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A Review of Mathematical Techniques in Machine Learning

Thesis directed by Professor Michael Mozer

As machine learning has developed, its methodologies have become increasingly mathe-

matically sophisticated. For example, sampling and variational methods that were originally

developed for application to mathematically difficult problems in statistical mechanics are

now commonplace in machine learning. Similarly, machine learning has co-opted many ideas

from statistics, such as nonparametric Bayesian methods like Gaussian processes, Dirichlet

processes, and completely random measures. In addition, graphical models and their associ-

ated inference techniques have emerged as a very important tool in a wide variety contexts.

There are also interesting ideas that originated in machine learning rather than coming from

other fields, ideas such as the kernelization of linear algorithms, and ideas in reinforcement

and hierarchical reinforcement learning. This thesis reviews machine learning techniques of

the types mentioned above that are of particular mathematical interest.
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Introduction

This thesis is a review of an array topics in machine learning. The topics chosen are

somewhat miscellaneous; they are chosen to give a broad overview of the field rather than

to give a complete picture of any one area.

One thing that all the topics do have in common is that the techniques involved are of

mathematical interest. Topics like inference, graphical models and nonparametic Bayesian

methods all draw on results in statistics, and material on kernel methods is almost entirely

in the language of functional analysis. The approach this thesis takes is somewhere between

engineering and mathematics. On the one hand, we don’t discuss purely practical matters

like implementation details of the algorithms we present. On the other hand, we believe

that the material presented, most of which is very new, is still a work in progress, so we

often avoid formal proofs, reasoning that these are better explored after techniques are more

established. Overall, the emphasis is on giving a presentation of the material that is rigorous

and general, but that does not get bogged down in mathematical details.

Chapter 1 begins by discussing inference and sampling, tools that are important for the

realization of the models we discuss in subsequent chapters. Chapter 2 discusses graphical

models. It presents the three main types of graphical models, but most of the emphasis is on

belief propagation, an elegant form of inference that is specific to graphical models. Chapter

3 presents nonparametric Bayesian techniques, which are relatively new and very popular.

The emphasis in this chapter is on ways to define probability distributions over infinite

dimensional objects like functions, measures and infinite matrices. Chapter 4 is on kernel
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methods, which now might be regarded as a classical topic in machine learning. This chapter

gives some theoretical justification of the use of kernels, and discusses how kernels relate to

regularization. The 5th and last chapter presents some topics in reinforcement learning,

giving a perspective on the learning problem that is different than the ones presented in

earlier chapters. This chapter surveys some classical techniques in reinforcement learning,

and looks at a few approaches to hierarchical reinforcement learning, which remains an

exciting research area.

In general, we will use the following notational conventions:

• Bold lowercase letters (e.g. x,y) will denote variables; bold uppercase letters will

denote collections of variables (e.g. X = x1,x2, . . .).

• Matrices will generally be plain uppercase letters, (e.g. A. )

• An uppercase P will denote the probability mass function of a discrete probability

distribution; a lowercase p will denote the probability density function of a continuous

probability distribution.

• In graphical models, filled circles will correspond to observed variables, and open

circles will correspond to unobserved ones.



Chapter 1

Inference

As we will see in later chapters, many problems in machine learning can be formulated

probabilistically. Unfortunately, many of these formulations involve intractable probability

distributions. This chapter presents techniques for overcoming this intractability.

We begin by presenting the EM algorithm, which shows how to make inference possible

by the introduction of hidden variables. The EM algorithm can be interpreted as an instance

of variational inference, which is a way to approximate an intractable distribution with one

that is easier to deal with. Following the EM algorithm, we present variational techniques

in general. The chapter concludes by presenting sampling methods. Rather than trying to

actually compute distributions, these techniques simply sample from them, and then use the

samples to compute quantities of interest. Although this idea is very simple, it often difficult

to get obtain the samples. We discuss two methods to deal with this, Gibbs sampling and

the Metropolis Hastings algorithm, which make sampling possible.

1.1 The EM algorithm

Consider the problem of fitting data to a Gaussian mixture model. We assume that

we have n data points Y = y1, . . . ,yn that are drawn from a mixture of m Gaussian distri-

butions. The model is specified by a choice of parameters (µj, σj)j=1,...,m for each of these

Gaussians, and by m mixture proportions ai, so that the each point yi is drawn from the
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mixture:
m∑
j=1

ajN (µj, σ
2
j ) (1.1.1)

We call the collection of parameters θ, with θj := (aj, µj, σ
2
j ).

Our goal is to find a maximum likelihood estimate of θ. The problem is that, as

currently posed, the likelihood is difficult to optimize. However, let us introduce cluster

membership parameters x1, . . . ,xn where xi = k if yi was generated by the kth Gaussian.

Now, it is easy to evaluate the likelihood function L(θ | X,Y) because all we have to do

is go through the points yi, and check the probability that yi was drawn from the Gaussian

that xi assigns it to. Of course, though, we don’t actually know X. But if we knew the

parameters θ, we could easily infer a distribution over X: p(xi = k | Y, θ) is proportional

to the likelihood that xi was drawn from N (µk, σ
2
k). Note that this is essentially the same

calculation that we used to find the likelihood of the parameters given the hidden variables.

So we essentially have a chicken and egg problem: if we know the parameters, we

can compute a distribution over the hidden variables. Conversely, if we know the hidden

variables, we can find the ML estimates of the parameters by computing and maximizing

the likelihood given the hidden and observed variables. This suggests an iterative scheme

wherein we guess the parameters, then guess the distribution of hidden variables based

on these estimates, and then update the estimates of the parameters based this estimated

distribution of the hidden variables. In fact, this is exactly what the EM algorithm does.

1.1.1 The EM Algorithm in General

The general setting of the EM algorithm is much like the setting in the example: We

have visible data Y and hidden data X, and that we want to maximize the likelihood of a set

of parameters L(θ | Y). We assume that maximizing this likelihood directly is intractable,

but that, as in the example above, we can compute

• p(X | Y, θ)
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• L(θ | X,Y)

Note that these are not really different calculations since L(θ | X,Y) = p(X,Y | θ),

but the logic of the algorithm, and particularly the chicken and egg nature of the problem

is made clearer by presenting them separately.

The EM algorithm has two steps, an (E)xpectation step and a (M)aximization step.

Given an estimate θ(k) of the parameters, by the first point above, we can compute a distri-

bution qk over the hidden variables.

E Step: q(k+1)(X) = p(X | Y, θ(k)) (1.1.2)

With this new knowledge of the hidden variables, we can update our estimate of the param-

eters to θ(k+1). Of course, we don’t actually have an estimate of the values of the hidden

variables; we have an estimate of a distribution over them. This means that we can’t directly

compute the ML estimates of the parameters. However, we can compute and maximize the

expected likelihood based on our estimated distribution. This is what we do in the M step:

M Step: θ(k+1) = argmaxθEqk+1 [L(θ | X,Y)] (1.1.3)

Note that this exposition is somewhat unorthodox: The usual presentation has the E step

computing the expectation that we put in the M step, and the M step simply maximizing

it with respect to θ. We choose this presentation because it facilitates the interpretation of

the EM algorithm as variational inference that we will give later on.

1.2 Variational Inference

Variational inference is a technique for approximating difficult distributions with eas-

ier ones. The variational framework can be applied in a variety of situations to obtain

approximations with many different types of distribution. In this section, we will explore

the case in which the approximating distribution is rendered tractable by virtue of the fact

that it factorizes. First, though, we develop a situation in which this sort of approximation



6

can be applied. The example we develop, and the subsequent sections, closely mirror the

presentation given in [3].

1.2.1 Bayesian Linear Regression

The setup is a standard one in regression problems. Namely, we have a set of input-

output pairs (si, ti)i=1:n, and we assume that ti depends on si. Since this is linear regression,

we assume that:

ti =
∑
j

wj φj(si) + ε, (1.2.1)

where the φ are a set of possibly non-linear basis functions, and ε is a noise term that we

assume follows the Gaussian distribution:

ε ∼ N (0, β−1) (1.2.2)

Note that for notational convenience, we have omitted an offset term or intercept term in

(1.2.1). This is not a serious limitation though, since it is possible to imagine that s1 is a

“dummy” data point, s1 = 1, which would make w1 the offset.

Since we are doing regression in a Bayesian framework, our goal is to infer the posterior

distribution of the weights, p(W | S,T) assuming some prior distribution on W. Because

we have assumed that the noise ε follows a Gaussian distribution, we know that p(T |W,S)

is Gaussian, so we can get conjugacy by choosing the prior on W to be Gaussian as well.

Because we assume our variables are i.i.d., it seems to be reasonable to make the prior

isotropic and centered at zero:

W | α ∼ N (0, α−1I) (1.2.3)

We can also place a prior on α. We choose the conjugate prior, as discussed later. The

conjugate prior for the inverse variance of a Gaussian with known mean is a Gamma, so we

choose

α ∼ Gam(a, b) (1.2.4)
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(The reason that we are working with α−1 is that working with the variance directly would

give us a messier inverse Gamma prior.)

So our goal is to find the joint posterior p(W, α | T,S). (For notational convenience,

we will call this distribution p). There are a number of ways to do this, but for the purposes

of this exposition, we will use variational methods to approximate the true distribution p

with a more manageable factorial distribution q = q1(α)q2(W). The question now is how to

choose the q distributions. We can do this by first applying a quite general result that shows

how to use variational methods to approximate an arbitrary posterior distribution with a

factorial distribution. Before proceeding, though, we have to introduce some background:

1.2.2 Information Theory

1.2.2.1 Entropy

Qualitatively, entropy is a measure of uncertainty about the outcome of a discrete

random variable that takes values xi with probability P (xi). We can define entropy as by

requiring that it satisfy three axioms:

(1) For a fixed number of outcomes, uncertainty should be maximal when the distribu-

tion is uniform. This makes sense, because a uniform distribution is the distribution

for which we are least able to make an accurate guess of the outcome (for a peaked

distribution, we could guess the peak and expect to be right relatively frequently),

and hence the distribution about we are most uncertain. The same reasoning jus-

tifies the requirement the entropy of a uniform random variable increase with the

number values it can take on.

(2) The uncertainty should remain the same if we shuffle the probabilities and assign

them to different outcomes. In other words, the entropy should depend only on the

probabilities and not on the outcome values.
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(3) The uncertainty of two independent random variables should be the sum of the

uncertainties about each.

It can be shown that the only measure of uncertainty that satisfies the above requirements

is:

H(X) = −
∑
i

P (xi)logP (xi) (1.2.5)

It can be shown that the entropy as defined above can be interpreted as the expected min-

imum number of yes/no questions that a questioner following the optimal asking strategy

will have to pose in order to determine the value of the random variable from someone who

knows its outcome.

1.2.2.2 Conditional Entropy

Let x and y be two discrete random variables. The symbol H(y | x) denotes the

conditional entropy of y given x. H(y | x) tells us how much uncertainty is left in y if we

know the value of x.

H(y | x) =
∑
i

P (xi)H(y | x = xi) (1.2.6)

We have H(y) ≥ H(y | x), with equality iff x and y are independent.

1.2.3 Mutual Information

We define the mutual information between random variables x and y to be the reduc-

tion in uncertainty about x we get if we know y:

I(x,y) = H(x)−H(x | y) (1.2.7)

We see that I(x,y) = 0 if and only if H(x) = H(x | y) iff knowing y does not reduce the

uncertainty of x at all, which happens if and only if X and Y are independent. The term

‘mutual’ is justified by the fact that I(X, Y ) = I(Y,X).
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1.2.3.1 Kullback-Leibler (KL) Divergence

The KL divergence is a way of measuring the distance between two probability distri-

butions (note: the word ‘distance’ is somewhat misleading, because the KL divergence is not

symmetric, and therefore does not define a metric). The KL divergence is defined by:

KL(P (x)||Q(x)) =
∑
i

P (x)log
P (x)

Q(x)
(1.2.8)

An alternative characterization of the mutual information between x and y is that

I(x,y) = KL(P (x,y)||P (x)P (y)) (1.2.9)

In other words, the mutual information between two variables is high if they are far from

being independent.

1.2.4 Variational Approximation with Factorial Distributions

We will frame the general problem as approximating the true posterior distribution

p(X | Y) of hidden variables X conditioned on visible variables Y with a factorial distribution

with two factors: q(x1,x2) = q1(x1)q2(x2). One idea is to choose q to have minimal KL

divergence from the true posterior distribution. However, the whole reason that q is on

the table is that we are assuming the true posterior is intractable. So presumably it is not

practical to compute a KL divergence involving it. The first step to avoiding this problem

is to write

KL(q||p) = −
∫
q(X)log

[
p(X | Y)

q(X)

]
dX (1.2.10)

Splitting the log gives:

= −
∫
q(X)

(
logp(X | Y)− logq(X)

)
dX (1.2.11)

Using the definition of conditional probability and splitting the log again:

= −
∫
q(X)

(
logp(X,Y)− logp(Y)− logq(X)

)
dX (1.2.12)
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Distributing q(X):

=

∫
q(X)logp(Y)dX−

∫
q(X)

(
logp(X,Y)− logq(X)

)
dX (1.2.13)

Pulling out a constant:

= logp(Y)

∫
q(X)dX−

∫
q(X)log

[
p(X,Y)

q(X)

]
dX (1.2.14)

Since q integrates to 1,

KL(q||p) = logp(Y)− F (q), (1.2.15)

Where we have defined

F (q) :=

∫
q(X)log

[
p(X,Y)

q(X)

]
dX (1.2.16)

F is called the variational free energy. The key observation is that since Y is observed,

logp(Y) is fixed. Therefore, the KL divergence may be “squeezed” between this constant and

F (q): we may therefore minimize the KL divergence by maximizing F . This is significant

because F involves the (assumed to be tractable) joint distribution p(X,Y) and not the

intractable posterior p(X | Y). Therefore, we may approximate the posterior without ever

needing to compute it!

In light of our factorizeability assumption, we have

F (q) =

∫ ∫
q1(x1)q2(x2)log

[
p(x1,x2,Y)

q1(x1)q2(x2)

]
dx1 dx2 (1.2.17)

Expanding the logarithm and distributing the double integral gives

F (q) =

∫ ∫
q1(x1)q2(x2)logp(x1,x2,Y)dx1 dx2 (1.2.18)

−
∫ ∫

q1(x1)q2(x2)logq1(x1)dx1 dx2−
∫ ∫

q1(x1)q2(x2)logq2 x2 dx1 dx2

After pulling constants out of integrals, we get

F (q) =

∫
q2(x2)

[∫
q1(x1)logp(x1,x2,Y)dx1

]
dx2 (1.2.19)
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−
∫
q2(x2)

[∫
q1(x1)logq1(x1)dx1

]
dx2−

∫
q2(x2)logq2(x2)

[∫
q1(x1)dx1

]
dx2

Consider for the moment only the dependence on q2(x2). We make a few observations.

First, the inner integral in the second term is constant with respect to q2(x2), so for the

purposes of optimization with respect to q2, we can drop it. Further, since q2(x2) is a

probability distribution, it integrates to 1. Thus, for the purposes of optimization, we drop

the second term entirely. Last, q1(x1) also integrates to 1, so we can drop the inner integral

from the third term. We are left with

F (q) =

∫
q2(x2)

[∫
q1(x1)logp(x1,x2,Y)dx1

]
dx2−

∫
q2(x2)logq2(x2)dx2 (1.2.20)

Now, we recognize the second term as the negative entropy of the distribution q2(x2), H(q2).

