement
With all aspects of our measurements we attempted to be as
careful and diligent as possible. In other words, the observer
effects and measurement bias that we demonstrate later in the
paper are present despite our best efforts.

• Except in the experiments where we add environment
variables, we conducted our experiments in a minimal
environment (i.e., we unset all environment variables that
were inessential).

• We conducted all our experiments on minimally-loaded
machines, used only local disks, and repeated each experi-
ment multiple times to ensure that our data was represen-
tative and repeatable.

• We conducted our experiments on two different sets of
hardware and (when possible) one simulator. This way we
ensured that our data was not an artifact of the particular
machine that we were using.

• Some Linux kernels (e.g., on our Dual-Core Xeon) ran-
domize the starting address of the stack (for security pur-
poses). This feature can make experiments hard to repeat
and thus we disabled it for our experiments.

• Except in the case of software instrumentation, we dynam-
ically added all our instrumentation in a wrapper around
the main function. The wrapper programs what hardware
metrics to collect before main executes and reads the
hardware metrics out after main executes. We use the
“LD PRELOAD” feature to install our wrapper. With this



approach, our instrumentation did not directly interact
with the compilation of the benchmark program.

4. Problems
We show that observer effect (Section 4.1) and measurement
bias (Section 4.2) are significant problems for performance
analysts.

4.1 Observer Effect
Performance analysts often prefer to collect data using hard-
ware performance monitors because it is cheap in terms of
instructions added to the measured software: the hardware
increments the counters and the software only needs to ini-
tialize and read out the counter values. However, hardware
monitors cannot collect some kinds of data (e.g., number of
database transactions) and thus, performance analysts some-
times also collect software metrics. Unlike hardware metrics,
software metrics insert instructions into the code to increment
software monitors and when executed the increments increase
the number of instruction executed 2.

Precisely quantifying the observer effect is difficult if not
impossible. If we had data from a pristine run (i.e., with no
observer effect) then we could compare a pristine run to other
runs to quantify the observer effect. However, we have no way
of getting a pristine run: even when we collect only hardware
metrics we may still suffer from the observer effect. The
approach we take is to vary the amount of instrumentation (for
hardware or software metrics) and see how the performance
of our benchmark changes. If we see that the performance is
very different between instrumentation I and instrumentation
J then we know that at least one of them must have suffered
from the observer effect.

4.1.1 Observer effect when collecting only hardware
metrics

To understand the performance of an application, a perfor-
mance analyst can collect a number of hardware metrics using
the hardware performance monitor facility in the hardware.
For example, the performance analyst may collect not just
total cycles but also other metrics such as I- and D-cache
misses. This section shows that this data collection may alter
the data; specifically the performance analyst may end up
with a different number of total cycles when she collects total
cycles by itself than if she collects it with other metrics.

There are many different ways in which we can record the
values of hardware metrics. The most obvious approach is to
add instrumentation to the program’s source (either manually
or using an instrumentation tool) that invokes the appropriate
operations for accessing the hardware performance monitors.
We decided against this approach because we feared that the
instrumentation may cause the compiler to produce different
code (e.g., by affecting register pressure). Instead, we use
a precompiled wrapper around the main function; we use
environment variables to communicate the set of metrics
to collect to the wrapper. In this way, we avoid having to
recompile either the program or the wrapper when we need
to collect a new set of hardware metrics. This is a common
approach for collecting data from HPM’s without altering the
source code of the application. We modeled our methods after
a number of tools used in the field (IBM’s hpmcount3, and the

2 To minimize the number of additional executed instructions, we do not
insert a conditional around increments.
3 http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=
/com.ibm.aix.cmds/doc/aixcmds2/hpmcount.htm.
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Figure 2. The effect on a benchmark’s performance (total
cycles) as we collect additional hardware metrics.

University of Oregon’s TAU4 to name a few). In Section 5.1,
we will show that the use of environment variables is the
cause of the perturbation.

