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ABSTRACT 

Rowe, Scott Christian 

(Ph.D., Chemical Engineering, Department of Chemical and Biological Engineering) 

Pilot Plant, Analysis, Experiments and Control for the Hybridization of Transient Solar Heat with 

Conventional Utilities 

Thesis directed by Alan W. Weimer and David E. Clough 

ABSTRACT  

The direct capture of solar heat is now commercial for electrical generation at 550 oC (1000 oF), 

which has provoked interest in solar driven approaches to commodity and fuels production at 

higher temperatures.  However, conventional commodity and fuels facilities often operate 

continuously regardless of weather and nighttime conditions.  Conversely, direct sunlight is 

immediately lost upon shading by clouds and sunset.  Beyond inconvenience, this intermittency 

has the potential to destroy high temperature equipment through thermal fatigue and thermal 

shock.  To overcome interruptions in solar availability we propose the inclusion of direct sunlight 

in commodities and fuels production as a supplement to conventional electrical heating.  Within 

this regime conventional utilities are ideally sourced from sustainable stored or orthogonal energy 

sources. Control is needed to substitute solar, which can be lost within seconds during transient 

weather, with electrical heat.  To explore control strategies for the alternation of solar and electrical 

heat a new facility was constructed at the University of Colorado, Boulder.  Specifically, a 45 kW 

18 lamp high-flux solar simulator was erected that approximates the sunlight found in actual 

concentrated solar plants.  Calorimetry was analyzed for the measurement of extreme radiance in 

this testbed.  Results from calorimeter design were applied to radiation measurement from the 

lamps, which were capable of delivering 9.076±0.190 kW of power to a ∅10 cm target with a peak 

flux of 12.50 MW/m2 (12,500 “suns”).  During this characterization a previously unknown 

observer effect was seen that differentiates radiative heat from lamps and the energy delivered by 

sunlight in actual concentrated solar facilities.  This characterization allowed confident 

experimentation within the lamp testbed for control studies on a 15 kW solar-electric tube furnace 

for commodities and fuels production.  Furnace electric heat was manipulated by four different 

linear control strategies for the rejection weather transients reproduced by the high-flux solar 

simulator lamps. These included feedback, feedforward feedback, model predictive control, and 

model predictive control with a weather forecast.  It was found that model predictive control with 

a forecast best maintained furnace conditions.  Prior researchers have suggested that forecasts 

would be useful in solar control, which was shown across simulation and experiment. 
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Chapter 1: What is Solar-Thermal Energy? 

1.1 Introduction 

Concentrated solar technologies harness energy with mirrored heliostats, dishes, or troughs – 

optics that heat a boiler or reactor with reflected sunlight [9].  This “solar-thermal" premise dates 

to Archimedes’ supposed use of polished shields to concentrate (and weaponize) sunlight in 212 

BCE [10].  Direct solar heat would later be used for the generation of steam in 1882 [11], and 

ironically, the study of combustion in 1774 [12].  The first substantial solar-thermal facility was 

reported in 1913 when reflective parabolic troughs were used to drive water flow for irrigation in 

Egypt [13] (Figure 1.1). This approach is now commercial for electrical generation wherein 

sunlight heats a working fluid, which could be air, a molten salt, or steam, to high temperature.  

Heat from the working fluid is then dispatched to drive electrical turbines directly or indirectly 

[14].  Notably, the fluid can be stored at temperatures of nearly 550o C (1000o F) for continuous 

operation overnight or during inclement weather [9].  Heat storage in these facilities has allowed 

capacity factors (uptimes) of 70-80%, making them baseload power plants [14].  Furthermore, the 

storage of solar energy as heat is substantially cheaper than batteries (Figure 1.2).  Parabolic 

troughs (Figure 1.3), the most mature solar-thermal technology today, can reach a solar to 

electricity conversion comparable to photovoltaics (15%) [9].  More recently solar plants built 

around “power towers” (Figure 1.4), which harvest light from vast fields of mirrors, have achieved 

35% efficiency [15].  Various authors believe that a 65% ultimate efficiency is possible in power 

tower facilities [15], although only through operation at higher temperatures  (higher Carnot 

Efficiency). 
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Figure 1.1: “That mechanical power was without limit contained in the sun’s rays has been known 

to scientists for many years” [13].  The world’s first substantial solar-thermal power plant in Eygpt, 

1913. It is, in all fundamental aspects, similar to a modern parabolic trough power plant. 

 

Figure 1.2: The relative cost and energy density of different power storage technologies circa 2013 

[16].  Thermal storage, as is practiced by solar-thermal facilities, is remarkably dense and 

inexpensive. 
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The success of concentrated solar power has piqued interest in the use of sunlight to heat 

commodities and fuel production (“chemical processes”).  Many endothermic energy intensive 

manufacturing processes could benefit from the inclusion of solar heating, including biomass 

gasification, metals manufacture and hydrogen production [17-20].  However, like newly proposed 

power plants these systems require operation at higher temperatures.  Table 1.1 summarizes the 

temperatures that solar heat likely must achieve in these new applications.   

Table 1.1 Likely future solar-thermal energy applications. 

process temperature notes: 

Rakine powerplant* [9] 550o C (1000o F) nitrate salt working fluid 

Brayton powerplant [21] >800o C (1450o F) supercritical CO2 working fluid 

Gasification [22] >850o C (1550o F) solid carbonaceous feeds 

methane splitting [23] >1000o C (1800o F) without greenhouse gas generation 

H2 production [9] >1200o C (2200o F) metal oxide chemical looping 

metals manufacture [24]  >1350o C (2500o F) smelting by carbothermal reduction 

*commercial     

 

Figure 1.3 The parabolic trough solar-thermal concept for electrical generation (image courtesy of 

the United States Department of Energy).  Long tube runs could be adapted to plug flow reactions 

in commodities and fuels production, assuming that the troughs are wide enough to collect solar 

heat sufficient to achieve the necessary temperatures. 



4 

  

 

Figure 1.4: The power tower solar-thermal concept for electrical generation (image courtesy of the 

United States Department of Energy).  With sufficient mirrored heliostats power towers can 

achieve the temperatures expected in next-generation solar-thermal applications (Table 1.1). 

1.2 The Problem: Weather 

There is an increasing awareness that clouding and weather, which can cause a total (100%) loss 

of direct sunlight within seconds, threatens reliable solar facility performance [25].  Weather is 

especially problematic in high-temperature facilities where transient solar heat can induce thermal 

shock and fatigue.  Indeed, concentrated solar facilities are known as ideal testbeds for studying 

shock behavior [26-29].  Fortunately, controls engineering has the potential to combat thermal 

shock, maintain facility conditions, and allow robust operation despite weather interruptions. 

 Table 1.2 summarizes prior concentrated solar control studies for commodities and fuels 

production.  Compensation for weather and diurnal disturbances can be approached from different 

perspectives.  We define process compensation as the manipulation of system flowrates to reject 

weather transients.  Examples include autothermal heating in gasification [2] or heat storage in 
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electrical generation [30].  Not all systems allow process compensation, either due to their 

chemistry, due to slow dynamics, or due to the presence of recycle streams that can propagate 

disturbances [31].  However, where possible this approach has been successful  [2, 8, 9, 14, 15]. 

We define facility compensation as manipulations that act on sunlight concentration 

directly.  These include heliostat movement to defocus or redirect sunlight and/or shutters that 

block excessive solar heat.  Prior academic authors have used these approaches for the rejection of 

weather disturbances [4, 5].  However, these techniques are problematic at scale.  In solar-thermal 

plants the heliostat field is 30-50% of total facility costs, contains thousands of actuators, and is 

only 65% efficient [32-34].  Oversizing a heliostat field to contend with clouding will lower 

efficiency, will incur additional cost, and increases parasitic actuator losses, which are already 

3.8% of facility power [35].  Furthermore, heliostat actuation for weather compensation likely 

induces offsets in equipment that require additional heliostat aiming, a task that remains 

burdensome [36, 37].  The use of a shutter implies that the solar field is already oversized to reject 

clouding effects.  Current shutters are fabricated from metals that may melt at the elevated process 

temperatures sought in proposed solar-thermal applications (Table 1.1) [7, 38].  Scalable ceramic 

or actively cooled shutters likely require further development.  Ultimately, the shutter, versus other 

equipment, becomes the site of potential thermal fatigue and thermal shock. 

1.3 A Solution: the Hybridization of Solar and Conventional Utilities 

We propose an alternative approach to weather compensation.  Namely, we seek to add electrical 

heating to solar commodities or fuels facilities (Figure 1.5).  Within this scheme waste heat, likely 

from product streams, can be stored in a working fluid as per current commercial practice.  That 

heat can then be used to drive electrical turbines to power heaters during cloud transients or 

overnight.  Alternatively, the facility could be integrated into the electrical grid [39].  Power for 
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electrical heating would then be sourced from elsewhere during weather or night, ideally from 

orthogonal renewable sources (wind, geothermal, wave) or stored energy supplies.  Supplementary 

electrical heat could smoothly maintain facility conditions, avert thermal shock, and allow an 

undersized heliostat field. 
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Table 1.2 prior studies on the control of solar heat in commodities and fuels production processes. 
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Figure 1.5: The integration of sustainable commodities and fuels production with other renewables 

that supply electrical heat during weather and overnight.  The gasification of carbon, tested in 

Chapter 5, is depicted in the upper right. 

 

1.4 The Contents of this Thesis, an Experimental Approach to Utilities 

Hybridization  

To study the hybridization of solar and electric utilities a “high-flux solar simulator,” an assembly 

of eighteen lamps whose irradiance mimics concentrated sunlight, was erected at the University of 

Colorado. High-flux solar simulators are platforms for the evaluation of new solar-thermal 

technologies under tightly controlled and well-characterized conditions. Presently, at least twelve 

high-flux solar simulators are available worldwide for academic studies [40, 41].  Chapter 2 and 3 
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characterize the new high-flux solar simulator at the University of Colorado with ray tracing and 

experiments, work prerequisite to solar-electric control studies. 

 State space models were then used for solar-electric control, but only after modification by 

a technique described in Chapter 4 for process alignment.  Aligned state space models were then 

employed to control a solar-electric reactor for gasification studies.  The 15 kW reactor is described 

in Chapter 5.  Four different linear control schemes manipulated electric heaters to maintain facility 

conditions despite clouds programmed onto the high-flux solar simulator lamps (Chapter 5).  The 

best results were achieved via model predictive control with a weather forecast.  Researchers have 

theorized that weather forecasts could improve solar facility control (reviewed in [42]).  Chapter 

5 contains the first online evidence that weather forecasts are highly effective in practice. 
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Chapter 2: How Accurate is High-Flux Solar Measurement? 

Content within Chapter 2 was previously published as “Worst-case losses from a cylindrical 

calorimeter for solar simulator calibration” by Scott C. Rowe, Arto J. Groehn, Aaron W. Palumbo, 

Boris A. Chubukov, David E. Clough, Alan W. Weimer and Illias Hischier in Optics Express 

(2015). 

2.1 Introduction 

Knowledge of the radiative power and flux available from a given high-flux solar simulator is 

prerequisite to its use, including use in solar-electric control studies with reproduced weather. 

Water cooled cylindrical calorimeters, which consist of a radial aperture affixed to a cylindrical 

cavity, can be used to acquire this information [43-45].  The irradiance a calorimeter intercepts is 

dependent on aperture diameter, and a range of aperture sizes can characterize a solar simulator 

flux profile. However, it is recommended that the ratio of calorimeter cavity length to aperture 

diameter always exceed 4:1 [46]. At lower ratios, emission and reflective losses can significantly 

degrade calorimeter power measurements. The fidelity of calorimeters in flux measurement is 

unclear. Previous work has shown that different flux measurement techniques, which included a 

cylindrical calorimeter, yield disparate readings [47]. The cause of these measurement 

discrepancies, which spanned nearly 10%, was nonobvious [47].  

This chapter examines a well-insulated calorimeter design with detachable faceplates 

similar to Diver et al 1983 [48]. Figure 2.1 shows how the absorptive body and detachable faceplate 

are separately cooled to avert heat exchange between these components. Radiation that enters the 

calorimeter through the faceplate aperture, Qin, heats the circulating coolant within the body, 

causing a coolant temperature rise that reveals the intercepted irradiance [44]: 

 TCmQ  pin
     2.1 



11 

  

where m  is the coolant mass flowrate, Cp is the coolant heat capacity and ΔT is the coolant 

temperature rise. Although faceplate coolant temperature could be instrumented, only heating of 

the body coolant was considered a measure of incident power [48]. Equation 2.1 is not a strict 

equality because some energy entering the calorimeter is reflected or scattered (Qreflective), some 

energy is lost by thermal emission (Qemissive), and some energy is lost by convection to the ambient 

air (Qconvective). Furthermore, the calorimeter can induce an observer effect that alters the solar 

simulator flux profile (Qobserver). Thus, minimally the calorimeter heat balance harbors five terms: 

  

 observerconvectiveemissivereflectivepin QQQQTCmQ       2.2 

Radiative, conductive, and convective losses from the calorimeter exterior may be considered 

negligible provided the coolant is sufficiently insulated. Beyond these losses, calorimeter accuracy 

can be affected by measurement error and drift. However, this chapter focuses on physical 

calorimeter losses, not measurement errors induced by specific instrumentation.   

Herein the effect of calorimeter design attributes on thermal losses was explored with 

Monte Carlo ray tracing and computer simulation. CUtrace, a parallel, grey body, Monte Carlo ray 

tracer was written to represent the solar simulator design planned for the University of Colorado  

[41]. CUtrace is freely available online at Matlab Central (Mathworks Incorporated) and features 

a graphical user interface. Cylindrical calorimeter designs were traced in the solar simulator and 

the results were processed by finite volume simulation. Simulations were performed over a range 

of optical properties to evaluate calorimeter robustness against radiative losses, emissive losses, 

convective losses and the observer effect. 
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Figure 2.1:  A simulation framework for calorimeter evaluation.  A) piping and instrumentation 

diagram of the calorimeter cooling flows showing confounding radiation effects.  The operational 

temperature target was ΔT = 25oC. The faceplate coolant flowrate was fixed at 6 L/min.  B) 

Radiative and thermal phenomena within and outside the calorimeter.  
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2.2 A Ray Tracer for Radiation Analysis 

A software package, CUtrace, was written using Matlab’s Parallel Programming Toolbox [49]. 

The grey body ray tracer implements 14 geometric primitives and three filaments (ray sources). 

The code is freely available for detailed inspection online at Matlab Central (Mathworks 

Incorporated).  In brief, the object-oriented program traces rays through a given user defined scene 

by affine reflections [50, 51] (Figure 2.2). To determine where a ray terminates, a random number 

is drawn [0-1] upon each ray-shape intersection.  If the random number is greater than the incident 

surface reflectivity, the ray is absorbed. Otherwise the ray is reflected in analogy with Phong 

Illumination [52]. Specifically, a second random number [0-1] is drawn. Reflection is Lambertian 

if the number is less than a user inputted fraction for the incident surface. Otherwise, reflection is 

specular with error bounded by a user inputted angular standard deviation [53]. All random 

numbers originate from the Mersenne Twister algorithm for a uniform distribution. Each geometric 

object maintains a private record of absorbed rays. Each new ray intersection is discovered by 

scanning objects in the scene for the nearest parametric ray-shape collision. 

 

Figure 2.2: features of the new parallel ray tracer.  A) object oriented inheritance framework.  B) 

the CUtrace reflection model. 

CUtrace was validated by simulating radiation exchange in three test systems. Additionally, the 

tracer was used to generate view factors with known analytical solutions. Figure 2.3 shows the 
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validations.  Radiation exchange in the planned 18 lamp University of Colorado high-flux solar 

simulator served as the first test case [41]. CUtrace matched an existing code for modeling this 

design (Figure 2.3A) [41].  Next the VEGAS ray tracer was used to model radiation exchange 

within the 18 lamp solar simulator [54]. VEGAS can only approximate radiation exchange within 

this facility because the program lacks an exact model of the xenon filaments used in the solar 

simulator design. CUtrace matched VEGAS when cylindrical radiation sources were substituted 

for rigorous filament modeling (Figure 2.3B). Of the objects implemented in the new tracer, the 

compound parabola was most complicated. This solid of revolution harbors four nontrivial roots 

[55]. A compound parabola was drawn in both Soltrace, a tool for the design of commercial solar 

facilities [56], and the new tracer. CUtrace reproduced the Soltrace output (Figure 2.3C). In a final 

test, the ray tracer was used to generate view factors. For a myriad of view factors, the new tracer 

matched known analytical solutions (Figure 2.3D) [50]. Although it is impossible to test the new 

tracerexhaustively, it successfully recapitulates results from proven computer codes and 

documented view factors. 

Figure 2.4 shows the calorimeter in simulation at the focus of the planned University of 

Colorado 18 lamp solar simulator [41]. One million rays were used to simulate 1.05 kW from each 

lamp. Unless noted, all calorimeter surfaces were diffusely reflective. 

  

2.3 Calorimeter Finite Volume Simulation 

Monte Carlo ray tracing results were fed to a 2D finite volume calorimeter simulation by applying 

annularly the peak axial and radial fluxes (Figure 2.5). This results in a slightly higher radiative 

power input, higher surface temperatures, and consequently higher losses consistent with worst-

case calorimeter performance.  
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Figure 2.6 details the calorimeter design. Two detachable faceplates were modeled, each 

with a different aperture diameter and independent coolant system. Coolant flow was modeled by 

convective upwinding assuming a water inlet temperature of 20°C. For the range of flowrates 

examined, the Dean number was consistently turbulent (Dean > 500). Thus, the simulation 

implemented turbulent heat transfer relationships for cylindrical and spiral ducts. Temperature 

dependent physical properties were implemented for the copper calorimeter body, water coolant, 

and ambient air [57]. Body outer surfaces, which are typically insulated, were assumed adiabatic. 

Convection to ambient air employed a heat transfer coefficient for cylindrical calorimeters [58]. 

