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Fully Kinetic Ion Models for Magnetized Plasma Simulations

Thesis directed by Prof. Scott E. Parker

This thesis focuses on the development of simulation models, based on fully resolving the gyro-

motion of ions with the Lorentz force equations of motion, for studying low-frequency phenomena

in well-magnetized plasma systems. Such models, known as fully kinetic ion models, offer formal

simplicity over higher order gyrokinetic ion models and may provide an important validation tool or

replacement for gyrokinetic ion models in applications where the gyrokinetic ordering assumptions

are in question. Methods for dealing with the added difficulty of resolving the short time scales

associated with the ion gyro-motion in fully kinetic ion models are explored with the use of graphics

processing units (GPUs) and advanced time integration algorithms, including sub-cycling, orbit

averaging and variational integrators. Theoretical work is performed to analyze the effects of the

ion Bernstein modes, which are known to cause difficulties in simulations based on fully kinetic ion

models. In addition, the first simulation results for the ion temperature gradient driven instability

in toroidal geometry using a fully kinetic ion model are presented. Finally, during the course of

this work, a method for analyzing the effects of a finite time step size and spatial grid in the δf

approach to the particle-in-cell method was developed for the first time. This method was applied

to an implicit time integration scheme and has revealed some unusual numerical properties related

to the δf method.
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Chapter 1

Introduction

1.1 Background

There are several characteristics of plasmas which make their study extremely challenging.

A plasma consists of a large number of charged particles interacting through mean, self-generated

fields, yielding immensely complex behaviors. Phenomena in a plasma is nonlinear and character-

ized by time and spatial scales spanning many orders of magnitude. A further challenge comes from

the fact that collisions often play only a weak role in plasma dynamics. In weakly collisional plas-

mas, there are important effects due to variations in the particle velocities which are not captured

in a fluid description. To account for velocity variations, the appropriate setting in which to study

a plasma is a six dimensional phase space, consisting of three spatial dimensions and three velocity

dimensions. Models which treat a plasma as a fluid over phase space, i.e. including both space

and velocity coordinates as independent variables, are known as kinetic models. Analytical meth-

ods alone are generally insufficient to investigate behaviors in kinetic plasma models. Computer

simulations have therefore emerged as an indispensable tool.

An application area which has driven much of the research in plasma physics is the potential

for harnessing energy from thermonuclear fusion. The pursuit of fusion energy is one of the most

ambitious programs of scientific research and development that has been attempted. Production

of controlled fusion reactions requires the generation of a very hot plasma in a laboratory setting.

Confining such a plasma is a challenging endeavour, however, since direct contact with material

surfaces would rapidly cool the plasma, making fusion processes unsustainable. One promising
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method for plasma confinement is to impose a strong, external magnetic field on the plasma, which

restricts the motion of the particles to be mainly parallel to the field. To confine the particles

along the magnetic field, field lines are configured to follow helical paths, winding around a toroidal

surface. This closed, toroidal magnetic field configuration is the basis for tokamak and stellarator

confinement devices.

On long time scales, for which collisional effects play an important role, a plasma will relax

to a unique thermodynamic equilibrium state in which all particle species can be described by

spatially homogeneous Maxwellian distribution functions, as is guaranteed by the Boltzmann H

theorem [1]. On time scales which are short compared to collisional times, however, magnetically

confined plasmas can exist in a wide variety of stationary states, or metaequilibria, which may

include density and temperature gradients [2, 3]. The inhomogeneities of these states are a source

of free energy from which instabilities may arise. Instabilities in confined plasmas can lead to

turbulence, causing particles and energy to escape from the system at rates much greater than

models of ordinary collisional processes predict [4, 5]. Understanding the physical mechanisms

causing the onset of turbulence and the resulting transport levels has, therefore, been a high

priority area of magnetic confinement fusion research.

The most violent pressure driven instabilities in a magnetically confined plasma can be de-

scribed by single fluid magnetohydrodynamic (MHD) theory. Turbulent transport, however, is

known to subsist even when the MHD modes have been suppressed. This turbulence originates

from a set of modes known as microinstabilities, which are characterized by frequencies that are

small compared with the gyro-frequencies, long length scales parallel to the magnetic field, and

perpendicular length scales comparable to the gyro-radii. There are many factors which make the

study of microinstabilities and the resulting turbulence challenging, the most obvious being the

intrinsically nonlinear nature of turbulence. Even in the linear regime, however, microinstabilities

are strongly influenced by kinetic effects, including wave-particle resonances and finite Larmor ra-

dius (FLR) effects. The complex geometries of plasma confinement devices adds further difficulty

for theoretical work.
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A major breakthrough in the field of microinstabilities was the development of gyrokinetics

(GK) [6–8]. The GK approach takes advantage of the large scale separations and anisotropies char-

acteristic of magnetized plasmas to analytically reduce the plasma kinetic model. A physical picture

of the GK model is to treat gyrating particles as slowly drifting rings of charge in spatially varying

fields. Mathematically, the dynamics of the plasma kinetic equations are simplified by averaging

over the gyro-phase and dropping terms that are higher order in the GK ordering assumptions. The

gyro-averaging procedure eliminates the time scale associated with the gyro-motion while retaining

important FLR effects. Turbulence simulations based on the nonlinear GK equations are the sub-

ject of intensive computational studies. The development of particle simulation methods for the

nonlinear GK equations [9,10] and the availability of modern powerful computers have allowed, for

the first time, turbulent transport simulations which produce qualitatively similar results to that

observed in present day plasma confinement experiments.

1.2 Motivation for Fully Kinetic Ion Models

A key advantage for using GK models for the ions in a plasma, as opposed to models based

on the original kinetic equations, is that the analytical elimination of the ion gyration time-scale

in GK models relaxes time step size constraints in numerical implementations. Gyrokinetic theory,

however, is based on a number of ordering assumptions which must hold to ensure the accuracy of

the model. In certain applications where GK ordering assumptions may be in question, for example,

in the tokamak edge pedestal region where gradient scale lengths can be comparable to the ion gyro-

radius, higher order terms may be important. Extending GK ion models for such applications,

however, can be non-trivial and leads to challenging numerical implementations [11–14]. As GK

is begin relied upon in more areas of application, it becomes important to understand the basic

limitations of the ordering assumptions.

There has been recent interest in developing models using the full Lorentz force equations

of motion for ions [15–17]. Such models, known as fully kinetic (FK) ion models, offer formal

simplicity over GK models and can provide an important validation tool or replacement for GK ion
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models in applications where higher order terms may be important. A further motivation for the

development of FK ion models is a modern progression of using GK codes for simulating physical

phenomena whose resolution requires time step sizes close to that needed to fully resolve the ion

gyro-motion. The use of FK ion models, therefore, may be feasible without a large increase in

computational effort from what is already used in modern GK codes. Finally, algorithmic advances

in particle integration schemes in addition to recent efforts in optimizing particle-in-cell (PIC)

algorithms for modern computing architectures, such as graphics processing units (GPUs), holds

promise for handling the more expensive particle integration of the FK ion model [18–21].

1.3 Overview of Thesis

In this thesis, we explore the development of FK ion models to be used in the study of

low-frequency phenomena in well magnetized plasmas. Chapter 2 introduces the plasma physics

background of relevance to this work in addition to the PIC simulation method. Chapter 3 presents

FK ion and GK ion models for a microinstability due to equilibrium gradients in the ion temperature

known as the ion temperature gradient (ITG) instability. A rigorous comparison of the linear

dispersion properties of both models is performed and numerical simulation results based on the

δf PIC method are presented for the FK ion model, assuming a uniform magnetic field. Finally,

it is shown how the model can be extended for magnetic fields with weak inhomogeneities, which

is of use for models in the more realistic toroidal geometry. Chapter 4 explores advanced time

integration algorithms and the implementation of the FK ion model on GPUs. In addition, theory

is derived to analyze the ion Bernstein modes, which were found to cause difficulties in simulations

using the FK ion model. The work from Chapter 4 has been published in [22]. In Chapter 5, we

present a FK ion simulation model for the ITG instability in a toroidal magnetic field. The first

simulation results using such a model are presented and compared to the global gyrokinetic GEM

code. In Chapter 6, we derive for the first time a method for analyzing the effects of a finite time

step size and spatial grid in the δf PIC method. A complete analysis is performed for an implicit

time integration scheme and is compared to an equivalent full-f analysis and implementation.
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The work from Chapter 6 has been published in [23]. Chapter 7 provides conclusions and further

discussion.



Chapter 2

Basic Concepts

2.1 Plasma Physics Basics

Fundamentally, a plasma is an ionized gas; that is, one in which a fraction of the constituent

atoms have dissociated into positively charged ions and negatively charged electrons. Commonly

referred to as the “fourth state of matter”, the tendency for a plasma to generate and respond

to electromagnetic forces yields complex properties distinct from matter found in solid, liquid, or

gaseous states. In a plasma, charge separations between ions and electrons, in addition to flows of

charged particles, generate electric and magnetic fields. The electric and magnetic fields in turn

dictate the motion of the charged particles making up the plasma, resulting in a large range of

intricate behaviors.

Any gas containing charged particles could, in a sense, be considered a plasma. Research in

plasma physics, however, focuses on a specific regime in which charged particles occur in sufficient

number to make the collective effects of self-generated fields important for statistical properties, yet

the particles are dilute enough that short range forces due to near-neighbor particles (i.e. collisions)

play only a weak role. In addition, a plasma is considered to consist of equal numbers of positive

and negative charges, as is the case when a neutral gas is ionized. In such a system, the mobility

of the electrons prevents local bunching of same sign charges. Electrons are attracted to regions

of high ion concentrations, quickly streaming in to shield their electric field from the bulk of the

plasma. Similarly, strong electric fields resulting from high concentrations of electrons are prevented

by repulsion.



7

The tendency for a plasma to electrically neutralize itself on a macroscopic scale is known

as “quasi-neutrality” and is an important characteristic of the plasmas we consider. Quantitative

descriptions of the neutralizing property of plasmas can be found in a number of plasma textbooks

including [2, 24–26], the key result being the definition of the electron Debye length, denoted λD.

The electron Debye length characterizes the alteration of the Coulomb force in a plasma. In a

vacuum, the electrostatic potential due to a particle of charge q varies with the distance from the

particle, r, as

φ(r) =
1

4πε0

q

r
, (2.1)

where ε0 = 8.854 × 10−12 F/m is the permittivity of free space. For a charged particle immersed

in a plasma, however, shielding properties due mainly to the mobility of electrons gives rise to an

exponentially decaying potential as

φ(r) =
1

4πε0

q

r
e
− r
λD .

An expression for λD may be given in terms of the electron density ne, electron temperature Te,

Boltzmann’s constant k = 1.381× 10−23 J/◦K, the elementary charge e = 1.602× 10−19 C, and ε0

as

λD =

(
ε0kTe
nee2

)1/2

.

As the electron density increases, λD decreases, as there are more electrons available for shielding.

This expression also indicates that the thermal motion of the electrons is necessary to establish

a shielding region of finite width, since taking Te → 0 yields a shielding cloud that has collapsed

into an infinitesimal region around the test charge. To be in the quasi-neutral regime requires the

dimensions of the plasma system, characterized by length L, to be much larger than the electron

Debye length

L� λD,

meaning the bulk of the plasma does not experience large electric fields due to high concentrations

of like charges.
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Related to the electron Debye length is a dimensionless parameter Λ, known as the plasma

parameter, which is defined as

Λ =
4

3
πλ3

Dne.

It is clear that this parameter gives the typical number of electrons found in a sphere with a

radius of electron Debye length. Perhaps more importantly, Λ gives a measure of the dominance of

collective effects in a plasma over discrete particle effects. This becomes more transparent when Λ

is expressed as

Λ =
4

3
π

(
ε0kTe

e2n
1/3
e

)3/2

. (2.2)

The average distance between particles is given by a ≡ n
1/3
e , and the corresponding electrostatic

potential energy between two particles at this distance can be obtained from Eq.(2.1). Furthermore,

from statistical physics, the kinetic energy of a particle is of order kTe. Hence the expression in

parentheses in Eq.(2.2) scales with the ratio of mean kinetic energy to inter-particle potential energy

within a Debye sphere. A plasma is said to be strongly coupled when Λ � 1, characterized by

large inter-particle potentials and sparsely populated Debye spheres. Such plasmas tend to have

low temperatures and high densities with collisions playing a dominant role. On the other hand, a

weakly coupled plasma is one for which Λ � 1. Plasma physics focuses almost exclusively on the

weakly coupled state.

2.2 A Microscopic Description of a Plasma

Maxwell’s equations form the foundation of the classical theory of electricity and magnetism

and are therefore central to the study of plasmas. This is a set of four equations describing the

generation of electric and magnetic fields due to charge and current densities in addition to changes
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of each other. In differential form, Maxwell’s equations are

∇ ·E =
ρ

ε0
(2.3)

∇×E = −∂B

∂t
(2.4)

∇ ·B = 0 (2.5)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (2.6)

where E is the electric field, B the magnetic field, ρ and J the charge and current densities,

respectively, and µ0 = 4π×10−7 N/A2 the permeability of free space. As given, Maxwell’s equations

are not closed. Remaining to be specified are the charge and current densities. Plasma physics

models may be viewed as a closure of Maxwell’s equations, specifying ρ and J in terms of E and

B.

To begin the task of closure, we index each species of charged particles in a plasma, e.g.

protons and electrons, with α and assume that the αth species consists of Nα particles of charge

and mass qα and mα, respectively. In addition, the individual particles in species α are indexed by

pα = 1, ..., Nα. The state of the pth
α particle at a given time is completely specified by a position

vector xpα ∈ R3 and velocity vector vpα ∈ R3. Given this information for each particle, the state of

the plasma system is described by microscopic distribution functions, FMα , for each species, defined

over a six dimensional phase space (x,v) ∈ R6. An explicit representation for FMα is formally given

by the so called Klimontovich-Dupree representation as

FMα (x,v) =

Nα∑
pα=1

δ3
X(x− xpα)δ3

V (v − vpα), (2.7)

where δX and δV are dimensional Dirac delta functions with units of length−1 and velocity−1

respectively. Note that the integration of Eq.(2.7) over all phase space gives∫
R3×R3

FMα (x,v)d3xd3v = Nα.

Closure of Maxwell’s equations is straight forward, provided the complete particle information

is known. In particular, the charge and current densities can be computed from FMα by taking
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moments with respect to the velocity variable. We have

ρM (x) =
∑
α

qα

∫
R3

FMα (x,v)d3v (2.8)

JM (x) =
∑
α

qα

∫
R3

vFMα (x,v)d3v, (2.9)

where we have used the superscript M to indicate that these quantities were calculated from the

microscopic distribution function. Finally, to be determined is the evolution of FMα in time. From

classical electrodynamics, the motion of the pth
α particle due to an electromagnetic field is governed

by the Lorentz force together with Newton’s second law of motion

d

dt
xpα = vpα (2.10)

d

dt
vpα =

qα
mα

(
EM (xpα) + vpα ×BM (xpα)

)
, (2.11)

where again, the superscript M is to indicate that the fields come from solving Eqs.(2.3)–(2.6) with

the sources terms given by ρ = ρM and J = JM . By formally taking the partial derivative with

respect to time of Eq.(2.7), the chain rule together with properties of the Dirac delta function and

Eqs.(2.10)–(2.11) yields

∂FMα
∂t

+ v · ∇FMα + aMα · ∇vFMα = 0, (2.12)

where

aMα =
qα
mα

(
EM + v ×BM

)
.

At this point, a closed system is determined from Maxwell’s equations along with Eqs.(2.8)–(2.9)

and Eq.(2.12). This provides a complete description of the plasma; however, such a system assumes

detailed knowledge of individual particles. Specifically, treating Eq.(2.12) as an initial value problem

requires 6Nα initial conditions on the particles of species α by the assumed form Eq.(2.7) from

which Eq.(2.12) was derived. Hence, any solution to this closed system is equivalent to evolving

the trajectories in time of 6
∑

αNα equations of the form Eqs.(2.10)–(2.11) coupled to Maxwell’s

equations through Eqs.(2.8)–(2.9). Considering the large number of particle present in a plasma,

for example Nα ∼ 1020 m−3 in a typical fusion plasma, following this approach is a daunting task.
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This system does, however, provide a starting point for deriving kinetic models based on statistical

averaging, which is considered next.

2.3 Kinetic Theory

A more tractable approach to the closure of Maxwell’s equations is to take the ensemble

average of the microscopic system. That is, we average over an infinite number of realizations

of a plasma such that each realization contains the same number of particles and macroscopic

parameters (density, temperature, etc.), but the actual positions and velocities of particles vary

randomly for each realization. Let us denote the ensemble averaging procedure by 〈·〉 and the

ensemble averaged distribution function by fα. That is

fα = 〈FMα 〉.

The microscopic distribution function can then be written as

FMα = fα + δfα,

where

δfα = FMα − fα

represents the part of the microscopic distribution function that fluctuates between realizations,

accounting for the discrete particle effects. Similarly, the microscopic electric and magnetic fields,

charge and current densities are decomposed as

EM = E + δE

BM = B + δB

ρM = ρ+ δρ

JM = J + δJ,

where the first terms on the right hand side now represent the ensemble averaged quantities.

Averaging of Maxwell’s equations preserves the form of Eqs.(2.3)–(2.6), where the equations are
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now expressed in terms of the ensemble averaged quantities. Averaging on Eq.(2.12), however, does

not lead to a simple form, since correlations in the microscopic system prevent a separation of the

averaged and fluctuating parts in the third term. In particular,

〈aMα · ∇vFMα 〉 6= 〈aMα 〉 · ∇vfα.

We may write

〈aMα · ∇vFMα 〉 = 〈aMα 〉 · ∇vfα − Cα(fα′),

where Cα is known as the collision operator and accounts for the microscopic correlations. With

this, we can write the ensemble average of Eq.(2.12) as

∂fα
∂t

+ v · ∇fα + aα · ∇vfα = Cα(fα′), (2.13)

where

aα =
qα
mα

(E + v ×B) .

This form is known as the plasma kinetic equation, and is the starting point for most plasma models.

Various approximations for the collision operator in Eq.(2.13) exist, yielding different plasma kinetic

models. The importance of this term, however, is expected to scale with the plasma parameter

Λ given its interpretation of measuring mean kinetic energy to inter-particle potential energy. In

some situations, there is a large time scale separation between the collisional processes and collective

behaviors in a plasma, and it is appropriate to neglect the collision operator altogether. In this

case, we are left with

∂fα
∂t

+ v · ∇fα +
qα
mα

(E + v ×B) · ∇vfα = 0, (2.14)

which is known as the Vlasov equation and is the central equation for the work in this thesis.

We note that the Vlasov equation shares the same form as Eq.(2.12). The solution fα,

however, is assumed to be in a smoother function space than FMα due to the ensemble averaging

procedure and no longer contains individual particle information. The function fα(x,v, t) is non-

negative and defined over the six dimensional phase space and time interval X× V× [0, T ], where
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X ⊂ R3 and V = R3 is the space of possible velocities. The quantity fα(x,v, t)d3xd3v represents

the expected number of particles of species α found in the volume d3xd3v centered at (x,v) at time

t, and the normalization is taken such that∫
X×V

fαd
3xd3v = Nα.

For given electric and magnetic fields, Eq.(2.14) is a first order, linear, hyperbolic partial differential

equation. In addition, Eq.(2.14) expresses the conservation of particles over phase space. To see

this, we first define the phase space velocity by

U ≡

(
v

qα
mα

(E + v ×B)

)
and the phase space gradient operator by

∇Z ≡

(
∇
∇v

)
.

It can be shown that ∇Z ·U = 0, allowing Eq.(2.14) to be written in conservative form as

∂fα
∂t

+∇Z · (Ufα) = 0.

Integrating over an arbitrary phase space volume V ⊂ X×V and applying the divergence theorem

yields

∂

∂t

∫
V
fαd

3xd3v = −
∫
δV
fαU · ndS, (2.15)

where δV is the boundary of V , n is the outward pointing unit normal field of δV , and dS is a

differential surface area element of δV . Equation (2.15) states that the rate of change of the number

of particles contained in V is due to the number particles passing through the boundary surface

δV per unit time.

For a self consistent plasma model, the fields are obtained from Maxwell’s equations, with ρ

and J from the plasma model. The coupling again is through the velocity moments of fα as

ρ(x) =
∑
α

qα

∫
V
fα(x,v)d3v (2.16)

J(x) =
∑
α

qα

∫
V

vfα(x,v)d3v, (2.17)
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resulting in a closed model described by the nonlinear system of partial integro-differential equations

Eqs.(2.3)–(2.6), Eq.(2.14), and Eqs.(2.16)–(2.17).

2.4 Magnetized Plasmas

Of particular importance in application, specifically in the confinement of a plasma, is the

magnetic field. In confinement applications, often a strong auxiliary field is imposed on the plasma

to restrict the particle motion to be mainly along the direction of the magnetic field. As an

introduction to the basic concepts of charged particle motion in a magnetic field, it is useful to

consider the Lorentz force equations of motion for a particle with charge q and mass m in a uniform

B field with E = 0. In this case, we have

dx

dt
= v

dv

dt
=

q

m
(v ×B) ,

whose analytical solution can be written as

v(t) = v⊥ (cos (Ωt− ϕ)e1 + sin (Ωt− ϕ)e2) + v‖b̂

x(t) = R +
v⊥
Ω

(cos (Ωt− ϕ)e2 − sin (Ωt− ϕ)e1) + v‖tb̂. (2.18)

In this expression, we write B = Bb̂, where B is the magnitude of B and b̂ is the unit vector

parallel to B. The vectors e1, e2, and b̂ form an orthonormal basis such that e1 × e2 = b̂. The

parameter Ω has been defined as

Ω =
qB

m
,

and v⊥, v‖, ϕ, and R are constants of motion, which can be determined from the initial conditions.

From Eq.(2.18), we see that the particle motion perpendicular to b̂ is characterized by circular

orbits centered around R with frequency Ω and radius v⊥/Ω. This motion is known at the gyro-

motion of the particle. Parallel to b̂, the particle is freely streaming with velocity v‖. This simple

example motivates much of the terminology associated with magnetized plasmas. In particular, Ω
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is known as the gyro-frequency, ϕ is the gyro-phase, v‖ and v⊥ are the parallel and perpendicular

velocities, respectively, R is the guiding center, and ρ ≡ v⊥/Ω is the gyro-radius.

2.4.1 Drift Motions

When a perpendicular electric field or a weakly inhomogeneous magnetic field is considered,

the main modification to the motion is addition of slow perpendicular drifts of the guiding center

R. In this case, perturbative techniques can be employed to take advantage of scale separations

between field inhomogeneities and the spatial and temporal scales of the gyro-motion to simplify

the particle dynamics. This is a well established field known as guiding center theory [27–31]. The

guiding center drift motions that are most relevant to this work consist of the so called E×B drift,

denoted vE , the magnetic drifts, denoted vD, and the polarization drift, denoted vpol. The E ×B

drift is due to an electric field perpendicular to B and is given by

vE =
E×B

B2
,

showing a perpendicular electric field to cause particles to drift in a direction that is perpendicular

to both E and B. It is noted that this drift is independent of q, m, and v⊥, meaning the magnitude

and direction of the drift is the same for all charged particle species. The magnetic drifts occur

for particles in a magnetic field with a spatially varying magnitude or a nonzero curvature. The

magnetic drifts can be written as

vD = v∇B + vR,

where v∇B is known as the grad-B-drift and vR is the curvature drift. These are given as

v∇B =
mv2
⊥

2qB
b̂× ∇B

B

and

vR =
mv2
‖

qB
b̂×

(
b̂ · ∇

)
b̂.

The magnetic drifts are perpendicular to both b̂ and to the direction in which B varies. In addition,

there is dependence on q, m, v‖ and v⊥. Oppositely charged particles will drift in opposite directions,
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and particles with greater speeds will experience larger drifts. Finally, we consider the polarization

drift, which is due to a time varying perpendicular electric field. The polarization drift is given by

vpol =
m

qB

d

dt

(
E

B

)
,

which is dependent on m and q.

2.4.2 Gyrokinetics

For phenomena in magnetized plasmas occurring at frequencies which are low compared to

the gyro-frequency, there exists an asymptotic reduction to the Vlasov-Maxwell system known as

gyrokinetics [6–10]. Gyrokinetics takes a perturbative expansion of the system in the following

quantities, which are assumed to be small

ω

Ωi
∼ ρi
Leq
∼ ρi
LB
∼ k‖ρi ∼

eφ

Te
∼ δB

B0
∼ O(ε), ε� 1.

Here, ω is representative of a frequency on which the phenomena of interest occurs, Ωi and ρi are

the gyro-frequency and gyro-radius of a typical ion, respectively, Leq is representative of the plasma

equilibrium gradient scale length, LB is representative of the background magnetic field gradient

scale length, k‖ is representative of a wave number parallel to the magnetic field, δB represents the

magnitude of the self generated part of the magnetic field, and B0 the magnitude of the background

magnetic field. The electron temperature is again denoted by Te, but here we take this quantity

to include Boltzmann’s constant in its definition, giving Te units of energy. This convention for

temperature is taken for the remainder of this thesis. A change of variables is performed to express

Eq.(2.14) in terms of the guiding center coordinate R defined by

R = x− ρ,

where

ρ =
m

q

v⊥ × b̂

B
,

with

v⊥ = v⊥ (cos (ϕ)e1 + sin (ϕ)e2) .
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After averaging over the gyro-phase and taking the resulting equation to first order in ε, the

gyrokinetic Vlasov equation is obtained, which describes the evolution of a distribution function of

guiding centers f̄ as

∂f̄

∂t
+
(
v‖b̂ + vE + vD

)
· ∂f̄
∂R

+
dv‖

dt

∂f̄

∂v‖
= 0

dv‖

dt
=

q

m
〈E〉 · b̂ + 〈E〉 ·

v‖

B
b̂×

(
b̂ · ∂

∂R

)
b̂−

v2
⊥
2

b̂ · ∂ lnB

∂R
,

where 〈E〉 denotes the electric field averaged over the gyro-phase and is used in evaluating vE .

A similar averaging operator is used in evaluating velocity moments in the gyrokinetic model to

account for all guiding centers which contribute to the moment at a particle coordinate x. Explicit

forms for these operators are given in Chapter 3, where a gyrokinetic ion model is considered for

the ion temperature gradient instability.

