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Karmakar, Sanjay (Ph.D., Electrical, Computer and Energy Engineering)

Information Theoretic Limits of MIMO Interference and Relay Networks

Thesis directed by Prof. Mahesh K. Varanasi

In this thesis, the information theoretic performance limits of two important building blocks

of the general multi-user wireless network, namely, the interference channel and the relay channel,

are characterized. We consider both time-invariant and time-varying or fading channel. In the

first part, we focus on the 2-user interference channel with time-invariant channel coefficients.

First, we characterize the capacity region of a class of MIMO IC called strong in partial order

ICs. It turns out that for this class of channels decoding both the messages at both the receivers

is optimal, i.e., the capacity region is identical to that of the compound multiple access channel

(MAC). The defining constraints on the channel coefficients for the class of strong in partial order

ICs enable us to derive a novel tight upper bound to the sum rate of the channel – a problem that

is very difficult for general channel coefficients. To avoid this difficulty for the general IC, we next

derive upper and lower bounds which are not identical but are within a constant number of bits to

each other which characterizes the capacity region of the 2-user multi-input multi-output (MIMO)

Gaussian interference channel (IC) with an arbitrary number of antennas at each node to within

a constant gap that is independent of the signal-to-noise ratio (SNR) and all channel parameters.

In contrast to an earlier result in [Telatar and Tse, ISIT, 2007], where both the achievable rate

region and upper bounds to the capacity region of a general class of interference channels was

specified as the union over all possible input distributions here we provide, a simple and an explicit

achievable coding scheme for the achievable region and an explicit outer bound. We also illustrate an

interesting connection of the simple achievable coding scheme to MMSE estimators at the receivers.

A reciprocity result is also proved which is that the capacity of the reciprocal MIMO IC is within

a constant gap of the capacity region of the forward MIMO IC.

We also analyze the channel’s performance in the high SNR regime, which is obtained from
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the explicit expressions of the approximate capacity region and the resulting asymptotic rate region

is known as the generalized degrees of freedom (GDoF) region. A close examination of the super

position coding scheme which is both GDoF and approximate capacity optimal reveals that joint

signal-space and signal-level interference alignment is necessary to achieve the GDoF region of the

channel. The admissible DoF-splits between the private and common messages of the HK scheme

are also specified. A study of the GDoF region reveals various insights through the joint depen-

dence of optimal interference management techniques (at high SNR) on the SNR exponents and

the numbers of antennas at the four terminals. For instance, it reveals that, unlike in the scalar

IC, treating interference as noise is not always GDoF-optimal even in the very weak interference

regime. Moreover, while the DoF-optimal strategy that relies just on transmit/receive zero-forcing

beamforming and time-sharing is not GDoF optimal (and thus has an unbounded gap to capacity),

the precise characterization of the very strong interference regime where single-user DoF perfor-

mance can be achieved simultaneously for both users depends on the relative numbers of antennas

at the four terminals and thus deviates from what it is in the SISO case. For asymmetric numbers

of antennas at the four nodes the shape of the symmetric GDoF curve can be a distorted W curve

to the extent that for certain MIMO ICs it is a V curve.

In the second part of the thesis, we concentrate on time varying fading channels. We first char-

acterize the fundamental diversity-multiplexing tradeoff (DMT) of the quasi-static fading MIMO Z

interference channel (ZIC) with channel state information at the transmitters (CSIT) and arbitrary

number of antennas at each node. A short-term average power constraint is assumed. It is shown

that a variant of the superposition coding scheme described above, where the 2nd transmitter’s

signal depends on the channel matrix to the first receiver and the 1st user’s transmit signal is

independent of CSIT, can achieve the full CSIT DMT of the ZIC. We also characterize the achiev-

able DMT of a transmission scheme, which does not utilize any CSIT and show that for some

range of multiplexing gains, the full CSIT DMT of the ZIC can be achieved by it. The size of this

range of multiplexing gains depends on the system parameters such as the number of antennas at

the four nodes (referred to hereafter as “antenna configuration”), signal-to-noise ratios (SNR) and
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interference-to-noise ratio (INR) of the direct links and cross link, respectively. Interestingly, for

certain special cases such as when the interfered receiver has a relatively larger number of antennas

than that at the other nodes or when the INR is stronger than the SNRs, the No-CSIT scheme can

achieve the F-CSIT DMT for all multiplexing gains. Thus, under these circumstances, the optimal

DMT of the MIMO ZIC with F-CSIT is same as the DMT of the corresponding ZIC with No-CSIT.

For other channel configurations, the DMT achievable by the No-CSIT scheme serves as a lower

bound to the fundamental No-CSIT DMT of the MIMO ZIC.

We also characterize the fundamental diversity-multiplexing tradeoff of the three-node, multi-

input, multi-output (MIMO), quasi-static, Rayleigh faded, half-duplex relay channel for an arbi-

trary number of antennas at each node and in which opportunistic scheduling (or dynamic oper-

ation) of the relay is allowed, i.e., the relay can switch between receive and transmit modes at a

channel dependent time. In this most general case, the diversity-multiplexing tradeoff is charac-

terized as a solution to a simple, two-variable optimization problem. This problem is then solved

in closed form for special classes of channels defined by certain restrictions on the numbers of an-

tennas at the three nodes. The key mathematical tool developed here that enables the explicit

characterization of the diversity-multiplexing tradeoff is the joint eigenvalue distribution of three

mutually correlated random Wishart matrices. Besides being relevant here, this distribution result

is interesting in its own right. Previously, without actually characterizing the diversity-multiplexing

tradeoff, the optimality in this tradeoff metric of the dynamic compress-and-forward (DCF) pro-

tocol based on the classical compress-and-forward scheme of Cover and El Gamal was shown by

Yuksel and Erkip. However, this scheme requires global channel state information (CSI) at the re-

lay. In this work, the so-called quantize-map and forward (QMF) coding scheme is adopted as the

achievability scheme with the added benefit that it achieves optimal tradeoff with only the knowl-

edge of the (channel dependent) switching time at the relay node. Moreover, in special classes of

the MIMO half-duplex relay channel, the optimal tradeoff is shown to be attainable even without

this knowledge. Such a result was previously known only for the half-duplex relay channel with a

single antenna at each node, also via the QMF scheme. More generally, the explicit characteriza-
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tion of the tradeoff curve in this work enables the in-depth comparisons herein of full-duplex versus

half-duplex relaying as well as static versus dynamic relaying, both as a function of the numbers of

antennas at the three nodes.
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5 , 3

5 , 1). . . . . . . . . . . . . . . . . . 73

4.2 GDoF region of a (3, 3, 2, 2) MIMO IC and its explicit achievable scheme. . . . . . . 76

4.3 Symmetric GDoF of the (N, M, N, M) IC. . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 GDoF region of the (3, 2, 3, 2) MIMO IC with α11 = α22 = 1 and α12 = α21 = α. . . 81



xv

4.5 Sub-optimality of TIN and deviation of the GDoF boundary from the well known

“W” shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Diagonalization of the cross links using ZF and BF. . . . . . . . . . . . . . . . . . . 83

4.7 The GDoF region of the MIMO MAC. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Channel model for the ZIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Femtocell channel model: down link. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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Chapter 1

Introduction to Multi-antenna, Multiuser Wireless communications

In this thesis we characterize the fundamental information theoretic performance limits1 of

two basic building blocks of multi-user wireless networks, namely the 2-user interference channel

and the relay channel. The interference channel refers to a communication scenario where one or

more transmitters try to send some information through a common channel to their corresponding

receiver/s and in the process interfere with each other. As in a party, several conversations take place

in the same room, where each conversation is affected by the noise produced by other conversations.

As a practical example, consider the two adjacent cells of the cellular network depicted in figure 1.1,

where user U1 (U2) has a message for BS1 (BS2) only. However, since both the communications

Figure 1.1: The 2-user interference channel in a cellular system.

take place through the same medium the transmitted signal from U1, which is not desired at BS2

1 The various metrics of performance will be described shortly.
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is also received by it, and interfere with its actual desired signal coming from U2. The same is true

for BS1. The fundamental problem at hand for this channel is to characterize the best performance

for both the U1 to BS1 and U2 to BS2 links in the face of interference as described above. The

first appearance of this channel configuration and the problem can be traced back to a paper by

C. E. Shannon in 1961 [1] and since then it had been an open research problem over more than 4

decades.

Figure 1.2: The 2-user interference channel in a cellular system.

The second communication environment that is analyzed in this thesis is the relay channel,

which refers to a configuration where the communication between a source and destination is

facilitated by a set of intermediate nodes - called the relay nodes or simply relays. A practical

network where relay nodes are used for performance enhancement is depicted in figure 1.2. Note

that in addition to the direct signal received by the mobile station (MS) from the base station (BS),

it also receives an additional signal from the helping relay station (RS). The advantage of this set

up can be two fold: 1) it can enhance the reliability of received signal at the mobile by providing

an independent copy of the signal transmitted by the base station; and 2) it can increase the rate

of information transfer from the BS to MS as well. The objective for this communication scenario

is to characterize the maximum limit of such performance improvements.

The performance of these communication channels are measured in terms of the maximum
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amount of information that can be transferred reliably from the source/s to the receiver/s. Dif-

ferent measures to quantify the information and the degree of reliability can be defined and used to

characterize the performance of a communication channel. For a systematic approach to such an

analysis in what follows, we first describe the mathematical model which represents the physical

communication scenario and then define the various metrics of performance formally.

Figure 1.3: Signal propagation model for a point-to-point wireless communication channel.

Let us first consider a point-to-point wireless communication link such as the one from a

mobile user to its base station, as shown in figure 1.3. The term wireless refers to the fact that

signals on such a channel are transmitted from the source to the destination through a wireless

or unguided medium [2]. Since the signal is not guided to follow any particular path, it can be

reflected, scattered or refracted by different objects in between the source and destination node. As

shown in figure 1.3, the signal can be reflected from or pass through (causing refraction) a building

or get scattered from a tree. The receiver obtains several copies of the transmitted signal, each with

a different phase and attenuation which are dependent on the path it follows. The accumulative

effects of such multi-path propagation through a wireless channel on the received signal is known

as the “fading” of the signal. An exact characterization of all these phase shifts and attenuation of

the signals coming through different paths to the destination node is impossible. Instead, for the

design and analysis of a practical communication systems a probabilistic model is used, where the
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received signal at sampling time m can be written as2

y[m] = g[m]x[m] + z[m], m ∈ N. (1.1)

z[m] in the above equation represents the additive noise, mainly consists of the thermal noise of

the receiving equipment, and assumed to be distributed independently across m and identically

as a complex Gaussian random variable with unit variance and zero mean, i.e., z[m] ∼ CN (0, 1),

i.i.d. across m. The fading nature of the wireless channel is captured by g[m], which is also

conventionally assumed to be distributed as CN (0, 1). This assumption for the fading coefficient

is popularly known as the Rayleigh fading assumption, because |g|2 is distributed as a Rayleigh

random variable. Both g[m] and z[m] are assumed to be independent of the input x[m] ∈ C for

all m. Depending on how g[m] changes with m the fading channel can be divided into different

classes. When the fading coefficients changes with time index m we call it a time varying channel

which will be discussed in more details in section 1.1, but in what follows we shall assume that

g[m] = g, i.e. a time invariant channel. As mentioned earlier, the performance of a communication

channel such as the one in (1.1) is characterized in terms of the amount of information that can

be transferred from the source to the destination.

Information is a mathematical measure of the uncertainity of a random variable; the infor-

mation content of a deterministic variable or constant is zero. For example, the outcome of an

unbiased coin toss contains information, but the outcome of 2-headed coin toss does not give us

any information. In general, any type of information can be represented as a set of indexes. For

example, to transmit a voice signal, which is a continuous waveform, it is first sampled to obtain

a discrete time signal and then each of these samples are quantized into say, k number of prede-

termined quantization levels. Then, it is is possible to send each of these samples by sending the

quantization index to the receiver. Once these indexes are received, the receiver can reconstruct

the samples and from them the continuous voice waveform, with some quantization error. The
2 Note that equation (1.1) represents a sampled, baseband model of the actual communication channel. The

destination node actually receives a continuous time signal, at a very high radio-frequency (RF). The received signal
is then first brought down to baseband through frequency translation and then sampled to obtain the discrete-time
model of equation (1.1).
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quantization error can be decreased with increasing the number of quantization levels. These set

of indexes can be thought as the set of possible values of a random variable, where probability of

a sample point is equal to its probability of occurrence. The objective of a communication system

is to recover the exact value of x sent by the transmitter. However, due to the presence of random

noise the recovered signal at the destination can be different from what was actually sent, leading

to a decoding error. For example, consider a random variable x which can take its value from

{x1, x2, · · · , xk} for some k, and the receiver adopts a decoding technique where on receiving y[m]

it decides xi was sent if

i = arg min
1≤l≤k

‖y[m]− g[m]xl[m]‖2.

Then, there is a non-zero probability that the receiver will make the decision in favor of xi when

xj 6=i was actually sent (e.g., this happens when z[m] is such that ‖z[m]‖2 > ‖z[m] + g[m]xj [m] −

g[m]xi[m]‖2).

One of the most important measures of performance of a communication channel is the

average information per use of the channel that can be transferred from the source to the destination

node, with the probability of error going to zero. This rate is called an achievable rate on the channel

and the supremum of all such rates is called the Capacity of the channel. Typically, this capacity

is characterized by deriving upper and lower bounds to it and showing that they are identical. In

the case of a single transmitter and single receiver or point-to-point communication channel, the

mutual information between x and y, which is defined as

I(x;y) =
∫

Sxy

Pxy(x, y) log
(

Pxy(x, y)
Px(x)Py(y)

)
dxdy,

where Pxy(x, y) is the joint probability density function (pdf) of x,y and Sxy is the support of the

pdf, provides a lower bound to the capacity. That is, it can be proved that [3] any rate R that

satisfy

R < max
P (x)

I(x;y),

can be achieved on the channel, where P (x) represents the pdf of x. On the other hand, an upper

bound to the capacity is provided by the Fano’s inequality, which essentially states that, if xn
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and yn are the inputs and outputs of n uses of a communication channel and R is the average rate

of information per channel use with arbitrarily small probability of error, then

R ≤ 1
n

I(xn;yn) + εn, (1.2)

where εn → 0 with n → ∞. Now, using various properties3 of the mutual information [3] it can

be shown that the capacity of the channel is given as

C = max
P (x)

I(x; gx + z). (1.3)

In addition, if the channel input sequence is subjected to the following power constraint

1
n

n∑

i=1

|x[i]|2 ≤ σ2
x,

then using the fact that Gaussian distribution maximizes the mutual information I(x; gx + z) if

the additive noise z is Gaussian [4], the right hand side of (1.3) can be evaluated as

CGaussian = log(1 + |g|2σ2
x).

As stated earlier, the capacity represents the maximum rate of information transfer in the sense

that it is not possible to transfer information reliably at a larger rate than the capacity. However,

in [5] it was proved that the capacity of this channel can be drastically improved by employing

multiple antennas at both the transmitting and receiving node. The input output equation of the

channel, with M antennas at the transmitter and N antennas at the receiver, can be written as

Y [m] = H[m]X[m] + Z[m], for m ∈ N, (1.4)

where X[m] ∈ CM , Z[m] is distributed i.i.d. as CN (0, IN ) for different m, the entries of H[m] ∈

CN×M are distributed i.i.d. as CN (0, 1) and H[m] = H for all m. Again just like the SISO case, an
3 Let xn = {x[1], · · · , x[n]} and yn = {y[1], · · · , y[n]} are two n-length sequence of random variables, then

I(x;y) = h(x)− h(x|y), where h(x) , −
∫

Sx

Px(x) log (Px(x)) dx;

h(x|y) , −
∫

Sxy

Pxy(x, y) log
(
Px|y(x|y)

)
dxdy; and h(xn) =

n∑
i=1

h(x[i]|x(i−1)) ≤
n∑

i=1

h(x[i]),

with equality in the last step if x[i]’s are mutually independent. Also, h(z) = log(2πeσ2), if z ∼ CN (0, σ2).
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upper bound and a lower bound to the capacity of this channel can be computed using the Fano’s

inequality and optimizing the mutual information I(X; Y ), between the input vector X ∈ CM and

output vector Y ∈ CN , respectively. And using various properties of the mutual information it can

be shown that the capacity of the channel is given by

CMIMO = max
{0¹Q}

log det
(
IN + HQH†

)
.

So far we have considered only point-to-point communication channels where there is a single

transmitter and a single receiver only and is a simple communication channel in the sense that

the received signal at the destination is corrupted only by the additive noise. In contrast to

this, in a practical communication system there are multiple transmitters communicating to their

respective receivers (multiple receivers) in the presence of interference from other undesired users.

For example, consider the interference channel depicted in figure 1.1. If the input and output of

the i-th cell are denoted by Xi and Yi and the channel matrix from Ui to BSj is denoted by Hij

then the input output relation for a single channel use can be written as

Y1 = H11X1 + H21X2 + Z1; (1.5)

Y2 = H12X1 + H22X2 + Z2, (1.6)

where Zi represents the additive noise at BSi. However, unlike the point-to-point channels described

above due to the presence of undesired interfering signals from other user the characterization of

the capacity of this channel is a relatively hard problem. In fact, despite more than 4 decades of

research effort since its first mention in [1], the capacity region4 of the 2-user interference channel

(IC) had been an open research problem.

The capacity region is known for only a few special classes of interference channels character-

ized by some constraints on the channel matrices. Our contribution towards solving this problem is

summarized next. In chapter 2 we characterize the capacity region of another class of interference
4 If the users can communicate messages to their respective destinations at rates R1 and R2 with probability

of error going to zero, then (R1, R2) is an achievable rate tuple. The set of all achievable rate tuples is called the
achievable rate region and its closure is called the capacity region of the channel.
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channel which we call the strong in partial order IC. In obtaining this result we prove a new outer

bound to the difference of two specific mutual information terms. This novel outer bound in turn

results in a new tight upper bound to the capacity region of the MIMO IC which for the class

of strong in partial order ICs coincides with an achievable rate region and therefore, characterizes

the capacity region. The application of the new outer bound need not be restricted to the 2-user

MIMO IC and can be used wherever such a difference between two mutual information arises. For

instance, such a difference term appears in the analysis of a 2-user MIMO broadcast channel (BC).

Finding such tight upper bounds to the capacity region of the MIMO IC without any restriction

on the channel matrices is hard.

In chapter 3 however, we adopt an alternative approach and solve the general problem al-

though with respect to an approximate performance metric. In this alternative approach, we first

derive a set of bounds that define a super set, Ru, containing the capacity region and then derive

an achievable rate region, Ra contained in the capacity region of the 2-user MIMO IC. It is then

shown that, if (R1, R2) ∈ Ru then there exists a rate tuple (R̂1, R̂2) ∈ Ra such that R̂i ≥ (Ri− ni)

for i = 1, 2. Since the capacity region is contained within Ru, this result proves that the achievable

region is within ni bit to the capacity region5 . We also provide a simple and an explicit coding

scheme which can achieve a rate region which is within a constant number of bits to the capacity

region of the MIMO IC. It will be shown that to achieve any rate tuple (R1, R2) in the achievable

region, each user needs to divide its message into 2 sub-messages called the private message, which

is to be decoded only at its own receiver and the public message, which is to be decoded by both

the receivers. We also specify the explicit rate splits among the private and public messages of each

user. In particular, for the special case of SISO IC the result of this work complements the result

reported in [6], where the explicit rate splits were not specified.

In Chapter 4, through high SNR approximations of the set of the aforementioned within-

constant-gap upper and lower bounds to the capacity region of the MIMO IC, various insights
5 Such a characterization of the capacity region of a communication channel within a constant number of bits is

also widely referred to as the approximate capacity of the channel and the corresponding constant is known as the
gap of approximation.
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about the channel are revealed. For instance, it was found in [6] that treating interference from the

undesired user as noise preserves the high SNR scaling of the optimal rates of a SISO IC when the

cross-link gains of the channel are relatively small. However, this does not hold true on an IC with

multiple antennas at different nodes.

While all of the aforementioned analysis is carried out assuming fixed or time-invariant chan-

nel matrices, in this thesis we also consider time varying channels. In contrast to the Capacity or

approximate capacity metrics used for the previous analysis, on a time-varying channel we shall

use a different performance metric known as the diversity-multiplexing tradeoff (DMT), which

essentially characterizes the tradeoff that exist between the rate of information transfer and the

reliability of reception on a communication channel. Using the DMT as performance metric we

characterize the performance of the second class of communication channel known as the relay

channel (e.g., see figure 1.2). In what follows, we shall give a brief overview of the DMT framework

in the context of a SISO point-to-point channel.