Air was assumed to be optically transparent. Equation 58 of Mori and Nakayama (1967) served as 

the heat transfer coefficient to coolant in spiral ducts [59].  Equation 45 of Kaya and Teke (2005) 

served as the heat transfer coefficient in cylindrical coolant ducts [60]. Thermal emission between 

and within cylindrical and radial annuli was modeled using analytical view factors [50]. In all 

cases, the view factors of a radial or cylindrical annulus summed to unity. Simulation physicality 

was supported by energy closure. The mesh was refined until power lost through the aperture was 

statistically invariant (95% confidence), yielding a 540 element grid (Figure 2.6). 
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Figure 2.3: Validation of the new, parallel, grey body Monte Carlo ray tracer (CUtrace).  A) 

Predicted power intercepted by a disc at a solar simulator focus. Trace was of the projected 

University of Colorado solar simulator with rigorous xenon filament modeling as described by 

Bader 2014 [41].  B) Predicted power intercepted by a disc at a solar simulator focus. Trace was 

of the University of Colorado solar simulator with simplified volumetric cylindrical sources in 

each lamp [41, 54].  Source cylinder length was 0.0045 meters and radius was 0.00075 meters.  C) 

Predicted power intercepted by a disc at a compound parabola outlet [56].  The compound parabola 

acceptance angle was 35° and the outlet radius was 1.3 meters. D) Analytical view factors from 

Appendix C of Howell 2010 [50] are reproduced by CUtrace, wherein any surface can act as a 

diffuse source of radiation.   
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Figure 2.4: CUtrace depiction of the calorimeter design at the high-flux solar simulator focus 

[41]. 

 
 

Figure 2.5: Peak Monte Carlo fluxes were mapped annularly around exposed calorimeter surfaces.  

A) Actual fluxes and B) Mapped fluxes. 
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Figure 2.6: Details of the dimensions and discretization used in Monte Carlo ray tracing and finite 

volume simulation. Unless otherwise specified body cavity reflectivity was 0.05 diffuse, faceplate 

interior reflectivity was 0.95 diffuse, and face reflectivity was 0.05 diffuse. 

 

 

 

2.4 Results 

2.4.1 Observer Effects on the Solar Simulator Flux Profile 

Monte Carlo simulations performed with a perfectly absorbing calorimeter face resulted in Qobserver 

= 0 kW for both the large (⌀10 cm) and small (⌀3 cm) aperture faceplates. Any face reflectivity 

greater than zero caused radiation exchange between the calorimeter and lamp reflectors (Figure 

2.7), exchange that distorted the native solar simulator flux profile. When the calorimeter face had 

a reflectivity of 0.95 more radiation was intercepted irrespective of whether that surface was 

diffuse (Qobersever =0.20 kW) or specular (Qobserver=1.6 kW). Thus, a significant fraction of radiation 

that reflected off the face ultimately returned to the calorimeter aperture. Calorimeter face 

reflectivity presents a tradeoff. A highly reflective face will absorb little heat, but can perturb the 

solar simulator flux profile. Conversely, an absorptive face preserves the flux profile, but can 
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overheat. Based on these results a diffusely reflective calorimeter face with a reflectivity of 0.05 

was adopted in subsequent simulations. 

2.4.2 Calorimeter Accuracy and Robustness 

Figure 2.8 shows coolant temperature rise and calorimeter losses for a range of coolant flowrates 

and body reflectivities. Predictably, Qemissive was a function of coolant flow and reflectivity, 

Qreflective was solely a function of reflectivity, and Qconvective was solely a function of coolant flow.  

At low coolant flowrates high calorimeter temperatures drove significant convection (Figure 2.8). 

Convective losses were always higher for the large (⌀10 cm) aperture calorimeter, consistent with 

natural convection through a larger outlet. For moderate coolant flowrates reflective losses always 

dominated emissive and convective losses (Figure 2.8). A reflective calorimeter body induced 

higher reflective losses because light was not immediately absorbed by the cavity surfaces. Losses 

were significant relative to the inlet irradiance, which was Qin = 14.51 kW and 4.16 kW for the 

large (⌀10 cm) and small (⌀3 cm) aperture faceplates, respectively. This was especially true of the 

small aperture calorimeter, which intercepted more radiation on the aperture lip. This radiation 

was scattered or absorbed before it could reach the calorimeter cavity for detection, commensurate 

with high (Qreflective >0.5 kW) reflective losses.  

Figure 2.9 shows coolant temperature rise and calorimeter losses for a range of coolant 

flowrates and faceplate interior reflectivities. Again, convective losses dominated at low coolant 

flowrates and reflective losses dominated at moderate coolant flowrates. Reflective losses due to 

light adsorption by the aperture lip were pronounced, especially for the small aperture calorimeter. 

To test the importance of the aperture lip, a beveled aperture was simulated. 
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2.4.3 Calorimeter Accuracy with a Conical Aperture 

Beveled (conical) apertures were explored as a means of making the calorimeter more accurate 

and robust. Figure 2.10 compares losses from the different calorimeter designs for a coolant 

temperature rise of ΔT = 25oC. The beveled (conical) aperture design featured an acceptance angle 

that matched that of the planned University of Colorado high-flux solar simulator (45o). Thus, light 

entered the calorimeter directly without reflecting off the faceplate aperture. In all cases this 

modification rendered reflective losses, which were consistently dominant, nearly insubstantial 

(Figure 2.10). Notably, losses from the small (⌀3 cm) aperture calorimeter dropped from 

approximately 15% of the incident flux (Qin) to less than 2% due to use of a beveled aperture. This 

modification reveals that calorimeter losses are a strong function of calorimeter geometry, not 

necessarily calorimeter coolant flow or reflectivity.  

2.5 Conclusion 

A grey body Monte Carlo ray tracer was developed and used to analyze a cylindrical calorimeter 

for solar simulator calibration. Worst-case emissive and convective losses from the calorimeter 

were predicted by finite volume simulation. The calorimeter was most accurate when mounted 

with a beveled (conical) aperture. For both a large aperture and small aperture this geometry 

brought calorimeter losses within 1.2% of the incident power. Conversely, in select cases 

calorimeter losses could be nearly 15%. Generally, calorimeter performance was robust to mild 

changes in cavity reflectivity. It is noteworthy that the calorimeter, like any radiation target, can 

alter the solar simulator flux profile significantly. This effect should be considered when studying 

any device within a high-flux solar simulator. 
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Figure 2.7: The calorimeter induces an observer effect. A) Percent distortion () and power 

intercepted () by the large (⌀10 cm) aperture faceplate as calorimeter face reflectivity increased. 

B) Percent distortion () and power intercepted () by the small (⌀3 cm) aperture faceplate as 

calorimeter face reflectivity increased. C) Flux distortion at the small (⌀3 cm) calorimeter aperture 

induced by different face reflectivities.  
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Fig. 2.8: Simulation results for variations in body reflectivity. A) Results for the large (⌀10 cm) 

aperture faceplate.  B) Results for the small (⌀3 cm) aperture faceplate.   
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Fig. 2.9: Simulation results for variations in interior faceplate reflectivity. A) Results for the 

large (⌀10 cm) aperture faceplate.  B) Results for the small (⌀3 cm) aperture faceplate.    
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Fig. 2.10: Losses as a percentage of Qin for a calorimeter coolant temperature rise of ΔT = 25oC. 

Symbols across all graphs: Q = Qreflective (), Q = Qconvective (), Q = Qemissive (▲) and Q = Qobserver 

(X). A) Large (⌀10 cm) square aperture faceplate. B) Small (⌀3 cm) square aperture faceplate. C) 

Large (⌀10 cm) square aperture faceplate. D) Small (⌀3 cm) square aperture faceplate. E) Large 

(⌀10 cm) beveled aperture faceplate. F) Small (⌀3 cm) beveled aperture faceplate. 
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Chapter 3: Do High-Flux Solar Simulators Accurately 

Represent Real World Facilities? 

Content within Chapter 3 was previously published as “Experimental evidence of an observer 

effect in high-flux solar simulators” by Scott C.Rowe, Mark A.Wallace, Allan Lewandowski, 

Richard P.  Fisher, W. Ray Cravey, David E. Clough, Illias Hischier and Alan W. Weimer in Solar 

Energy (2017). 

3.1 Introduction 

In principle, high-flux solar simulators should closely approximate the conditions found in solar 

furnaces, facilities that use actual sunlight. Relative to this setting, any artifacts in high-flux solar 

simulator operation could distort the evaluation of solar-thermal designs, especially when 

assessing solar-electric control strategies. In Chapter 2 an observer effect was noted in simulations 

of the anticipated University of Colorado high-flux solar simulator design. More detail is provided 

in Figure 3.1, which shows how reflection and emission from the target of a high-flux solar 

simulator can be refocused, a trait attributable to the geometry of ellipsoidal reflectors [61, 62].  

Conversely, the flat and/or parabolic heliostat(s) that concentrate energy in solar furnaces [48, 63-

67] direct light reflected or emitted from a radiation target back towards the sun (Figure 3.1). 

Although Figure 3.1 suggests a slight optical difference between solar furnaces and high-flux solar 

simulators, Rowe et al. 2015 predicted that refocusing in simulator facilities could inflate target 

power by 20% depending on whether the wider environment was specularly reflective or diffusely 

absorptive. This issue is likely compounded in large high-flux solar simulators that present 

substantial solid angles to the radiation target. The new high-flux solar simulator at the University 

of Colorado, built from the dimensions of Bader et al. 2015, presents 2.97 steradians to the 

radiation target. To test for an observer effect in this setup a cavity calorimeter was built with 

interchangeable faceplates, whereby solar-simulator power measurement was coincident with 

different optical environments. It was expected that a specular and reflective calorimeter face 
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would induce more radiation exchange between the target and simulator, altering calorimeter 

power measurements relative to a diffuse and absorptive face. Thus, calorimeter faces, but not 

measurement surfaces, were rendered either specularly reflective or diffusely absorptive. The 

observer effect was further characterized with a Gardon gauge embedded in alternatively 

specularly reflective or diffusely absorptive surfaces at the focal plane. 

Artifacts in high-flux solar simulator operation can be parsed through computational 

characterization. In pursuit of characterization many groups analyze their installations via Monte-

Carlo ray tracing [41, 54, 62, 68-70]. When the fates of light within a given simulator are 

predictable the study of high-flux receivers, reactors, and thermal systems is enhanced. Filament 

modeling within these simulations has a substantive effect on ray tracing fidelity [71, 72], and 

prior filament modeling has predicted the peak radiant flux from a high-flux solar simulator within 

4.2% of experimental measurements [41]. In these Monte Carlo traces model parameters were 

iterating in silico, either manually or through derivative-free optimization, until results 

approximated the images cast from reflector-filament assemble(s) [68, 72, 73]. Initially, filament 

modeling research focused on volumetric or surface ray emission from single geometric primitives 

that approximate lamp arc plasma (reviewed in Dong et al., 2015). More recently, an accurate 

halide filament model was developed from suites of nine emitting geometric primitives [71]. Ray 

emission from short-arc xenon filaments, as used in the new University of Colorado solar 

simulator, have been accurately simulated by probabilistic basis functions for ray emission with 

three fitted parameters [68]. The use of emitting geometric primitives to approximate xenon 

filaments has also been attempted [72, 73], and this approach remains attractive for its 

computational simplicity. Here, we built a short-arc xenon filament model from geometric 
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primitives that reproduced the results of high-flux solar simulator experiments, including the 

observer effect. 

3.2 Results 

3.2.1 Single Lamp Experiments for Model Development 

Previous work has shown that the performance of high-flux solar simulators, including the 18 lamp 

design installed at the University of Colorado, can be analyzed as the superposition of simulator 

reflector(s) and filament(s) [68, 73]. Thus, single lamp experiments were performed for initial 

characterization and modeling of the new high-flux solar simulator, efforts prerequisite to the 

analysis of observer effects.  A test lamp built to the dimensions of Bader et al. 2015 was assembled 

around an Osram GmbH XBO 2500W/HS OFR filament, which was actuated along Cartesian axes 

at the reflector focus to achieve peak flux on a diffuse planar quartz target (20x20x0.2 cm, United 

Silica Products).  Peak flux was taken as maximal pixel intensity from CCD camera imaging 

(Coherent Lasercam Hr 1098577 camera) after voltage and amperage to the filament had stabilized 

(15 minutes). Three reflectors were available for use in single lamp testing: an aluminized reflector, 

a silvered reflector, and an uncoated reflector.  The elemental treatments, protected by quartz 

overcoats, were applied by Optiforms Incorporated in Temecula, CA.   

Figure 3.2 shows how the entire reflector-filament system was aimed at either the diffuse 

quartz target or a Vatell 1000-4 Gardon flux gauge. This alternation allowed the calibration and 

integration of flux images as has been previously described [68]. In brief, perspective projection 

was used to correct minor off axis distortion from the camera [73], which brought distortion across 

the entire 1280x1024 image within ±1 pixel (±0.00027 meters) when imaging a rectangular grid. 

The Vatell flux gauge was analyzed as recommended by previous studies [72, 74, 75]. To assess 

gauge accuracy, given the inaccuracies typical of Vatell gauge measurement [47, 74], the device 
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was further instrumented as a power meter wherein gauge coolant reported the incident radiation. 

An energy balance on the circular gauge yielded [76]: 
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      3.1 

Where Qincident is the power intercepted, α is the gauge effective absorptivity, m  is coolant mass 

flowrate, Cp is the coolant heat capacity, k is the annular thermal conductivity, Ro/Ri is the divisor 

of annular insulation radii, ΔT is the coolant temperature rise and ΔTinsul. is the insulation 

temperature drop. The Vatell gauge effective absorptivity was α = 0.83 for the xenon spectrum 

reflected off aluminum and α = 0.82 for the xenon spectrum reflected off silver, which was similar 

to that previously determined for a Vatell gauge and raw xenon spectrum (α = 0.8125) [72, 77]. 

Table 3.1 gives numerical values of the remaining equation parameters. Although not an 

exhaustive evaluation of the losses associated with Vatell gauge measurement, results from 

Equation 3.1 should match flux integration over the gauge face. Figure 3.3 shows this 

correspondence across all single lamp experiments. This dual analysis provided a fortified 

approach for assessing the power in single lamp experiments.  

Figure 3.4 shows the radial variation in flux and power for the different reflector treatments 

(aluminized, silvered, uncoated) at the nominal filament operating current (90 amps) for the single 

2.5kWelectric lamp. Overall, the aluminized reflector was most efficient in delivering electrical 

power optically onto a ⌀10cm target (35% efficient, 1.523 MW/m2 peak flux). The silvered 

reflector was 33% efficient and the uncoated reflector was 25% efficient, with peak fluxes of 1.179 

MW/m2 and 0.986 MW/m2 respectively. Given that the aluminized reflector was most efficient, 

computational modeling focused on this result.  
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Table 3.1 Parameters in Equation 3.1 

A 3.21*10-6 meters (Vatell Inc.) 

Cp 4186.6 J(kgK)-1 [57] 

k 0.0721 W(mK)-1 (Zircar Inc.) 

Ro/Ri 2 

 

 

Figure 3.1: A) Radiation without observer effects in point-focused solar simulators.  B) Reflection 

with observer effects in point-focused solar simulators. C) Emission with observer effects in point-

focused solar simulators.   D) Radiation lacks observer effects in point-focused solar furnaces. E) 

reflection lacks observer effects in point-focused solar furnaces. E) Emission likely lacks observer 

effects in point-focused solar furnaces. 
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Figure 3.2: Experimental setup for single lamp flux imaging from the diffusely reflective quartz 

plate, which was displaced linearly to accommodate flux measurement instrumentation.  Lamp 

and reflector dimensions matched those of Bader et al. 2015 [41]. 

 

 

Figure 3.3: Results from integrating imaged flux on the Vatall gauge face (x-ordinate) versus 

gauge power measured by thermocouple instrumentation (y-ordinate). 
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Figure 3.4: A) Representative target flux image. B) Reflector coating performance; instantaneous 

flux & power on target at or within a given radius, respectively. 
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3.2.2 Filament Modeling with Monte Carlo Analysis 

The grey body Monte Carlo ray tracer for modeling work, which is freely available online 

(matlabcentral.com), was previously validated against analytical view factors and published ray 

tracing software [62]. The new Monte Carlo xenon filament model was built from four concentric 

cylinders that featured uniform volumetric ray emission.  Ray origination from each cylindrical 

source was performed as described by Bader et al. 2015, but without any attempt to truncate the 

direction rays assume upon emission [41]. Figure 3.5 shows how the basis cylinders were arranged 

at the reflector focus to mimic the intensity profile of xenon lamp arcs [78]. Five adjustable 

parameters were varied until simulation approximated the normalized power profile cast by the 

aluminized reflector in single lamp experiments. Figure 3.4 shows the fit after further optimization 

via a Nelder-Meade algorithm, which yielded the final model parameters (R2 = 0.999, Table 3.2) 

[79]. The probability of ray emission from each of the concentric cylinders provided three degrees 

of freedom. The filament radius and reflector specular error provided two further degrees of 

freedom.  The final model inputs are summarized in Table 3.2 with confidence intervals on the 

parameter estimates. All traces were with 106 rays, which was shown to bring reproducibility 

within 0.2% in a Monte Carlo convergence study of this optical configuration [68]. 

To further validate the filament model, results were compared when lamp filament 

placement was varied in Monte Carlo simulations and on the actual experiment.  Filament motion 

within single lamp tests was achieved with stepper motor actuators that moved the bulb in x, y, 

and z displacements about the reflector focus (0.2 mm gradations). Figure 3.6 shows the effect of 

moving the filament along the reflector major axis and minor axis across three experimental 

replicates with aluminized reflectors. Notably, millimeter adjustments in filament position had 

substantive effects on optical flux and power. The power on target declined by up to 20% as the 
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filament was moved a millimeter off center. Unexpectedly, the peak flux and peak power did not 

coincide as the filament moved along the reflector semi-major axis (Figure 3.6).  These 

experiments were reproduced in Monte Carlo simulations with the new computational filament 

model.  Model results matched experiment with one exception -- when the filament was pushed 

axially into the reflector there was a 15% discrepancy between model and experimental power 

results, which brought model predictions outside experimental error. However, the model did 

recapitulate the disparate axial power and flux peaks observed in experiment. 

 

 

 

Figure 3.5: Geometry of the filament model (not to scale).  Parameter estimates R,  σ, p1, p2, p3 

and p4 are listed in Table 3.2.  
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Table 3.2 Fitted parameter estimates within the filament model ± 95% confidence. 

p1 54.0±1.4% probability of ray emission from cylinder 1 (Figure 3.5) 

p2 16.4±1.2% probability of ray emission from cylinder 2 (Figure 3.5) 

p3 9.8±1.8% probability of ray emission from cylinder 3 (Figure 3.5) 

p4 19.7±1.8% probability of ray emission from cylinder 4 (Figure 3.5) 

R 3.5±0.3 mm effective filament radius (Figure 3.5) 

σ 3.0±0.3 mRad reflector specular error (Figure 3.5) 
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Figure 3.6: The effect of moving the filament radially and axially in a reflector for three replicate 

lamps with aluminized reflectors. Error bars are 95% confidence intervals of three independent 

experimental replicates (separate lamps). 