We can also recognize the first term as the negative cross entropy of q2 with the distribution

s(x1,Y) defined by

log s(x2,Y) =

∫
q1(x1)log p(x1,x2,Y)dx1 = Eq1 [logp(x1,x2,Y)] (1.2.21)

Therefore, our optimization amounts to maximizing

−H(q2, s) +H(q2) = −KL(q2||s) (1.2.22)

So, in order to maximize F with respect to q2, it suffices to minimize the KL divergence

between q2 and s. Further, we know that this minimization occurs when q2 = s. Thus, we

set:

logq2(x2) = Eq1 [logp(x1,x2,Y)] (1.2.23)

Everything in our derivation was symmetric, so that we also have:

logq1(x1) = Eq2 [logp(x1,x2,Y)] (1.2.24)

The obvious problem is that these expressions tell us how to estimate one unknown

distribution in terms of another unknown distribution So we again have a chicken and egg

problem. As before, we use an iteration to alternatingly estimate the two distributions.
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1.2.5 Back to Bayesian Linear Regression

Substituting α for x1 and W for x2 in our general results (1.2.23) and (1.2.24), we get:

lnq2(W) = Eq1 [logp(α,W,T)] (1.2.25)

lnq1(α) = Eq2 [logp(α,W,T)] (1.2.26)

Note that we have dropped S from the distribution. The reason is that since S contains the

input variables in the regression problem, it is not influenced by any of the variables we’re

interested in. We first estimate log(q1(α)). We have

Eq2 [logp(α,W,S,T)] = Eq2 [logp(T,W, α)] (1.2.27)

= Eq2 [log
[
p(T |W, α)p(W | α)p(α)] (1.2.28)

But α influences T only through W, so T⊥α |W, and we have:

Eq2 [logp(α,W,S,T)] = Eq2 [log
[
p(T |W)p(W | α)p(α)

]
] (1.2.29)

= Eq2 [logp(T |W) + log p(W | α) + log p(α)] (1.2.30)

We are deriving a distribution over α, so we can drop the first term, which is constant with

respect to α. Reading off the distributions of the second two terms from (1.2.4) and (1.2.3),

we see that we want to evaluate:

Eq2 [logN (0, α−1I) + log Gam(a, b) + k] (1.2.31)

Where k is constant with respect to α.

= Eq2
[

log

(
1

(2π)N/2 | α−1I |1/2
e−

1
2
W>(α−1I)−1 W

)
+ log

(
1

Γ(a)
baαa−1e−bα

)]
(1.2.32)

Now, using the special structure of the matrix α−1I (and recalling that I is N ×N) gives us

Eq2
[

log

(
1

(2π)N/2

)
+
N

2
log(α)−α

2
W>W+log

(
1

Γ(a)
ba
)

+(a−1) logα−bα+k

]
(1.2.33)
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Lumping log

(
1

(2π)N/2

)
and log

(
1

Γ(a)
ba
)

into k, using the linearity of expectation, and the

fact that the expectation of a constant is that constant gives:

N

2
logα− α

2
Eq2 [W>W] + (a− 1) logα− bα + k (1.2.34)

Now, this is the log of a Gamma distribution:

q1(α) = Gam(a′, b′) (1.2.35)

a′ := a+
N

2
(1.2.36)

b′ := b+
1

2
Eq2 [W>W]) (1.2.37)

Now the task is evaluating the expectation with respect to the unknown distribution q2. From

(1.2.2), (1.2.1) and the i.i.d assumption, we get that T | W ∼
∏N

i=1N (
∑

j wj φj(si), β
−1).

This piece of information allows us to do an analogous calculation to the one above, and

obtain:

q2(W) = N (m, v) (1.2.38)

Using the notation Φ for the matrix whose i, jth cell is φj(xi),

m := βsΦ>T (1.2.39)

v = [Eq1 [α]I + βΦ>Φ]−1 (1.2.40)

Therefore, the expectation that we need to compute q1 is Eq2 [W>W]) = mm> + v, and

the expectation that we need to compute q2 is Eq1 [α] = a′/b′. This then gives the two

expectations in terms of one another, showing how the iteration my be performed.

1.2.6 The EM Algorithm As Variational Inference

Having given a general example of the way in which variational inference may be

applied, we return the EM algorithm, and show how it can be reframed in a way that closely

resembles variational inference. This interpretation was first given by Radford Neal and
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Geoff Hinton in [13]. This example is interesting, because although the mathematics in

this section looks very similar to the mathematics in the previous section, there are several

important interpretive differences that show the flexibility of the variational framework.

Equation (1.2.15) is equivalent to the following decomposition:

logp(Y) = F (q) + KL(q||p), (1.2.41)

where p was the posterior distribution p(X | Y), and q was an approximating distribution,

also over the hidden variables X.

For application to the EM algorithm, we condition all the distributions above on θ,

giving:

logp(Y | θ) = F (q, θ) + KL(q||p(X | Y, θ)), (1.2.42)

recognizing the likelihood,

`(θ) = F (q, θ) + KL
(
q||p(X | Y, θ)

)
. (1.2.43)

There are two important expressions for F . First, a simple rearrangment gives

F (q, θ) = `(θ)−KL
(
q||p(X | Y, θ)

)
(1.2.44)

Second, transforming (1.2.16) gives

F (q, θ) =

∫
X

q(X)log

[
P (Y,X | θ)

q(X)

]
dX = Eq[p(X,Y | θ)] +H(q), (1.2.45)

where H(q) is the entropy of q.

There is an important interpretive difference between the variational inference we do

here, and what we did in the factorial approximation case. In the factorial approximation

case, we imagined “squeezing” the KL divergence between the fixed probability of the ob-

served data, and the free energy. In this case, we will be changing θ, so the likelihood is no

longer fixed. In this case, we use the non-negativity of the KL divergence to see that (1.2.44)

shows that the free energy is a lower bound for the likelihood of θ. Therefore, we imagine

pushing the likelihood higher by increasing F .
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There is also the question of how to interpret F now that it depends on two variables.

One answer is to view it as “q-approximate likelihood”: (1.2.44) shows that F differs from

`(θ) to the extent that q differs from p (as measured by the KL divergence).

We maximize q by alternatingly maximizing it with respect to each of its two variables.

We call the two maximizations the E step and the M step, for reasons that will become clear.

E Step: q(k+1) = argmaxqF (q, θ(k)) (1.2.46)

M Step: θ(k+1) = argmaxθF (q(k+1), θ) (1.2.47)

We can be more explicit about how to perform these two steps. First, looking back at

(1.2.42), and noting that `(θ) is independent of q, we see that maximizing F with respect

to q is accomplished by minimizing KL(q||p). Recalling that since the second argument

of F is θ(k), p is shorthand for p(X | Y, θ(k)), so the E-Step is accomplished by setting

q(k+1) = p(X | Y, θ(k)), which is the unique choice that makes the KL divergence vanish.

(Since the the KL divergence is always positive, this is the best we can hope to do).

Next, looking at the second equality in (1.2.43) and noting that the entropy of q is

independent of θ, we see that the M step is accomplished by setting θ(k+1) to the value that

maximizes Eq(k+1) [p(X, fY | θ)]. Therefore we have:

E Step: q(k+1) = p(X | Y, θ(k)) (1.2.48)

M Step: θ(k+1) = argmaxθEq(k+1) [p(X,Y | θ)] (1.2.49)

By comparing with (1.1.2) and (1.1.3), we see that the iteration that we have just derived

is the same as the classical EM algorithm that we discussed in the previous section.

The interpretation is that at the E step we increase the lower bound on the likeli-

hood of the current parameters until this bound is tight: because after the kth E step,

KL(q(k+1)||p(X | Y, θ(k))) = 0, so that F (q(k+1), θ(k)) = `(θ)(k). Then, on the M step, θ is ad-

justed, therefore allowing for a larger lower bound, which is then obtained in the subsequent

E step.
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Now, since F never decreases, and the lower bound on `(θ) is tight after E step, `(θ)

must never decrease. So this formulation of the EM algorithm shows that the algorithm

accomplishes the goal of choosing a sequence of parameters with increasing (or at least

non-decreasing) likelihoods. It is also possible to prove the stronger statement that if the

sequence of F values converges to a local maximum at a certain point, then this point is also

a local maximum for the likelihood function.

1.3 Sampling

The variational techniques discussed in the previous sections are appealing because

they allow us to compute, at least approximately, a true distribution of interest. There are

some cases, though, in which we do not actually need to know the true distribution. For

example, we might just be interested in the expectation of the distribution. In cases like

this, we can often compute the information we want from samples from the distribution, as

we do when approximating an expectation with a sample mean.

The most obvious issue to address is how to obtain these samples. After all, we are

assuming that the true distribution is intractable, so presumably it is impossible to sample

from it directly. Fortunately, it is often possible to take advantage of some structure in the

problem at hand to obtain approximate samples. In the following sections, we present two

algorithms that can do this.

1.3.1 Gibbs Sampling

Suppose we have some number of variables X = x1, . . . ,xn and we’re interested in the

joint distribution p(x1, . . . ,xn). Often this joint distribution is intractable, since we have

to reason about the behavior of all the variables together. However, in many cases, it is

relatively easy to infer the distribution of one of the variables xj if we assume that all the

other variables are known. That is, the conditional distributions p(xj | xi,i 6=j) are tractable.

This suggests an idea for an iterative sampling scheme: initialize all the variables in some
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way, then follow this loop:

for t = 1 to numSamples do

choose i

draw s ∼ p(xi | xj 6=i)

xi ← s

end for

The choice of i in the second line can be done in a variety of ways, for example by cycling

through the variables sequentially.

This algorithm is intuitively appealing, but we would like a more rigorous theoretical

analysis. The first step in this analysis is to view the samples from a Gibbs sampler as

forming a Markov chain. Observe that each iteration of the Gibbs sampling algorithm, we

obtain a collection of vectors Xt, where Xt+1 and Xt differ in the ith spot. It is easy to see

that the transition from Xt to Xt+1 does not depend on anything that happened before step

s. Therefore, we may safely take the Xt variables to be our Markov chain. (Note that we

use the capital letter Xt because Xt is the collection of the values of our original variables x

at step t).

For what follows, we will use the idea of the stationary distribution of a Markov chain.

To get the intuition behind this idea, suppose we have a probability distribution π over

states. If we know this distribution at time t, we can calculate what it will be at time t+ 1

by:

πt+1(X) =
∑
X′

πt(X
′)T (X′,X), (1.3.1)

where T is the transition probability. In other words, the transition probabilities tell us how

the distribution changes over time. We say that π is a stationary distribution for the Markov

chain defined by T , if πt = πt+1 for all t. Intuitively, this amounts to requiring T to hold π

constant.
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It is possible to check if a distribution is stationary by checking if it satisfies the so-

called detailed balance equation. π is a stationary distribution for the Markov chain defined

by T if

π(X)T (X,X′) = π(X′)T (X′,X) (1.3.2)

Intuitively, this says that the probability of starting out in a state X and moving to X′ is

the same as the probability of starting out in X′ and moving to X.

It is easy to check that detailed balance implies the π is stationary. We have

πt+1(X) =
∑
X′

πt(X
′)T (X′,X), (1.3.3)

This sum is over the right hand side of (1.3.2), so we may substitute in the sum over the left

hand side:

πt+1(X) =
∑
X′

π(X)T (X,X′) (1.3.4)

= π(X)
∑
X′

T (X,X′) (1.3.5)

= π(X) · 1, (1.3.6)

where we have used the fact that T (X,X′) is a probability distribution over X′ and must

sum to one.

We will also need another definition. A Markov chain is said to be ergodic if there

exists some integer m such that it is possible for any state to transition to any other state in

m steps. Ergodic chains are important for our purposes because the distribution of states in

an ergodic chain will converge to a stationary distribution if the chain is run for long enough.

This points the way to a proof of the convergence of the Gibbs sampler: check that the chain

defined by the Xt is ergodic, and then check that the joint distribution p(x1, . . . ,xn) satisfies

the detailed balance condition. This will show that the joint distribution is the stationary

distribution to which ergodicity shows that the chain will converge.

We begin by checking detailed balance. Let π := p(X) = p(x1, . . . ,xn). By the way we

constructed the Markov chain produced by the Gibbs sampler, we know that a state X and
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its successor X′ differ in only one coordinate. Suppose this coordinate is the ith one. Then

we have:

T (X,X′) = T
(
[xi,xj 6=i], [x

′
i,xj 6=i]

)
= p(x′i | xi 6=j) (1.3.7)

Now, by definition of π,

π(X)T (x,x′) = p(X)p(x′i | xi 6=j) (1.3.8)

= p(xi,xj 6=i)p(x
′
i | xi 6=j) (1.3.9)

= p(xi | xj 6=i)p(xj 6=i)p(x′i | xi 6=j) (1.3.10)

But the product of the last two terms is p(X′). So after reordering terms,

π(X)T (x,x′) = p(X′)p(xi | xi 6=j) = p(X′)p(xi | x′i 6=j) = π(X′)T (X′,X) (1.3.11)

So detailed balance is satisfied, and we have the desired stationary distribution.

It remains to check ergodicity. In general, ergodicity will depend on the specific distri-

butions involved. But ergodicity is easily verified in the case that the conditional distributions

from which we sample at each step are supported everywhere. If this condition is met, then,

after all points have been sampled, conditioned on the others, there is a non-zero probability

of ending up at any given joint configuration. Plainly, this is sufficient for ergodicity.

1.3.2 The Metropolis Hastings algorithm

Algorithms like Gibbs sampling that construct a Markov chain is the distribution from

which we want to sample are called Markov chain Monte Carlo (MCMC) algrotihms.The

Metropolis Hastings algorithm is perhaps the most widely used and important MCMC al-

gorithm. As we shall see, it includes Gibbs sampling as a special case. The Metropolis

Hastings algorithm is applicable in cases in which we wish to sample from a probability

distribution that is difficult to compute explicitly, but that is proportional to a function that

is easily tractable. This may appear to be a strange situation, but it is one that in fact arises

frequently. We give two examples:
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Example 1.3.1. Suppose we apply Bayes’ theorem to variables x and y to obtain

p(x | y) =
p(y | x)p(x)

p(y)
=

p(y | x)p(x)∫
p(y | x)p(x)dx

(1.3.12)

Often, the likelihood term will be specified by the model, and we usually assume that the

prior over x is known. However, the integral in the denominator may be intractable. In this

case, the conditions for the application of the Metropolis Hastings algorithm are met: the

distribution is proportional to the numerator, which we can evaluate, but the constant of

proportionality (given by the integral) is unknown.

Example 1.3.2. In statistical mechanics, one often encounters distributions of the following

form:

p(s) =
1

Z
e
− 1
kBT

βE(s)
(1.3.13)

Here, s is a microstate of a physical system (i.e. a detailed description of properties of

individual molecules), and E is the energy associated with this microstate. The distribution,

then, assigns low probability to states with high energy. However, this effect is lessened at

high temperatures T . This accords with our intuition that systems at high temperatures

should be more likely to have high energy than those at low temperatures. Z is a normalizing

constant called the partition function and defined by

Z =
∑
s′

e
− 1
kBT

E(s′)
(1.3.14)

Since this sum is over all possible states of the system, it is generally not tractable. Even in

the case of an Ising model in which each molecule may have only two states, the exponential

growth in the number of possible states with respect to the number of particles quickly

makes calculation of the partition function prohibitively costly. However, usually it is easy

to calculate the energy associated with any given state. So here again we have a distribution

that is easy to evaluate apart from a normalizing constant, so we have another situation in

which the Metropolis Hastings algorithm may be profitably used.
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The Metropolis Hastings algorithm first appeared in a somewhat simplified form as the

Metropolis algorithm. We will present the Metropolis algorithm first, and then present the

full Metropolis Hastings algorithm. We first observe that since we can evaluate p(x) up to

a constant, we can evaluate p(x1)
p(x2)

for any pair of points x1 and x2. Now, suppose we have

some way of generating “candidate” samples from p. The algorithm proceeds by generating

a first candidate x1, and then a second candidate x2, which may be accepted or rejected as a

sample. If p(x2)
p(x1)

> 1, then p(x2) > p(x1), and x2 is at least as good as x2, so it is accepted. If

p(x2)
p(x1)

< 1, however, we do not automatically reject x2, since even if we were able to generate

true samples from p, some of these would have low probability.

It is helpful at this point to return to the statistical mechanics example in (1.3.13). If

we are in a state s1, we can calculate explicitly that the probability of transitioning to s2 with

energy E(s2) > E(s1). This probability is proportional to e
− 1
kBT

(E(s2)−E(s1))
= P (s2)

P (s1)
(this

makes intuitive sense because if we assume that we are already in state s1, the probability

of moving to a new state should depend only on the difference in energies between s1 and

s2 and on the temperature, not on the absolute energy of s2.) Therefore, it makes sense

to accept x2 as a sample with this same probability. This motivates the following general

acceptance criterion:

p(accept x2) = min

(
1,
p(x2)

p(x1)

)
(1.3.15)

The algorithm then continues to generate samplesby replacing x1 in (1.3.15) with a new

sample if this is accepted. If it is rejected, the old sample is repeated.