Figure 2 shows how the number of hardware metrics
collected in a program run affects measurement results (in
this case, the overall cycle count). The x-axis shows the
number of hardware metrics to be collected in a run. The
x-axis starts at x=1 (the baseline) because we have to collect
at least one metric (the cycle count). The y-axis shows the
speedup over the baseline run. Speedup is computed as the
baseline run’s cycles divided by a given run’s cycles. That
is, if a given run incurs fewer cycles than the baseline, the
speedup is less than one. The figure contains one curve for
each of the nine benchmarks. To factor out random error we
performed five measurement runs for each benchmark and
metric count. Each point on each curve corresponds to the
mean speedup over these five runs. We computed the 95%
confidence intervals for all points and with the exception
of libquantum the intervals were very tight; thus we omit
them from the graph to avoid visual clutter. Even though
libquantum has a wide confidence interval due to its large
inter-run variation (Figure 2), we found that the variations
for libquantum (and all other benchmarks) in Figure 2 are
statistically significant.

Figure 2 shows that adding hardware performance moni-
tors can significantly change total cycles. The most extreme
cases are libquantum and h264 whose highest and lowest
points differ by 0.12 and 0.20 respectively. That is, even
just the act of collecting a few hardware metrics can change
overall execution time by a factor of up to 0.20 for our bench-
marks. Thus a program may appear to be much faster or
slower; as a consequence a performance analyst may either
waste time trying to optimize a program that does not need
optimization or conversely not optimize a program even when
it needs optimization. Observe that these changes in perfor-
mance are often much larger than the inter-run variation of the
benchmarks (Figure 1). While rigorous computer system per-
formance analysis approaches advocate taking inter-run vari-
ation into consideration[6], we are not aware of approaches
that also address the observer effect we show here.

We also note the lack of any obvious trend in Figure 2.
We would expect that more instrumentation always leads to
a higher cycle count but this is clearly not the case. Instead

4 http://www.cs.uoregon.edu/research/tau/home.php.
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Figure 3. The effect on a hardware metric’s value for perl-
bench as we collect additional hardware metrics.

the cycle count changes unpredictably with the amount of
instrumentation. Besides libquantum and h264ref, which
exhibit extreme sensitivity to the number of hardware metrics
(e.g. for libquantum, measuring two counters instead of one
leads to a speedup of 1.07), two other benchmarks (perlbench
and bzip2) also show sensitivity (speedup varies between
0.98 and 1.01 in both cases).

To shed further light onto the observer effect due to
collecting only hardware metrics, Figure 3 plots the change
in values for five frequently occurring hardware metrics for
perlbench. This figure has the same structure as Figure 2,
with the exception that the different curves represent different
metrics instead of different benchmarks. We present data
only for metrics that occur frequently because a change in an
infrequent metric is often not interesting; e.g., going from 1
to 2 TLB misses doubles the number of TLB misses but it
is not an interesting change. We present data for perlbench
because for the most part, its graphs visually look “average”
compared to the other benchmarks; we could not include the
full set of graphs due to space considerations.

From Figure 3 we see that adding one hardware metric can
significantly affect the values of other metrics. For example,
measuring additional hardware metrics causes RES STL
(cycles stalled on any resource) to vary between 0.94 and 1.04
times its value when it is collected on its own. Such swings
can easily mislead a performance analyst. For example, this
observer effect may cause a performance analyst to waste
time tracking down the cause of stalls when the stalls are
insignificant in the pristine run.

4.1.2 Observer effect when also collecting software
metrics

Let’s suppose a performance analyst wants to study the
relationship between the number of heap allocations and
the number of data cache misses. The analyst instruments the
heap allocator to update a software performance counter (a
global variable) that counts the number of allocations. This
section shows that collecting the software metric (e.g., heap
allocations) can alter the value of the hardware metric (e.g.,
data cache misses).

Unlike hardware metrics, software metrics need instrumen-
tation added to a program to increment counters in addition
to initializing and reading them out. The measurement in-
frastructure we use in this section is based on CIL [15] and
can selectively add instrumentation to a program. Using pro-
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Figure 4. The effect on a hardware metric’s value for perl-
bench as we collect additional software metrics.

filing runs, we identified key events (mainly calls) in each
of our benchmark programs; these are the events that a per-
formance analyst would probably measure if she wanted to
understand these programs. Our infrastructure enables us to
add instrumentation for any subset of these events. The in-
strumentation for an event takes the form of an increment to
a global variable. Collecting a different number of software
metrics requires re-running CIL to instrument the program
and then recompiling the instrumented program. In all exper-
iments in this section we collect eight hardware metrics in
addition to the zero or more software metrics.