2.5 The Particle-in-Cell method

The particle-in-cell (PIC) method is a numerical technique to approximate the behavior of

a collisionless plasma described by the Vlasov equation Eq.(2.14), through the use of a large set

of finite sized computational particles [32–34]. Although most derivations are based on arguments

from the physical interpretation of the system, there has been some work done in establishing a firm

mathematical foundation for the PIC method, including a convergence theory of the approximate

particle distribution function in the setting of distributional spaces [35–37]. Here, we present the

basic elements for two variations of the PIC approximation to Eq.(2.14) - the conventional full-f

method and the δf method. While we present each method for the Vlasov-Maxwell system, it

should be clear how these methods can be applied to variations of this system. For simplicity,

we consider a rectangular computational domain D ⊂ R3 for the spatial portion of phase space

with a uniformly discretized grid. We introduce a multi-index j defined by j = [jx, jy, jz]
T with

0 ≤ jx ≤ Nx, 0 ≤ jy ≤ Ny, and 0 ≤ jz ≤ Nz for Nx, Ny, Nz ∈ N and denote grid points by Xj,



18

where

Xj =


∆x 0 0

0 ∆y 0

0 0 ∆z

 j.

In addition to a discretized computational domain, the PIC method uses a set of Nc computational

particles to represent a species α, where the state of each computational particle is defined by its

spatial position xp ∈ D and velocity coordinate vp ∈ R3 for p = 1, ..., Nc, with xp and vp allowed

to evolve in time.

2.5.1 Full-f PIC Method

The starting point for the full-f PIC approximation to Eq.(2.14) is to assume an approximate

form for fα as

fα(Xj ,v) ≈ f̂α(Xj,v) ≡ Nα

∆V Nc

Nc∑
p=1

Sx (Xj − xp) δ
3
v (v − vp) , (2.19)

where ∆V = ∆x∆y∆z. In this expression, Sx is called the shape function and provides an approxi-

mation to the spatial Dirac delta function. The shape function is used in the PIC method to transfer

information between the particle system and the grid. We note here the similarity of Eq.(2.19) to

the Klimontovich-Dupree representation in Eq.(2.7). The Klimontovich-Dupree representation is

a solution to Eq.(2.12), in a distributional sense, provided that the particles are taken to evolve

according to the Newton-Lorentz equations of motion in Eqs.(2.10)–(2.11). This motivates taking

the computational particles’ positions and velocities in Eq.(2.19) to evolve in the same way, since

Eq.(2.12) shares the same form as Eq.(2.14). We therefore take

dxp
dt

= vp (2.20)

dvp
dt

=
qα
mα

(E(xp) + vp ×B(xp)) (2.21)

for p = 1, ..., Nc. In practice, the particles are evolved in time with a numerical integration scheme

applied to Eqs.(2.20)–(2.21).
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Next, we discuss the choice of the shape function. For the distribution function fα in

Eq.(2.14), the normalization was such that∫
X×V

fαd
3xd3v = Nα.

Similarly, for the approximate distribution function in Eq.(2.19), we require

∫
R3

∑
j

f̂α (Xj,v) ∆V

 d3v = Nα.

This is satisfied by enforcing the condition

∑
j

Sx(Xj − x) = 1

on the shape function. The shape function is also taken to have positivity, finite support, and to

exhibit the symmetry Sx(x − y) = Sx(y − x). Typically, Sx is defined in terms of the B-spline

functions, denoted bl. The first few B-splines are defined for x ∈ R as

b0(x) =

 1 : |x| ≤ 1
2

0 : |x| > 1
2

b1(x) =

 1− |x| : |x| ≤ 1

0 : |x| > 1

b2(x) =


3
4 − x

2 : |x| ≤ 1
2

1
8 (3− 2|x|)2 : 1

2 < |x| ≤
3
2

0 : |x| > 3
2

and are illustrated in Figure 2.1. We define a one dimensional shape function simply as S1D = bl(x),

and take the full shape function to be

Sx(x) = S1D

( x

∆x

)
S1D

(
y

∆y

)
S1D

( z

∆z

)
.

Once a shape function has been selected, the PIC approximation provides a way to compute the

velocity moments of f̂α on the grid points from the particle system. For example, the number
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Figure 2.1: Illustration of the B-spline functions bl for l = 0, 1, 2.

density for species α is computed at the grid point Xj by

nα(Xj) ≈
∫
R3

f̂α (Xj ,v) d3v =
Nα

∆V Nc

Nc∑
p=1

Sx(Xj − xp), (2.22)

where the finite support of the shape function allows the summation to be carried out for only the

particles local to Xj. Similarly, the flux density at grid point Xj is computed as

nαuα (Xj) ≈
∫
R3

vf̂α (Xj ,v) d3v =
Nα

∆V Nc

Nc∑
p=1

vpSx(Xj − xp). (2.23)

The velocity moments can then be used to obtain charge and current densities at the grid points

by

ρ (Xj) =
∑
α

qαnα (Xj) (2.24)

J (Xj) =
∑
α

qαnαuα (Xj) , (2.25)

which are used to provide closure to a numerical implementation of Maxwell’s equations to solve

for E and B at the grid points. Remaining is a method for evaluating E and B at the particles

location, which is required for the numerical implementation for evolving the particles according

to Eqs.(2.20)–(2.21). This will require an interpolation scheme, since the field are defined only at

the grid points. The electric field experienced by a particle at location xp is interpolated from the

grid electric field as

E(xp) =
∑
j

E(Xj)Sx (Xj − xp) , (2.26)
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and similarly for B(xp), where we have taken the same weighting function as in Eq.(2.19). Although

taking the same weighting functions in Eq.(2.19) and Eq.(2.26) isn’t strictly necessary, there are

good reasons for doing so. Choosing different weighting functions has been shown to generate self

forces on particles, which can lead to instabilities and violations of momentum conservation [32].

The PIC algorithm can be summarized into four steps:

(1) Interpolation of the forces due to the grid electric and magnetic fields by Eq.(2.26).

(2) Advancing the computational particles in time using a numerical integrator applied to

Eqs.(2.20)–(2.21).

(3) Depositing velocity moments to the grid points using Eq.(2.22) and Eq.(2.23) to obtain

charge and current density as Eqs.(2.24)–(2.25).

(4) Solving a discretized version of the field equations Eq.(2.3) for the grid electric and magnetic

fields.

The computational cycle is illustrated in Figure 2.2.

2.5.2 δf PIC Method

The δf method is a formulation of PIC that is known to reduce the noise due to discrete

particle effects in simulations of plasmas near equilibrium [38–42]. The basic principle is to replace a

large portion of the distribution function with an analytically known function and to use the particle

system to resolve only a small deviation from the known function. The δf method has similarities

to control variates Monte Carlo methods, and many of the same steps from the full-f PIC method

carry over. The δf method follows from reformulating Eq.(2.14) by assuming fα = fα,0+δfα, where

fα,0 is a known “equilibrium” distribution and δfα is an unknown perturbation from equilibrium

to be solved for by the PIC method. It is also assumed that the force due to the fields can be

decomposed as Fα = Fα,0 + δFα, where Fα,0 is a background force consistent with the equilibrium

state and δFα is a perturbed force due to the self-generated fields from the perturbed part of the
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Figure 2.2: Illustration of the PIC computational cycle

distribution. Plugging this form into Eq.(2.14), we have

v · ∇fα,0 + Fα,0 · ∇vfα,0 = 0 (2.27)

∂δfα
∂t

+ v · ∇δfα + (Fα,0 + δFα) · ∇vδfα = −δFα · ∇vfα,0, (2.28)

where Eq.(2.27) is assumed to hold for fα,0, and Eq.(2.28) is used to solve for δfα. For the

δf method, in addition to the position and velocity coordinates, each computational particle is

assigned a “weight” defined by

wp =
δfα(xp,vp)

fα(xp,vp)
. (2.29)

The perturbed part of the distribution function at a grid point Xj is then approximated by

δfα(Xj,v) ≈ δf̂α(Xj,v) =
Nα

∆V Nc

Nc∑
p=1

wpSx (Xj − xp) δ
3
v (v − vp) , (2.30)

where this form is motivated by a formal multiplication of a Klimontovich-Dupree representation of

the full distribution function by δfα(x,v)/fα(x,v) and using properties of the Dirac delta function.

The selection for the shape function involves the same considerations as in the full-f method, and
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the particle trajectories are again taken to follow Eqs.(2.20)–(2.21). Returning to Eq.(2.28), it

follows from the method of characteristics that along the trajectory of a particle, δfα evolves as

d

dt
δfα = −δFα (xp,vp) · ∇vpfα,0 (xp,vp) . (2.31)

Taking a time derivative of Eq.(2.29) and using Eq.(2.31), after some algebra, we arrive at an

equation for the evolution of wp as

dwp
dt

= −(1− wp)δFα · ∇vp ln fα,0(xp,vp).

The number density can be computed from Eq.(2.30) as

nα(Xj) = nα,0(Xj) + δnα(Xj)

≈
∫
R3

fα,0 (Xj ,v) d3v +
Nα

∆V Nc

Nc∑
p=1

wpSx(Xj − xp),

and the flux density as

nαuα(Xj) = nα,0uα,0(Xj) + δuαnα(Xj)

≈
∫
R3

vfα,0 (Xj ,v) d3v +
Nα

∆V Nc

Nc∑
p=1

wpvpSx(Xj − xp),

which can again be used in Eqs.(2.24)–(2.25) to provide closure to a numerical implementation of

Maxwell’s equations. Finally, the interpolation of forces is the same in the δf method as in the

full-f method, i.e. Eq.(2.26).



Chapter 3

Fully Kinetic and Gyrokinetic Ion Models for the Ion Temperature Gradient

Instability

In this chapter, we present fully kinetic (FK) and gyrokinetic (GK) ion models for the ion

temperature gradient (ITG) driven instability. On time scales which are short compared to colli-

sional times, magnetized plasmas can exist in a wide variety of stationary states which may include

density and temperature gradients [2, 3]. In a plasma with an equilibrium temperature gradient,

pressure perturbations generate electric fields, causing particles to convect along the gradient di-

rection due to the vE drift. Phase differences between the electrostatic potential and the pressure

perturbation can result in “hot” particles convecting into regions of positive pressure perturbation

and “cold” particles convecting into regions of negative pressure perturbation. The perturbation is

therefore reinforced, driving an instability known as the ITG mode. Turbulent plasma states driven

by the unstable ITG mode can lead to enhanced particle and energy losses in confined plasmas.

Useful discussions on the physical mechanisms underlying this instability can be found in a number

of references including [3–5,43].

The FK ion model presented in this chapter is similar to the one that was used in [17] to

make comparisons with an extended magnetohydrodynamic model for the ITG mode. New results

presented in this chapter include a detailed linear dispersion comparison between the FK and GK

ion slab ITG models in Section 3.2.3 and the extension of the FK ion ITG model for a weakly

inhomogeneous magnetic field in Section 3.4.2. This chapter is organized as follows. In Section 3.1

we present FK and GK ion models including equilibrium density and temperature gradients in a
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uniform background magnetic field. The equilibrium distributions in both models are constructed

from constants of motion representing the kinetic energy of an ion and the guiding center coordinate

perpendicular to the magnetic field. In Section 3.2, we derive and compare the linear dispersion

relations resulting from each model. It is shown that under the GK ordering assumptions, the FK

ion dispersion relation reduces to the GK ion dispersion relation, assuring the inclusion of the GK

normal modes in the FK ion model. The low frequency modes included in the models are shown

to be deformations of the ion acoustic wave due to the equilibrium gradients. The ion acoustic

wave in the limit of a homogeneous equilibrium is the test bed model considered in Chapter 4 for

the development of orbit averaging and sub-cycling time stepping schemes. Finally in this section,

we examine the ion Bernstein modes [44] which have frequencies near harmonics of the ion gyro-

frequency. The ion Bernstein modes are an example of high frequency physics which is present in

the FK ion model but is analytically eliminated in the GK ion model. Section 3.3 presents linear

simulation results of the ITG instability using the FK ion model. Excellent agreement is shown

when compared to the analytical dispersion theory. In addition, the GK dispersion theory produces

excellent agreement to both the FK ion dispersion theory and the FK ion simulation results. In

Section 3.4, we discuss the extension of the FK and GK ion models when weak inhomogeneities are

included in the background magnetic field. This work will be of importance in Chapter 5, where

the ITG instability is simulated in a toroidal magnetic field.

3.1 Kinetic Ion Models for the ITG Instability in a Uniform Magnetic Field

Here we present the governing equations for modelling the ITG instability in a uniform B

field, first with FK ions and then with GK ions. The magnetic field is given as B = Bb̂, where B

is the magnitude of B and b̂ is the unit vector in the direction of B. In this section, B is assumed

to have no spatial or time dependence. We work in a Cartesian coordinate system in which the

vectors e1, e2, and b̂ form an orthonormal basis such that e1 × e2 = b̂. The position vector x can
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be expressed as x = xe1 + ye2 + zb̂. Both the FK and GK ion models are electrostatic, assuming

E = −∇φ, (3.1)

where φ is the electrostatic potential. In addition, both models take an adiabatic response for the

electron density ne as

ne = Ne
(

1 +
eφ

Te

)
, (3.2)

where Ne is the equilibrium electron density, −e is the electron charge, and Te is the electron

temperature. This is a simple approximation following from an assumption that the mobility of the

electrons allows them to respond adiabatically to a low frequency electrostatic potential and they

will therefore follow a Boltzmann distribution. Equation (3.2) is then a first order expansion of the

Boltzmann distribution in eφ/Te. Finally, each model uses its respective form of the quasineutrality

condition.

3.1.1 Fully Kinetic Ion Model

The starting point for the FK ion model is the Vlasov equation for the ion distribution

function

∂fi
∂t

+ v · ∇fi +
qi
mi

(E + v ×B) · ∇vfi = 0. (3.3)

We assume fi can be separated into equilibrium and perturbed parts as fi = f0 + δf and seek

an equilibrium state with temperature and density gradients. The ion equilibrium distribution

function must satisfy

v · ∇f0 +
qi
mi

(v ×B) · ∇vf0 = 0. (3.4)

A common method for solving Eq.(3.4) involves finding constants of motion for an ion subject to

the Lorentz force due to B [2,3]. For the uniform magnetic field, constants of motion can be readily

obtained. In particular, we consider the kinetic energy of an ion K given by

K =
mi

2
v2, (3.5)



27

where v2 = v · v, and the guiding center coordinate perpendicular to the magnetic field R⊥ given

by

R⊥ = x⊥ +
mi

qi

v × b̂

B
,

with x⊥ = x−(x · b̂)b̂. It can then be verified that Eq.(3.4) is satisfied by any distribution function

of the form f0 = f0(R⊥,K). Plugging this form into Eq.(3.3), the perturbed part of the distribution

function then evolves according to

∂

∂t
δf + v · ∇δf +

qi
mi

(E + v ×B) · ∇vδf = −E× b̂

B
· ∂f0

∂R⊥
− qiv ·E

∂f0

∂K
. (3.6)

Quasineutrality for the FK model is simply ne = ni, where the ion density is computed from the

ion distribution function by

ni(x) =

∫
R3

fi(x,v)d3v. (3.7)

It is noted that the integral on the right hand side contains contributions from the equilibrium and

perturbed parts. The equilibrium ion density comes from

n0(x⊥) =

∫
R3

f0

(
x⊥ +

mi

qi

v × b̂

B
,
miv

2

2

)
d3v.

Assuming the equilibrium distribution function varies on a length scale that is long compared to

an average ion gyro-radius allows the expansion

f0

(
x⊥ +

mi

qi

v × b̂

B
,
miv

2

2

)
≈ f0

(
x⊥,

miv
2

2

)
+
mi

qi

v × b̂

B
· ∇f0

(
x⊥,

miv
2

2

)
. (3.8)

Integrating this expansion over velocity then gives

n0(x⊥) ≈
∫
R3

f0

(
x⊥,

miv
2

2

)
d3v, (3.9)

noting that the integral of the second term on the right hand side of Eq.(3.8) vanishes. The

contribution from the perturbed ion distribution function in Eq.(3.7) is given by

δni(x) =

∫
R3

δfi(x,v)d3v. (3.10)
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Quasineutrality along with the adiabatic electron model Eq.(3.2) then gives an equation for com-

puting the electrostatic potential by

eφ

Te
=
δni
n0

, (3.11)

where it is assumed that Ne = n0. Once a choice for f0(R⊥,K) is made, a closed system of

equations is given by Eq.(3.1), Eq.(3.6), and Eqs.(3.9)–(3.11). Here, we choose for f0 a local

Maxwellian distribution function in which the equilibrium density Ni and temperature Ti vary

with Rx = R⊥ · e1,

f0(Rx,K) =
Ni(Rx)

(2πTi(Rx)/mi)3/2
exp

(
− K

Ti(Rx)

)
. (3.12)

In this case, the right hand side of Eq.(3.6) can be written as

qi
Ti

v ·Ef0 −
Ey
B

[
∂ lnNi
∂Rx

+
∂ lnTi
∂Rx

(
K

Ti
− 3

2

)]
f0, (3.13)

with Ey = E · e2, and Eq.(3.9) yields simply n0 ≈ Ni.

3.1.2 Gyrokinetic Ion Model

The GK Vlasov equation for the ion guiding center distribution function f̄i is expressed in

terms of the guiding center position vector R, the magnetic moment µ, and the component of

velocity parallel to the magnetic field v‖ [9]. The guiding center position vector is related to the

particle coordinates through

R = x− ρ,

where

ρ =
mi

qi

b̂× v

B
.

The parallel velocity is given by v‖ = v · b̂ and the magnetic moment by µ = v⊥/2B, with

v⊥ = |v × b̂|. In the limit of a uniform magnetic field, the GK Vlasov equation is

∂f̄i
∂t

+

(
v‖b̂ +

〈E〉 × b̂

B

)
· ∂f̄i
∂R

+
qi
mi
〈E〉 · b̂ ∂f̄i

∂v‖
= 0. (3.14)
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The gyro-averaging operator 〈·〉 acting on a function ψ(x) is defined by

〈ψ〉 =

∮
C ψ (x = R + ρ) dρ∮

C dρ
,

where C is the path along one closed ion gyro-orbit, which can be parametrized by the gyro-phase

ϕ as

ρ(ϕ) =
mi

qi

√
2µ

B
(sinϕe1 + cosϕe2) , 0 ≤ ϕ ≤ 2π. (3.15)

From Eq.(3.15), we can express Eq.(3.16) as

〈ψ〉 =
1

2π

∫ 2π

0
ψ (x = R + ρ(ϕ)) dϕ. (3.16)

We again assume that f̄i can be separated into equilibrium and perturbed parts as f̄i = f̄0 + δf̄ .

The equilibrium guiding center distribution function satisfies simply

v‖b̂ ·
∂f̄0

∂R
= 0.

Hence, we can again choose an equilibrium distribution of the form f̄0 = f̄0(R⊥,K), where in terms

of the GK variables

R⊥ = R−
(
R · b̂

)
b̂

and

K = mi

(
v2
‖

2
+ µB

)
. (3.17)

Plugging this form into Eq.(3.14), we have that the perturbed part of the guiding center distribution

function evolves as

∂

∂t
δf̄ +

(
v‖b̂ +

〈E〉 × b̂

B

)
· ∂
∂R

δf̄ +
qi
mi
〈E〉 · b̂ ∂

∂v‖
δf̄ = −〈E〉 × b̂

B
· ∂f̄0

∂R⊥
− qiv‖b̂ · 〈E〉

∂f̄0

∂K
. (3.18)

In the GK ion model, f̄i gives only the part of the ion distribution function that is independent

of the gyro-phase ϕ. There is an additional contribution related to the polarization response of

the ions, dependent on ϕ, which is included in the GK approximation of the full ion distribution

function fi. The full ion distribution function is approximated by

fi ≈ f̄i −
qi
Ti

(φ− 〈φ〉) f̄0. (3.19)
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The number density contribution from the first term on the right hand side of Eq.(3.19) in the

particle coordinates is obtained through

n̄i(x) =

∫ ∞
0

∫ ∞
−∞

[
1

2π

∫ 2π

0
f̄i(R = x− ρ(µ, ϕ), v‖, µ)dϕ

]
Bdv‖dµ,

where the integral in brackets is to account for all guiding centers which can contribute to the

density at x. The contribution from the second term on the right hand side of Eq.(3.19) is the ion

polarization density given by

npol(x) = − qi
Ti

(
φ(x)− φ̃(x)

)
n̄0,

where

φ̃(x) =
1

n̄0

∫ ∞
0

∫ ∞
−∞

[
1

2π

∫ 2π

0
〈φ〉 (R = x− ρ(µ, ϕ)) dϕ

]
f̄0(x⊥, v‖, µ)Bdv‖dµ.

Quasineutrality in the GK model can then be expressed as ne = n̄i + npol, or by separating the

equilibrium and perturbed parts of the guiding center distribution function, ne = n̄0 + δn̄ + npol.

Together with Eq.(3.2), we obtain the following equation for computing the electrostatic potential

eφ

Te
+
qi
Ti

(
φ− φ̃

)
=
δn̄

n̄0
, (3.20)

with

δn̄(x) =

∫ ∞
0

∫ ∞
−∞

[
1

2π

∫ 2π

0
δf̄(R = x− ρ(µ, ϕ), v‖, µ)dϕ

]
Bdv‖dµ (3.21)

n̄0(x⊥) ≈
∫ ∞

0

∫ ∞
−∞

f̄0(x⊥, v‖, µ)Bdv‖dµ, (3.22)

and assuming Ne = n̄0. In Eq.(3.22), we have again assumed that the equilibrium distribution

function varies on a length scale much longer than an average ion gyro-radius. The closed system

of equations for the GK model is then Eq.(3.1), Eq.(3.18), and Eqs.(3.20)–(3.22) once a form for

f̄0 has been selected. Again, we choose the local Maxwellian distribution with gradients along e1

for f̄0 given by Eq.(3.12). Then, the right hand side of Eq.(3.18) is given by

qi
Ti
v‖b̂ · 〈E〉f̄0 −

〈Ey〉
B

[
∂ lnNi
∂Rx

+
∂ lnTi
∂Rx

(
K

Ti
− 3

2

)]
f̄0, (3.23)

and Eq.(3.22) yields simply n̄0 ≈ Ni.
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3.2 Slab ITG Dispersion Relations

Next, we take on the task of deriving dispersion relations for the FK and GK ion models

presented in the previous section. We consider a perturbation propagating perpendicular to the

equilibrium gradients as illustrated in Figure 3.1, taking a plane wave ansatz for the perturbed

quantities as

ψ(x, t) = ψ(k, ω)ei(k·x−ωt), (3.24)

where k has components in the e2 and b̂ directions as

k = k⊥e2 + k‖b̂. (3.25)

The dispersion relations provide the linear theory which we use to verify our simulations. In

addition, we show that for low frequency waves, the GK dispersion relation can be recovered from

the FK dispersion relation to first order in the GK ordering.

Figure 3.1: 2D Slab Domain

3.2.1 Fully Kinetic Ion Dispersion Relation

Assuming a small amplitude perturbation, Eq.(3.6) with the drive terms from the local

Maxwellian given in Eq.(3.13) is linearized as

∂

∂t
δf + v · ∇δf +

qi
mi

(v ×B) · ∇vδf =
qi
Ti

v ·Ef0 −
Ey
B

[
∂ lnNi
∂Rx

+
∂ lnTi
∂Rx

(
K

Ti
− 3

2

)]
f0. (3.26)
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Furthermore, we take ∂ lnNi
∂Rx

, ∂ lnTi
∂Rx

, Ti, and Ni to be constant, considering the propagation local

to a 2D slice at a fixed x = x0 coordinate. From the assumption that the equilibrium varies on

length scales which are long compared to the ion gyro-radius, we may also take Rx to be fixed as

Rx ≈ x0. We denote the constant gradient values by

κN = −∂ lnNi
∂Rx

∣∣∣∣
Rx=x0

κT = −∂ lnTi
∂Rx

∣∣∣∣
Rx=x0

(3.27)

and now use Ti and Ni to represent the constant values of temperature and density, respectively,

at Rx = x0. With this notation, we now write Eq.(3.26) as

∂

∂t
δf + v · ∇δf +

qi
mi

(v ×B) · ∇vδf =
qi
Ti

E · vf0 +
Ey
B

[
κN + κT

(
miv

2

2Ti
− 3

2

)]
f0. (3.28)

It is convenient to express the Cartesian velocity components in cylindrical coordinates as

v = v⊥ cosϕe1 + v⊥ sinϕe2 + v‖b̂.

Using this expression and assuming the ansatz of Eq.(3.24) in Eq.(3.28), we have

i (ω − g(ϕ)) δf + Ωi
∂

∂ϕ
δf = iS(ϕ)f0, (3.29)

where

g(ϕ) = k⊥v⊥ sinϕ+ k‖v‖

S(ϕ) =
qiφ(k, ω)

Ti

[
k⊥v⊥ sinϕ+ k‖v‖ +

Tik⊥
qiB

(
κN + κT

(
miv

2

2Ti
− 3

2

))]
,

and the ion gyro-frequency is Ωi = qiB/mi. Equation (3.29) can be solve using an integrating

factor, yielding

δf(ϕ) = i
f0

Ωi

∫ ϕ

S(ϕ′)e
i ω
Ωi

(ϕ′−ϕ)
e
i
∫ ϕ
ϕ′

g(ϕ′′)
Ωi

dϕ′′
dϕ′.

Explicitly computing the integrals in this expression yields, after much algebra,

δf =
qiφ

Ti
f0

∞∑
n=−∞

∞∑
m=−∞

in−mei(m+n)ϕJm

(
k⊥v⊥

Ωi

)
Jn

(
k⊥v⊥

Ωi

)[
k‖v‖

ω − k‖v‖ + nΩi
+ (3.30)

i
k⊥v⊥

2

(
e−iϕ

ω − k‖v‖ + (n− 1)Ωi
− eiϕ

ω − k‖v‖ + (n+ 1)Ωi

)
+
Tik⊥
qiB

κN + κT

(
miv

2

2Ti
− 3

2

)
ω − k‖v‖ + nΩi

]
.
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In obtaining Eq.(3.30), we have made use of the Jacobi-Anger expansion [45] given by

eiz cos θ =

∞∑
n=−∞

inJn(z)einθ,

where Jn(z) is the nth Bessel function of the first kind. Next, the perturbed number density is

obtained by Eq.(3.10), which in the cylindrical velocity coordinates is

δn =

∫ ∞
−∞

∫ ∞
0

∫ 2π

0
δfv⊥dϕdv⊥dv‖.