3.2.3 Observer Effects in the Fully Assembled High-Flux Solar Simulator 

Based on the results of single lamp experimentation (section 3.2.2), aluminized reflectors were 

chosen to direct emission from the fully assembled high-flux simulator to radiation measurement 

equipment.  It was hypothesized that radiation measurement instrumentation, under different 

optical regimes, would show an observer effect predicted in simulation [62].  To evaluate this 

possibility, power from the 18 lamp device, which was built from the geometry of Bader et al. 

2015, was measured by a cavity calorimeter with interchangeable faceplates [48, 62]. Figure 3.7 

shows a rendering of the calorimeter design, which was analyzed in detail by Rowe et al. 2015 

(Chapter 2), alongside calorimeter modeling in silico. All simulator filaments were positioned as 

described in section 3.2.1. 

Calorimeter coolant flows were instrumented with resistance temperature thermometers 

and an Endress-Hauser Promass E100 Coriolis mass flow meter. Figure 3.8 details the calorimeter 

faceplate designs and cooling channel arrangement. It was found that during illumination 6-7 
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L/min of water flow was needed to actively cool and avert deterioration of the calorimeter faces. 

A ⌀10cm aperture and ⌀3cm aperture faceplate were available for light entry into the 40cm deep 

cylindrical calorimeter cavity.  

Prior work has shown that, in the absence of instrumentation error, calorimeter 

performance can be highly accurate [62]. Theoretically, measurement error for the calorimeter 

design herein is <1% of the recorded optical power [62]. Thus, 1% error was added to the 

instrumentation error, where calorimeter power was calculated from measurements as: 



Pm
TCmQ p





      3.2 

Here, ΔP is the coolant pressure drop, ρ is the coolant water density (998.0 kg/m3, [57]), and all 

other symbols are as shown in Equation 3.1. Instrumentation error was given by partial derivatives 

on Equation 3.2: 
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Table 3.3 lists accuracy of the calorimeter sensors for use in Equation 3.3.  

The calorimeter interior was painted with Thurmalox Black while the interchangeable 

calorimeter faces were polished to specularity. Figure 3.9A shows the wavelength specific 

reflectivity of the calorimeter faces from PE Lambda 1050 and Cary 500 spectrophotometers.  

After the reflective calorimeter faces were subjected to triplicate measurements under illumination 

from all 18 lamps the polished faces were roughened, painted with Thurmalox Black, and retested 

under the same conditions.  Figure 3.10 shows the baseline for high-flux solar simulator 
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performance, which was evaluated for 2.25 kWelectric from each lamp into the ⌀10cm aperture 

Thurmalox coated calorimeter faceplate. Under these conditions the high-flux solar simulator 

directed 9.076 ± 0.190 kW of optical power into the ⌀10cm target and imaging indicated a peak 

flux 12.50 MW/m2, where calorimetric flux mapping was performed as described by Gill et al. 

2015, but with the camera and quartz target from Section 3.2.1. 

Relative to the absorptive calorimeter faceplates, it was expected that the polished 

calorimeter faceplates would inflate calorimeter power measurements because radiation exchange 

between the high-flux simulator and target refocuses light. This effect was experimentally 

significant for the smaller calorimeter aperture, as shown in Figure 3.9C, and less pronounced for 

the larger aperture. Specifically, when the calorimeter faceplates were polished to specularity 

11.1% and 2.7% more power was intercepted by the ⌀3cm and ⌀10cm aperture calorimeters, 

respectively. Thus, optical properties of the radiation environment, here the calorimeter face, 

altered the incident simulator power.   

Table 3.3 Instrumentation uncertainty. 

dṁ 0.15% (Endress Hauser Inc.) 

dT 0.03+0.0005T oC (Omega Inc.) 

dρ 1% [57] 

dCp 1% [57] 

d(ΔP) 0.25% (Omega Inc.) 

 

Calorimeter results suggested that incident flux was either higher overall, or reshaped, 

when reflective surfaces were present at the high-flux solar simulator target.  To explore these 

possibilities a Gardon flux gauge (Vatell 1000-1) was embedded in either a specularly reflective 
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or diffusely absorptive plate and subjected to 1.75 kWelectric on all high-flux solar simulator lamps.  

The ⌀28 cm plates were water cooled and prepared identically to the cavity calorimeter faceplates, 

where the surfaces were either polished or coated with Thurmalox Black.  Figure 3.11A shows 

gauge holders and relative increase in gauge output when sampling fluxes at the high-flux solar 

simulator focus.  Notably, damage to the absorptive Thurmalox plate was evident, likely because 

cooling was insufficient for the preservation of surfaces exposed directly to peak solar simulator 

fluxes.  However, despite the deterioration of this optical coating the observer effect remained 

evident.  Figure 3.11B shows that, relative to the absorptive plate, fluxes were higher on the 

specular plate.  As the flux gauge sampled points further from the high-flux solar simulator focus, 

the relative increase in flux grew, with a maximal inflation of 23 ± 4%.  This result is consistent 

with light exchange between the high-flux solar simulator and target, where specular reflection 

from the target is refocused by the high-flux solar simulator. 
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Figure 3.7: A) Cutaway of the calorimeter design showing internal cooling channels and the 

detachable, ⌀10cm aperture, faceplate. Additional details and analysis of this design is available 

in Rowe et al. 2015. B) the calorimeter and simulator in computer simulation. 
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Figure 3.8: A) Front of the ⌀3cm aperture calorimeter faceplate. B) Front of the ⌀10cm aperture 

calorimter faceplate. C) Cutaway of cooling channels embedded in the ⌀3cm aperture calorimeter 

faceplate. D) Cutaway of cooling channels embedded in the ⌀10cm aperture calorimeter faceplate. 
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Figure 3.9: A) Total and specular reflectivity of the faceplate treatments. B) The ⌀3cm faceplate, 

polished (left) or Thurmalox coated (right). C) Observer effect results showing inflated simulator 

power when the calorimeter faces were polished. 
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Figure 3.10: A) Monte Carlo flux profile compared to the experimental flux profile of the entire, 

18 lamp, high-flux solar simulator. B) Monte Carlo power profile compared to the experimental 

power profile of the entire, 18 lamp, high-flux solar simulator.  The simulator achieved a peak flux 

of 12.507 MW/m2 and delivered 9.076±0.190 kW onto a ⌀10cm target for a mean flux of 1.155 

MW/m2. 
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Figure 3.11: A) flux gauge plates, polished (left) and Thurmalox coated (right).  Note damage on 

the Thurmalox coated plate.  B) Increase in flux as sampled outwardly from the high-flux solar 

simulator focus. 

3.2.4 Modeling Reproduces High-Flux Solar Simulator Results 

Through superposition, the computational filament model from single lamp experimentation 

should reproduce results from the fully assembled high-flux solar simulator, including observer 

effects [68, 73].  To test this possibility, the entire high-flux solar simulator was represented in 

Monte Carlo ray traces.  All traces were done with 106 rays per lamp, which has been shown to be 

repeatable within <0.2% for Monte Carlo traces of this high-flux solar simulator configuration  

[68].  Figure 3.10 shows that experimental power into the ⌀10cm aperture calorimeter, 

9.076±0.190 kW, closely matched the result from Monte Carlo simulation, 9.086 kW.  

Furthermore, Figure 3.10 shows that flux profile imaging at the solar simulator focus was similar 

to that found in silico.  The error in peak flux between experiment and simulation, 4.0%, was 

similar to that for a filament model based on probabilistic basis functions, which gave a 4.2% 

discrepancy [68].  Specifically, a maximum flux of 12.50 MW/m2 was seen in experiment, while 
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a maximum flux of 12.02 MW/m2 was predicted in simulation.  Overall, given the quantitative and 

qualitative similarities seen across experiment and simulation, we conclude that the filament model 

likely captures general system behavior. 

 Before the observer effect could be examined in grey Monte Carlo ray traces, the effective 

reflectivity of target surfaces required evaluation.  The reflectivities of polished aluminum and 

Thurmalox black, as determined on PE Lambda 1050 and Cary 500 spectrophotometers (Figure 

3.9A), were integrated given the wavelength specific intensity of the xenon filament source. 
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Here, Iλ is the source wavelength specific intensity after reflection off aluminum , rλ is the measured 

wavelength specific reflectivity of the surface from Figure 3.9A, and r is the effective reflectivity 

of the surface in simulation. The difference between effective specular to effective total reflectivity 

was used as the diffuse reflection fraction Monte Carlo tracing. As in prior work source intensities 

outside 250 nm and 1650 nm were unavailable [75]. The specular aluminum polish showed an 

effective total reflectivity of 0.902 with a specular reflectivity of 0.812.  Thurmalox black showed 

an effective total reflectivity of 0.151 with a specular reflectivity of 0.023. 

 Initially, Monte Carlo ray traces substantially overestimated the observer effect and yielded 

results outside experimental error.  Although the lamp filament was modelled, other bulb structures 

were likely involved in light exchange with the high-flux solar simulator target.  Any light 

refocused by a lamp likely passes through the bulb glass, which may absorb light and attenuate the 

observer effect.  This was tested by adding ellipsoids to the filament model with a transmitivity 
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characteristic of glass (t = 0.88 [80]) and dimensions consistent with the bulbs of OSRAM XBO 

2500W/HS OFR xenon sources (3.8 cm semi-major axis and 3.2 cm semi-minor axis).  Figure 

3.9C shows that, with this addition, the observer effects shown by the cavity calorimeter were 

reproduced in Monte Carlo ray traces.  No attempt was made to reproduce Gardon gauge results 

given the heterogeneous deterioration of optical surfaces in flux experiments.   

3.3 Discussion 

Previous computational work has shown that high-flux solar simulators, unlike solar-furnaces, can 

show an observer effect [62]. This was confirmed experimentally through the use of a cylindrical 

calorimeter with interchangeable faceplates. Relative to a diffusely absorptive faceplate, when a 

specular and reflective ⌀3cm aperture faceplate was mounted on the calorimeter 11.1% more 

power was intercepted. This effect was attenuated, but still present, for a ⌀10cm faceplate.  Thus, 

in high-flux solar simulators the overall optical environment can alter the incident power and flux.  

Distortion of the flux profile was observed with a Gardon gauge, which indicated that higher fluxes 

were present at the simulator target when the overall environment was specularly reflective, versus 

diffusely absorptive.  These results were supported with Monte Carlo ray traces that reproduced 

experiment. 

To attenuate any observer effects when evaluating different targets within a high-flux solar 

simulator we recommend that power and flux measurement instrumentation optically and 

geometrically resemble other experimental equipment (reactors, concentrators, collectors).  This 

insures that all equipment similarly interacts and exchanges light with a high-flux solar simulator.  

To the extent possible, high-flux solar simulator targets should be rendered diffusely absorptive to 

prevent reflections and spurious light exchange. A survey of existing simulators showed that many 
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place experimental equipment close to simulator lamps [40] and future designs might consider 

longer focal lengths to ameliorate observer effects. Alternatively, high performance flux 

measurement and calibration systems may compensate for observer effects in software, perhaps 

with model-based Monte Carlo corrections [81]. In some fields the measured efficiency of 

experimental solar-thermal systems is at or below 15% [9].  Adding observer effect uncertainty to 

low efficiency calculations is clearly undesirable, but can likely be avoided with analysis and 

experimental care.   
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Chapter 4: Can Control Models be More Transparent? 

4.1 Introduction 

During the evaluation of various strategies for use in solar-electric control, state space models 

appeared to represent the state-of-art in applied chemical engineering. Relative to alternatives, 

various authors have advanced state space models as the most natural basis for controls analysis 

and practice in the chemical industry [82-85]. Select control vendors have adopted the state space 

and multiple techniques are now available for fitting these models to system data (Appendix A, 

[86-89]). This approach is derived as a 1st order Taylor linearization of system dynamics, is a 

Markov chain for facile analysis, and allows fault detection and inference in chemical processes 

[84].  However, unlike transfer function and autoregressive moving average (ARMA) models, 

which operate on inputs and outputs, this representation uses internal states to propagate system 

dynamics. The compartmentalization of system dynamics within the state space can make these 

models less intuitive, especially for facility operators accustomed to pure input-output 

representations [85, 87, 90]. The state space can be rendered more transparent by model 

realignment where, when possible, internal states identically match measured outputs.  Such an 

approach can frame the state space in a manner that befits reduced order estimation. Prior to state 

space development for the solar-electric reactor, we sought to develop a general method for state 

space alignment. 

 To illustrate, consider the discrete time state space without feedthrough (Appendix A): 

kkk uBxAx


1
     4.1 
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Where at time k an nx1 state vector x


k  propagates system dynamics, an mx1 vector u


k of control 

inputs impinges on the system, and an rx1 measurement vector y


k is observed from the chemical 
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process. In cases where n = r, whereby the number of states and measurements are equal, 

inversion of matrix C can reveal the current system state x


k: 

 
kk xyC


1      4.3 

However, in cases where n > r and/or matrix C is poorly conditioned direct observation of the 

system state may be lost. Sophisticated  techniques exist for recovering the system state in these 

cases [91, 92], although select authors consider these methods inaccessible to practicing control 

engineers [93]. Alternatively, formulations exist wherein the system state consists solely of the 

outputs and inputs: 
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Where transform T converts an identified model of the system dynamics to the aligned model. 

Unfortunately, the resultant state space model is likely non-minimal and may be unobservable 

[94]. Furthermore, there is no assurance that, when limiting the state to consist of inputs and 

outputs, the model will capture full system dynamics. Thus, we consider an alternative approach 

to model alignment that was formalized by Franklin, Powell, and Workman [95]. Here, the system 

state is coerced to align only with the measurements: 
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Where 
kz
  is an n-r x 1 vector of opaque states needed for the full representation of system 

dynamics. The resultant, partitioned, state space has the following form: 
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The opaque states 
kz
  can be readily discovered by reduced order estimation with a Luenberger 

observer [95], or alternatively the Kalman gain (Appendix B). 

Model realignment can degrade conditioning of the state space, which may compromise 

model utility in predictive control applications [96-100]. Thus, any transformation T for model 

realignment should preserve numerical properties of the initial state space. Currently, there is no 

systematic way of choosing transform T [101]. We propose an established technique from 

statistics, c-optimality [102], for the maintenance of model condition upon state space realignment: 

  CTIts

ATTcondT



 

0  ..       

)(minarg 1

    4.11 

Where cond refers to the condition number of ATT 1 , the divisor of the largest over smallest 

matrix eigenvalues (modes): 

smallest

largest1 )(



 ATTcond     4.12 

By minimizing the condition number, transform T minimally inflates timescale separation between 

the output equated states y


k and opaque states z


 k. Although a feasible minimization cannot be 
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guaranteed, this approach is highly general and automatic. The optimization can be started with 

any invertible matrix, although we recommend initialization with the orthonormal matrix T = QT 

from LQ decomposition on the output matrix C: 

LQC      4.13 

Note that the LQ decomposition can be found as the transpose of QR decomposition on CT. This 

initialization is convenient because setting T = QT  immediately satisfies r*(n-r-1)/2 of the 

optimization equality constraints: 

  T

rnr CQ0L 
     4.14 

Furthermore, as an orthonormal matrix selecting T = QT  has initial no effect on open-loop system 

eigenvalues (conditioning). 

 Tractability of the c-optimal approach was assessed on two systems that harbored opaque 

states. It was expected that model realignment by c-optimal transformation would preserve 

accurate state estimation in these systems. Successful state tracking was first judged by inferential 

composition estimation in a simulated nonlinear binary flash separation. Performance of the c-

optimal aligned models was compared against inference using the unaligned models with 

established Sylvester observers [92]. Next successful state estimation was explored for process 

forecasting in an experimental carbon gasifier. A reasonable model realignment, including through 

c-optimal transformation, should allow state tracking in this system that preserves accurate process 

forecasting for model predictive control applications. 
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4.2 Methods 

4.3 c-Optimality Preserves State Tracking Relative to Established Technique 

4.3.1 Nonlinear Flash Model 

A nonlinear binary flash simulation was used to validate the c-optimal model alignment technique, 

especially with respect to state estimation relative to established methods. Figure 4.1 shows the 

binary flash and Table 4.1 defines the system variables.  In this case the nonlinear differential 

equations were developed from Baldea et. al. [103]: 
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The lumped energy balance assumes that the chemical constituents have similar heat capacities. 

System behavior also conforms to six algebraic equations. Antoine relations express the saturation 

pressure of the light and heavy components:  
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In addition, the interfacial fluxes are driven by departures from Raoult’s law:  
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Finally, system pressure and liquid density are a function the ideal gas law and composition 

respectively: 

RTM]/Mv[P vB       4.24 

)1( xx hl        4.25 

It was assumed that a gain only inventory controller was already active, as is common prior to the 

identification of system models [104]: 

)/M/M( BB   10BB     4.26 

The overbars refer to the steady-state quantities from Table 4.1. 

 

 

 

 

 

Fig. 4.1:  Nonlinear chemical flash simulation variables and flows.  LT refers to level transducer 

and LC to level controller. 