Figure 4 illustrates how the number of software metrics
collected in perlbench affects the measurement count of
hardware metrics. As we move along the x-axis we add more
and more software instrumentation to perlbench, starting
from zero SPMs (the baseline) to the number of SPMs that
causes a 1.8% increase in instructions executed. Figure 4
has one curve for each of the five most frequently occurring
hardware metrics. The y-axis represents the speedup over
the baseline (i.e., no software metrics). Figure 4 shows that
(i) adding an insignificant number of instructions can have
a great impact on the performance of a system (i.e., large
observer effect); and (ii) the effect is not predictable in that
adding instrumentation can improve or degrade the values of
the hardware metrics.

Figure 5 shows the effect of collecting software metrics
on total cycles for all of our benchmark programs. The y-
axis gives the ratio of execution time when we collect no
software metrics to the execution time when we collect some
software metrics. Each violin plot visualizes the distribution
of speedup as a result of collecting different numbers of
software metrics. Each point that contributes to a violin plot
collects a particular set of software metrics; different points
collect different sets of metrics. The left-most violin plot
(perlench) summarizes the points in Figure 4 for total cycles
(TOT CYC). The white dot in each violin plot gives the
median speedup, and thick lines through the white dot give
the inter-quartile range. The width of the violin plot at a
particular y value gives the proportion of metric sets that
lead to a speedup of y. The number below each violin plot is
the maximum percentage change in the number of executed
instructions as a result of the instrumentation.

From Figures 5 we see that adding a small amount of
software instrumentation can dramatically change the exe-
cution time of the program. For example, by changing the
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Figure 5. The effect on a benchmark’s performance (total
cycles) as we collect additional software metrics.

instruction count of perlbench by less than 1.8% we changed
perlbench’s performance drastically, ranging from a speedup
of 1.15 to a slowdown of 0.92. This is unexpected: we expect
that such a small change in instruction count would not have
such a large impact, but it does!

Our results show that even if the overhead due to software
metrics is small (e.g. only 2% increase in dynamic instruc-
tions), the observer effect may be enormous. For example,
the hapless performance analyst may spend all of his time
tracking down the source of I-cache misses in perlbench,
without realizing that software instrumentation caused more
than 80% of those misses.

4.1.3 Summary of observer effect
We find that the observer effect is prominent even when the
observations themselves are lightweight. Worse, this effect is
not predictable: more observations do not translate into more
observer effect. Thus, unlike the approach taken in prior
work [19] we cannot just subtract out the observer effect after
collecting our data.

4.2 Measurement Bias
Systems researchers often need to compare two versions of a
system; for example compiler researchers often need to com-
pare a system with and without some compiler optimization.
If the measurement context favors one of these versions over
the other then the comparison will be unfair: in our exam-
ple, it may either exaggerate or play down the benefit of the
optimization.

This section shows that measurement bias is significant;
e.g., with some contexts, gcc’s optimization level O2 out-
performs O3 and with other contexts O3 outperforms O2.
In this section, we explore two kinds of changes between
measurement contexts: settings of environment variables and
linking order. The goal of this section is not to enumerate all
possible sources of bias but to show that bias is large enough
to mislead the performance analyst.

4.2.1 Measurement Bias due to Shell Environment
State

Figure 6 shows the effect of adding environment variables
to speedup obtained with “gcc -O3” versus “gcc -O2”. The
leftmost point is for an environment of 2 bytes; all subsequent
points add 390 bytes to the environment; the last point is at
8192 bytes. To add to an environment, we simply extend the
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Figure 6. The effect of adding environment variables on the
speedup of O3 over O2 for Perlbench.
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Figure 7. The effect of adding environment variables on
speedup of O3 over O2 for our benchmarks.

string value of a dummy environment variable that is not used.
Thus, the only affect of this addition is to affect the starting
address of the stack (the environment variables occur before
the call stack in memory).

A point (x, y) says that when we have x bytes in the
environment, the execution time with O2 divided by the
execution time with O3 is y. We generated this data using
the bash shell5. We computed each point using fifteen runs
each with O2 and O3 ; the error bars give the 95% confidence
intervals around the mean. The tight confidence intervals
means that our runs are easily reproducible. We repeated these
experiments with other commonly-used shells and obtained
similar results.