Performing the integration and simplifying yields

δn =
qiφ

Ti
n0

[
k⊥ρi

κT√
2k‖

( ∞∑
n=−∞

b (Γn(b)− Γn+1(b))Z(ζn)− 1

4
Γn(b)Z ′′(ζn)− nΓn(b)Z(ζn)

)
(3.31)

− k⊥ρi
κN√
2k‖

∞∑
n=−∞

Γn(b)Z(ζn) +
1

2

∞∑
n=−∞

Γn(b)Z ′(ζn) +
1√

2k‖ρi

∞∑
n=−∞

nΓn(b)Z(ζn)

]
.

In expressing Eq.(3.31) we have adopted the following notation

b ≡ (k⊥ρi)
2 , ζn ≡

ω + nΩi√
2k‖vth

and have defined the ion thermal velocity by vth =
√
Ti/mi and the thermal ion gyro-radius

by ρi = vth/Ωi. Furthermore, Z is the plasma dispersion function of Fried and Conte [46] and

Γn(b) ≡ In(b)e−b, where In is the nth modified Bessel function of the first kind [45]. Finally, closure

is provided with Eq.(3.11) yielding the dispersion relation for the FK ion model:

εFK(k, ω) = 1− θk⊥ρi
κT√
2k‖

[ ∞∑
n=−∞

b (Γn(b)− Γn+1(b))Z(ζn)− 1

4
Γn(b)Z ′′(ζn)− nΓn(b)Z(ζn)

]
︸ ︷︷ ︸

Temperature Gradient

+ θk⊥ρi
κN√
2k‖

∞∑
n=−∞

Γn(b)Z(ζn)︸ ︷︷ ︸
Density Gradient

− θ
2

∞∑
n=−∞

Γn(b)Z ′(ζn)︸ ︷︷ ︸
Ion Acoustic

− θ√
2k‖ρi

∞∑
n=−∞

nΓn(b)Z(ζn)︸ ︷︷ ︸
Polarization

= 0,

(3.32)

where θ = qiTe/eTi, and each term is labelled according to its underlying physics.
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3.2.2 Gyrokinetic Ion Dispersion Relation

Linearizing Eq.(3.18) and assuming the drive terms from the local Maxwellian given in

Eq.(3.23), we have

∂

∂t
δf̄ + v‖b̂ ·

∂

∂R
δf̄ =

qi
Ti
v‖b̂ · 〈E〉f̄0 −

〈Ey〉
B

[
∂ lnNi
∂Rx

+
∂ lnTi
∂Rx

(
K

Ti
− 3

2

)]
f̄0.

Taking again the local approximation for the equilibrium quantities, we have

∂

∂t
δf̄ + v‖b̂ ·

∂

∂R
δf̄ =

qi
Ti
v‖b̂ · 〈E〉f̄0 +

〈Ey〉
B

[
κN + κT

(
miv

2

2Ti
− 3

2

)]
f̄0, (3.33)

with κN and κT defined in Eq.(3.27) and with gradients decreasing along e1. A plane wave ansatz

in the guiding center coordinates is taken for perturbed quantities as

ψ(R, t) = ψ(k, ω)ei(k·R−ωt), (3.34)

with k as in Eq.(3.25). Plugging this form into Eq.(3.33) gives without difficulty

δf̄i =
qi〈φ〉
Ti

f̄0

 k‖v‖

ω − k‖v‖
+
Tik⊥
qiB

κN + κT

(
mi(v

2
‖+2µB)

2Ti
− 3

2

)
ω − k‖v‖

 .
Next, we consider the integral contained in the brackets of Eq.(3.21). For δf̄ taking the plane wave

form of Eq.(3.34), we have

1

2π

∫ 2π

0
δf̄i(k)eik·(x−ρ(ϕ))dϕ = δf̄i(k)eik·x

(
1

2π

∫ 2π

0
e−ik·ρ(ϕ)dϕ

)
.

Using Eq.(3.15) and Eq.(3.25), the integral on the right hand side can be written as

1

2π

∫ 2π

0
e
−i k⊥

√
2µB

Ωi
cosϕ

dϕ = J0

(
k⊥
√

2µB

Ωi

)
,

where the second expression follows from an integral identity of J0 [45]. Returning to Eq.(3.21),

we have

δn̄ =

∫ ∞
0

∫ ∞
−∞

qi〈φ〉
Ti

f̄0

 k‖v‖

ω − k‖v‖
+
Tik⊥
qiB

κN + κT

(
mi(v

2
‖+2µB)

2Ti
− 3

2

)
ω − k‖v‖

 J0

(
k⊥
√

2µB

Ωi

)
Bdv‖dµ.

(3.35)
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Assuming φ varies as Eq.(3.24) and using Eq.(3.16), we have for the gyro-averaged electrostatic

potential

〈φ(k)eik·x〉 =
1

2π

∫ 2π

0
φ(k)eik·(R+ρ(ϕ))dϕ = φ(k)eik·x

(
1

2π

∫ 2π

0
eik·ρ(ϕ)dϕ

)
.

Again, we use Eq.(3.15) and Eq.(3.25) to express the integral on the right hand side as

1

2π

∫ 2π

0
e
i
k⊥
√

2µB

Ωi
cosϕ

dϕ = J0

(
k⊥
√

2µB

Ωi

)
.

Now, we write Eq.(3.35) as

δn̄ =
qiφ

Ti

∫ ∞
0

∫ ∞
−∞

f̄0

 k‖v‖

ω − k‖v‖
+
Tik⊥
qiB

κN + κT

(
mi(v

2
‖+2µB)

2Ti
− 3

2

)
ω − k‖v‖

 J2
0

(
k⊥
√

2µB

Ωi

)
Bdv‖dµ,

which after integration, yields

δn̄ =
qiφ

Ti
n̄0

[
k⊥ρi

κT√
2k‖

(
b (Γ0(b)− Γ1(b))Z(ζ)− 1

4
Γ0(b)Z ′′(ζ)

)
−

k⊥ρi
κN√
2k‖

Γ0(b)Z(ζ) +
1

2
Γ0(b)Z ′(ζ)

]
,

where ζ = ω/Ωi√
2k‖ρi

. Closure is provided by Eq.(3.20), which can be expressed as

eφ

Te
+
qiφ

Ti
(1− Γ0(b)) =

δn̄i
n̄0

,

from Eq.(3.24) and integration over the gyro-phase. Finally, we obtain the GK ion dispersion

relation as

εGK(k, ω) = 1− θk⊥ρi
κT√
2k‖

[
b (Γ0(b)− Γ1(b))Z(ζ)− 1

4
Γ0(b)Z ′′(ζ)

]
︸ ︷︷ ︸

Temperature Gradient

+ θk⊥ρi
κn√
2k‖

Γ0(b)Z(ζ)︸ ︷︷ ︸
Density Gradient

− θ

2
Γ0(b)Z ′(ζ)︸ ︷︷ ︸

Ion Acoustic

+ θ (1− Γ0(b))︸ ︷︷ ︸
Polarization

= 0. (3.36)

3.2.3 Comparison of Dispersion Relations

Here, we show that the FK dispersion relation reduces to the GK dispersion relation under

the GK ordering assumptions. The GK ordering assumptions relevant to the electrostatic slab ITG
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model are [6, 9]

ω

Ωi
∼ k‖ρi ∼

ρi
Leq
∼ O(ε) (3.37)

k⊥ρi ∼ O(1),

where Leq is a characteristic length scale on which equilibrium quantities are assumed to vary.

For our purposes, the ordering assumption on the equilibrium length scale corresponds to κNρi ∼

κTρi ∼ O(ε). Notice that the terms in Eq.(3.32) involve the plasma dispersion function, along with

its first two derivatives, evaluated at ζn. Using the definition of ρi, we can write ζn in terms of the

ordering parameters given above as

ζn =
ω/Ωi√
2k‖ρi

+
n√

2k‖ρi
,

from which it clear that the first term is O(1) and for n 6= 0 the second term is O(ε−1) in the GK

ordering. Hence, the large argument expansion of the plasma dispersion function, given by

Z(w) ∼ iσ
√
πe−w

2 − 1

w
− 1

2w2
+ ... |w| � 1, (3.38)

where

σ ≡


0 : Im(w) > 0

1 : Im(w) = 0

2 : Im(w) < 0

is appropriate for n 6= 0. Furthermore, since |Re(ζn)| � 1, we may neglect the exponential term in

Eq.(3.38) yielding from the second term

Z(ζn) ∼ −
√

2k‖ρi

n

1

1 + ω
nΩi

+O(ε2), n 6= 0.

An additional expansion is made in ω/nΩi yielding simply

Z(ζn) ∼ −
√

2k‖ρi

n
+O(ε2) n 6= 0. (3.39)

Taking similar expansions for Z ′ and Z ′′ shows

Z ′(ζn) ∼ O(ε2) (3.40)

Z ′′(ζn) ∼ O(ε3) n 6= 0. (3.41)



37

We first consider the term in Eq.(3.32), resulting from the temperature gradient

−θk⊥ρi
κT√
2k‖

[ ∞∑
n=−∞

b (Γn(b)− Γn+1(b))Z(ζn)− 1

4
Γn(b)Z ′′(ζn)− nΓn(b)Z(ζn)

]
.

Our expansions in Eqs.(3.39)–(3.41) show this to reduce to

−θk⊥ρi
κT√
2k‖

[
b (Γ0(b)− Γ1(b))Z(ζ)− 1

4
Γ0(b)Z ′′(ζ)

]
− (3.42)

θ(k⊥ρi)(κTρi)
∑
n6=0

[
−bΓn(b)

n
+ b

Γn+1(b)

n
+ Γn(b)

]
+O(ε2).

The following identities of the modified Bessel function [45] are useful for evaluating the summation

in Eq.(3.42):

In(w) = I−n(w) (3.43)

In−1(w)− In+1(w) =
2n

w
In(w) (3.44)

I0(w) + 2
∞∑
n=1

In(w) = ew. (3.45)

Considering the first term of the sum in Eq.(3.42), we have

∑
n 6=0

Γn(b)

n
=

∞∑
n=1

e−b
In(b)

n
−
∞∑
n=1

e−b
I−n(b)

n
= 0, (3.46)

where the last equality follows from Eq.(3.43). For the second term, we have

∑
n 6=0

Γn+1(b)

n
=

∞∑
n=1

e−b
(In+1(b)− In−1(b))

n
=

− 2e−b

b

∞∑
n=1

In(b) = −e
−b

b

(
eb − I0(b)

)
=

Γ0(b)− 1

b

making use of Eqs.(3.43)–(3.45). For the third term, we have

∑
n6=0

Γn(b) = 2e−b
∞∑
n=1

In(b) = e−b
(
eb − I0(b)

)
= 1− Γ0(b), (3.47)

using Eq.(3.43) and Eq.(3.45). With these expressions for the sums in Eq.(3.42), there is a cancel-

lation of terms, and we are left with

−θk⊥ρi
κT√
2k‖

[
b (Γ0(b)− Γ1(b))Z(ζ)− 1

4
Γ0(b)Z ′′(ζ)

]
+O(ε2),
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which is identical to the temperature gradient term of Eq.(3.36). Next, the term in Eq.(3.32)

resulting from the density gradient is

θk⊥ρi
κN√
2k‖

∞∑
n=−∞

Γn(b)Z(ζn),

which from Eq.(3.39) and Eq.(3.46) reduces to

θk⊥ρi
κN√
2k‖

Γ0(b)Z(ζ) +O(ε2),

the density gradient term of Eq.(3.36). The ion acoustic term in Eq.(3.32) is

− θ

2

∞∑
n=−∞

Γn(b)Z ′(ζn),

giving the correct reduction of

− θ

2
Γ0(b)Z ′(ζ) +O(ε2),

using Eq.(3.40). Finally, the polarization term in Eq.(3.32) is

− θ√
2k‖ρi

∞∑
n=−∞

nΓn(b)Z(ζn),

reducing to

θ (1− Γ0(b)) +O(ε2)

from Eq.(3.39) and Eq.(3.47). Again, this matches with the polarization term in Eq.(3.32), and we

conclude that

εFK(k, ω)− εGK(k, ω) ∼ O(ε2).

This shows that the low frequency normal modes in the GK ion model are present in the FK ion

model as well.

3.2.4 Low Frequency Normal Modes

Here, we examine the low frequency normal modes present in the GK and FK ion models by

examining Eq.(3.36). Specifically, we consider the effects of κN , κT , and k⊥ρi on the ion acoustic
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wave. Setting these parameters to be zero, we are left with the dispersion relation for ion acoustic

waves propagating parallel to the magnetic field

1− θ

2
Z ′ (ζ) = 0. (3.48)

The simplest study of ion acoustic waves comes from considering Eq.(3.48) in the limit Im (ω)→ 0

and Re (ω)� k‖vth. In this case, the lowest order term in the large argument expansion of Z ′ gives

simply

Z ′ (ζ) ∼ 1

ζ2
,

yielding dispersionless waves travelling in opposite directions along the magnetic field as

ω = ±
√
qiTe
emi

k‖,

where we have used the definitions of ζ, θ, and Ti to simplify this expression. A more careful

treatment of Eq.(3.48) reveals solutions to have finite negative values of Im{ω}, corresponding to

waves which are exponentially decaying in time [2, 24, 25]. This decay is a result of a collisionless

process known as ion Landau damping, in which ions with velocities ∼ ω/k‖ resonate with the

wave, drawing energy from it.

The next level of detail we look at is the inclusion of wavenumber components which are

perpendicular to the magnetic field. A wave with finite k⊥ generates a time varying component of

the electric field perpendicular to the magnetic field. Polarization of the plasma then occurs due

mainly to the displacement of ions in the direction of the perpendicular electric field. In addition,

there are effects due to the ions experiencing variations in the electric field as they gyrate about their

guiding center. These are known as finite Larmor radius (FLR) effects and can lead to important

corrections to the dispersive properties of drift instabilities. Still considering for now κT = κN = 0,

we have the dispersion relation for the ion acoustic wave including polarization and FLR effects as

1− θ

2
Γ0(b)Z ′(ζ) + θ (1− Γ0(b)) = 0. (3.49)

A numerical solution to Eq.(3.49) is shown in Figure 3.2 for θ = 4.0 and k‖ρi = 2 × 10−3. It is

seen that increasing k⊥ρi results in lowering the magnitude of the real frequency ωR ≡ Re(ω) and
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decreasing the imaginary part of the frequency γ ≡ Im(ω) (damping/growth rate). Both branches

of the ion acoustic wave have the same damping rate when no equilibrium gradients are present.

The inclusion of equilibrium gradients in the model results in significant deformation of the

branches of the ion acoustic wave. Figure 3.2 shows that the inclusion of an equilibrium temperature

gradient causes the sound wave travelling in the direction of −e2 to become unstable as k⊥ρi is

increased. Further deformation occurs with the inclusion of an equilibrium density gradient, as

illustrated in Figure 3.3. Here, the density gradient acts to reduce the growth rate of the unstable

branch, while bringing the stable branch near marginal stability.
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Figure 3.2: Deformation of the ion acoustic wave from the inclusion of a temperature gradient.

3.2.5 Ion Bernstein Modes

Now, we examine the ion Bernstein modes [44], which are unique to the FK ion model.

The ion Bernstein modes have frequencies near the harmonics of the ion gyro-frequency. Since

gyrokinetics analytically eliminates the gyro-frequency time scale, the ion Bernstein modes do not

appear in the GK ion model. We consider the simplest setting in which the ion Bernstein modes

appear by taking κT = κN = 0 and taking the propagation to be exactly perpendicular to the
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Figure 3.3: Effects of the density gradient on the ITG mode.

magnetic field, i.e. k‖ → 0, in the dispersion relation Eq.(3.32). In this limit, we are left with

1 + θ
∞∑

n=−∞

nΩiΓn(b)

ω + nΩi
= 0,

where the second term is due to the ion polarization response. The summation can be simplified

to give

1− 2θ
∞∑
n=1

n2Ω2
iΓn(b)

ω2 − n2Ω2
i

= 0. (3.50)

Next, we write out the first few terms of the sum explicitly as

1

2θΩ2
i

=
Γ1(b)

ω2 − Ω2
i

+
22Γ2(b)

ω2 − 22Ω2
i

+
32Γ3(b)

ω2 − 32Ω2
i

+ ...

and consider the limit k⊥ρi � 1, which allows the small argument expansion of Γn, given by

Γn(b) ≈
(
b

2

)n(1− b
n!

+ ...

)
.

Expanding to O(b2) will allow us to obtain the first two Bernstein modes. We have

1

2θΩ2
i

=
b

2

1

ω2 − Ω2
i

+
b2

2

(
1

ω2 − 4Ω2
i

− 1

ω2 − Ω2
i

)
+O(b3)
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For the first Bernstein mode, we need only O(b) terms to give

(
ω2 − Ω2

i

) 1

2θΩ2
i

=
b

2
+O(b2).

Assuming ω = ω0 + bω1 + ..., we have

(
ω2

0 + 2bω0ω1 − Ω2
i

) 1

2θΩ2
i

=
b

2
+O(b2).

Collecting powers of b, at zeroth order,

ω2
0 − Ω2

i = 0,

yielding ω0 = ±Ωi. At first order,

2ω0ω1

θΩ2
i

= 1,

which gives the correction

ω1 = ±θ
2

Ωi.

Hence the frequency of the first ion Bernstein mode is

ωB1 = ±Ωi ±
θ

2
Ωi (k⊥ρi)

2 +O (k⊥ρi)
4 . (3.51)

A similar analysis is used to obtain the second ion Bernstein mode, beginning with

(
ω2 − 4Ω2

i

) 1

2θΩ2
i

=
b

2

ω2 − 4Ω2
i

ω2 − Ω2
i

+
b2

2

(
1− ω2 − 4Ω2

i

ω2 − Ω2
i

)
+O(b3). (3.52)

We again assume ω = ω0 + bω1 + b2ω2 + .... Plugging this form into Eq.(3.52), expanding, and

collecting powers of b, we have at zeroth order

ω2
0 − 4Ω2

i = 0,

yielding ω0 = ±2Ωi. At first order, we find ω1 = 0. Finally, the second order equation is

2ω0ω2

θΩ2
i

= 1,

giving the correction

ω2 = ±θΩi

4
.
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Hence the frequency of the second ion Bernstein mode is

ωB2 = ±2Ωi ±
θΩi

4
(k⊥ρi)

4 +O (k⊥ρi)
6 . (3.53)

The higher frequency ion Bernstein modes may be found similarly by expanding Eq.(3.50) to

higher orders in b. It is noted that the Bernstein modes have purely real frequencies, that is, they

are neither growing nor decaying in time. Figure 3.4 shows the dispersion of the first four ion

Bernstein modes from numerically solving Eq.(3.50), along with the frequencies from the analytical

expressions Eq.(3.51) and Eq.(3.53). The effects of the ion Bernstein modes on FK ion simulations
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Figure 3.4: Dispersion of the Ion Bernstein Modes

is examined in more detail in Chapter 4.

3.3 Simulation Results for the FK Slab ITG Model

Here, we use the baseline δf method presented in Chapter 4.3.3 to simulate the linear

ITG instability in slab geometry with the FK ion model equations from Eq.(3.1), Eq.(3.28), and

Eqs.(3.10)–(3.11). We use the test case from [17] with parameters θ = 4.0, k‖ρi = 2.0 × 10−3,

k⊥ρi = 0.2, κN = 0.0, and scan over values of κTρi. Figure 3.5 shows the results from simulation
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compared with the solutions to both the FK and GK ion dispersion relations given by Eq.(3.32)

and Eq.(3.36) respectively. The simulations were performed using ∆y = .65ρi, ∆z = 65.5ρi,

Ωi∆t = 0.125 and 4194304 particles. Excellent agreement is observed between the FK ion simula-
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Figure 3.5: Simulation results for the slab ITG FK ion model compared to the dispersion theories
from the FK ion model and the GK ion model.

tions, the FK ion dispersion solutions, and the GK ion dispersion relations. Figure 3.6, shows the

Fourier mode time history for κTρi = 0.02 from the FK ion simulation. Both the low frequency

ITG mode and high frequency ion Bernstein modes are observed.

3.4 Extension to a Weakly Inhomogeneous Magnetic Field

In the previous sections, we considered a model assuming a uniform magnetic field. This

allowed us to obtain the constant of motion Rx, which was used to construct an inhomogeneous

equilibrium distribution in the FK ion model. Furthermore, the simplicity of the uniform magnetic

field assumption allowed us to analyze the linear dispersive properties of both the FK and GK

ion models in detail. Guiding center drift motions due to inhomogeneities in the magnetic field,

however, can produce important effects which are not present in the uniform magnetic field model.
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Figure 3.6: Fourier mode time history from the FK ion model simulation with κT = 0.02. Both
the low frequency ITG mode and the high frequency ion Bernstein modes are present.

Here, we first present how gyrokinetics includes these drifts in the guiding center dynamics and

how equilibrium temperature and density gradients are included in the inhomogeneous magnetic

field GK ion model. Fully kinetic ion models require no modification to the particle equations of

motion due to magnetic field inhomogeneities. The challenge instead is the inclusion of equilibrium

temperature and density gradients. A method for doing this is presented through the construction

of an approximate constant of motion, assuming the equilibrium distribution varies on length scales

which are large compared to an average gyro-radius.

3.4.1 Gyrokinetic Ion Model

Gyrokinetic models account for magnetic field inhomogeneities through the inclusion of the

magnetic drift terms vd in the guiding center equations of motion [9]. Including these terms, the
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guiding center of an ion evolves according to

dR

dt
= v‖b̂ +

〈E〉 ×B

B
+ vd

vd =
mi

qi
b̂×

[
v2
‖

B

(
b̂ · ∂

∂R

)
b̂ + µ

∂ lnB

∂R

]
,

where the first term in vd accounts for drifts due to the curvature of the magnetic field and the

second term accounts for drift due to gradients in the magnetic field strength. In addition, magnetic

field inhomogeneities can be the source of accelerations parallel to the magnetic field. To account

for this, the parallel velocity evolves as

dv‖

dt
=

qi
mi
〈E〉 · b̂ + 〈E〉 ·

v‖

B
b̂×

(
b̂ · ∂

∂R

)
b̂− µBb̂ · ∂ lnB

∂R
.

The GK Vlasov equation for ion guiding centers, including the effects of magnetic field inhomo-

geneities can be written as

∂f̄i
∂t

+
dR

dt
· ∂f̄i
∂R

+
dv‖

dt

∂f̄i
∂v‖

,

and an equilibrium distribution then satisfies(
v‖b̂ + vd

)
· ∂f̄0

∂R
− µBb̂ · ∂ lnB

∂R

∂f̄0

∂v‖
= 0.

Gyrokinetic ordering for the more general case of inhomogeneous magnetic fields requires in addition

to Eq.(3.37),

ρi
LB
∼ O(ε),

where LB is a characteristic length scale on which the magnetic field varies. With this requirement

and ρi/Leq ∼ O(ε), we have

vd ·
∂f̄0

∂R
∼ O(ε2),

and may therefore be neglected in the equilibrium equation. We are left with the simpler equation

v‖b̂ ·
∂f̄0

∂R
− µBb̂ · ∂ lnB

∂R

∂f̄0

∂v‖
= 0. (3.54)

Now suppose that the guiding center position is described by curvilinear coordinates. Suppose also

that one such coordinate, denoted Rχ, has the property

b̂ · ∂Rχ
∂R

= 0.
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Then we can use Rχ to construct a solution to Eq.(3.54). In addition, we can use the kinetic

energy defined by Eq.(3.17) allowing us to construct solutions to Eq.(3.54) as f̄0 = f̄0(Rχ,K). The

perturbed part of the ion guiding center distribution function then evolves according to

∂

∂t
δf̄ +

dR

dt
· ∂
∂R

δf̄ +
dv‖

dt

∂

∂v‖
δf̄ = −〈E〉 × b̂

B
· ∂Rχ
∂R

∂f̄0

∂Rχ
− qiv‖〈E〉 · b̃

∂f̄0

∂K

b̃ ≡ b̂ +
mi

qi

v‖

B
b̂×

(
b̂ · ∂

∂R
b̂

)
.

3.4.2 Fully Kinetic Ion Model

For the FK ion model, we seek an approximate solution under the assumption that ε ≡

ρi/Leq � 1. Our approach is to construct f0 from a scalar Rχ(x,v; ε) such that

lim
ε→0+

[
v · ∇f0(Rχ(x,v; ε)) +

qi
mi

(v ×B) · ∇vf0(Rχ(x,v; ε))

]
= 0.

To be explicit with our ordering assumptions, we use the following nondimensional variables

x̃→ x

Leq
, ṽ→ v

vth
, B̃→ B

B0
,

where B0 is such that

|B|
B0
∼ O(1).

Here, we also define ρi in terms of B0 as ρi = mivth/qiB0. In the nondimensional variables, and

omitting the tildes for simplicity, Eq.(3.4) becomes

εv · ∇f0 + (v ×B) · ∇vf0 = 0.

Plugging in the form f0 = f0(Rχ(x,v; ε)) yields

∂f0

∂Rχ
[εv · ∇Rχ + (v ×B) · ∇vRχ] = 0.

Hence for f0 to have nontrivial dependence on Rχ as ε→ 0, Rχ must satisfy

lim
ε→0+

[εv · ∇Rχ(x,v; ε) + (v ×B) · ∇vRχ(x,v; ε)] = 0. (3.55)
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We assume a regular perturbation series for Rχ in ε as

Rχ = R(0)
χ + εR(1)

χ + ε2R(2)
χ + ...

Plugging this form into Eq.(3.55) and collecting powers of ε yields a sequence of equations which

can be solved successively to increase the rate at which the limit in Eq.(3.55) goes to zero. The

sequence of equations is as follows

(v ×B) · ∇vR
(0)
χ = 0

(v ×B) · ∇vR
(i)
χ = −v · ∇R(i−1)

χ ,

for i = 1, 2, .... At zeroth order, we choose R
(0)
χ = χ, where χ is a curvilinear spatial coordinate

such that

∇χ ·B = 0.