1.1 Time-varying channel

Recall the input-output relation of the point-to-point channel given in equation (1.1), i.e.,

y[m] = g[m]x[m] + z[m], for m ∈ N, (1.7)

where g[m] represents the channel matrix at the sampling time m. Depending on how g[m] varies

with m, the fading channel can be divided into three different classes: 1) Fast fading channel,

where g[m] takes a new value for each m which are i.i.d. as CN (0, 1); 2) Block fading or slow fading

channel, where g[m] = gl, for some L > 1, (l−1)L ≤ m ≤ Ll and l = 1, 2 · · · ; and 3) static channel,

where g[m] = g for all m.

On a slow or block fading channel, the capacity of the channel which is given by

C = log(1 + |gl|2σ2
x)

is a function of the instantaneous channel gain gl, which changes i.i.d. at the beginning of each
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block, and therefore is a random quantity. For any given rate R, there is a probability that

log(1 + |gl|2σ2
x) < R,

i.e., the rate is not supportable on the channel. Such an event is widely known as the outage event.

A more natural measure of performance on a slow fading channel is the outage probability, Pout

defined as

Pout = Pr
(
log(1 + |gl|2σ2

x) < R
)
.

A high SNR analysis of this quantity yields the tradeoff between the rate and reliability of com-

munication, i.e., the DMT of the channel. If the rate of information varies as R = r log(ρ) with ρ

denoting the SNR, then the DMT analysis provides the the optimal diversity order d(r), where the

average probability of error decays as ρ−d(r).

Using DMT as a metric in Chapter 5 we characterize the performance of variation of the

2-user MIMO IC where only one of the receiver, say the 1-st receiver, is interfered and the other

receiver is not affected by any interference coming from the other user (e.g., see figure 5.1). This

particular variation of the 2-user MIMO IC is more popularly known as the Z-interference channel

(ZIC). There are practical communication networks, such as the Femto cells, which can be modeled

as a ZIC. The main technical barrier that was blocking the DMT characterization of the MIMO

ZIC, before our work on this topic, was the lack of an explicit expression for the instantaneous

capacity region of the channel. Note that in the 2-user IC of figure 2.1 if we substitute H12 = 0

we obtain a ZIC. Therefore, the required explicit expressions for the capacity region of the channel

can be obtained from our earlier results on 2-user IC by substituting H12 = 0. Using this result

however, only enables us to derive an explicit expression of the outage probability. Analyzing this

outage probability further and characterizing its negative SNR exponent which is the DMT of the

channel requires the joint eigen-value distribution of three mutually correlated random Wishart [7]

matrices. Computing this joint distribution is another important step to solve this problem and a

novel contribution of this thesis.

In Chapter 6, we characterize the DMT of the 3-node relay channel, which is the basic
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building block of a general class of wireless networks known as the cooperative networks. Among

the most important steps in the characterization of DMT of a communication channel is to find

an expression for the instantaneous capacity of the channel. However, like all the previous channel

considered in this thesis the exact capacity of the relay channel is still an open problem. The way

out of this situation is to find an approximate expression for the capacity which is still sufficient to

characterize the DMT. We first find such an expression which is close to the instantaneous capacity

for the relay channel and using it find the corresponding outage probability. Then, utilizing the

joint eigeng-value distribution result mentioned earlier we characterize the negative SNR exponent

of the outage probability of the channel which also represents the optimal diversity order of the

channel.

1.2 Conclusion

4G wireless standards such as the WiMAX and 3GPP LTE recommend the usage of optimal

interference management techniques and deployment of relay technology for achieving improved

performance. The results and insights derived from this research is going to guide a system designer

to efficiently design futuristic wireless networks. Further, the tools and techniques developed in

this thesis can be used to characterize the performance of other multiuser network as well.



Chapter 2

Capacity region of a class of strong MIMO Interference Channels

2.1 Introduction

The 2-user interference channel is the simplest channel model in which multiple transmit-

receive pairs communicate over a common noisy channel. This model was first mentioned in [1], and

was studied in a series of works in [8–14] that considered certain special classes of the IC where the

capacity regions of the so-called very strong IC, the strong IC and certain classes of degraded

and deterministic ICs, respectively, were established. Different sets of inner and outer bounds

considering the embedded multiple-access and broadcast and Z channels were derived in [12,15–19].

In spite of over 4 decades of research, the capacity region in the general case remained unsolved.

Recent results include the capacity regions of new and/or more general classes of channels

than for which capacity was previously known, e.g., the sum capacity of the so-called noisy inter-

ference channels was found in [20–22]. The common feature of this line of work is that it focuses on

a subset of channel parameters but seeks to solve the challenging problem of obtaining the exact

capacity of the SISO channel.

Since most modern wireless communication systems feature multiple antennas at some or

all terminals it is of interest to study the 2-user Gaussian MIMO IC. As compared to the result

on the capacity of the strong SISO IC, the capacity of the MIMO IC is known [23] only for the

so-called aligned strong interference regime, where the direct and cross link channel matrices satisfy

a matrix equation. On an aligned-strong IC, the direct link’s channel matrix is a matrix multiple

of the cross link’s channel, where the multiple satisfies some particular constraint. In general, the
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problem of characterizing the exact capacity of a MIMO IC even for small and special classes can

be challenging; this point is also illustrated by [24] where the capacity region of a class of very

strong SIMO ICs was characterized.

In this chapter, we characterize the capacity region of a class of 2-user MIMO Gaussian ICs

which although have an overlap with the class of aligned-strong ICs characterized in [23], contains

channels which are not aligned-strong and therefore enlarges the set of channels for which the exact

capacity of 2-user MIMO IC can be characterized. To prove this result we first derive a new upper

bound to the difference of two mutual information. Using this inequality we then prove that the

capacity region of the strong in partial order ICs can be achieved by independent and Gaussian

coding at each transmitter.

Notations 2.1 Let C and R+ represent the field of complex numbers and the set of non-negative

real numbers, respectively. An n ×m matrix with entries coming from C will be denoted by A ∈

Cn×m. We shall denote the conjugate transpose of the matrix A by A† and determinant of it by |A|.

In represents the n×n identity matrix, 0n×m represents an all zero n×m matrix and Un×n represents

the set of n × n unitary matrices. The fact that (A − B) is a positive semi-definite (p.s.d.) (or

positive definite (p.d.)) matrix is denoted by A º B (or A Â B). A⊗B denotes the tensor product

of the two matrices. If xt ∈ Cm×1, ∀1 ≤ t ≤ n, then xn , [x†1, · · · , x†n]†. I(x; y), I(x; y|z), h(x) and

h(x|y) represents the mutual information, conditional mutual information, differential entropy and

conditional differential entropy of the arguments respectively.

2.2 Channel Model and Mathematical preliminaries

A 2-user IC as shown in Figure 2.1, where user i (Txi) has Mi antennas and receiver i (Rxi)

has Ni antennas, respectively for i = 1, 2, is considered. Such a MIMO IC will be referred to

as a (M1, N1,M2, N2) MIMO IC, in the sequel. For characterizing the exact capacity region of

a special class of these interference channels in this chapter we shall assume that Hij ∈ CNj×Mi

models the channel matrix between Txi and Rxj . For ease of analysis, we also assume that all the
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channel matrices are full rank with probability one however. For economy of notations hereafter

these channel matrices will be denoted as H, i.e., H = {H11, H12, H21, H22}. In this chapter,

we shall consider a time-invariant or fixed channel where the channel matrices remain fixed for the

entire duration of the communication. At time t, Txi chose a vector Xit ∈ CMi×1 and sends
√

PiXit

into the channel, where for the input signals we assume the following power constraint:

n∑

t=1

1
n
E

(
XitX

†
it

)
¹ Kxi , ∀ i = 1, 2. (2.1)

-

-

©©©©©©©©©©©©*HHHHHHHHHHHHj(M2) (N2)

(M1) (N1)

Tx2 Rx2

Tx1 Rx1

H22

H11

H21

H12

Figure 2.1: The (M1, N1,M2, N2) MIMO IC.

The received signals at time t can be written as

Y1t = H11X1t + H21X2t + Z1t; Y1t ∈ CN1×1,

Y2t = H22X2t + H12X1t + Z2t; Y2t ∈ CN2×1,

where Zit ∈ CNi×1 are i.i.d as CN (0, INi) across i and t. In the sequel, an IC with channel matrices

as in figure 2.1 will be denoted by IC ([H11,H12,H21,H22]) or IC (H).

Definition 2.1 (Strong IC in partial order) A 2-user (M1, N1,M2, N2) IC as shown in fig-

ure 2.1 is called a strong in partial order IC if the channel matrices satisfies the following constraints:

H†
iiHii ¹ H†

ijHij , 1 ≤ i 6= j ≤ 2. (2.2)

In the following section we shall first derive some information theoretic inequalities which

will be used in the later part of the chapter to derive the main result, i.e., the capacity region of

the 2-user strong in partial order IC.
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2.3 An upper bound to the difference of two mutual informations

We derive a novel tight upper bound to the difference of two mutual information terms that

appears in the process of upper bounding various rates of the 2-user MIMO IC. However, before

delving into the derivation let us see how this term appears in the upper bounding process. For

any achievable rate tuple (R1, R2) on the 2-user IC, using the Fano’s inequality [3] we can find the

following upper bound.

n(R1 + R2) ≤I(Xn
1 ; Y n

1 ) + I(Xn
2 ;Y n

2 ) + nεn,

(a)

≤I(Xn
1 ; Y n

1 |Xn
2 ) + I(Xn

2 ; Y n
2 ) + nεn,

=I(Xn
1 ; Y n

1 |Xn
2 ) + I(Xn

1 , Xn
2 ;Y n

2 )− I(Xn
1 ; Y n

2 |Xn
2 ) + nεn,

=I(Xn
1 , Xn

2 ;Y n
2 ) + {I(Xn

1 ; Y n
1 |Xn

2 )− I(Xn
1 ; Y n

2 |Xn
2 )}︸ ︷︷ ︸

D

+nεn, (2.3)

where εn → 0 as n → ∞, step (a) follows from the fact that additional information at Rx1 in

the form of Xn
2 does not reduce the mutual information and the subsequent equality follows from

standard information theoretic inequalities. Note that equation (2.3) in the absence of the term D

on the right hand side represents the sum-rate bound of a multiple access channel (MAC) formed

by Tx1, Tx2 and Rx2. Therefore, if D ≤ 0 it is possible to replace it by 0 and still obtain an upper

bound which coincides with the MAC achievable rate region sum bound. This in turn implies that

the rate region achievable by MAC optimal coding scheme is the capacity region of the channel.

In what follows, through a set of lemmas and theorems we shall prove that on a strong in partial

order IC, i.e., an IC in which the channel matrices satisfy equation (2.2), D ≤ 0 indeed. In [23],

the capacity region of a class of aligned-strong IC was found using a similar method. Although the

class of channels of this chapter has some overlap with the class of aligned-strong ICs, it contains

channels which are not aligned-strong (e.g., see remark 2.3).

In Lemma 2.1 and Theorem 2.2 we derive the single letter version of the desired inequality

for square invertible and rectangular channel matrices, respectively, which subsequently yields the

desired upper bound to D and is stated in Corollary 2.1.
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2.3.1 An upper bound to single-letter D: The square and invertible case

Lemma 2.1 Let G1, G2 ∈ CM×M are two full-rank, complex matrices and X1 ∈ CM×1 is a random

vector with arbitrary distribution, where Cov(X1) ¹ Q and Z̃1 and Z̃2 are i.i.d. as CN (0, IM ) which

are also independent of X1. If the matrices G1 and G2 satisfy the following condition

G†
1G1 ¹ G†

2G2. (2.4)

then

I
(
X1; G1X1 + Z̃1

)
− I

(
X1;G2X1 + Z̃2

)
≤ 0.

Proof 2.1 (Proof of Lemma 2.1) The proof is based on an extremal inequality proved in [25]

which is stated below for the reader’s convenience:

Theorem 2.1 (Theorem 1 of [25]) Let Z1 and Z2 be two a Gaussian random n-vector with

a positive definite covariance matrices K1 and K2 respectively and X is a random vector with

arbitrary distribution, then the optimization problem, where µ is any real number,

max
Cov(X)¹S

h(X + Z1)− µh(X + Z2)

is maximized by Gaussian input X.

Denoting the left hand side of the desired inequality by Γ we get the following set of inequal-

ities

Γ =I
(
X1; G1X1 + Z̃1

)
− I

(
X1; G2X1 + Z̃2

)
, (2.5)

=h
(
G1X1 + Z̃1

)
− h

(
G2X1 + Z̃2

)
, (2.6)

=h
(
X1 + G−1

1 Z̃1

)
− h

(
X1 + G−1

2 Z̃2

)
+ τ, (2.7)

(a)

≤ max
Cov(X1)¹Q

h
(
X1 + Ẑ1

)
− h

(
X1 + Ẑ2

)
+ τ, (2.8)

where τ = log
(
G†

1G1

)
− log

(
G†

2G2

)
, in step (a) Ẑi ∼ CN (0, (G†

iGi)−1), for i = 1, 2. Evidently, the

last equation is in a form addressed by Theorem 2.1 above and hence is maximized by Gaussian
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input. Let us further assume that the expression on the right hand side of equation (2.8) is

maximized by an input with covariance matrix K∗
x. Under this assumption equation (2.8) takes

the following form

Γ ≤log det
(
K∗

x + (G†
1G1)−1

)
− log det

(
K∗

x + (G†
2G2)−1

)
+ τ, (2.9)

=log det
(
G1K

∗
xG†

1 + I
)
− log det

(
G2K

∗
xG†

2 + I
)

, (2.10)

=log det
(
G†

1G1K
∗
x + I

)
− log det

(
G†

2G2K
∗
x + I

)
, (2.11)

=log det
(
(K∗

x)
1
2 G†

1G1(K∗
x)

1
2 + I

)
− log det

(
(K∗

x)
1
2 G†

2G2(K∗
x)

1
2 + I

)
, (2.12)

≤0, (2.13)

where the last step follows from the fact that log det(.) is a monotonic function in the cone of

positive semi-definite matrices and the fact that

(K∗
x)

1
2 G†

1G1(K∗
x)

1
2 ¹ (K∗

x)
1
2 G†

2G2(K∗
x)

1
2 (2.14)

which in turn follows from equation (2.4).

2.3.2 An upper bound to single-letter D: The non-square case

Theorem 2.2 Let H1 ∈ CN1×M and H2 ∈ CN2×M are full-rank matrices, where N1 ≤ N2, X1 ∈

CM×1 is a random vector with arbitrary distribution, Cov(X1) ¹ Q and Z̃1 and Z̃2 are i.i.d. as

CN (0, INi) which are also independent of X1. If the matrices H1 and H2 satisfy the following

condition

H†
1H1 ¹ H†

2H2, (2.15)

then

Γ = I
(
X1; H1X1 + Z̃1

)
− I

(
X1; H2X1 + Z̃2

)
≤ 0. (2.16)

Proof 2.2 (Proof of Theorem 2.2) The proof is given in Appendix A.1.
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Remark 2.1 Each of the terms, HiX + Z̃i in equation (2.16) can be imagined as the output of an

additive Gaussian channel. Further let us assume that the source is Gaussian and has CSIT. Then,

in general if constraint (2.15) is not satisfied the source can direct its information in such a manner

that no useful information reaches the output of the second channel, i.e., if X ∼ CN (0,Kx), it is

possible to choose H1, H2 such that H2Kx = 0 but H1KxH†
1 º 0, then we get

I
(
X; H1X + Z̃1

)
− I

(
X; H2X + Z̃2

)
= h

(
H1X + Z̃1

)
− h

(
H2X + Z̃2

)
,

= log det
(
H1KxH†

1 + IN1

)
− log det

(
H2KxH†

2 + IN2

)
,

= log det
(
H1KxH†

1 + IN1

)
> 0, if [H1KxH†

1 Â 0].

Therefore, in general if equation (2.15) is not satisfied then it is possible for the left hand side of

equation (2.16) to be greater than zero. However, the above lemma suggests that if equation (2.15)

is satisfied, then it can not happen, i.e., the source can not direct its information in such a manner

that no information reaches the output of the channel having channel matrix H2 while there is

some positive information at the output of the first channel.

In deriving the converse to the capacity region however, we shall need an upper bound to

the difference of entropies of n-symbol extensions of the channel which is provided by the following

Corollary.

Corollary 2.1 Let H1 ∈ CN1×M and H2 ∈ CN2×M are full-rank matrices, where N1 ≤ N2, {Xt ∈

CM×1, 1 ≤ t ≤ n} is a sequence of random vectors with arbitrary distribution satisfying (2.1) and

Z̃1t and Z̃2t are mutually independent and i.i.d. as CN (0, INi) for all 1 ≤ t ≤ n which are also

independent of Xn. If the matrices H1 and H2 satisfy equation (2.15), then

Γn =I
(
Xn; (In ⊗H1)Xn + Z̃n

1

)
− I

(
Xn; (In ⊗H2)Xn + Z̃n

2

)
≤ 0. (2.17)

Proof 2.3 It follows from equation (2.15) and some elementary properties of tensor products of

matrices that

(In ⊗H1)†(In ⊗H1) ¹ (In ⊗H2)†(In ⊗H2). (2.18)

The proof then follows from Theorem 2.2.
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In the following section we shall use the result in Corollary 2.1 to derive the capacity region

of the 2-user MIMO IC and the 2-user ZIC.

2.4 Capacity of the 2-user strong MIMO IC

Theorem 2.3 The capacity region, CIC(H), of an (M,N, M, N) strong in partial order IC, where

the channel matrices satisfy the following condition

H†
iiHii ¹ H†

ijHij , ∀i 6= j ∈ {1, 2}, (2.19)

is given by the set of rate tuples satisfying the following constraints:

R1 ≤log
∣∣∣
(
IN1 + H11Kx1H

†
11

)∣∣∣ ; (2.20)

R2 ≤log
∣∣∣
(
IN2 + H22Kx2H

†
22

)∣∣∣ ; (2.21)

R1 + R2 ≤log
∣∣∣
(
IN2 + H12Kx1H

†
12 + H22Kx2H

†
22

)∣∣∣ ; (2.22)

R1 + R2 ≤log
∣∣∣
(
IN1 + H21Kx2H

†
21 + H11Kx1H

†
11

)∣∣∣ ; (2.23)

Proof 2.4 The proof is given in appendix A.2.

Remark 2.2 Without loss of generality one can assume that the channel coefficients in a SISO

IC are given as Hii = 1 and Hij = aij for 1 ≤ i 6= j ≤ 2. Sato in [12] found the capacity region

of the 2-user strong SISO IC under the constraint that a2
ij ≥ 1, which is identical to (2.19). For a

SIMO IC, where all the channel matrices are row vectors Viswanath and Jafar [24] characterized

the capacity region of the strong channel under the condition

H†
iiHii = ‖Hii‖2 ≤ ‖Hij‖2, for 1 ≤ i 6= j ≤ 2,

which again coincides with the condition in (2.19). Therefore, Theorem 2.3 can reproduce the

earlier results on strong ICs as special cases.

Recently, the capacity region of another class of strong MIMO IC, called the aligned strong

ICs was characterized in [22]. This result however is not completely subsumed by our result. A

detailed discussion is provided in the next remark.
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Remark 2.3 (Difference to the aligned-strong channels) The class of ICs for which there exist

matrices Ai and Bi such that KxiB
†
i = 0, A†iAi ¹ I and

Hii = AiHij + Bi, for 1 ≤ i 6= j ≤ 2, (2.24)

where Kxi is the upper bound to the average covariance to the input at Rxi, was named aligned-

strong IC in [23] and their capacity region was characterized. Note that if Kxi is full rank then

Bi = 0. In this scenario, the existence of Ai implies

H†
iiHii = H†

ijA
†
iAiHij ¹ H†

ijHij , (2.25)

i.e., condition (2.15) is satisfied. So the class of aligned-strong ICs in this scenario of full rank Kxi ’s

forms a subset to the set of strong-in-partial-order ICs.

Moreover, the existence of such an Ai can be guaranteed only if Hij is left invertible or has

full column-rank. Because in that case Ai can be chosen as

Ai = Hii

(
H†

ijHij

)−1
H†

ij . (2.26)

Therefore, whenever Hij ∈ CNj×M is full rank but Nj < Mi there is no guarantee that such

an Ai exists. However, such channels can still satisfy the strong-in-partial order condition, i.e.,

equation (2.15) and therefore the capacity of such channels can be characterized using the results

of this chapter. Pictorially, the relations between the sets of channels which are aligned-strong and

strong-in-partial-order can be depicted as shown in Figure 2.2

In Theorem 2.3 we have restricted the number of antennas to be same at both the transmitters

and receivers. In what follows we shall lift this restriction in the receiver side and characterize the

capacity region of a MIMO Z-IC.