   



53 

  

TABLE 4.1 

vectors Quantity  

F vector of state functions f  

d d x1 disturbance vector  

G vector of output functions g  

u m x1 input vector  

y r  x1 output vector  

x n x1 state vector  

z n-r x1 vector of opaque states that remain after c-optimal transform  

matrices Quantity  

0 matrix of zeros  

A discrete time state transition matrix  

A’ A with appended states  

B discrete time input matrix  

B’ B with appended states  

C discrete time output matrix  

C’ C with appended states  

I identity matrix  

L Leunberger Gain  

L lower diagonal matrix  

Q orthonormal rotation matrix  

T c-optimal transform matrix  

nonlinear states Quantity steady state 

MB liquid holdup (moles) 2,366 

Mv vapor holdup (moles) 22 

T temperature (Kelvins) 291 

x light liquid fraction (unitless) 0.13 

y light vapor fraction (unitless) 0.84 

algebraic 

variables 
Quantity steady state 

Nh  heavy species flux (mole/sec) 0.66 

Nl light species flux (mole/sec) 4.33 

Ph
sat heavy species saturation pressure (Pa) 9,618 

Pl
sat  light species saturation pressure (Pa) 38,353 

P system pressure (Pa) 5,361 

ρ liquid density (mole/m3) 2,366 

process flows Quantity steady state 

B liquid rate (mole/sec) 5 

Q heat rate (watts) 10,000 

V vapor rate (mole/sec) 5 

parameters Quantity steady state 

a specific interfacial area (m2/m3) 5 

Ah heavy Antoine coefficient (unitless) 15 

Al light Antoine coefficient (unitless) 18 

Bh heavy Antoine coefficient (Kelvins) 1700 

Bl light Antoine coefficient (Kelvins) 1500 

ΔHh heavy vaporization energy (J/mole) 1000 

ΔHl light vaporization energy (J/mole) 250 

kh heavy transfer coefficient (mol/m2sec) 6 

kl light transfer coefficient (mol/m2sec) 10 

ρh heavy species density (mole/m3) 2,500 

ρl light species density (mole/m3) 1,500 

v flash volume (m3) 2 

disturbances Quantity steady state 

F feed rate (mol/sec) 10 

ρin feed density (mole/m3) 2000 

Tin feed temperature (Kelvins) 300 
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4.3.2 State Space Modeling and Alignment for Estimation of the Nonlinear Flash System 

The nonlinear flash described in section 4.2 was linearized about the operating point shown in 

Table 4.1 via n4sid subspace identification [88]. Figure 4.2 shows the identification workflow.  In 

brief, identification data was collected from the nonlinear model with a pseudorandom binary 

sequence of ±5% perturbations in the process inputs (Q, V) and disturbances (xin, Tin, F). An 8.4 

minute PRBS duty cycle was chosen based on the recommendations of Gaiwak and Rivera [105].  

The resultant state models had the following form: 
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Where the measured disturbances 
kd


, inputs 
ku


 and measured outputs 
ky


 were as follows: 
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In subsequent discussions we refer to this as the identified state model. Note the distinction 

between the output measurement vector 
ky


 and the scalar vapor mole fraction y  (Table 4.1). 

Chemical process models can readily accept upstream conditions as measured 

disturbances. These can be incorporated into the state space by appending the state vector: 
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For clarity the appended state matrices are primed: 
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We refer to this structure as the appended state model. 

 The appended state model was subjected to c-optimal transform via interior-point 

optimization such that all disturbances and output measurements were aligned: 
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We refer to this model as the aligned state model.   

It was assumed that vapor composition measurement, although used for model 

identification, would be unavailable or unreliable during routine process operation. An observer 

for the aligned model was built by expanding 
kz
  to include vapor composition y: 
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Again, vapor composition y and the measurement output vector 
ky


 were distinct.  The resultant 

inferential model excludes vapor composition as a measured output, but otherwise retains all 

matrices of the aligned state model: 
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The Luenberger gain was designed to place the two estimator eigenvalues (poles) at 7.5/seconds, 

with a 10 second process sampling interval.   

4.3.3 Aligned Model Performance and Conditioning in Inferential Estimation 

The model identification procedure from Figure 4.2 was performed 100 times for the Monte Carlo 

analysis of c-optimality in state space transformation and model alignment. Error in composition 

estimation for the c-optimal aligned models and the unaligned appended models was evaluated. 

Figure 4.3 shows characteristic results for inferential composition measurement from a c-optimal 

aligned state model (R2=0.98). Figure 4.4 shows R2 and integral squared error values for vapor 

composition estimates across all 100 aligned state models. Overall, when c-optimality was used to 

build models for vapor composition estimation R2 = 0.68±0.05 and integral squared error was 

0.31±0.04.  Select aligned state models accurately predicted vapor composition (Figure 4.3) while 

other attempts at reduced order estimation were wholly inaccurate (Figure 4.4). 

To gauge the success of inferential estimation with the aligned state models, the unaligned 

appended state models were also used for vapor composition prediction. Here, estimator 

construction followed the Sylvester Equation [92]. For comparability with the aligned state 

models, eigenvalues of the Sylvester estimators matched those from pole placement via the 

Luenberger gain. Figure 4.4 shows similar vapor composition estimation via c-optimal aligned 

models with Luenberger estimators and the unaligned models with Sylvester observers. When the 

models were unaligned, the average R2 of 0.70±0.05 and integral squared error of 0.35±0.05 were 

statistically indistinct the aligned state spaces (p=0.36 and p=0.183 respectively). This suggests 

that c-optimality is likely a tractable means of model alignment for inferential estimation.   
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 The identified state models, found through n4sid subspace identification [88], featured 

consistently low condition numbers. Interestingly, model conditioning deteriorated considerably 

when the identified state models were recast as an appended state models. Figure 4.5 shows 

condition numbers for the identified state models, the appended state models, and the aligned state 

models. Condition number of the state transition matrix was greatly improved after c-optimal 

transformation into an aligned state form. Indeed, frequently condition numbers of the aligned 

state models were lower than those of their corresponding identified state models. However, in 

four instances c-optimality could not recondition the appended state model (cond(T-1AT)>100). 

Although a weak metric [106], all models showed full rank of the observability matrix. 
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Fig. 4.2:  Workflow for each Monte Carlo simulation. Identification data was generated by 

pseudorandom binary sequences on the nonlinear process model inputs and disturbances, then fit 

to a state space model for inferential vapor composition determination. 
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Fig. 4.3:  Illustrative case of vapor inferential composition determination from an aligned state 

model for manipulations in the process inputs and disturbances (R2 = 0.98). 

  



60 

  

 

 

Fig. 4.4:  Measures of success and failure in inferential composition measurement across all the 

generated state space models. Estimation proceeded via pole placement on the aligned state 

models, or Sylvester estimation on the appended state models. 
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Fig. 4.5:  Condition numbers across all generated state space models; top shows condition number 

of the identified model forms, middle shows condition number of the appended model forms, and 

bottom shows condition number of the aligned model forms. 

 

4.4 c-Optimality Preserves State Tracking for Accurate Process Forecasting 

4.4.1 Experimental Carbon Gasifier 

An experimental carbon gasifier was used to validate the c-optimal model alignment technique, 

especially with respect to accurate state tracking for process forecasting. Figure 4.6 shows the 

gasifier P&ID, which included upstream MKS GE50A mass flow controllers for gas metering and 

a downstream MKS T3Bi valve for pressure regulation at 0.9 bar. As in industrial gasification 

[107], steam injection at high temperature drove the oxidation of carbon for hydrogen generation: 

H2O + C ⇌ CO + H2   ΔH = 206 kJ/mol 
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H2O + CO ⇌ CO2 + H2  ΔH = -41 kJ/mol 

Specifically, steam was provided to the carbon by a heated bubbler and 1.5 L/min of argon sweep 

gas. The 0.600 kg carbon bed (Figure 4.6) was maintained at 925o C in a heated vertical tube 

furnace whose thermal mass (15.25 kg) mitigated temperature transients. Additionally, carbon 

dioxide flowed through the system and split into carbon monoxide: 

CO2 + C ⇌ 2CO    ΔH = 183 kJ/mol 

The batch system showed a pseudo steady-state where 0.3 L/min of hydrogen was produced at a 

H2:CO ratio of 0.9:1, as determined by a NOVA N4X gas analyzer. 

 

 

 

Fig. 4.6:  Gasifier experimental apparatus.  The pressure controller was characterized and tuned as 

described by Lee et al. [108].  Bubbler temperature controllers were characterized and tuned by 

internal model control for a 1st order plus deadtime process.  PC refers to pressure controller, PT 

refers to pressure transducer, AT refers to analytical transducer, TT refers to temperature 

transducer, and TC refers to temperature controller. 
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4.4.2 State Space Modeling and Alignment for Forecasting in the Carbon Gasifier 

Figure 4.7 shows the system response to changes in bubbler temperature and carbon dioxide 

flowrate. Transfer function models (1st order plus time delay) were fit to operating data for 

hydrogen production and H2:CO ratio via interior point optimization: 
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The transfer function was converted to a minimal discrete time state space for predictive control 

applications with a 20 second sample interval [101]: 
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The state space was then subjected to c-optimal transformation for model alignment, leaving a 

single opaque state, zz 
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The associated Luenberger estimator featured a pole at 0.95. 

4.4.3 Model Alignment Performance in Process Forecasting 

Successful process forecasting hinges on accurate state estimation. To evaluate the performance 

of state estimation by c-optimal aligned process models, the experimental gasification process was 

subjected to step changes in the inputs. Figure 4.8 shows how bubbler temperature and carbon 

dioxide flow rate were manipulated over the course of 80 minutes. Every five minutes the current 

state estimate, based off estimation on the c-optimal aligned model, was used to predict future 

process movement given planned changes in the inputs. Overall, the forecasts were highly accurate 

despite constant process movement and noisy measurements (Figure 4.8). Notably, the inputs were 

manipulated between their actuator extremes at maximum slew. 

 

 

Fig.4.7: Model identification of the experimental gasifier. 
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4.5 Conclusion  

C-optimality was proposed to enhance the input-output correspondence of state space models. 

Within this regime the state space is transformed such that states and output measurements are 

equated. In selecting the necessary transform, condition number of the state transition matrix A 

was minimized. The resultant models befit reduced state estimation with a Luenberger observer, 

which was shown using simulation and experimental examples common to the chemical process 

industries. Namely, the state space was aligned for inferential composition measurement in a 

chemical separation and process forecasting in a chemical reaction. In simulations Monte Carlo 

analysis showed that, c-optimality restored system conditioning after manipulations that degraded 

numerical properties of the original model. Furthermore, aligned models could faithfully track an 

unmeasured system output similar to tracking by an advanced technique [92]. State tracking with 

c-optimal aligned models was accurate in a gasification reaction, where a c-optimal aligned model 

successfully predicted future process trajectories based on the current state estimate. However, we 

caution against the naive use of c-optimality because, although the technique worked in these 

chemical engineering case studies, its success may be situation dependent and likely requires 

application specific development.  
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Fig. 4.8: Output forecasts based on the current state estimate from the c-optimal model and 

planned input action. 
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Chapter 5: Can Linear Models, with Forecasting, Achieve 

Solar-Electric Control? 

5.1. Solar-Electric Reactor Design 

A prototype reactor, envisioned for operation on a power tower (Chapter 1), was fabricated for use 

in solar-electric control studies.  Figure 5.1 and Figure 5.2 show the device, which closely 

approximated a design built at the Swiss Federal Institute of Technology [109, 110].  As in prior 

work [109-111], the reactor contained a single vertical transport tube housed within an insulated 

cavity.  A cavity-mounted Type B thermocouple was available for reactor temperature control.  

Unlike previous studies, the reactor cavity included six molydisilicide heating elements capable of 

supplying electrical heat at temperatures up to 1700o C (3100o F). Furthermore, the reactor featured 

a water cooled jacket, which pinned exterior insulation temperatures at approximately 15o C. In 

experiment light from high-flux solar simulator lamps entered the cavity through concentrating 

optics, whereas in practice sunlight would be funneled into the reactor from heliostats.   

The inclusion of concentrating optics to harvest light from a high-flux solar simulator is 

inconsistent across the academic literature [109, 111-114].  Thus, a design study was pursued to 

guide the construction of polished aluminum optics for the new solar-electric reactor.  Figure 5.3 

shows how variations in the acceptance angle and inlet diameter of the concentrating optics, a 

compound paraboloid [115], effected light ingress into the reactor cavity.  Net energy into the 

reactor was dependent on cavity conditions, given that high temperatures can cause thermal 

reradiation.  This effect was included by tracing view factors for emissive losses from the reactor 

to the wider environment [50, 116].  Notably, although the optical design was sensitive to inlet 

diameter, acceptance angle of the compound paraboloid had negligible effects on light entry 

(Figure 5.3).  Lamp light was already tightly focused by the high-flux solar simulator (Chapter 2), 
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which suggests that acceptance angle and concentrating optics were dispensable in this reactor 

design.  To confirm these simulation results a compromise optical design, with an acceptance angle 

of 45o and inlet aperture of ⌀8 cm, was fabricated and polished to specularity.  Before use on the 

reactor, this water cooled aluminum device (Figure 5.4) was mounted on a calorimeter for solar 

measurement [62, 116].  Measurements in Figure 5.5 show that the concentrating optics failed to 

funnel additional light relative to a ⌀8 cm aperture mounted on the calorimeter.  These results 

indicate that concentrating optics, although likely useful at commercial scale, are unnecessary in 

experiments on tightly focused high-flux solar simulators. 

 

 

Figure 5.1: A) Cutaway of the solar-electric reactor.  The orange arrow represents solar entry while 

the red arrow represents thermal reradiation.  TT indicates temperature transducer (b-type 

thermocouple).  B) Rendering of the solar-electric reactor. 
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Figure 5.2: The fully fabricated solar-electric reactor at the focus of high-flux solar simulator 

lamps. 

5.2. Solar-Electric Reactor Modeling 

To assist the design of solar-electric controllers, a dynamic model of the solar-electric reactor was 

formulated and coded in Matlab.  The radially symmetric reactor design was represented in finite 

volume simulation in full cylindrical coordinates and integrated through time with the method of 

lines [117].  The resultant model featured thermal conduction, radiative forcing from ray tracing 

simulation (Chapter 2), lumped convection to the ambient air, electrical forcing, and radiative 

exchange via traced view factors (Chapter 1 and 2) [50].  A stainless steel water cooled jacket 

enveloped the reactor, which fixed exterior insulation temperatures at ~15o C based on observed 

average coolant temperatures in experiment.  Thermal conductivity, density, and heat capacity of 

the 310 stainless steel reactor tube were taken from the literature [118-121].  Temperature 

dependent heat capacity of the alumina insulation was also literature sourced [57] and fit to the 

Hill Equation (Appendix C).  The mesh granularity was increased until the simulation time 

reflected realtime (3344 element mesh), where rapid computation was considered more practical 

for controls development relative to model precision.  Five parameters were fitted to operating 

data from the solar-electric reactor for steps in solar or electric heat (Figure 5.7).  Figure 5.6 shows 

the model after interior-point optimization to minimize the squared error between temperature data 
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from the furnace thermocouple and temperature predictions.  Figure 5.7 shows the final model 

parameters, which included the insulation emissivity, the tube emissivity, the insulation density, 

the insulation thermal conductivity, and the cavity convective heat transfer coefficient.  Estimated 

values of emissivity were high and may represent effective emissivity, versus physical emissivity 

of the actual materials. 

 

 

 

 

 

Figure 5.3: Net power into the solar-electric reactor for operation at two cavity temperatures and 

a range of outlet diameters and acceptances angles ϕ.  Traces were for all eighteen high-flux solar 

simulator lamps at 90 amps (40.5 kW).  
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Figure 5.4: Rendering of the compromise optics design for light entry into the solar-electric 

reactor.  Channels are for water cooling.  See also Figure 5.2.  The compound parabolic section 

featured an acceptance angle of 45o, an inlet diameter of ⌀11, and an outlet of diameter of ⌀8 cm. 

 

Figure 5.5: Experimental flux profile for six lamps operating at 70 amps (10.5 kW), as used in 

control experiments.  The inlet (dashed line) and outlet (solid line) diameters of the concentrating 

optics are shown.  The graph shows total optical power through the concentrating optics, or through 

an equivalent ⌀8 cm hole, as measured by a calorimeter (Chapter 2 and 3). 
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5.3 Solar-Electric Reactor Chemistry and Distributed Control System 

The thermochemical conversion of solid carbonaceous feedstocks using solar-thermal reactor 

systems represents a promising pathway for storing renewable energy as chemical energy [9].  One 

thermochemical conversion process, gasification, has served as a testbed for solar-thermal system 

control in at least five previous studies (Table 1.2) [22].  In this process carbonaceous feeds are 

converted to H2 and CO with steam, an endothermic reaction that can be driven allothermally with 

solar heat or autothermally through oxygen combustion of the feedstock [22].  At commercial scale 

the resultant H2/CO product mixture (syngas) can be converted to a range of chemicals or 

commodity fuels via subsequent processing.  If bio-based feedstocks are employed, gasification 

has the potential to supplant conventional fossil fuel supplies [122].  However, successful solar-

thermal processing requires a steady syngas flow with an H2/CO ratio tailored to downstream 

equipment that converts gases to fungible liquid products [123-126].  Flowrate manipulation, 

which has been previously used for the control of solar-thermal syngas production, may be 

incompatible with the needs of gas-to-liquid reactors and distillation trains.  Conversely, solar-

electric control has the potential to minimize flowrate disturbances by maintaining process 

temperatures, which are a proxy for product rate and composition [22]. 

To test solar-electric control strategies the reactor system was instrumented for carbon 

gasification.  Table 5.1 lists composition of the feedstock, a highly pure activated carbon for 

minimal reactor fouling over the course of experiments.  Figure 5.8 shows how 1.5 L/min of argon 

sweep flow delivered steam from a 2 L bubbler to the 600 gram carbon bed inside a ⌀5 cm 310 

stainless steel reaction tube situated within the solar-electric reactor cavity.  The bubbler, line 

heaters, and MKS T3Bi throttle valve were subjected to step tests for process modeling with 
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Figure 5.6: Finite volume model fit to temperature data from the solar-electric Type B 

thermocouple in reactor steps tests in electric heat (top) or solar heat (bottom). 

 

 

 

 

Figure 5.7: Depiction of and fitted parameters in the solar-electric reactor finite volume simulation. 
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transfer functions (Figure 5.9).  Feedback PID tuning parameters for line heater and bubbler 

temperature regulation were then chosen by internal model control with τc = τp/2 [127].  A PI 

controller for pressure regulation at 0.9 bar was designed according to the tuning recommendations 

of Lee et al. [108].  In addition to argon, 0-0.3 L/min of CO2 could flow through the system.  Thus, 

three chemical reactions were likely active in the solar-electric reactor: 

H2O + C ⇌ CO + H2   ΔH = 206 kJ/mol 

H2O + CO ⇌ CO2 + H2  ΔH = -41 kJ/mol 

CO2 + C ⇌ 2CO    ΔH = 183 kJ/mol 

The relative gain array indicated that CO2 flow could control of H2/CO ratio [128], which was 

maintained at 1/1, while bubbler temperature could control overall syngas productivity, which was 

maintained at 0.3 L/min.  To pair these manipulated and controlled variables distributed PI 

feedback was implemented with internal model control tunings (τc = τp/2) [127]. 

 

Table 5.1: Ultimate (dry and ash free), proximate, and heating value (as received) analyses for 

activated carbon used in solar-electric experimentation. 