It remains to specify how we generate the candidate samples. In the statistical me-

chanics example, we imagined starting in a state s1 and transitioning to a new state. We

use the same intuition in the general case by taking our current sample into account when

choosing our next sample. The motivation for this is that the sampling algorithm will be very

inefficient if we reject too many of the potential samples that we generate. If we encourage

the subsequent sample to be relatively close to our current (accepted) sample, we can hope
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that the ratio in (1.3.15) will be close to one. (Of course, we don’t want each sample to be

too close to the previous one, as this would lead to slow convergence of the Markov chain).

With these considerations in mind, we say that s2 is generated from a proposal distribution

q that depends on s1:

s2 ∼ q(s2 | s1) (1.3.16)

The specific form of the proposal distribution will depend on the application at hand.

As we did with Gibbs sampling, we can check the convergence of the Metropolis algo-

rithm by imagining that samples form a Markov chain and checking that the distribution

p satisfies the detailed balance condition. Recall that checking detailed balance amounts to

checking that:

p(x)T (x,x′) = p(x′)T (x′,x) (1.3.17)

Substituting in the transition probability from (1.3.15) gives:

p(x)q(x | x′)min

(
1,
p(x′)

p(x)

)
= p(x′)q(x′ | x)min

(
1,
p(x)

p(x′)

)
(1.3.18)

min

(
p(x)q(x | x′), p(x)q(x | x′)p(x

′)

p(x)

)
= min

(
p(x′)q(x′ | x), p(x′)q(x′ | x)

p(x)

p(x′)

)
(1.3.19)

min

(
p(x)q(x | x′), q(x | x′)p(x′)

)
= min

(
p(x′)q(x′ | x), q(x′ | x)p(x)

)
(1.3.20)

Plainly this is satisfied if and only if q(x | x′) = q(x′ | x). So we make this symmetry a

requirement of the metropolis algorithm. An example of such a symmetric proposal distri-

bution is the Gaussian q(x′ | x) = N (x, σ2), where σ2 is held constant.

Last, we point out that ergodicity is guaranteed if q is nonzero everywhere that p is

nonzero.

1.3.2.1 The Metropolis Hastings Algorithm

The Metropolis-Hastings Algorithm is an extension of the Metropolis algorithm that is

designed to able to work with proposal distributions that are not symmetric. The rejection
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rule for the Metropolis-Hastings algorithm is

p(accept x2) = min

(
1,
p(x2)q(x1 | x2)

p(x1)q(x2 | x1)

)
(1.3.21)

It is easy to check for convergence in the same way that we did for the Metropolis algorithm.

As a last note in this section, we observe that Gibbs sampling be derived as special

case of the Metropolis-Hasting algorithm. For a step of Gibbs sampling in which the ith

coordinate of X is to be changed, the proposal q(X′ | X) = p(x′j | xj 6=i). We did not

mention rejection in our discussion of Gibbs sampling, so in order to be consistent, we prove

that no samples are rejected in the Metropolis Hasting version of Gibbs sampling. For any

X′generated from the proposal distribution, we have

p(accept X′) =
p(X′)p(xj | x′j 6=i)
p(X)p(x′j | xj 6=i)

(1.3.22)

Expanding p(X′) = p(x′j | x′j 6=i)p(x′j 6=i) and p(X) = p(xj | xj 6=i)p(xj 6=i) gives

p(accept X′) =
p(x′j | x′j 6=i)p(x′j 6=i)p(xj | x′j 6=i)
p(xj | xj 6=i)p(xj 6=i)p(x′j | xj 6=i)

(1.3.23)

But x′j 6=i = xj 6=i so this is

p(accept X′) =
p(x′j | xj 6=i)p(xj 6=i)p(xj | xj 6=i)
p(xj | xj 6=i)p(xj 6=i)p(x′j | xj 6=i)

= 1, (1.3.24)

as required.



Chapter 2

Nonparametric Bayes

Rather than trying to give a general definition of nonparametric Bayesian methods,

we simply characterize them as methods for defining probability distributions on infinite

dimensional objects. Although this definition may not apply to all nonparametric Bayesian

models, it adequately describes the ones discussed in this chapter.

Perhaps the prototypical example of an infinite dimensional object is a function, so we

begin by discussing Gaussian processes, which are a way to define distributions on functions.

Next, we present Dirichlet processes, which give distributions on probability measures. Dis-

tributions on more general measures can be obtained by Beta and Gamma processes, and we

discuss these next. Last, we present the Indian Buffet process, which defines a distribution

on infinite dimensional binary matrices.

2.1 Gaussian Processes

Understanding of Gaussian processes, and indeed almost all nonparametric Bayesian

models, is aided by a review of a few definitions from probability theory.

Recall that a stochastic process is a collection of random variables on a probability

space Ω indexed by variable t that is usually interpreted as time. In other words, a stochastic

process is a collection of functions

X(ω, t) : Ω× T → R (2.1.1)
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Thus, if we pick ω ∈ Ω randomly according to some probability measure on Ω, then we get

a random function

f(t) = X(ω, ·) : T → R. (2.1.2)

A Gaussian process (GP) is a way of generating random functions on R, so we will take

T above to be R. Taking any finite dimensional vector X ∈ Rn and applying f gives a (row)

vector Y = [f(x1), . . . , f(xn)]. One way to specify the behavior of the stochastic process is

by requiring that Y follow some distribution, thereby using a manageable finite dimensional

object as a proxy for a thornier infinite dimensional one. The Gaussian process gets its

name from the fact that we require that Y follow an n dimensional Gaussian distribution.

For the remainder of this exposition, we will assume that this distribution has mean zero.

This assumption means that the distribution is entirely specified by its covariance matrix

Q = E[Y>Y].

We can make the following observation: Suppose that x and x′ are two points in R.

When we are drawing random vectors as above, the sample size n is arbitrary, as long as it

is finite. However, no matter the size of sample, if the points x and x′ appear together in the

sample, the outer product structure of the covariance matrix implies that their contribution

to Q will always be the constant E[f(x)f(x′))]. We make the following definition:

E[y(x)y(x)′)] := c(x,x′) (2.1.3)

This definition means that for any sample x1, . . .xn, the covariance matrix will satisfy

Qij = c(xi,xj) (2.1.4)

Thus, a mean-zero Gaussian process is entirely specified by c, which we will call its

covariance function. Following the notation for a Gaussian distribution, we will write GP(0,c)

for a Gaussian process with mean 0 and covariance function c.

The importance of this (2.1.4) is that, in a manner somewhat reminiscent of the use of

kernels in SVMs, we can define the function c a priori. If we do this, we immediately have
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a way to evaluate a function drawn from a GP at a set of points. Suppose this set of points

is X = x1, . . . ,xn. Then we have:

f ∼ GP (0, c)⇒ f(x1, . . . ,xn) ∼ G(0, Q) (2.1.5)

Qij = c(xi,xj) (2.1.6)

For example, the three GP draws visualized in figure 2.1 were obtained by setting X = [−3 :

.01 : 5], and c = 2exp

[
−(x−x′)2

2

]
.

−3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Figure 2.1: Three draws from GP(0, 2exp

[
−(x−x′)2

2

]
).

We can pause at this point to give some intuition about what is going on in figure

2.1. Our choice of a covariance function of the form k · exp

[
−(x−x′)2

2

]
is a common one, that

can be justified by the observation that this covariance function will give covariances that

decay rapidly as the distance between the associated input values grows. Conversely, the

covariance between the output values corresponding to input values that are close together

will be large. This last fact implies that the output values corresponding to input values that

are close together will not in general differ very greatly. This property encourages functions

drawn from a GP with this covariance function to be smooth. In general, the choice of



27

covariance functions gives the programmer control over the properties that are drawn from

the corresponding GP. For example, if there is reason to believe that one’s data will be best

modeled with a periodic function, one could choose a covariance function that will give this

property.

2.1.1 Gaussian Process Regression

Gaussian processes are used in a variety of applications. One that is particularly

important for machine learning is regression. Suppose we are given a training set with

inputs X = x1, . . . ,xn and outputs T = t1, . . . , tn. If we are given a new input point xn+1,

our task is to infer the corresponding output tn+1 or, better yet, a distribution over tn+1.

In particular, we are interested in the conditional distribution p(tn+1 | T,X). Leaving the

dependence on X implicit, we have:

p(tn+1 | T) =
p(T, tn+1)

p(T)
(2.1.7)

Since training points T are observed, the likelihood p(T) is a constant. Moreover, we are

using a GP model so we have the distribution of the vector [T, tn+1]. So we have:

P (tN+1 | tN) ∝ exp

[
− 1

2
[T, tn+1]Q−1

n+1[T, tn+1]T
]
, (2.1.8)

where, extending the definition of the covariance function to vectors in the obvious way,

Qn+1 = c([X,xn+1], [X,xn+1]) (2.1.9)

=

 Qn k

kT κ

 (2.1.10)

where Qn = c(X,X), k = c(X,xn+1), and κ = c(xn+1,xn+1). In order to actually use (2.1.8)

for prediction, we have to invert Qn+1. Fortunately, the partitioned representation of Qn+1

gives an easy formula for Q−1
n+1:
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Q−1
n+1 =

 M m

mT m

 (2.1.11)

m = (κ− kTQ−1
N k)−1 (2.1.12)

m = −mQ−1
N k (2.1.13)

M = Q−1
N +

1

m
mmT (2.1.14)

Note that these expressions have the advantage that the only brute-force matrix inversion

required is of the covariance matrix for the training points Qn. This inverse can be reused

in order to make predictions at multiple test points.

Now we can substitute the inverse we have just obtained into the distribution (2.1.8).

This gives

P (tN+1 | tN) ∝ exp

[
− 1

2

(tN+1 − t̂N+1)2

σ2
t̂N+1

]
(2.1.15)

The mean of this distribution is

t̂N+1 = kTC−1
N tN (2.1.16)

and its variance is

σ2
t̂N+1

= κ− kTC−1
N k (2.1.17)

Therefore, our prediction of the new target value tn+1 will be, as the notation suggests, t̂n+1.

The variance can be used to give error bars for this prediction.

2.2 The Dirichlet Process

The Gaussian process gave us a way to get distributions over functions; the Dirichlet

process gives us a way to get a distribution over probability measures. Because probability

measures are functions on σ algebras, not on the sets that underly them, in order to generate

distribution on a set Ω, we need to set T in (2.1.2) to be a σ algebra of subsets of Ω.
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Just as we defined Gaussian processes by specifying the distribution of the function

values of finite collections of points, we now define Dirichlet processes by specifying their

behavior on finite collections of subsets, or rather on finite partitions. A Dirichlet process

has two parameters, a real number α called the concentration parameter and probability

distribution H Ω called the base distribution. We say that a distribution G is drawn from

DP(α,H) if for any finite partition of Ω into measurable sets A1, . . . , An we have

(G(A1), . . . , G(An)) ∼ Dir(αH(A1), . . . , αH(An)) (2.2.1)

This definition does not guarantee that stochastic processes with the required properties

exist. We will prove existence by giving a concrete construction, but first we will derive

some of the properties of DPs, taking their existence for granted. Our exposition from this

point on follows [19]. First we examine the posterior and predictive distributions of a draw

from a DP.

Let G be a draw from a Dirichlet process, and let ω1, . . . , ωm be draws from it. We

are interested in inferring G from these draws. As before, we consider only partitions, so let

A1, . . . , An be a finite partition of Ω. We are interested in the posterior distribution

p(G(A1), . . . , G(An) | ω1, . . . , ωm). (2.2.2)

Note that for determining the measures of the sets Ai, the actual identities of the points ωi

are irrelevant: all that matters are the number points that lie in each set in the partition.

Therefore, we define a vector c of counts, so that ci is the number of points ω that lie in Ai.

This reduces our task to finding the posterior p(G(A1), . . . , G(An) | c).

We proceed by evaluating the likelihood p(c | G(A1), . . . , G(An)). It is easy to see that:

c | [G(A1), . . . , G(An)]) ∼ Mult([G(A1), . . . , G(An)]) (2.2.3)

So, we have a multinomial likelihood, and, by the definition of the Dirichlet process, we have

a Dirichlet prior. Therefore, we can use the conjugacy between these two distributions and
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simply look up the posterior. It is:

(G(A1), . . . , G(An)) | ω1, . . . , ωm ∼ Dir(αH(A1) + c1, . . . , αH(An) + cn) (2.2.4)

Moreover, looking back at the definition, (2.2.1), we see that the posterior distribution of G

is again a Dirichlet process. We see that the unnormalized base measure is αH +
∑

i δωi ,

with a concentration parameter of 1. So the normalized base measure is 1
α+m

(
αH +

∑
i δωi

)
.

We correct for the normalization by rechoosing the concentration parameter to be α +m:

G | ω1, . . . , ωm ∼ DP

(
α +m,

1

α +m

(
αH +

∑
i

δωi
))

(2.2.5)

For the purposes of what follows, the main application of (2.2.5) is in determining the

predictive distribution of ωm+1. We first observe that p(ωm+1 ∈ A | ω1, . . . , ωm) = E[G(A)] |

ω1, . . . , ωm, where the expectation is taken over draws from the Dirichlet process. In order

to evaluate this expectation, we use (2.2.5) with the partition A,Ac and then apply the

definition of the Dirichlet process to get:

G(A), G(Ac) | ω1, . . . , ωm ∼ Dir

(
1

α +m

(
αH(A)+

∑
i

δωi(A),
1

α +m

(
αH(Ac)+

∑
i

δωi(A
c)

)
(2.2.6)

So the expectation we seek is just the expectation of the first component of a draw from the

left hand side above. So we have:

P (ωm+1 ∈ A | ω1, . . . , ωm) =
1

α +m

(
αH(A) +

∑
i

δωi(A)
)

(2.2.7)

Since the set A was an arbitrary measurable set, we have:

ωm+1 | ω1, . . . , ωm ∼
1

α + n

(
αH +

∑
i

δωi
)

(2.2.8)

We can make two observations. First, we can now interpret the parameter α. If α

is large, the H will dominate the predictive distribution - hence the name concentration

parameter: the larger α is, the more concentrated G will be around H. Second, because of

the inclusion of the δ measures, we see that the probability that ωm+1 will be equal to one
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of the points already drawn is nonzero. This shows that with probability 1, G is a discrete

probability distribution. In fact, it is possible to show that the expected number of unique

points among m drawn from G is only O(αlogm).

The fact that the draws ω1, . . . , ωm may not be unique, motivates us to rewrite the

predictive distribution in the following equivalent form:

ωm+1 | ω1, . . . , ωm ∼
1

α + n

(
αH +

∑
j

cjδω∗j
)
, (2.2.9)

where ω∗j are the unique values, and cj is the number of times that the value ω∗j appeared in

the draw.

2.2.0.1 The Chinese Restaurant Process

Equation (2.2.9) is the basis for a useful metaphor for understanding Dirichlet pro-

cesses. We can imagine generating a draw from a DP in the following way: First, pick the

parameters of the DP: α and H, where H. Then imagine the following scenario. Customers

enter a (Chinese) restaurant and seat themselves at tables, of which there are infinitely

many. The first customer sits at the first table. Subsequent customers can either sit at an

already occupied table, or sit at a new table. Specifically, suppose that m have at least one

customer sitting at them, and that for i = 1, . . . ,m, the ith table has Ni customers at it.

Then (n + 1)st will sit at table i with probability kNi, and at a new table with probability

kα. Here k is a normalizing constant chosen so that the probabilities sum to 1, k = 1
n+α

.

2.2.0.2 Stick-Breaking Construction

We now give a construction that proves the existence of the Dirichlet process. We have

shown that draws from a DP are discrete with probability 1, so we have the representation:

G =
∑
i

wiδωi (2.2.10)

Therefore, it suffices to choose the wi and the ωi. We do this as follows: start with a stick

of length one, and break it a point b1 that is drawn from a Beta(1,α) distribution. Keep
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the piece on the left; its length is w1. Now draw a point according to H; this is ω1. We

would like to repeat this process with what remains of the stick. The problem is that the

remaining piece does not have length 1, so we need a correction. We draw another value b2

from Beta(1,α) as before. The correction is then to shrink it so that it is in the required

range [0, 1− b1]. We keep the result of the shrinking as w2.

w2 = (1− b1)b2 (2.2.11)

Since b2 ≤ 1, this multiplication has the desired effect. As before, we draw ω2 from H.

We then repeat this process ad infinitum.

wn = bn

n−1∏
i=1

(1− bi) bn ∼ Beta(1, α) (2.2.12)

ωn ∼ H (2.2.13)

Plugging these into (2.2.10) gives the desired distribution.