2.4.1 Capacity region of a 2-user ZIC

In this subsection we derive the capacity region of a Z-interference channel (ZIC) with the

first receiver being free of interference.
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Figure 2.2: Comparison between the aligned-strong and strong-in-partial order ICs .

Theorem 2.4 The capacity region, CZIC(H), of an (M, N1,M, N2 ≥ N1) strong in partial order

ZIC, where the channel matrices satisfy the following condition

H†
11H11 ¹ H†

12H12, (2.27)

is given by the set of rate tuples satisfying the following constraints:

R1 ≤log
∣∣∣
(
IN1 + H11Kx1H

†
11

)∣∣∣ ; (2.28)

R2 ≤log
∣∣∣
(
IN2 + H22Kx2H

†
22

)∣∣∣ ; (2.29)

R1 + R2 ≤log
∣∣∣
(
IN2 + H12Kx1H

†
12 + H22Kx2H

†
22

)∣∣∣ ; (2.30)

Proof 2.5 • Achievability: The sum-rate bound in the expression for the capacity region

represents the sum-bound present on a MAC formed formed by Tx1, Tx2 and Rx2 and

hence achievable through independent and Gaussian coding at both the transmitters.

• Converse: Can be proved similarly as Theorem 2.3 using Corollary 2.1.

2.5 Conclusion

As mentioned earlier, over the years the capacity region of the 2-user IC has been charac-

terized only under specific conditions satisfied by the channel matrices H; let us denote the set of
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such channel matrices by HC . In this chapter we have enlarged the size of this set HC by charac-

terizing the capacity region of the class of strong in partial order ICs. Even with this result, the

capacity region characterization of the general MIMO IC is far from a being complete. Towards

such a complete solution in the next chapter we adopt a different approach and characterize the

capacity region of the 2-uer MIMO IC within a constant number of bits without any restriction on

its channel coefficients.



Chapter 3

The capacity of the MIMO interference channel and its reciprocity to within a

constant gap

3.1 Introduction

In chapter 2, we found tight upper and lower bounds to the capacity region of the channel

which coincides with each other and hence characterizes the capacity region for the class of ICs

called the strong in partial order IC, defined through a particular constraint satisfied by its channel

matrices. Finding such tight upper and lower bounds for the IC without any constraint on the

channel matrices is a hard problem which is why the characterization of the capacity region for this

channel has been an open problem for so long. To go around this difficulty, we adopt a different

approach and instead of finding upper and lower bounds which are identical we find bounds which

are close to each other and therefore characterize the capacity region approximately within a small

number of bits. This approach was used for the SISO channel by Etkin et al. [6], where the authors

find an approximation of the capacity region of the two-user scalar Gaussian IC where the criterion

of approximation is to specify the capacity region to within a constant gap independently of SNR

and the direct and cross channel coefficients. Moreover, they obtain that result through a simple

HK scheme, i.e., a single universal coding strategy for all channel parameters. The key feature of

this simple HK scheme is that the the private message power is set so that it reaches the unintended

receiver at the noise level. A 1 bit gap to capacity was proved in [6] using the simplified description

of the HK rate region of [26]. Thus, the result of [6] characterizes the capacity region to within a

constant gap that is independent of the SNR and all channel coefficients. Moreover, it identifies
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a simple HK scheme that has this property thereby also providing an explicit expression for the

achievable rate region in terms of channel parameters. Since most modern wireless communication

systems feature multiple antennas at some or all terminals, here we concentrate on the 2-user

Gaussian MIMO IC.

In [27], Telatar and Tse consider an interesting class of two-user semi-deterministic discrete

memoryless ICs which generalizes the class of deterministic ICs of [14] and is also applicable to the

Gaussian MIMO IC and obtain outer bounds that are within a gap specified in terms of certain

conditional mutual informations to the general HK achievable region [26]. The implication of this

work to the 2-user MIMO IC is that the union of all the achievable rate sub-regions of the general

HK scheme (one sub-region for each input distribution), is within a constant gap (of Ni bits, where

Ni is the number of antennas at receiver i) to the outer bounds developed therein, and hence, to

the capacity region. However, no specific achievable scheme is identified with the constant-gap-to-

capacity property among the infinitely many possibilities that make up the the general HK scheme.

In fact, it is unclear if there exists a simple HK scheme in general (corresponding to a single input

distribution, as it does for the SISO case [6] ) or even an explicit HK scheme (whose rate region

is the union of rate regions achievable by a finite number of input distributions, with the constant-

gap-to-capacity property. Moreover, the upper and lower bounds are not given as functions of the

channel matrices in [27] which in turn bar them from being usable for further analysis (e.g., the

generalized degrees of freedom (GDoF) analysis) as mentioned in [28].

In this chapter, we consider the 2-user Gaussian MIMO IC with an arbitrary number of

antennas at each node. Without restricting the channel matrices in any way, we obtain constant-

gap-to-capacity characterizations through a simple and an explicit HK scheme, neither of which

involve time-sharing. The approach we adopt is as follows: using the general genie-aided approach

of [27], we obtain a set of explicit upper bounds to the capacity region of the 2-user MIMO IC.

Inspired by an interpretation of these bounds we propose a simple HK coding scheme which involves

independent Gaussian superposition coding with certain explicit channel dependent covariance

matrix assignments for the private and public messages of each user and show that this input
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distribution achieves a rate region that is within a constant gap to the capacity region. Since in

the HK coding scheme the public message of an user gets decoded at the receiver of the other user,

it is important to choose the “sub-rates” of the private and public messages of each user carefully

because an arbitrary rate for the public message might not be supported if the corresponding cross

link is weak. We also specify explicitly the set of these sub-rates from which if the users chose the

rates for their private and public messages such a scenario never arise. In fact, a two-dimensional

projection of this later set is actually yields the achievable rate region of the simple HK coding

scheme. The gap to capacity (of this simple HK coding scheme) is further improved with an

explicit HK scheme where the transmitters are allowed to use one of three simple superposition

coding schemes depending on the operating rate pair. Interestingly, for a large class of MIMO ICs,

this latter gap is smaller than the gap of Ni bits of [27]. This class includes, for example, SIMO

ICs (with single-antenna transmitters and multiple antenna receivers) for which the gap is 1 bit,

instead of Ni bits.

Using the explicit expressions for both the achievable rate region and the set of upper bounds

to the capacity region of the MIMO IC, we then derive a reciprocity result which is that the capacity

of a 2-user MIMO IC is within a constant gap to that of the channel obtained by interchanging the

roles of the transmitters and receivers.

The rest of the chapter is organized as follows. Following a description of the notations used

in this chapter in Section 3.2, we specify the system model. In Section 3.3, we derive a set of upper

bounds to the capacity region and two different achievable rate regions achievable by one simple

and one explicit HK coding scheme. Comparing the set of upper and lower bounds, the capacity

region of the MIMO IC is characterized within a constant number of bits. As a byproduct of this

analysis, we also prove the reciprocity of the capacity region of the MIMO IC in the approximate

capacity sense in Section 3.3.4. Finally, Section 4.6 concludes the chapter. To keep the flow of the

main ideas all but the simple proofs are given in the Appendices.

Notations 3.1 Let C and R+ represent the field of complex numbers and the set of non-negative
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real numbers, respectively. An n×m matrix with entries in C will be denoted as A ∈ Cn×m. The

conjugate transpose of the matrix A is denoted as A† and its determinant as |A|. Let ‖z‖2 represents

the square of the absolute value of the complex number, i.e., if z = (x + iy) then ‖z‖2 = x2 + y2.

The trace of the matrix A ∈ Cn×n is denoted as Tr(A), i.e., Tr(A) =
∑n

i=1 aii. In represents

the n × n identity matrix, 0m×n represents an all zero m × n matrix and Un×n represents the

set of n × n unitary matrices. The kth column of the matrix A will be denoted by A[k] whereas

A[k1:k2] represents a matrix whose columns are same as the kth
1 to kth

2 columns of matrix A. |A|

denotes the cardinality of the set A. The fact that (A − B) is a positive semi-definite (p.s.d.)

(or positive definite (p.d.)) matrix is denoted by A º B (or A Â B). A ⊗ B denotes the tensor

or Kronecker product of the two matrices. If xt ∈ Cm×1, ∀ 1 ≤ t ≤ n, then xn , [x†1, · · · , x†n]†.

{A,B,C, D} will represent an ordered set of matrices. Moreover, I(X;Y ), I(X; Y |Z), h(X) and

h(X|Y ) represents the mutual information, conditional mutual information, differential entropy

and conditional differential entropy of the random variable arguments, respectively. The quantities

x ∧ y, x ∨ y and x+ denote the minimum and maximum between x and y and the max{x, 0},

respectively. All the logarithms in this chapter are with base 2. The distribution of a complex

circularly symmetric Gaussian random vector with zero mean and covariance matrix Q is denoted

as CN (0, Q).

3.2 Channel Model and Mathematical preliminaries

We consider the 2-user MIMO IC as was depicted in figure 2.1 in Chapter 2. However,

here in addition we also incorporate a real-valued attenuation factor, denoted as ηij , for the signal

transmitted from Txi to receiver Rxj and for the input we assume the following average power

constraint rather than the covariance constraint in (2.1):

1
n

n∑

t=1

Tr(Qit) ≤ 1, (3.1)
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for i ∈ {1, 2}, where Qit = E(XitX
†
it). Note that in the above power constraint Qit’s can depend

on the channel matrices. The received signals at time t can be written as

Y1t =
√

ρ11H11X1t +
√

ρ21H21X2t + Z1t, (3.2)

Y2t =
√

ρ22H22X2t +
√

ρ12H12X1t + Z2t, (3.3)

where Zit ∈ CNi×1 are i.i.d CN (0, INi) across i and t, ρii = ηii

√
Pi represents the signal-to-

noise ratio (SNR) at receiver i and ρij = ηij

√
Pi represents the interference-to-noise ratio (INR)

at receiver j for i 6= j ∈ {1, 2}. In what follows, the MIMO IC with channel matrices, SNRs

and INRs as described above will be denoted by IC (H, ρ̄), where H = {H11,H12, H21,H22} and

ρ̄ = [ρ11, ρ12, ρ21, ρ22]. The capacity region of IC (H, ρ̄) will be denoted by C (H, ρ̄) and is defined

as follows.

Let us assume that user i transmits information at a rate of Ri to Rxi using the codebook Ci,n

of n-length codewords with |Ci,n| = 2nRi . Given a message mi ∈ {1, · · · , 2nRi}, the corresponding

codeword Xn
i (mi) ∈ Ci,n must satisfy the power constraint given in equation (5.1). From the

received signal Y n
i , the receiver obtains an estimate m̂i of the transmitted message mi using a

decoding function fi,n, i.e., fi,n(Y n
i ) = m̂i. Let the average probability of error be denoted by

ei,n = E (Pr (m̂i 6= mi)).

A rate pair (R1, R2) is achievable if there exists a family of codebooks {Ci,n, 1 ≤ i ≤ 2}n and

decoding functions {fi,n(.), 1 ≤ i ≤ 2}n such that maxi{ei,n} goes to zero as the blocklength n goes

to infinity. The capacity region C(H, ρ̄) of IC (H, ρ̄) is defined as the closure of the set of achievable

rate pairs.

Definition 3.1 An achievable rate region is said to be within ni bits of the capacity region if for

any given rate tuple (R1, R2) ∈ C(H, ρ̄) the rate pair ((R1−n1)+, (R2−n2)+) lies in the achievable

region.



28

3.3 Capacity to within a Constant Gap

In this section, we shall characterize the capacity region of the 2-user MIMO IC to within

a constant number of bits where the constant is independent of SNRs, INRs and the channel

matrices. Such a characterization involves establishing a rate region and showing that no rate

tuple in the capacity region can be further from all the points in the achievable region by more

than this constant. Such a characterization of the capacity region will some time be referred as

the approximate capacity of the channel and the constant as the gap of approximation. A coding

scheme which can achieve a rate region that is within a constant number of bits will be called an

approximate capacity optimal (or constant-gap-to-capacity optimal) coding scheme.

In what follows, we shall first obtain a set of explicit upper bounds to the capacity region in

terms of the channel matrices. These bounds enable us to give it an operational interpretation which

in turn helps us identify a particular input distribution and superposition scheme (by specifying the

covariance matrices for the private and public message of each user) leading to a simple HK coding

scheme. The achievable rate region of this coding scheme and the corresponding gap to approximate

capacity is computed in Section 3.3.2. Comparing these set of upper and lower bounds we prove

that the two bounds are within ni bits of each other, proving the constant gap capacity result,

where

ni = max {(mii log(Mi) + mij log(Mi + 1)) , min{Ni, Ms} log(Mx)}+ m̂ji, for 1 ≤ i 6= j ≤ 2 (3.4)

with Mx = max{M1,M2}, Ms = (M1 + M2), mij = min{Mi, Nj}, and m̂ij = mij log
(

(Mi+1)
Mi

)
.

In Section 3.3.3, an improvement is proposed by allowing the transmitters to select one of

three carefully chosen superposition strategies depending on the rate pair to be achieved. It will be

shown that the achievable region of this explicit HK coding scheme is within n∗i bits to the capacity

region, where

n∗i = min{Ni,Ms} log(Mx) + m̂ji, for 1 ≤ i 6= j ≤ 2. (3.5)

Note that on a SIMO IC, n∗i = 1. Finally, in Section 3.3.4, we prove the constant gap reciprocity
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of the MIMO IC, i.e., the capacity of the 2-user MIMO IC does not change by more than a constant

number of bits if the roles of the transmitters and receivers are interchanged.

3.3.1 An upper bound to the capacity region

The set of upper bounds, to the capacity region for IC(H, ρ̄) derived in the following Lemma,

will be denoted by Ru(H, ρ̄). For economy of notation, we define the matrices

Ki ,
(
IMi + ρijH

†
ijHij

)−1
1 ≤ i 6= j ≤ 2. (3.6)

Lemma 3.1 (Upper Bound) For a given H and ρ̄ the capacity region, C(H, ρ̄) of a 2-user MIMO

Gaussian IC, with input power constraint (5.1), is contained within the set of rate tuples Ru(H, ρ̄),

i.e.,

C(H, ρ̄) ⊆ Ru(H, ρ̄),

where Ru(H, ρ̄) represents the set of rate pairs (R1, R2), satisfying the following constraints:

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
; (3.7)

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
; (3.8)

R1 + R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN1 + ρ11H11K1H

†
11

)
; (3.9)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+ log det

(
IN2 + ρ22H22K2H

†
22

)
; (3.10)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
; (3.11)

2R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+ log det

(
IN1 + ρ11H11K1H

†
11

)
+

log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
; (3.12)

R1 + 2R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN2 + ρ22H22K2H

†
22

)
+

log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
. (3.13)

Proof 3.1 (Proof of Lemma 3.1) The proof is given in Appendix A.3.
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Remark 3.1 It was mentioned in [27] that obtaining the approximate capacity results for the

MIMO case starting from the result of [6] appears difficult. It seems that the difficulty lies in

deriving a tight upper bound for the capacity region in the case when either Mi > Ni or Mi > Nj 6=i.

For example, consider the first sum rate upper bound in [6], where the second user’s codeword is

given to the receiver of the first user. Using Fano’s inequality for the MIMO channel we have

n(R1 + R2) ≤I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 ) + nεn, [here, εn → 0 as n →∞]

≤I(Xn
1 ; Y n

1 , Xn
2 ) + I(Xn

2 ; Y n
2 ) + nεn,

=h(Y n
1 |Xn

2 )− h(Zn
1 ) + h(Y n

2 )− h(Y n
2 |Xn

2 ) + nεn,

which simplifies to

n(R1 + R2) ≤ h(
√

ρ11(In ⊗H11)Xn
1 + Zn

1 )− h(
√

ρ12(In ⊗H12)Xn
1 + Zn

2 ) + h(Y n
2 )− h(Zn

1 ) + nεn.

Now h(Y n
2 ) in the above equation can be easily upper bounded by Gaussian inputs and upper

bounding the difference between the first two differential entropies is relatively easy when both H11

and H12 are square. A similar concept can be extended to the case when both of these matrices

have a larger row dimension than the column dimension, using SVD of these matrices (e.g., this

approach was used in [29], to extend the SISO result to the class of symmetric (M, N, M, N) MIMO

ICs with N ≥ M). However, this approach can not be applied when M1 > N1 or M1 > N2 because

it is not clear how to upper bound the above difference in such a way that it is tight enough to

yield an approximate capacity. In the genie-based model of [27] used in the proof in Appendix A.3,

this problem does not arise.

Remark 3.2 Two sets of explicit upper bounds to the capacity region of the MIMO IC, denoted

respectively as R0(H, G) and R00(H, G), were derived in [30] from the result in [27]. It can be

easily verified that the first four bounds in Lemma 3.1 are identical to those in [30] and the fifth

bound (on R1 + R2) can be shown to be equivalent to the 7th bound of R0(H, G) and R00(H, G).

However, the bounds on (2R1 + R2) and (R1 + 2R2) in [30] are incorrect. Figure 3.1 illustrates
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this fact by showing that on the SISO IC specified in Example 3.1, the bound on (2R1 + R2) in

R00(H, G) contradicts with the achievability of some of the rate tuples.

Let us consider the bound on (2R1 + R2) in R00(H, G), which for the SISO channel can be

written as

(2R1 + R2) ≤ log(1 + P‖H11‖2 + P‖H21‖2)+log
(

1 +
P‖H11‖2

1 + P‖H21‖2

)

+log
(

1 + P‖H21‖2 +
P‖H22‖2

1 + P‖H12‖2

)
. (3.14)

By the notation of [6], SNRi = Pi‖Hii‖2 and INRj = Pi‖Hij‖2 for i 6= j ∈ {1, 2}. Using this

notation in the above equation we get

(2R1 + R2) ≤ log(1 + SNR1 + INR1)+log
(

1 +
SNR1

1 + INR2

)

+log
(

1 + INR1 +
SNR2

1 + INR2

)
, BAOC

UB . (3.15)

The corresponding bound in the achievable region for the weak SISO IC (INR1 < SNR2 and

INR2 < SNR1) derived in [6] is given as (e.g., see Theorem 5, equation (61) in [6])

(2R1 + R2) ≤ log(1 + SNR1 + INR1)+log
(

2 +
SNR1

INR2

)

+log
(

1 + INR2 +
SNR2

INR1

)
− 3 , BETW

LB . (3.16)

Comparing the two bounds in equation (3.15) and (3.16) we see

BAOC
UB < BETW

LB + log (1 + INR1)− log (1 + INR2) + 3,

which implies that if INR1 is sufficiently smaller than INR2 i.e., log (1 + INR1) ≤ log (1 + INR2)

then the upper bound in (3.15) can be strictly smaller than the lower bound (3.16). Suppose there

exists an IC on which in addition to the fact that BAOC
UB < BETW

LB the bound (3.16) is active.

This would imply that there exists achievable rate tuples (R1, R2) which satisfy equation (3.16)

but violates (3.15) since BAOC
UB < BETW

LB . Now, (R1, R2) is an achievable rate tuple and can not

violate an upper bound unless it is incorrect. The following example proves the existence of such

a channel.
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Example 3.1 Consider a real SISO IC with H11 = 45, H12 = 25, H21 = 3, H22 = 30 and P1 =

P2 = P = 1. For this channel we have SNR1 = 2025 > INR2 = 625 and SNR2 = 900 > INR2 = 9.

Clearly, this is a weak interference channel (by the definition of [6]), for which an achievable

rate region can be easily computed using equation (61) in Theorem 5 of [6] and is depicted in

Fig. 3.1 as the polygon ABCDEF. On the other hand, putting the values of SNRi’s and INRj ’s

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

R
1
 (In bpcu)

R
2 (

In
 b

pc
u)

 

 
Achievable rate region.

Upper bound on (2R
1
+R

2
), B

UB
AOC.

A

EQ

D

P

F

B

C

S

Figure 3.1: A comparison of an achievable rate region and the upper bound on (2R1 + R2)..

in equation (3.15) we get the upper bound on (2R1 + R2) from [30], which is also depicted in the

figure. According to this bound any point (e.g., point S in the figure), above the line segment PQ

is not achievable, which evidently is not true.