The most important point to take away from this graph
is that depending on the environment variables we may
conclude that O3 is better than O2 (i.e., the y value is less
than 1.0) or O2 is better than O3 (i.e., the y value is greater
than 1.0)! As discussed above, we repeated the experiment
for each data point multiple times; thus the extreme points
are not anomalies but true reproducible behavior.

Figure 7 summarizes similar data across all benchmarks.
Each violin plot gives the data for one benchmark and plots
all the points for the benchmark (each point corresponds to

5 http://www.gnu.org/software/bash/manual/bashref.html
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Figure 8. The effect of linking order on speedup of O3 over
O2 for the perlbench benchmark.

a particular size of environment). The left-most violin plot
summarizes all the data presented for perlbench in Figure 6.
We see that six of the nine violin plots straddle 1.00: this
means that depending on the environment, O3 either offers a
speedup or a slow down for all the benchmarks.

In Figure 7, the difference between the maximum and
minimum points of the violin plot are particularly instructive
since they give an indication of how much of a bias one can
end up with. The most extreme is h264ref which varies from
0.99 (i.e., slight slow down due to O3 over O2 ) to 1.21 (i.e.,
a healthy speedup of O3 over O2 ). This variation is large
enough to easily eclipse the speedup due to many compiler
optimizations [12].

4.2.2 Measurement Bias due to Linking Order
Figure 8 explores the effect of object linking order on the
speedup of “gcc -O3” over “gcc -O2”. To obtain this data, we
compiled perlbench 10 times, each time randomly changing
the order of the .o files to the linker. A point (x, y) in Figure 8
says that for the xth linking order we tried (we generated
these randomly) the execution time of the benchmark with
O2 over its execution time with O3 was y. For each point,
we conducted 15 run each with O2 and O3 ; the whiskers
give the 95% confidence intervals around the mean.

The most important point to take away from Figure 8 is
that depending on the linking order O3 can either give a
speedup over O2 (i.e., y value is less than 1.0) or a slow
down over O2 (i.e., y value is greater than 1.0).

Figure 9 uses a violin plot to illustrate the effect of linking
order on the speedup of O3 over O2 for all the benchmarks.
Each violin plot summarizes data for all the linking orders
for the benchmark. The left-most violin plot summarized the
data plotted for perlbench in Figure 8. From this figure we
see that seven of the nine violin plots straddle 1.0; thus, for
these benchmarks, we may arrive at completely conflicting
conclusions about the benefit of O3 over O2 depending on
the linking order that we use.

4.2.3 Summary of Measurement Bias
We have shown that measurement bias can easily mislead a
performance analyst into believing that one configuration is
better than another whereas if the performance analyst had
conducted the experiments in a slightly different measure-
ment context she would have concluded the exact opposite.
Moreover, the effects of measurement bias are large: they
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Figure 9. The effect of linking order on speedup of O3 over
O2 for the SPECint benchmarks.
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Figure 10. The effect of linking order on speedup of O3 over
O2 for the perlbench benchmark on Core Duo workstation.

can easily overwhelm the performance benefits due to most
optimizations. Even worse, measurement bias appears to be
unpredictable: for example, adding environment variables
can increase or decrease the speedup due to O3.

Comparing Figure 9 to Figure 7 we see that adding envi-
ronment variables typically has a larger effect than changing
linking order. Nonetheless, both are significant sources of
measurement bias in their own right.

4.3 Generality of our results
Figure 10 presents data similar to Figure 8 except for the
Core Duo workstation. We see that our phenomenon is not
specific to the Pentium 4: indeed even on the Core Duo we see
that the linking order can lead to conflicting conclusions over
the benefit of optimization level O3 over O2. Furthermore, the
range of values for different linking orders is greater on the
Core Duo, from 0.96 to 1.07, than the range on the Pentium 4,
from 0.99 to 1.03.

Figure 11 is similar to Figure 8 except it presents data for
the m5 simulator (o3cpu model) and for the bzip2 benchmark
running a small (home grown) input. We use bzip2 with a
small input because the larger inputs or other benchmarks
were prohibitively slow. We see that the measurement bias
also affects simulation! Thus, while simulations may be a
reasonable approach for avoiding the observer effect, they do
not help with measurement bias.
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Figure 11. The effect of linking order on speedup of O3 over
O2 for the bzip2 benchmark on m5 simulator.