2.2.1 Dirichlet Process Mixture Models

One important use of Dirichlet processes is to do mixture modeling. In traditional

mixture modeling, one tries to model data as being produced by a distribution that is a

mixture of a finite and fixed number of component distributions. The problem here is that,

in general, one does not know the right number of components to use. As we shall see, we

can use Dirichlet processes to avoid this problem.

A Dirichlet process mixture model is used to model data X = {xi}i=1,...,n as a mixture

of parametrized distributions F (θ) via the following generative process.

xi ∼ F (θi) (2.2.14)

θi ∼ G (2.2.15)

G ∼ DP(α,H) (2.2.16)



33

For example, we might have F (θi) = N (θi, σ
2), where we assume that σ2 is known. We

would then want choose the right number of Gaussians to model our data, and to choose the

means of these Gaussians.

Looking at (2.2.14)-(2.2.16), we see that each point is allowed have its own mixture

component. Since it is nonsensical for there to be more components than data points, this

amounts to having an unbounded number of mixture components available. A priori, it

would seem that this scheme would lead to trivial models, since giving each its mixture

component is unlikely to tell us anything useful. However, we note that the θi are draws

from a draw from a DP, and that we therefore expect only O(αlogn) of the θi to be unique.

Thus, although an unbounded number of mixture components are available, we expect only

a relatively small number of them to actually appear. Importantly, this small number is not

set beforehand, meaning that we have achieved the desired flexibility with respect to the

number of components.

Now, (2.2.14)-(2.2.16) tells us how to generate a set of data points. If we want to model

data that is already given, we have to invert this process. This inversion can be done with

the sampling methods discussed earlier.

2.2.1.1 Gibbs Sampling for Dirichlet Process Mixture Models

In [14], Radford Neal explores a variety of ways to sample for inference in Dirichlet

process mixture models. We choose to present the simplest one here, we note though that

Neal stresses the fact that it is not a very effective method in practice.

We are interested in the posterior distribution p(θ | X). To use Gibbs sampling, we

have to compute the conditional distributions P (θi | θj 6=i,X). Fortunately, this can be done

fairly easily. From the discussion of the Chinese restaurant process and of the predictive

distribution of draws from a DP, we know that:

p(θi | θj 6=i) =
1

n− 1 + α

∑
j 6=i

δθj(θi) +
α

n− 1 + α
H, (2.2.17)
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where we have used the notation δθj for the δ function supported at θj. Since the posterior

we are interested in is also conditioned on the data X, we also have to compute the likelihood

P (θi | X):

p(θi | X) = F (xi; θi), (2.2.18)

where we have used the fact that each data point interacts only with its own parameter.

Therefore, the overall conditional distribution is a mixture of this likelihood and (2.2.17):

p(θi | θj 6=i,X) = b

(∑
j 6=i

F (xi; θj)δθj(θi) + αF (xi; θi)H(θi)

)
(2.2.19)

Here, b is a normalizing constant into which we have absorbed the factor 1
n−1+α

. There

is one point to note. The reason that θj, rather than θi appears in the sum is that the δ

function ensures that contribution of a term to the summand is non-zero only if θi = θj. The

substitution enables us to interpret the sum as evaluating the likelihood we would obtain by

setting θi to each of the fixed θj. We can now evaluate the normalizing constant b:

b =

(∫ [∑
j 6=i

F (xi; θj)δθj(θi) + αF (xi; θi)H(θi)

]
dθi

)−1

(2.2.20)

This is:

b =

(∑
j 6=i

F (xi; θj) + α

∫
F (xi; θ)H(θ)dθ

)−1

(2.2.21)

The only problem is the evaluation of the integral
∫
F (xi; θ)H(θi)dθ. In order to keep

things simple here, we will pick the base measure H to be conjugate to F . With this in

place, this Gibbs sampling is completely straightforward. This concludes our discussion of

Gibbs sampling for Dirichlet Process mixture models, but we give an example below that

shows how the integral can be computed.

2.2.2 Conjugate Priors

Bayes’ theorem says,

p(x | y) =
p(y | x)p(x)

p(y)
(2.2.22)
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This expression is useful because we often know all the quantities on the right hand side

when we do not know the term on the left. Sometimes, though, it is difficult to compute

the right hand side explicitly. There is, however, one special case in which the calculation is

easy, indeed trivial. This is the case in which the prior distribution p(x) is conjugate to the

likelihood p(y | x). In this case, the posterior is of the same form as the likelihood; only the

parameters change.

Example 2.2.1. Suppose that we want to model a set of data X = {xi}i=1,...,n with a

Gaussian for which we know the variance. The mean µ is unknown, so we place a prior over

it. By Bayes’ theorem:

p(µ | X) =
p(x | µ)p(µ)

p(X)
=
N (X;µ, σ2)p(µ)

p(X)
(2.2.23)

Now, most choices of p(µ) will lead to an intractable posterior. However, the conjugate

distribution to a normal distribution is again normal. So let us choose p(µ) = N (µ;µ0, σ
2
0).

Then we can simply look up the posterior and see that

p(µ | x) = N (µ;µ2, σ
2
2) (2.2.24)

µ2 =

(
µ0

σ2
0

+

∑n
i=1 xi
σ2

)/(
1

σ2
0

+
n

σ2

)
(2.2.25)

σ2
2 =

(
1

σ2
0

+
n

σ2

)−1

(2.2.26)

Another reason that conjugate priors are useful is that they let us compute integrals

that would otherwise be intractable.

Example 2.2.2. In the above discussion of Dirichlet Process mixture models, we had to

calculate:
∫
F (xi | θ)H(θ)dθ. F is known ahead of time, and we are free to choose H. The

key observation for this problem comes directly from rewriting Bayes’ theorem, using F as

the likelihood and H as the prior on θ.

F (θ | xi) =
F (xi | θ)H(θ)

p(xi)
=

F (xi | θ)H(θ)∫
F (xi | θ)H(θ)dθ

(2.2.27)



36

So the integral we want to evaluate is now in the denominator. Now, if we choose H conjugate

to F , then we know the posterior, which means that we know the normalizing constant of

the posterior, which is exactly the integral we want to compute. For example, if we have

F (θi) = N (θi, σ
2), and we choose the base distribution H to be N (µ;µ0, σ

2
0), then we can

apply the results of (2.2.24) - (2.2.26) to conclude the integral is the normalizing constant

for the posterior normal distribution, which is∫
F (xi | θ)H(θ)dθ =

1√
2πσ2

0

(2.2.28)

2.2.3 The Hierarchical Dirichlet Process

We have shown how to model a group of data points with a Dirichlet process mixture

model. Suppose now that we have multiple groups of data from a common origin. We want

to model each group with a Dirichlet process mixture model, but we want to encode our

knowledge about the origin of the data by sharing some of the parameters θi across the

groups.

We could try to do this sharing by drawing the parameters for each group from the

same Dirchlet process. In some applications, though, we would like a weaker way to share

information. We can accomplish this by adding a hierarchical layer to the Dirichlet process

mixture model framework. To see what this means, we will introduce some notation. The

setup is that we have J groups, with the jth containing I data points xji. We have:

xji ∼ F (θji) (2.2.29)

θji ∼ Gj (2.2.30)

Gj ∼ DP (α,G0) (2.2.31)

The question now is how to define G0. It would defeat our purpose to make G0 a

continuous distribution, because this would mean that, with probability 1, the Gj would be

supported at different atoms, which would mean that none of the θ values would be shared
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across groups. Therefore, we have to make G0 a discrete distribution. In this case, all the

Gj will be weighted sums of δ measures that are supported at the same points; only weights

will differ. However, all the usual choices of discrete distribution seem too restrictive. In

particular, we do not want to limit the support of G0.

The solution proposed in [20] is to make G0 itself a draw from a DP: with the right

choice of base distribution, this will give us a discrete distribution that meets our needs. In

this case, it is a discrete distribution that is not limited to any particular form and that does

have restricted support. The complete model is then:

xji ∼ F (θji) (2.2.32)

θji ∼ Gj (2.2.33)

Gj ∼ DP (α,G0) (2.2.34)

G0 ∼ DP (α′, H) (2.2.35)

In order to get the desiderata of the previous paragraph, we generally choose H to be

continuous with wide support.

2.2.3.1 The Chinese Restaurant Franchise

As the Chinese restaurant process is to Dirichlet processes, the Chinese restaurant

franchise is to hierarchical Dirichlet processes. The idea is that we now have J restaurants

(corresponding to groups of data), all sharing a menu, on which the dishes are the parameters

θ. Customers in each group seat themselves in their own restaurants, using a CRP with

concentration parameter α. Next, completely abandoning narrative plausibility, the now-

occupied tables sit themselves at master tables, according to a CRP with concentration

parameter α′. Each master table is then assigned a draw from H.

The metaphor in [20] makes more sense as a story but this one may be somewhat more

straightforward.
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2.2.4 Completely Random Measures

Completely random measures have caught on in machine learning more recently than

the other methods we have discussed. We present here some results reviewed in [9].

A completely random measure on a set X with σ algebra F is a measure µ on X

such that whenever A1, A2 ∈ F are disjoint, µ(A1) and µ(A2) are independent as random

variables. An immediate consequence of this definition is that no probability measure can

be completely random, because for any measurable set A, A and Ac are clearly disjoint, but

µ(A) determines µ(Ac), as µ(Ac) = 1− µ(A).

We will now give one way to construct completely random discrete measures. Discrete-

ness means that our completely random measure µ will be of the form

µ =
∞∑
i=1

piδωi , (2.2.36)

meaning that all we have to do is specify pi and ωi. We do this via a generalization of the

Poisson process. In an ordinary Poisson process, the number of events occuring in an interval

is a Poisson random variable with rate equal to the Lebesgue measure of that interval. To

generalize this setup to arbitrary spaces on which the Lebesgue measure will not in general

be defined, we say that number of events occuring in a measurable set will be a Poisson

random variable with rate equal to the measure of the set, where the measure is now allowed

to an arbitrary σ finite measure. This measure is called the intensity measure of the process.

So, in order to define the points ωi, we put an arbitrary measure on Ω, and run a

Poisson process with respect to this measure. The event points at which the events of this

process occur are the points we require. We do exactly the same thing to define the weights

pi: we choose a sigma finite measure on R, and run the associated Poisson process, keeping

the points at which events occur and using them as the pi.

It is easy to see that the measure so defined is completely random, since the number

of events of a Poisson process that occur in two disjoint subsets are independent.
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We have remarked that a probability measure can never be completely random, which

implies that a draw from a Dirichlet process can never be a completely random measure.

However, it is interesting to note that the draws from a Dirichlet process can be obtained by

normalizing completely random measures that are generated by a process called the Gamma

process. This process generates the weights pi by a Poisson process whose intensity measure

is the improper Gamma distribution:

cp−1e−cpdp (2.2.37)

where c is a parameter. The measure on Ω used for the Poisson process to generate the

support of µ is allowed to be an arbitrary σ finite measure that we will call G0.

We will spend more time on a second way of generating completely random measures

called the Beta process. It is defined similarly to the Gamma process, but with the improper

Gamma distribution replaced by the improper Beta distribution

cp−1(1− p)c−1dp, (2.2.38)

In this case, we will call the base distribution on Ω B0 and write µ ∼ BP(c, B0) for a measure

generated by the Beta process.

One interesting aspect of the Beta process is its relationship to the Indian buffet pro-

cess, another commonly-encountered entity in nonparametric Bayesian models. In order to

establish this relationship, we need some probabilistic background.

2.2.4.1 Exchangeability and de Finetti’s Theorem

A sequence of random variables x1,x2, . . . is said to be infinitely exchangeable if the

joint probability of any finite subset is invariant under permutations. That is, if S ⊂ N is a

set of size n, then

p(xS(1), . . . ,xS(n)) = p(xσ(S(1)), . . . ,xσ(S(n))), (2.2.39)

where σ is any permutation. In general, the notion of exchangeability is stronger is stronger

than the notion of identical distribution but weaker than independence. However, a result
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called de Finetti’s theorem says that any exchangeable collection of random variables is

conditionally independent given some entity y.

For any sequence, we have

p(x1, . . . ,xn) =

∫
p(x1, . . . ,xn | y)dp(y) (2.2.40)

If the sequence is exchangeable, de Finetti’s theorem says that we get conditional indepen-

dence with respect to y, which means that we have

p(x1, . . . ,xn) =

∫ n∏
i=1

p(xi | y)dp(y) (2.2.41)

In the literature the distribution p(y) is known as the de Finetti mixing distribution [21].

An example of the how de Finetti’s theorem is applied is given by the CRP.

2.2.4.2 The CRP and Exchangeability

As we have seen, the Chinese restaurant process will produce sequences of values ωi,

in which many of the values are repeated. For example, a draw might be

ω1, ω2, ω1, ω3, ω2, . . . (2.2.42)

An important fact is the probability of a sequence of points produced by the CRP depends

only on the number of times each unique point appears. Put another way, the the only

things that determines the probability of a seating arrangement produced from a CRP is the

number of customers at each table (i.e an arrangement with three customers at the first table

and four at the second has the same probability as the arrangement with four customers at

the first table and three at the second). We can present a brief example that should make

the idea clear. Consider a situation in which we draw only four values, among which there

are only two unique points ω1 and ω2. If our claim is correct, we should have

p(ω1, ω1, ω1, ω2) = p(ω1, ω2, ω1, ω1) (2.2.43)
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(Note that these two sequences were chosen arbitrarily: the claim should hold for any two

sequences such that ωi appears the same number of times in the both for i = 1, 2.) We can

evaluate the probabilities explicitly by using (2.2.9). We see that:

p(ω2, ω1, ω1, ω1) = 1 · α

1 + α
· 1

2 + α
· 2

3 + α
=

1 · α · 1 · 2
1(1 + α)(2 + α)(3 + α)

(2.2.44)

And

p(ω1, ω1, ω2, ω1) = 1 · 1

1 + α
· α

2 + α
· 2

3 + α
=

1 · 1 · α · 2
1(1 + α)(2 + α)(3 + α)

(2.2.45)

Commutativity then gives the desired equality. The point that this example illustrates is that

permuting the draws from a CRP only permutes the numerators in (2.2.9): the denominators

only depend on α the number of points drawn. But permutation of the numerators is plainly

irrelevant, since they appear together in a product.

Now that we have shown that the CRP gives exchangeable sequences, it is clear that the

condition for de Finetti’s theorem is met. Further, we know that points generated from the

CRP are i.i.d draws from a draw from a DP. Therefore, in the case of the CRP, y in (2.2.41)

is a draw from a DP, and p(y) is the DP itself. Thus, the de Finetti mixing distribution of

the CRP is a DP. The result we describe in the next section is that the Beta Process is the

de Finetti mixing distribution for the India Buffet Process (IBP). First we present the IBP,

and then we explore its relationship to the Beta process.

2.2.5 The Indian Buffet Process

As the Gaussian process defines a probability distribution over functions, and the

Dirichlet process defines a distribution over distributions, the Indian buffet process, intro-

duced in [6] gives a distribution over infinite sparse matrices. The original motivation for the

IBP was as a way to create latent feature models, the idea being that each row of an infinite

matrix is an object, and each column is a feature. The ijth entry of the matrix is one if

object i has feature j, otherwise it is zero. The reason that the IBP belongs with the other
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models that we have been discussing in this chapter is that it allows the modeller to remain

agnostic about the number of features to be used (just as the DPMM allows agnosticism

about the number of components): the matrix has infinitely many columns, so there are

an unbounded number of features available, but the model will generally select some small

subset of them.

An intuitive way to derive the IBP is as the limit of a finite model. We may define

a generative model for finite binary matrices in the following way. First, for each feature,

choose the probability that it is active. This probability is constant across objects. In other

words, fill the matrix with values between zero and one that are constant within each column.

The binary matrix is then generated by, for each cell, flipping a coin whose probability of

landing heads is given by the number in the cell. If the coin lands heads, set the cell to one,

otherwise set it to zero.

Mathematically, this corresponds to the following model. For each row i and column

j, of the matrix A we have:

pj ∼ Beta(α, 1) (2.2.46)

Aij ∼ Bernoulli(pj) (2.2.47)

Note that the Beta distribution is an appropriate choice for the initial parameters because

it is conjugate to the Bernoulli distribution.