3.3.2 A simple achievable scheme

Before describing the simple coding scheme, in what follows we shall briefly go through the

original HK coding scheme [10] and some recent developments [31], [26] of this coding scheme for

the discrete memoryless interference channel (DMIC). Later, we shall be applying these results

for the Gaussian IC. On a DMIC with transition probability P (Y1, Y2|X1, X2), for any set P∗ of
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probability distributions P ∗ which factors as

P ∗(Q, U1, U2,W1, W2, X1, X2) =P (Q)P (U1|Q)P (U2|Q)P (W1|Q)P (W2|Q)

P (X1|U1,W1, Q)P (X2|U2,W2, Q), (3.17)

where P (X1|U1,W1, Q) and P (X2|U2,W2, Q) equals either 0 or 1, let Ro
HK(P ∗) , R(o,1)

HK (P ∗) ∩

R(o,2)
HK (P ∗) represents a set of real 4-tuples, where

R(o,i)
HK (P ∗) =

{
(S1, T1, S2, T2) : Si ≤I(Ui;Yi|Wi, Wj , Q) , Iai ; (3.18a)

Ti ≤I(Wi; Yi|Ui, Wj , Q) , Ibi ; (3.18b)

Tj ≤I(Wj ; Yi|Ui,Wi, Q) , Ici ; (3.18c)

(Si + Ti) ≤I(Ui,Wi; Yi|Wj , Q) , Idi ; (3.18d)

(Si + Tj) ≤I(Ui,Wj ; Yi|Wi, Q) , Iei ; (3.18e)

(Ti + Tj) ≤I(Wi,Wj ;Yi|Ui, Q) , Ifi
; (3.18f)

(Si + Ti + Tj) ≤I(Ui,Wi,Wj ; Yi|Q) , Igi ;
}

(3.18g)

for i 6= j ∈ {1, 2}. Further, for a set, S of 4-tuples (S1, T1, S2, T2), let Π(S) = {(R1, R2) : 0 ≤ Ri ≤

(Si + Ti), 1 ≤ i ≤ 2, for some (S1, T1, S2, T2) ∈ S}, i.e., it is a 2-dimensional projection of S. Then

from [10] we know that

Theorem 3.1 the set

Ro
HK = Π

( ⋃

P ∗∈P∗
R(o,1)

HK (P ∗) ∩R(o,2)
HK (P ∗)

)
(3.19)

is an achievable region for the discrete memoryless IC.

Remark 3.3 Let U1 (U2) and W1 (W2) represent the private and common parts of the message

to be transmitted by Tx1 (Tx2), which hereafter will be referred to as the private and common

message of Tx1 (Tx2), respectively. Also, let Si and Ti represents the rate of information carried by

Ui and Wi, respectively, for i ∈ {1, 2} and Xi is constructed from Ui and Wi in such a manner that

the joint distribution P ∗(Q,U1,W1, U2,W2, X1, X2) ∈ P∗. Then, Theorem 3.1 essentially states
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that, for any (S1, T1, S2, T2) ∈ Ro
HK(P ∗) the rate tuple (S1 + T1, S2 + T2) is achievable on the

DMIC.

Thus, for any given P ∗ Theorem 3.1 not only provides a set of achievable rate tuples of the

channel in the form of Π (Ro
HK(P ∗)), but also provides the set of 4-tuples from which each user can

pick the rates of their private and public messages. However, to compute the achievable rate region

of the channel, it is necessary to compute the auxiliary sets R(o,1)
HK (P ∗) and R(o,2)

HK (P ∗) first. This

indirect way of computation can be avoided by using the equivalent description of Π (Ro
HK(P ∗))

provided in Lemma 1 of [26], stated below for easy reference.

Lemma 3.2 (Lemma 1 in [26]) For a fixed P ∗ ∈ P∗, let Re
HK(P ∗) be the set of (R1, R2) tuples

satisfying:

R1 ≤I(X1; Y1|W2, Q); (3.20a)

R1 ≤I(X1, Y1|W1,W2, Q) + I(W1; Y2|X2, Q); (3.20b)

R2 ≤I(X2; Y2|W1, Q); (3.20c)

R2 ≤I(X2; Y2|W1,W2, Q) + I(W2; Y1|X1, Q); (3.20d)

R1 + R2 ≤I(X2,W1; Y2|Q) + I(X1; Y1|W1,W2, Q); (3.20e)

R1 + R2 ≤I(X1,W2; Y1|Q) + I(X2; Y2|W1,W2, Q); (3.20f)

R1 + R2 ≤I(X1,W2; Y1|W1, Q) + I(X2,W1;Y2|W2, Q); (3.20g)

2R1 + R2 ≤I(X1,W2; Y1|Q) + I(X1; Y1|W1,W2, Q) + I(X2,W1; Y2|W2, Q); (3.20h)

R1 + 2R2 ≤I(X2,W1; Y2|Q) + I(X2; Y2|W1,W2, Q) + I(X1,W2; Y1|W1, Q), (3.20i)

then the Han-Kobayashi achievable region is given by Re
HK = ∪P ∗∈P∗Re

HK(P ∗)1 .

It should be noted that the set of achievable rate region Re
HK(P ∗) in Lemma 3.2 is now

specified directly as a set of (R1, R2) tuples, defined through constraints (3.20a)-(3.20i).
1 We use the superscript “o” to refer to the original HK coding scheme [10] and and “e” to emphasize that

Re
HK(P ∗) is an equivalent description of Π (Ro

HK(P ∗)).
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Remark 3.4 The Lemma was proved by showing that for any given P ∗ ∈ P∗,

Re
HK(P ∗) = Π (Ro

HK(P ∗)) = Π
(
R(o,1)

HK (P ∗) ∩R(o,2)
HK (P ∗)

)
. (3.21)

An equivalent description, for Π (Ro
HK(P ∗)) was first derived in [31], using Fourier-Motzkin elimina-

tion method on the set constraints given in equation (3.18), which have two additional constraints

on (2R1 +R2) and (R1 +2R2) besides those in Lemma 3.2. Later, in [26] these bounds were shown

to be redundant, resulting in Lemma 3.2.

Using the standard technique of [32] (e.g., see Chapter 7) these DMC results can be applied for

the Gaussian channel with discrete time but continuous input. To distinguish them from each other,

the corresponding rate regions of Ro
HK(P ∗), R(o,i)

HK (P ∗) and Re
HK(P ∗), for the Gaussian channel will

be denoted by RGo
HK(P ∗), R(Go,1)

HK (P ∗) and RGe
HK(P ∗), respectively.

Evidently, both the original (Theorem 3.1) and the alternative description (Lemma 3.2) of

the HK coding scheme is a union of an infinite number of sub-regions, each corresponding to a

particular input distribution and time sharing strategy. Since a complete characterization of this

region is prohibitively complicated, we seek in some sense a single good input distribution and

time sharing strategy. Indeed, we provide a novel and important operational interpretation of the

bounds of Lemma 3.1 through which such a good choice of input distribution becomes apparent,

leading to a simple HK coding scheme. Moreover, this simple HK coding scheme has a property of

being universally good in that it achieves a rate region that is within a constant number of bits to

the set of upper bounds of Lemma 3.1 independently of SNR and the channel parameters.

An interpretation of the bounds of Lemma 3.1: The first two bounds in Ru(H, ρ̄)

come from the rate bound on a point-to-point channel. The first term of the third bound given

in (5.11) represents the sum rate upper bound of a 2-user MAC having channel matrices Hi2, for

i = 1, 2 and Gaussian input with zero mean and scaled identity matrix as covariance. The second

term represents the mutual information on a point-to-point channel whose input covariance matrix

is K1 (see (3.6) for the definition of K1). These terms can be given the following operational

interpretation. The entire message of Tx2 has to be decoded at the second receiver and some part
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of Tx1 might be decoded at Rx2. Let us call this the public message of the first user, denoted as

W1 having rate R1w. Subsequently, let us denote the remaining part of the first user’s message by

U1 having rate R1u which will be referred to as the private message of the first user. Thus we have

R1 = R1w + R1u. Now, with respect to W1 and X2, Rx2 acts as a MAC and thus has the following

upper bound

R1w + R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
.

On the other hand, since U1 has to be decoded at Rx1, it has the following point-to-point channel

upper bound

R1u ≤ log det
(
IN1 + ρ11H11K1H

†
11

)
,

where K1 is the covariance matrix of U1. These two bounds together imply the third bound in

Lemma 3.1. The 4th bound can also be interpreted similarly just by interchanging the role of

transmitters. The first term of the fifth bound can be thought as a bound on the private message

of Tx1 and the public message of Tx2 which are to be decoded at Rx1, i.e.,

R1u + R2w ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
,

where the private message has a covariance matrix same as before. Similarly, the second term in the

5th bound can be interpreted as an upper bound on (R1w +R2u), and together, they imply the fifth

bound. The other terms of the remaining bounds can be similarly interpreted. This interpretation

motivates a simple HK scheme, where Q is a deterministic number (no time-sharing), the ith user’s

message is divided into a private and a public message and the private message has an input

covariance matrix proportional to Ki.

Definition 3.2 (Input distribution for the simple coding scheme) Let the private and pub-

lic messages of the users be encoded using mutually independent random Gaussian codewords and

the overall codeword is a superposition of the two, i.e., the transmit signals for any particular
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channel use can be written as

Xg
1 = Ug

1 + W g
1 ;

Xg
2 = Ug

2 + W g
2 ,

(3.22)

where Ug
i ∼ CN (0, Kiu) and W g

i ∼ CN (0,Kiw), represent symbols of the codewords of the private

and public messages of user i, respectively and

Kiu(H) , E(Ug
i Ug†

i ) =
Ki

Mi
=

1
Mi

(
IMi + ρijH

†
ijHij

)−1
; (3.23)

Kiw(H) , E(W g
i W g†

i ) =
1

Mi
(IMi −Ki) . (3.24)

The scaling by 1
Mi

is required to satisfy the power constraint (5.1). In the sequel, we shall refer

to such a superposition coding scheme where the covariance matrices of the private and public

messages of user i is given by Kiu and Kiw will be referred to as the HK ({Kiu,Kiw,Kiu,Kiw})

scheme. In particular, when Kiu and Kiw are as in equation (3.23) and (3.24), respectively the

coding scheme will be denoted as HK(s). Let us denote the distribution of the random variables as

defined above by Ps(U
g
1 ,W g

1 , X1, U
g
2 ,W g

2 , X2). Clearly, Ps(U
g
1 ,W g

1 , Xg
1 , Ug

2 ,W g
2 , Xg

2 ) ∈ P∗.

Figure 3.2: The equivalent virtual channel for the simple HK coding scheme.

Remark 3.5 The above choice ensures that the private message of user i, the covariance of whose

contribution at Rxj (√ρijHijU
g
i ) is given by

ρijHijKiuH†
ij =

ρij

Mi
Hij

(
IMi + ρijH

†
ijHij

)−1
H†

ij ¹ IMi ,
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reaches the unintended receiver below the noise floor. The HK ({K1u,K1w,K2u,K2w}) coding

scheme thus effectively divides each user into two virtual users as shown in Fig. 3.2. Note that the

interference links from the first virtual user to Rx2 and the fourth virtual user to Rx1 are made

very weak so that any signal along those links always reaches the receivers below noise floor. As

shown in the figure, the channel can be thought as two interfering multiple access channels (MAC)

where Rxi jointly decodes Ug
i , W g

i and W g
j 6=i, treating Ug

j as noise for 1 ≤ i 6= j ≤ 2.

Applying Theorem 3.1 and Lemma 3.2 for the Gaussian IC and evaluating it for the distribu-

tion, Ps(.) of Definition 3.2 we get the following achievable region for the 2-user MIMO Gaussian

IC.

Lemma 3.3 On a 2-user Gaussian MIMO IC, the simpleHK ({K1u,K1w,K2u,K2w}) coding scheme

can achieve the rate region, RGe
HK(Ps), which is a set of rate tuples, (R1, R2) where Ri’s satisfy the

following constraints

R1 ≤I(Xg
1 ; Y g

1 |W g
2 ); (3.25a)

R1 ≤I(Xg
1 ; Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ;Y g

2 |Xg
2 ); (3.25b)

R2 ≤I(Xg
2 ; Y g

2 |W g
1 ); (3.25c)

R2 ≤I(Xg
2 ; Y g

2 |W g
1 ,W g

2 ) + I(W g
2 ;Y g

1 |Xg
1 ); (3.25d)

R1 + R2 ≤I(Xg
2 ,W g

1 ; Y g
2 ) + I(Xg

1 ; Y g
1 |W g

1 ,W g
2 ); (3.25e)

R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 ) + I(Xg

2 ; Y g
2 |W g

1 ,W g
2 ); (3.25f)

R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 |W g

1 ) + I(Xg
2 ,W g

1 ;Y g
2 |W g

2 ); (3.25g)

2R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 ) + I(Xg

1 ; Y g
1 |W g

1 ,W g
2 ) + I(Xg

2 ,W g
1 ; Y g

2 |W g
2 ); (3.25h)

R1 + 2R2 ≤I(Xg
2 ,W g

1 ; Y g
2 ) + I(Xg

2 ; Y g
2 |W g

1 ,W g
2 ) + I(Xg

1 ,W g
2 ; Y g

1 |W g
1 ), (3.25i)

where Y g
i ’s are the outputs of the 2-user MIMO IC when its inputs are Gaussian as stated in

Definition 3.2. Further,

RGe
HK(Ps) = Π

(
RGo

HK(Ps)
)

= Π
(
R(Go,1)

HK (Ps) ∩R(Go,2)
HK (Ps)

)
,
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where

R(Go,i)
HK (P ∗) =

{
(S1, T1, S2, T2) : Si ≤I(Xg

i ;Y g
i |W g

i ,W g
j ); (3.26a)

Ti ≤I(W g
i ; Y g

i |Ug
i ,W g

j ); (3.26b)

Tj ≤I(W g
j ; Y g

i |W g
i , Ug

i ); (3.26c)

(Si + Ti) ≤I(Xg
i ;Y g

i |W g
j ); (3.26d)

(Si + Tj) ≤I(Ug
i ,W g

j ; Y g
i |W g

i ); (3.26e)

(Ti + Tj) ≤I(W g
i ,W g

j ; Y g
i |Ug

i ); (3.26f)

(Si + Ti + Tj) ≤I(Ug
i ,W g

i , W g
j ; Y g

i );
}

(3.26g)

for i 6= j ∈ {1, 2} and

I(Xg
1 ; Y g

1 |W g
1 ,W g

2 ) =log det
(
IN1 + ρ11H11K1uH†

11 + ρ21H21K2uH†
21

)
− τ21; (3.27)

I(W g
1 , ; Y g

1 |W g
2 , Ug

1 ) =log det
(
IN1 + ρ11H11K1wH†

11 + ρ21H21K2uH†
21

)
− τ21; (3.28)

I(W g
2 ; Y g

1 |Xg
1 ) =log det

(
IN1 +

ρ21

M2
H21H

†
21

)
− τ21; (3.29)

I(Xg
1 ; Y g

1 |W g
2 ) =log det

(
IN1 +

ρ11

M1
H11H

†
11 + ρ21H21K2uH†

21

)
− τ21; (3.30)

I(Xg
1 ,W g

2 ; Y g
1 |W g

1 ) =log det
(

IN1 +
ρ21

M2
H21H

†
21 + ρ11H11K1uH†

11

)
− τ21; (3.31)

I(W g
1 ,W g

2 ;Y g
1 |Ug

1 ) =log det
(

IN1 +
ρ21

M2
H21H

†
21 + ρ11H11K1wH†

11

)
− τ21; (3.32)

I(Xg
1 ,W g

2 ;Y g
1 ) =log det

(
IN1 +

ρ21

M2
H21H

†
21 +

ρ11

M1
H11H

†
11

)
− τ21, (3.33)

τij = log det(INj +ρijHijKiuH†
ij) for i 6= j{1, 2} and I(Xg

2 ; Y g
2 |W g

2 , W g
1 ) through I(Xg

2 ,W g
1 ; Y g

2 ) are

obtained by swapping the indexes 1 and 2 in the above set of equations, where Kiu and Kiw are

given by equation (3.23) and (3.24), respectively for 1 ≤ i ≤ 2.

Proof 3.2 Equations (3.25) and (3.26) are simple application of the DMIC result of Lemma 3.2

and Theorem 3.1 to the Gaussian channel. Whereas equations (3.27)-(3.33) are obtained evaluating

the different mutual information terms in equations (3.18) for the given distribution of Ug
1 , Ug

2 , W g
1 ,

W g
2 , Xg

1 and Xg
2 in Definition 3.2.
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Note that in the simple HK coding scheme, each user has 2 messages: a private message

(Ug
i ), which is to be decoded at its own receiver and a common message (W g

i ), which is to be

decoded at both the receivers. Therefore, to achieve a rate tuple (R1, R2) ∈ RGe
HK(Ps) the rates of

these messages has to be chosen in such a way that, each of these messages can be decoded at their

respective receivers with arbitrarily small probability of error and

Si + Ti = Ri, ∀ i ∈ {1, 2}, (3.34)

where Si and Ti are the rates of the private and public messages of user i, respectively. The second

part of Lemma 3.3 provides such a set (RGo
HK(Ps)) from which these “sub-rates” can be chosen.

Since, RGe
HK(Ps) = Π

(
RGo

HK(Ps)
)
, for every (R1, R2) ∈ RGe

HK(Ps) by definition of Π(.) there exists

at least one 4-tuple (S1, T1, S2, T2) ∈ RGo
HK(Ps) such that (Si + Ti) = Ri for both i = 1, 2. On the

other hand, by Theorem 3.1 for any (S1, T1, S2, T2) ∈ RGo
HK(Ps) if Si and Ti represents the rates

of information carried by Ug
i and W g

i , respectively, then the simple HK scheme can achieve the

rate tuple (S1 + T1, S2 + T2) (recall Remark 3.3), i.e., Ug
i , W g

i and W g
j can be decoded at Rxi

with arbitrarily small probability of error, for i 6= j ∈ {1, 2}. So, the rate splitting strategy of the

HK({K1u,K1w,K2u,K2w}) scheme can be summarized as follows.

Rate splitting strategy for the simple HK coding scheme: For any (R1, R2) ∈

RGe
HK(Ps), the simple HK coding scheme of Definition 3.2 chose an (S1, T1, S2, T2) tuple from

RGo
HK(Ps) in such a way that (Si + Ti) = Ri

2 , assigns rate Si to the private message Ug
i and

Ti to the public message W g
i of user i and transmit the signals using the superposition coding

scheme specified earlier. On the decoding side, Rxi can jointly decode Ug
i , W g

i and W g
j treating

Ug
j as noise for i 6= j ∈ {1, 2}, with vanishing probability of error (e.g., see Theorem 3.1).

Example 3.2 Consider a 2-user Gaussian (2, 3, 2, 2) IC with ρ̄ = [20, 8, 12, 20] dB, where the
2 The existence of such a quadruple is now guaranteed by Lemma 3.3.
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channel matrices are given as follows

H11 =




1.1975− 0.4385i −0.0902 + 0.1895i

0.3234− 1.3614i 0.1330− 0.2564i

0.7546− 1.0080i −0.3205− 0.6958i




H21 =




0.3816− 0.8508i 0.4450− 0.4386i

−0.4892− 0.2179i −0.5346− 0.1519i

0.7665− 1.0875i 0.1689 + 0.7651i




H12 =




0.9652− 0.8085i −0.3033 + 0.0055i

0.6130 + 1.4479i 0.6872 + 0.5280i


 H22 =



−0.1209− 0.4575i −0.0040 + 0.0921i

−0.5730 + 1.1118i −0.8223− 0.5687i




In Fig. 3.3 the dotted line represents the rate region achievable by the simple HK scheme and

the solid line represents the superset Ru(H, ρ̄) which contains the capacity region of the channel.
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Figure 3.3: An achievable rate region of the simple HK scheme.

It is not unreasonable to think that this gap between the boundaries of the achievable rate

region and the set Ru(H, ρ̄) can vary arbitrarily depending on the channel matrices. However, in

what follows we shall show that this gap actually is bounded and can not be larger than a constant

which is independent of the SNR, INR or the channel coefficients. This fact will be proved by

showing that RGe
HK(Ps) contains a subset which is within a constant number of bits to the set of

upper bounds. The following lemma specifies this subset.

Lemma 3.4 The achievable rate region of the simple HK ({K1u,K1w,K2u,K2w}) coding scheme

employed on IC(H, ρ̄), contains the region Ra(H, ρ̄), which is a set of non-negative rate tuples
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satisfying the following constraints:

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
− n1; (3.35)

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
− n2; (3.36)

R1 + R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
(3.37)

+ log det
(
IN1 + ρ11H11K1H

†
11

)
− (n1 + n2); (3.38)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
(3.39)

+ log det
(
IN2 + ρ22H22K2H

†
22

)
− (n1 + n2); (3.40)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
(3.41)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (n1 + n2); (3.42)

2R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+ log det

(
IN1 + ρ11H11K1H

†
11

)
+(3.43)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (2n1 + n2); (3.44)

R1 + 2R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN2 + ρ22H22K2H

†
22

)
(3.45)

+ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
− (n1 + 2n2), (3.46)

where Ki’s are as specified before (see equation (3.6)) and ni’s are given by equation (3.4) for

1 ≤ i ≤ 2.