5. Recognizing Poor-Quality Data
So far we have given just the bad news: that even with a
careful experimental methodology we can end up with a
significant observer effect and measurement bias. Now, we
present two approaches that attempt to recognize poor-quality
data and thus prevent one from drawing invalid conclusions.

5.1 Using causal analysis
We propose using casual analysis [18] to determine if poor-
quality data is misleading us. More concretely, let’s suppose
that our data leads us to the conclusion that X causes Y (e.g.,
X may be L1 D-cache misses and Y may be instructions-per-
cycle). In reality, it may be that X does not actually cause Y ;
instead, the observer effect has led us to the wrong conclusion.
To check if this has indeed happened, we use intervention: we
change X while attempting to keep everything else constant
and see if Y changes accordingly. If Y changes accordingly,
then we have some evidence that our conclusion is true and
not caused by poor-quality data. The remainder of this section
demonstrates such causal analysis on a concrete case study.

Figure 2 (in Section 4.1) showed that adding hardware
performance monitors could lead to significant observer
effect. In the terminology of causality, we concluded the
following from our data: the act of collecting hardware
metrics caused a change in the execution time of the program.
We now explore this causal relationship.

As discussed in Section 4.1, we were careful to avoid
recompilation; in other words, we executed the same code
for the program when collecting n metrics and collecting
m metrics (obviously, the instrumentation code behaved
differently for the different numbers of metrics). Thus, the
only difference between n and m metrics were: (i) the
dynamic instructions to set up and read out the different
number of metrics; (ii) the dynamic instructions to interpret
the environment variables which we used to communicate the
set of metrics that we wanted to collect; and (iii) the memory
layout changes we incurred due to a different number of
environment variables that are used to specify what hardware
metrics to collect.

Because Section 4.2.1 had already warned us that the set-
tings of environment variables could cause significant mea-
surement bias, we decided to explore (iii) first. Specifically,
we changed our measurement infrastructure so that we used
exactly the same number of environment variables with the

same length for any number of hardware metrics; effectively
we padded the variables to be of the same size.
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Figure 12. Change in h264ref’s total cycles as we add
hardware metrics.

Figure 12 illustrates the how the total cycles changes as
we add more metrics for the h264ref benchmark. The “origi-
nal” curve gives the data using the approach in Section 4.1;
the “with padding” uses padding to keep the environment
at a fixed size. A point (x, y) says that when we collect x
hardware metrics, the ratio of the cycle count when collecting
one metric and when collecting x metrics is y.

From Figure 12 we see that adding hardware metric has
a significant impact on the “original” approach: indeed this
is the variation that accounts for the measurement bias in
Section 4.2.1. On the other hand, from the “with padding”
graph we see that as soon as we fix the size of the environment
variables, the variability goes away: the curve is essentially
flat! In other words, we have proved that it was not the
collection of hardware metrics that was affecting total cycles
but the way in which we were using environment variables.

While the above analysis shed light on whether or not a
particular conclusion inspired by our data was true, it does not
say anything about the data in an absolute sense of the word.
Even with the padding intervention we did not eliminate the
observer effect: we simply reduced it to the point where it
showed that our initial conclusion was false. Indeed, except in
very limited cases, one cannot eliminate the observer effect;
we simply have to learn to work around it.

Causal analysis is not a turn-key solution. It requires
careful judgment on the part of the performance analyst.
Even in our demonstration, we could have followed many
different paths. For example, instead of padding environment
variables, we could have added environment variables for the
different number of metrics while always collecting only a
single metric. This analysis too would have led us to the same
conclusions.

In summary, this section demonstrated how to use causal
analysis to test a conclusion inspired by the data. Our demon-
stration actually showed that a causal relationship that seemed
obvious was actually not a causal relationship! We have
repeated such analysis many times for different scenarios.
Sometimes we find that the causal analysis refutes our con-
clusion and in other cases it gives us further confidence that
our conclusion is correct.