After some mathematical manipulation, this model can expressed in a form that makes

it possible to take a limit and obtain a corresponding model for infinite matrices. There is

one issue: when the limit is taken, the probability assigned to any given infinite matrix is

zero. Therefore, it is desirable to define probabilities for equivalence classes of matrices rather

than for the matrices themselves. The equivalence relation that Griffiths and Ghahrmani use

says that two matrices are equivalent iff they have the same left ordered form, where the left

ordered form of a matrix is obtained by assigning to each column a binary number, where

the top spot in the column is the largest place. The columns are then ordered according the
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magnitude of this binary number, with columns with larger numbers being placed farther

left.

As its name suggests, the IBP, like the CRP can be understood via a culinary metaphor.

This time, the customers are at an Indian Buffet, and their job is to choose dishes (not to

seat themselves.) The standard IBP has one parameter, α. The first customer to come to the

buffet chooses a Poisson(α) number of dishes. Subsequently, the ith customer samples dish j

with probability
nj
i

, where nj is the number of customers that have previously chosen dish j.

After having chosen whether or not to sample each of the already-tried dishes, he samples a

Poisson(α
i
). The matrix is formed by placing a one in cell i, j if customer i choses dish j. Note

that because the probability that a customer samples increases with number of customers

that have previously sampled the dish, the IBP has the same “rich get richer” property

that we saw with the CRP. In order to connect these idea with our previous discussion, we

observe that the Indian Buffet process generates individual matrices. However, in line with

the earlier discussion, we only look at these matrices modulo the left-ordered equivalence

relation.

2.2.5.1 An application

The IBP has found a number of applications; we will discuss only one here. We present

an application to independent components analysis (ICA). We motivate ICA via the well

known cocktail party problem [8]. For our purposes, this will consist of two people having

a conversation that is being recorded by two microphones. Each microphone records a time

series of data that we will imagine has been discretized. The first microphone records the

time series y1(t) and the second records the time series y2(t). We also have two time series

corresponding to the two speakers: x1(t) represents the sounds made by the first speaker,

and x2(t) the sounds made by the second. We assume that the microphone data is a linear
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supposition of the output of the two speakers. This means that we have, for all t y1(t)

y2(t)

 =

 a11 a12

a21 a22


 x1(t)

x2(t)

+

 ε1(t)

ε2(t)

 , (2.2.48)

where the ε values are noise. Written more compactly this is,

Y = AX +E (2.2.49)

The goal of ICA is to recover the hidden data X from the visible (or in this case

recorded) data Y. The key assumption is that the hidden sources produce signals that are

statistically independent. As long as this assumption holds, quite good recovery is possible.

However, there is a problem with this setup. Suppose that, in the above example,

rather than only two speakers, we had a large number of people talking, but that only a few

of them are talking at any one time. Further suppose that one does not know in advance

the total number of people in the room. The issue here is that we want to view the observed

data as a linear combination of different hidden sources at different times, and that we don’t

want to specify, or even bound, the number of hidden sources ahead of time. The article [12]

shows how the IBP lets us build models for this scenario. The setup is:

Y = A(Z �X) + E (2.2.50)

Z ∼ IBP (α), (2.2.51)

where � is the pointwise product.

The idea here is that we allow the matrix X to have an infinite number of rows cor-

responding to an infinite number of sources. The binary matrix Z then acts as a masking

matrix: each row of Z will have only a finite number of non-zero entries meaning that for

each observed variable, only a finite number of the hidden sources will be active: the rest are

set to zero by the pointwise product with Z. We will not describe any more of the details

of the model beyond mentioning the fact that inference is done using some of the sampling

techniques described earlier.
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2.2.5.2 The Indian Buffet Process and the Beta Process

If we think about the Indian buffet process in terms of (2.2.46) and (2.2.47), it is clear

that the rows of the matrix are exchangeable. Exchangeability becomes problematic when

we consider the restaurant metaphor: the probability with which the dish-tasting procedure

generates matrices in is in fact not invariant with respect to row permutations. However,

exchangeability is preserved by the fact that we are only interested in this matrix up to

left-ordered equivalence. Given exchangeability it is reasonable to ask about the de Finetti

mixing distribution for the IBP. We have already said that this distribution is the Beta

process, a result first proved in [21]. In this section we try to give some intuition about this

fact.

Recall that the CRP gives draws from a draw from a DP, (simply a draw from a DP).

Whereas a draw from a draw from a DP was a single point, it is more natural to take a

draw from a draw from a Beta process to a be a collection of points. If µ =
∑

i piδωi is

drawn from a Beta process, a draw from µ will consist of a subset of the points {ωi}, where

a particular point is chosen with probability pi. We can imagine making these choices for

each ωi by flipping a coin with probability of landing heads equal to pi. We represent this

draw as an infinite binary vector v, with vi = 1 if ω is picked, and vi = 0 otherwise. We can

make this more formal by defining a Bernoulli Process BeP to do the coin flipping for us.

Given µ as above we define BeP(µ) as the process that generates a measure
∑

i ziδωi , where

zi ∼Bernoulli(pi). it is easy to see that these weights {zi} give the binary vector v.

We can generate an infinite matrix A by generating each of its rows Ai by:

µ ∼ BP(c, B0) (2.2.52)

Ai ∼ BeP(µ) (2.2.53)

Comparing with (2.2.46) and (2.2.47) then gives the desired analogy with the Indian buffet

process.



Chapter 3

Graphical Models

3.1 Directed Graphical Models

Directed graphical models, also called Bayes nets, are away an informative and visual

way to represent the joint distribution of a collection of random variables.

We know that for any collection of random variables x1, . . . ,xn, we can write:

p(x1, . . . ,xn) =
n∏

m=1

P (xm | xm+1, . . . ,xn) (3.1.1)

However, this representation does not necessarily respect the relationships that may ex-

ist between the variables in a particular problem. In particular, we may have conditional

independence relationships that imply that for some m,

p(xm | xm+1 . . . , xn) = p(xm | xs(1) . . . , xs(k)). (3.1.2)

where s is some proper subset of size k of the indices m+ 1, . . . , n. In other words, the full

factorization may introduce dependencies that do not really exist for a given problem. We

would like to replace each term in the full factorization with a term that only includes the

necessary dependencies. For each xm, denote by pa(m) the smallest set of indices such that

that we may decompose the joint distribution as follows:

p(x1, . . . ,xn) =
n∏

m=1

P (xm | pa(m)) (3.1.3)

This representation is useful both because it eliminates clutter and because it exposes the

dependencies that exist in our data.
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The expression (3.1.3) suggests a way to represent our joint distribution in a graphical

way: we make a graph with node for each variable, and we draw a directed edge from the

node xk to xm iff xk ∈pa(m). An example of a directed graphical model with four nodes is

shown in 3.1. Applying (3.1.3) to this model shows that the joint distribution factors into

p(x4 | x3)p(x3 | x2,x1)p(x2)p(x1).

x
3

x
1 x

2

x
4

Figure 3.1: A directed graphical model with four variables. The structure of the graph tells
us that the joint distribution factors as p(x4 | x3)p(x3 | x2,x1)p(x2)p(x1).

3.2 Undirected Graphical Models

The directed connections in a Bayes net are often interpreted as representing a causal

relationships in which a parent node influences its children. It is easy to find problems in

which no such causal relationships should be assumed to exist. This is one of the motivations

for undirected graphical models.

We introduce undirected graphical models via an example, borrowed from [22]. The

data we are given are the noisy pixel values yi of an image Y, and we want to infer the
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corresponding to noise-free pixel values xi of the clean image X. We expect the xi to depend

probabilistically on the yi, where the probability is determined by the process by which the

noise was introduced. Specifically, we assume that xi and yi should not differ very greatly.

Given the regularities present in natural images, it is also reasonable to assume the each xi is

similar to its spatial neighbors: as humans, we are able to pick out the corrupted pixels in a

noisy image in part by finding the pixels that stand out from their neighbors. We represent

these assumed dependencies graphically, as shown in Figure 3.2. This figure shows a 4x4

image patch. The hidden clean pixels (open circles) interact with their spatial neighbors and

the their corresponding noisy pixels (filled circles).

Figure 3.2: An undirected model representing the dependencies assumed to exist among
observed noisy pixel values (filled circles) and hidden clean pixel values (open circles).

We can define the joint probability of a pair X and Y in terms of well the pair satisfies

the criteria given above i.e. that xi is close to yi and xi is close in to its neighbors. To do

this, we introduce potential functions ψ and φ that measure how well the criteria are met.

One plausible choice is:

ψij(xi,xj) = e
−1

2σ2
ψ

(xi−xj)
2

, (3.2.1)
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where xi and xj are neighbors.

ψij(yi,xi) = e
−1

2σ2
φ

(yi−xi)
2

(3.2.2)

Note that the variances are allowed to be different. The joint distribution is then:

p(x,y) =
1

Z

∏
neighbors ij

ψij(xi,yj)
∏
i

φ(yi,xi) (3.2.3)

Z is a normalizing constant.

Equation (3.2.3) points to the similarity in motivation between directed and undirected

graphical models: in both cases we decompose the distribution of a large number of random

variables into a product of dependencies that only exist locally on the graph.

3.3 Factor Graphs

We now introduce a third kind of graphical model, called a factor graph. We showed

that both directed and undirected graphical models can be seen as representing the joint

distribution of a collection of variables as the product of functions of subsets of the variables.

We can write this decomposition in a general way as:

p(x1, . . . ,xn) =
K∏
k=1

fk(Xk), (3.3.1)

where each Xk is a subset of X. Factor graphs are yet another way of representing this

decomposition graphically. A factor graph is a bipartite graph. One set of vertices are the

variables X, and the other set of nodes contains K factors. The kth factor is connected by

undirected edges to each of nodes in the vector Xk in (3.3.1). An illustrative example comes

from coding theory.

3.3.0.3 Coding Theory

Coding theory is concerned with the problem of transmitting information over a noisy

channel. The idea is that we want to send a collection of bits, some subset of which will
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change value during transmission due to noise present in the transmission process. In order

to correct for this corruption, we augment our original message with some number of extra

bits. A naive use of these extra bits would be to simply send several copies of our original

message, hoping to use this redundancy to average out the effects of noise. Not surprisingly,

there are much better ways to use the extra bits. One of these that has particularly nice

properties is a system called low density parity check coding.

As explained, we send our original message of n bits, and in addition send k extra

bits, making our codewords be of total length n + k = m. In low density parity check

codes is to choose a collection of small subsets fi of the m bits in the codeword, and require

these subsets to contain an even number of ones (which is equivalent to requiring them to

sum to zero modulo 2.) The idea is that if we have the n bits of data that we want to

transmit, we choose the remaining k bits in such a way that these parity check constraints

are met. (Obviously certain consistency requirements must be met for this to be possible.)

The receiver can detect noise by seeing whether or not the parity check conditions are met.

Further, the receiver can denoise a message by modifying to be more consistent with the

parity requirements.

We can represent low density parity check codes as factor graphs, as shown in 3.3.

The variables are the bits of the message and the factors are the parity checks: a group of

variables that participates in a factor has joint probability one if it satisfies the parity parity

requirement and probability zero otherwise. For example, in 3.3, x1,x4,x5 participate in the

factor f1, meaning that their values must sum to zero mod 2. In the notation of (3.3.1), we

have:

fk(Xk) =

 1
∑

i Xk(i) ≡ 0 mod 2

0 else
(3.3.2)

Error correction can be done in using an approach similar to the one we used in the

image denoising example: inferred sent bits are chosen to compatible with one another as
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Figure 3.3: In this figure, the eight circular nodes are the transmitted bits, and the six square
nodes are the parity checks in which they participate. For example, f1 says that there must
be an even number of ones among x1, x4 and x5.

determined by the factors, and with the noisy received bits as determined by the channel’s

bit-flipping probability.

3.4 Belief Propagation

In the image denoising and coding examples, we want to find configurations of the

hidden and visible variables that have high probability. The process of finding these config-

urations is what we call inference. We will now present a very general and elegant algorithm

for doing inference in undirected graphical models and factor graphs. This algorithm goes by

a variety of names: belief propagation, message passing and the sum product algorithm. We

will call it belief propagation. We begin by describing the belief propagation for the Markov

random field example given in Equation (3.2.3). We will then define it for factor graphs and

give an example involving parameter inference in hidden Markov models.

Consider the hidden node yi. As we discussed, the state of this node is influenced

both by the corresponding visible node, and by the neighboring hidden nodes. The states

of these neighboring hidden nodes will in turn be influenced by the visible nodes to which
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they correspond and by their neighbors. We therefore approach the inference problem by

imagining “messages” being passed between nodes. A message from node j to node i encodes

node j’s “belief” about the state that node i should be in.

A message mji from node j to node i is a vector whose length is equal to the number

of states that it is possible for node j to take. The following notation is standard in the

literature but its somewhat confusing: mji(xi) is proportional to how likely node j thinks it

is that node i has value xi. Of course this is not correct: mji is a vector, but xi is not an

index. However, what this notation lacks in intuitive clarity, it makes up for in compactness,

which is a virtue that will be valuable later.

After node i has received all its incoming messages, it can form a “belief” about its

own state. This belief will again be a vector bi of length equal to the number of values that

node i can be in. Using the notation introduced in the previous paragraph, bi(xi) is the

current estimate that node i has value xi. In accordance with the intuition that node i’s

state should be influenced by its neighbors and its corresponding visible node, we define:

bi(xi) =
1

Z
φi(yi,xi)

∏
j∈N (i)

mji(xi) (3.4.1)

Here N (i) denotes the set of hidden nodes that neighbor i, and Z is a normalizing constant.

To make the interpretation absolutely explicit: φi(yi,xi) is visible node i’s estimate of how

likely i is to be in state xi, and mji(xi) are the corresponding estimates from the neighboring

hidden nodes.

How are the messages mji determined? The messages from node j is defined in terms

of the messages coming into node j:

mji(xi) =
∑
xj

ψji(xj,xi)φj(yj,xj)
∏

k∈N (j),k 6=i

mkj(xj) (3.4.2)

Observe that if xi was not excluded from the product, we would have

mji(xi) =
∑
xj

ψji(xj,xi)bj(xj). (3.4.3)
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Abusing notation, we can interpret this as

mji(xi) = Ebj [ψji(xj,xi)]. (3.4.4)

In other words, node j wants node i to be in state xi to the extent that node j expects xi

to be compatible with its own value as estimated by bj. Of course, this whole discussion is

hypothetical, since xi was is must excluded from the product to avoid circularity, and (3.4.3)

doesn’t actually hold. Nevertheless, if we can view (3.4.2) as the closest approximation

possible to (3.4.3) subject to the avoidance of circularity, we can hold on to the intuition

behind the interpretation given above.

We have given a recursive definition of the messages. How is this recursion initialized?

In the case in which the graph is a tree there will be leaf nodes that have no incoming

messages, and the recursion may be initialized at these nodes. In this tree case, belief

propagation can be shown to perform exact inference. When the graph is not a tree, the

nodes may be initialized heuristically. Although inference is no longer provably exact when

the graph is not a tree, it is often acceptable in practice. Belief propagation on graphs that

are not trees is called “loopy belief propagation,” by virtue of the fact that graphs that are

not trees contain cycles, or loops.

3.4.1 Belief Propagation in Factor Graphs

In factor graphs, we need two types of messages. One type is passed from variable

nodes to factor nodes, and the other type is passed from factor nodes to variable nodes.

(Because a factor graph is bipartite, no messages will be passed between nodes of the same

type.) We will us the following notation: mfj xi is a message from the jth factor to the ith

variable, and mxi fj is a message from the ith variable to the jth factor.

First we note that, as was the case with undirected graphical models, a variable node

xi’s belief about its state is determined by the messages it receives. We assume there are

no visible nodes, so that, unlike in the denoising example for unidrected graphical models,
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evidence from these variables does not enter:

bi(xi) =
∏

j∈N (i)

mfj xi(xi) (3.4.5)

Here, N is the set of factors that neighbor node i.

One key point about factor graphs is that the state of a factor node is directly deter-

mined by the states of its neighboring variable nodes. This means that the most information

that a variable node can pass about the state of neighboring factor node is its belief about

its own state. Therefore, we define

mxi fj =
∏

k∈N (i),k 6=j

mfj xi , (3.4.6)

where the product is taken coordinate-wise. As with our our interpretation of the messages

passed in undirected graphical models, we can interpret
∏

k∈N (i),k 6=mji as the best noncircular

approximation to bi.