Proof 3.3 (Proof of Lemma 3.4(Outline)) Note that the rate region RGe
HK(Ps) is a polygon

or an area in the first quadrant of (R1, R2)-plane restricted by different straight line segments.

Two sides of this polygon are the R1 and R2 axes and each of the other sides of it is part of a

straight line obtained by replacing the inequality by equality in one of hte constraints in equations

(3.25a)-(3.25i).

If the right hand side term of any of these bounds is replaced by a term smaller in magnitude,

the corresponding side in the polygon moves parallely towards the center. If this is done to all the

constraints, all the sides move towards the center resulting in a smaller polygon completely inside

the previous one. In Appendix A.5 we shall show that the bounds in (3.35)-(3.46) are obtained
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by replacing the right hand sides of (3.25a)-(3.25i) by terms smaller in magnitude. So, Ra(H, ρ̄)

describes a polygon which is completely inside RGe
HK(Ps) and hence achievable by HK(s).

Note that each bound of Lemma 3.4 differs from the corresponding bound in Lemma 3.1 only

by a constant, from which we get the following constant gap to capacity result.

Theorem 3.2 The rate region Ra (H, ρ̄) of Lemma 3.4, which is achievable by the simple HK

scheme HK ({K1u,K1w,K2u,K2w}), is within ni bits to the capacity region of the Gaussian MIMO

IC, where ni is given by equation (3.4).

Proof 3.4 We need to prove that for any given (R1, R2) ∈ C (H, ρ̄), there exists a rate pair

(R̂1, R̂2) ∈ Ra (H, ρ̄) such that R̂i ≥ Ri−ni for 1 ≤ i ≤ 2, or equivalently, ((R1−n1)+, (R2−n2)+) ∈

Ra (H, ρ̄). This can be proved using Lemma 3.1 and 3.4 as follows. The proof is by contradiction.

Using Lemma 3.1, we have

(R1, R2) ∈ C (H, ρ̄) ⇒(R1, R2) ∈ Ru (H, ρ̄) .

Now, denoting R̂i = (Ri − ni)+ for i = 1, 2, let us assume that (R̂1, R̂2) /∈ Ra (H, ρ̄). This implies

that one or more of the bounds of Lemma 3.4 are not satisfied by the rate pair (R̂1, R̂2). Without

loss of generality, we assume that Ri ≥ ni, ∀ i because the other case follows trivially and the 3rd

bound is not satisfied, i.e.,

(R̂1 + R̂2) =(R1 + R2 − (n1 + n2)) ,

>log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)

+ log det
(
IN1 + ρ11H11K1H

†
11

)
− (n1 + n2);

⇒ (R1 + R2) >log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)

+ log det
(
IN1 + ρ11H11K1H

†
11

)
.

However, this suggest that (R1, R2) /∈ Ru (H, ρ̄), which clearly is a contradiction.
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3.3.3 An explicit coding scheme

In this subsection we shall show that if the powers (covariance matrices for the corresponding

codewords) for the private and public messages of each user are chosen carefully, then the 2-nd and

4-th constraints of Lemma 3.3 can be made redundant. To prove this in what follows, we shall first

find the scenarios under which these bounds (bounds of equation (3.25b) or (3.25d)) can be tighter

than the corresponding bounds of equations (3.25a) or (3.25c). Subsequently, it will be shown that

by carefully choosing the covariance matrices for the private and public messages of each user, it is

possible to ensure that such scenarios never arise. Whence we get a rate region, in which the rate

tuples are constrained by only equations (3.25a), (3.25c) and (3.25e)-(3.25i), is achievable (e.g., see

Lemma 3.5). It will be also shown that this new rate region contains a subset which is within n∗i

number of bits to the capacity region of the channel.

Consider a rate tuple (R1, R2), where Ri’s satisfy all the constraints of equation (3.25) but

(3.25b), i.e.,

I(Xg
1 , Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ;Y g

2 |Xg
2 ) < R1 ≤I(Xg

1 , Y g
1 |W g

2 ). (3.47)

The maximum value of R1 in such a rate tuple is restricted only by the bound in equation (3.25b).

However, comparing the two sides of equation (3.47) and (3.25b)) we see that the first term on the

left hand side of equation (3.47) differs from that on the right hand side only due to the extra W g
1

in the conditioning. If all of the power is allocated to the private message only (i.e., Xg
1 = Ug

1 and

W g
1 = φ) then the first term on the left hand side alone is equal to the right hand side and equation

(3.47) can not be true. So, some fraction of the total power available at Tx1 is being used to send

W g
1 which decreases the term I(Xg

1 , Y g
1 |W g

1 , W g
2 ). However, this decrease is much more that the

corresponding increase in the second term on the left hand side (which also imply that the cross

link from Tx1 to Rx2 is relatively weaker than the direct link).

The main flaw of the encoding technique in the above scenario is that a significant fraction

of energy is spent to send some common information (W g
1 ) through a weak channel to a receiver

(Rx2) where the message is not even desirable. Intuitively it seems, instead of wasting a lot of
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energy on a weak channel it will be better if Tx1 chose K1w = 0 and assigns all its energy to

the private message. As mentioned earlier, if we put Xg
1 = Ug

1 and W g
1 = 0 in equation (3.47), the

strict inequality becomes equality, i.e.,

I(Xg
1 , Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ; Y g

2 |Xg
2 ) = I(Ug

1 , Y g
1 |W g

2 ) = I(Xg
1 ; Y g

1 |W g
2 ), (3.48)

and the two bounds in equation (3.25a) and (3.25b) becomes identical. With such a power split it

might turn out that the rate pair (R1, R2) is actually achievable.

Example 3.3 (A case with no common message) Consider the 2-user Gaussian (2, 3, 2, 2) IC

of Example 3.2. Computing the right hand sides of the bounds in equations (3.25a) and (3.25b)

for this channel we get

I(Xg
1 , Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ;Y g

2 |Xg
2 ) = 9.6572 < I(Xg

1 , Y g
1 |W g

2 ) = 11.8524.

In Fig. 3.4 the dotted line represents the rate region achievable by the simple HK scheme of the

previous section and the solid line represents the rate region achievable by the simple HK coding

scheme when Tx1 uses all its power to send the private message only, i.e., K1w = 0. This figure

illustrates that, it is indeed possible to achieve a rate tuple outside the rate region RGe
HK(Ps). For

example, on the particular channel of Fig. 3.4 the point A, is achievable by the coding scheme

HK({ 1
M1

IM1 ,0,K2u,K2w}), which is not achievable by the simple HK(s) scheme.

Remark 3.6 Fig. 3.4 points out another salient but important point regarding the usage of full

power for the private message only. Note that the achievable rate region of theHK({ 1
M1

IM1 ,0,K2u,K2w})

(the region marked by the solid line, in the figure) is not strictly larger than RGe
HK(Ps). For instance

point B, in Fig. 3.4 can not be achieved by HK({ 1
M1

IM1 ,0,K2u,K2w}), while it is achievable by

the simple HK scheme of the previous subsection. Thus, it is not helpful to set W g
1 = 0, whenever

(3.25b) is tighter than (3.25a).

The above discussion motivates the following channel dependent covariance splitting3 strat-

egy for the private and public messages of each user.
3 In what follows, we shall use “power splitting strategy” and “covariance splitting strategy” synonymously.
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Figure 3.4: Comparison of the achievable rate regions of the simple HK scheme and the HK scheme
with no public message for the first user.
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Definition 3.3 (A coding scheme with rate dependent power split) Let us consider the set

of rate tuples (R1, R2), where the Ri’s satisfy constraints (3.25a), (3.25c) and (3.25e)-(3.25i) and

denote it by R2. Now, consider a slightly modified version of the simple HK coding scheme of

definition 3.2, where each of the transmitters choose the power of their private and public messages

depending on the rate tuple to be achieved in the following manner:

(1) For (R1, R2) ∈ R2 such that Ri’s violate constraint (3.25b): Tx1 assigns all its avail-

able energy to its private message only, i.e., the coding schemeHK({ 1
M1

IM1 ,0,K2u,K2w}) ,

HK(s1) is used.

(2) For (R1, R2) ∈ R2 such that Ri’s violate constraint (3.25d): Tx2 assigns all its avail-

able energy to its private message only, i.e., the coding schemeHK({K1u,K1w, 1
M2

IM2 ,0}) ,

HK(s2) is used.

(3) For (R1, R2) ∈ RGe
HK(Ps), i.e., Ri’s violate neither (3.25b) nor (3.25d)4 : the simple HK

coding schemeHK({K1u,K1w,K2u,K2w}) is used, where Kiu and Kiw are chosen according

equation (3.23) and (3.24) for both i = 1, 2.

An HK coding scheme, which use mutually independent Gaussian codewords to encode the

private (Ui) and public (Wi) messages of each user, where the covariance matrices for the different

messages are chosen as described above, will be referred to as the explicit HK coding scheme and

will be denoted by H̃K.

Remark 3.7 Note that, the use of HK(s1) or HK(s2) in H̃K scheme depends on the channel

matrices and is not necessary always. For example, when the channel matrices are such that

equation (3.25a) and (3.25c) are tighter than (3.25b) and (3.25d), respectively then the simple HK

scheme alone is sufficient to achieve R2.

4 It will be shown in the proof of Lemma 3.5 that there does not exist any rate tuple (R1, R2) ∈ R2 which violates
both (3.25b) and (3.25d) simultaneously.
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Lemma 3.5 The explicit HK coding scheme H̃K employed on IC(H, ρ̄), contain the rate region

R2, where R2 is a set of rate tuples (R1, R2), which satisfy the following constraints

R1 ≤I(Xg
1 ; Y g

1 |W g
2 ); (3.49a)

R2 ≤I(Xg
2 ; Y g

2 |W g
1 ); (3.49b)

R1 + R2 ≤I(Xg
2 ,W g

1 ; Y g
2 ) + I(Xg

1 ; Y g
1 |W g

1 ,W g
2 ); (3.49c)

R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 ) + I(Xg

2 ; Y g
2 |W g

1 ,W g
2 ); (3.49d)

R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 |W g

1 ) + I(Xg
2 ,W g

1 ;Y g
2 |W g

2 ); (3.49e)

2R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 ) + I(Xg

1 ; Y g
1 |W g

1 ,W g
2 ) + I(Xg

2 ,W g
1 ; Y g

2 |W g
2 ); (3.49f)

R1 + 2R2 ≤I(Xg
2 ,W g

1 ; Y g
2 ) + I(Xg

2 ; Y g
2 |W g

1 ,W g
2 ) + I(Xg

1 ,W g
2 ; Y g

1 |W g
1 ), (3.49g)

where I(.; .|.)’s are given by equation (3.27)-(3.33).

Remark 3.8 Note that the set of bounds in the above Lemma are the same as in Lemma 3.3

after removing bounds (3.25b) and (3.25d). This rate region can be achieved by the explicit HK

scheme where the common message of each user is always decoded at the unintended receiver. In

other words, using the simple rate dependent power splitting strategy the entire rate region R2

can be achieved without considering the so called don’t care conditions. However, it should

be emphasized at this point that even considering the don’t care conditions5 the equivalent

rate region is not same as R2. This region for the DMIC was recently computed in [31] (e.g., see

Theorem D), and was shown that the equivalent rate region contains two extra non-redundant

bounds in addition to those in equation (3.49).

Proof 3.5 (Proof of Lemma 3.5 (Outline)) We know that every point in RGe
HK(Ps) is achiev-

able by the HK(s) scheme. Using this result we prove the Lemma by showing that every rate tuple

that lie in R2 bun not in RGe
HK(Ps) can be achieved by the modified or the explicit coding scheme

H̃K of definition 3.3.
5 That is, removing the constraints (3.26b),(3.26c) and (3.26f) from the expressions of R(Go,i)

HK , for i = 1, 2.
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It can be easily seen that, when (R1, R2) ∈ R2 but (R1, R2) /∈ RGe
HK(Ps) both of (3.25a)

and (3.25d) can not be violated simultaneously, because that would imply that (R1 + R2) vi-

olates equation (3.49e) contradicting the assumption that (R1, R2) ∈ R2. On the other hand,

in Appendix 3.5 it will be shown that when (3.25b) is violated for a given (R1, R2) ∈ R2, the

HK({ 1
M1

IM1 ,0,K2u,K2w}) scheme, which assigns all the power of user one to its private message,

can achieve the rate tuple and when (3.25d) is violated, the HK scheme of definition 3.2 with

K2w = 0 and K2u = 1
M2

IM2 can achieve the rate tuple. This however, is exactly the coding tech-

nique used by the coding scheme of Definition 3.3. Therefore, the H̃K scheme can achieve any rate

point in R2.

It is clear that, depending on the rate tuple to be achieved, the explicit HK scheme use

one of the three simple HK coding schemes specified in definition 3.3. The corresponding input

distribution when Txi spends all its power to send the private message only, was denoted by Psi

(e.g., see Appendix A.6) in the proof of Lemma 3.5, where Psi(.) ∈ P∗, for i = 1, 2. The achievable

rate region of the simple HK scheme with input distribution Psi is given by RGe
HK(Psi), where

RGe
HK(Psi) can be computed as in Lemma 3.3. As was argued earlier, to achieve a point in this

rate region, it is important to chose the sub-rates carefully. In particular, to achieve any rate tuple

(R1, R2) ∈ RGe
HK(Psi), the corresponding sub-rate for the private and public messages can be chosen

from RGo
HK(Psi) since RGe

HK(Psi) = Π
(
RGo

HK(Psi)
)

by Lemma 3.3. This suggest the following rate

splitting strategy for the explicit HK scheme, H̃K.

Rate splitting strategy for the explicit HK coding scheme: Depending on the rate

tuple to be achieved when the input distribution of the coding is P , where P ∈ {Ps, Ps1 , Ps2}, the

sub-rates for the different private and public messages are chosen from RGo
HK(P ), where RGo

HK(P )

can be computed from equation (3.26) by using distribution P in place of Ps.

Remark 3.9 Since the sub-rates are chosen from RGo
HK(P ), when Txi spends all its power to send

the private message only, i.e., W g
i = φ, it is expected that RGo

HK(P ) should not allow any positive

rate for the common message. Putting W g
i = φ in equation (3.26b) it can be easily seen that it is



50

indeed the case, i.e., Ti ≤ 0.

Remark 3.10 It is worth pointing out some of the differences between the explicit coding scheme

of this chapter and that in [6], where a similar coding scheme was used to characterize the capacity

region of the SISO IC within one bit. The authors in [6] use a superposition coding scheme where

each users private and public messages are encoded using independent Gaussian random codewords

with covariances Piu and (Pi−Piu), respectively for i = 1, 2. Here, Pi is the total average power of

Txi and Piu depends on the cross channel coefficients as follows (see equation (57) and (58) of [6])

Piu = min{Pi,
1

‖Hij‖2
}, i 6= j ∈ {1, 2}. (3.50)

In the notation of the present chapter this coding scheme is identical toHK({P1u
P1

,
(
1− P1u

P1

)
, P2u

P2
,

(
1− P1u

P1

)
}), when Pi ≥ 1

‖Hij‖2 }. On the other hand, it is identical to HK({1, 0, P2u
P2

,
(
1− P1u

P1

)
}),

when only P1 < 1
‖H12‖2 }, HK({P1u

P1
,
(
1− P1u

P1

)
, 1, 0}), when only P2 < 1

‖H21‖2 } and it is identical

to HK({1, 0, 1, 0}), when Pi ≤ 1
‖Hij‖2 } for both i = 1, 2. So, depending on the channel coefficients

the coding scheme is equivalent to one of the four schemes just described. However, for a given

channel the coding scheme and power allocation of [6] is fixed and does not changes with the rate

tuple to be achieved whereas the explicit coding scheme of this chapter utilizes one of the three

different power splitting schemes depending on the rate tuple to be achieved. On the other hand,

in contrast to [6], the H̃K scheme explicitly specify the sub-rates of the different messages for each

rate tuple to be achieved in R2.

Remark 3.11 Note the subtle difference between the H̃K scheme and a coding scheme which time

shares between the three simple HK schemes of definition 3.3. In general, the latter can achieve a

larger rate region. Such is the case because the H̃K scheme does not useHK({ 1
M1

IM1 ,0, K2u,K2w})

or HK({K1u, K1w, 1
M2

IM2 ,0}) to achieve any point that is not inside R2. Whereas, both of

HK({ 1
M1

IM1 ,0, K2u,K2w}) and HK({K1u,K1w, 1
M2

IM2 ,0}) may achieve points which does not

lie in R2 but clearly achievable by time sharing scheme. Figure 3.5 illustrates this point by an

example, where Fig. 3.5(a) depicts the achievable rate regions of the three simple HK schemes for
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the channel of Example 3.2 and in Fig. 3.5(b), the rate region bounded by the dotted and dashed

line represents the achievable region of the explicit HK scheme, R2 and the dashed line represents

the rate region RTS , achievable by time sharing. Point A in the latter represents a rate tuple which

lies in the achievable region of HK({ 1
M1

IM1 ,0,K2u,K2w}) and hence also lie in RTS but it is clearly

outside R2 and hence not achievable by H̃K.
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Figure 3.5: Comparison of the achievable rate regions of the explicit scheme and the region achiev-
able by time sharing among the component schemes, on the channel of Ex. 3.2.

From the fact that, the rate regionR2 in general is larger thanRGe
HK(Ps), it might be expected

that R2 contains a subset, whose boundary is also at most a constant number of bits away from the

set of upper bounds in Lemma 3.1. However, this constant now might be smaller than ni. Indeed,

the following Lemma provides such a subset of rate tuples.

Lemma 3.6 Let R∗a(H, ρ̄) be a set of non-negative rate tuples (R1, R2) which satisfy the following
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constraints:

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
− n∗1;

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
− n∗2;

R1 + R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)

+ log det
(
IN1 + ρ11H11K1H

†
11

)
− (n∗1 + n∗2);

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)

+ log det
(
IN2 + ρ22H22K2H

†
22

)
− (n∗1 + n∗2);

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (n∗1 + n∗2);

2R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+ log det

(
IN1 + ρ11H11K1H

†
11

)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (2n∗1 + n∗2);

R1 + 2R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN2 + ρ22H22K2H

†
22

)

+ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
− (n∗1 + 2n∗2),

where n∗i given by equation (3.5). Then, R∗a(H, ρ̄) is an achievable rate region on IC(H, ρ̄) and is

achievable by the explicit HK coding scheme H̃K, i.e.,

R∗a(H, ρ̄) ⊆ R2.

Proof 3.6 The proof follows trivially from the proof of Lemma 3.2, in particular, from equation

(A.27).

Theorem 3.3 The achievable rate region R∗a (H, ρ̄), given by Lemma 3.6, is within n∗i bits to the

capacity region of the Gaussian MIMO IC, where n∗i is given by equation (3.5).

Proof 3.7 The proof is identical to that of Theorem 3.2.

Corollary 3.1 The achievable rate region R∗a(H, ρ̄) is within n∗i bits to Ru(H, ρ̄).
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Proof 3.8 Follows from the proof of Theorem 3.2, with Ra(H, ρ̄) replace by R∗a(H, ρ̄) and ni by

n∗i .

Example 3.4 Capacity of the SIMO IC within 1 bit: On a (1, N1, 1, N2) IC, n∗1 = n∗2 = 1, thus

the explicit HK(3) scheme can achieve a rate region which is within 1 bit of the capacity region

for any SNRs, INRs and the channel vectors. This result is different from that reported in [24]

where the exact sum capacity of the strong SIMO IC with ‖Hii‖2 ≤ ‖Hij‖2 for 1 ≤ i 6= j ≤ 2,

was characterized. While [24] provides the exact sum capacity for the strong SIMO IC, our 1 bit

approximation is valid for all channel coefficients. Further, this approximation is tighter than that

reported in [27] and [28], where the capacity approximation within Ni bits was proved.

Remark 3.12 Although the above approximate characterization is not always better than that

reported in [27], it provides a closer approximation for a large class of interference channels. In

particular, for all the interference channels on which n∗i < Ni the explicit HK(3) scheme provides

a tighter approximation. Among the other interesting aspects of the approximate characterization

of this section are (a) we have a set of explicit expressions for the achievable region and upper

bounds to the capacity region, which for instance, can be used for a further analysis such as the

evaluation of the generalized degrees of freedom (which will be carried out in chapter 4) and the

diversity-multiplexing tradeoff (DMT) analysis obtained by the authors in [33] and [34]; and (b) an

explicit coding scheme, involving just three superposition strategies was shown to be approximate

capacity optimal in contrast to the result of [27] where no light is shed on what simple or explicit

scheme, if any, out of all possible input distributions and all possible time sharing schemes, would

be approximate capacity optimal.