5.2 Using variant generation
Causal analysis provides the most reliable way of determin-
ing whether or not measurement bias and observer effect
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Figure 13. Using variant generation to determine the
speedup of O3 over O2. At a 95% confidence interval, we
estimate the speedup to be 1.007± 0.003

have led us to an incorrect conclusion. However, as seen in
the previous section, causal analysis requires a significant
time-investment from the researcher: rewriting part of the
measurement infrastructure. In this section, we describe an
automated approach that potentially relieves the amount of ef-
fort required by a researcher. This new approach only detects
measurement bias, but not observation effect.

In Section 4.2, we identified two sources of bias in our
measurements (shell environment state and the linking order
of a benchmark’s object files) and demonstrated their effect
when we evaluate the speedup of O3 over O2. Given our
prior analysis, a question still remains: “What is the speedup
of O3 over O2”? Although we cannot answer this question
in general because we cannot enumerate all possible sources
of measurement bias, we can at least attempt to answer it for
the source of measurement bias that we know about.

The basic idea is as follows: rather than using a single mea-
surement context to collect our data, we use interventions to
generate a large number of contexts. We can generate the con-
texts by varying parts of the measurement context we know
to cause measurement bias; for example, we can try many
different linking orders and many different settings and sizes
for environment variables. If we randomly and adequately
sample from all possible contexts we have factored out the
effects of these two possible causes of measurement bias;
effectively we have turned the systematic bias introduced by
shell environment state and linking order into random error
and thus with rigorous statistical techniques we can factor
out this random error.

In this section, our goal is to understand the performance
benefit of O3 over O2, and after a large collection effort
(mostly just machine time) we can compare the two distribu-
tions to see if there is any statistically significant difference
in the means. To do this, we use the paired t-test[8], as we
make sure that run 10 from O3 is collected in the same mea-
surement context as run 10 from O2.

Figure 13 demonstrates our approach by plotting the dis-
tribution of 484 measurement contexts (using a cross product
of 22 permutations of linking order and 22 permutations of
shell environment state) for O2 and for O3. We capture 3
runs per linking order and shell environment state to mitigate
the effects of inter-run variation. Our hypothesis is that there
is a speedup when applying O3 in favor of O2 for 400.perl-
bench. To validate this claim, we use the paired t-test to see

if there is any statistically significant difference in the means
between the two distributions6. Indeed, at the 95% confidence
interval we estimate the mean of O2 divided by the mean of
O3 to be 1.007± 0.003, a slow down, because the fraction is
greater than 1.0! Although tiny, the slow down is statistically
significant, because the confidence interval falls above 1.0.
We as researchers in systems expect that O3 should provide
a sizable increase in performance. However, when we factor
out the effects due to shell environment state and linking or-
der, we find that there is a very small decrease in performance
for this benchmark.

While our approach explores more of the space of mea-
surement context than a single run, it does not fully explore
the space. Thus, while we consider our results to be more
reliable than just comparing two runs in the same measure-
ment context, our approach is also not definitive: a definitive
approach would have to randomly sample contexts from all
possible measurement contexts. We hope that as our approach
gains use within the community, researchers will extend it to
consider other sources of measurement bias and thus cover
more of the space of measurement contexts.

The methods used in this paper are akin to how people
operate in other sciences. For instance, imagine an epidemi-
ologist hypothesizes that a certain food has the potential to
cause a certain form of cancer. One would not expect her, for
instance, to set up a test group made entirely of smokers—
being a smoker increases the chance of developing a cancer.
A proper experiment would realize smoking is a potential
source of bias and mitigate its effects on the experiment’s out-
come by having an equal number of smokers in both the test
and control groups. Moreover, this process of understanding
those things that potentially add bias is ongoing. If, after the
fact, a new source of bias is found that was not accounted for
in a previously published result—the study may have to be
redone.

Collectively, as a community, epidemiologists realize bias
has the potential to impact the conclusions of their research.
They have actively worked to develop methods to (i) isolate
and determine factors that cause bias and (ii) systematically
developed methods that allow a researcher to handle those
factors. As we point out in this paper, in computer science
experimental methods, bias is real, pervasive and sometimes
able to overwhelm our conclusions. As a community we need
to develop methods to overcome its implications—Indeed
this paper is a first attempt at doing so.

To summarize, this section detailed an automated tech-
nique that allows a researcher to gain confidence that her
conclusions are correct. If a source of bias is known, one
can factor that bias out of any measurement by simply gen-
erating and measuring performance in many measurement
contexts varying the bias. The results may still be biased due
to unknown factors, but at least in this way a researcher has
factored out what she knows to cause bias.