With this choice, the next order equation is

(v ×B) · ∇vR
(1)
χ = −v · ∇χ,

which has the solution

R(1)
x =

v ×B

B ·B
· ∇χ.

In terms of the dimensional variables, we have

Rχ ≈ χ+
mi

qi

v × b̂

B
· ∇χ,

which is the projection of the χ coordinate of a particles position onto its guiding center. We can now

use Rχ to construct an equilibrium distribution that will satisfy Eq.(3.4) to O(ε). Furthermore, the

kinetic energy of an ion, given by Eq.(3.5), is an exact constant of motion for an arbitrary magnetic

field. We therefore construct our equilibrium distribution as f0 = f0(Rχ,K). With this form, the

perturbed part of the distribution evolves as

∂

∂t
δf + v · ∇δf +

qi
mi

(E + v ×B) · ∇vδf = −E× b̂

B
· ∇χ ∂f0

∂Rχ
− qiv ·E

∂f0

∂K
.

We use this formulation as the starting point to model the ITG instability in a toroidal magnetic

field in Chapter 5.
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3.5 Summary and Conclusions

In this chapter, we have presented fully kinetic and gyrokinetic ion models for the ITG driven

instability. First assuming a uniform magnetic field, we were able to derive dispersion relations for

both models. By applying the gyrokinetic ordering assumptions to the FK ion dispersion relation,

it was shown to reduce to the GK ion dispersion relation. The low frequency normal modes in

the GK ion model are therefore contained in the FK ion model. These models may be useful

for comparison studies to understand the limits of gyrokinetics. In addition to the low frequency

modes, the FK ion model allows for the propagation of ion Bernstein modes at frequencies near

the harmonics of the ion gyro-frequency. These are modes which have been analytically eliminated

from the GK model, and can be a potential source of difficulty in numerical simulations of the FK

model. Simulation results were obtained for the FK slab ITG mode, showing excellent agreement

with the analytical dispersion theory. Finally, we present a method for extending the FK ion model

for a weakly inhomogeneous magnetic field. This model will be of importance in Chapter 5, where

the ITG instability is considered in a toroidal magnetic field.



Chapter 4

An Implicit δf Particle-in-Cell Method with Sub-Cycling and Orbit Averaging

A key advantage to gyrokinetic (GK) ion models is that the analytical elimination of the ion

gyration time-scale can relax time step size constraints in numerical implementations. For many

topical problems using GK ion models, however, resolution of the physical phenomena requires

time step sizes which are close to that needed to fully resolve the ion gyro-motion. For example,

in [47,48] a time step size of Ωi∆t = 1.0 is used for a well-resolved simulation of the DIII-D H-mode

pedestal, where Ωi is the ion cyclotron frequency. In [49] a time step size of Ωi∆t = 0.2 is used for

the simulation of NSTX core plasmas, and in [50] Ωi∆t = 0.25 is used for microtearing simulations.

Given this progression in GK ion simulations, the use of models which fully resolve the ion

gyro-motion, known as fully kinetic (FK) ion models, may provide a useful alternative to GK ion

models without a large increase in computational effort. The advantage of the FK ion model is that

the model accuracy does not depend on the ordering assumptions of gyrokinetics. Furthermore,

recent efforts in optimizing particle-in-cell (PIC) algorithms for modern computing architectures,

such as graphics processing units (GPUs), holds promise for handling the more expensive particle

integration of the FK ion model [18–21].

In this chapter, we explore an implicit orbit averaging/sub-cycling (OASC) time stepping

algorithm, which may be useful for extending the ability of FK ion models to simulate time scales

which are long compared to the ion gyration time scale. This algorithm is shown to accurately

produce finite-Larmor-radius (FLR) effects at perpendicular wave numbers k⊥ρi ∼ O(1) while

advancing the fields on a macro time step ∆T larger than that required to resolve the ion gyro-
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motion. The accuracy of the ion gyro-motion is preserved by sub-cycling the computational particles

on a micro time step ∆t chosen such that Ωi∆t� 1. The algorithm is applied to a model problem

for ion Landau damped ion acoustic waves in a magnetized plasma, which is the FK ion model

presented in Chapter 3 with κT = κN = 0. Linear theory for the model is derived to validate

simulation results. Comparisons are also made with a linear dispersion relation obtained from the

analysis of the equivalent GK ion model from Chapter 3. The dispersion results show very good

agreement between the two models for the low frequency ion acoustic wave.

A notable effect in simulations using FK ions is the introduction of ion Bernstein waves

near harmonics of the ion gyro-frequency [44, 51]. These are electrostatic normal modes, which

are analytically eliminated in GK models, but are present when full ion dynamics are included.

Linear theory based on the Laplace transform method is presented to determine the amplitudes

of the normal modes relative to the initial perturbation size. The theory predicts ion Bernstein

wave amplitudes which are comparable to the ion acoustic wave amplitude. Since the ion Bernstein

waves are not damped, their presence in simulations may be undesirable for studies of low-frequency

fluctuations. It is demonstrated that formulating the electrostatic field equation in terms of the ion

particle flux results in numerical damping for the ion Bernstein waves.

This chapter is organized as follows. In Section 4.1, the model problem for ion Landau damped

ion acoustic waves in a magnetized plasma is presented. Section 4.2 gives the linear theory for the

model problem, including an analysis to derive information on the amplitudes of the normal modes.

Section 4.3 gives the numerical methods used in our simulation model. In Section 4.4, simulation

results are presented to demonstrate the numerical properties of the implicit OASC algorithm and

the accurate production of FLR effects at large macro time step sizes. Here, a comparison with

the GK model is also presented. A hybrid CPU-GPU implementation of our simulation model is

discussed in Section 4.5 and is shown to achieve a speedup factor of ∼ 48 compared to an equivalent

serial CPU implementation. Section 4.6 contains further discussion and a summary.
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4.1 Kinetic Model for Magnetized Ion Acoustic Waves

Here we introduce the equations for the ion Landau damped ion acoustic wave model. We

consider a uniform equilibrium distribution ∇f0 = 0 in a straight, uniform magnetic field B = B0ẑ

and a self generated electrostatic field E = −∇φ, where φ is the electrostatic potential. The model

is 2D-3V, meaning it is defined over two spatial dimensions and three velocity dimensions. The

spatial dependence of quantities is over the two dimensional domain (y, z) ∈ [0, ly) × [0, lz) and

periodicity is assumed in both y and z outside the domain with periods ly and lz respectively. The

velocity dependence of quantities is over (vx, vy, vz) ∈ R3. The ion distribution function fi is taken

to follow the Vlasov equation:

∂fi
∂t

+ v · ∇fi +
qi
mi

(E + v ×B) · ∇vfi = 0, (4.1)

where qi andmi are the ion charge and mass respectively. The electrons are assumed to be adiabatic,

with number density ne following:

ne = n0

(
1 +

eφ

Te

)
, (4.2)

where n0 is the equilibrium density, e is the electron charge, and Te is the electron temperature.

Finally, quasi-neutrality is assumed:

n ≡ ne = ni =

∫
R3

fid
3v. (4.3)

Equations (4.1)–(4.3), along with the periodicity assumptions form a closed model. In particular,

Eq.(4.1) can be solved for the ion distribution function fi, Eq.(4.3) then used to provide an electron

number density ne, and finally Eq.(4.2) provides a way to calculate φ. A Maxwellian equilibrium

distribution is taken, in which case the normal modes of the model are a low frequency, magnetized

ion acoustic waves and high frequency ion Bernstein waves.

4.2 Linear Analysis of the Model Problem

The linearized Vlasov equation is

∂δf

∂t
+ v · ∇δf +

qi
mi

(v ×B) · ∇vδf = − qi
mi

E · ∇vf0, (4.4)
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where the full ion distribution function is given as fi = f0 + δf . We consider a Maxwellian

equilibrium distribution function

f0(v) =
n0

(2πTi/mi)3/2
exp

(
−miv · v

2Ti

)
,

where Ti is the ion temperature. The field model couples to Eq.(4.4) through the perturbed number

density δn. We have

eφ

Te
=
δn

n0
=

1

n0

∫
R3

δfd3v. (4.5)

4.2.1 Model Parameters

An analysis of the model equations shows that there are three dimensionless parameters

which determine the behavior of the system. These are the parallel and perpendicular system

lengths normalized by the thermal ion gyro-radius

lz
ρi
,

ly
ρi
,

and a ratio involving charges and temperatures

θ ≡ qiTe
eTi

.

We define the thermal ion gyro-radius by ρi = vth/Ωi, where vth is the ion thermal velocity defined

by v2
th = Ti/mi. For the linear analysis, we are interested in the propagation of plane waves through

the plasma, assuming spatial and time dependent quantities vary as:

ψ(x, t) = ψ̃(k, ω)ei(k·x−ωt)

where k = k‖ẑ+ k⊥ŷ is the wave number and ω is the frequency, which may be complex valued. In

this case, it is convenient to use the parameters k‖ρi and k⊥ρi in place of the first two. We consider

cases where k‖ρi � 1 and k⊥ρi ∼ O(1) in order to work in a regime where the validity of GK ion

models should overlap with the FK ion model. A rough estimate for the time scale separation is also



54

determined by these parameters. Defining the ion sound speed by c2
s ≡ qiTe/emi, the time scale for

an ion acoustic wave propagating nearly parallel to B is then roughly csk‖. The ion gyro-motion

and ion Bernstein waves evolve on the time scale of Ωi. In terms of our parameters, we have

√
θk‖ρi =

csk‖

Ωi
� 1.

4.2.2 Linear Theory

The normal modes for the system are studied for the linearized model. The resulting disper-

sion relation is given by

ε(k, ω) = 1− θ

2

∞∑
n=−∞

Z ′

(
ω/Ωi + n√

2k‖ρi

)
In(k2

⊥ρ
2
i )e
−k2
⊥ρ

2
i− (4.6)

θ√
2k‖ρi

∞∑
n=−∞

nZ

(
ω/Ωi + n√

2k‖ρi

)
In(k2

⊥ρ
2
i )e
−k2
⊥ρ

2
i = 0,

where Z is the plasma dispersion function of Fried and Conte [46] and In is the nth modified Bessel

function of the first kind. The solutions of Eq.(4.6) give the normal modes of the model, which

include a low-frequency, ion Landau damped ion acoustic wave and undamped ion Bernstein waves

near harmonics of the ion gyro-frequency. The ion Bernstein waves are a unique feature of the FK

ion model and are not present in GK ion models. In our numerical simulations with finite k⊥ρi, it

was found that the Bernstein waves had amplitudes comparable to the ion acoustic wave. Since the

Bernstein waves are undamped, they were found to quickly become dominant in the time histories

of φ. To validate that this feature of our simulations was consistent with the continuous model, we

have further developed the linear theory using the Laplace transform in time.

The linear system is studied as an initial value problem using the Laplace transform to

determine the amplitudes of each normal mode. The Laplace transform method applied to the

one dimensional Landau problem as an initial value problem is presented in a number of plasma

physics texts. See for example, Chapter 8 of [2]. The initial condition for the perturbed distribution

function is taken to be

δf(x,v, t = 0) = A0f0(v)eik·x. (4.7)



55

The Laplace transform pair for a time dependent quantity ϕ(t) is

ϕ(p) =

∫ ∞
0

ϕ(t)e−ptdt, ϕ(t) =
1

2πi

∫ σ+i∞

σ−i∞
ϕ(p)eptdp (4.8)

where p is complex valued and σ can be chosen as any real number which is to the right of all

singularities of ϕ(p) in the complex p-plane. The complex variable p is related to the complex

frequency of a plane wave ω simply by p = −iω. Equations (4.4)–(4.5) with an initial condition

given by Eq.(4.7) can be solved for the transformed electrostatic potential. The solution of the

Laplace (in time) and Fourier (in space) transformed electrostatic potential in terms of the complex

frequency is

eφk
Te

(p) =
A0

i
√

2k‖ρi

∞∑
n=−∞

Z

(
ip/Ωi+n√

2k‖ρi

)
In(k2

⊥ρ
2
i )e
−k2
⊥ρ

2
i

ε(k, ip)
. (4.9)

The time dependent solution of the electrostatic potential can be obtained from the inverse Laplace

transform of Eq.(4.9), which is given by the contour integral in Eq.(4.8). The evaluation of this

contour integral is simplified by deforming the contour of integration to the path shown in Figure

4.1 with a possible set of poles of φk(p), corresponding to the zeros of ε(k, ip). Justification for the

contour deformation is given in Appendix A. By examining the deformed contour in Figure 4.1 b),

the time dependent solution of the electrostatic potential can be written as

eφk
Te

(t) =
∑
j

Aje
pjt +

1

2πi

(∫ −α−i∞
σ−i∞

eφk
Te

(p)eptdp + (4.10)

∫ −α+i∞

−α−i∞

eφk
Te

(p)eptdp+

∫ σ+i∞

−α+i∞

eφk
Te

(p)eptdp

)
,

where {pj} in the first term are the simple roots of ε(k, ip), and

Aj = Res

[
eφk
Te

(p), pj

]
. (4.11)

The main contribution in Eq.(4.10) comes from the first term. Provided that φk(p) decays rapidly

as Im(p) → ±∞, the second and fourth terms in Eq.(4.10) will vanish. Furthermore, the third

term becomes exponentially small compared to the contributions from the poles as t→∞, leaving

the normal modes given by the first term as the time asymptotic solution. In Section 4.4, we
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σ − i∞

σ + i∞

Re(p)

Im(p)

σ

•

•

•

•

•

possible poles
of φk(p)

σ − i∞

σ + i∞

Re(p)

Im(p)

σα

•

•

•

•

•

Figure 4.1: Contour deformation for obtaining Eq.(4.10). The figure on the left (a) illustrates the
original contour used in the inverse Laplace transform. The figure on the right (b) illustrates the
deformed contour.

numerically solve for the amplitudes of the normal modes relative to the initial perturbation size

A0 and compare with the amplitudes found in our simulations. This is accomplished by first solving

the dispersion relation Eq.(4.6) numerically for the complex frequencies and then evaluating the

corresponding residues in Eq.(4.11) to obtain the amplitudes Aj .

4.3 Numerical Methods

A number of numerical methods are used to obtain stable, accurate, and low noise simulations

of the low frequency ion acoustic wave at large time step sizes. Key features of our 2D-3V simulation

model include the δf method which reduces discrete particle noise levels by solving for small

perturbations from a Maxwellian equilibrium, a perturbed flux density formulation of the field

model which introduces numerical damping of high frequency modes, orbit averaging and sub-

cycling (OASC) using separate time step sizes for the particles and fields, a second order implicit

integrating scheme to advance the particle orbits and weight equations, and a Picard iterative

process to solve the implicit equations.
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4.3.1 δf method

The δf method is utilized, which is effective in reducing discrete particle noise by solving for

departures from an known equilibrium distribution [38–42]. The assumption is made that fi can

be separated into a known, time independent equilibrium part and an unknown perturbed part as

fi = f0 +δf . Particle weights are defined for each computational particle as wp = δfp/fp ≈ δfp/f0p,

where the subscript p indicates an evaluation at the phase space location of particle p. The particle

weights evolve according to the weight equation, which for linear simulations is

dwp
dt

= − qi
mi

E(xp) · ∇vp ln f0(vp).

For the linear δf scheme, the particles’ phase space locations evolve according to their equilibrium

trajectories:

dxp
dt

= vp

dvp
dt

=
qi
mi

(vp ×B) .

Once the particle weights and phase space locations are known, the perturbed number and flux

densities at grid point Xj can be calculated as follows:

δnj =
NyNzn0

Nc

Nc∑
p=1

wpSx(Xj − xp)

δ(nu)j =
NyNzn0

Nc

Nc∑
p=1

wpvpSx(Xj − xp)

where Ny and Nz are the number of grid points in the y and z directions, respectively, Nc is the

number of computational particles, and Sx is the “shape” function [32], which we take to be a

product of linear b-spline functions.

4.3.2 Field Equation Formulations

Recent numerical analysis of implicit δf models has shown that numerical damping can

depend on the velocity moments used in the field model equations [23]. Here, we consider two
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formulations of Eq.(4.5) to be used in the simulation model. These formulations are equivalent

in the continuous limit ∆y → 0, ∆z → 0, and ∆t → 0 but exhibit different properties in the

discrete models. The first formulation uses the perturbed number density directly, and the second

formulation uses the continuity equation to give the field model in terms of the perturbed flux

density. We will refer to these formulations as the perturbed number density form (PND) and the

perturbed flux density form (PFD). Simulation results presented in Section 4.4 show that the PFD

form introduces numerical damping of the ion Bernstein waves, where as, the PND form leaves the

ion Bernstein waves undamped. For the PND form, we have simply

eφνj
Te

=
δnνj
n0

,

where ν is the time step index. To derive the PFD form, the partial derivative with respect to time

is taken in Eq.(4.5) and the continuity equation is used to give

∂

∂t

(
eφj
Te

)
= −∇ · δ(nu)j

n0
(4.12)

Our baseline time stepping method for the PFD form, without OASC, uses the trapezoidal rule to

discretize Eq.(4.12) in time as

eφνj
Te

=
eφν−1

j

Te
− ∆t

2

(
∇ ·

δ(nu)νj + δ(nu)ν−1
j

n0

)

where the divergence is taken spectrally in Fourier space. The electric field for both field models

is also computed by taking the gradient of φν spectrally from the discrete Fourier transform.

Simulation results using these two field equation formulations are presented in Section 4.4.

4.3.3 Baseline Time Stepping Algorithm

Our baseline time stepping algorithm to which we apply OASC uses a second order implicit

scheme to advance the particle positions, velocities, and weight equations. Our motivation for using

implicit schemes is for the greater stability that is generally offered. In the process of designing

our numerical schemes, we keep in mind future applications using more complex models that may

involve higher frequency modes posing severe constraints on the time step size for explicit schemes.
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For example, in [16], it is known that the compressional Alfven wave can be the source of a numerical

instability when it is not well resolved. This can be restrictive since ω/Ωi � 1 in low-β plasmas.

The following implicit time discretization scheme is applied to the ion equations of motion and

weight equation to address these difficulties

xν = xν−1 +
∆t

2

(
vν + vν−1

)
(4.13)

vν = R · vν−1 (4.14)

wν = wν−1 − ∆t

2

[
Gν(xν ,vν) +Gν−1(xν−1,vν−1)

]
, (4.15)

where ν is the discrete time index, and we have dropped the subscript p for simplicity of notation.

In Eq.(4.14), the rotation matrix R is defined as

R =


cos (Ωi∆t) sin (Ωi∆t) 0

− sin (Ωi∆t) cos (Ωi∆t) 0

0 0 1

 ,

which produces the correct gyro-phase at each time step, and in Eq.(4.15) we have

Gν(xν ,vν) =
q

m
Eν(xν) · ∇vν ln f0(vν), (4.16)

where the evaluation of the electric field at a particle’s position is performed through interpolation

as

Eν(xν) =
∑
j

Eν
jSx(Xj − xν).

The velocity advance may be extended for nonlinear simulations by including half accelerations

due to Eν−1(xν−1) and Eν(xν) before and after the rotation, respectively, similar to the Boris

push [32, 52]. Modification to the weight equation is also needed for nonlinear simulations as

in [38].

4.3.4 Orbit Averaging and Sub-Cycling

For the OASC scheme, the electric field and the computational particles are advanced on

separate time steps [53]. The long term goal of this research is to model low frequency (ω �
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Ωi) well magnetized plasma physics where gyrokinetics is applicable using a direct Lorentz force

method. The main issue at hand is to accurately model the ion FLR effects without including

the ion Bernstein waves which are a source of high frequency noise. Because we are interested

in low frequency phenomena, we will sub-cycle to resolve the ion cyclotron motion, then orbit-

average numerically to accurately resolve ion FLR effects. Orbit averaging and sub-cycling have

been explored previously in the context of multi-scale implicit PIC. Besides the seminal orbit-

averaging work of B. Cohen and co-workers [53–55], a multi-scale method was developed to advance

particles depending on their local accuracy in phase space [56, 57]. More recently an exact charge

and energy-conserving scheme incorporates a sub-stepping in time algorithm to avoid particles

tunnelling through an electrostatic potential barrier and improves momentum conservation [20,58,

59]. In our algorithm, the micro time step ∆t is used to resolve the fast gyro-motion of the ions

and the macro time step ∆T is used to resolve the low-frequency fields. These are chosen such that

Ωi∆t � 1, Ωi∆T � 1, and ∆T/∆t = M for M ∈ N. The particle trajectories and weights are

sub-cycled on the micro time step according to Eqs.(4.13)–(4.16) where Eν is replaced with E(N,ν)

for 1 ≤ ν ≤M −1. We define E(N,ν) as the electric field interpolated in time to the micro time step

t(N,ν) from the fields defined at the macro time steps tN−1 and tN . A simple linear interpolation is

used

E(N,ν) = (1− ν

M
)EN−1 +

ν

M
EN .

The orbit averaging scheme is derived for the flux form of the field equation Eq.(4.12). Integrating

Eq.(4.12) between macro time steps tN−1 and tN , we have

eφN

Te
=
eφN−1

Te
−∇ ·

∫ tN

tN−1

δ(nu)

n0
dt.

The integral on the right hand side is then approximated using the composite trapezoidal rule∫ tN

tN−1

δ(nu)dt ≈ ∆T

2M

(
δ(nu)N−1 + 2δ(nu)(N,1) + 2δ(nu)(N,2) + ...+ 2δ(nu)(N,M−1) + δ(nu)N

)
,

(4.17)

where the perturbed flux densities δ(nu)(N,ν) are deposited using particle trajectories and weights

on the micro time step t(N,ν). We will refer to the right hand side of Eq.(4.17) as the orbit averaged
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flux density and denote it as 〈δ(nu)〉N−1/2. In this notation, our discretized field model is

eφN

Te
=
eφN−1

Te
−∇ · 〈δ(nu)〉N−1/2. (4.18)

The OASC algorithm is illustrated in Figure 4.2. Note that the OASC algorithm reduces to the

baseline time stepping algorithm with the PFD form of the field equation when M = 1.

(x,v, w)

δ(nu)

〈δ(nu)〉

φ

tN−1 t(N,1) ... t(N,M−1) tN+1 t(N+1,1) ... t(N+1,M−1)tN+2

Figure 4.2: Illustration of the OASC algorithm. Particle quantities (x,v, w) are advanced on the
micro time steps using a time interpolated electric field. The flux density δ(nu) is deposited from
the particles at each micro time step to obtain the orbit averaged flux density 〈δ(nu)〉, which is
used to advance φ over the macro time step.

4.3.5 Solution Method for the Implicit Equations

The OASC scheme is implicit and therefore requires the self consistent solution of the particles

and electric field at the macro time step tN . There has been recent progress made in efficient

solution methods for fully implicit PIC. These efforts have focused on the use of Jacobian-free

Newton-Krylov (JFNK) solvers [58,60,61] and preconditioning to accelerate the convergence of the

GMRES iterations [62]. The use of a JFNK solver has not been explored in this work but may

hold future promise for increased computational efficiency of the algorithm. For our simulation

model, we adopt a Picard iteration scheme to solve the implicit equations. An initial guess is made

for φN and successive corrections to φN are made by repeatedly advancing the sub-cycled particle
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system. This process is carried out until the L2 norm of the residual in Eq.(4.18) is reduced to a

specified tolerance. For our simulations, we have taken both the absolute and relative tolerances to

be 5.0× 10−7. For the initial guess, we take the value of φ at the previous time step. In the tests

performed in Section 4.4, the Picard scheme typically converged in 4-8 iterations, with the number

of iterations increasing as expected with larger values of ∆T and k⊥ρi.

4.4 Simulation Results

To demonstrate the numerical properties of the algorithms discussed in Section 4.3 applied

to the FK ion model, linear simulations are performed and compared to the theory presented in

Section 4.2. Of interest are the use of the PFD form to damp the high frequency ion Bernstein

waves, the accurate production of FLR effects in the OASC algorithm, and the effects of the sub-

cycling parameter M in producing accurate simulations over long time scales.

4.4.1 Effects of the Field Equation Formulation on Ion Bernstein Waves

A notable feature of the FK ion simulation model is the presence of ion Bernstein waves near

harmonics of the ion gyro-frequency, which are superimposed on the ion acoustic wave. Although

consistent with the physical model, these are undamped high frequency modes and their presence

may be undesirable for studies of low frequency phenomena. In addition, ion Berstein waves are

eliminated in GK ion models, which may cause difficulty for comparisons with FK ion models. In

simulations using the PND form of the field model, ion Bernstein waves with large amplitudes were

found to be present for finite k⊥ρi and to quickly obscure the low frequency ion acoustic wave as

this parameter was increased.

In Figure 4.3, simulations are performed using the PND form of the field model. The am-

plitudes for the ion acoustic wave and the first three Bernstein waves are measured relative to the

initial perturbation size A0 for increasing values of k⊥ρi and compared to the theoretical amplitudes

from Eq.(4.11). We use the model parameters θ = 5 and k‖ρi = 6.28× 10−3. The simulations are

performed using the baseline time stepping algorithm from Section 4.3.3 with 131072 computa-
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tional particles, a mesh size of ny × nz = 16× 32, and a time step size Ωi∆t = 0.125. Both theory

and simulations, using the PND form of the field model, show Bernstein waves with amplitudes

comparable to or exceeding that of the ion acoustic wave for finite k⊥ρi. In Figure 4.4, we compare
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Figure 4.3: Amplitudes from simulations using the PND form of the field model are compared to
theory for the ion acoustic wave, AIAW , and the first three Bernstein waves, (AB1, AB2, AB3). The
amplitudes are given relative to the initial perturbation size, A0.

simulations at k⊥ρi = 0.3 between the PND and PFD forms of the field model. The physical and

numerical parameters are taken the same as in Figure 4.3. The time history of the first Fourier

mode is plotted, demonstrating the numerical damping of the ion Bernstein waves which is achieved

only for the PFD form. The difference in the numerical behaviors of the two field model formula-

tions is consistent with the numerical analysis in [23]. In this chapter, it is shown that numerical

dissipation which is normally present when using implicit schemes can be absent in the δf method

when the field model used contains only the perturbed number density as a source term.