Component wt% mol% 

C 94.24% 92.30% 

H < 0.55% < 0.05% 

O 4.25% 5.54% 

N 0.27% 0.31% 

S 0.69% 1.80% 

Fixed Carbon 85.21%   

Volatile Matter 3.40%   

Loss of Drying 0.31%   

Ash 11.08%   

LHV [MJ/kg] 28.64   



75 

  

 

Figure 5.8: distributed control system for gasification studies on the solar-electric reactor.  PT is 

pressure transducer, PC is pressure controller, AT analytical transducer, TT is temperature 

transducer and TC is temperature controller. 

5.4. Solar-Electric Control Strategies and Tuning 

5.4.1 Control Architectures 

Given the potential for destructive thermal shock and fatigue in concentrated solar facilities, solar-

electric reactor temperature control regimes of varied sophistication were evaluated.  Although 

solar heat and chemical processing are highly nonlinear, only linear controllers were explored 

given their online tractability [89].  Figure 5.10 shows the tested control architectures.  First 

feedback controllers were built and tested with and without of feedforward action from the solar 

disturbance, dk [129]: 
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Here, Δuk is the change in electrical duty applied to the system at time k (0-15 kW), ek is the 

temperature setpoint departure at time k and dk is the solar disturbance at time k  (0-15 kW).  Kp 

and Kd were the process and disturbance gains identified from 1st order transfer function models 

fit to reactor step tests (Figure 5.6) [127].  The sampling interval, Δt = 25 seconds, was constrained 

by the rate of information acquisition from the experimental equipment.   

Based on the success of prior model predictive controllers in solar furnace temperature 

regulation (Table 1.1), a linear model predictive controller was built for the solar-electric reactor.  

Figure 5.11 summarizes trajectories relevant to the predictive control architecture.  In brief, a 

minimal state space model of the reactor system was distilled from 1st order transfer function 

models built off system step responses (Figure 5.6) [101].  The resultant 2nd order discrete time 

state space assumed the following form: 
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d
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    5.2 

kk xCy


       5.3 

Here, a 2x1 vector 
kx


 was needed to propagate system dynamics through the 2x2 state transition 

matrix A.  The output transition matrix C converts the state into the system deviation temperature 

yk.  Bd and B form a block matrix that describes how the solar disturbances dk and electrical duty 

uk impinge on the system state (dynamics).  For convenience, c-optimality was used to align the 

model as described in Chapter 4. 
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Figure 5.9: A) Step tests and transfer function modeling for pressure and heater control.  B) Step 

tests and transfer function modeling for gasification control. 
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Figure 5.10: Feedback controller architectures (left) and model predictive controller (MPC) 

architectures (right) implemented for the solar-electric temperature regulation in experiments. 

 

Figure 5.11: Trajectories relevant to the model predictive controller.   y is the controlled variable 

(temperature) which can be tuned by an output weight matrix Q.  In this work, Q = 1.  u is the 

manipulated variable (electric heat), which can be tuned by the move suppression matrix R.  d is 

the disturbance variable (solar heat).  The horizon lengths are p (prediction), c (input), and f 

(disturbance), which were multiples of the dominant process time constant τp in experiment. 
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The model was converted to an observer form for use with a state estimator and cast into velocity 

mode for enhanced controller integral action [94, 95]: 
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The model predictive controller assumed a standard quadratic form with the output weight matrix 

Q = 1 [127]: 

URUYYU TT  minarg    5.8 

Where  Tkk

T uuU 1  for a control horizon of length c and  Tkk

T yyY 1  for 

a prediction horizon of length p.  Figure 5.11 details the horizons used in model predictive control.  

The move suppression matrix R can moderate and detune controller aggression.  The extended 

state space equations formed an objective function that was amenable to rapid solution by 

quadratic minimization [94, 95]: 

     URUUDSyxU TTTTT

k

T

k  


2minarg   5.9 

The linear term on ΔU depends only on the current state  Tkk yx


 and a weather forecast 

 Tkk

T ddD 1  of length f.    is the observability matrix.  H and P are Teoplitz 

matrices on the state and forecast respectively [95]: 
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[95].  A sample time of Δt = 30 seconds was adopted to allow the use of forecasts within the model 

predictive controller, since forecasts were only available in 30 second gradations [130] 

(http://midcdmz.nrel.gov/srrl_bms/).   

5.4.2 Controller Tuning 

The feedback controller [129], without feedforward action, was tuned by minimizing simulated 

departures from a 925o C temperature setpoint on the solar-electric reactor.  Three days of diverse 

weather from Sunspot 2 in Colorado [25], chosen by manual inspection, served as disturbances in 

the interior-point optimization (Nov 1st 2010,  Jan 16th 2010, and May 20th 2009, 

http://midcdmz.nrel.gov/srrl_bms/) [130].  Figure 5.12 shows controller sensitivity to the PID 

tuning parameters Kc, τI and τD from these computations.  The nonlinear process model indicated 

that the optimal tuning would be bounded and stable on the actual equipment.  However, once 

online minor oscillations were observed, likely due to plant model mismatch and/or unseen delays 

in hardware.  These oscillations that were eliminated by detuning the optimal controller gain Kc 

by 3X.  Table 5.2 shows the final feedback controller parameters.   

 

 

Figure 5.12: Relative feedback controller tuning effects on solar-electric temperature regulation. 
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Model predictive control relied on an estimate of the current facility state (dynamics).  To track 

the facility state a Luenberger observer was designed that conservatively placed the estimator pole 

at 0.92 [95].   Standard values were chosen for the prediction (p=5τp/Δt) and control (c=τp/Δt) 

horizons.  Move suppression within the predictive controller was then tuned without a forecast by 

minimizing simulated departures from a 925o C temperature setpoint on the solar-electric reactor.  

Again, three days of diverse weather from Sunspot 2 in Colorado served as disturbances in the 

interior-point optimization (Nov 1st 2010,  Jan 16th 2010, and May 20th 2009, 

http://midcdmz.nrel.gov/srrl_bms/) [130].  Figure 5.13 shows controller sensitivity to move 

suppression in these computations.  The nonlinear process model indicated that the optimal tuning 

would be bounded and stable on the actual equipment.  However, as for the feedback controller 

minor oscillations were observed when the predictive controller was online.  These oscillations 

were eliminated by detuning the move suppression factor R by 3X.  Table 5.3 shows the final 

model predictive controller parameters. 

 

Table 5.2

feedback controller parameters

K c K f τ I τ D Δt 

0.66 C
o
 C/% 0.35 C

o
 C/% 200 sec 0 sec 25 sec

c p f Q R Δt 

τ p = 12 min 5τ p = 60 min τ p /12= 1 min 1 100 30 sec

Table 5.3

model predictive controller parameters
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Figure 5.13: Relative model predictive controller tuning effects on solar-electric temperature 

regulation. 

5.5 The Experimental Performance of Solar-Electric Control 

To challenge the control architectures described in Section 5.4 a thirty minute solar transient was 

replicated on the high-flux solar simulator lamps.  The chosen transient featured high frequency 

features characteristic of cloud arrival and departure and low frequency features likely induced by 

general light scattering in the atmosphere [25].  Figure 5.14 compares the transient, which was 

taken from weather on September 5th at Sunspot 2 in Colorado (http://midcdmz.nrel.gov/srrl_bms/) 

[130], against power output by six lamps on the high-flux solar simulator.  In all tests the same six 

lamps were used.   

Initially, the solar-electric reactor was ramped to 925o C by electric heating with all 

distributed controllers set to regulate batch gasification as described in Section 5.3.  Once the 

reactor was at a steady state the 30 minute solar transient commenced.  This experiment was 

performed in triplicate for each control architecture (Figure 5.10).   

Figure 5.15  shows results for solar-electric reactor temperature control with PID feedback.  

The distributed control system successfully regulated the gasification reaction despite disturbances 

of ±25o C (±60o F) in solar-electric furnace temperature, which occurred upon 100% disturbances 
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in solar heat.  Figure 5.16 shows that feedforward feedback improved this result and brought 

disturbances within ±20o C.  When the model predictive controller was used for solar-electric 

furnace regulation, Figure 5.17 shows that temperature excursions were similar to control by 

feedback alone.  The model predictive controller relies on a feedback estimator of the system state, 

which may have compromised performance.  However, only the model predictive controller can 

incorporate a projected forecast of future cloud transients.   

A one minute forecast was incorporated in the model predictive controller as recommended 

by previous work [42].  Figure 5.18 shows that use of a forecast in the controls architecture yielded  

performance that was substantially better than feedback and feedforward feedback.  In this case, 

only ±10o C excursions occurred in furnace temperature.   

Performance results were summarized by the integral squared error of controlled variable 

excursions from their setpoints [129].  Relative to feedback, Figure 5.19 shows that feedforward 

feedback reduced integral squared error by 50% in solar-electric temperature control.  Model 

predictive control with a forecast further reduced the integral squared error.  Relative to feedback 

alone, model predictive control showed a 75% reduction in integral squared error (Figure 5.19).  

Regulation of the gasification reaction by the distributed control system was similar across the 

different solar-electric control architectures (Figure 5.19).  Likely, the reaction was similarly 

controlled despite furnace temperature excursions and performance differences across the 

experiments arose from noise. 
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Figure 5.14: The weather transient for experimental control studies, taken from February 5th 2010 

at Sunspot 2 in Colorado (http://midcdmz.nrel.gov/srrl_bms/) [130]. 

 

Figure 5.15: Performance of feedback control on the 30 minute weather transient reproduced by 

the high-flux solar simulator lamps in experiment.  Dashed line shows the simulated uncontrolled 

temperature response. 
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Figure 5.16: Performance of feedforward feedback control on the 30 minute weather transient 

reproduced by the high-flux solar simulator lamps in experiment.  Dashed line shows the simulated 

uncontrolled temperature response. 

 

Figure 5.17: Performance of model predictive control without a forecast on the 30 minute transient 

reproduced by the high-flux solar simulator lamps in experiment.  Dashed line shows the simulated 

uncontrolled temperature response. 
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Figure 5.18: Performance of model predictive control with a 1 minute forecast on the 30 minute 

transient reproduced by the high-flux solar simulator lamps in experiment.   Dashed line shows the 

simulated uncontrolled temperature response. 
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Figure 5.19: Performance of the controllers in solar-electric reactor temperature regulation (top) 

and gasification control (bottom).  All experimental results normalized to feedback.  Predictive 

refers to model predictive control, forecasted predictive refers to model predictive control with a 

forecast one minute forecast of future weather. 

*simulation normalized to feedback, # simulation normalized to model predictive control. 

 

5.6 Simulations for Optimal Forecasts in Solar-Electric Control 

The success of model predictive control with a forecast provoked interest in the ideal length and 

necessary accuracy of weather predictions.  In reactor experiments a perfect forecast was available 

whose length was suggested by prior work (1 minutes, τp/12) [42].  To further explore optimal 

forecast length in solar-electric reactor temperature regulation, model predictive control 
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performance was examined in simulation with different forecast lengths and accuracy.  Figure 5.20 

shows that a one minute forecast was best among the cases examined (integral squared error).  

Longer forecasts likely cause the controller to react to conditions beyond immediate system 

dynamics.  A forecast that spanned the duration of the system dominant time constant (τp) severely 

degraded control performance.  A tradeoff was evident between the forecast length used for control 

and forecast accuracy.  Specifically, Figure 5.21 shows that control with a short one minute 

forecast was sensitive to forecast amplitude inaccuracy.  Conversely, control with a long three 

minute forecast, although less efficacious, was robust to and benefitted from forecast amplitude 

inaccuracy (Figure 5.21).  In both cases temporal forecast accuracy was essential.  Figure 5.22 

shows that for both long forecasts and short forecasts weather prediction errors of ±Δt = τp/24 

completely obviated the benefits of model predictive control. 

 
Figure 5.20: Simulation results (black bars) and experimental results (white bars) show the effect 

of forecast length on solar-electric reactor temperature regulation with model predictive control.  

Figure 5.14 shows the weather challenge used to assess control performance. 
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Figure 5.21: Simulation results (black bars) and experimental results (white bars) show the effect 

of forecast amplitude inaccuracy on solar-electric reactor temperature regulation by model 

predictive control.  Numbers 0 through 0.5 indicate the fractional decrease between forecasted 

cloud intensity used within the controller and actual cloud intensity.  Figure 5.14 shows the weather 

challenge used to assess control performance. 

5.7 Conclusion 

A solar-electric reactor design was modeled in simulation and fabricated for control experiments.  

The use of concentrated optics to funnel renewable solar energy into this device was unnecessary 

within the experimental facility, a tightly focused high-flux solar simulator, but may be needed 

when light is delivered by heliostat(s).  Different temperature control strategies were implemented 

on the solar-electric reactor, which operated at 925o C for carbon gasification studies. Control 
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architectures included feedback and model predictive control.  Model predictive control 

outperformed feedback and feedforward feedback when a one minute forecast of future weather 

was available.  In this case, a 75% improvement in performance (integral squared error) was 

observed over standard feedback control in experiments with a weather transient that was produced 

by the high-flux solar simulator lamps.  An ideal forecast length for this system was explored in 

simulation and verified with experiments.  Notably, shorter forecasts were highly effective in 

model predictive control, but longer forecasts were more robust to weather forecast amplitude 

inaccuracy.  In all cases temporal forecast inaccuracy completely negated model predictive control 

benefits. 

 

 
 

Figure 5.21: Simulation results (black bars) and experimental results (white bars) show the effect 

of forecast temporal inaccuracy on solar-electric reactor temperature regulation by model 

predictive control.  Figure 5.14 shows the weather challenge used to assess control performance. 
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Chapter 6: What was Learned and What is Unanswered? 

In this thesis a high-flux solar simulator was analyzed (Chapter 2), built (Chapter 3), and used to 

execute control experiments for the hybridization of solar and electric heat (Chapter 5).  In these 

experiments weather transients were rejected by automated electric heaters, control that relied on 

c-optimal aligned models (Chapter 4).  To our knowledge, this is the first use of a high-flux solar 

simulator to reproduce actual weather, although more than twelve high-flux solar simulators are 

available worldwide for experimental studies [40, 41].  In preparation for control experiments an 

artifact likely common to all extant high-flux solar simulators, specifically an observer effect, was 

discovered.  

6.1 The Observer Effect in High-Flux Solar Simulators 

In general, high-flux solar simulators are difficult to analyze and characterize because the absolute 

volume of energy they deliver, here 12,000 suns, can readily destroy sensitive flux and power 

measurement equipment.  Despite these challenges, software from Chapter 2 and experiments from 

Chapter 3 identified a subtle observer effect in high-flux simulators that distinguishes these devices 

from the solar furnace facilities they recapitulate.  If ignored, the observer effect can distort 

efficiency measurements during tests of solar-driven process equipment, potentially inflating the 

performance of solar designs.  Recommendations for minimizing observer effects in high-flux 

solar simulators include: 

1) Decreasing the solid angle a high-flux solar simulator presents to experimental 

equipment, which can be achieved by increasing the high-flux solar simulator focal 

length. 
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2) Insuring experimental equipment and flux measurement instrumentation present a 

similar or identical optical environment to high-flux solar simulators. 

3) Insuring that experimental equipment and flux measurement instrumentation is 

diffusely absorbing and not specularly reflective. 

4) Using facility characterization and software to correct for observer effects upon data 

analysis. 

It could be worthwhile to investigate the experimental efficiency and performance of prior solar 

process equipment, reviewed in Chapter 5, to see if the observer effect significantly affected 

previously published experimental results. 

6.2 The Hybridization of Solar and Electric Heat 

Once observer effects were fully understood, the high-flux solar simulator was used to challenge 

automated controllers for temperature regulation of a solar-electric furnace (Chapter 5).  It was 

found that linear model predictive control with a weather forecast of incipient clouding maintained 

furnace temperature setpoints despite weather transients.  That forecasts could be useful in solar 

control has been recognized in simulation [42], although until now forecast efficacy was unproven 

in experiment.  Model predictive control with a forecast was compared against standard model 

predictive control, feedback control, and feedforward feedback control.  When compared to 

feedback, feedforward feedback halved the control residuals (integral squared error) for furnace 

temperature regulation. Forecasted model predictive control reduced that metric three-fourths – it 

outperformed alternatives.  However, the inclusion of a forecast complicates control.  Atop 

hardware and software additions, forecast length and intensity must be determined, which was 

further explored in validated simulations of the solar-electric furnace.  Simulations showed that, 
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at least in this application, shorter weather forecasts was most effective in solar-electric control.  It 

was found that a forecast horizon of τ/12 was best, where τ was the dominant process time constant.   

Additional theoretical and applied research is needed to move model predictive control 

with a forecast from the lab to actual solar applications.  Notably, the experimental furnace studied 

herein was only 4% efficient in converting solar heat to chemical energy via gasification, whereas 

actual industrial equipment should be more effective.  Inefficiency likely owed to the use of a 

single transport tube within the reactor system.  Presumably, were the system to incorporate 

fourteen reaction tubes along the reactor cavity, the maximal number of ⌀50mm tubes that can be 

accommodated, higher efficiencies would be observed [131].  More effective equipment would 

couple thermal effects from solar and electric heating to reaction kinetics, which could confound 

controller performance.  Thus, although a thermal model was sufficient in Chapter 5, more 

complicated engineering models will likely be needed in efficient reactor systems.  Given that 

reaction kinetics are highly nonlinear, nonlinear control algorithms (Appendix D) may be 

worthwhile in future solar-electric research and development. 

Overall, this research establishes an approach to solar and electric heating for renewable 

chemicals and commodities manufacture.  As described in Chapter 1, there is strong interest in 

high-temperature solar heat integration for the production of fuels, electricity, and chemicals.  The 

ultimate success of these proposals relies on minimal equipment wear in the face of thermal heat 

transients that accompany weather, sundown and sunrise.  This thesis demonstrates that solar and 

electric heat can be controlled to maintain facility temperatures despite extreme disturbances, but 

quantifying success in this endeavor requires further study.  In the future thermal shock and fatigue 

could be measured during the course of reactor operation to actually assess equipment wear, or the 

mitigation of equipment wear, under different control regimes.  The study of material fatigue, 
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which includes acoustic emission, imaging, simulation and impedance spectroscopy, is a field onto 

itself [132-134].  However, the prospect of analyzing control success and predicting facility failure 

remains a tantalizing area for new research.  With this information scaled solar-electric facilities 

could be pursued with added confidence by and in industry. 
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Appendix A: A Tutorial Introduction to Subspace 

Identification 

A.1. The State Space 

“The best material model of a cat is another, or preferably the same, cat.” 