3.3.4 Reciprocity of the approximate capacity region

For a communication channel with an unequal number of antennas at the source and destina-

tion nodes, how does the capacity (or any other performance metric) change if the information flows
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in the opposite direction (i.e., the roles of the transmitters and the receivers are interchanged)?

The property of maintaining the same performance even if the direction of flow of information is

reversed is widely known as the reciprocity of the channel. For instance, the following reciprocity of

the point-to-point MIMO channel was proved in [5]: the capacity of a MIMO point-to-point channel

is unchanged when the roles of the transmitters and receivers are interchanged provided the power

constraint is appropriately scaled. In [35] the degrees of freedom (DoF) region of a (M1, N1,M2, N2)

MIMO IC was shown to be the same as that of a (N1,M1, N2, M2) IC. In this section, we prove a

reciprocity result for the (M1, N1,M2, N2) MIMO IC by showing that reciprocity actually holds in

the much stronger constant-gap-to-capacity sense.

(a) Information flowing in the reverse direction in the
(M1, N1, M2, N2) IC.

(b) Equivalent channel, information flows in the for-
ward direction.

Figure 3.6: Information flowing in the reverse direction on an 2-user MIMO IC and its corresponding
forward information flow model.

Fig. 3.6(a) illustrates an (M1, N1,M2, N2) MIMO IC with channel parameters H and ρ̄

with roles of the transmitters and receivers interchanged so that information flows in the reverse

direction. Fig. 3.6(b) shows its equivalent model where the information flows in the forward

direction. Clearly, the capacity of the reverse channel is the same as that of IC (Hr, ρ̄r) where

Hr = {HT
11, H

T
21,H

T
12,H

T
22} and ρ̄r = [ρ, ρ21, ρ12, ρ22]. The capacity region of the reverse channel is

denoted as C (Hr, ρ̄r).
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Let us define the counterparts in the reverse channel of the capacity gap parameters of the

forward channel in (3.5) as

m∗
i , min{Mi, Ns} log(Nx) + m̃ij , 1 ≤ i 6= j ≤ 2, (3.51)

where Ns = (N1 + N2), Nx = max{N1, N2} and m̃ij = mij log
(

(Nj+1)
Nj

)
for 1 ≤ i 6= j ≤ 2.

To prove the reciprocity in the constant gap to capacity sense, the capacity regions of IC (H, ρ̄)

and IC (Hr, ρ̄r) must be shown to be within a constant number of bits to each other. We start with

a result on the outer bounds.

Lemma 3.7 The outer bound Ru (H, ρ̄) from Lemma 3.1 of the forward channel IC (H, ρ̄) and the

outer bound Ru (Hr, ρ̄r) (obtained in the same way as in Lemma 3.1 but for the reverse channel

IC (Hr, ρ̄r)) define the same set of rate tuples, i.e.,

Ru (H, ρ̄) = Ru (Hr, ρ̄r) . (3.52)

Proof 3.9 The proof is given in Appendix A.7.

Corollary 3.1 proves that the explicit HK scheme, HK(3), achieves a rate region on IC(H, ρ̄)

which is within n∗i bits to a set of rate tuple Ru(H, ρ̄) which contains its capacity region. Clearly,

the counterpart of this explicit HK coding scheme for the reverse channel (with suitable changes in

the channel matrices, INRs and the number of antennas) can achieve a rate region on IC (Hr, ρ̄r)

which is within m∗
i bits to Ru (Hr, ρ̄r), where m∗

i is given by equation (3.51). However, from

Lemma 3.7 we know that

Ru (H, ρ̄) = Ru (Hr, ρ̄r) .

Thus the capacity regions of the two interference channels can not differ by more than max{m∗
i , n

∗
i }

bits proving the following theorem.

Theorem 3.4 The capacity regions of IC(H, ρ̄) and IC(Hr, ρ̄r) are within max{m∗
i , n

∗
i } bits to

each other, i.e., if (R1, R2) ∈ C(H, ρ̄), then there exists a rate tuple (Rr
1, R

r
2) ∈ C(Hr, ρ̄r), the

capacity region of the reverse channel, such that

|(Ri −Rr
i )| ≤ max{m∗

i , n
∗
i }, ∀ 1 ≤ i ≤ 2.
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Proof 3.10 Let (R1, R2) ∈ C(H, ρ̄). From Corollary 3.1, there exist a rate tuple (R̂1, R̂2) ∈

Ru(H, ρ̄) such that

0 ≤ (R̂i −Ri) ≤ n∗i , ∀ 1 ≤ i ≤ 2. (3.53)

Further, from Lemma 3.7 we have (R̂1, R̂2) ∈ Ru(Hr, ρ̄r). Next, applying Corollary 3.1 for

IC(Hr, ρ̄r), we have that there exists a rate tuple (Rr
1, R

r
2) ∈ C(Hr, ρ̄r) such that

0 ≤ (R̂i −Rr
i ) ≤ m∗

i , ∀ 1 ≤ i ≤ 2. (3.54)

Note that equations (3.53) and (3.54) provide ranges of Ri and Rr
i and the magnitude of the

difference between them is maximum when one takes its largest value and the other its smallest,

i.e.,

|(Ri −Rr
i )|max = m∗

i or n∗i ,

which proves the theorem.

Remark 3.13 Note that reciprocity holds for the 2-user MIMO IC without power scaling and this

may seem counter-intuitive given the point-to-point MIMO channel result of [5]. The reason is that

reciprocity was shown here in the approximate capacity sense. The difference due to not scaling

power gets absorbed in the gap that already exists between the exact capacity and the achievable

region.

3.4 Conclusion

An approximate capacity region of the 2-user MIMO IC with an arbitrary number of antennas

at each node is characterized. It is shown that a simple (or universal) and an explicit HK coding

schemes which inherently perform a form of joint interference alignment in the signal space and in

the signal level can achieve the capacity region within a constant gap. For a class of ICs, this gap is

the tightest approximation to the capacity region of the MIMO IC found to date and this includes

the SIMO ICs for which the gap is 1 bit independently of the number of antennas at the receivers.
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The explicit upper and lower bounds to the capacity region are used to prove the reciprocity of the

MIMO IC in the constant-gap-to-capacity sense.



Chapter 4

The Generalized Degrees of Freedom Region of the MIMO Interference

Channel

4.1 Introduction

In this chapter we characterize the generalized degrees of freedom (GDoF) region of the 2-

user MIMO IC. The so called degrees of freedom (DoF) of a communication channel characterizes

the scaling factors of the rates supported by the channel at asymptotic values of the SNR and INR

of the channel and therefore is a coarser metric than the capacity. However, as shall demonstrate

in this chapter, the DoF metric is very useful for characterizing the performance of a channel for a

large range of parameters such as the various SNRs and INRs of the channel. Since the performance

of a 2-user IC serves as the upper and lower bounds to various other multi-user interference network

whose capacity or approximate capacity is not available, the GDoF of the 2-user IC can serve as a

performance bound to those networks. Moreover, the tools and techniques derived in this analysis

can also be used to characterize the performance of other multiuser networks as well which is

demonstrated by computing the GDoF region of the 2-user MIMO multiple access cannel (MAC)

in subsection 4.5.4.

The GDoF region metric, as its name suggests, generalizes the notion of the conventional

degrees of freedom (DoF) region metric by additionally emphasizing the signal level as a signaling

dimension. It therefore characterizes the simultaneously accessible fractions of spatial and signal-

level dimensions (per channel use) by the two users in the limit of high signal-to-noise ratio (SNR)

while the ratios of the SNRs and INRs relative to a reference SNR, each expressed in the dB scale,
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are held constant, with each constant taken, in the most general case, to be arbitrary. The GDoF

region was obtained for the SISO IC in [6] based on the constant gap to capacity result found therein.

The symmetric GDoF, dsym(α), which is the maximum common GDoF achievable by each of the

two users, for the symmetric SISO IC with equal SNRs and equal INRs for the two users, i.e, with

INR = SNRα was evaluated in [6] to be the well-known “W” curve. The W-curve clearly delineates

the very weak, weak, moderate, strong and very strong interference regimes, depending on the

value of α, pointing to the optimal (upto GDoF accuracy) interference management techniques as

a function of the severity or mildness of the interference.

There have been several other recent works on characterizing the GDoF of various channels.

For example, in [29], the symmetric GDoF of a class of symmetric MIMO ICs – for which the SNRs

at each receiver are the same and the INRs at each receiver are also the same, with INR = SNRα–

and where both transmitters have M antennas and both receivers have N antennas, with the

restriction N ≥ M , was obtained and found to be a “W” curve also. In [36], the symmetric GDoF

in the perfectly symmetric (with all direct links having identical gains and all cross links having

identical gains) scalar K-user interference network was found (see also [37]). In [38], the symmetric

GDoF was obtained for the (N + 1)-user symmetric SIMO IC with N antennas at each receiver

and with equal direct link SNRs and equal cross link INRs. The symmetric GDoF of a symmetric

model of the scalar X-channel with real-valued channel coefficients was found in [39].

In this work, we obtain the GDoF region of the general MIMO IC with an arbitrary number

of antennas at each node and in the most general case where the signal-to-noise ratios (SNR) and

interference-to-noise ratios (INRs) vary with arbitrary exponents to a nominal SNR. This result

is made possible by the recent constant gap to capacity characterization for the general MIMO

IC in [27, 40]. The GDoF result of this chapter thus generalizes the GDoF region of the SISO IC

found in [6] to the MIMO IC. It also recovers the symmetric GDoF result of [29] for the class of

symmetric MIMO ICs considered therein. Moreover, the single and unified constant-gap-to-capacity

achievability scheme of [40] considered here, unlike that in [29], does not require the restriction on

the numbers of antennas at the different nodes or on the values of SNR exponents and is GDoF
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optimal in the most general case. The main result of this work also recovers the conventional DoF

region result obtained in [35] for the MIMO IC by setting all SNR exponents to unity. In addition to

providing several insights that include whatever is common between certain symmetric (in numbers

of antennas) MIMO ICs and SISO ICs and what is not, the GDoF result of this chapter gives rise to

new insights into optimal signaling strategies that make jointly optimal use of the available spatial

and signal level dimensions.

The single, unified achievable scheme studied in depth here that is GDoF optimal (and indeed

constant-gap-to-capacity optimal [40]) is a simple Han-Kobayashi coding scheme with mutually

independent Gaussian input for the private and public messages of each user without time-sharing.

The private and public message can be thought of consisting of several information streams. The

private information streams are either directed along the null space of the corresponding cross-link

channel matrix or transmitted at power levels that ensure that they reach the unintended receiver

below the noise floor. Such a scheme therefore jointly and optimally employs both signal-level

interference alignment [41] as well as transmit beamforming or signal-space interference

alignment [42] techniques. For a given DoF tuple in the GDoF region of the channel, we also

explicitly specify the DoFs carried by the private and public messages of each user.

The rest of the chapter is organized as follows. In Section 4.2 we describe the channel model

and the GDoF optimal coding scheme. Section 4.3 contains the main result of this chapter, namely,

the GDoF region of the general MIMO IC. Specializations of this result to the SISO IC and to the

DoF region of the MIMO IC are also given in Section 4.3 which recover the results of [6] and [35],

respectively. Explicit specifications of the DoF-splitting between private and public sub-messages

are obtained. The reciprocity property of the GDoF region (which denotes the invariability of

GDoF with respect to direction of information flow) is described in 4.4 as are specializations of the

GDoF region to obtain the symmetric GDoF of the symmetric (M, N, M, N) MIMO IC, thereby

recovering as a special case the result of [29] for M ≤ N . In Section 4.5 several novel insights

revealed by the GDoF analysis are given. Section 4.6 concludes the chapter.
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Notations 4.1 Let C and R+ represent the field of complex numbers and the set of non-negative

real numbers, respectively. An n × m matrix with entries coming from C will be denoted by

A ∈ Cn×m and its entry in the ith row and jth column will be denoted by [A]ij . We shall denote the

transpose and the conjugate transpose of the matrix A by AT and A† respectively. In represents the

n×n identity matrix, 0m×n represents an all zero m×n matrix and Un×n represents the set of n×n

unitary matrices. The kth column (row) of the matrix A will be denoted by A[k] (A(k)) whereas

A[k1:k2] (A(k1:k2)) will represent a matrix whose columns (rows) are same as the kth
1 to kth

2 columns

(rows) of matrix A. If x(k) ∈ C, ∀ 1 ≤ k ≤ n, then x , [x(1), x(2), · · · , x(n)]T . {A,B,C, D} will

represent an ordered set of matrices. I(x; y) and I(x; y|z) will represent the mutual information and

conditional mutual information of the arguments, respectively. (x∧ y), (x∨ y) and (x)+ represents

the minimum and maximum between x and y and maximum between x and 0, respectively. We

also use Landau notations for error terms in approximations. o(1) denotes a term which goes to

zero asymptotically and O(1) denotes a term which is bounded above by some constant. We say x

is of the order of y if limy→∞ x
y = 0. All the logarithms in this chapter are with base 2. We denote

the distribution of a complex circularly symmetric Gaussian random vector with zero mean and

covariance matrix Q, by CN (0, Q). Finally, the indicator function 1(S) is defined as follows

1(S) =





1, if S is true;

0, if S is false.

4.2 Channel Model and preliminaries

In this section, we specify the particulars of the channel matrices of the two-user MIMO IC,

a high SNR interpretation of the achievable scheme of [40] and then give asymptotic (high SNR)

approximations upto O(1) of key quantities that arise in the bounds on capacity region. These

approximations are used later to derive the main result of this chapter on the GDoF region of the

MIMO IC.

For the high SNR analysis of this chapter we assume that the entries of the channel matrices

(e.g., see figure 2.1), Hij are drawn i.i.d. from a continuous and unitarily invariant [7] distribution,
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i.e., UHijV is identically distributed to Hij for any U ∈ UNj×Nj and V ∈ UMi×Mi which ensures

that the channel matrices are full rank with probability one (w.p.1). This class of distributions will

be denoted by P in the rest of the chapter.

The performance on the MIMO IC should depend on the strength of the interference relative

to the desired signal level on the dB scale with, for example, a better DoF performance expected

when interference strength is much less or much higher than the signal strength as in the SISO

IC [6]. This variation of performance due to relative difference in strengths of SNRs and INRs

can not be captured (at high SNR) by a DoF analysis alone, i.e., if they differ say by only a

constant. To characterize the DoF region under such a scenario we thus let the SNRs and INRs

vary exponentially with respect to a nominal SNR, ρ, with different scaling factors as follows:

lim
log(ρ)→∞

log(ρij)
log(ρ)

= αij , where αij ∈ R+ and i, j ∈ {1, 2}. (4.1)

We assume ρ11 = ρ or α11 = 1, without loss of generality and in the rest of the chapter ρ̄ and

ᾱ will be used interchangeably to indicate the power levels of different links of the channel, i.e.,

the capacity of the channel will also be denoted by IC (H, ᾱ), where ᾱ = [α11, α12, α21, α22]. As

mentioned earlier, this technique of varying different SNRs and INRs was first introduced in [6] to

characterize the DoF region of the SISO 2-user IC and the corresponding DoF region was called the

generalized DoF (GDoF) region. In the following subsection we shall provide a formal definition

of the GDoF region of the channel.

4.2.1 Generalized Degrees of Freedom Region

Definition 4.1 The GDoF region, Do(M̄, ᾱ), of IC(H, ᾱ) is defined as

Do(M̄, ᾱ) =
{

(d1, d2) : di = lim
ρii→∞

Ri

log(ρii)
, i ∈ {1, 2} such that (R1, R2) ∈ C(H, ᾱ)

}
. (4.2)

Since the capacity region of a MIMO IC is not known and a constant number of bits is

insignificant in the GDoF analysis, to derive the GDoF region we shall use the constant-gap-

to-capacity result found by the authors in [40]. In particular, since a constant number of bits is
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insignificant in the GDoF analysis, the C(H, ᾱ) in the definition of the GDoF region can be replaced

by either Ru(H, ᾱ) or Ra(H, ᾱ) to compute the GDoF region of the MIMO IC. We state this fact

as a lemma for easy further reference.

Lemma 4.1 The GDoF region of the MIMO IC is given as

Do(M̄, ᾱ) =
{

(d1, d2) : di = lim
ρii→∞

Ri

log(ρii)
, i ∈ {1, 2} and (R1, R2) ∈ Ru(H, ᾱ)

}
, (4.3)

where Ru(H, ᾱ) = Ru(H, ρ̄) is given by Lemma 3.1.

Proof 4.1 From Lemma 3.1 and 3.4 we have the following

Ra(H, ᾱ) ⊆ C(H, ᾱ) ⊆ Ru(H, ᾱ). (4.4)

To obtain the desired result we use in the definition of the GDoF region of (4.2), the above set

inclusions along with the fact that ni’s in Lemma 3.4 are independent of ρ and H.

4.2.2 Asymptotic Approximations

In the derivation of the GDoF region of the 2-user MIMO IC quantities like the sum rate

upper bound on 2- and 3-user MIMO multiple-access channels (MACs) will appear frequently.

Thus, in the following two lemmas, we provide asymptotic approximations up to O(1) of such

quantities for different ᾱ and number of antennas.

Lemma 4.2 Let H1 ∈ Cu×u1 and H2 ∈ Cu×u2 are two full rank (w.p.1) channel matrices such that

H = [H1 H2] is also full rank w.p.1. Then for asymptotic ρ

log det
(
Iu + ρaH1H

†
1 + ρbH2H

†
2

)
= f (u, (a, u1), (b, u2)) log(ρ) +O(1), (4.5)

where for any u ∈ R+ and (ai, ui) ∈ R2 for i ∈ {1, 2},

f (u, (a1, u1), (a2, u2)) ,





min{u, u1}a+
1 + min{(u− u1)+, u2}a+

2 , if a1 ≥ a2;

min{u, u2}a+
2 + min{(u− u2)+, u1}a+

1 , if a1 < a2.

(4.6)
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Proof 4.2 This result was proved in [29] when (u1 + u2) ≥ u. The proof for the case when

(u1 + u2) < u is given in Appendix A.8.

Remark 4.1 If H1 ∈ Cu×u1 and H2 ∈ Cu×u2 are mutually independent and H1, H2 ∈ P then

[H1H2] ∈ P and therefore is a full rank matrix w.p.1. That is, if H1 and H2 represent the two

incoming channel matrices at any of the receivers in the MIMO IC then Lemma 4.2 holds.

Lemma 4.3 Let Hi ∈ Cu×ui for i = 1, 2, 3 be three channel matrices with statistics described at

the beginning of this section, then for asymptotic ρ

log det

(
Iu +

3∑

i=1

ρaiHiH
†
i

)
=g (u, (a1, u1), (a2, u2), (a3, u3)) log(ρ) +O(1), (4.7)

where for any u ∈ R+ and (ai, ui) ∈ R2 for i ∈ {1, 2, 3},

g (u, (a1, u1), (a2, u2), (a3, u3)) , min{u, ui1}a+
i1

+min{(u− ui1)
+, ui2}a+

i2
+

min{(u− ui1 − ui2)
+, ui3}a+

i3
, (4.8)

for i1, i2, i3 ∈ {1, 2, 3} such that ai1 ≥ ai2 ≥ ai3 .

Proof 4.3 The proof is given in Appendix A.9.

Remark 4.2 Suppose a1 ≥ max{a2, a3} in Lemma 4.3, then g(.) can also be written as

g (u, (a1, u1), (a2, u2), (a3, u3)) = min{u, u1}a+
1 + f

(
(u− u1)+, (a2, u2), (a3, u3)

)
.

For example, g (10, (.5, 3), (1, 4), (1.2, 2)) = 2(1.2) + f (8, (.5, 3), (1, 4)) = 2.4 + 4(1) + 3(.5) = 7.9.

Remark 4.3 g(.) in Lemma 4.3 represents the sum DoFs achievable on a 3-user MIMO multiple-

access channel (MAC) with u antennas at the receiver, ui antennas at the ith transmitter, where

the SNR of the ith user is ρai for i ∈ {1, 2, 3}. Similarly, f(.) in Lemma 4.2 can be interpreted as

the sum GDoF achievable on a 2-user MIMO MAC.