4.4.2 FLR Effects for the Orbit Averaging/Sub-Cycling Algorithm

An important measure of success for the OASC algorithm is the ability to accurately model

FLR effects at large time step sizes. This is demonstrated for the ion acoustic wave using the
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Figure 4.4: Time histories of the first Fourier mode amplitude of φk. The PND form is used on
the left and the PFD form is used on the right. Numerical damping of the ion Bernstein waves
occurs only for the PFD form of the field model, leaving a clean simulation of the low frequency
ion acoustic wave.

model parameters θ = 5, k‖ρi = 1.61 × 10−3 and scanning over values of k⊥ρi ∼ O(1). For these

simulations, we use 262144 computational particles, a mesh size of ny×nz = 64×64, a macro time

step size of Ωi∆T = 0.75, and sub-cycling parameter M = 18, which corresponds to a micro time

step size of Ωi∆t = 4.17×10−2. In Figure 4.5, the dispersion results of the simulations are compared

to the exact linear dispersion theory for the FK ion model given by Eq.(4.6). Comparisons are also

made with the linear dispersion theory for the GK model, which was presented in Chapter 3. The

simulations show excellent agreement with the FK ion dispersion theory using a macro time step

size larger than that required to resolve the gyro-motion of the ions. Furthermore, the dispersion

relation for the GK ion model yields nearly identical results to that of the FK ion model for the

ion acoustic wave.

4.4.3 Effects of the Sub-Cycling Parameter

In order to produce accurate simulations over long time scales, sufficient resolution of the

ion gyr-omotion on the micro time step is necessary. Convergence tests are performed, varying the
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Figure 4.5: Dispersion results showing FLR effects on the ion acoustic wave using the parameters
θ = 5.0, k‖ρi = 1.61 × 10−3,Ωi∆T = 0.75, and M = 18 in the OASC algorithm. Data points
obtained by solving the GK dispersion relation given in Chapter 3 are also shown.

sub-cycling parameter, M . In the first test, the macro time step is kept fixed at Ωi∆T = 1.0 and

the sub-cycling parameter, M , is increased from M = 1, which corresponds to the baseline time

stepping algorithm (without OASC) over the macro time step, up to M = 16 which well resolves

the ion gyro-motion. The time histories of the first Fourier mode amplitude of φ for increasing

values of M in the first test are given in Figure 4.6 a). As expected, the quality of the simulations

improves as the sub-cycling parameter is increased. When M is taken too small, large inaccuracies

in the simulations develop quickly in time. In the second test, the micro time step size is kept

fixed at Ωi∆t = 6.25× 10−2 and M is increased to give larger values for the macro time step. The

time histories of the first Fourier mode amplitude of φ for increasing values of M in the second

test are given in Figure 4.6 b). It is observed that the time histories are nearly identical in each

case, demonstrating the robustness of the algorithm for large macro time steps, provided there is

sufficient resolution at the micro time step. For both tests, the same model parameters, particle

number, and mesh size are used as in Figure 4.5 and k⊥ρi = 0.4.
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Figure 4.6: Time histories of the first Fourier mode amplitude of φk. On the left (a), the macro time
step size is fixed at Ωi∆T = 1.0 and the sub-cycling parameter M is increased to improve accuracy
for long time periods. On the right (b), the micro time step size is fixed at Ωi∆t = 6.25× 10−2 and
M is increased to give a larger macro time step size.

4.5 CPU-GPU Implementation

One promising aspect of the OASC algorithm presented here is that it is amenable to imple-

mentation on hybrid architecture utilizing graphics processing units (GPUs) or many integrated

core co-processors. The reason for this is that the particle pushing over the micro time steps and

the orbit averaging can be done locally on the GPU. The resulting velocity moments can be copied

to the CPU memory where a global field solve is done. This eliminates the need for communication

of particle data between the CPU and GPU. Many applications of GK simulation are for situation

where Ωi∆t ∼ 1. Additionally, the FK ion method presented here can take advantage of hybrid

architectures, as we show below. Similarly [20] implemented their energy and charge conserving

scheme with sub-stepping and saw speedups over a factor of 100 compared to an equivalent serial

CPU implementation. To demonstrate the feasibility of utilizing hybrid architectures with sub-

cycling and orbit averaging, we have implemented our test bed code on one node of the Titan

supercomputer at Oak Ridge National Laboratory. We note this is simply a first step to show

the promise of the algorithm. Many node parallelization using MPI is not implemented. Future

implementations of the algorithm for solving more realistic turbulence problems will require many
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nodes (> 100). We also note that MPI optimization is well understood and widely used in PIC

codes.

Our CPU-GPU version of the OASC algorithm is implemented in single-precision using

CUDA Fortran. Interpolation of field values, particle pushes, and deposits are all performed locally

on the GPU, and the field solve is performed on the CPU. The particle data is deposited to arrays

stored in global memory using the atomicadd function to avoid race conditions, which can occur

when more than one thread simultaneously tries to access the same memory location [63]. Although

the use of atomic functions can delay the parallel executions in the code, the reduced communi-

cation cost between the device and host which is gained by keeping the particle data on the GPU

outweighs the serialization that results from the atomic additions. Optimizations to the deposits,

including the use of particle sorting, storing multiple copies of the domain in shared memory, and

partitioning the grid space into “tiles” have been explored in [20, 21]. As a first step in utilizing

GPUs, we focus on simplicity of implementation; however, these optimizations are promising for

future work to reduce the run-time of the deposit phase in our algorithm.

To benchmark the CPU-GPU implementation, we compare run-times between the single-

precision CPU-GPU code and an equivalent single-precision serial CPU code running on the Titan

supercomputer. Both codes are compiled with the PGI 15.3.0 compiler using the -fast optimization

flag. The GPU used is an NVIDIA Tesla K20X, which utilizes the NVIDIA KeplerTM architecture

and has a peak theoretical compute performance of 3.95 TFLOPs in single-precision. The host

machine is a 16-core 2.2 GHz AMD OpteronTM 6274 processor, for which one core is utilized for

both the CPU-GPU and CPU serial implementations.

In Figure 4.7, the time per particle per sub-cycle is reported in nano-seconds for the CPU-

GPU and CPU serial codes as the number of particles is increased. The test problem uses param-

eters θ = 5.0, k‖ρi = 1.61 × 10−3 and k⊥ρi = 0.4. The mesh size is ny × nz = 64 × 64, and the

time step size is Ωi∆t = 6.25 × 10−2 for a sub-cycling parameter M = 1, which corresponds to

the baseline time stepping algorithm. The largest speedup observed is a factor of 46.9 when 222

particles are used. In Figure 4.8, we examine the effects of the sub-cycling parameter, M , on the
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Figure 4.7: Benchmarks of the CPU-GPU and serial CPU implementations. The test problem
uses sub-cycling parameter M = 1, which corresponds to the baseline time stepping algorithm. A
speedup factor of 46.9 is observed for 222 particles.

run-time of the two implementations. We run with a macro time step size of Ωi∆T = 0.75 for

217− 219 particles, keeping all other parameters the same as for Figure 4.7. An additional speedup

is observed in the CPU-GPU code as M is increased, due to the increased amount of computa-

tion that can be performed on the GPU per communication to the CPU. This speedup is more

significant for lower numbers of particles, for example, when using 217 particles, a speedup factor

of 3.9 is observed in the CPU-GPU code for M = 32 compared to M = 1. The serial CPU code;

however, is near peak performance for all tests shown in Figure 4.8. The largest speedup factor

observed between the CPU-GPU and serial CPU codes when increasing M is 47.9 for 219 particles

at M = 32.

4.6 Summary and Conclusions

In this study, we have explored an implicit δf particle-in-cell method with orbit averaging and

sub-cycling algorithm, which is applied to a magnetized plasma simulation model for ion acoustic
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Figure 4.8: The sub-cycling parameter, M , is increased and an additional speedup is observed for
the CPU-GPU code. The serial CPU code is near peak performance.

waves using the full Lorentz force equations of motion for the ions. This algorithm shows promise to

extend efforts in the development of fully kinetic ion methods to model low frequency phenomena

in well magnetized plasmas. In particular, we were able to produce accurate FLR effects over

long time scales in our simulations using a fully kinetic ion model. Additionally, theory has been

derived to study the significance of ion Bernstein waves in our model. Ion Bernstein waves are

of interest, since they are unique to models using the full Lorentz force equations of motion and

are analytically eliminated from gyrokinetic ion models. It is found that the ion Bernstein waves

can have a significant effect on simulations, however, numerical damping can be introduced to the

ion Bernstein waves when the field equation is formulated in terms of the perturbed flux density

in the δf method. This can be beneficial for simulations of low-frequency fluctuations, since the

ion Bernstein waves have significant amplitudes for finite k⊥ρi, and can obscure physics on longer

time scales. Finally, a CPU-GPU implementation of the OASC algorithm has been developed and

has achieved a speedup by a factor of ∼ 48 compared to an equivalent serial CPU only code. Low
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communication between the CPU and GPU can be achieved by transferring only grid quantities,

making the OASC algorithm well suited to implement on hybrid architectures. Our testbed model

of the ion acoustic wave is of interest due to its relation to the ion temperature gradient models of

Chapters 3 and 5.



Chapter 5

A Fully Kinetic Ion Model for the Toroidal Ion Temperature Gradient

Instability

Theoretical investigations of the ion temperature gradient (ITG) mode began using simplified

magnetic geometries in slab models [64, 65]. In slab geometry, the ITG mode is a deformation of

the ion acoustic wave, driven unstable by vE convections of “hot” particles into regions of positive

pressure perturbations and “cold” particles into regions of negative pressure perturbations. In

magnetically confined fusion experiments, however, tokamaks confine plasma in a toroidal magnetic

field configuration with twisted, sheared field lines. Guiding center drifts due to the curvature and

gradient of the magnetic field provide additional destabilizing mechanisms in the ITG mode, leading

to larger growth rates than predicted in slab models [4, 5, 43].

The toroidal ITG instability is a well studied problem in the context of gyrokinetics [5,66–70],

and therefore provides a good starting point in the development of fully kinetic (FK) ion models

which can be used to verify gyrokinetic (GK) models. In this chapter, we present a simulation

model for the toroidal ITG instability using the full Lorentz force equations of motion for the ions.

We use the model presented in Chapter 3.4.2 to include temperature and density gradients in the

equilibrium ion distribution function. In order to ensure the long time accuracy of the particle orbits

in the FK ion model, an integration scheme based on variational principles has been developed. We

focus on the “Cyclone DIII-D base case parameter set” as given in [70] as a benchmark for the FK

toroidal ITG simulation model. Comparisons are made with the global GEM code for a frequency

scan over the parameter R0/LT , where R0 is the major radius and LT is the length scale for the
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equilibrium temperature gradient.

This chapter is organized as follows. In Section 5.1, we introduce the basic toroidal coordinate

system and the field line following coordinate system, which is used to define the computational

domain and boundary conditions. Section 5.2 give details of the model equations based on the

equilibrium construction presented in Chapter 3.4.2. In Section 5.3, we present our simulation model

based on the δf method and give details on how geometric factors due to the toroidal geometry

are accounted for. Our particle integration scheme is derived in Section 5.4 and is benchmarked

with a guiding center integrator. In addition, the integration scheme is shown to exhibit good

conservation properties of kinetic energy and toroidal angular momentum for simulations on long

time scales. Section 5.5 shows comparisons with the global GEM code for the DIII-D test case.

Finally, a summary and conclusion are given in Section 5.6.

5.1 Magnetic Field Geometry and Computational Domain

In this section, we first introduce a basic toroidal coordinate system used to express the

magnetic field model for this study. A field-line-following coordinate system is then defined in

terms of the basic toroidal coordinates, which is used to express the so called flux tube domain over

which our model equations are solved [5, 66, 71]. Since the toroidal ITG mode is characterized by

long wavelengths parallel to the magnetic field and short perpendicular wavelengths, a coordinate

system which is aligned with the magnetic field allows for coarser resolution in the direction of the

magnetic field. In addition, it allows us to define a minimal simulation volume necessary to capture

the relevant physics. With the boundary conditions imposed on the flux tube domain, slicing and

rearranging shows it to be equivalent to an annular toroidal wedge domain.

5.1.1 Toroidal Coordinate System

A basic toroidal coordinate system is most easily defined in terms of a cylindrical coordinate

system (R,Z, ζ) [72, 73]. Here R is the cylindrical radius and Z is the cylindrical axis. The angle

ζ is taken to be the negative azimuthal angle, i.e. increasing ζ corresponds to a clockwise rotation
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about the Z axis, so that (R,Z, ζ) is right handed. The Cartesian coordinates (x1, x2, x3) are

expressed in terms of (R,Z, ζ) by

x1 = R cos ζ

x2 = −R sin ζ

x3 = Z.

In the basic toroidal coordinate system, we refer to the Z axis of the cylindrical system as the

major axis and ζ as the toroidal angle. The minor axis is a circle in the Z = 0 plane with radius

R = R0. The toroidal coordinates consist of the toroidal angle ζ, the minor radius r measuring the

distance from the minor axis in a constant ζ plane, and an angle about the minor axis θ called the

poloidal angle. The cylindrical coordinates R and Z are expressed in terms of r and θ by

R = R0 + r cos θ

Z = r sin θ.

The right handed coordinate system (r, θ, ζ) is illustrated in Figure 5.1. Written in a mixed cylin-

drical and toroidal coordinates, the assumed form of the magnetic field in our model is given by

B = B0

(
R0

R
ζ̂ +

r

q(r)R
θ̂

)
. (5.1)

The function q(r) is known as the safety factor and measures the average twist of the field lines

on a constant r surface. A purely toroidal field corresponds to q →∞, and a purely poloidal field

corresponds to q → 0. The derivative of q measures the magnetic shear, i.e. the change in field line

pitch from one constant r surface to the next. We take the form for q(r) to be a local expansion

about reference minor radius r0 as

q(r) = q0 + (r − r0)q′0(r0).

It is noted that the model B field is divergence free, as can be verified from

∇ · F =
1

rR

(
∂

∂r
(rRFr) +

∂

∂θ
(RFθ) +

∂

∂ζ
(rFζ)

)
.
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Figure 5.1: Illustration of the Cylindrical and Toroidal Coordinates5.1.2 Field-Line-Following Coordinates

The simulation domain is defined in terms of a field-line-following coordinate system. Since

low-frequency microinstabilities in magnetically confined plasmas are characterized by long wave-

lengths parallel to the magnetic field and short perpendicular wavelengths, a coordinates system

that is aligned with the magnetic field can provide a large computational advantage by reducing the

resolution required for these modes and allowing for smaller simulation volumes [5, 71]. In terms

of the toroidal coordinates and a reference minor radius r0, the field-line-following coordinates are

defined as

x = r − r0 (5.2)

y =
r0

q0

(∫ θ

0
q̂(r, θ′)dθ′ − ζ

)
(5.3)

z = q0R0θ, (5.4)
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where

q̂(r, θ) =
∇ζ ·B
∇θ ·B

.

These coordinates are non-orthogonal and are chosen to have the properties B · ∇x = B · ∇y = 0,

from which it follows that

∂x

∂z
∝ B,

where x is the position vector. For the magnetic field model given in Eq.(5.1), the integral in the

definition of the y coordinate can be evaluated explicitly, yielding

y =
r0

q0

 2q(r)√
1− (r/R0)2

arctan

 1− r/R0√
1− (r/R0)2

tan
θ

2

− ζ
 .

The simulation domain is taken to be a rectangular region in the field-line-following coordinates

given as

D =

{
(x, y, z)

∣∣∣∣− lx
2
≤ x ≤ lx

2
,− ly

2
≤ y ≤ ly

2
,−q0R0π ≤ z ≤ q0R0π

}
, (5.5)

which corresponds to a long, thin tube in physical space following the twisted magnetic field. The

mapping of such a region to physical space is illustrated in Figure 5.2.

5.1.3 Boundary Conditions

The boundary conditions for a perturbed quantity A over the flux tube domain are as follows.

Periodicity is enforced in y for fixed x and z as

A(x, y + ly, z) = A(x, y, z). (5.6)

Fixed boundary conditions are taken in x as

A

(
− lx

2
, y, z

)
= A

(
lx
2
, y, z

)
= 0. (5.7)

The boundary condition at the end points in z requires some discussion. In selecting the boundary

condition, we wish to enforce the periodicity in θ for a fixed toroidal angle. In particular, we require

A (x(r), y(r, θ + 2π, ζ), z(θ + 2π)) = A (x(r), y(r, θ, ζ), z(θ)) .
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Figure 5.2: Mapping of the rectangular region D in field-line-following coordinates to physical space
for lx = 48 and ly = 48.

From the coordinate transformation in Eqs.(5.2)–(5.4), we have

y(r, θ + 2π, ζ) = y(r, θ, ζ) + δy(r)

z(θ + 2π) = z(θ) + 2πq0R0,

where

δy(r) =
r0

q0

∫ π

−π
q̂(r, θ′)dθ′.

The boundary condition in z can therefore be written as the periodicity constraint

A (x, y + δy(x), z + lz) = A(x, y, z), (5.8)

where lz = 2πq0R0. An example of a function satisfying Eqs.(5.6)–(5.7) and Eq.(5.8) can be given

by

A(x, y, z) = C(x)e
i 2πn
ly

(
y−δy(x) z

lz

)
ei

2πm
lz

z,
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where C
(
− lx

2

)
= C

(
lx
2

)
= 0. Figure 5.3 illustrates the boundary conditions in y and z in a

plane in the field-line-following coordinate system defined by a fixed value of x. Periodic copies

of the domain are illustrated in the y direction, corresponding to the condition in Eq.(5.6). At

the z boundaries, the domain is extended into a copy that is shifted by δy(x) in the y direction,

corresponding to Eq.(5.8). The shift in y is chosen to make the end points in z match up along

a contour of constant ζ. In Figure 5.3, we also illustrate how a yz-plane in the field-line-following

coordinates can be sliced and rearranged to a domain that maps to a toroidal wedge. This provides

an alternative view of the boundary condition as enforcing periodicity in θ for the toroidal wedge.

5.2 Equations for Modelling the ITG Instability with Fully Kinetic Ions

In this section, we present the equations for a FK ion model for the toroidal ITG instabil-

ity. In Chapter 3.4.2, we showed how an approximate equilibrium distribution function, including

temperature and density gradients, could be constructed for a FK ion model assuming equilibrium

quantities to vary on length scales much larger than the ion gyro-radius. Our starting point was

the Vlasov equation for the evolution of the ion distribution function fi give as

∂fi
∂t

+ v · ∇fi +
qi
mi

(E + v ×B) · ∇vfi = 0, (5.9)

where qi and mi are the ion charge and mass respectively and E is the electric field. Next, it was

assumed that fi could be separated into equilibrium and perturbed parts as fi = f0 + δf . For

consistency with Eq.(5.9), f0 is required to satisfy

v · ∇f0 +
qi
mi

(v ×B) · ∇vf0 = 0. (5.10)

In Chapter 3.4.2, we assumed a curvilinear coordinate could be found whose gradient is perpen-

dicular to the magnetic field. Here, we choose this coordinate to be the radial field-line-following

coordinate x. Our equilibrium distribution function is then taken to depend on Rx given by

Rx = x+
mi

qi

v × b̂

B
· ∇x, (5.11)



78

Figure 5.3: Illustration of boundary conditions in y and z in a fixed x plane.

using the decomposition B = Bb̂, where B is the magnitude of B and b is the unit vector pointing

in the direction of B. In addition, we consider the ion kinetic energy, given by

K =
mi

2
v2, (5.12)
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where v2 = v·v. From these two quantities, an equilibrium distribution function can be constructed

as f0 = f0(Rx,K) to satisfy Eq.(5.10) to first order in the parameter ε = ρi/Leq, where Leq is such

that

Leq
‖∇f0‖
f0

∼ 1,

and we take

ρi =
mivth
qiB0

, (5.13)

where vth is the thermal ion velocity and B0 is the magnetic field strength at the minor axis. With

this form for f0, the perturbed part of the distribution function evolves as

∂δf

∂t
+ v · ∇δf +

qi
mi

(E + v ×B) · ∇vδf = −qiE · v
∂f0

∂K
−∇x ·

(
E× b̂

B

)
∂f0

∂Rx
. (5.14)

A local Maxwellian is selected for f0, where temperature and density are allowed to vary with Rx.

That is

f0(K,Rx) =
Ni(Rx)

(2πTi(Rx)/mi)
3/2

e−K/Ti(Rx), (5.15)

where Ti and Ni are the ion equilibrium temperature and density, respectively. With this form, the

partial derivatives on the right hand side of Eq.(5.14) are given by

∂f0

∂K
= − 1

Ti
f0 (5.16)

∂f0

∂Rx
=

(
∂Ni
∂Rx

Ni
+

(
K

Ti
− 3

2

) ∂Ti
∂Rx

Ti

)
f0. (5.17)

In the present work, we consider only the linearized version of Eq.(5.14), that is, we neglect the

term containing the electric field on the left hand side to study stability in the presence of a small

perturbation. In addition, we do not consider effects due to profile variations of Ti and Ni, assuming

constant values for the terms depending on Rx in Eqs.(5.16)–(5.17). We use the notation

κT = −
∂Ti
∂Rx

Ti

∣∣∣∣
Rx=0

κN = −
∂Ni
∂Rx

Ni

∣∣∣∣
Rx=0

,
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so that κT , κN > 0 corresponds to equilibrium quantities that are decreasing with Rx. In addition,

we now take Ti and Ni to represent the constant values Ti(Rx = 0) and Ni(Rx = 0), respec-

tively. With this notation, the linearized version of Eq.(5.14), assuming Eq.(5.15) and neglecting

equilibrium profile variations is written

∂δf

∂t
+v ·∇δf+

qi
mi

(v ×B) ·∇vδf =
qi
Ti

E ·vf0 +

(
E× b̂

)
· ∇x

B

[
κN +

(
miv

2

2Ti
− 3

2

)
κT

]
f0. (5.18)

To close Eq.(5.18) an electrostatic field is assumed as

E = −∇φ, (5.19)

where φ is the electrostatic potential. An equation for φ is given in Chapter 3.1, assuming adiabatic

electrons and quasineutrality, as

eφ

Te
=
δn

Ni
, (5.20)

where −e and Te are the electron charge and temperature, respectively, and δn is obtained by

δn =

∫
R3

δfd3v. (5.21)

An analysis of the model equations Eqs.(5.18)–(5.21) with magnetic field Eq.(5.1) over the

domain Eq.(5.5) shows that there are nine dimensionless parameters which determine the behavior

of the system. The major radius is normalized by ρi defined by Eq.(5.13), where vth is defined from

the ion temperature as vth =
√
Ti/mi. The magnetic field model requires the parameters R0/ρi,

r0/R0, q0, and ŝ defined as

ŝ ≡ r0

q0
q′0.

The equations for the evolution of δf and φ require the parameters κNR0, κTR0, and τ defined as

τ ≡ qiTe
eTi

.

Finally, the domain requires ly/ρi and lx/ρi. In this work, we use a base set of parameters, known

as the “Cyclone DIII-D base case parameter set” from [70]. These parameters are representative of

a typical H-mode plasma and have been used extensively in benchmarking studies for GK codes.

The parameter set, in terms of the quantities defined above is given in Table 5.1.
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R0/ρi r0/R0 q0 ŝ κTR0 κNR0 τ

445.0 0.18 1.4 0.78 6.9 2.2 1.0

Table 5.1: Cyclone DIII-D base case parameter set

5.3 Simulation Model

In this section, we present the details of the numerical implementation of our model. We

employ a δf particle-in-cell (PIC) method to solve Eq.(5.18) for the perturbed ion distribution

function [38–42]. Although it is trivial to obtain φ from Eq.(5.20), some care is required to account

for the toroidal geometry when compute the gradient in Eq.(5.19). In addition, the toroidal geom-

etry requires modification in the particle loading step and in depositing the particles to the grid.

Details on the integration scheme applied to the particle equations of motion are given in Section

5.4.

5.3.1 δf PIC Model

In our simulations, we employ the δf PIC method to evolve the perturbed part of the ion

distribution function in Eq.(5.18). We assume that Np computational particles have been loaded

according to a distribution function, fL satisfying Eq.(5.10). The computational particles are taken

to evolve according to the characteristics of Eq.(5.18), as

d

dt
xp = vp (5.22)

d

dt
vp =

qi
mi

(vp ×B(xp)) . (5.23)

for p = 1, ..., Np. By choosing fL to satisfy Eq.(5.10) with each particle following Eqs.(5.22)–

(5.23) the computational particles will be distributed according to fL for all times throughout the

simulation. Next, weights are defined for each computational particle as

wp =
δf(xp,vp)

fL(xp,vp)
. (5.24)
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By taking the time derivative of Eq.(5.24), we obtain an equation for the evolution of wp from

Eqs.(5.22)–(5.23) and Eq.(5.18) as

dwp
dt

=

 qi
Ti

E · v +

(
E× b̂

)
· ∇x

B

[
κN +

(
miv

2

2Ti
− 3

2

)
κT

] f0

fL

∣∣∣∣∣
xp,vp

. (5.25)

In our implementation, cylindrical coordinates are used to evolve the particles in phase space

according to Eqs.(5.22)–(5.23). Particle positions are transformed back to the field-line-following

coordinates to be deposited to the grid.

5.3.2 Loading and Deposit of Computational Particles

Computational particles are loaded according to a spatially uniform Maxwellian distribution

function. When equilibrium profile variations are neglected, we can simply take fL = f0. Loading

in velocity space requires a means of generating normally distributed random numbers for the

cylindrical velocity components (vR, vZ , vζ) for which standard techniques can be applied, e.g. the

Box-Muller transform [74]. Loading particle positions in the flux tube domain, however, requires

some care since uniformly distributed particles in physical space can be strongly nonuniform in the

(x, y, z) field-line-following coordinates. In particular, uniformly distributed particles over the flux

tube domain follow the probability distribution function fu given by

fud
3x =

χD
V
d3x, (5.26)

where χD is the characteristic function for the flux tube domain defined as

χD =

 1 : x ∈ D

0 : else,

(5.27)

where D given by Eq.(5.5), V is the volume of D, and d3x is a differential volume element. Our

implementation stores particle positions in both the (x, y, z) coordinates and (R,Z, ζ) coordinates,

transforming from one to another when needed. Particle loading is most easily performed in the

(x, y, z) coordinates, since the domain is rectangular in this system. In this case, Eq.(5.26) is
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written

fud
3x =

χD
V
Jxyzdxdydz, (5.28)

where Jxyz is the Jacobian of the field-line-following coordinates, which is given by

Jxyz =
(x+ r0)

[
R0 + (x+ r0) cos

(
z

q0R0

)]
r0R0

for the geometry of our magnetic field model. Notice that Jxyz does not depend on y, hence this

coordinate can be loaded uniformly. Rejection sampling [75] is used to load the x and z coordinates

according to Eq.(5.28).