Now we define the messages from passed from factor nodes to variable nodes. Let fj be

a factor node sending a message to variable node xi. Suppose that variable nodes x1, . . . ,xm

also participate in (i.e. neighbor) fj. Then the message from fj to xi is defined as

mfj xi(xi) =
∑

{x1,...,xm}

f(xi,x1, . . . ,xM)
M∏
n=1

mxn fj (3.4.7)

In an undirected graphical model, outgoing messages assigned high probabilities to states

that were compatible with states of the sending node that had high likelihood. The main

difference here is that the outgoing message now says that a state of the target node will

be likely if it is expected to be compatible with the states of the other variables in the

factor. Here, expectation is determined by these other variables’ own estimates of their

state. Heuristically, these variables estimate their states and request that xi be compatible

with these estimates, where compatibility is defined by fj.

As with belief propagation in undirected graphical models, belief propogation for factor

graphs can either be done in trees or in graphs with loops. In the tree case, we designate
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one node as the root, and then initialize the recursion at the leaves. If the leaf is a factor

node, the message that it passes out to a variable x is f(x), which makes sense because the

product in (3.4.7) will empty at initialization, and, as a leaf, the factor node will neighbor

only one variable node. If the leaf is a variable node, the message it passes to factors are

constant vectors of ones.

3.5 Hidden Markov Models

We now proceed to an extended example, which involves the application of several

inference techniques we have discussed (including belief propagtion in factor graphs) to

parameter estimation in hidden Markov models. Our treatment of this analysis follows [5]

and [3].

For our purposes, a hidden Markov model (HMM) will be constructed as follows.

• There is a Markov chain of hidden variables X = (xt)
T
t=1 that we will assume that

hidden variables take values in a discrete set of size N . Transitions in the hidden

Markov chain are governed by the transition matrix A.

• The Markov chain is initialized with a distribution π from which the state of x1 is

drawn.

• At each time t, the hidden variable xt “emits” a visible variable yt. We will assume

that the visible variables are also discrete over a common finite alphabet (which

may be distinct from the hidden one), meaning that we may describe the emission

probabilities with a matrix E. The sequence of visible variables is Y = (Yt)
T
t=1.

This setup is shown as a directed graphical model in 3.4.

3.5.1 The EM Algorithm for Parameter Estimation in HMMs

HMMs present a number of problems. The one we will examine here is the task of

inferring the model parameters A,E and π, collectively denoted θ from the visible data
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xt xt+1

yt+1yt-1

Figure 3.4: In an HMM, hidden variables xt transition as a Markov chain, and at each step
emit a visible variable yt. The Markov property means that each hidden node only interacts
with its predecessor.

Y. The presence of hidden variables makes the application of the EM algorithm intuitively

appealing. This idea is reinforced by the fact that the likelihood in the presence of the hidden

variables is easy to compute:

logP (X,Y | θ) = logP (x1) +
T∑
t=1

logP (yt | xt) +
T∑
t=2

logP (xt | xt−1) (3.5.1)

We will use the variational interpretation of the EM algorithm given above. In the

language of HMMs, the two steps of the EM algorithm are:

E Step: Q(k+1) = P (X | Y, θ(k)) (3.5.2)

M Step: θ(k+1) = argmaxθEQk+1
[logP (X,Y | θ)] (3.5.3)

In order to see how to perform these steps, we will rewrite (3.5.1) in a more useful

way. As specified before, we will limit ourselves to the case in which both the hidden and

observed variables are discrete. This allows us to write, for each t, yt and xt as column

vectors whose length is equal to the number of possible states of the variables. This vector

has a 1 in the spot corresponding to the value that the variable takes and is zero elsewhere.

With this notation, (3.5.1) is
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logP (X,Y | θ) = x>1 logπ +
T∑
t=1

y>t (logE) xt +
T∑
t=2

x>t (logA) xt−1 (3.5.4)

Using the linearity of expectation, and the fact each parameter appears in only one

term, we can write the maximization in the E-step as finding

argmaxθEQ(k+1) [logP (X,Y | θ)] = argmaxπEQ(k+1) [x>1 logπ] (3.5.5)

+argmaxEEQ(k+1) [
T∑
t=1

y>t (logE) xt] (3.5.6)

+argmaxAEQ(k+1) [
T∑
t=2

x>t (logA) xt−1] (3.5.7)

Because the quantities with respect to which we are trying to maximize define proba-

bilities, the maximization must be done subject to the appropriate sum-to-one constraints.

It is therefore necessary to use lagrange multipliers. The results are as follows:

π(k+1) = EQk+1
[x1] (3.5.8)

A(k+1) =
1

Z1

T∑
t=2

EQk+1
[xt x

>
t−1] (3.5.9)

Here, EQk+1
[xt x

>
t−1]is the matrix whose i, jth cell contains the probability that the X was in

state i at time t− 1 and state j at time t.

E(k+1) =
1

Z2

T∑
t=2

EQk+1
[yt x

>
t ] =

1

Z2

T∑
t=2

yt EQk+1
[x>t ] (3.5.10)

Z1 and Z2 are normalizing constants. Expectations are taken component-wise.

How do we compute EQk+1
[xt]? The key is to observe that xt is multinomial random

variable. So, by definition of the expectation of a multinomial random variable, we see that

EQk+1
[xt] (as a vector) is simply equal to the vector representing the marginal distribution

of xt under Q(k+1). The analogous conclusion applies to EQk+1
[xt x

>
t−1]. So in order to

implement the EM algorithm for HMMs, we need to compute two pieces of information.

• To compute A in (3.5.9), we need for each i, j and t > 1 the joint probability

P (xt−1(i) = 1,& xt(j) = 1).
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• To compute π in (3.5.8) and E in (3.5.10), for i and each t, we need the probability

that Xt(i) = 1. (Note that since we know Y, this is the only information that we

need to compute E.)

Because we are interested in expectations with respect to Qk+1(X) = P (X | Y, θk), the

above probabilities are to be computed conditioned on the observed variables and the model

parameters. So for our calculations below, we will assume that these quantities are known.

3.5.2 The Forward-Backward Algorithm

It turns out that the right way to approach the calculations we need is a form of belief

propagation. However, it has a classical presentation that we give first before giving the belief

propagation interpretation. We will show in detail how to do the second calculation, finding

the distribution of xt for any t. The basic approach for finding the transition probabilities

is the same, so we won’t present it in detail.

The first step is to write:

P (xt | Y) =
P (Y | xt)P (xt)

P (Y)
(3.5.11)

Looking at the graphical model for the HMM, we see that paths between visible units before

and after time t are blocked by the hidden xt node. This gives the following conditional

independence relation:

P (Y | xt) = P (y1, . . . ,yt | xt)P (yt+1, . . . ,yT | xt) (3.5.12)

Plugging this into (3.5.11) gives

P (xt | Y) =
P (y1, . . . ,yt | xt)P (yt+1, . . . ,yT | xt)P (xt)

P (Y)
(3.5.13)

Applying the definition of conditional probability to the first factor in the numerator gives:

P (xt | Y) =
[P (y1, . . . ,yt,xt)/P (xt)]P (yt+1, . . . ,yT | xt)P (xt)

P (Y)
(3.5.14)
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Then cancel P (xt):

P (xt | Y) =
P (y1, . . . ,yt,xt)P (yt+1, . . . ,yT | xt)

P (Y)
(3.5.15)

:=
αt(xt)βt(xt)

P (Y)
, (3.5.16)

where we have defined:

α(xt) := P (y1, . . . ,yt,xt) (3.5.17)

β(xt) := P (yt+1, . . . ,yT | xt) (3.5.18)

This shows how to perform the second calculation needed for the application the EM

algorithm. The first can be done with similar methods.

The key to the effectiveness of the forward-backward algorithm are recurrence relations

for α and β that allow them to be computed efficiently. To obtain α(xt) from α(xt−1), we

first have to include the next hidden variable to get P (y1, . . . ,yt−1,xt).

P (y1, . . . ,yt−1,xt) =
∑
xt−1

P (y1, . . . ,yt−1,xt−1)P (xt | xt−1) (3.5.19)

⇒ P (y1, . . . ,yt−1,xt) =
∑
xt−1

α(xt−1)P (xt | xt−1) (3.5.20)

We then include the next visible state by simple multiplication to get the recursion:

α(xt) := P (yt | xt)
∑
xt−1

α(xt−1)P (xt | xt−1) (3.5.21)

The analogous recursion for β is

β(xt) =
∑
xt+1

β(xt+1)P (xt+1 | xt)P (yt+1 | xt+1) (3.5.22)

Since we are assuming that the model parameters are known, we know every term in the

above expressions aside from β(xt+1) and α(xt−1), and these can be computed recursively,

after specifying values for α1 and βT . We initialize the recursion with:

α(x1) = P (y1)P (y1 | x1) (3.5.23)
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The intuition here is that, by (3.5.19), α(x1) = P (y1,x1). The definition conditional proba-

bility gives (3.5.23). The initialization for β is

β(xt) = 1 (3.5.24)

3.5.3 The Forward-Backward Algorithm as Belief Propagation

Following [3], we will use the forward-backward algorithm as an example of belief

propogation in factor graphs, and show that the α and β quantities we defined above are

equal to the messages.

So the first step is to reformulate the HMM graphical model in figure 3.4 as a factor

graph. Because of the restricted nature of interactions in the HMM, this graph will have

a particularly simple form. Each hidden node only interacts with the preceding hidden

node, as dictated by the Markov property, and each visible node only interacts with its

corresponding hidden node. We do, however, have to specify the treatment of the visible

variables in the HMM. First, the values of these nodes are constant, so we don’t do inference

on them. Second, the messages that they pass into a factor will always be constant, and

may incorporate these constant terms into the factor itself, thereby eliminating altogether

all inputs to factors from visible nodes. Altogether then, it is safe to treat the visible nodes

entirely implicitely. We obtain the factor graph shown in 3.5, with factors given by

ft(xt,xt−1) = P (xt | xt−1)P (yt | xt) (3.5.25)

It might be disturbing that xt−1 appears in the same factor as yt given that these two

variables do not interact. But we see that the way the factor is defined means that no such

interaction is implied.

Having constructed a factor graph, we compute the massages using (3.4.6) and (3.4.7).

First we look at the messages that are passed forward from factors to variables. Using (3.4.7),

we have:

mft,xt =
∑
xt−1

ft(xt,xt−1)mxt−1 ft (3.5.26)
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xt-1

yt

ft xt

yt+1

ft+1 xt+1

Figure 3.5: In this reformulation of an HMM as a factor graph, we take advantage of the
fact that the visible variables do not play a meaningful part in the message passing, which
lets include them only implicitly, as indicated by the dashed lines.

We can now use (3.4.6) to expand mxt−1 ft as mft−1 xt−1 . Substituting this in gives:

mft,xt =
∑
xt−1

ft(xt,xt−1)mft−1 xt−1 (3.5.27)

This gives a recursive definition for the tth message. If we write α(xt) = mft,xt , and subsitute

in the definition from (3.5.25) we have:

α(xt) =
∑
xt−1

P (xt | xt−1)P (yt | xt)α(xt−1) = P (xt | xt−1)
∑
xt−1

α(xt−1)P (yt | xt) (3.5.28)

But this is exactly the recursion (3.5.21). Therefore, to show that the α’s are equal to the

forward messages, it suffices to check that the initializations are the same. Recalling the

initial conditions we have given for general factor graphs, we see that the initialization is

f(x1), which according to (3.5.25) is P (x1)P (x1 | y1). But comparing to (3.5.23), we see

that we have equality. This shows that the messages passed forward from factors to variables

are equal to the α’s. We now check that the messages passed backward are equal to the β’s.

According to (3.4.6), we have:

mft+1,xt =
∑
xt+1

f(xt+1,xt)mxt+1 ft+1 (3.5.29)
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By (3.4.6) this is ∑
xt+1

f(xt+1,xt)mft+2 xt+1 (3.5.30)

We can write β(xt) = mft+1,xt and expand f using (3.5.25). This gives:

βt =
∑
xt+1

P (xt+1 | xt)P (yt+1 | xt+1)β(xt+1) =
∑
xt+1

β(xt+1)P (xt+1 | xt)P (yt+1 | xt+1)

(3.5.31)

As before, we see that this is the same recursion that defines the sequence of βs. And also

as before, it remains only to check that the initialization is the same. By (3.5.24) we see

that the initialization is 1, which is the same initialization we gave for factor graphs when

the leaf node is a variable.



Chapter 4

Reproducing Kernel Hilbert Spaces

Many machine learning algorithms are most naturally formulated in linear terms, but

it is often desirable to be able to handle nonlinear data. In order to preserve the structure

of the original algorithms, we map the original input space X to another space H via the

non-linear map Φ : X → H. If we have chosen Φ and H correctly, we may then apply our

linear algorithms in H.

This process is made much easier by the fact that many linear algorithms are linear

only because they involve terms of the form 〈x,y〉X for x,y ∈ X , where 〈x,y〉X denotes

the inner product in X . After applying the map Φ, these terms become 〈Φ(x),Φ(y)〉H.

Therefore, if we can find a function k : X × X → R such that

k(x,y) = 〈Φ(x),Φ(y)〉H, (4.0.1)

then we can avoid actually calculating and applying Φ. The function k is called a kernel.

In practice, one never actually considers Φ and H. Rather, one starts by constructing

the kernel k, and Φ and H are implicit. In order for this to work, we need to know which

functions k are admissable kernels, i.e. we need to know for which kernels k there exits Φ,

H such that (4.0.1) holds. This information is furnished by the following theorem, which we

will not prove; a proof can be found in [7].

Definition 4.0.1. A function k : X × X → R is a positive kernel if for any finite set of

points x1 . . . xn ∈ X , the matrix K defined by Ki,j = k(xi,xj) is positive definite.
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Theorem 4.0.2. Suppose k : X ×X → R is a positive kernel, and define the map Φk : X →

RX by Φk(x) = k(x, ·). Then define a space Hk by closing the image of Φk under sums of

the form
∑n

i=1 aik(xi, ·), and equipping it with the inner product:

〈f, g〉Hk = 〈
n∑
i=1

aik(xi, ·),
m∑
j=1

bik(yj, ·)〉Hk =
n∑
i=1

m∑
j=1

aibjk(xi,yj) (4.0.2)

Then Hk is a Hilbert space and we have

k(x,y) = 〈Φk(x),Φk(y)〉Hk , (4.0.3)

which shows that k is an admissable kernel.

As an immediate consequence of the construction of Hk, we see that k has the following

reproducing property :

〈k(x, ·), k(y, ·)〉H = k(x,y) (4.0.4)

and

〈f(·), k(x, ·)〉H = f(x) (4.0.5)

The second equality comes from

f(·) =
n∑
i=1

k(yi, ·)⇒ 〈f(·), k(x, ·)〉H =
n∑
i=1

k(yi,x) = f(x) (4.0.6)

We call Hk the reproducing kernel Hilbert space (RKHS) associated with the kernel k.

4.1 Regulariziation

Generally, when one is training a supervised learning algorithm, one wants to keep the

error on the training set small. However, unless corrective steps are taken, the model with

minimal error on the training data will often overfit the data. Overfitting occurs when a

model is too finely tuned to the peculiarities of a particular training set and fails to generalize

well to data on which it has not been trained. Although much of what follows is true for

both classification and regression algorithms, we will restrict our discussion to classification.
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One sign that a classification algorithm has overfit the data is that its decision function

is highly non-smooth: this indicates that the function is “contorted” in a way that lets it fit

the training set perfectly but that may impair generalization. With this in mind, we may

seek to prevent overfitting by requiring that our decision function be smooth. This is called

regularization.

Mathematically, a regularized learning algorithm will have the following form: Find

the decision function f that minimizes:

c(f, {xi,yi})) + L(f), (4.1.1)

where c is a function that measures error on the training set and L is a function that measures

the “roughness” of f : L(f) is large if f is highly non-smooth. In this section, we explore

the nature of the function L. In particular, we show that we we may choose L(f) to be the

norm of f in certain function space. The remarkable fact is that this function space arises

naturally from the learning problem: it is the reproducing kernel Hilbert space we get when

we use a kernelized learning algorithm.

In section 4.2, we recall some facts about kernelized algorithms and reproducing kernel

Hilbert spaces. In sections 4.3 and 4.4, we show from two points of view that minimizing the

RKHS norm of a function f amounts to regularizing f . In section 4.5, we show that support

vector machines are an example of a regularized learning algorithm. Section 4.6 contains the

proof of the representer theorem, a result that characterizes the solution f to a regularized

minimization problem of the form (4.1.1). Spefically, the representer theorem shows that

if f minimizes (4.1.1), then f may be represented as a finite linear combination of kernels

associated with training points. Section 4.7 concludes.