In section 4.3 we shall use these asymptotic approximation Lemmas to characterize the GDoF

region of the MIMO IC. However, before that let us have another look at the approximate capacity

optimal coding scheme, which from the discussion of subsection 4.2.1 is also the GDoF optimal

coding scheme.
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4.2.3 Another look at the simple HK coding scheme

Recall that in the simple HK coding scheme HK ({K1u,K1w, K2u,K2w}) (e.g., see Defini-

tion 3.2) Kiu and Kiw represents the convenience matrices of the private and public messages at

transmitter i, respectively, for i ∈ {1, 2}. Let the singular value decomposition (SVD) of the chan-

nel matrix Hij be given by Hij = VijΣijU
†
ij , where Vij ∈ UNj×Nj and Uij ∈ UMi×Mi are unitary

matrices and Σij ∈ CNj×Mi is a rectangular matrix containing the singular values along its diag-

onal. Using the SVD of the matrix Hij , the covariance matrices for Ui and Wi of equation (3.23)

and (3.24) can alternatively be written as

Kiu = Uij




1
Mi

(
Imin{Mi,Nj} + ραijΛij

)−1
0

0 1
Mi

I(Mi−Nj)+


U †

ij = UijDijU
†
ij , (4.9)

where Λij is a diagonal matrix containing the non-zero eigenvalues of H†
ijHij and denoting the

quantity Mi(1 + ραijλ
(k)
ij ) = rik where λ

(k)
ij is the kth non-zero eigenvalues of H†

ijHij for 1 ≤ k ≤

mij = min{Mi, Nj} we have

[Dij ]kk =





r−1
ik , for 1 ≤ k ≤ mij ;

1
Mi

, for mij + 1 ≤ k ≤ Mi.

(4.10)

Similarly, we have

Kiw = Uij

(
1

Mi
IMi −Dij

)
U †

ij = U
[1:mij ]
ij D̃ij(U

[1:mij ]
ij )†, (4.11)

where [D̃ij ]kk = ( 1
Mi
− 1

rik
) for 1 ≤ k ≤ mij . Now, it is well known that a Gaussian vector V with

covariance matrix K can be expressed as V = Ax, where x is a Gaussian vector with identity as

covariance matrix if AA† = K. Using this result along with equations (4.9) and (4.11) we can write

Ui =Uij

√
Dijxip =

Mi∑

l=1

√
[Dij ]llx

(l)
ip U

[l]
ij ;

Wi =Uij

√
D̃ijxic =

mij∑

k=1

√
[D̃ij ]kkx

(k)
ic U

[k]
ij , (4.12)

where xic = [x(1)
ic , · · · , x

(mij)
ic ]T ∼ CN (0, Imij ) and xip = [x(1)

ip , · · · , x
(Mi)
ip ]T ∼ CN (0, IMi) are mutu-

ally independent normal Gaussian vectors. Substituting this in the expression for Xi we see that,
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the transmit signal at Txi can be written as

Xi =
mij∑

k=1

√
[D̃ij ]kkx

(k)
ic U

[k]
ij +

mij∑

l=1

√
[Dij ]llx

(l)
ip U

[l]
ij +

Mi∑

m=1+mij

1√
Mi

x
(m)
ip U

[m]
ij . (4.13)

In the above equation, x
(l)
ic for 1 ≤ l ≤ mij and x

(k)
ip for 1 ≤ k ≤ Mi represent the lth and kth stream

of the public and private information along directions U
[l]
ij and U

[k]
ij , respectively, for user i.

Remark 4.4 Note that each of the terms in the second sum of the right hand side of (4.13) have

power proportional to ρ−1
ij . Hence, all the streams encoded through x

(k)
ip for 1 ≤ k ≤ mij after

passing through the cross channel with strength ρij reach Rxj at the noise floor. This technique

can be considered as a form of interference alignment at the signal level.

On the other hand, in the SVD of the matrix Hij , the last (Mi−Nj)+ columns of Σij are all

zeros and hence HijU
[k]
ij = 0 for Nj < k ≤ Mi. In other words, each of the U

[k]
ij ’s for mij < k ≤ Mi

lie in the null space of the matrix Hij . Therefore, any stream sent along one of these directions

reaches Rxj in a subspace which is perpendicular to the subspace in which the useful signals of Rx2

lie. That is, each user can be said to align the interference to the undesired user in a particular

subspace, which is a simple form of signal space interference alignment. This explains why

we call the streams carried by x
(k)
ip , 1 ≤ k ≤ Mi, private streams.

Thus the specific choice of the covariance matrices Kiu in HK ({K1u, K1w, K2u,K2w}) for

i = 1, 2 amounts to employing a technique to jointly utilize both types of interference alignments

described above.

4.3 The GDoF region of the MIMO IC

Using the explicit expression for the upper bounds to the capacity region of the MIMO IC

from Lemma 3.1 and using it in Lemma 4.1 we get the main result of this chapter.

Theorem 4.1 The GDoF region of IC(M̄, ᾱ) is the set of DoF tuples (d1, d2), denoted byDo(M̄, ᾱ),
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where di ∈ R+ for i = 1, 2 satisfy the following conditions:

d1 ≤min{M1, N1};

d2 ≤min{M2, N2};

(d1 + α22d2) ≤f (N2, (α12, M1), (α22, M2)) + f
(
N1, (β12,m12), (α11, (M1 −N2)+)

)
;

(d1 + α22d2) ≤f (N1, (α21, M2), (α11, M1)) + f
(
N2, (β21,m21), (α22, (M2 −N1)+)

)
;

(d1 + α22d2) ≤g
(
N1, (α21,M2), (β12,m12), (1, (M1 −N2)+)

)
+

g
(
N2, (α12,M1), (β21,m21), (α22, (M2 −N1)+)

)
;

(2d1 + α22d2) ≤f (N1, (α21, M2), (α11, M1)) + f
(
N1, (β12,m12), (α11, (M1 −N2)+)

)
+

g
(
N2, (α12,M1), (β21,m21), (α22, (M2 −N1)+)

)
;

(d1 + 2α22d2) ≤f (M2, (α21, N1), (α22, N2)) + f
(
N2, (β21,m21), (α22, (M2 −N1)+)

)
+

g
(
N1, (α21,M2), (β12,m12), (1, (M1 −N2)+)

)
,

where βij = (αii − αij)+, functions f(., ., .) and g(.,.,.,.) are as defined in equation (4.6) and (4.8),

respectively, for i 6= j ∈ {1, 2} and and mij , min{Mi, Nj} as defined before.

Proof 4.4 (Proof of Theorem 4.1(Outline)) From Lemma 4.1 we see that the GDoF region

of the 2-user MIMO IC is simply the scaled version of the rate region Ru(H, ᾱ). Thus to evaluate

the GDoF region we simply need to scale all the terms in each of the equations of Ru(H, ᾱ). For

example, consider the third bound in equation (5.11)

R1 + R2 ≤ Ib3.

Dividing both sides by log(ρ11) and taking the limit we get

lim
ρ11→∞

R1 + R2

log(ρ11)
≤ lim

ρ11→∞
Ib3

log(ρ11)
;

⇒ lim
ρ→∞

{
R1

log(ρ)
+

α22R2

α22 log(ρ)

}
≤ lim

ρ→∞
Ib3

log(ρ)
;

⇒ lim
ρ→∞

R1

log(ρ)
+ lim

ρ22→∞
α22R2

log(ρ22)
≤ lim

ρ→∞
Ib3

log(ρ)
;

⇒ d1 + α22d2 ≤ lim
ρ→∞

Ib3

log(ρ)
.



68

Following the same steps for other bounds we get

Do(M̄, ᾱ) =

{
(d1, d2) : d1 ≤ lim

ρ→∞
Ib1

log(ρ)
; (4.14)

d2 ≤ lim
ρ→∞

Ib2

log(ρ)
; (4.15)

d1 + α22d2 ≤ lim
ρ→∞

Ib3

log(ρ)
; (4.16)

d1 + α22d2 ≤ lim
ρ→∞

Ib4

log(ρ)
; (4.17)

d1 + α22d2 ≤ lim
ρ→∞

Ib5

log(ρ)
; (4.18)

2d1 + α22d2 ≤ lim
ρ→∞

Ib6

log(ρ)
; (4.19)

d1 + 2α22d2 ≤ lim
ρ→∞

Ib7

log(ρ)
;

}
, (4.20)

To prove the theorem we have to evaluate the right hand side limits, which can be done by finding

the asymptotic approximations of the different Ibis of Lemma 3.1 using Lemmas 4.2 and 4.3. The

detailed proof is given in Appendix A.10.

The above theorem is specialized next to the SISO IC (by putting M1 = M2 = N1 = N2 = 1)

in the following corollary, yielding its GDoF region.

Corollary 4.1 The GDoF region of the SISO IC is given as

DSISO =
{

(d1, d2) : d1 ≤1; (4.21a)

d2 ≤1; (4.21b)

(d1 + α22d2) ≤max{α22, α12}+ (1− α12)+; (4.21c)

(d1 + α22d2) ≤max{1, α21}+ (α22 − α21)+; (4.21d)

(d1 + α22d2) ≤max{α21, (1− α12)+}+ max{α12, (α22 − α21)+}; (4.21e)

(2d1 + α22d2) ≤max{1, α21}+ (1− α12)+ max{α12, (α22 − α21)+}; (4.21f)

(d1 + 2α22d2) ≤max{α22, α12}+ max{α21, (1− α12)+}+ (α22 − α21)+
}

(4.21g)

Remark 4.5 The region of Corollary 4.1 provides a single unified formula for the GDoF region of

the SISO IC for all interference regimes. It can be specialized to obtain GDoF regions for different
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interference regimes given in Section V of [6] such as weak interference, mixed interference, strong

interference, etc., separate formulas for each of which are given therein. For instance, in the weak

interference regime defined by α12 ≤ 1 and α21 ≤ α22, we have

max{α22, α12}+ (1− α12)+ = max{α22, α12}+ (1− α12) = 1 + (α22 − α12)+;

max{1, α21}+ (α22 − α21)+ = max{1, α21}+ (α22 − α21) = α22 + (1− α21)+.

Substituting these identities in equation (4.21) we recover equation (78) of [6] which represents the

GDoF region of the SISO IC in the weak interference regime (note that α22, α21 and α12 are denoted

as α1, α2 and α3 in [6]). Similarly for instance, equations (82) and (84) of [6] can be recovered for

the mixed and strong interference channels, respectively, by simplifying the result of Corollary 4.1

according to the defining conditions on the α’s for those regimes.

Remark 4.6 The conventional DoF region of the MIMO IC obtained in [35] can also be recovered

from Theorem 4.1 by putting αij = 1, for 1 ≤ i, j ≤ 2 in Theorem 4.1 and simplifying the different

bounds. Consequently, we get

DDoF =
{

(d1, d2) : d1 ≤min{M1, N1}; (4.22a)

d2 ≤min{M1, N1}; (4.22b)

(d1 + d2) ≤(N2 ∧ (M1 + M2)) + N1 ∧ (M1 −N2)+; (4.22c)

(d1 + d2) ≤(N1 ∧ (M1 + M2)) + N2 ∧ (M2 −N1)+; (4.22d)

(d1 + d2) ≤(N1 ∧M2) + ((N1 −M2)+ ∧ (M1 −N2)+)+

(N2 ∧M1) + ((M1 −N2)+ ∧ (M2 −N1)+); (4.22e)

(2d1 + d2) ≤(N1 ∧ (M1 + M2)) + N1 ∧ (M1 −N2)++

(N2 ∧M1) + ((M1 −N2)+ ∧ (M2 −N1)+); (4.22f)

(d1 + 2d2) ≤(N2 ∧ (M1 + M2)) + N2 ∧ (M2 −N1)++

(N1 ∧M2) + ((N1 −M2)+ ∧ (M1 −N2)+)
}

(4.22g)
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Corollary 4.2 (The main result of [35]) The DoF region of the 2-user MIMO IC is given as

DDoF =
{

(d1, d2) : d1 ≤min{M1, N1};

d2 ≤min{M2, N2};

(d1 + d2) ≤min{(M1 + M2), (N1 + N2), max(M1, N2), max(M1, N2)}
}

.

Proof 4.5 We obtain this result starting from equation (4.22). Let us consider the sum bound of

equation (4.22c),

(d1 + d2) ≤(N2 ∧ (M1 + M2)) + N1 ∧ (M1 −N2)+,

={N2 ∧ (M1 + M2)}1(N2 ≥ M1) + {N2 + (N1 ∧ (M1 −N2))}1(N2 < M1),

={N2 ∧ (M1 + M2)}1(N2 ≥ M1) + {(N2 + N1) ∧M1}1(N2 < M1),

=min{(M1 + M2), (N1 + N2), max(N2,M1)}.

Similarly, simplifying the bound in equation (4.22d) it can be shown that

(d1 + d2) ≤min{(M1 + M2), (N1 + N2), max(N1,M2)}.

Moreover, in Appendix A.11 it will be shown that the bounds in equations (4.22e)-(4.22g) are looser

than those in equation (4.22a)-(4.22d). Finally, combining the simplified forms of the 3-rd and 4-th

bounds above, the claim is proved.

Remark 4.7 The GDoF region of the 2-user MIMO multiple-access channel (MAC) with an arbi-

trary number of antennas at the three terminals can also be found as a by-product of the analysis

of the MIMO IC. This is detailed in Section 4.5.4.

The compact yet complicated form of the various bounds of Theorem 4.1 - although very

general as demonstrated by the above two specializations - may hinder a complete understanding

of the intuitive structure of the GDoF region. To bring out this feature of the theorem, in the

following remark we provide an operational interpretation of its various bounds.



71

Remark 4.8 (Operational interpretation of the different bounds) We know that the GDoF

optimal coding scheme divides each user’s message into two sub-messages. Let the DoFs of the

private and the public messages of user i be denoted by dip and dic, respectively. Note that H12 has

a (M1 −N2)+-dimensional null space along which Tx1 can send private information to its desired

receiver at an SNR of ρα11 . Along the remaining m12 dimensions Tx1 can send private information

only at a power level of ρ−α12 which reaches Rx1 at a power level of ρ(α11−α12)+ . Thus with respect

to the private information of Tx1, Rx1 is a MAC with 2 virtual transmitters having SNRs ρα11 and

ρ(α11−α12)+ and (M1 −N2)+ and m12 transmit antennas, respectively. Hence, from Lemma 4.2, we

have

d1p ≤ f
(
N1, ((α11 − α12)+,m12), (α11, (M1 −N2)+)

)
.

On the other hand, since d1c is decoded at Rx2, Rx2 is a MAC receiver with respect to W1 (having

an SNR of ρα12 and M1 transmit antennas) and X2 (having an SNR of ρα22) and from Lemma 4.2

(recall Remark 4.3) we have

(d1c + α22d2) ≤ f (N2, (α12,M1), (α22,M2)) .

Combining the above two equations we get the 3rd bound of the GDoF region. The 4th bound can

be similarly interpreted just by interchanging the roles of Rx1 and Rx2. As explained above, the

two parts of the private message of Tx1 can be thought of as two virtual users to the MAC receiver

Rx1; in addition to them, Tx2 can send a maximum of m21α21 public DoFs to Rx1 through W2,

which can be interpreted as the 3rd virtual user (with SNR ρα21 and m21 transmit antennas) to the

MAC receiver at Rx1, and therefore, Lemma 4.3 provides the following sum DoF uppper bound

(d1p + α22d2c) ≤ g
(
N1, (α21,M2), (β12,m12), (1, (M1 −N2)+)

)
.

A similar consideration regarding the DoFs decodable at Rx2 gives

(d1c + α22d2p) ≤ g
(
N2, (α12, M1), (β21, m21), (α22, (M2 −N1)+)

)
.

Combining the last two equations we get the 5th bound of Theorem 4.1. The other two bounds of

the theorem can be similarly interpreted.



72

4.3.1 DoF-Splitting strategy

In order to completely specify the GDoF optimal coding scheme it is also necessary to specify

the DoFs carried by the private and public messages, which are denoted by dip and dic, at the i-th

transmitter besides the distributions and power levels of the codewords for i = 1, 2. Moreover,

unlike in DoF optimal coding scheme the DoF carried by an information stream is dependent on

the crosslink channel gains and can be a fraction. For instance, consider a receive dimension is

effected by interference coming at ρα. Then, in that particular dimension signals only having DoF

less than (1−α) can be received. Therefore, given a DoF pair (d1, d2) ∈ Do(M̄, ᾱ) it is not straight

forward how much of each di is carried by the private and public messages at Txi. The lemma

below addresses this issue and completes the specification of the GDoF optimal coding scheme

by providing a set of 4-tuples, G(M̄, ᾱ) = {(d1c, d1p, d2c, d2p)}, which is achievable on the 2-user

MIMO IC by the GDoF optimal coding scheme of Section 4.2.3. The G(M̄, ᾱ) region has the

property that, for any (d1, d2) ∈ Do(M̄, ᾱ) (which is specified in Theorem 4.1), there exists an

(d1c, d1p, d2c, d2p) ∈ G(M̄, ᾱ) such that (dip + dic) = di for i = 1, 2.

Lemma 4.4 The DoF pair (d1, d2) ∈ Do(M̄, ᾱ) only if there exists a 4-tuple (d1c, d1p, d2c, d2p) ∈

G(M̄, ᾱ) such that di = (dic+dip) for i = 1, 2, where G(M̄, ᾱ) = G1(M̄, ᾱ)∩G2(M̄, ᾱ) with G1(M̄, ᾱ)

defined below (and with G2(M̄, ᾱ) obtained by interchanging the indexes 1 and 2 in the expression

for G1(M̄, ᾱ)),

G1(M̄, ᾱ) =
{

(d1p, d1c, d2c) : α11d1p ≤f
(
N1, (β12,m12), (α11, (M1 −N2)+)

)
α11; (4.23a)

α11d1c ≤min{N1,M1, N2}α11; (4.23b)

α22d2c ≤min{N1,M2}α21; (4.23c)

α11(d1p + d1c) ≤min{M1, N1}α11; (4.23d)

(α11d1p + α22d2c) ≤g
(
N1, (α21,M2), (β12, m12), (1, (M1 −N2)+)

)
; (4.23e)

(α11d1c + α22d2c) ≤f (N1, (α21,M2), (α11, m12)) ; (4.23f)

(α11d1p + α11d1c + α22d2c) ≤f (N1, (α21,M2), (α11, M1)) ;
}

(4.23g)
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with β12 = (α11 − α12)+ and functions f(., ., .) and g(.,.,.,.) are as defined in equation (4.6) and

(4.8), respectively.

Proof 4.6 The proof is given in Appendix A.12.

As explained in Subsection 4.2.3, in the GDoF optimal coding scheme the private and public

messages of each user are essentially a weighted sum of several independent streams of information,

each stream directed along a beam which is dependent on the channel matrix of the cross link

emerging from the corresponding transmitter. The direction of these beams and their weights are

chosen in such a manner (e.g., see equations (4.9)-(4.13)) that the effective covariance matrix of the

overall codeword corresponding to each of the message is as given by equation (3.23) and (3.24)1

. As for decoding, it is clear that with respect to Ui, Wi and Wj , Rxi sees a MAC channel for

i 6= j ∈ {1, 2} and for any (d1p, d1c, d2p, d2c)-tuple belonging to the achievable region (see Lemma 4.4

in Appendix A.12) Rxi can decode Ui, Wi and Wj with probability of error going to zero. Therefore,

any decoding scheme which is capacity optimal on a MAC will be GDoF optimal for the MIMO IC

if each receiver tries to decode the 2 public messages and its own private message while treating

the other private message as noise.

Figure 4.1: GDoF region of the (3, 3, 2, 2) IC with ᾱ = (1, 3
5 , 3

5 , 1).

1 Instead of sending independent streams of information (which is without loss of GDoF optimality), if coding is
also done across different streams, it is possible to achieve a larger error exponents.
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Example 4.1 (A MIMO IC with weak interference) Figure 4.1 depicts the GDoF region of

a (3, 3, 2, 2) MIMO IC with ᾱ = [1, 3
5 , 3

5 , 1]. Clearly, it is sufficient to illustrate the achievability of

the vertices of the GDoF region since any point on the line joining any two vertices can be achieved

via time-sharing. The time sharing argument, however, is just a matter of convenience, and is not

necessary2 to achieve a point in the GDoF region. Note that points A or E can be achieved simply

by turning off Tx1 or Tx2, respectively. To analyze the achievability of the other corner points we

need to know the DoFs carried by the private and public messages of each user. For the (3, 3, 2, 2)

IC with ᾱ = [1, 3
5 , 3

5 , 1], Lemma 4.4 gives

d1p ≤ 1.8;

d1c ≤ 2;

d2c ≤ 1.2;

(d1p + d1c) ≤ 3;

(d1p + d2c) ≤ 2.2;

(d1c + d2c) ≤ 2.6;

(d1p + d1c + d2c) ≤ 3;

and

d2p ≤ .8;

d2c ≤ 2;

d1c ≤ 1.2;

(d2p + d2c) ≤ 2;

(d2p + d1c) ≤ 1.2;

(d2c + d1c) ≤ 2;

(d2p + d2c + d1c) ≤ 2;

(4.24)

Achievability of point B: From the set of bounds in equation (4.24) we see the only choice

for the different DoFs for the public and private messages of the two users are given as d1p = 1,

d1c = 0, d2p = .8 and d2c = 1.2. Since the first user needs to send only private information having

DoF 1, it is best to send it in the direction of the null space of H12, i.e.,

X1 =
1√
3
x

(3)
1p U

[3]
12 . (4.25)

On the other hand, the structure of the codeword for the second user is also clear from equation

(4.13),

X2 =
2∑

k=1

√
ρ21λ

(k)
21√

2(1 + ρ21λ
(k)
21 )

x
(k)
2c U

[k]
21 +

2∑

l=1

1√
2(1 + ρ21λ

(l)
21)

x
(l)
2pU

[l]
21, (4.26)

where x
(k)
2c and x

(k)
2p carries .6 and .4 DoFs, respectively for both k = 1, 2.