5.3 Summary
We have described and demonstrated two approaches for
ensuring that poor quality data does not lead us to an invalid
conclusion.

Our first approach uses causal analysis to confirm our hy-
pothesis. While this is the definitive approach, it is difficult
to use and is not automatic: it can require domain knowledge
to manipulate causal relationships. In Section 5.1, we demon-

6 See [6] for a nice discussion of this calculation.



strated how to use causal analysis to expose an an invalid
conclusion from poor-quality data.

Our second approach attempts to avoid measurement bias
by measuring a system in a large number of automatically
generated variants of the measurement context. This approach
helps greatly with measurement bias but it is limited by
the variants that we generate automatically. In this paper
we have identified two ways of generating variants: by
changing linking order and by changing the size and settings
of environment variables. While we have demonstrated that
these are both important sources of measurement bias, these
are not the only sources of measurement bias. We expect that
as this technique gets more use, researchers will identify other
sources of measurement bias and add them to this technique.

6. Related Work
Korn et al. [10] evaluate the perturbation due to counter read-
outs by comparing the values measured on a MIPS R12000
with results from SimpleScalar’s sim-outorder simulator and
with analytical information based on the structure of their
micro-benchmarks. Their evaluation is based on a small num-
ber of simple micro-benchmarks on a simple processor and
they only consider total counts. Maxwell et al. [13] extends
this work to three new platforms, POWER3, IA-64, and Pen-
tium. This extension still focuses on micro-benchmarks and
is limited to aggregate event counts. We analyze the per-
turbation of real benchmarks, and, in stark contrast to the
above work, we find that perturbation is non-monotonic and
unpredictable with respect to the amount of instrumentation.

Researchers associated with the PAPI group at the Univer-
sity of Tennessee at Knoxville have reported on the overhead
of PAPI (PAPI is the infrastructure we use for collecting hard-
ware metrics). Moore [14] discusses accuracy issues when
using PAPI for counting events. They report the overhead of
starting, stopping, and reading counters in processor cycles
on different architectures, but they do not study how this
overhead affects measurements in real benchmarks.

In their work on flow and context sensitive profiling [2],
Ammons et al. describe perturbation of hardware counters due
to software instrumentation. To determine the perturbation
due to their instrumentation, they compare the total metric
values in a lightly instrumented system to the total metric
values produced by their flow and context sensitive profiling
system. In contrast, we show that one cannot generally predict
perturbation in one measurement approach (e.g. a heavily
instrumented system) by measuring perturbation in a different
measurement approach (e.g. a lightly instrumented system).

Most fields of experimental science use inferential statis-
tics [8] to determine whether a specific factor (e.g. drug
dosage) significantly affects a response variable (e.g. patient
mortality). Recent work in our field strongly highlights the
absence of this practice in our area and advocates for the use
of statistical rigor in software performance evaluation [6, 9].

7. Conclusions
Data collection in computer systems research is easy when
compared to other sciences; we generate reams of data for
each paper and it typically only takes a few days of wall-
clock time. However, our collection efforts can easily produce
“poor-quality data”; poor-quality data is data that can lead to
invalid conclusions.

In this paper, we explore two common causes of poor-
quality data. First, we illustrate that observer effect causes
poor-quality data by dramatically perturbing the system that

is being measured and may lead a performance analyst to
draw invalid conclusions. For example, in Section 4.1 we
show that something as benign as collecting software metrics
with only a small increase in the number of instructions
executed (less than 2%) can significantly perturb our system
leading a performance analyst to believe, for example, that L1
instruction cache misses are a performance problem, when the
cache misses are caused by the measurement infrastructure.

Second, we show that measurement bias can cause poor-
quality data because the measurement context favors one
system or variant of a system over another and may lead a
performance analyst to draw invalid conclusions. For exam-
ple, in Section 4.2 we show how even something as innocuous
as increasing the size of a dummy UNIX environment vari-
able can determine whether or not code compiled using “gcc
-O3” is faster than code compiled using “gcc -O2”.

We introduce techniques in Section 5 to detect poor-
quality data: causal analysis detects when observer effect
causes poor-quality data and variant generation detects when
measurement bias causes poor-quality data. We demonstrate
both techniques with case studies.
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