    -Norbert Wiener, 1945 

Generally fundamental system physics – mass, energy, and momentum balances – can be framed 

as a set of 1st order differential equations [84]: 

      ),,( tuxf
dt

xd 

      A.1 

Here x

 is a vector of variables (states) that drive system dynamics and u


 is a vector of time varying 

control inputs.  The state space is a natural extension of this framework.  To derive the state space, 

we first assume that the system is time invariant: 

      ),( uxf
dt

xd 

      A.2 

Figure A.1 shows how system behavior can be analyzed by expanding Equation A.2 with a 1st 

order Taylor series: 
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 are Jacobians with respect to the states and inputs.  Equation A.3 

describes departures from a reference trajectory owing to perturbations in x

 and u


.  This analysis 

underlies the calculus of variations.  If we use deviation variables from a steady-state ( 0)u,x(f


) Equation A.3 simplifies: 
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This is the classical continuous-time “state space” representation of a system: 
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The state space is convenient because it describes the system trajectory exclusively with respect 

to current process conditions, x


, not a long history of system behavior  (the “Markov property”).  

This simplifies mathematical analysis [84].  The continuous state space can be discretized into a 

difference equation that is executed at regular intervals: 

     
kkk uxx


1
     A.7  

Mappings between Equation A.5 and Equation A.7 can be deduced with simple calculus.   

 

Figure A.1: The 1st order Taylor series of a function. 
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Recall that 1st order linear differential equations are typically presented in a canonical form: 

     uBxAx
       A.8 

Formally, x

 has two solutions: 

    
particularshonogeneou )t(x)t(x)t(x


    A.9  

In the homogenous solution we consider underlying system behavior in the absence of external 

stimuli (the “free” response): 

     0 xAx
      A.10  

The homogenous solution follows immediately from properties of Napier’s constant: 
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      A.11  

The validity of this solution is immediately proven upon the insertion of 
ogeneoushom)t(x


 and its 

derivative into Equation A.10 for initial time 00 t . 

 The particular solution depends on external input.  Thus its “particularity” – it is situation 

specific.  We discover the particular solution via the integrating factor method: 
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Thus, we can assemble the complete solution via superposition (Equation A.9): 
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Let us consider u


 piecewise invariant over each interval t0+ Δt, t1+Δt…tk+Δt (the so called “zero 

order hold”).  u


 is no longer time varying within a given interval and can then be removed from 

the integral, which is evaluated exclusively over Δt.  This reveals the discretization matrices for 

Equation A.7: 
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The discretized matrices are readily calculable via a Taylor series and integral respectively:  
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 We have shown how the fundamental variables of any physical system relate to a 1st order 

Taylor approximate, namely the state space.  However, in a given facility fundamental physical 

phenomenon are rarely measured directly.  Thus, the states are usually unavailable.  Instead, 

measurements are some function of the underlying system fundamentals: 

      )(xgy


      A.19  
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Again we use a Taylor series to predict measurement variation as a function of system 

conditions: 

      x
x

xg
y













)(
     A.20  

If we use deviation variables from a steady-state Equation A.20 simplifies: 
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This completes our state space view of physical phenomena, systems, and facilities: 
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        A.21 

Although beyond the scope of this work, occasionally direct inputs, ku


, are measured:  

      kkk uDxHy


     A.22  

Thus, one can confirm from the vector of outputs, ky


, that the inputs are as expected.  This 

formulation enters into fault detection and analysis.  The entire framework can be viewed in a 

condensed, matrix, format: 
















 








 

k

k

k

k

u

x

DHy

x







1      A.23 

  



100 

  

A.2. The Estimation of State Space Models 

 “The truth is out there.” 

   -Fox Mulder, 1993 

The estimation of state space models in nontrivial, but also flexible.  To illustrate this flexibility, 

consider a grand statement on Equation A.23: 
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We can arbitrarily multiply this statement by a transform: 
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Now we introduce an “identity” matrix into the rightmost expression: 
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We have a new set of matrices that are related to actual system dynamics by a similarity transform, 

T.  Furthermore, our revised state sequence is linearily coupled to the true states: 

     kk xTw


       A.29 

This is exceptional – any series of states that we might discover is related directly to physical 

phenomena.   The observability principle dictates whether we can discover a viable state sequence 

from system outputs.  We can formalize this principle on a timeline (Figure A.2). 
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Figure A.2: A state timeline originating at time k = 0.  We adopt the peculiar notation of David 

Di Rusico [86], not Peter Van Overschee [135]. 

 

 

Consider a case wherein we have eliminated the inputs mathematically, or by holding all system 

controls invariant: 

      kk xx


1         A.30 

      kk xHy


      A.21 

Simple recursion reveals that the inputs and outputs are related by a particular matrix: 
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We call this the “observability” matrix: 
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All columns of the observability matrix must be unique to truly relate kx


 to system outputs (full 

rank). 
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 We are also interested in controllability – how to move from some initial state 0x to any 

arbitrary final state Jx .  Motion through time is entirely described by Equation A.7:  

      kkk uxx


1     A.7 

From our initial state, we have: 
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Backsubstitution to eliminate the intermediate states gives: 
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     A.33 

Here, the relationship between the states and inputs is termed the “reverse controllability matrix.”  

If the transform matrix is nonsingular (does not destroy information, is full rank) control actions 

exist for moving between the initial state and a general future state.  The system is “controllable.”  

We give the deterministic reverse controllability matrix a specific symbol: 
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       21 JJ

J     A.34 

We can use Equation A.7 and Equation A.22 to write a unified statement on future outputs: 
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  A.35 

Notice that the initial state is multiplied by the observability matrix.  This represents the “free 

response” in dynamic matrix control – how the system will move without intervention.  It is a 

component of the response irrespective of our control actions.  The Toeplitz diagonal matrix is the 

“forced response,” the response we influence.  The Teoplitz matrix is given its own symbol: 
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Equation A.33 and Equation A.35 are the “extended state space equations:” 
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We can elaborate these equations on data-rich “Hankel” matrices.  For example, a given “past” 

horizon length of J=2 (Figure A.3) starting at k=0 would yield the following output matrix: 
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The number of columns is solely dependent on the amount of data available for organization into 

a feasible horizon of interest.  Thus, the Hankel matrices respect our horizon lengths (number or 

rows) while representing long history of process data across their columns: 
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       A.40 

Here, the notation of David Di Rusico has been emphasized.   

 

Figure A.3: a state timeline originating at time k = 0 with J=2 and L=2. 

 

 

We can also use Hankel matrices within Equation A.37: 
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       A.41 

Together, we have three Hankel equations: 

     """""" futureLfutureLfuture UXY     A.39 

     "past"J"past"J"past" UXY      A.40 

     "past"J"past"

J

"future" UXX     A.41 

With this, we can completely eliminate the states.  Specifically, substitute Equation A.40 into 

Equation A.41, then insert into Equation A.39: 

     "future"L"past"J"past"JJ"past"J

J

L"future" UUUYY   11    A.42 



106 

  

We have arrived at a statement wholly on known inputs and outputs, without any reference to the 

states.  Lets carefully restructure the “nested Russian dolls” inside this expression (Figure A.4): 

    "future"L

"past"

"past"

J

J

JJ

J

JL"future" U
Y

U
Y 








  11     A.42 

Given Equation A.41 and Equation A.40 we can see that the 1st term of Equation A.42 represents 

the future states: 

     







 

""

""11

""

past

past

J

J

JJ

J

Jfuture Y

U
X      A.43 

For clarity, lets give the two matrices in Equation A.43 symbols: 

     """" pastfuture MWX        A.44 

To summarize, we have an expression that harbors the state sequence (Equation A.43), but is 

written wholly on the known inputs and outputs: 

    """""" futureLpastLfuture UMWY      A.42 

Superficially, we are no closer to finding the system matrices or state sequence (

"",,,, futureXDH ).  However, for uncontrolled (open loop) systems the future inputs, the 

rightmost term in Equation A.42, have no direct correlation with the past inputs embedded within 

""pastW .  To move towards a straightforward identification algorithm we discard future inputs from 

our analysis.  We want to work in a space that is wholly orthogonal to the future inputs, thereby 

isolating the output behavior that has propagated forward through the states.  This is achieved by 

projecting our data into the space perpendicular to the future inputs, 


"future"U : 

      


"future""future" U/Y
 

When applied to Equation A.42, we have: 
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  A.42 

  )0/    ( """" 

futurefuture UUbecause  

We have eliminated the troublesome sum from Equation A.42, but a decomposition for 

identification remains mysterious.  The smoke clears after some matrix algebra: 

    
  "future""past"L"future""future" U/MWU/Y           A.43 

    MU/WU/Y L"future""past""future""future" 
 1

       

     "past"L"past""future""past""future""future" MWWU/WU/Y 
 1

     A.44  

The rightmost expression contains Equation A.44, which reveals that Equation A.44 is a statement 

wholly on known data and a convenient decomposition of the states: 

      """"

1

"""""""" // futureLpastfuturepastfuturefuture XWUWUY 
      A.44 

We use singular value decomposition to discover both the future state sequence and the 

observability matrix, which makes identification of the remaining system matrices trivial: 
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Or written more explicitly: 
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As promised, we have identified a valid state sequence within the bounds of a similarity transform, 

T, of the physical states.  The singular values reveal the system order, the number of states that 

play significant roles in the system dynamics. 

 The system identification algorithm we have described is appropriate for uncontrolled 

systems (open-loop systems).  It is the basis for many subspace identification routines (n4sid, 

moesp).  However, if controllers are active there is a correlation between the past and future, which 

is problematic in these regimes because they rely on uncorrelated past and future inputs.   

Figure A.4: Nested Russian dolls are subspace identification. 

 

 We would like to identify our systems while controllers are active (closed-loop 

identification) or phenomena strongly links the past and future.  This is akin to parsing attributes 

of acceleration in a car with cruise control engaged – some acceleration owes to system 

characteristics (the engine) while other aspects result from controller behavior.  We also wish to 

avoid excessive matrix multiplication, which is numerically unsafe and inherent to orthogonal 
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projection.  David Di Rusico has focused on these issues and his algorithm is described henceforth 

[86]. 

 The DSRe algorithm is based on different views of the state space, views that incorporate 

stochastic noise.  To represent noise consider a vector ke


 of white noise with variance IeeE T

kk ][


.  This “generic” noise (Figure A.5) can be transformed into our systems by appending Equations 

A.7 and A.22: 

     kkkk eCuxx


1     A.46 

     kkk eFxHy


       A.47  

The process noise covariance is ][][ TTT

kk CCECeeCE 


 and the sensor noise covariance is 

][][ TTT

kk FFEFeeFE 


.  The system can also be structured from a control perspective, where 

any noise (“surprises”) in the output are fed into the state.  Presumably, this feedback can control 

the state at a desired setpoint: 

     kkkk Kuxx 


1     A.48 

     kkk xHy 


      A.49  

The innovations, k


, bridge random disturbances and controller feedback.  The stochastic and 

innovations structures are actually identical with kkeF 


  and K = CF.    
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Figure A.5: Kenny G., an example of generic “white” noise. 

 

 

 

To arrive at an effective identification algorithm, we build an extended state space from these 

equations.  Using the innovations form we have:   
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Or, without belabouring the derivation: 
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 21 JJd

J KHKH   A.51 

        KKKHKKH
JJs

J 21 
   A.52 

We have developed an expression for a future state at time J, the end of our horizon, given the 

initial state and a history of control moves and outputs.  A new reverse controllability matrix 

(Equation A.50) is evident, which is split into deterministic (superscript d) and stochastic 

(superscript s) components.  This expression is valid for Hankel matrices: 

      









J

Js

J

d

J

J

J Y

U
XKHX

|0

|0

1|01| )(    A.53 

We have found an expression analogous to Equation A.41.  To complete an extended state space 

for closed-loop systems we need expressions similar to Equations A.39 and A.40.  This is found 

through manipulation of the stochastic state space: 
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We are, again, building a Teoplitz matrix: 
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   A.54 

Note that the control Teoplitz matrix has a diagonal of zeros, unlike Equation A.35, because there 

is no direct feedthrough of control actions on the measured outputs.  We adopt the same shorthand 

as Equation A.39 for this expression: 
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     A.54 

Finally, using Hankel matrices we can assemble an extended state space for closed-loop 

identification analogous to Equations A.41 and A.39: 

      









J|

J|s

J

d

J|

J

|J Y

U
X)KH(X

0

0

101
   A.53 

    J

s

JJ

d

JJJ EUXY |0|01|0|0      A.54 

We can readily write Equation A.54 on the future horizon: 

    L|J

s

LL|J

d

L|JLL|J EUXY  1     A.54  

Manipulating this extended state space yields the DSRe “past-future” equation: 

   LJ
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LLJ

d

L

J

Js
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     A.55 

After rearrangement, we have: 
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    A.55 

This statement indicates that future outputs are a function of some array of initial states

 


21010 xxxX |  , future inputs, past input-output pairs, and future noise.  David Di Rusico 

argues that the state dependent term is irrelevant as the past horizon grows (J >> 0).  Certainly, if 

the linear combination KH  is nilpotent this term will zero as J grows.  We expect this 

behavior in any system with feedback controllers active, given that K is chosen to zero state 

deviations.  Furthermore, if the system is controlled or stable around a steady state most values in 
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10|X  will average to zero (we drive the state to zero).  Thus, we have strong intuitive reasons to 

believe that the initial states are irrelevant.  In DSRe the butterfly effect does not exist (Figure 

A.6).  We are left with a simpler Equation: 

     1   ,|

|0

|0

|

| 

















 JE

Y

U

U

Y LJ

s

L

J

J

LJ

s

JL

d

JL

d

LLJ     A.56 

Finally, we choose a narrow future horizon of L = 1.  Note that in this case 01  d , L , 

and Fs 1
 (from Equation A.54).  We are left with: 

      1

0

0

1 |J

J|

J|s

J

d

J|J FE
Y

U
Y 








     A.57 

This is a relatively simple expression.  The future outputs are a function of past input-output pairs 

and the future innovation sequence.   

 

Figure A.6: According to David Di Rusico, this butterfly doesn’t matter. 

 

 

 



115 

  

 Linear regression is a useful framework for viewing Equation A.57, but we must recognize 

that we’re working with long arrays, not tall vectors.  That is, we’re concerned with rowspaces and 

not column spaces.  For illustration, in typical linear regression (b = Ax) we have: 

 

A “tall” set of weights is collapsed over a long matrix of basis vectors, usually composed of 

descriptor data, into a tall vector of results.  Unfortunately, unlike most engineering the formalisms 

around subspace identification are built on rowspaces: 

 

Now a “long” matrix of weights are collapsed over a tall matrix of basis rows, which consists of 

I/O data, to yield a long array of results.  Each view of the universe is equally valid, the choice in 

subspace identification is simply atypical. 

 With a firm view of the problem inhand, from Equation A.57 we see that past input-output 

data is a basis for future outputs (Figure A.7).  The unknown reverse controllability matrices 

weight this basis to yield the future outputs.  However, due to feedback and stochasticity the future 

cannot be fully predicted on this basis alone – the innovations push future observations away from 

complete determinism.   
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Figure A.7: Projection as regression, the case of Equation A.57, 
d

|JY 1  is the deterministic portion 

of the outputs. 

 

 In traditional linear regression, the results and descriptor variables are available.  The basis 

vectors (A in b = Ax) are found by minimizing a sum of squares: 

       2
bAx   

Alternatively, the minimization can be found through projections.  In either case, a basis is 

discovered.   

 In Equation A.57 two bases are known, J|U 0  and J|Y0 .  A third basis, the future innovations 

(the future noise) 1|JE , are orthogonal to the past (Figure A.7).  However, the descriptor variables  

d

J , 
s

J  and F are mysterious.  This inverts our usual view of linear regression (Figure A.8), where 

descriptors are abundant.  DSRe, like other subspace methods, contends with this challenge via 

LQ decomposition, the rowspace equivalent of QR decomposition (cite appendix). 
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Figure A.8: We face linear regression, capsized. 

 

 

First we assemble our data into a matrix for LQ (QR) decomposition, which serves to structure 

and compress the data: 
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    A.58 

We can see very clearly that: 
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    A.59 

To find the deterministic portion of our future outputs, 1|JY , we take an orthogonal projection: 
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Inserting our definitions from LQ (QR) decomposition, we get: 
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Given that Q is orthonormal, IQQT  : 
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     A.61 
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We can distribute the inverse for the special case of diagonal matrices: 

      RQRRRRRRY TTd
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3332311| )(     A.62 
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Note that for our nonsquare matrices the penrose pseudoinverse substitutes for the inverse.  From 

Figure A.7 we know that the future response is the sum of two tensors: 
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    A.65  

Thus, the innovations are also available from the LQ (QR) decomposition: 

     3331| QREJ        A.67 
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Here R33 can be taken as F, where FFT gives the measurement noise covariance.  Now equipped 

with the expected responses and innovations we can formulate a deterministic subspace 

identification problem: 
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u
Kxx







1     A.48 

     kkk xHy


       A.49  

Here, we have recast our view of what constitutes a response (left side of Equation A.49) and input 

(rightmost column of Equation A.48). 

 The deterministic identification relies on a particular view of the state space.  Recall the 

DSRe formulation of the extended state space equations: 
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   A.53 

    J

s

JJ

d

JJJ EUXY |0|01|0|0      A.54 

We can readily cast these equations on the future horizon, for which we have identified the 

innovations: 
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   A.53 

    L|J

s

LL|J

d

L|JLL|J EUXY  1     A.54 

The identification problem was restructured to place innovations inside the input given our 

knowledge of the noise (Equations A.48, A.49, and A.67), thus we can remove stochastic terms: 

    L|JL|J

L

|L UXX  11      A.68 

    L|JL|JLL|J UXY  1      A.69 
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We can also displace our timeline by some arbitrary index M: 

    M|JM|J

M

|MJ UXX  11      A.70 

    L|MJL|MJLL|MJ UXY   1     A.71 

We can combine the displaced equations: 

     L|MJLM|JM|J

M

LL|MJ UUXY   1     A.72 

Finally, we can insert Equation A.69 into Equation A.72: 

     L|MJLM|JML|JLL|JL

M

LL|MJ UUUYY 



  1    A.73 

Rearrangement gives a matrix dense equation with no direct dependence on the states: 
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YY 011    A.74 

       ML|JLL

M

LLMLL|JL

M

LL|MJ UYY 



  011    A.75  

We simplify this equation by introducing notation: 

     ML|JL|JL|MJ UB
~

YA
~

Y       A.76 

With: 

      
1 L

M

LA
~

     A.77 

         0LLML A
~

B
~

     A.78  

DSR assumes that the inverse observability matrix can be described as a least squares 

optimization on the true (albeit unknown) states: 

       2

1   L|JLL|J|LL UYXmin     A.79 

In analogy with  2
 bAxmin  and the normal equation we have: 

      
T

LL

T

LL )(  11       A.80 

Thus, we are left with: 

     ML|JL|JL|MJ UB
~

YA
~

Y       A.81 
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T

LL

T

L

M

L )(A
~

 1     A.82  

         0LLML A
~

B
~

     A.83  

We eliminate the inputs through postmultipication by the space orthogonal to the inputs.   