The computational domain is divided into Nx × Ny × Nz equally sized cells in the (x, y, z)

coordinates, with grid point spacings of ∆x, ∆y and ∆z in the x, y and z directions respectively.

To approximate δn on the computational grid, we must account for the fact that the volume of the

cells is nonuniform due to Jxyz being different from unity. At a grid point Xj , we approximate δn

by

δnj ≈
Ni
Np

V

∆Vj

Np∑
p=1

wpS(Xj − xp),

where ∆Vj = Jxyzj ∆x∆y∆z and S is the particle shape function defined as

S(x) = S1D

( x

∆x

)
S1D

(
y

∆y

)
S1D

( z

∆z

)
with S1D given by

S1D(x) =

 1− |x| : |x| ≤ 1

0 : |x| > 1.

5.3.3 Computation of Gradient

A finite difference scheme is used to compute the gradient in Eq.(5.19). Since our particle

push is carried out in the cylindrical coordinates, it is convenient in the weight equation Eq.(5.25)

to have E expressed in terms of its cylindrical components. The electrostatic potential, however, is

defined on a grid in the field-line-following coordinates, meaning partial derivatives are most easily
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computed in (x, y, z) with finite difference. The cylindrical components of E can be computed on

the field aligned grid by first expressing E as

E = −∂φ
∂x
∇x− ∂φ

∂y
∇y − ∂φ

∂z
∇z. (5.29)

Taking dot products of Eq.(5.29) with R̂, Ẑ, and ζ̂ then yields

ER = −∂φ
∂x
hxR − ∂φ

∂y
hyR − ∂φ

∂z
hzR

EZ = −∂φ
∂x
hxZ − ∂φ

∂y
hyZ − ∂φ

∂z
hzZ

Eζ = −∂φ
∂x
hxζ − ∂φ

∂y
hyζ − ∂φ

∂z
hzζ ,

where hxR = ∇x · R̂, hyR = ∇y · R̂, etc. Explicit expressions for these factors can be derived from

the transformation equations Eqs.(5.2)–(5.4) and are given as follows

hxR = cos θ hyR =
r0

q0

(
−sin θ

r
q̂(r, θ) + cos θ

∂

∂r

∫ θ

0
q̂(r, θ′)dθ′

)
hzR = −R0q0

r
sin θ

hxZ = sin θ hyZ =
r0

q0

(
cos θ

r
q̂(r, θ) + sin θ

∂

∂r

∫ θ

0
q̂(r, θ′)dθ′

)
hzZ =

R0q0

r
cos θ

hxζ = 0 hyζ = − r0

q0R
hzζ = 0

In the simulation model, these quantities are computed at each grid point and stored in an array.

5.4 Integration Scheme for Equilibrium Orbits

The computational particles evolve along the equilibrium trajectories according to Eqs.(5.22)–

(5.23). The choice of coordinates used to describe a particle’s position will determine how simply

Eqs.(5.22)–(5.23) can be expressed. Since our computational domain uses a uniform grid in the

field-line-following coordinates, the deposit stage requires particle positions to be in the field-line-

following coordinates as well. Expressing Eqs.(5.22)–(5.23) in terms of (x, y, z), however, results in

a cumbersome form involving complicated geometric terms. In this work, we have made the choice

to use the cylindrical (R,Z, ζ) coordinates in the particle push stage and to use the analytical

coordinate transformations of Eqs.(5.2)–(5.4) to convert to (x, y, z) in the deposit stage. In terms
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of the cylindrical coordinates, Eqs.(5.22)–(5.23) can be written as

R̈ = Rζ̇2 +
qi
mi

(
ŻBζ −Rζ̇BZ

)
(5.30)

Z̈ =
qi
mi

(
Rζ̇BR − ṘBζ

)
(5.31)

Rζ̈ = −2Ṙζ̇ +
qi
mi

(
ṘBZ − ŻBR

)
, (5.32)

where dots are used to denote a derivative with respect to time, and we have assumed B to be

expressed as

B = BRR̂+BZẐ +Bζ ζ̂.

Using cylindrical coordinates in the particle push has an additional advantage if more complicated

magnetic geometries are to be used. For example, if the more general Miller equilibrium model [71,

76] is used, the integration scheme would not need to be changed. The only changes needed would

be in the transformation to (x, y, z) and the expression of B in the cylindrical coordinates.

5.4.1 Derivation of Integration Scheme

Rather than a direct discretization of Eqs.(5.30)–(5.32), e.g. via Runge-Kutta, we derive a

scheme based on discrete variational methods [77–80]. Integration schemes derived from variational

methods automatically have a number of desirable properties. In particular, when a strict vari-

ational formalism is followed, the resulting algorithm will be symplectic, it will exactly preserve

momentum associated with symmetries of the system, and will exhibit excellent energy stability

over long simulation times. The study of integration schemes based on variational principles is a

broad area of research, which we do not attempt to summarize here. For an overview and historical

account, we refer to [77]. The starting point for our integrator is the position-momentum form

of the discrete Euler-Lagrange equations, for which a derivation is included in Appendix B. The

Lagrangian for the single particle motion described in Eqs.(5.30)–(5.32) is written in the cylindrical

coordinates as

L =
mi

2

(
Ṙ2 + Ż2 +R2ζ̇2

)
+ qi

(
ṘAR + ŻAZ +Rζ̇Aζ

)
, (5.33)
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where A is the vector potential, defined by

B = ∇×A.

It is noted that an integration scheme for the full nonlinear form of Eq.(5.14) could be derived

along the same lines presented here by including the contribution of −qiφ to the Lagrangian. To

form the discrete Lagrangian, we use the trapezoidal rule along with the approximations

Ṙ ≈ Ṙ =
Rν+1 −Rν

∆t

Ż ≈ Ż =
Zν+1 − Zν

∆t

ζ̇ ≈ ζ̇ =
ζν+1 − ζν

∆t

for t ∈ [ν∆t, (ν + 1)∆t]. This choice of quadrature will result in a scheme similar to the velocity

Verlet method [81]. The discrete Lagrangian over this interval is then

Ld =
∆tmi

2

[
Ṙ

2
+ Ż

2
+

(Rν)2 + (Rν+1)2

2
ζ̇

2
]

(5.34)

+
∆tqi

2

[
Ṙ
(
AνR +Aν+1

R

)
+ Ż

(
AνZ +Aν+1

Z

)
+ ζ̇

(
RνAνζ +Rν+1Aν+1

ζ

)]
,

where Aν is understood to be the evaluation of A at the particle’s location at time t = ν∆t. From

the position-momentum form of the discrete Euler-Lagrange equations given in Appendix B, an

integration scheme in terms of discrete conjugate momenta can be given by

pνR = − ∂Ld
∂Rν

, pν+1
R =

∂Ld
∂Rν+1

(5.35)

pνZ = −∂Ld
∂Zν

, pν+1
Z =

∂Ld
∂Zν+1

(5.36)

pνζ = −∂Ld
∂ζν

, pν+1
ζ =

∂Ld
∂ζν+1

. (5.37)

For our purposes, however, it is more convenient to have an integration scheme to be in terms of

the cylindrical velocity components vR, vZ , and vζ . A natural definition of the cylindrical velocity
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components in terms of pR, pZ , and pζ comes from the continuous Lagrangian in Eq.(5.33) by

pR =
∂L
∂Ṙ

= miṘ+ qiAR = mivR + qiAR (5.38)

pZ =
∂L
∂Ż

= miŻ + qiAZ = mivZ + qiAZ (5.39)

pζ =
∂L
∂ζ̇

= miR
2ζ̇ + qiRAζ = miRvζ + qiRAζ . (5.40)

The integration scheme in Eqs.(5.35)–(5.37) written in terms of velocity is then

vνR = − qi
mi
AνR −

1

mi

∂Ld
∂Rν

, vν+1
R = − qi

mi
Aν+1
R +

1

mi

∂Ld
∂Rν+1

(5.41)

vνZ = − qi
mi
AνZ −

1

mi

∂Ld
∂Zν

, vν+1
Z = − qi

mi
Aν+1
Z +

1

mi

∂Ld
∂Zν+1

(5.42)

vνζ = − qi
mi
Aνζ −

1

miRν
∂Ld
∂ζν

, vν+1
ζ = − qi

mi
Aν+1
ζ +

1

miRν+1

∂Ld
∂ζν+1

. (5.43)

Furthermore, it is convenient to be able to work directly with B, rather than having to first form

a vector potential A. By expressing the curl of A in cylindrical coordinates, we have

BR =
∂Aζ
∂Z
− 1

R

∂AZ
∂ζ

(5.44)

BZ =
1

R

(
∂AR
∂ζ
− ∂

∂R
(RAζ)

)
(5.45)

Bζ =
∂AZ
∂R
− ∂AR

∂Z
. (5.46)

Next, we illustrate how the components of A can be eliminated in Eq.(5.41) in favor of the com-

ponents of B by means of an approximation. Computing the partial derivatives of the discrete

Lagrangian in Eq.(5.34) gives

vνR = Ṙ− ∆t

2
Rν
(
ζ̇
)2

+
qi

2mi

(
Aν+1
R −AνR

)
(5.47)

− qi∆t

2mi

[
Ṙ
∂AνR
∂Rν

+ Ż
∂AνZ
∂Rν

+ ζ̇
∂

∂Rν
(
RνAνζ

)]
vν+1
R = Ṙ+

∆t

2
Rν+1

(
ζ̇
)2

+
qi

2mi

(
AνR −Aν+1

R

)
(5.48)

+
qi∆t

2mi

[
Ṙ
∂Aν+1

R

∂Rν+1
+ Ż

∂Aν+1
Z

∂Rν+1
+ ζ̇

∂

∂Rν+1

(
Rν+1Aν+1

ζ

)]
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In Eq.(5.47) and Eq.(5.48), we make the following approximations, respectively,

Aν+1
R ≈ AνR + ∆t

(
Ṙ
∂AνR
∂Rν

+ Ż
∂AνR
∂Zν

+ ζ̇
∂AνR
∂ζν

)
AνR ≈ Aν+1

R −∆t

(
Ṙ
∂Aν+1

R

∂Rν+1
+ Ż

∂Aν+1
R

∂Zν+1
+ ζ̇

∂Aν+1
R

∂ζν+1

)
,

yielding

vνR = Ṙ− ∆t

2
Rν
(
ζ̇
)2
− qi∆t

2mi

[
ŻBν

ζ − ζ̇RνBν
Z

]
vν+1
R = Ṙ+

∆t

2
Rν+1

(
ζ̇
)2

+
qi∆t

2mi

[
ŻBν+1

ζ − ζ̇Rν+1Bν+1
Z

]
.

It is noted that this approximation does not follow the strict variational formalism, and hence we

cannot guarantee that theories derived for variational integrators should hold when it is employed.

Numerical results, however, from single particle motion seem to exhibit excellent conservation

properties for constant of motion despite the approximation. Equations (5.42)–(5.43) can be ap-

proximated in the same manner to eliminate components of A, yielding the following procedure for

computing (Rν+1, Zν+1, ζν+1) and (vν+1
R , vν+1

Z , vν+1
ζ ) given (Rν , Zν , ζν) and (vνR, v

ν
Z , v

ν
ζ ) :

• Step 1: Solve the following system of equations for the unknowns Ṙ,Ż, and ζ̇

vνR = Ṙ− ∆tRν

2

(
ζ̇
)2
− ∆tqi

2mi

[
ŻBν

ζ − ζ̇RνBν
Z

]
(5.49)

vνZ = Ż +
∆tqi
2mi

[
ṘBν

ζ − ζ̇RνBν
R

]
(5.50)

vνζ = ζ̇Rν + ∆tζ̇

Ṙ+
∆t
(
Ṙ
)2

2Rν

− ∆tqi
2mi

[
ṘBν

Z − ŻBν
R

]
(5.51)

• Step 2: Advance coordinates via

Rν+1 = Rν + ∆tṘ (5.52)

Zν+1 = Zν + ∆tŻ (5.53)

ζν+1 = ζν + ∆tζ̇ (5.54)
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• Step 3: Advance velocity components via

vν+1
R = Ṙ+

∆tRν+1

2

(
ζ̇
)2

+
∆tqi
2mi

[
ŻBν+1

ζ − ζ̇Rν+1Bν+1
Z

]
(5.55)

vν+1
Z = Ż − ∆tqi

2mi

[
ṘBν+1

ζ − ζ̇Rν+1Bν+1
R

]
(5.56)

vν+1
ζ = ζ̇

(Rν)2 + (Rν+1)2

2Rν+1
+

∆tqi
2mi

[
ṘBν+1

Z − ŻBν+1
R

]
. (5.57)

Note that this procedure requires the solution of a nonlinear system of three equations for the

unknowns Ṙ,Ż, and ζ̇ in Step 1. Here, this is accomplished with Picard iterations. Denoting the

unknowns by x ≡ [Ṙ, Ż, ζ̇]T , the known velocity components by v ≡ [vνR, v
ν
Z , v

ν
ζ ]T , and taking the

operator A(x) to represent the right hand side of Eqs.(5.49)–(5.51), we can express these equations

as A(x) = v. We note that A can be decomposed into linear and nonlinear parts as

A(x) = Lx + N(x).

In particular, N consists of the second terms of Eq.(5.49) and Eq.(5.51). The Picard iteration

method proceeds as follows

x0 = L−1v

xi = L−1
(
v − N

(
xi−1

))
, i = 1, 2, ...

We have found this procedure to converge rapidly, with two iterations being sufficient for a wide

range of time step sizes.

5.4.2 Comparison with Guiding Center Integrator

To test our integration scheme, we consider the motion of a trapped particle using the initial

conditions in Table 5.2. Parameters for the magnetic field are the same as in Table 5.1. For the

integration scheme in Eqs.(5.49)–(5.57), we use Eq.(5.1) expressed in cylindrical components as

B =
B0R0

Rq(r)

(
− Z

R0
R̂+

(R−R0)

R0
Ẑ + q(r)ζ̂

)
(5.58)
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The orbit in the (R,Z) plane and the full 3D orbit are shown in Figure 5.4. We have compared this

orbit to a predictor-corrector guiding center particle integrator following the equations of motion

dR

dt
= v‖b̂ +

mi

qiB
b̂×

[
v2
‖

(
b̂ · ∂

∂R

)
b̂ + µB

∂ lnB

∂R

]
dv‖

dt
= −

v2
⊥
2

(
b̂ · ∂ lnB

∂R

)
,

where R is the guiding center position, µ is the magnetic moment defined by µ = v2
⊥/2B with v⊥

the magnitude of the velocity perpendicular to b̂, and v‖ is the velocity component along b̂. Initial

conditions for the guiding center integrator are given in Table 5.3. For both the guiding center

integrator and our FK integrator, a time step size of Ωi∆t = 0.125 is taken, and the simulations

are run to Ωit = 2.5× 104. Both integrators correctly capture the trapped particle orbit and agree

well with each other.

R/R0 Z/R0 ζ vR/R0Ωi vZ/R0Ωi vζ/R0Ωi

1.176 3.912 ×10−3 -4.258 ×10−4 3.371 ×10−3 3.371 ×10−3 1.798 ×10−3

Table 5.2: Initial conditions for FK integrator.

R/R0 Z/R0 ζ v‖/R0Ωi B0µ/ (R0Ωi)
2

1.180 0.000 0.000 2.212 ×10−3 1.232 ×10−5

Table 5.3: Initial conditions for GC integrator.

5.4.3 Constants of Motion

The conservation properties of our fully kinetic integrator are tested with two exact constants

of motion that can be found for the system Eqs.(5.22)–(5.23), using the form of B from Eq.(5.1).

These are the kinetic energy, K defined in Eq.(5.12) and the toroidal angular momentum, pζ defined
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Figure 5.4: Comparison of FK Variational Integrator to Guiding Center Integrator

in Eq.(5.40). The kinetic energy can be computed from the cylindrical velocity components simply

as

K =
mi

2

(
v2
R + v2

Z + v2
ζ

)
.
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The toroidal angular momentum is conserved due to the symmetry of B with respect to the toroidal

angle. Its computation, however, requires the toroidal component of a vector potential. From

Eqs.(5.44)–(5.46), it can be verified that a vector potential for the field model in Eq.(5.58) is given

by

A = −B0R0Z

R
R̂− B0

R

∫ r

r0

r′

q(r′)
dr′ζ̂,

from which we arrive at

pζ = miRvζ − qiB0

∫ r

r0

r′

q(r′)
dr′.

In Figure 5.5, we examine the relative variation of K and pζ over a time period of 2.5 × 104 for

different time step sizes. Initial conditions are taken from Table 5.2. The amount by which the

conservation of these quantities is violated is characterized by bounded oscillations, with amplitudes

that decrease with the time step size. Figure 5.6 shows the amplitude of these oscillations as a

function of the time step size. The amplitudes are shown to decrease as O(∆t2) for both K and

pζ .

5.5 Toroidal ITG Instability Simulations

In this section, we present simulation results for the FK ion model applied to the ITG

instability model. The “Cyclone DIII-D base case parameter set” given in Table 5.1 is used to

benchmark our algorithm. In Figure 5.7, a scan is performed measuring real frequencies and

growth rates as a function of the parameter R0/LT , where LT = κ−1
T . The domain size is taken

to be lx = 32ρi, ly = 12.57ρi, lz = 3914.4ρi, and all other parameters are taken from Table 5.1.

Comparisons are made with the global GEM code and good agreement is observed. For the case

with R0/LT = 6.9, the real frequencies of the two codes agree within 6 per cent and the growth rates

agree within 17 per cent. For the FK code, we have ωR/Ωi = −2.40× 10−3 and γ/Ωi = 6.0× 10−4,

and for the global GEM gyrokinetic code, we have ωR/Ωi = −2.26× 10−3 and γ/Ωi = 7.0× 10−4.

For the simulations in Figure 5.7, the following resolution was used in the FK code: Nx = 128,

Ny = 32, Nz = 48, corresponding to ∆x = 0.24ρi, ∆y = 0.39ρi, and ∆z = 81.55ρi. A time step
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size of Ωi∆t = 0.2 was used with ∼ 21 particles per cell. An additional test was performed for the

case of R0/LT = 6.9 using the resolution Nx = 256, Ny = 64, Nz = 96 with Ωi∆t = 0.125 and ∼ 21

particles per cell. This produced no significant difference in the real frequency or damping rate,

suggesting that our FK ion model implementation is converged for the results in Figure 5.7.

5.6 Summary and Conclusions

In this chapter, we have explored the use of a fully kinetic ion model to simulate microinstabil-

ities in a toroidal magnetized plasma. Key to this work was the development to include equilibrium

densities in FK ion models for a weakly inhomogeneous magnetic field, which was presented in

Chapter 3.4.2. Full geometric effects due to the toroidal flux tube geometry have been accounted

for in the FK implementation. For this work, a particle integration scheme has been developed,

based on variational principles, which is shown to provide accurate and stable orbits over long sim-

ulation times. In addition, the integration scheme has been shown to accurately conserve constants
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of motion along a particles’ trajectory. FK ion simulations of the toroidal ITG instability have been

carried out for the first time, and good agreement was shown between the FK ion implementation

and the global GEM gyrokinetic code. This work provides a starting point for developing a FK

ion model that can be used to benchmark GK codes. Future work includes the addition of more

elements of realism to the FK code, including nonlinear terms, electromagntic effects, and kinetic

electrons.



Chapter 6

Finite Time Step and Spatial Grid Effects in δf Simulation of Warm Plasmas

The δf method for particle simulation was developed in the nineties as a way to reduce

the noise from particle-in-cell (PIC) methods introduced by using discrete particles to represent

continuous distribution functions over phase space [38–42]. In this algorithm, the full particle

distribution function f is separated into a “background” equilibrium part f0, which is known

analytically, and a perturbed part δf which is solved numerically by evolving the equations of

motion along with a particle “weight” equation for a finite number of computational particles.

Previous studies regarding the numerical properties of the δf method have focused on its sampling

noise properties [40, 41], but to the our knowledge, comprehensive methods for evaluating the

effects introduced by the discretization schemes used with the δf method have not previously been

developed.

In this chapter, we introduce a technique, motivated by the work of Langdon [82], to analyze

the time integration scheme used in the δf method for a uniform, warm, periodic or infinite plasma

in the linear regime. The current work is published in [23]. In the analysis, we consider the evolution

of the particle weights at discrete time increments along the unperturbed particle trajectories. An

end point condition on the particle motion establishes a connection between the value of δf along

the characteristic followed by a Lagrangian particle and the value of δf at a fixed Eulerian point in

phase space. The related Eulerian equation for δf is valid when the scheme has converged in the

number of computational particles, and it includes the effects of the finite time step. An explicit

expression for δf is obtained from the Eulerian equation by assuming a von Neumann-like ansatz
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for all spatial and time varying quantities.

To illustrate the use of this technique, we perform a complete analysis of an implicit integra-

tion scheme applied to a kinetic ion, adiabatic electron plasma model which allows the propagation

of ion acoustic waves. Here, we simply lay out the method for numerical analysis of the δf method

using the test problem important in our particular application area. This analysis can be gen-

eralized and applied to other physical models, for example, to analyze the numerical properties

associated with δf drift-kinetic electrons in gyrokinetic turbulence simulations. It is shown that

the numerical properties of the δf method applied to the test problem are independent of a param-

eter characterizing the implicitness of the integration scheme. The time integration analysis is then

combined with the spatial grid analysis of Langdon [83]. A modified dispersion relation including

effects of both ∆t and ∆x is obtained from which the lowest order corrections to the real frequency

and damping rate are found. Numerical solutions of the modified dispersion relation are also used

to study the stability of the simulation model, and a CFL-like stability condition is found for the

δf method when the ion temperature is low. To validate our results, simulations are performed

and compared to the theory.

In analyzing the numerical properties of the δf method, one of our goals is to assess differences

from the conventional full-f method. To address this, we compare the δf model with a full-f

formulation for the same model problem, including the same implicit integration scheme. Following

the analysis of Langdon, we obtain the modified dispersion relation for the full-f method. Some

comments should be made regarding the linear analysis used to make comparisons of the two

methods. In the full-f method, the linear correction to the number density due to a small electric

field is introduced through the perturbed particle orbits. In the δf method, however, the linear

correction is introduced through the particle weights, and the perturbed particle orbits account

for a correction at a higher order. Hence, the time integration scheme used for the particle weight

equations determine the finite time step effects on the linear dispersion relation for the δf method,

whereas the time integration scheme used for the equations of motion determine the finite time

step effects on the linear dispersion relation for the full-f method.
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This chapter is organized as follows. In Section 6.1, we present the δf and full-f methods

for Particle-in-Cell (PIC) simulations of a kinetic ion species and discuss the linearization of both

methods. In Section 6.2, a field equation is introduced to close the simulation model, assuming

adiabatic electrons and quasi-neutrality. The closed system allows for ion Landau damping of ion

acoustic waves. In Section 6.3, our time integration analysis for the δf method is presented and

applied to the implicit scheme used to advance the ions. The time integration analysis of Langdon is

applied to the same implicit scheme used with the particle equations of motion in the full-f method

in order to make comparisons. In Section 6.4, the spatial grid analysis of Langdon is applied to

both the δf and full-f methods to derive modified dispersion relations including the combined

effects of ∆t and ∆x. In Section 6.5, the modified dispersion relations are studied in detail, and

results regarding the accuracy and stability of the numerical methods are obtained. Simulations

are performed and used to validate the numerical analysis.

6.1 Full-f and δf Particle-in-Cell Methods for Vlasov Ions

We consider the Vlasov equation to describe the evolution of the distribution function f for

a uniform, unmagnetized ion species with charge e

∂f

∂t
+ v · ∇f +

e

mi
E · ∇vf = 0. (6.1)

In this section, we present the equations used for both the full-f and δf methods for PIC simulation

of Eq.(6.1). These methods are both based on evolving a system of Np computational particles

through phase space along the characteristics of Eq.(6.1). We consider simulations in which the

objective of the PIC model is to obtain a number density which is coupled to a field equation for

E. A specific example of such a field equation is given in Section 6.2 and studied in detail for an

implicit time integration scheme applied to the PIC model. The linearization of both PIC methods

will be discussed at the end of this section.
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6.1.1 Full-f Method

We first present the familiar full-f method for solving Eq.(6.1). This method is discussed in

a number of references including [32, 33]. The computational particles (ions) are taken to follow

the Newton-Lorentz equations of motion

dxp(t)

dt
= vp(t)

dvp(t)

dt
=

e

mi
E(xp(t), t)

(6.2)

for p = 1, ..., Np, and the corresponding distribution function at a grid point Xj is given by the

PIC approximation to the Klimontovich representation

fi(x,v, t) ≈
Ni

∆V Np

Np∑
p=1

Sx(Xj − xp(t))δv(v − vp(t)). (6.3)

Here, Ni is the number of physical ions to be modelled, ∆V is the volume of a grid cell, and δv is a

dimensional Dirac delta function with units of velocity−dv with dv the velocity dimensions for the

simulation. The function Sx is called the shape function. The shape function is supported on a set

of finite measure and is used to obtain the velocity moments of fi at the grid points. By integrating

Eq.(6.3) over velocity space, we have the following expression for the number density at grid point

Xj

nj(t) ≈
Ni

∆V Np

Np∑
p=1

Sx(Xj − xp(t)).

Typically, the same function Sx is used in Eq.(6.2) to interpolate the electric field values on grid

points to a particle’s location as

E(xp(t), t) ≈
∑
j

Ej(t)Sx(Xj − xp(t)). (6.4)

6.1.2 δf Method

The δf method starts with the assumption that fi can be separated into a known time

independent equilibrium part and an unknown perturbed part as fi = f0 + δf . Particle weights are

defined for each computational particle as

wp(t) ≡
δf(xp(t),vp(t), t)

fi(xp(t),vp(t), t)
.
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The positions and velocities of the computational particles are taken to follow Eq.(6.2), as in the

full-f method, and the weights are evolved according to

dwp(t)

dt
= −(1− wp(t))

e

mi
E(xp(t), t) · ∇vp ln f0(vp), (6.5)

where the approximation Eq.(6.4) is used in the PIC model. The distribution function at grid point

Xj is then approximated as

fi(Xj ,v, t) ≈ f0(v) +
Ni

∆V Np

Np∑
p=1

wp(t)Sx(Xj − xp(t))δv(v − vp(t)), (6.6)

with the computational particles evolve according to Eq.(6.2) and the weights according to Eq.(6.5).