4.2 Regularization via Penalization of Large Derivatives

For any differentiable function, a large derivative indicates rapid changes in value.

Thus, a natural way to encourage smoothness is to penalize large derivatives. In other
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words, if L is a differential operator, then we want to minimize ||Lf ||L2 . In this section, we

show that minimizing ||f ||Hk accomplishes this.

This section explores the differential regularization problem from two directions. First

we show that if we are given a differential operator L, then it is possible to find a kernel k

that satisfies the kernel requirements, and for which we have

||Lf ||L2 = ||f ||Hk . (4.2.1)

Second, we start with two common SVM kernels, the Gaussian kernel and the polynomial

kernel and display differential operators L such that (4.2.1) is satisfied.

We will need the following definition:

Definition 4.2.1. Given a linear operator L, a Green’s function of L is a function k that

satisfies:

Lk(x,y) = δ(x−y) (4.2.2)

where δ is the Dirac delta function.

We observe that for any function f , we have:

〈f(·), Lk(x, ·)〉L2 =

∫
f(t)δ(x−t)dt = f(x). (4.2.3)

Now we can prove the main proposition.

Proposition 4.2.2. Let L be a differential operator, and let k(x,y) be a Green’s function of

L∗L. Then k is a positive definite kernel, and for any function f in the RKHS H associated

with k, we have ||Lf ||L2 = ||f ||H.

Proof. Note that to prove that k is positive definite, it suffices to exhibit a Hilbert space H

and a function Φ : X → H for which:

k(x,y) = 〈Φ(x),Φ(y)〉H. (4.2.4)
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To this end, define Φ by x 7→ k(x, ·), and define the H inner product to be 〈f, g〉H =

〈Lf, Lg〉L2 . The space H itself can be constructed by taking the correct linear combinations

and completions. Then we have:

〈Φ(x),Φ(y)〉H = 〈Lk(x, ·), Lk(y, ·)〉L2 = 〈k(x, ·), L∗Lk(y, ·)〉L2 = k(x,y), (4.2.5)

where the last equality is justified by (4.2.3).

The fact that ||Lf ||L2 = ||f ||H is immediate by the construction of 〈·, ·〉H.

Now we go the other direction: we start with the kernel k and find the corresponding

differential operator L. Obviously, we can’t prove a general theorem here. Rather, we report

the results given in [17] and [16] for two common SVM kernels, the radial basis/Gaussian

kernel and the polynomial kernel.

For the RBF kernel, we have (reprinted exactly from [17]):

||Lf || =
∫
dx
∑
m

σ2m

m!2m
(Ôf(x))2 (4.2.6)

where: σ is the standard deviation of the Gaussian kernel, Ô2m = ∆m and Ô2m+1 = ∇∆m,

with ∇ as the Laplacian and ∆ as the gradient. More informally, because of the infinite sum,

using an RBF kernel penalizes all derivatives, leading to a very smooth decision function f .

For the polynomial kernel, we have, again directly reprinted, this time from [16]:

L =
∑
|m|=p

em

(
p

m

) 1
2

Dm
0 (4.2.7)

Here, m is a mulitindex, p is the degree of the polynomial kernel, and D0 is defined by

Dm
0 f =

1

m1!
∂m1
x1
, . . . ,

1

mn!
∂mnxn (4.2.8)
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4.3 Regularization via Fourier Analysis

Above, we have considered encouraging smoothness by penalizing large derivatives.

Here we consider another another way to encourage smoothness, namely penalizing high

frequencies. For this reason, we consider the Fourier transform f̂ of f . In order to penalize

the correct frequencies, we introduce a real valued function υ(ω) that is symmetric, non-

negative and converges to 0 as | ω |→ 0. Our regularization term is then:

minimize λ

∫
| f̂(ω) |2

υ(ω)
dω (4.3.1)

Because υ converges to 0 as | ω |→ 0, the high frequencies (ω close to 0) must be small to

keep the whole expression minimal.

In the previous section, we showed that given a differential operator L, there was a

kernel k such that ||Lf || = ||f ||Hk . Here we do the analogous thing by showing that given a

function υ(ω), there exists a reproducing kernel k such that:

λ

∫
| f̂(ω) |2

υ(ω)
dω = ||f ||Hk (4.3.2)

To do this, we reduce the problem to the one we considered the previous section. That

is, we define an operator L for which:

||Lf ||2 = λ

∫
| f̂(ω) |2

υ(ω)
dω, (4.3.3)

and then we find the corresponding Green’s function. By the results in the previous section

this Green’s function will be the kernel k that we seek. Skipping the derivation, this Green’s

function is given (cf. [17], [10])by:

k(x, y) =
1

2π

∫
eiω(x−y)υ(ω)dω (4.3.4)

By the results in the previous section, we’re done.
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4.3.1 Connecting Fourier and Differential Regularization

Following [10], we show that the formulation of regularization given in this section

can be used to reconstruct the differential operator formulation given previously. The key

observation lies in the relationship between differentiation and the Fourier transform. We

have:

f̂ ′(x) = iωf̂(x) (4.3.5)

Let us choose υ(ω) = 1
ω2 . Then we have:

1

2π

∫
| f̂(ω) |2

υ(ω)
dω =

∫
ω2 | f̂(ω) |2 dω = ω2〈f̂ , f̂〉L2 = −〈iωf̂ , iωf̂〉L2 = 〈f̂ ′, f̂ ′〉L2 (4.3.6)

Now, by Parseval’s theorem, we have

〈f̂ ′, f̂ ′〉L2 = 〈f ′, f ′〉L2 =

∫
| f(x) |2 dx = ||f ′(x)||2L2 (4.3.7)

Putting this together with the previous string of equalities gives:

1

2π

∫
| f̂(ω) |2

υ(ω)
dω =

∫
ω2 | f̂(ω) |2 dω = ||f ′(x)||2L2 = ||Lf ||2L2 (4.3.8)

This shows that by choosing υ(ω) = 1
ω2 gives the same result as doing the analysis of the

previous section with the differential operator Lf = d
dx
f(x).

Similarly, a choice of υ(ω) = 1
ω4 corresponds to a choice of Lf = d2

dx2
f(x).

4.4 Support Vector Machines

We now have all the information necessary to see how the idea of regularization plays

out in the context of a specific learning algorithm, namely support vector classification.

One the face of it, it is rather suprising that support vector machines do not overfit

training data. After all, for certain common parameter choices, SVMs are capable of per-

fectly or nearly perfectly fitting all training sets. This should immediately make us suspect

overfitting. However, SVMs generalize very well in practice, indicating that overfitting does
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not in fact occur. It has been suggested [17] that the explanation of the phenomenon is that

SVMs incorporate regularization. We explore this idea here. Our discussion follows [11].

We will show that support vector machines seek the decision function f that minimizes

c(f, {xi,yi})) + ||f ||Hk , (4.4.1)

where Hk is the RKHS corresponding the SVM kernel. Given that we have shown in sections

3 and 4 that ||f ||Hk can be seen as a regularization term, this amounts to showing that SVM

is a regularized learning algorithm.

Recall that the decision function for an SVM with kernel k is given by

f(x) =
n∑
i=1

αiyik(xi, ·) (4.4.2)

(The reason that the offset b does not appear here is that it amounts to a simple shift and

may be incorporated in a choice of threshold). Since for each i, αiyi is a constant, so f is a

linear combination of k(xi, ·). Therefore f is in the RKHS corresponding to k.

Now observe that:

||f ||2H = 〈f, f〉H =
n∑
i=1

n∑
i=1

αiαj yi yj k(xi,xj) (4.4.3)

But now look back at the dual form of the optimization problem we solve to find f . This is:

maximize
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj) (4.4.4)

subject to
N∑
i=1

αiyi = 0 and αi > 0 ∀i (4.4.5)

Comparing this with (4.4.3) we get:

maximize
N∑
i=1

αi − ||f ||2H (4.4.6)

So in other words, we are looking for the acceptable f with smallest RKHS norm, which, as

we have seen, amounts to seeking a smooth f .
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4.5 The Representer Theorem

In the preceding sections, we have shown that in order to prevent overfitting, it is wise

to minimize the sum of a loss function and a regularization term. We have also shown that

the regularization properties of a function f are well characterized by ||f ||H. Therefore, we

arrive at the optimization problem:

minimize c(f, {xi,yi})) + Ω(||f ||H), (4.5.1)

where Ω is non-decreasing. We will assume that the loss function c is pointwise. That is,

we assume that c to depends only on the values {f(xi)}. This assumption is actually quite

natural and should not be seen as restrictive.

This optimization problem is made tractable even if H is infinite dimensional by the

following result which is known as the representer theorem. Intuitively, the representer

theorem says that the solution to the optimization problem may be expressed in terms of

only those kernels associated with training points, even if the space H is very large. Our

proof follows the presentation in [1].

Theorem 4.5.1. In the minimization problem (4.5.1), if the function Ω is strictly increasing,

then any solution f has a representation of the form:

f(x) =
n∑
i=1

αik(xi,x) (4.5.2)

If Ω is non-decreasing then the optimization problem has least one solution that can be rep-

resented in the form (4.5.2).

Proof. Define K ⊂ H by K = span{k(·,xi)}. We have H = K ⊕ K⊥, so for any function

f ∈ H, we have f = f|| + f⊥, where f|| ∈ K and f⊥ ∈ K⊥. Suppose that f solves 4.5.1. We

will prove that f|| also solves 4.5.1, and that if Ω is strictly increasing then f = f||. Noting

that by definition of K, f|| admits a representation of the form 4.5.2, we see that this will

prove the theorem.
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By the reproducing property of k, we have, for all i:

f(xi) = 〈f, k(xi, ·〉Hk (4.5.3)

= 〈f||, k(xi, ·〉Hk + 〈f⊥, k(xi, ·)〉Hk (4.5.4)

= 〈f||, k(xi, ·〉Hk (4.5.5)

= f||(xi). (4.5.6)

Therefore, by the assumption that c depends only on the values {f(xi)}, we have

c(f||) = c(f). (4.5.7)

Furthermore, we have:

||f ||2H = ||f||||2H + ||f⊥||2H (4.5.8)

⇒ ||f||||H ≤ ||f ||H. (4.5.9)

The inequality is strict if f⊥ 6= 0. Combining (4.5.7) and (4.5.9) gives:

c(f||, {xi, yi})) + Ω(||f||||H) ≤ c(f, {xi, yi})) + Ω(||f ||H) (4.5.10)

This immediately shows that if f solves (4.5.1), then so does f||. Furthermore, it is easy to

see that the inequality is strict if Ω is strictly increasing and f⊥ 6= 0. This shows that if Ω

is strictly increasing, then f⊥ = 0⇒ f = f||.



Chapter 5

Reinforcement Learning

In reinforcement learning, we imagine an agent interacting with the world. The agent

can perform actions which change the state of its environment. Some state-action pairs are

desirable and are rewarded, while others are not desirable and are punished. The agent’s

goal is to interact with its environment in a way that maximizes some function of its reward.

We formalize these ideas with the following setup:

• The world consists of a set of states X = {xi}Ni=1. We will assume that the number

of states is finite.

• The agent interacts with the world at discrete time points. At each point t it chooses

an action at from a finite set of possible actions. Subsequently, two things happen:

• The agent receives a stochastic real-valued reward rt = r(at,xt), where xt is the

state at time t, and at is the action taken by the agent. This function has expected

value r̄t = r̄(at,xt) Also,

• The state of the world stochastically transitions to xt+1 according to the distribution

P (xt+1 | at,xt).

In the setup above, transitions to a new state only depend on the action and state on

the previous time step. Given these, the new state is independent of everything that occurred

at earlier times. The setup is therefore called a Markov decision process (MDP). One point
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to note is that, as the notation above suggests, we make the simplifying assumption of

stationarity: the reward and transition probabilities are independent of time.

The goal of an agent in an MDP is learn from its experience to choose good actions.

Of course, we have to specify what we mean by “good”. Assume that the current time index

is t. Then we will define an optimal sequence of actions as one that is expected to produce

a sequence of rewards (rt+u)
∞
u=0 that maximizes the following discounted return:

E
[ ∞∑
u=0

γurt+u

]
(5.0.1)

Recall that the quantities rt+u are expected rewards. Also, γ ∈ [0, 1] is a discount factor

that assigns lower values to rewards that are obtained later in time: “A bird in the hand is

worth two in the bush.” The presence of γ can be justified in a number of ways. First, it

is mathematically necessary in order to make the sum converge. More intuitively it reflects

the possibility that unforeseen events may disrupt the policy down the road: we don’t want

to sacrifice too much of our short-term reward for a long-term reward that may or may not

materialize.

It is useful to introduce the notion of a policy that guides an agent’s actions. A policy

is a function

π : a×X→ [0, 1] (5.0.2)

that assigns probabilities to action-state pairs (a is set of all possible actions). For a state x,

π(·,x) is a probability distribution over actions from which the agent samples when it finds

itself in state x. The goal of the agent can now be reformulated as finding an optimal policy

π∗, where an optimal policy is one that chooses a sequence of actions that maximizes (5.0.1).

How do we find a good policy? We will describe two ways. The first is called Q learning.

5.1 Q Learning

It would be easier to find good actions if we had some way of defining the quality of

taking an action a in a state s, since we could then just choose actions with high quality.
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The problem is that if we are using (5.0.1) as our metric of performance, any reasonable

notion of quality will depend not only on xt and at, but on whatever happens afterwards as

well. In order to correct for this, we use a “best case scenario” notion of quality in which

quality is the discounted reward we expect to recieve from performing action at in state xt

and thereafter choosing a sequence of actions that is optimal in the sense of (5.0.1):

Q∗(at,xt) = E
[
r(at,xt) +

∞∑
u=1

γur(a∗t+u,xt+u)

]
(5.1.1)

= r̄(at,xt) +
∞∑
u=1

γu r̄(a∗t+u,xt+u) (5.1.2)

The star indicates optimality, so that (a∗t+u) is the sequence of optimal actions. One note:

we have described Q∗ as a function, but since the set of states and the set of actions are both

finite, it is often more helpful to think of it as a table whose columns are states and whose

rows are actions, so that the ijth cell contains the quality of taking action i in state j.

To see why these quality functions are useful, recall that we are trying to find an

optimal policy. Suppose that have already determined the optimal probability distribution

over actions for all states other than xt. The quality function can then enable us to determine

what to do in xt. It is easy to see that the best action at is the one with the highest quality:

a∗t = argmaxatQ
∗(at,xt) (5.1.3)

The optimal policy is then defined in the obvious way as the deterministic map that assigns

probability 1 to action a∗t in state xt with probability 1.

The obvious problem here is that we can’t evaluate (5.1.2) because we don’t know the

optimal actions to take following at. The first step in overcoming this difficulty is to write

down the so-called Bellman equation for Q∗. We can peel off the first term of the infinite

sum in (5.1.2) to get

Q∗(at,xt) = r̄(at,xt) + γ r̄(a∗t+1,xt+1) +
∞∑
u=2

γu r̄(a∗t+u,xt+u) (5.1.4)
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Which is

Q∗(at,xt) = r̄(at,xt) + γQ∗(a∗t+1,xt+1) (5.1.5)

This problem is that this expression assumes that xt+1 can be known at time t - because

of the stochastic nature of the transitions, this is impossible. The trick to overcoming this

randomness is to take a probabilistic average, which gives:

Q∗(at,xt) = r̄(at,xt) + γ
∑
s′

P (s′ | at,xt)maxat+1Q
∗(at+1, s

′) (5.1.6)

This gives us a recursive definition of the Q∗ values. Since the set of possible actions and

the set of possible states are both finite, (5.1.6) gives us, in principle, a way to find the value

of Q∗ for every action-state pair by solving a system of linear equations with coefficients

P (s′ | at,xt). In practice, though, the coefficients are not known, so we need yet another

work-around.