    









  ML|JML|JML|JL|JML|JL|MJ UUB
~

UYA
~

UY   A.84 

      0

 ML|JML|J UU  

     





  ML|JL|JML|JL|MJ UYA
~

UY     A.85  

Projection onto the orthogonal subspace is given its own symbol: 

      L|JL|MJ ZA
~

Z      A.86  

We can write a second expression on L|JZ  based on Equation A.69 written M steps ahead.   

      ML|JL|JLL|J UXY  01     A.87 

By post multiplying by 


ML|JU  we find: 

    






  ML|J|JLML|JL|JL|J UXUYZ 1     A.88 

For the purposes of data integrity, we do LQ (QR) decomposition on the inputs and outputs: 
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    A.89 

Insertion of the matrix multiplicands from Equation A.89 into Equation A.81 gives: 

         QRB
~

QRRA
~

QRR 01122212221    A.90 

         01122212221 RB
~

RRA
~

RR     A.91  

Here the overbars and underbars refer to deletion of the first or last M block rows respectively.  

We can see Equation A.86 within this expression: 
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    A.92  
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We know that the observability matrix is “tall,” meaning that it can be parsed as the column 

space of the singular value decomposition (U): 

      
T

L|J USVZR 22     A.93 

Thus we choose some n number of columns from U, corresponding to significant singular values, 

as the observability matrix: 

      nL U      A.94 

Recall our definition of A
~

: 

    
T

nn

T

n

M

n

T

LL

T

L

M

L U)UU(U)(A
~ 11      A.82 

Inserting this into Equation A.92 (note that 
1 n

T

n UU ): 

     
T

nn

M

n VSUR 22      A.95 

Thus, we can pull the state transition matrix as: 

     
1

22

 n

T

n

M VSRU      A.96 

This is especially simple if M=1 (the recommended value).  The system output matrix H is taken 

from the first rows of Un (Equation A.32), where the number of rows harvested is the dimension 

of y. 

For matrix Γ and K we return to Equations A.84 and A.91: 

     112121 RB
~

RA
~

R       A.97 

Thus, we can find B
~

 we can rearrange Equation A.97 (invert 11R ) or form the following products 

from Equation A.84: 

    
T

ML|JL|JL|MJ

T

ML|JML|J U)YA
~

Y(UUB
~

     A.98 

    
T

ML|JL|JL|MJ U)YA
~

Y(B
~
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To extract   we carefully contemplate matrix B
~

.  Consider the case with L = 3, M = 1 (thereby 

d

J
) and no direct feedthrough: 
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We can reorganize the columns to detect a matrix recursion: 
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We can see a recursive relationship across block columns of B
~

: 

        MLMLMLMLMLMLL bbA
~

bbA
~

bbA
~

B
~

  1122  

Which yields the statement, where the subscripts refer to block columns across B
~

: 

      1 iii bA
~

B
~

b    A.99 

Or algorithmically: 
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The feedback gain K is parsed as the last columns of Γ that correspond to the innovations, while 

the open loop Γ is the foremost columns. 
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Appendix B: An Exercise in Kalman Filtering and State 

Inference 

B.1. Introduction 

B.1.1 The Kalman Filter 

Appendix A described an estimation framework, the “state space.”  It is worth reviewing 

assumptions within this framework: 

 

1) Linear time-invariance adequately represents the system. 

2) 0][  r


, sensor noise is mean zero. 

3) 0][  q


, process noise is mean zero. 

4) 0][  Tqr


, sensor and process noise are uncorrelated. 

5) 0][  Txr


, sensor noise and process conditions are uncorrelated. 

6) 0][  Txq


, process noise and process conditions are uncorrelated. 

 

The Kalman filter uses the state space to infer truth from noisy operating data [136].  It is built on 

a Bayesian equation of estimation: 

     )ˆ(ˆˆ 1 yyxx yyyxyx


  

     B.1 

  

This expression arises from the probability of seeing a joint vector of x


 & y


.  It yields the most 

likely x


 conditioned on the covariances (
1 ,  yyxy ), the current estimate of x̂


, and the observed 

value of y


.  We must infuse temporal character into Equation B.1: 

    )ŷy(x̂x̂ kkyyxykygivenk kkk 11

1

1    1 111 



 



    B.2 

 

Equation B.2 modifies the current state estimate given a new measurement 
1ky

 .  The covariance 

matrices, x̂


 and ŷ


 are what we expect to see at k+1 based on our truth model, the state space: 
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    B.3 

In the following derivations we assume that the estimates x̂


 and ŷ


 closely approximate their 

expected values.  Using assumption 3 )0][(  q


 native noise about the state is: 
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We can estimate future measurements similarly )]r[( 0
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Since we believe that our estimates approximate the expected values of x


 and y


, the expected 

covariance of x


 and y


 is:  

     ])ˆ)(ˆ[( 1k1111

T

kkkxy yyxx
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Equation B.6 requires significant manipulation: 
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Cross terms are absent because the noise and process behavior are supposedly uncorrelated.  

Furthermore, the sources of noise (process and measurement) have no correlation.  Estimating the 

measurement covariance proceeds similarly: 
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Inserting these derivations into Equation B.2 yields a conditional estimate of the states: 
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Equation B.8 has important features.  kx̂


  is our a priori estimate of the future state, 1
ˆ

kx


.  It is 

our “prior.”  kxH
̂

  is our a priori estimate of the future measurement 1
ˆ

ky


, it is what we expect 

to see based on the current process trajectory.  )ˆ( 1 kk xHy


  is the “surprise,” the difference 

between expectation and reality.  Based on this difference we adjust our estimate of the future 

state, 
1    1

ˆ
 kygivenkx 


.  We throttle innovations by the Kalman gain: 
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Matrices Q and R can be provided by system interrogation of subspace identification (Appendix 

1). The scheme is strongly rooted in probability, but aspects of its implementation are opaque.   For 

example, we do not know, a priori, 
xx .  This is the covariance of the estimate.  Before any 
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measurements kx̂


 is uncertain and thus the estimate covariance is initially large.  We can converge 

a large initial covariance, for example 100*I, if equipped with an iteration scheme for advancing 

xx .  Consider the update of 
xx  given the last state estimate kx̂
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This expression has been underlined in Equation B.8, Equation B.7, and Equation B.6.  Equation 

B.10 is ubiquitous in the preceding calculations.  Thus, on a given round of filtering Equation B.10 

is calculated first.  Once an a posteriori estimate of the states )ˆ(
1    1  kygivenkx 


 is available from 

Equation B.8 the covariance can be updated again: 
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Equation B.11 is the “Josef form” of the variance update.  A complete Kalman filter iteration is 

shown in Figure B.1.  These derivations are substantial.  We are iterating in time (k to k+1) and 
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probability (priori to posteriori), nontrivial tasks.  However, the result is an efficient iteration that 

is readily calculated online. 

Figure B.1 The iterative approach of Kalman and nonlinear (“extended”) Kalman filtering. 
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B.1.2 The Steady State Kalman Filter 

Often we wish to avoid Kalman iterations because they can be slow or divergent.  In these cases 

we wish to discover a “steady-state” constant Kalman gain.  There are several means of discovering 

this gain, including the optimal control (co-state) formulation.  However, for discrete purposes, 

it’s simpler to recognize that at steady state: k,xxk,xxygivenxx k
  1    1

. 

Thus, we can mix and match all previous equations to find an algebraic statement on the 

covariance matrix.  To start, lets expand our conditioned expression for the covariance: 
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Then we simplify by inserting for the last Kalman gain and explicitly recognize that, at steady-

state, all the covariance matrices are identical: 
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We insert this result back into our iterate (Equation B.10) for the covariance matrix: 
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Equation B.14 is known as the matrix Ricatti equation or discrete algebraic matrix equation 

(DARE): 
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Solutions to Equation B.14 are nontrivial, especially solutions for which the steady-state Kalman 

gain converges the system state stably.  In the naive case values of the covariance matrix can be 

solved as a zero problem through Newton iterations.  Whatever the case 
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B.2. Exercise 

B.2.1 Observability 

The nonlinear binary flash described in chapter 3 was analyzed for observability where the state 

and input vectors were: 
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Note that the vector x


 refers to states, whereas the scalar x is mole fraction.  Our truth model, 

),( uxfx
 , was nonlinear:  
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xin and Tin were added as appended “constant disturbance” states.  We assume that a composition 

analyzer is unavailable.  Thus, the measurement vector lacks mole fractions:  
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Our measurement model, )(xgy


 , is nonlinear:  
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At this point we do not know if hidden states from our measurement model are observable.  The 

observability principle dictates whether or not we can see time evolution of the hidden states.  

Observability is the rank of the following matrix: 
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Where n is the number of system states.  The Jacobian of our truth model approximates  and the 

Jacobian of our measurement model approximates H.  These Jacobians have the following nonzero 

entries: 
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H     B.23 

With Equation B.22 and B.23 we have: 

rank( ) = 7 = n 

Thus, the rank of the observability matrix equals the number of states.  Provisionally our system 

was observable.  However, the states could trespass unobservable conditions. 

B.2.2 Simulation Approach 

Figure B.2 shows simulation programmatic flow for simulating the nonlinear binary flash from 

chapter 3.  Two hours of process time was simulated and filtered to ascertain true system conditions 

from noisy measurements.  First Gaussian noise was added to the flash inlet and outlet flows, 

effectively adding noise to all process states (Figure B.3).  Noise was also added to the 

measurements (Figure B.4).  Table B.1 summarizes characteristics of the introduced noise.  The 

process and measurement noise covariance matrices were generated by comparing the actual states 

and measurements to those from an idealized simulation.  The condition number of these 

covariance matrices approached 1010, sizable but below machine precision.  No attempt was made 

at scaling the problem, although this seems advisable. 
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 To test Kalman filter robustness the inlet composition was systematically varied according 

to the following function: 
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5.0)(    B.24 

 

In these tests the maximum amplitude and shortest period were achieved after 7200 seconds (two 

hours).  Effectively the disturbance was “ramped up.”  Maximum amplitude was consistently 0.15.  

For stress tests period was 1200 seconds (20 minutes).  In all cases the system was sampled at ten 

second intervals.  The choice of sampling period was arbitrary, but likely within the technical 

limitations of actual flash units.   

 Filtering was initialized using the steady-state values of all process variables.  This seemed 

a sensible choice given that these numbers are available from steady-state design. Initially 

covariance of the estimate was: 
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These are large covariances, a “diffuse” prior.  In all graphs error bars are 95% confidence 

intervals of the estimate.   

 The state transition matrix (Φ) and measurement matrix (Γ) were approximated using 

forward finite differences with a perturbation of (machine precision)1/2.  For details see Figure B.1. 
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Table B.1 process and measurement noise 

 
 

 

 

 

 

 

 

 

 

 

  

process variable noise σ corner Hz

F 0.25 mol/s 0.011

V 0.05 mol/s white

L 0.25 mol/sec 0.011

q 2500 mol 0.005

T in 0.25 K 0.011

measured variable noise σ corner Hz

P 1000 Pa white

M L 25 mol white

ρ 500 mol/m
3

white

T 0.25 K white

T in 0.25 K white

ρ 500 mol/m
3

white
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Figure B.2: Simulation workflow. 
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Figure B.3: Example inlet-outlet noise that gives rise to process noise in the model 

system. 
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Figure B.4: Measurement noise in the model system.  In reduced measurement tests the densities 

were not available for state estimation.
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B.2.3 State Estimation, Base Case 

Figure B.5 shows state estimation for two hours of process time and a full measurement vector:  
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The Kalman filter successfully tracks truth within the fully observable system.  Furthermore, 

Kalman filter iterations are numerically stable (Figure B.6).   The condition number of the estimate 

covariance matrix appeared bounded.   
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Figure B.5: The estimator (black line) successfully tracks truth (dashed red line) in a fully 

observable system with exact process noise and measurement noise covariance matrices. 
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Figure B.6: Condition number of the state estimate covariance matrix over time for a fully 

observable system.  Although the condition number was large, it appeared to be bounded. 
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B.2.4 State Estimation without Access to the Process Noise Covariance Matrix 

Generally the process noise, which lies between the observer and the process, is unknowable.  

Thus, the process noise covariance matrix, Q, is unavailable.  Control practitioners are usually 

forced to “guess” values in this matrix with their “intuition.”   

 In the base case the exact process noise covariance matrix was used in the Kalman filter.  

Here, the process  noise covariances were “guessed:” 
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Estimation with the guess was far noisier than estimation with the true process noise covariance 

matrix (Figure B.7).  Error bars were larger and the estimates were highly erratic.  This was 

ameliorated by scaling (“tuning”) the process noise covariance matrix: 

 

      QQ *05.0       B.27 

 

As shown in Figure B.8 error of the estimate was considerably lower when scaling our guess.  In 

practice values of the process noise covariance could be iterated to maximize our confidence in 

the estimate.  The success of state estimation without an exact process noise covariance matrix 

suggests that the Kalman filter is somewhat robust.   
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Figure B.7: The estimator (black line) tracks truth (dashed red line) despite the use of an 

inexact, “guessed,” process noise covariance matrix Q.  Note the large 95% confidence intervals.
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Figure B.8: The estimator (black line) tracks truth (dashed red line) with a refined, albeit 

inexact, process noise covariance matrix Q.  Note the improved confidence intervals relative to 

Figure B.7. 
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B.2.5 State Estimation with an Unobservable System 

To test the limits of Kalman filtering state inference was attempted with only four sensors:  
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In brief, density measurements were no longer available on the liquid streams.  Consequently, the 

system was no longer observable.  However, if errors between the estimate and truth decay quickly 

(state poles are “fast” and “stable”) unobservable systems can still be processed by the Kalman 

filter.   

 Figure B.9 shows that the inlet composition disturbance quickly outpaces our ability to 

track change.  In select cases our estimate diverged from the truth (Figure B.10).  This behavior 

was not seen when the system was observable.  Interestingly, during divergence the condition 

number of the estimate covariance was still bounded (Figure B.11).  Thus, divergence likely owes 

to nonlinearity in the process and not numerical facets of the Kalman filter.  There is likely a 

narrow estimation envelop.  If the estimator strays too far from truth the system Jacobian will be 

evaluated far from the true system state.  Consequently, the estimator cannot recover and diverges.  

A larger measurement vector likely prevents the estimator from drifting substantially from truth.  

Conversely, a larger measurement vector could endow the estimator with a larger stability envelop. 
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Figure B.9: The estimator (black line) lags the truth (dashed red line) when a reduced 

measurement vector was used. 
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Figure B.10: Occasionally the estimator (black line) diverged from the truth (dashed red 

line) when a reduced measurement vector was used. 
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Figure B.11: Condition number of the state estimate covariance matrix over time when the 

estimate diverged.  Note that the covariance matrix became more invertible, yet the 

estimator still diverged. 
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B.3. Conclusions 

The Kalman filter is a means of estimating truth from noise.  It is built on a linear view of system 

dynamics.  Given that our process was nonlinear the system was linearized at each sampling time 

for use in the Kalman filter.  This was an “extension” of canonical Kalman filtering.  Other 

extensions include adding process parameters to the state vector.   

 When supplied with myriad sensor measurements and an observable system the Kalman 

filter faithfully tracked flash compositions (Figure B.5).  Under these conditions the process noise 

covariance matrix (Q) could be inexact.  With an inexact process noise covariance matrix the 

estimates were erratic, but accurate (Figure B.7).  Thus, the Kalman filter is somewhat robust to 

variation in the process noise covariance matrix. 

 The Kalman filter occasionally diverged when supplied with a reduced measurement vector 

(Figure B.10).  Likely the estimate strayed to an unrecoverable state when fewer measurements 

were available.  Conversely, the estimator stability envelop was smaller without plentiful sensor 

measurements.  During divergence the estimate covariance matrix became more numerically 

tractable (Figure B.11).  Thus, divergence likely owed to process nonlinearity, not numerical 

instability. 

 Kalman filtering with a reduced measurement vector remains an enticing proposition.  An 

expanded view of Kalman filtering, termed Moving Horizon Estimation (“Backwards Smoothing 

Kalman filtering”), allows for the use of fewer measurement sensors during state estimation.  This 

method revisits past estimates of the system state to refine the current estimate.  Research indicates 

that Moving Horizon Estimation is the most successful and least computationally intense approach 

to nonlinear filtering.  
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Appendix C: A Hill Equation for Heat Capacity Calculation 

C.1. Introduction 

Process engineers commonly rely on computationally efficient and readily implemented 

thermodynamic models to design, scale, and control chemical process equipment [137].  Thus, 

although complex ab initio methods are now available for accurate thermodynamic predictions, 

especially for solid specific heat [138, 139], classical thermodynamic models continue to pervade 

the process industries [140-143].  Notably, despite the current availability of both ab initio and 

classical thermodynamic models for solid specific heat estimation, thermodynamic databanks 

recommend empirical piecewise polynomials for heat capacity calculation [57, 144].  These 

empirical models are likely inaccurate outside the fitted data and require the implementation of 

ungainly lookup tables and case structures in process simulations.  To find a feasible alternative, 

we explored the accuracy of classical thermodynamic models for the prediction of heat capacity 

across 53 inorganic compounds and technical solids.  This included two canonical equations for 

solid specific heat, the Debye Model and Einstein Solid [145, 146], which were compared against 

the Hill Equation from biochemistry and an empirical equation for solid specific heat [147].   