An integration of Eq.(6.6) over velocity space yields for the number density at Xj

nj(t) ≈ n0 +
Ni

∆V Np

Np∑
p=1

wp(t)Sx(Xj − xp(t)). (6.7)

6.1.3 Linearization of the PIC models

The time stepping analysis for both the full-f and δf methods requires a linearization of the

PIC model equations with respect to a small perturbation from equilibrium. This is accomplished

for the full-f method by splitting xp and vp into unperturbed and perturbed parts as

xp = x(0)
p + x(1)

p

vp = v(0)
p + v(1)

p

where quantities with a superscript (0) are independent of the electric field. The unperturbed

particle orbit is then

x(0)
p (t) = x(0)

p (t = 0) + tv(0)
p (6.8)

with v
(0)
p constant in time. The linear correction to the particle orbit is given by

dx
(1)
p (t)

dt
= v(1)

p (t)

dv
(1)
p (t)

dt
=

e

mi
E(1)(x(0)

p (t), t)
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where E(1) is self consistent with the linear approximation to the number density nj(t) ≈ n0 +

δn
(1)
j (t), where δn

(1)
j (t) is given by

δn
(1)
j (t) = − Ni

∆V Np
∇ ·

Np∑
p=1

x(1)
p (t)S(Xj − x(0)

p (t)). (6.9)

This is the linearized trajectory method as described in [84].

For the δf method, the linear correction comes into the number density through the particle

weights rather than through the perturbed particle orbits. Details on the linearization of the δf

PIC model can be found in Appendix C. Assuming x
(0)
p satisfies Eq.(6.8) with v

(0)
p constant, the

linear particle weight w
(1)
p evolves as

dw
(1)
p (t)

dt
= − e

mi
E(1)(x(0)

p (t), t) · ∇
v

(0)
p

ln f0(v(0)
p ).

Here E(1) is the electric field that is self consistent with the linear approximation to the number

density nj(t) ≈ n0 + δn
(1)
j (t), where δn

(1)
j (t) is given by

δn
(1)
j (t) =

Ni

∆V Np

Np∑
p=1

w(1)
p (t)S(Xj − x(0)

p (t)) (6.10)

and the following definition for w
(1)
p applies as a result of linearization:

w(1)
p (t) =

δf(x
(0)
p (t),v

(0)
p , t)

f0(v
(0)
p )

. (6.11)

When considering the discrete time PIC method, it should be kept in mind that modifications

to the linear dispersion relation in the full-f method due to finite ∆t result from the integration

scheme used for the particle equations of motion, whereas in the δf method, modifications result

from the integration scheme used for the particle weight equation. The corrections due to the

perturbed particle orbits come in at a higher order in the δf method, and therefore any consistent

integration scheme applied to the particle equations of motion should produce similar results at

least for simulations running in the linear regime. Both PIC methods when linearized, provide

approximations to the linearized Vlasov equation. The linearized Vlasov equation is simply given

by

∂δf

∂t
+ v · ∇δf +

e

mi
E(1) · ∇vf0 = 0. (6.12)
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6.2 Model for Electrons and Electric Field

For our analysis, we consider an adiabatic electron model, which when combined with a quasi-

neutrality assumption, will provide an equation coupling the electrostatic E field with δn ≡ n−n0,

to close our simulation model. Linearization of a Boltzmann distribution yields for the perturbed

electron number density

δne(x, t) = n0
eφ(x, t)

Te

where −e is the electron charge and Te the electron temperature taken to be constant. Specifying

E = −∇φ and assuming quasi-neutrality δne = δni ≡ δn, we have

E(x, t) = −Te
e

∇δn(x, t)

n0
. (6.13)

Our model is then closed from δn obtained directly from the ions, which for the linear PIC models

are the second terms on the right hand sides of Eq.(6.9) and Eq.(6.10). We chose this field model to

study because it is the electrostatic limit of the generalized Ohm’s law derived in [15] for the kinetic

ion, fluid electron model. This reduced model allows for the propagation and ion Landau damping

of ion acoustic waves. A dispersion relation from Vlasov theory can be derived using Eq.(6.12) and

Eq.(6.13), which is used to compare the dispersion of our PIC models. For an arbitrary equilibrium

distribution f0, the dispersion relation is

ε0(ω,k) ≡ 1− Te
min0

k ·
∫
∇vf0(v)

k · v − ω
dv = 0.

We assume a Maxwellian background distribution

f0(v) = fM (v) =
n0

(2π)3/2v3
th

e−v
2/2v2

th ,

where we define vth ≡
√
Ti/mi with Ti being the ion temperature. In this case, we have

ε0(ζ) = 1− 1

2T
Z ′(ζ/

√
2) = 0, (6.14)

defining the parameters T to be the ratio of ion and electron temperatures, T = Ti/Te, and ζ to

be the phase velocity normalized by the ion thermal velocity, ζ = ω/kvth, assuming k = kx̂. Here
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Z(θ) is the plasma dispersion function of Fried and Conte [46], defined by the complex integral

Z(θ) =
1√
π

∫ ∞
−∞

e−s
2

(s− θ)
ds, Im θ > 0

and its analytic continuation for Im θ ≤ 0.

6.3 Analysis of an Implicit Time Integration Scheme

In analyzing the finite time step and spatial grid effects, discrete particle effects are ignored,

assuming convergence in the number of computational particles. For the remainder of the chapter,

we drop the subscript p from particle quantities, since there isn’t a need to distinguish between

individual particles in the analysis. A subscript ν is now used instead to index a quantity evaluated

at time step ν∆t. We consider the implicit ODE time integration scheme used in [15] with a time

centering parameter α. The scheme is convergent for 0 ≤ α ≤ 1 and yields the familiar methods

of forward Euler, trapezoidal, and backward Euler for the values of α = 0, α = 1/2, and α = 1

respectively. It is a first order accurate ODE integration method for all values of α except for the

special case of α = 1/2, which is second order accurate. See for example, Chapter 6 of [85]. It is

implicit for all α except for α = 0. The implicit equations can be solved, for example, through a

Picard iteration scheme or with a Jacobian-free Newton-Krylov solver [58,61].

The time integration analysis can be regarded as either an exact analysis of the scheme applied

to the linearized PIC models described in the previous section or as an approximate analysis for

the nonlinear PIC methods when initialized by a small perturbation and run for a short time. The

unperturbed particle orbits in our model will be reproduced exactly due to the consistency of the

integration scheme, yielding

x(0)
ν = x

(0)
ν=0 + ν∆tv(0) (6.15)

where v(0) is constant in time. The unperturbed velocity being constant in time allows for a simple

analysis. The analysis can be extended to more complex models, for example a magnetized plasma

model, provided that the time discretized unperturbed orbits can be solved analytically.
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Since we are interested in the evolution of the distribution function rather than the individual

particle trajectories, we will make the connection between a Lagrangian particle’s phase space

location at time step ν and the Eulerian phase space coordinates. Suppose we wish to know the

distribution function at the discrete time step ν = N . Taking a fixed, arbitrary point (x,v), we

consider a particle with an unperturbed orbit which passes through this point and enforce that it

does so at ν = N . In particular, we require that

x
(0)
ν=N = x

v
(0)
ν=N = v

in Eq.(6.15), which gives for the unperturbed particle orbit

x(0)
ν = x + (ν −N)∆tv. (6.16)

This can be thought of as choosing the particles with initial conditions such that they will contribute

to the density in the infinitesimal region around (x,v) at time step ν = N . It assumes convergence

in the number of computational particles, so we can assume a continuous distribution function.

Since the point (x,v) and time ν = N were chosen arbitrarily, knowing the distribution function

for these arguments will give the distribution function over all of phase space and at all discrete

time values.

6.3.1 Time Integration Analysis for the δf Method

Applying the time integration scheme from [15] to the δf method yields the following discrete

equation for the linear particle weights

w
(1)
ν − w(1)

ν−1

∆t
= −(1− α)G

(1)
ν−1(x

(0)
ν−1,v

(0))− αG(1)
ν (x(0)

ν ,v(0)),

where we have defined

G(1)
ν (x(0)

ν ,v(0)) ≡ e

mi
E(1)
ν (x(0)

ν ) · ∇v(0) ln f0(v(0)).

Noting the definition for w(1) in Eq.(6.11) and using the Eulerian referenced particle expression

in Eq.(6.16), we obtain an Eulerian equation relating δf at the discrete time steps ν = N and
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ν = N − 1

δfN (x,v) = δfN−1(x−∆tv,v)−

∆t
[
(1− α)G

(1)
N−1(x−∆tv,v) + αG

(1)
N (x,v)

]
f0(v).

(6.17)

Next, to obtain an explicit expression for δf , we take a von-Neumann-like ansatz, assuming that

δfN and G
(1)
N have time and spatial dependence as

δfN (x,v) = δf(k,v, z)zNeik·x G
(1)
N (x,v) = G(1)(k,v, z)zNeik·x.

Here z is the amplification factor and can be written in the more familiar form z = e−iω∆t for a

complex frequency ω. Putting the ansatz into Eq.(6.17) and using the definition of G(1), we obtain

δf(k,v, z) =
e

mi

[
∆t

1− zeik·v∆t
− α∆t

]
E(1)(k, z) · ∇vf0(v). (6.18)

Finally, an integration over velocity provides an expression for the linear perturbed number density

δn(1)(k, z) =
e

mi
E(1)(k, z) ·

∫ [
∆t

1− zeik·v∆t

]
∇vf0(v)dv, (6.19)

which will be used in the spatial grid analysis and coupled to our field model in the following

section.

It is interesting to note that for sufficiently well behaved f0, the α∆t term in Eq.(6.18) does

not contribute to the integral. The perturbed number density, Eq.(6.19), and therefore the modified

dispersion relation will be independent of the time centering parameter α. In this work, the model

is electrostatic, therefore only δn is needed in the field equation. If higher velocity moments are

needed, for example in an electromagnetic model, α is expected to have important effects on the

numerical properties of the PIC model. Multiplying Eq.(6.18) by v and integrating over velocity

yields for the perturbed flux density

δnu(1)(k, z) =
e

mi

∫
v

[
∆t

1− zeik·v∆t

]
E(1)(k, z) · ∇vf0(v)dv + α∆t

e

mi
n0E

(1)(k, z),

showing that the α dependence does not necessarily vanish for velocity moments other than δn.

Continuing with our electrostatic model, for f0 = fM in one dimension we have

δn(1)(k, ω) =
ien0

2kTi
E(1)(k, ω)Xδf

(
ω√

2kvth
;
√

2kvth∆t, 0

)
,
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where Xδf is defined by the complex integral

Xδf (θ; η, µ) =
1√
π

∫ ∞
−∞

[
iη

eiη[s(1−µ)−θ] − 1

]
d

ds
e−s

2
ds, Im θ > 0 (6.20)

and its analytic continuation for Im θ ≤ 0. It is assumed that the arguments η and µ are real.

Note that Xδf (θ; η, 0) → Z ′(θ) as η → 0, giving the result obtained from Vlasov theory Eq.(6.14)

as ∆t→ 0.

6.3.2 Time Integration Analysis for the Full-f Method

Next, we will perform Langdon’s time integration analysis for the implicit scheme applied

to the full-f method. We will use this for making comparisons with the δf method and refer the

reader to [82] for details of how the analysis is performed. The time integration scheme applied to

the full-f method yields for the linear perturbed particle orbits

x
(1)
ν − x

(1)
ν−1

∆t
= (1− α)v

(1)
ν−1 + αv(1)

ν

v
(1)
ν − v

(1)
ν−1

∆t
= (1− α)

e

mi
E

(1)
ν−1(x

(0)
ν−1) + α

e

mi
E(1)
ν (x(0)

ν )

The linear perturbed number density that results is

δn(1)(k, z) =
−ie
mi

E(1)(k, z) · k
∫ [

∆t

1− zeik·v∆t
− α∆t

]2

f0(v)dv. (6.21)

For the one dimensional Maxwellian, this gives

δn(1)(k, ω) =
ien0

2kTi
E(1)(k, ω)Xf

(
ω√

2kvth
;
√

2kvth∆t, 0, α

)
,

where Xf is defined by the complex integral

Xf (θ; η, µ, α) ≡ 1√
π

(1− µ)

∫ ∞
−∞

[
iη

eiη[s(1−µ)−θ] − 1
+ iαη

]2

e−s
2
ds, Im θ > 0 (6.22)

and its analytic continuation for Im θ ≤ 0. It is assumed that the arguments η, µ and α are real.

Again, we have that Xf (θ; η, 0, α) → Z ′(θ) as η → 0, yielding the result obtained from Vlasov

theory Eq.(6.14).
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6.4 Finite Time Step and Spatial Grid Dispersion Relations

In this section, we combine the time integration analyses for the δf and full-f methods with

the spatial grid analysis in [83] to obtain modified dispersion relations for our model problem which

include the effects of both ∆t and ∆x for a one dimensional periodic spatial grid. For the remainder

of the chapter, we have k = kx̂ and integration over the y and z directions is assumed. We begin

by summarizing the main ideas of the spatial grid analysis and discuss the appropriate transforms

for simulations on a grid with period Lx.

6.4.1 Transforms for a Periodic Grid

For the analysis, we must consider both continuum and discrete quantities over the spatial

domain and their Fourier representations. The Fourier representation of a continuum quantity P (x)

is to be interpreted as a Fourier series (FS) coefficient. The transform pair is given by

P (x) =
1

Lx

∑
k

P (k)eikx (6.23)

P (k) =

∫ Lx

0
P (x)e−ikxdx, (6.24)

where the sum in Eq.(6.23) is over an infinite number of allowed values of k. The allowed values for

a FS are k = 2πm/Lx for each m ∈ Z. In our model, the continuum quantities include the linear

perturbed number density of point particles δn(1)(x), the electric field interpolated to the particle

locations E(1)(x), and the shape function S(x).

A discrete quantity Gj , which is defined on the grid points, has a discrete Fourier transform

(DFT). The transform pair is given by

Gj =
1

Lx

∑
k

G(k)eikXj (6.25)

G(k) =

Nx−1∑
j=0

Gje
−ikXj∆x, (6.26)

where Nx is the number of grid points and the sum in Eq.(6.25) is over a finite number of allowed

values of k. The allowed values of k in a DFT are k = 2πm/Lx for each m ∈ {−Nx/2 + 1,−Nx/2 +
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2, ..., 0, 1, ...Nx/2}. The discrete quantities in our model include the perturbed number density of

finite sized particles sampled on grid point, denoted δ̃nj , and the electric field defined on the grid

points Ẽj .

6.4.2 The Shape Function

The shape function Sx, which in one dimension we take as Sx = S(x/∆x), is used to inter-

polate between discrete and continuum quantities in the simulation model. To perform the spatial

grid analysis, we relate the Fourier representations of δ̃n to δn(1) and E(1) to Ẽ. As in [83], we have

δ̃n(k) =
∑
q

S(kq∆x)δn(1)(kq), (6.27)

where kq = k − 2πq/∆x with the summation over all q ∈ Z. The presence of S(k∆x) accounts for

the finite size of the computational particles, and the summation over spatial aliases accounts for

the discrete sampling on the grid points. For the electric field, we have

E(1)(k) = S(−k∆x)Ẽ(k), (6.28)

where the presence of S(k∆x) accounts for the interpolation to the locations of the particles.

The shape function is typically taken to be a B-Spline function. For illustration, we consider

a linear B-Spline for our model given explicitly by

S(x) =

 1− |x| : |x| ≤ 1

0 : |x| > 1.

The FS coefficients of S are given by

S(k∆x) = dif2

(
k∆x

2

)
, dif(θ) ≡ sin θ

θ
(6.29)

for each allowed value of k.

6.4.3 Modified Dispersion Relations

We now use the spatial grid analysis outlined above to derive modified dispersion relations

for the δf and full-f methods to include the effects of ∆t and ∆x. We first illustrate the technique
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with the δf method and then simply present the result for the full-f method. Beginning with

Eq.(6.19), we plug into Eq.(6.27) and replace E(1) with Ẽ using Eq.(6.28). Since Ẽ is periodic in

Fourier space, it can be pulled out of the summation, yielding

δ̃n(k, z) =
e

mi
Ẽ(k, z)

∞∑
q=−∞

S(kq∆x)S(−kq∆x)

∫ ∞
−∞

[
∆t

1− zeikqv∆t

]
∂f0

∂v
dv. (6.30)

Next, we use a discrete version of our field model, Eq.(6.13), to relate δ̃n and Ẽ. We consider

a discrete spatial model in which derivatives are taken spectrally, so the DFT version of Eq.(6.13)

is simply

Ẽ(k, z) = −ik Te
en0

δ̃n(k, z). (6.31)

In this case, the spatial derivative corresponds to a multiplication by ik in the DFT. If another

method is used to compute the spatial derivative, this would need to be accounted for in the

analysis. For example, a spatial derivative calculated from a centered finite difference scheme

would correspond to a multiplication by ikdif(k∆x) in the DFT [83].

Using Eq.(6.29), Eq.(6.30), and Eq.(6.31), we arrive at the modified dispersion relation for

the δf method

εδf (k, z) ≡ 1 +
kTe
min0

∞∑
q=−∞

dif4

(
kq∆x

2

)∫ ∞
−∞

[
i∆t

1− zeikqv∆t

]
∂f0

∂v
dv = 0, (6.32)

which for f0 = fM gives

εδf (ζ) = 1− 1

2T

∞∑
q=−∞

dif4

(
kq∆x

2

)
Xδf

(
ζ√
2

;
√

2kvth∆t,
2πq

k∆x

)
= 0. (6.33)

with T and ζ defined as in Eq.(6.14). Repeating the above process using the full-f linear perturbed

number density, Eq.(6.21), gives the modified dispersion relation

εf (k, z) ≡ 1 +
kTe
min0

∞∑
q=−∞

dif4

(
kq∆x

2

)
kq

∫ ∞
−∞

[
∆t

1− zeikqv∆t
− α∆t

]2

f0dv = 0, (6.34)

which for f0 = fM gives

εf (ζ) = 1− 1

2T

∞∑
q=−∞

dif4

(
kq∆x

2

)
Xf

(
ζ√
2

;
√

2kvth∆t,
2πq

k∆x
, α

)
= 0. (6.35)
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6.5 Analysis of the Modified Dispersion Relations

In this section, we analyze the modified dispersion relations Eqs.(6.32)–(6.35) to obtain results

regarding the numerical accuracy and stability of the δf and full-f PIC methods. We study

the accuracy of the real frequency and damping rate using a perturbation method applied to

the dispersion relations with Maxwellian equilibrium distributions Eq.(6.33) and Eq.(6.35). The

stability of the methods is examined analytically for a cold ion plasma and numerically for a finite

temperature Maxwellian plasma.

6.5.1 Dispersion Accuracy

To study the accuracy of the real frequency and damping rate in a Maxwellian plasma for

our PIC methods, we compare the scaled phase velocities ζ obtained from Eq.(6.33) or Eq.(6.35) to

the Vlasov result ζ0 obtained from Eq.(6.14). We assume that ζ has a regular double perturbation

series in the small parameters ε1 = kvth∆t and ε2 = k∆x given as

ζ = ζ0 + ε1ζ(1,0) + ε2ζ(0,1) + ε21ζ(2,0) + ε1ε2ζ(1,1) + ε22ζ(0,2) + ...

This form can be plugged into Eq.(6.33) or Eq.(6.35). The modified dispersion relation is then

expanded in a double Taylor series in ε1 and ε2 and powers of εn1 ε
m
2 are collected. Performing this

procedure with Eq.(6.33) yields for the δf method ζ(1,0) = ζ(0,1) = ζ(1,1) = 0, giving second order

correction terms of

ζ − ζ0 ∼
√

2

6Z ′′(ζ0/
√

2)

[
2T (k∆x)2 − (kvth∆t)2

]
. (6.36)

We note that the Vlasov theory yields a non-dispersive ion acoustic wave, but numerical dispersion

is introduced in the discrete model from ∆t and ∆x. An examination of the signs of the real and

imaginary parts for the terms on the right hand side shows the finite time step will act to increase

the frequency and weaken the damping. The finite spatial step will have the opposite effect. Taking

the ratio vth∆t/∆x =
√

2T will balance the effects and result in a higher order of accuracy.

We validate the expression Eq.(6.36) by performing linear δf simulations varying the size of

kvth∆t for a fixed value of k∆x = π/8. The relative difference in the real frequency, ωR = Re(ω),
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and damping rate, γ = Im(ω), between the values predicted in the Vlasov theory and those produced

in simulations are measured and plotted in Figure 6.1. In the simulations, we choose T = 0.1

which provides a low damping rate, so measurements can be made accurately. A large number

of computational particles (Np = 2097152) are used to make the errors due to the finite number

of particles small compared to the error due to ∆t 6= 0 and ∆x 6= 0. To further reduce errors

associated with discrete particle effects, we use the Hammersley set (bit-reversed numbers) [32] [86]

in the particle loading process. This allows us to simulate Landau-damped ion acoustic modes

for long periods of time and obtain accurate measurements of ωR and γ. The simulation error

results are in excellent agreement with the error predicted from numerically solving Eq.(6.33) and

taking the difference with the solution of Eq.(6.14). We refer to this difference as the theoretical

numerical error. The asymptotic result Eq.(6.36) is also shown to be valid for small kvth∆t. Finally,

the simulation results also confirm that the numerical dispersion is independent of α for the δf

method.
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Figure 6.1: Simulation results varying the size of kvth∆t for the δf method are compared with
the theoretical numerical error and the asymptotic error for values of α = 0, 1/2, and 1. It can be
seen that errors decrease rapidly near the region where vth∆t/∆x =

√
2T . As kvth∆t continues to

decrease past this region, the error is due to finite k∆x.

Repeating this analysis for the full-f method using Eq.(6.35), we find the correction to ζ at
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the lowest order to be

ζ − ζ0 ∼
√

2

6Z ′′(ζ0/
√

2)

[
12i(2α− 1)

ζ0
(T + 1)(kvth∆t) + 2T (k∆x)2

]
(6.37)

showing the method to produce results which are first order accurate in time for all α except

α = 1/2. The effect of ∆x is again to lower the frequency and strengthen the damping. The effect

of ∆t is more difficult to analyze directly from Eq.(6.37) and is dependent on both T and α. For

α = 1/2, the full-f method will produce results which are second order accurate in time. The

correction to ζ is then given by

ζ − ζ0 ∼
√

2

3Z ′′(ζ0/
√

2)

[
(kvth∆t)2 + T (k∆x)2

]
. (6.38)

Again, we compare the results of Eq.(6.37) and Eq.(6.38) with simulations varying the size of

kvth∆t. The same values for Np and k∆x are used as with the δf method. These results are

presented in Figure 6.2. Finally, we test the convergence of the δf and full-f methods in k∆x,
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Figure 6.2: Simulation results varying the size of kvth∆t for the full-f method are compared with
the theoretical numerical error and the asymptotic error, including second order terms, for values
of α = 0, 1/2, and 1.

fixing kvth∆t = 0.075 and α = 1/2. The results are presented in Figure 6.3.
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Figure 6.3: Simulation results varying the size of k∆x for both the δf and full-f methods are
compared with the theoretical numerical error and the asymptotic error.

6.5.2 Numerical Stability Analysis for Cold Ions

Next, we consider how the full-f and δf PIC methods behave in the cold ion limit, which

allows for a straight-forward analysis of the modified dispersion relations. In the next section, we

will examine the stability properties with increasing ion temperature. For the cold ion stability

analysis, we begin with the δf method, choosing f0(v) = n0δ(v) in Eq.(6.32). With this choice, the

velocity integration and the summation can be performed exactly, and we are left with a quadratic

equation for the amplification factor z given by

(1− z)2 + z(kcs∆t)
2dif

(
k∆x

2

)
cos

(
k∆x

2

)
= 0, (6.39)

where cs ≡
√
Te/mi is the ion sound speed. The solution to Eq.(6.39) gives stability restrictions

on k∆x and kcs∆t from the requirement that |z| ≤ 1. The region in this parameter space that will

produce stable solutions is shown in Figure 6.4. A simple condition to ensure stability at any wave

number can be given by

cs
∆t

∆x
≤ 1.483,

which is obtained by finding the maximum possible slope of a line segment through parameter

space connecting the points (0, 0) and (π, kcs∆t) and contained entirely in the region of linear
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stability. This is in a form similar to a Courant-Friedrichs-Lewy (CFL) condition [87], which is not

typically observed when using implicit time integration schemes. For the full-f method, choosing

k∆x
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∆
t
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Figure 6.4: The cold ion stability region for the δf method is plotted. The shaded area represents
regions in the parameter space (k∆x, kcs∆t) which will result in stable simulations.

f0(v) = n0δ(v) in Eq.(6.34) gives the following equation for the amplification factor

(1− z)2 + (1− α+ αz)2(kcs∆t)
2dif

(
k∆x

2

)
cos

(
k∆x

2

)
= 0.

Solving this equation gives for the square modulus of either root

|z|2 =
k∆x+ (kcs∆t)

2(1− α)2 sin (k∆x)

k∆x+ (kcs∆t)2α2 sin (k∆x)
,

which is greater than unity when α < 1/2 and less than unity when α > 1/2, independent of kcs∆t

and k∆x. Hence the cold ion stability of the full-f method is determined by the implicitness of the

scheme, as is usually expected, and no CFL condition is present.

6.5.3 Numerical Stability Analysis for Warm Ions

A stability analysis for the warm Maxwellian equilibrium distribution is more difficult, requir-

ing the numerical solutions of Eq.(6.33) and Eq.(6.35). A discussion on the numerical solution of



115

integrals of similar form to Eq.(6.20) and Eq.(6.22) can be found in the appendix of [82]. A search

for the boundary of the stability region is performed by numerically solving the dispersion relations

over a region of the parameter space (k∆x, kvth∆t) and determining the contours for which |z| = 1.

Stability conditions of the form

r ≡ vth
∆t

∆x
≤ Cmax

are then determined from the stability region boundaries to ensure stability at all present wave

numbers. Here, Cmax is the Courant number [87], which depends on T for warm ions.