Observe that to make evaluation of (5.1.6) practical, we need to find the expected value

of the function maxat+1Q
∗(at+1, s

′) with respect to the distribution P (s′ | at,xt). The trick

is to approximate this expected value with samples - in fact with one sample. Obtaining

this sample is easy: if the agent is in state xt and performs action at, it can observe the

state xt+1 that results, and maxat+1Q
∗(at+1,xt+1) is the desired sample. Substituting this

into (5.1.6) we get:

Q∗(at,xt) ≈ r(at,xt) + γmaxat+1Q
∗(at+1,xt+1) (5.1.7)

Of course, this is still not a practical formula, since it includes the quantities Q∗ that

we want to define. However, we can use an iterative scheme: For each state action pair, we

initialize an estimate Q̂∗(a, s) to some value, and then at each timestep use the following

update rule:

Q̂∗(xt, at)← Q̂∗(xt, at) + ε(r(at,xt) + γmaxat+1Q̂
∗(at+1,xt+1)− Q̂∗(a, s)) (5.1.8)

Here α is a learning rate. The interpretation is that is that iteration brings the current

estimate closer to the estimate given by , to an extent determined by α.
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The above iteration requires the agent to choose actions before it knows the optimal

policy, so we have to specify the policy by which it does this. An important idea that

motivates this choice is the so-called exploration exploitation tradeoff. The idea is that the

agent wants to use its current knowledge to obtain high rewards (exploitation), but it also

wants to try many different actions so that it will be better able to learn an optimal policy in

the long-run (exploration). With this tradeoff in mind, we use an α-greedy policy, in which

the agent chooses the action that is optimal with respect to its current quality estimates

with probability 1− α, and a random action with probability α. It is possible to elaborate

this policy by decreasing α over time, the idea being that the estimates should be better,

and less exploration should be needed, later on.

5.2 Actor-critic learning

We now discuss another learning scheme. As the name suggests, actor-critic methods

have two components. The actor components performs actions according to a policy, and

the critic evaluates these actions and suggests improvements to the policy.

We need to introduce the following value function, which will be recognized as being

very similar to the Q∗ functions defined earlier. The value of a state with respect to a policy

π is defined as the discounted return that is expected to result from following policy π in

state s.

V π(xt) = E
[ ∞∑
u=0

r(π(xt+u),xt+u)

]
. (5.2.1)

Where we use π(xt+u) to denote the action recommended by the policy π in state xt+u.

The critic’s job is to keep estimates of these value functions and to use them to evaluate

and improve the policy. We will first describe how estimates are obtained, and then show

how they can be used to improve the policy that is currently being followed.

The first step is to write down the Bellman equation for the value function, which can

be obtained using the same reasoning that we used to deduce the Bellman equation for the
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Q∗ functions. We have

V π(xt) =
∑
a

π(xt, a)[̄r(xt, a) + γ
∑
s′

P (s′ | xt, a)V π(s′)] (5.2.2)

As a side note, we can give an intuitive way to understand (5.2.2). The sequence of possible

actions and states in an MDP can be represented as a tree (like a game tree in classical AI).

If we imagine that the tree is finite with known values at the leaves, then we can propagate

the values up the tree by labeling the nodes adjacent to the roots with a likelihood-weighted

average of the root values. We can repeat this process until labels have been assigned to all

nodes in the tree. One can notice that this scheme is formalized by (5.2.2).

As we did with Q∗ learning, we replace the averages with single samples. This entails

taking one action from the distribution given by π, and observing the state to which it leads.

The estimate is then

V π(xt) = r(π(xt),xt) + γV π(xt+1), (5.2.3)

where, as before, π(xt), is the action recommended by π at time t. As with Q∗ learning, we

use an iterative scheme, and initialize estimates V̂ π(x) for each state x. The update is

V̂ π(xt)← V̂ π(xt) + α[r(π(xt),xt) + γV̂ π(xt+1)− V̂ π(xt)] (5.2.4)

This completes the acquisition of value estimates.

Having obtained estimates V̂ π(x) of the value of all states, we can describe how to use

these estimates to improve our policy. It is convenient to introduce parameters m(x, a) for

each state x and action a and to assume that:

π(x, a) =
em(x,a)

e
∑
a′ m(x,a′)

(5.2.5)

We can then adjust these parameters to make it more likely that the policy π chooses actions

that are good according the estimate of V . Define the following

δt = r(π(xt),xt) + γV̂ π(xt+1)− V̂ π(xt) (5.2.6)
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Looking at (5.2.3), we see that the sum of the two left-hand terms can be interpreted as the

estimate of the value of state xt obtained after the action at has been performed r(π(xt),xt)

has been observed. This is likely to be somewhat better than the prior estimate V̂ π(xt), since

it includes the reward r(π(xt),xt) that was actually obtained. Therefore δt can be interpreted

as the difference in the predicted value V̂ π(xt) and the updated prediction r(t) + γV̂ π(xt+1).

If δt is positive, then update is greater than original estimate, and we conclude that at turned

out to be better than expected. Conversely, if δt is negative, then the at was worse than

expected. Thus, we can punish actions that were worse than expected and encourage actions

that were better than expected by using the update

m(s(t), a(t))← m(s(t), a(t)) + ε2δ(t), (5.2.7)

where ε2 is another learning rate.

Note that actor-critic learning requires updates both to the estimated value function,

as in (5.2.4) and to the policy π, as in (5.2.7) The most theoretically justified way to balance

these two factors is wait until the value estimate is as exact as possible before updating the

policy. In practice, though, it is more common to alternate the two updates.

5.3 Hierarchical Reinforcement Learning

The reinforcement learning framework presented above has some serious drawbacks

that make it computationally expensive and cognitively unrealistic. The most glaring of

these is best illustrated with an example. When I walk to school in the morning, I don’t

plan each step I take individually. Rather, I plan at a larger scale: get to the top of the hill,

turn left, walk straight for one block, etc. In other words, I don’t plan in terms of primitive

actions (steps); I plan in terms of blocks of actions. Looking back the previous section,

though, we see that an agent in an MDP plans only in terms of steps: a choice of action as

to be made at every single time step.

Hierarchical reinforcement learning is designed to overcome this problem by grouping
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actions in various ways, and then planning in terms of these groups. A number of approaches

to hierarchical reinforcement learning have been proposed. We follow the approach taken

in [2].

5.3.1 The Options Framework

In the options framework [18], we still have a Markov decision process with ordinary

actions, but these actions are organized hierarchically by objects called options. An option

is a triple, o = (I, µ, T ). I is a set of states from which the option may be initiated. For

example, if I have a “climb the hill” option as part of my walk to school, this option can be

initiated only at the bottom of the hill. Next, T is a of termination conditions, T : X→ [0, 1],

where T (x) is the probability that the option terminates in state x. The “climb the hill”

option might be defined to have probability one of terminating at the top of the hill, and

probability zero of terminating elsewhere.

The most important part of the option is µ, which is a policy over options. That is, µ

is a function

µ : o×X→ [0, 1], (5.3.1)

where o is the set of all possible options. The interpretation here is the same as the inter-

pretation of standard policies: µ in a given state µ assigns a probability to each option. The

idea is that while it is active, each option o chooses other options, which in turn choose other

options, and so on. When an option terminates, control returns to its parent, and depending

on its own termination conditions may terminate or may choose another option. Obviously,

for the agent to actually accomplish anything, this process must eventually “ground out” in

primitive actions. In order to accomplish this while maintaining the fact that options always

choose other options, we simply include the set of primitive actions in the set options, so

that each action is an option that, with probability one, terminates in all states.

We would like to be able to define a version of Q-learning in the options setup, where
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the Q∗ functions are now interpreted as the quality of initiating option o in state x and

choosing optimal options thereafter. Recall that the Q-learning update rule is

Q̂∗(xt, at)← Q̂∗(xt, at) + ε(r(at,xt) + γmaxat+1Q̂
∗(at+1,xt+1)− Q̂∗(a, s)) (5.3.2)

We would like to simply replace each at with ot. The problem is the presence of the reward

r(at,xt). Choosing an option results in the execution of a whole sequence of primitive

actions, each with their own reward. Therefore, in the options framework, there is no

“instantaneous” reward obtained by an option at each time step. There is a fairly natural

way to define the symbol r(ot,xt), however. We take our definition to be the total discounted

reward accumulated while the option o was active. So, if o was active for τ + 1 timesteps

after after taking effect at time t, we define

r(ot,xt) =
τ∑
u=0

γurt+u (5.3.3)

This definition enables us to straightforwardly extend Q-learning to the options frame-

work. The update is

Q̂∗(xt, ot)← Q̂∗(xt, ot) + ε(r(ot,xt) + γτmaxot+τ Q̂
∗(ot+τ ,xt+τ )− Q̂∗(ot,xt)) (5.3.4)

As before, the estimates are initialized before the iteration begins. As this exposition illus-

trates, one of the chief advantages of the options framework is that it has many features

in common with ordinary, non-heierarchical reinforcement learning, and many ideas from

non-hierarachical reinforcement learning can be easily generalized to the options case.

5.3.2 Hierarchies of Abstract Machines

Like the options framework, the hierarchies of abstract machines (HAM) framework [15]

consists of a standard MDP with some superstructure. This time, rather than options, we

have a collection of finite state machines, each of which has a specific function (e.g. “climb

the hill”). The internal states of these machines are of four types. In an action state, the



82

machine performs an action in the base MDP. In a call state, the machine calls another

machine. In a terminate state, the machine terminates, and passes control back to the

machine that called it. In a choice state, the machine transitions (stochastically) to another

internal state. After each step, the machine transitions to a new state based on its internal

transition function and on the state of the base MDP.

In the walking to school example, an agent might have a machine for traveling along

a particular section of the route. When the agent is simply walking, the machine stays in

the action states necessary to take steps. When the agent gets to a traffic light, though, the

machine might transition to a choice state that enables it to transition to either of two call

states. In one of these it can call a machine designed to let the agent cross at the crosswalk,

and in the other it can call a machine to let it jaywalk. Once the street is crossed, the

internal state of whichever street-crossing machines was called will transition to a terminate

state, and control will return to the original machine.

At this point, we have two types of states: internal states in the machines, and states of

the environment in the base MDP. The first learning in the HAM framework is to combine

these two sets of states into one two-dimensional state space. Call the set of all possible

internal states of all possible machines S. Then the two-dimensional state space is S ×X,

where, as before, X is the set of states of the base MDP. We also have transitions in S×X,

defined by the transition functions of the machine and the base MDP. (Note that following a

“choice” machine state, the state of the MDP does not change). It is possible to prove that

the two-dimesnional state space and transition functions define an MDP. The goal now is to

apply Q learning in this MDP.

The observation is that any given machine is “on autopilot” in all states other than

choice states. Therefore, we define Q learning in a way similar to the approach we took

when defining Q learning in the options framework. Let [stc,x
t
c] ∈ S ×X be a choice point

encountered at time t, and let atc be the action taken by the machine. Then we perform the
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following update:

Q̂∗([stc,x
t
c], a

t
c)← Q̂∗([stc,x

t
c], ac)+ε(r+γτmaxat+τc

Q̂∗([st+τc ,xt+τc ]a′)−Q̂∗([stc,xtc], atc)) (5.3.5)

Here, τ is the number of timesteps until the next choice point, [st+τc ,xt+τc ], and r is the

discounted reward accumulated between the two choice points.

5.3.3 MAXQ

As with the other frameworks we have discussed, the MAXQ framework [4] starts with a

decomposition of the overall task into subtasks, each with their own policies that allow them

to call their children, and conditions that specify when they terminate and return control

to their parent tasks. As with the options framework, MAXQ includes the performance of

primitive actions in the set of subtasks. The important difference between MAXQ and other

approaches is that MAXQ is designed to learn programs that can solve subtasks in a way

that allows these programs to be reused in the context of different supertasks.

As a consequence of this idea, where the other frameworks we have discussed are de-

signed to find an optimal solution to the master task, MAXQ is designed to find optimal

solutions to each of the subtasks, while allowing that patching together these optimal solu-

tions may yield a suboptimal solution to the master task. This idea can be defined more

rigorously: given a set of subtasks arranged in hierarchy, a set of policies for these subtasks

is called recursively optimal if the solution to each subtask is optimal given the solutions to

its child subtasks.

Following this idea of treating each subtask as an important learning problem in its

own right, we define value functions and quality functions that are specific to each subtask.

First we need some preliminary definitions. We have said that the subtasks in MAXQ

each have their own policies according to which they call their children. It is convenient to

compile these policies into a single hierarchical policy π, in which πi is the policy for subtask

i. Next, consider a subtask i. As we have discussed, the analogue of an action taken by i
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in the MAXQ framework is a request that a child subtask a be completed. We define the

transition probability Pi(x
′ | x, a) to be the probability that the environment will be in state

x′, after subtask a has been completed and control is returned to i. Similarly, we define the

reward function ri(x, a) to be the reward accrued during the period of time while a is being

completed, until control returns to i.

Now we can define the value functions. When we defined h the value of state x to

subtask i under hierarchical policy π, V π
i is the reward that is expected to accrue during the

period until subtask i terminated if hierarchical policy π is followed. With these definitions,

it is easy to see that ri(a,x) under hierarchical policy π is V π
a (x).

This enables us to make the following recursive definition of the quality functions:

Qπ
i (x, a) = V π

a (x) +
∑
s′

Pi(x
′ | x, a)V π

i (x′) (5.3.6)

We define the leftmost term as Cπ
i (x, a) =

∑
x′ Pi(x

′ | s, a)V π
i (x′), which we interpret as the

reward associated with completing subtask i from state x after performing action a. So we

can summarize our results as follows:

Qπ
i (x, a) = V π

a (x) + Cπ
i (x, a) (5.3.7)

V π
a (x) =

 Qπ
i (s, πa(x)) a composite

r(a,x) a primitive
(5.3.8)

This shows that in order to compute quantities of interest, such as value and quality

functions, it suffices to have estimates of the completion functions. For example, if we

substitute (5.3.8) in (5.3.7), we get

Qπ
i (x, a) = Qπ

a(s, πa(x)) + Cπ
i (x, a) = V π

πa(x)(x) + Cπ
a (x, πa(x)) + Cπ

i (x, a) (5.3.9)

We can then perform another substitution to expand V π
πa(s)(s). We can continue in this way

until we reach a primitive action. Thus, we can express each Q function as a sum of terms

involving completion functions, and value functions corresponding to primitive actions.
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Before showing how to obtain estimates of the completion functions, we introduce

one more feature of the MAXQ framework. In many situations, a subtask may be solved

in a variety of different ways, some of which will be better than others in the context of

the master task. Therefore, it is desirable to have a mechanism by which the programmer

can bias subtasks to be completed in particular ways. This is accomplished by introducing

subtask-specific pseudoreward functions r̃i. In general, these are defined only on the set of

sets the subtask may terminate, and are set to a large positive value for a set of “goal states”

and a large negative value otherwise.

We can now define the updates. Recall that Cπ
i (s, a) is the expected reward from

completing task i after performing a in s. We can therefore express it as the sum of the

obtained instantaneous reward, and the reward we expect when we continue from state s′.

As we did with Q∗ learning , we assume a “best case” scenario in which we perform the best

action a∗ next. The difference here is that the definition of best depends on the pseudoreward

function:

a∗ = argmaxa′ [C̃
π
i (s′, a′) + Va′(s

′)] (5.3.10)

The interpretation is that a∗ maximizes the genuine reward that we will get from perfoming,

and the pseudoreward we can expect to receive when subtask i terminates. So assuming

that a∗ is the next action a, the reward we expect after the instantaneous reward from a is

Cπ
i (s′, a∗)+V π

a∗(s
′). (This follows immediately from the fact that V π

a∗(s
′) gives the immediate

reward and Cπ
i (s′, a∗) gives the rest of the reward. So the update is:

Cπ
i (s, a)← Cπ

i (s, a) + αt(i)[r(a, s) + Cπ
i (s′, a∗) + V π

a∗(s
′)− Cπ

i (s, a)] (5.3.11)

where αt(i) is a learning rate that requires to decrease to zero as time goes to infinity. Note

that V value can be obtained recursively via (5.3.7) and (5.3.8).

We also have to update the estimate of C̃π
i (s, a). The idea of this update is similar,

except that both genuine and pseudoreawrd terms are included:

C̃π
i (s, a)← C̃π

i (s, a) + αt(i)[r̃i(s
′) + r(a, s) + Cπ

i (s′, a∗) + V π
a∗(s

′)− C̃π
i (s, a)] (5.3.12)
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If a is a primitive action, the update is:

V π
a (s) = Va(s) + αt(a)[r(a, s)− V π

a (s)] (5.3.13)

As with Q learning, we still have to specify how the agent uses these estimates to

behave. It turns out that in this setup, it is desirable for the agent to follow a greedy in

the limit with infinite exploration (GLIE) policy, for example an ε-greedy policy in which ε

decreases as the inverse of time.
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