Recently, a correlation was observed between the Hill Coefficient and the Gibbs energy of 

interaction in noncovalent binding [148], which suggests that the Hill Equation may capture 

aspects of covalent bind phenomena.  We hypothesized that the Hill Equation could be extended 

to heat capacity prediction in covalent solids by the substitution of temperature for concentration: 

n
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TC




3

)(

     C.1 

Where R is the gas constant, 3R is the maximum heat capacity for a classical three dimensional 

solid lattice, T is absolute temperature, K is the dissociation constant, and n is the Hill constant.  
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The substitution of temperature for concentration is supported by prior derivations that established 

an equivalence between intensive properties in noncovalent bonding processes [149, 150].  A 

similar substitution is seen in the Hill Equation and Langmuir isotherm, which share an identical 

functional form, but depend on concentration and pressure respectively.   

The Hill Equation, as posed, satisfies the idealized Dulong-Petit limit [151]: 

 

RTCv
T

3)(lim 
      C.2 

For departures from ideality due to electronic, magnetic, and cooperative modes of thermal energy 

the constant 3R was allowed to vary: 
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 max)(

     C.3 

Thus, three parameters fit the Hill Equation to specific heat data: Cvmax, K, and n.  In specific heat 

estimation it was expected that n would always exceed unity (n>1), which is indicative of 

cooperative binding in noncovalent systems.   

The Hill Equation was compared to the Einstein Solid, which is derived from the 

microcanonical ensemble [145]: 
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Where ε is the sole quantized energy of oscillation within the solid and all other variables are as 

previously described.   

For departures from ideality due to electronic, magnetic, and cooperative modes of thermal 

energy the constant 3R was allowed to vary: 
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Thus, two parameters fit the Einstein Solid to specific heat data: Cvmax and ε.   
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The Einstein Solid often underestimates low temperature specific heat (<100 K) [152], 

which prompted development of the Debye Model [146]: 
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Where TD is the Debye temperature, indicative of the highest energy frequency supported by the 

solid lattice, and all other variables are as previously described.  For departures from ideality due 

to electronic, magnetic, and cooperative modes of thermal energy the constant 3R was allowed to 

vary: 
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Thus, two parameters fit the Debye Model to specific heat data: Cvmax and TD.   

 

 Typically constant pressure specific heat, not constant volume specific heat, is engineering 

relevant.  The two quantities are related as follows [153]: 

TTKTVTTCTC Tvp )()()()()( 2
  

 C.8 

Where α is the coefficient of isobaric thermal expansion, V is the molar volume, and KT is the 

isothermal bulk modulus.  As has been pursued previously, the last term of equation C.8 was 

approximated as a linear function with slope m [154]: 

mTTCTC vp  )()(
    C.10 

In all cases slope m provided an additional degree of freedom for fitting specific heat data. 

 

 The Hill Equation, Einstein Solid, and Debye model were compared to an empirical model, 

termed the Multilinear Model [147], for heat capacity calculation.  The Multilinear Model was 

shown to be superior to simple polynomial fits for a wide range of solids [147].  It features four 

fitted parameters: a, b, c, and d: 
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    C.11 

Like the Hill Equation [155], the Multilinear Model is amenable to logarithmic linearization [147].  

For both the Hill Equation and Multilinear Model linear regression was used to initialize a 

nonlinear optimization for the parameter estimates.  Final parameters across all models were 

discovered through minimization of the L2 norm between model predictions and experimental data. 

C.2. Results 

Experimental data for 53 inorganic and technical solids were mined from thermochemical tables 

and literature reports [57, 118-121, 144, 156-172], data which was fit to the Debye Model, Einstein 

Solid, Hill Equation, and Multilinear Model [57, 144].  Figure C.1 plots experimental heat capacity 

against calculated heat capacity for all 53 solids.  The correspondence between experiment and 

prediction appeared strong for the putative fundamental models, especially the Hill Equation, but 

was variable for the empirical Multilinear Model.  Figure C.2 and Figure C.3 show example fits 

for technical metals and technical ceramics.  Generally, the Einstein Solid underestimated heat 

capacity at low temperatures (< 100K), as has been previously observed [152], while the Hill 

Equation overestimated specific heat in this range.  To further parse model fidelity across the 

temperature range, absolute relative errors were evaluated: 
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Where Cp,exp is the experimentally measured specific heat at temperature Ti.  The average absolute 

error was determined for each solid over T ≤ 100 K and T > 100 K.  Figure C.4 shows the results, 

wherein the Debye Model best minimized relative errors below 100 K.  However, the Hill Equation 

best minimized errors at temperatures above 100 K.  Furthermore, the Hill Equation also showed 
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the lowest standard error across the entire temperature range (Figure C.4), where standard error 

was calculated as: 
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For k experimental observations.  The Hill Equation showed an average standard error of 0.37 

across all the 53 examined solids.  Average standard error of the Debye Model and Einstein Solid 

predictions were 0.45 and 0.81 respectively.  Figure C.4 shows that the correlation coefficient, R2, 

was strong for all the putative fundamental models but was inconsistent for the empirical 

Multilinear Model.  Overall, the Hill Equation outperformed alternative representations of heat 

capacity at temperatures above 100 K. 

Prior work has shown a correlation between the Hill coefficient and Gibbs energy of 

interaction in noncovalent binding [148].  Ostensibly, the enthalpy of fusion is an analogous 

measure for covalent binding in solids.  A correlation between the enthalpy of fusion and the Hill 

Coefficient could imply a fundamental basis for use of the Hill Equation in solid specific heat 

estimation.  To explore this possibility, estimated Hill Coefficients were plotted against the 

enthalpy of fusion for alkaline metals and alkaline halides.  Figure C.5 shows the results.  A linear 

trend was observed within the alkaline metals and alkaline halide groups, although not across 

alkaline metals and alkaline halides generally. 
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Figure C.1: Accuracy of the specific heat models. 
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Figure C.2: Model predictions for the specific heat of example technical metals. 

 

 

 



159 

  

 

Figure C.3: Model predictions for the specific heat of example technical ceramics. 
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Figure C.4: Enthalpy of fusion and Hill Coefficient correlations for the alkali metals and alkali 

halides. 

 

C.3 Discussion 

The Hill Equation was fit to experimental heat capacity data for 53 inorganic compounds and 

technical solids.  At common chemical process temperatures (> 100 K [173]) the Hill Equation 

predicted specific heat capacity more accurately than the Debye Model, the Einstein Solid, and 

Multilinear Model.  At lower temperatures the Debye Model proved superior.  However, the Debye 

Model requires the evaluation of a numerical integral, which can slow process simulation.  Table 

C.1 shows that use of the Debye Model quintuples computation time relative to the Hill Equation.  
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Such time inflation would likely add additional computational burden to process engineering 

problems, which are already resource intensive [174], frequently time sensitive [175], and often 

NP-hard [176].  Thus, applications for the analytic Hill Equation likely exist at elevated 

temperatures whenever computational efficiency is essential. 

A linear relationship between the Hill Coefficient and enthalpy of fusion was apparent.  

This result suggests a fundamental basis for specific heat capacity calculation via the Hill Equation.  

Based on Hill Coefficient trends within periodic groups (Figure C.5) a group contribution method 

based on the Hill Equation might be tractable [177].  However, sophisticated methods are already 

available for the ab initio prediction of specific heat [138, 139].  Furthermore, a fundamental 

derivation for use of the Hill Equation in specific heat prediction requires further development.  

Thus, based on current evidence the Hill Equation represents, at most, an analytic, efficient, and 

effective expression for heat capacity calculation that is likely useful in chemical process 

simulation.   

 

 

 

Table C.1: Relative heat capacity computation time for compiled C code on an Intel i5-4690K 

CPU.  Debye integration was by the Trapezoidal Rule with 1 Kelvin granularity. 

 

Debye 5.06

Einstein 0.96

Hill 1

Multi 0.99
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Figure C.5: Enthalpy of fusion and Hill Coefficient correlations for the alkali metals and alkali 

halides. 
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Appendix D: Optimized Blocking in Nonlinear Model 

Predictive Control 

D.1. Introduction 

Ostensibly, nonlinear model predictive control (NMPC) is closed-loop stable only with a 

sufficiently long prediction horizon or with the use of output constraints [175].  Constraining the 

process output is a dubious approach that can yield infeasible control optimizations.  Conversely, 

the prediction horizon can be readily adjusted without complications.  In coursework notes Moritz 

Diehl (University of Freiburg) has described nondimensionalizing time to achieve this goal.  

Consider a general autonomous plant model: 
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where the vector of x contains the differential plant states, the vector of z contains the algebraic 

plant states, and the vector of u contains the control moves.  We nondimensionalize time by scaling 

to a horizon length Δt: 
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The integration bounds are now zero to one: 
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Importantly, we can add Δt as a decision variable in the controls optimization.  This can allow the 

determination of an optimal horizon length that coaxes closed-loop stability. 

 Chemical processes exhibit dynamics on multiple timescales [103].  Moving too slowly to 

calm a fast process can yield instability.  Moving too quickly to stabilize a slow process causes 

unnecessary equipment wear.  We seek a controller whose responses match the fastest and slowest 

process dynamics, all while preserving a sufficiently long prediction horizon.  To achieve this goal 

we suggest a parallel multiple shooting method that splits the controls predictions over 

heterogeneous windows, Δt1, Δt 2… Δt n.  Each processor integrates one window while the overall 

solver matches the endpoints, optimizes the controls, and optimizes each window length (Figure 

D.1).  We hypothesize that giving the optimizer command over control move duration renders it 

responsive to process timescales.    

 Superficially, this is an inefficient computational approach.  Integration of the longest 

windows will determine the overall computation time, degrading the benefits of parallelism.  

However, when using an adaptive integrator computational efficiency could be preserved.  This 

owes to the qualitative characteristics of control.  In brief, control action is usually most intense 

during rapid system change.  Windows in these regions will be small and system integration 

challenging.  Closer to steady-state the control and system dynamics are tamer, the windows are 

presumably longer, and integration more rapid.  Figure D.2 summarizes the hypothesis.  It is 

noteworthy that all the ode integrators in Matlab are adaptive.  The availability of inexpensive 

parallel embedded systems with up to 64 processors could render this approach tenable (Parallella 

Incorporated). 
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Figure D.1: The proposed parallel shooting algorithm allocates the prediction to different 

processors, adjusts the timespan of each control intervention, and adjusts the intensity of each 

control intervention. 
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Figure D.2: When using adaptive integrators the proposed algorithm likely balances integration 

time, preserving the desirable aspects of parallel computation. 

 

 

 
 

 

We evaluate this approach on a nonlinear predator-prey testbed (Lotka-Volterra equations).   

D.2. Multidimensional Shooting 

As a prerequisite to parallel shooting for nonlinear model predictive control, we consider the 

multidimensional shooting method.  In engineering math the shooting method is a ubiquitously 

taught technique for solving boundary constrained differential equations.  However, rarely does 

pedagogy move beyond linear, single-dimension, derivations.  NMPC requires more, namely the 

solution of nonlinear, multidimensional, boundary-constrained differential equations.  Here, we 

elaborate a general shooting method appropriate for NMPC [178-180].  Figure D.3 shows the 

problem for an ℝ2 case. 

 
 

Figure D.3: Boundary constrained differential equations. 
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We seek a path between ti and tf that satisfies both conditions at these boundaries and the 

differential equations.  In the case of trajectory planning we can adjust system states (here, x and 

y) in hopes of finding a solution.  Alternatively, when fitting equations to data we can adjust 

parameters of the differential system in hopes of finding a solution.  Considering the former case 

we can make the statement: 
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D.8 

D.9 

Equation D.9 is of special interest.  This equation compares the boundary constraints to their actual 

function values.  One is free to choose any sensible function for this comparison (1-norm, 2-norm, 

etc).  If, for example, the system is only constrained at tf Equation D.9 could be:  
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Here, the initial conditions are free to vary.  We seek initial conditions that, after integration to tf, 

zero Equation D.10.  Starting with a guess for xi and yi we can expect some error: 
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Here, k denotes the iteration of our guess, with k=1 initially.  Notice that we have explicitly listed 

the dependencies of h.  The question becomes, how do we iterate our guess after acknowledging 

these dependencies?  First it is useful to simplify the nomenclature: 
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Where z(tf:s
k) is the integration at tf given the state guess sk.  We seek to drive Equation D.14, a 

restatement of Equation D.9, to zero.  This can be achieved by iterating sk via a Taylor series 

expansion: 
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with 
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Aspirationally, we always expect that the next iterate of s will zero h.  Thus, we set the left side 

of Equation  D.15 to zero and subtract the current value of h: 
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The result is a “Newton-Raphson” root finding approach that harbors a nontrivial derivative.  This 

derivative can be evaluated with the variational equations.  However, a more practical method 

involves finite differences with small perturbations, δj, in each jth direction : 
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Typically each δj is scaled to machine precision: 

 

machinej     D.19 

Equation D.18 is reminiscent of the Jacobian.  It is used in conjunction with Equations D.7 through 

D.17 to give the iteration system: 
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In deriving Equation D.20 we have considered the ℝ2 case.  The general scheme is summarized by 

Equation D.21: 
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For any explicit system of differential equations: 
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Shooting demands n+1 integrations of the differential system, where n is the number of free 

directions (variables).  This holds whether finite differences or the variational equations are 

employed.  However, because the variational equations are cumbersome to derive, general 

implementations of the shooting method avoid the variational approach.   
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In the control literature the finite-difference derivatives (Equation D.18) are called 

“internal numerical differentiation.”  When using internal numerical differentiation it is essential 

to integrate all perturbations simultaneously.  Otherwise inconsistent results may arise as adaptive 

solvers take different steps during sensitivity analysis [180].  Other differentiation approaches also 

exist, but these are beyond the scope of this introduction (algorithmic differentiation) [181-183]. 

D.3. Parallel Multiple Shooting 

The shooting method is highly unstable, requiring a good initialization to converge [178-180].  

This is especially true of the highly nonlinear and stiff systems common in chemical engineering.  

However, an extension of the shooting method has promise within the field of trajectory 

optimization.  Parallel multiple shooting is more stable than single shooting, an invaluable trait 

when optimizing control actions in real time [178-180].  Figure D.4 is a starting point for 

understanding this method. 

 

 
 

Figure D.4: A first guess in the quest for a unified trajectory in ℝ2. 
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We begin by guessing select states ( x̂  and ŷ ) of a trajectory originating at ti.  It is assumed that 

the initial state (here, xi and yi) is known, either by measurement or an estimator.  To match points 

across the trajectory Equation D.9 is expanded: 
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As with single shooting, h will not equal zero for a typical guess.  Again Newton iterations are 

employed to refine the guess.  However, before proceeding it is useful to develop a nomenclature 

appropriate for parallel computing.  We must define independent subproblems that can be 

dispatched to different processors in a multicore computer.  Consequently, it is convenient to recast 

the vector of states (Equation D.12): 
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As a result Equation D.21 becomes: 
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The derivatives within Equation D.25 form a sparse system because each discontinuity in Figure 

D.4 depends solely on its neighboring states.  For the general system of Equation D.22 and d 

discontinuities the derivative matrix becomes: 
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Where each matrix Y is given by: 
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The bar indicates the derivative of the vector function z at ti+1 given a perturbation of s at time ti.  

Y can be easily computed as a matrix subtraction: 
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It is Equation D.27 that can be distributed amongst parallel processors.  Each processor solves the 

same differential system, but with different initial conditions.  Figure D.5 shows the programmatic 

flow for a parallel algorithm.  Before exhibiting the parallel implementation of Figure D.5, it’s 

illustrative to write the derivatives within Equation D.25 for the trajectory shown in Figure D.4: 
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Figure D.6 shows Matlab results from coding the multiple shooting algorithm of Figure D.5.  It is 

noteworthy that convergence is linear.  Although each processor integrates a fraction of the 

trajectory, it does so multiple times.  Relative to single shooting, no time savings are achieved for 

simple trajectory integration (Table D.1).  However, in multiple shooting solution stability is 

presumably enhanced. 
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Figure D.5: A Parallel Shooting Implementation 

 
 

 

 

Table D.1 “Trajectory per 

processor” 

“Number of 

evaluations” 

“Computation 

Time” 

Single Shooting 1 1 1 

Multiple shooting 1/(# processors) (# processors) 1 
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Figure D.6: The predator prey equations integrated via multiple shooting on four processors. 
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D.4. Results 

The parallel multiple shooting algorithm was implemented for nonlinear control of the Lotka-

Volterra (predator-prey) equations from Figure D.6 [184, 185]: 
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Here, x and y are the states and u is the input.  The derivative of u is invariant during a given control 

block (Figure D.1).  Dr. Biegler’s IPOPT interior point optimizer and was used to coerce the 

system to a steady state [186].  In general, this optimizer performs best when the minimization is 

scaled to O(1).  Thus, several dimensionless derived quantities were defined for use in the control 

objective.  Departures from the reference trajectory were normalized elementwise by the nominal 

steady state operating point: 
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Where ky


 is the process output at time k and Y


 is the desired output.  The relative time was then 

defined: 
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Where t


  is a vector that harbors the duration of each blocked control action (Figure D.1).  

Initially all time steps have an equal spacing, which gives: 
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The time departure was defined as: 
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Initially, all time steps have no departure, which gives: 
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Finally, the control actions were normalized by the controller span: 
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The controls objective function embellished a typical quadratic penalization by throttling changes 

in the blocked controls, outputs, and T


  : 
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Here, Q is the output weight matrix, R is the input move suppression matrix, and S weights changes 

in the control blocking.  By placing the relative time along the output weight matrix diagonal we 

form the integral squared error of process departures irrespective of the actual time blocking.  

Control was achieved through the minimization of Equation D.35 via parallel multiple shooting. 

 Figure D.7 shows behavior of the predator-prey system with and without control by the 

nonlinear objective function (Equation D.35) for a 32 processor implementation of parallel 

multiple shooting.  Figure D.8 compares this response to that of linear model predictive (via state 

space linearization of the process) and control with S = 0 (invariant control blocking).  It was 
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evident that the new optimization approach altered the duration of each control action, especially 

early in the process trajectory.  The initial control move was extended at controller saturation while 

the remaining moves were compressed to compensate. The result was superior control.  Figure D.9 

shows that the new controller reduced the integral squared error by 25% relative to a linear model 

predictive controller and 20% relative to a controller with fixed control blocks. 
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Figure D.7: The results of control with variable control blocking (solid blue line), versus 

the uncontrolled response (dotted red line). 
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Figure D.8: Behavior of the controllers
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Figure D.9: Integral squared error of the controllers 
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