6.5.3.1 Warm Ion Stability for the δf Method

The stability region boundaries for the δf method are shown in Figure 6.5 for various values

of T . It is observed that the δf method shows better stability as T is increased. The unstable

regions become smaller for higher temperatures and vanish altogether for temperatures above a

critical value between T = 0.6 and T = 0.7. Courant numbers are given in Table 6.1 for the
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Figure 6.5: Stability regions for the δf method are plotted for various values of T . The different
shaded areas represent regions in the parameter space (k∆x, kvth∆t) which will result in stable
simulations for T above the indicated value.

different values of T , along with the first mode to become unstable as r is increased past Cmax.
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Finally, a predicted instability for T = 0.3 is demonstrated by performing the simulations shown in

Figures 6.6 and 6.7. The initial conditions are taken such that each non-zero wave number in the

DFT begins with a finite perturbation, as discussed in Appendix D. The simulation in Figure 6.6

is observed to be stable at all wave numbers with r = 0.62. In Figure 6.7, r = 0.66 and the modes

near k∆x = 1.96 are shown to exhibit exponential growth. This is in agreement with the predicted

instability for r > 0.64. It is observed from the numerical solution of Eq.(6.33) and simulations

that ωR∆t = π at the onset of the instability in the δf method. This is thought to be due to

inadequate temporal resolution of the ion acoustic wave for the first unstable DFT wave number,

since the physical wave from Eq.(6.14) has a real frequency exceeding π/∆t.

T Cmax k∆x

0.10 0.40 2.27
0.20 0.51 2.19
0.30 0.64 1.96
0.40 0.82 1.66
0.50 1.09 1.31
0.60 1.73 0.87
0.70 ∞ -

Table 6.1: Courant numbers (Cmax) are given for warm δf ions for various values of T , along with
the first discrete mode to become unstable (k∆x) as r is increased past Cmax.

6.5.3.2 Warm Ion Stability for the Full-f Method

For the full-f method, it is observed that unconditional stability is maintained for α ≥ 0.5

as temperature is increased. For α < 0.5, simulations are no longer unconditionally unstable,

but instead develop stability regions in (k∆x, kvth∆t) space. Again stability is improved as T is

increased, and for fixed values of α < 0.5, there are critical temperatures for which the unstable

regions vanish making the method unconditionally stable. An example of the finite temperature

stability regions is shown in Figure 6.8 for α = 0.250. The critical temperature occurs between

T = 0.18 and T = 0.20. Courant numbers are given in Table 6.2 for α = 0.125, 0.250, and 0.375 at

different values of T . Finally, a predicted instability for α = 0.250 at T = 0.14 is demonstrated by
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(a) Time history of DFT modes of eφ/Te (b) Time history of eφ/Te in real space

Figure 6.6: δf simulation for T = 0.3 and r = 0.62. The initial condition is taken to give a
finite perturbation to each non-zero wave number in the DFT. The simulation is stable at all wave
numbers, in agreement with the theory which predicts stability for r < 0.64.

Figure 6.7: δf simulation for T = 0.3 and r = 0.66. The time history of the DFT modes is shown
with the initial condition taken to give a finite perturbation to each non-zero wave number in the
DFT. Exponential growth of the modes near k∆x = 1.96 is observed for r = 0.66, in agreement
with the predicted instability for r > 0.64.

performing the simulations shown in Figures 6.9 and 6.10. The initial conditions are again taken to

excite each non-zero wave number in the DFT with a finite perturbation. The simulation in Figure

6.9 is observed to be stable for r = 0.16. In Figure 6.10, r = 0.24 and the modes near k∆x = 0.91

are shown to grow with time. This is in agreement with the predicted instability for r > 0.20. It is
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Figure 6.8: Stability regions for the full-f method with α = 0.25 are plotted for various values of
T . The different shaded areas represent regions in the parameter space (k∆x, kvth∆t) which will
result in stable simulations for T above the indicated value.

observed that the instabilities for the full-f method occur for values ωR∆t < π. The physical wave

from Eq.(6.14) can be resolved on the time “grid” for the first unstable DFT wave number in this

case, having a real frequency less than π/∆t.

α = 0.125

T Cmax k∆x

0.08 0.02 0.85
0.10 0.04 0.92
0.12 0.07 0.97
0.14 0.12 0.98
0.16 0.19 0.95
0.18 0.28 0.88
0.20 0.45 0.74
0.22 1.05 0.40
0.24 ∞ -

α = 0.250

T Cmax k∆x

0.08 0.02 0.84
0.10 0.06 0.91
0.12 0.11 0.94
0.14 0.20 0.91
0.16 0.33 0.82
0.18 0.68 0.56
0.20 ∞ -
0.22 ∞ -
0.24 ∞ -

α = 0.375

T Cmax k∆x

0.08 0.05 0.83
0.10 0.13 0.86
0.12 0.28 0.77
0.14 1.48 0.25
0.16 ∞ -
0.18 ∞ -
0.20 ∞ -
0.22 ∞ -
0.24 ∞ -

Table 6.2: Courant numbers (Cmax) are given for warm full-f ions for various values of T and
α < 1/2, along with the first discrete mode to become unstable (k∆x) as r is increased past Cmax.
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(a) Time history of DFT modes of eφ/Te (b) Time history of eφ/Te in real space

Figure 6.9: Full-f simulation for T = 0.14, α = 0.25, and r = 0.16. The initial condition is taken
to give a finite perturbation to each non-zero wave number in the DFT. The simulation is stable
at all wave numbers, in agreement with the theory which predicts stability for r < 0.20.

Figure 6.10: Full-f simulation for T = 0.14, α = 0.25, and r = 0.24. The time history of the DFT
modes is shown with the initial condition taken to give a finite perturbation to each non-zero wave
number in the DFT. Exponential growth of the modes near k∆x = 0.91 is observed for r = 0.24,
in agreement with the predicted instability for r > 0.20.

6.6 Summary

In this chapter, we have developed a theoretical framework for analyzing implicit and explicit

time integration schemes applied to δf method PIC models. This work is easily combined with the
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spatial grid analysis of Langdon to provide modified dispersion relations to include the numerical

effects of both ∆t and ∆x. The analysis is illustrated for the adjustable time centering implicit

scheme [15]. A significant challenge is to analyze the resulting modified dispersion relations that

include finite ∆t and ∆x. We used a perturbative method to obtain lowest order corrections to the

real frequency and damping rate due to ∆t and ∆x. This provides a theory for the accuracy of

the simulations and can also provide some insights on the stability of various δf schemes. Further

exploring the issue of numerical stability, we find that a CFL condition exists in the δf method

PIC model at low ion temperatures, independent of the parameter α, which characterizes the

implicitness of the scheme. We note that this unusual behavior occurs only for implicit δf PIC with

low temperature ions. Full-f PIC does not exhibit this behavior and can be made unconditionally

stable with sufficient implicitness. For cold ions, this condition can become restrictive for increasing

grid resolution. The CFL condition for this particular model illustrates an unusual issue that may

be encountered when using the δf method. In particular, it is possible for implicit schemes to

provide no additional stability.



Chapter 7

Summary and Discussion

In this thesis, we have advanced the development of fully kinetic (FK) ion models, based on

evolving the full form of the Newton-Lorentz equations of motion, to be used for low-frequency

magnetized plasma simulations. Such models offer formal simplicity over higher order gyrokinetic

(GK) models and can provide an important validation tool or replacement for GK ion models

in regimes where the GK ordering assumptions may be in question. The new work presented in

this thesis begins with analytical studies performed for a slab ion temperature gradient (ITG)

instability model, comparing the use of FK ions and GK ions. Dispersion relations were derived for

each model. The dispersion relation for the FK ion model was shown to reduce to the dispersion

relation for the GK ion model under the GK ordering assumptions. This gives us confidence that

the same low frequency normal modes are captured in both models; hence, the FK ion model is

appropriate to be used in comparison studies with gyrokinetics.

In addition to the low frequency normal modes, the FK ion slab ITG model allows for the

propagation of ion Bernstein modes at frequencies near the harmonics of the ion gyro-frequency.

These high frequency, undamped modes are a potential source of difficulty in the numerical simula-

tions using the FK ion model. This was the case when we focused on the simulation of ion Landau

damped ion acoustic waves, taking a spatially homogeneous equilibrium distribution. Large am-

plitude ion Bernstein modes were present in the simulations, obscuring the low frequency physics

when FLR effects were included. This motivated the study of the FK ion acoustic wave model as an

initial value problem using the Laplace transform method in order to obtain information about the



122

relative amplitudes of the normal modes in the continuous model. The theory derived was found to

accurately predict the amplitudes of each normal mode in the simulation, indicating that the large

Bernstein modes were consistent with the model and not spurious numerical effects. Nevertheless,

for comparison purposes it is desirable to be able to isolate the low frequency fluctuations in the

simulations. Towards this goal, an implicit orbit averaging/sub-cycling algorithm was explored in

which the particle system and field equations are advanced with separate time step sizes. The

orbit averaging/sub-cycling algorithm was shown to accurately produce FLR effects for the low fre-

quency ion acoustic wave while reducing the undesirable effects of the high frequency ion Bernstein

modes. In addition, a reformulation of the implicit electrostatic field model was found to introduce

numerical damping of the high frequencies. The use of GPUs with the orbit averaging/sub-cycling

algorithm was also explored in this work and a speedup factor of ∼ 48 was achieved compared to

an equivalent serial CPU implementation. The use of GPUs therefore holds promise for handling

the more expensive particle integration associated with the FK ion model.

An extension to the slab ITG model was developed in this thesis for including equilibrium

gradients for a plasma in a weakly inhomogeneous background magnetic field. This extended model

was then implemented to simulate the toroidal ITG instability with FK ions for the first time. Key

to this work was the development of a particle integration scheme based on variational principles.

The integration scheme was shown to produce accurate particle orbits in a toroidal magnetic field

for long simulation times. In addition, the integrator was shown to accurately conserve constants of

motion. The FK toroidal ITG implementation was benchmarked with the global GEM gyrokinetic

code and good agreement was observed for the real frequencies and damping rates, giving us

confidence in our implementation. Future directions for this work include the implementation of

nonlinear terms, electromagnetic effects, and kinetic electrons.

Finally, in the course of this work on FK ion models, we have developed for the first time a

comprehensive method for evaluating the effects introduced by the discretization schemes applied

to the δf particle-in-cell method. Using this method, a complete numerical analysis was performed

of an implicit integration scheme applied to the ion acoustic wave model. A full-f particle-in-
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cell method applied to the same model was analyzed as well for comparison purposes using the

methods of Langdon [82,83]. It was demonstrated that the two methods can exhibit very different

numerical properties even when similar integration schemes are applied. An interesting property

of the implicit scheme applied to the δf method was also revealed by this analysis. When only

the perturbed number density is present in the field equations, the implicitness of the scheme

offers no additional stability. This effect was confirmed with simulations and was the motivation

for reformulating the field model to include a perturbed flux density for the orbit averaging/sub-

cycling scheme.
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Appendix A

Justification for Contour Deformation in the Inverse Laplace Transform

The justification for the contour deformation used to obtain Eq.(4.10) follows from the ana-

lyticity of the functions F , G, and H defined by the sums

F (u; a, b) =
∞∑

n=−∞
Z(u+ an)In(b)e−b

G(u; a, b) =

∞∑
n=−∞

Z ′(u+ an)In(b)e−b

H(u; a, b) =

∞∑
n=−∞

nZ(u+ an)In(b)e−b,

where u ∈ C, a ∈ R, and b ∈ R>0, with

R>0 =
{
x ∈ R

∣∣x > 0
}
.

In the series definitions, Z is the plasma dispersion function of Fried and Conte, which is analytic

over the whole complex plane, and In is the nth modified Bessel function of the first kind. To prove

the analyticity of these functions, we begin with the following lemma.

Lemma A.1. The plasma dispersion function is bounded by a function depending only on Im(w)

as

|Z(w)| ≤ 2(1 +
√
πeIm(w)2

)

for all w ∈ C.

Proof. We begin with an integral definition for Z, which is valid for all complex arguments

Z(w) = 2ie−w
2

∫ iw

−∞
e−t

2
dt.
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Setting w = x+ iy and taking the contour to be the straight path from w = −∞ to w = −y along

the real axis, joined with the straight path from w = −y to w = −y + ix parallel to the imaginary

axis, we have

Z(x+ iy) = 2ie−(x+iy)2

(∫ −y
−∞

e−s
2
ds+ i

∫ x

0
e−(y−is)2

ds

)
.

From this expression, the following bound is readily obtained:

|Z(x+ iy)| ≤ 2

∫ −y
−∞

ey
2−s2ds+ 2

∫ |x|
0

es
2−x2

ds.

The first integral can be bounded by extending the upper limit of integration to +∞. For the

second integral, we have ∫ |x|
0

es
2−x2

ds ≤
∫ |x|

0
esx−x

2
ds =

1− e−x2

|x|
.

This function is bounded at x = 0, since 1− e−x2 ∼ O(x2). In addition, it remains bounded for all

x ∈ R, since

1− e−x2

|x|
=

∫ |x|
0 2te−t

2
dt

|x|
≤
√

2e−1/2 < 1.

The inequality then follows.

Theorem A.1. The series of analytic functions

∞∑
n=−∞

Z(u+ an)In(b)e−b

with a ∈ R and b ∈ R>0 is uniformly convergent over the domain in the complex plane defined by

D = {u ∈ C
∣∣− y0 < Im(u) < y0} for any y0 > 0. Since uniform convergence of a series of analytic

functions guarantees analyticity of the sum, the function F is an analytic function of u over D.

Furthermore, the series of analytic functions

∞∑
n=−∞

Z ′(u+ an)In(b)e−b

also converges to an analytic function in D, which is equal to the derivative of F . Hence, G is an

analytic function of u over D and G = F ′.
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Proof. The proof follows from Lemma A.1 and the Weierstrass M-test. Each term in the series is

bounded as

|Z(u+ an)In(b)e−b| ≤ 2(1 +
√
πeIm(u)2

)In(b)e−b ≤ 2(1 +
√
πey

2
0 )In(b)e−b

in D. Furthermore, the modified Bessel function series gives

∞∑
n=−∞

2(1 +
√
πey

2
0 )In(b)e−b = 2(1 +

√
πey

2
0 ) <∞.

The Weierstrass M-test therefore guarantees uniform convergence of the series. The analyticity of

F in D follows directly from the uniform convergence of its series definition. Uniform convergence

of the series also allows term by term differentiation to obtain a series which converges to the

derivative of the sum in D. This follows from a standard theorem in complex analysis. See, for

example, Chapter 5 of [88].

Theorem A.2. The series of analytic functions

∞∑
n=−∞

nZ(u+ an)In(b)e−b

with a ∈ R and b ∈ R>0 is uniformly convergent over D. Since uniform convergence of a series of

analytic functions guarantees analyticity of the sum, H is an analytic function of u over D.

Proof. The proof again follows from Lemma A.1 and the Weierstrass M-test. Each term in the

series is bounded as

|nZ(u+ an)In(b)e−b| ≤ 2(1 +
√
πeIm(u)2

)|nIn(b)|e−b

≤ b(1 +
√
πeIm(u)2

)|In−1(b)− In+1(b)|e−b

≤ b(1 +
√
πeIm(u)2

) (In−1(b) + In+1(b)) e−b.

in D. The second inequality follows from the identity

2n

b
In(b) = In−1(b)− In+1(b),
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and the third inequality is an application of the triangle inequality with In(b) > 0 for b > 0. The

modified Bessel function series gives

∞∑
n=−∞

b(1 +
√
πeIm(u)2

) (In−1(b) + In+1(b)) e−b = 2b(1 +
√
πey

2
0 ) <∞.

The Weierstrass M-test therefore guarantees uniform convergence of the series. The analyticity of

H in D follows directly from the uniform convergence of its series definition.

The contour deformation is justified since φk(p) can be expressed as:

eφk
Te

(p) =

A0

i
√

2k‖ρi
F

(
ip/Ωi√
2k‖ρi

; a, b

)
1− θ

2G

(
ip/Ωi√
2k‖ρi

; a, b

)
− θ√

2k‖ρi
H

(
ip/Ωi√
2k‖ρi

; a, b

) ,
taking the parameters to be a = 1√

2k‖ρi
and b = k2

⊥ρ
2
i . Since the proofs in Theorems A.1 and A.2

apply to an arbitrarily large portion of the complex plane, we consider in particular the domain

D′ = {p ∈ C : −R0 ≤ Re(p) ≤ R0}, where R0 is chosen such that R0 > max(α, σ), as illustrated

in Figure A.1. Then D′/{pj} defines a domain in which the contour of Figure 4.1 a) can be

continuously deformed into that of Figure 4.1 b), without crossing any singularities of φk.

Re(p)

Im(p)

R0R0

σα

D′

Figure A.1: The domain D′ = {p ∈ C : −R0 < Re(p) < R0}, where R0 > max(α, σ).
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A Brief Overview of Discrete Variational Mechanics

Here, we derive the discrete Euler-Lagrange equations, which provides the foundation for

the integrator used for the equilibrium orbits in Chapter 5. The derivation is along the same

lines as that of the continuous theory. Similar derivations can be found in a number of references

including [77] [80].

B.1 Discrete Euler-Lagrange Equations

Beginning with a Lagrangian L given as a function of generalized coordinates q = (q1, q2, ..., qN )

and generalized velocities q̇ = (q̇1, q̇2, ..., ˙qN ), we assume a setting in which time is discretized uni-

formly by ∆t. We denote the generalized coordinates and generalized velocities at time t = ν∆t

by qν and q̇ν respectively and define a discrete Lagrangian, Ld, to be an approximation of the time

integral of L between two discrete time points, i.e.

Ld(qν , qν+1) ≈
∫ tν+1

tν
L(q, q̇)dt, (B.1)

where some quadrature rule is used in the approximation. There is some flexibility in how the

right hand side is approximated, with these choices determining the form of Ld and the resulting

integration scheme. It is typical to approximate q̇ by

q̇ ≈ qν+1 − qν

∆t
for t ∈ [ν∆t, (ν + 1)∆t] .
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With this approximation, common choices for the quadrature in Eq.(B.1) include the trapezoidal

rule, for which

Ld(qν , qν+1) =
∆t

2
L
(
qν ,

qν+1 − qν

∆t

)
+

∆t

2
L
(
qν+1,

qν+1 − qν

∆t

)
or the midpoint rule, yielding

Ld(qν , qν+1) = ∆tL
(
qν + qν+1

2
,
qν+1 − qν

∆t

)
.

In what follows, we assume that the approximation used in Eq.(B.1) depends only on the generalized

coordinates from two time steps (qν , qν+1), but otherwise do not specify the form. Next, we define

the discrete action over the interval t ∈ [0, N∆t] to be a sum of discrete Lagrangians as

Sd =
N−1∑
ν=0

Ld(qν , qν+1). (B.2)

In analogy with Hamilton’s principle in continuous Lagrangian mechanics, we assume specified

states at times t0 and tN and require the discrete time trajectory {qν}Nν=0 to be such that the

variation in the discrete action vanishes. Taking the variation of Eq.(B.2), we have

δSd = δ
N−1∑
ν=0

Ld(qν , qν+1) =
N−1∑
ν=0

[
∂

∂qν
Ld(qν , qν+1) · δqν +

∂

∂qν+1
Ld(qν , qν+1) · δqν+1

]
.

Setting δSd equal to zero and noting that δq0 = δqN = 0, we have

N−1∑
ν=1

∂

∂qν
Ld(qν , qν+1) · δqν +

N−2∑
ν=0

∂

∂qν+1
Ld(qν , qν+1) · δqν+1 = 0.

A shift of index in the second summation yields

N−1∑
ν=1

∂

∂qν
[
Ld(qν , qν+1) + Ld(qν−1, qν)

]
· δqν = 0. (B.3)

Since Eq.(B.3) holds for any variation in the trajectory, it follows that

∂

∂qν
[
Ld(qν , qν+1) + Ld(qν−1, qν)

]
= 0, (B.4)

which is the discrete analog of the Euler-Lagrange equations.
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B.2 Position-Momentum Form

An equivalent form of Eq.(B.4) which has analogies to the Hamiltonian formulation of me-

chanics is obtained by defining the discrete momentum by

pν = − ∂

∂qν
Ld(qν , qν+1) =

∂

∂qν
Ld(qν−1, qν).

Equation (B.4) can then be expressed in the position-momentum form as

pν = − ∂

∂qν
Ld(qν , qν+1) (B.5)

pν+1 =
∂

∂qν+1
Ld(qν , qν+1). (B.6)

Assuming (qν , pν) are given, Eq.(B.5) is first solved to obtain qν+1, after which pν+1 can be obtained

simply by plugging into Eq.(B.6). The position-momentum form provides the starting point for

the integration scheme presented in Chapter 5.
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Linearization of the δf Method

To linearize the δf method, we let ε be a parameter representing the perturbation size at

t = 0. For example, ε may be present in an initial condition as

wp(t = 0) = εg(xp(t = 0),vp(t = 0)).

where g(x,v) ∼ O(1). We assume that all quantities in the model are analytic in ε around the

unperturbed system and denote the ε dependence of a time dependent quantity by ψ(t; ε). The

unperturbed system, corresponding to ε = 0, is given by

Ej(t; 0) = 0, δnj(t; 0) = 0, wp(t; 0) = 0, vp(t; 0) = v(0)
p , xp(t; 0) = x(0)

p (t).

This allows an expansion in ε as

Ej(t; ε) = εE
(1)
j (t) + ...

δnj(t; ε) = εδn
(1)
j (t) + ...

wp(t; ε) = εw(1)
p (t) + ... (C.1)

vp(t; ε) = v(0)
p + εv(1)

p (t) + ...

xp(t; ε) = x(0)
p (t) + εx(1)

p (t) + ....

We note that for a quantity ψ(t; ε) to be accurately approximated as
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ψ(t; ε) ≈ ψ(0)(t) + εψ(1)(t),

it is necessary that εmψ(m)(t) � ψ(0)(t) + εψ(1)(t) for all m ≥ 2. This requirement, however, is

not guaranteed to hold uniformly in time for the linearized model. The linearized model, therefore,

should only be expected to accurately model the behavior of the nonlinear system on short time

scales after a small perturbation.

Proceeding with the expansion in Eq.(C.1), we compute the perturbed number density at

grid point Xj from Eq.(6.7), including terms to O(ε). We have

δnj(t; ε) =
Ni

∆V Np

Np∑
p=1

wp(t; ε)Sx(Xj − xp(t; ε)) = ε
Ni

∆V Np

Np∑
p=1

w(1)
p (t)Sx(Xj − x(0)

p (t)) +O(ε2),

yielding

δn
(1)
j (t) =

Ni

∆V Np

Np∑
p=1

w(1)
p (t)Sx(Xj − x(0)

p (t)). (C.2)

Next, to compute w
(1)
p (t), we plug Eq.(C.1) into the nonlinear particle weight equation Eq.(6.5)

and expand to O(ε). This gives

dw
(1)
p (t)

dt
= − e

mi
E(1)(x(0)

p (t), t) · ∇
v

(0)
p

ln f0(v(0)
p ), (C.3)

where E(1)(x
(0)
p (t), t) is the O(ε) term of the interpolated electric field

E(1)(x(0)
p (t), t) =

∑
j

E
(1)
j (t)Sx(Xj − x(0)

p (t)).

We note that Eq.(C.2) and Eq.(C.3) require only the computation of the unperturbed particle

orbits. This is in contrast to the linearization of the full-f method, which requires the first order

perturbations of the particle orbits. Plugging Eq.(C.1) into Eq.(6.2), we have for the unperturbed

particle orbits, simply,
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dx
(0)
p (t)

dt
= v(0)

p

dv
(0)
p

dt
= 0.

Finally, for the first order electric field at grid point Xj , we plug Eq.(C.1) into a discretized version

of Eq.(6.13). This yields

E
(1)
j (t) =

Te
en0

Dδn
(1)
j (t),

where D is a discrete gradient operator.
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Initialization

In our tests of numerical stability, an initial condition of the form

f(x, v, t = 0) =

(
1 +

δn(1)(x, t = 0)

n0

)
f0(v) (D.1)

is used for both the δf and full-f PIC simulations, where δn(1)(x, t = 0) is chosen to excite each

non-zero wave number in the DFT with a finite perturbation. To initialize the perturbed density

such that the DFT is approximately constant across the non-zero wave numbers, the filtering due

to the shape function must be accounted for. To counter this effect, a Fourier filter H(k) is used

with the FS of the initial condition. The filter defined by:

H(k) =


1

S(k) : k ∈ (− π
∆x ,

π
∆x ] \ {0}

0 : k ∈ (−∞,− π
∆x ] ∪ {0} ∪ ( π

∆x ,∞)

works well for this purpose.

D.1 δf initialization

For the linear δf simulations, the initial density perturbation is chosen as

δn(1)(x, t = 0) = A n0 Re

{∑
k

H(k)eikx

}
.

where A is the amplitude at which we wish to excite the DFT modes. Notice from D.1, we have

δf(x, v, t = 0)

f0(v)
=
δn(1)(x, t = 0)

n0
.
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Therefore to implement this initial condition for the linear δf simulations, the unperturbed particle

positions x
(0)
p are loaded uniformly in space and the particle weights are initialized by

w(1)
p (t = 0) = A Re

{∑
k

H(k)eikx
(0)
p (t=0)

}
.

D.2 Full-f initialization

For the linear full-f simulations, the initial density perturbation is related to the perturbed

particle positions through

δn(1)(x, t = 0) = −∂P
(1)(x, t = 0)

∂x
,

where

P (1)(x, t = 0) =

∫ ∞
−∞

x(1)(x, v, t = 0)f0(v)dv.

By choosing x(1) to be independent of v at t = 0, this is simply

P (1)(x, t = 0) = n0 x
(1)(x, t = 0).

The initial particle position perturbation is taken as

x(1)(x, t = 0) = A Re

∑
k 6=0

iH(k)

k
eikx

 ,

and the initial particle velocity perturbation is taken as zero. To implement this initial condition

then, the unperturbed particle positions x
(0)
p are loaded uniformly in space, and the perturbed

particle data is initialized by

x(1)
p (t = 0) = A Re

∑
k 6=0

iH(k)

k
eikx

(0)
p (t=0)

 ,

and

v(1)
p (t = 0) = 0.