2 For an example illustrating this point the reader is referred to [43].
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Decoding: Rx1 first projects the received signal on the 2 dimensional space which is per-

pendicular to H11U
[3]
12 to remove the effect of x

(3)
1p by zero forcing. In the resulting 2 dimensional

signal space, only contribution from W2 is present, carrying a DoF of 1.2. This can be decoded

because the link from Tx2 to Rx1 is a 2×2 point-to-point MIMO channel with effective SNR of ρ.6.

Once decoded, Rx1 removes its effect from the original received signal (the received signal before

zero-forcing) and then it gets a interference-free channel from Tx1 to itself. It can hence decode U1.

On the other hand, Rx2 does not face any interference3 from Tx1 so that it can decode W2 while

treating U2 as noise. This is possible because treating U2 as noise only raises the noise floor to ρ.4

while the received signal power of W2 is at ρ which implies it can decode .6 DoFs from each receive

dimension. Next, subtracting the contribution of W2 from the received signal, Rx2 can decode U2.

Achievability of point C: Since Rx2 can support only 2 DoFs at point C, we have d1c ≤ .4.

Combining this with equation (4.24) we get d1c = .4, d1p = 1.4, d2p = .8 and d2c = .8. For this

choice of the different rates, the transmit signals at Tx1 and Tx2 are given by

X1 =
2∑

k=1

√
ρ12λ

(k)
12√

3(1 + ρ12λ
(k)
12 )

x
(k)
1c U

[k]
12 +

2∑

l=1

1√
3(1 + ρ12λ

(l)
12)

x
(l)
1pU

[l]
12 +

1√
3
x

(3)
1p U

[3]
12 , (4.27)

where x
(k)
1c and x

(k)
1p carries .2 DoFs, for both k = 1, 2 and x

(3)
1p carries 1 DoF and

X2 =
2∑

k=1

√
ρ21λ

(k)
21√

2(1 + ρ21λ
(k)
21 )

x
(k)
2c U

[k]
21 +

2∑

l=1

1√
2(1 + ρ21λ

(l)
21)

x
(l)
2pU

[l]
21, (4.28)

where x
(k)
2c and x

(k)
2p carries .4 DoFs each, for both k = 1, 2. The different signals at both the

receivers are depicted in Fig. 4.2(a), where each stream is represented by a box the top level of

which marks its signal strength and the vertical height is proportional to the DoFs carried by

it. Note that, x
(1)
1p though transmitted at a power level of 1, does not appear at Rx2 since it is

transmitted along the null space of the channel from Tx1 to Rx2.

Decoding: The decoding procedure at Rx1 is exactly the same as in the previous case. Rx2

on the other hand, can decode W2, W1 and U2, respectively, in that order through successive

interference cancellation, i.e., it first decodes W2, treating W1 and U2 (both of which are received
3 The interference that reach below noise floor is irrelevant in the GDoF computation.
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(a) Receive signal spaces at DoF pair (1.8, 1.6). (b) Receive signal spaces at DoF pair (2.6, .8).

Figure 4.2: GDoF region of a (3, 3, 2, 2) MIMO IC and its explicit achievable scheme.
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below ρ.6) as noise. Subtracting the contribution of W2, it next decodes W1 treating U2 as noise.

Finally, subtracting the contribution of W1 it decodes U2. It should be noted that during the

decoding of each of these messages the noise floor is actually at the power level of the messages

being treated as noise.

Achievability of point D: Again from (4.24) we get d1p = 1.8, d1c = .8, d2p = .4 and d2c = .4,

for which Xi for 1 ≤ i ≤ 2 can be written as

X1 =
2∑

k=1

√
ρ12λ

(k)
12√

3(1 + ρ12λ
(k)
12 )

x
(k)
1c U

[k]
12 +

2∑

l=1

1√
3(1 + ρ12λ

(l)
12)

x
(l)
1pU

[l]
12 +

1√
3
x

(3)
1p U

[3]
12 , (4.29)

where x
(k)
1c and x

(k)
1p carries .4 DoFs each, for both k = 1, 2 and x

(3)
1p carries 1 DoF and

X2 =
2∑

k=1

√
ρ21λ

(k)
21√

2(1 + ρ21λ
(k)
21 )

x
(k)
2c U

[k]
21 +

2∑

l=1

1√
2(1 + ρ21λ

(l)
21)

x
(l)
2pU

[l]
21, (4.30)

where x
(k)
2c and x

(k)
2p carries .2 DoFs each, for both k = 1, 2. The different received signals at both

the receivers are depicted in Fig. 4.2(b). It is clear from Fig. 4.2(b) that a MAC receiver can

decode all the messages.

4.4 The Symmetric GDoF region of the (M,N, M, N) MIMO IC

Suppose the roles of the transmitters and receivers of the MIMO IC IC(H, ᾱ) are inter-

changed. In the notations defined in Section 4.2, this resulting IC (hereafter referred to as

the “reciprocal” channel) can be denoted by IC(Hr, ᾱr), where Hr = {HT
11,H

T
21,H

T
12,H

T
22} and

ᾱr = [α11, α21, α12, α22]. Clearly, Do(M̄ r, ᾱr) denotes the GDoF region of the reciprocal channel

where M̄ r = (N1,M1, N2,M2).

Corollary 4.3 (Reciprocity of the GDoF region) The GDoF region of the MIMO IC is same

as that of its reciprocal channel i.e.,

Do(M̄, ᾱ) = Do(M̄ r, ᾱr).
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Proof 4.7 It was proved in Theorem 3.4 of Chapter 3 that the capacity region of a 2-user MIMO

IC and its reciprocal channel are within a constant (independent of ρ) number of bits to each other.

The corollary is easily proved by using this result in the definition of the GDoF region of the IC in

equation (4.2), which states that the GDoF regions of two channels with capacity regions differing

by only a constant number of bits are the same.

In other words, the GDoF region of the channel does not change if the roles of the transmitters

and the receivers are interchanged. Note that this is a more general result than the reciprocity of

the conventional DoF region proved in [35]. In what follows, we define the symmetric GDoF metric.

Definition 4.2 (Symmetric GDoF) Let Cs(α) = sup(R1 + R2) with (R1, R2) ∈ C(H, ᾱ) where

ᾱ = [1, α, α, 1] and supA represents the supremum of the set of elements inA. Then the symmetric

GDoF of the channel, denoted by ds, is defined as

ds , lim
ρ→∞

Cs(α)
2 log(ρ)

.

It is clear from Definition 4.1 and the above equation that

ds =
supDo(M̄,ᾱ)(d1 + d2)

2
. (4.31)

The symmetric GDoF region of the 2-user MIMO IC with (M,N,M,N) IC with M ≤ N

was computed in [29]4 which can be recovered by putting the specific values of the antennas and

ᾱ = [1, α, α, 1] in Theorem 4.1 and is given as

ds ≤ min{M, D̂(α)} (4.32)

where

D̂(α) =





M − (2M −N)α, 0 ≤ α < 1
2 ;

(N −M) + (2M −N)α, 1
2 ≤ α ≤ 2

3 ;

M − α
2 (2M −N), 2

3 ≤ α ≤ 1;

N
2 + M

2 (α− 1), 1 ≤ α.

(4.33)

4 For the rest of this section we shall assume M ≤ N .
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However, the techniques developed in [29] was not sufficient to derive the GDoF of the channel

with more input antennas than the number of output antennas. Using the results of this chapter,

the GDoF of such a channel can be computed in two different ways:

(1) From the reciprocity result: From Corollary 4.3 we know that the GDoF region of the

(N, M, N, M) IC is given by equation (4.32), since this is the reciprocal channel of the

(M, N, M, N) IC.

(2) From Theorem 4.1: The same result can be obtained by substituting M1 = M2 = N ,

M = N1 = N2 and ᾱ = [1, α, α, 1] in Theorem 4.1.

Note that in both of the above cases, the number of transmit antennas is greater than or

equal to the number of antennas at the receivers.

Remark 4.9 It must be noted that the achievable schemes on the two channels are entirely dif-

ferent. While for (M, N, M, N) IC the coding scheme need not depend on the channel matrices at

the transmitters (see the achievability scheme of [29]), for (N, M, N,M) IC the covariance matrices

are necessarily functions of the channel matrices. Hence, a naive extension of the scheme of [29] to

the case of (N, M, N, M) IC is not GDoF optimal. In fact, such a scheme wouldn’t even be DoF

optimal because while on a MIMO IC with less number of antennas at the receiving end of each

cross links, receive zero-forcing is sufficient to achieve the DoF region, for the opposite case, knowl-

edge of channel state information at the transmitters (CSIT) is necessary to achieve DoF-optimal

performance [44–46] such as through transmit beamforming [35].

Remark 4.10 (A scheme that ignores CSIT:) The GDoF optimal coding scheme of [29] does

not utilize any CSIT. The approach in [29] was to divide the range of α into the five regimes

delineated in the SISO IC case in [6] and employ the main idea of the achievable schemes that

are known to be GDoF-optimal in the SISO case (e.g., treat interference as noise in the very weak

interference regime; set the power level of private messages so they arrive at the noise level at the

unintended receiver in the moderate and weak interference regimes following the prescription of [6],



80

send only common messages in the strong and very strong interference regimes). Hence, this coding

scheme effectively only employs signal level interference alignment without any form of transmit

beamforming. While on an (M, N, M,N) IC beamforming is not necessary because neither of the

cross-links have a null space, it is so on an (N, M, N, M) IC. Therefore, the coding scheme of [29]

when applied naively to the (N, M, N, M) IC cannot achieve the fundamental GDoF region of the

channel. Fig. 4.3(a) and Fig. 4.3(b) show the GDoF achievable by the GDoF optimal coding

scheme of this chapter in comparison with the coding scheme used in [29]. Comparing the GDoF

curves of the two schemes, it is clear that the No-CSIT coding scheme of [29] fails to achieve the

fundamental GDoF of the (N, M,N,M) IC.
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(a) The fundamental GDoF of the channel.
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Coding scheme of [14].

TIN for any M ≥ N.

(b) GDoF achievable by the coding scheme of [29].

Figure 4.3: Symmetric GDoF of the (N, M, N, M) IC.

4.5 Further insights and results

4.5.1 Only Tx/Rx ZF Beam-forming is not GDoF optimal

The fundamental GDoF gives a finer high SNR approximation than the DoF approximation

and therefore reveals insights that are not revealed by the DoF analysis. Figure 4.4(a) illustrates

this point by comparing the DoF and GDoF region of the (3, 2, 3, 2) IC with ᾱ = [1, 2
3 , 2

3 , 1]. It is

known from [35] that only transmit/receive zero-forcing beam-forming is sufficient to achieve any
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(a) α = 2
3

(b) α = 3
2

Figure 4.4: GDoF region of the (3, 2, 3, 2) MIMO IC with α11 = α22 = 1 and α12 = α21 = α.
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point in the DoF region of the channel. The DoF region achievable using this scheme is shown in

Fig. 4.4 as against the fundamental GDoF region. It is easily seen that forgoing the opportunity

to align signals in the signal-level dimension leads to a strictly GDoF suboptimal performance.

In particular, this technique can not achieve any point in the triangular region BCD. However,

the coding scheme of Section 4.2 which in addition to beamforming, also employs signal-level

interference alignment, can achieve all the points in the region BCD.
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Treating interference as noise

(a) Symmetric GDoF region of the (3, 2, 2, 3) IC.
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(b) Symmetric GDoF region of a (1, 1, 2, 1) MIMO
IC

Figure 4.5: Sub-optimality of TIN and deviation of the GDoF boundary from the well known “W”
shape.

4.5.2 Sub-optimality of treating interference as noise

Another fundamental difference of the MIMO IC from the SISO IC revealed by the GDoF

analysis is this: in general, treating interference as noise (TIN) is not GDoF optimal on a MIMO

IC even in the very weak interference regime, i.e., when α ≤ 1
2 . This is seen in Fig. 4.3(a) where

the dotted line, which represents the symmetric GDoF achievable by TIN, is strictly sub-optimal

with respect to the fundamental GDoF of the channel for α ≤ 1
2 whenever M/N > 1. See also Fig.

4.5(a) which illustrates this point for the (3, 2, 2, 3) MIMO IC.
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Figure 4.6: Diagonalization of the cross links using ZF and BF.

4.5.3 Deviation from the “W” shape

Unlike in the SISO IC, the symmetric GDoF region of a MIMO IC in general need not

maintain the “W” shape. The deviation in general is due to asymmetry in the numbers of antennas.

For example, consider the (1, 1, 2, 1) IC with αii = 1 and αij = α, for i 6= j ∈ {1, 2}. The best

achievable symmetric DoF (dsym = d1 = d2) on this channel denoted by d is

d =





1− α
2 , 0 ≤ α ≤ 1;

α
2 , 1 ≤ α ≤ 2;

1, 2 ≤ α.

which is depicted in Figure 4.5(b). Diagonalizing the cross-link from Tx2 to Rx1 and then turning

off the subchannel which interferes with Rx1 gives the GDoF equivalent channel of Figure 4.6 which

is a SISO “Z” IC. The symmetric GDoF region of this channel is indeed “V” shaped as found in [6].

Although a little more involved, the distorted “W” of Figure 4.5(a) for the (3, 2, 2, 3) MIMO IC

can be explained similarly.

4.5.4 GDoF region of the 2-User MIMO MAC

Both the set of lower and upper bounds to the capacity region of the 2-user MIMO IC

contain terms that also appear in the capacity region of a 2-user MIMO MAC channel. Thus, as a

by product we can obtain the GDoF region of the MIMO MAC channel.
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Consider a MIMO MAC with two transmitters having M1 and M2 antennas, respectively,

and with N receive antennas at the common receiver. The input-output relation for this channel

can be written as

Y =
√

ρHX1 +
√

ραGX2 + Z,

where Xi ∈ CMi×1 is the transmitted signal from user i, where Y ∈ CN×1 is the received signal

and H ∈ CN×M1 and G ∈ CN×M2 are the channel matrices from users 1 and 2 to the receiver,

respectively, both of which are assumed to have full rank, and Z ∼ CN (0, IN ) is additive white

Gaussian noise. Without loss of generality, we assume that the SNR of the second user is represented

as ρα.

Let CMAC(H, G) denote the capacity region of the 2-user MIMO MAC defined above. The

GDoF region is defined as

DMAC =
{

(d1, d2) : di = lim
ρ→∞

Ri

log(ρ)
, i ∈ {1, 2} and (R1, R2) ∈ CMAC(H,G)

}
.

The result below gives the GDoF region of the 2-user MIMO MAC.

Corollary 4.4 The GDoF region of the 2-user MIMO MAC defined above is given as

{
(d1, d2) : d1 ≤min{M1, N};

d2 ≤min{M2, N}α;

(d1 + d2) ≤f (N, (α, M2), (1,M1))
}

,

where f (., ., .) is given by equation (4.6).

Proof 4.8 Following the analysis of the MIMO IC in [40], it can be easily shown that an achievable

rate region of the MIMO MAC is given as

RA =
{

(R1, R2) : R1 ≤ log det
(
IN + ρHH†

)
−N log(M1);

R2 ≤ log det
(
IN + ραGG†

)
−N log(M2);

R1 + R2 ≤ log det
(
IN + ρHH† + ραGG†

)
−N log(max{M1,M2})

}
,
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and an upper bound is given as

RU =
{

(R1, R2) : R1 ≤ log det
(
IN + ρHH†

)
;

R2 ≤ log det
(
IN + ραGG†

)
;

R1 + R2 ≤ log det
(
IN + ρHH† + ραGG†

)}
.

Note that the two regions differ only by constant (independent of SNR) number of bits. The desired

result now follows by replacing CMAC in the definition of the GDoF region by RU or RA, since a

constant number of bits are insignificant in the GDoF analysis.

Remark 4.11 The GDoF regions for the case when N ≥ (M1 + M2) is depicted in Fig. 4.7(a)

and the case when max{M1,M2} < N < (M1 + M2) is depicted in Fig. 4.7(b), where A =

(M1, (N−M1)α), B = ((N−M2)α+M1(1−α),M2α), A
′
= (M1, (N−M1)), B

′
= ((N−M2),M2),

A
′′

= (M1, (N−M1)+M2(α−1)) and B
′′

= ((N−M2),M2α). Although, the GDoF analysis reveals

the possibility of achieving a larger sum DoFs when one of the link’s strength is exponentially larger

that the other (α > 1), it is not as interesting as the MIMO IC since the GDoF region of the MAC

can be achieved using independent Gaussian codes with scaled identity input covariances at each

transmitter and joint decoding just as in a MAC with α = 1. In other words, this DoF-optimal

scheme is also GDoF-optimal.

4.6 Conclusion

The GDoF analysis of this chapter, unifies and generalizes the earlier results on GDoF of

SISO IC [6], the DoF region [35] of MIMO IC and the symmetric GDoF [29] of MIMO IC through

a single achievable scheme for all. The coding schemes in [35] and [29] are strictly suboptimal in the

GDoF sense on a general 2-user MIMO IC in one case or other. The analysis here reveals various

insights about the MIMO IC including the fact that in general, partially decoding the unintended

user’s message is necessary to be GDoF optimal even in the so called very weak interference regime.

The two types of signaling dimensions available on a MIMO IC – namely, signal space and signal

level – are jointly and optimally exploited in the GDoF optimal scheme.
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(a) N ≥ (M1 + M2). (b) max{M1, M2} < N < (M1 + M2).

Figure 4.7: The GDoF region of the MIMO MAC.



Chapter 5

The diversity-multiplexing tradeoff of the MIMO Z interference channel

5.1 Introduction

The model used for the channel coefficients of a communication system is another important

design parameter. All of the performance characterizations of the previous chapters assume time-

invariant channel coefficients, whereas the channel coefficients of a practical wireless network vary

with time and are said to undergo fading. Most of the previous results on interference channels

which assume a fading channel model use a much coarser performance metric such as the degrees

of freedom (DoF) [45] or the generalized DoF (GDoF) [47]. These metrics can only characterize the

rate scaling factor/s with average SNR, of the corresponding channel and do not reveal any infor-

mation about the reliability of communication. Diversity-multiplexing tradeoff introduced in [48]

for the point-to-point channel captures this relationship between rate and reliability of commu-

nication. Encouraged by the importance of knowing the best achievable reliability on a channel

while communicating at a particular rate, in this chapter we choose DMT as our performance met-

ric. Further, as a first step towards understanding the general interference network, we choose the

2-user Z interference channel as our channel model in this chapter. In the 2-user Z interference

channel (ZIC), 2 transmitters communicate to their corresponding receivers via the same signal

space, while only one of the transmitters interfere with the other receiver.

Besides being one of the basic building blocks of the general interference network, ZICs also

emerge as the natural information theoretic model for various practical wireless communication

scenario such as femto-cells [49]. Also, the ZIC is a special case of the 2-user IC. Thus optimal
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(with respect to some metric) coding and decoding schemes on a ZIC may reveal useful insights for

the 2-user IC as well. For instance, the optimal DMT of the ZIC is an upper bound for the 2-user

MIMO IC both with and without CSIT. These facts make the analysis of the ZIC an important

step towards a better understanding of the general multiuser wireless system. Motivated by the

aforementioned facts in this chapter we analyze the DMT of the MIMO ZIC. However, unlike the

DMT framework in a point-to-point (PTP) channel, [48] where there is a single communication link

which can be characterized by a single SNR, in a multiuser setting such as the one at hand, it is

only natural to allow the SNRs and INRs of different links to vary with different exponentials with

respect to a nominal SNR, denoted as ρ. This technique was first used in [6] to analyze the DoF

region which the authors referred to as the Generalized DoF (GDoF) region, of the 2-user SISO IC.

Later, this technique was extended to the DMT scenario of the SISO IC in [50] and [51]. Following

similar approach, we allow the different INR and SNRs at the receivers to vary exponentially with

respect to ρ with different scaling factors. We refer to the corresponding DMT as the generalized

DTM (GDMT) to distinguish it from the case when SNR=INR in all the links.

In this chapter, we first derive the DMT of the MIMO ZIC with CSIT and arbitrary number

of antennas at each node. The achievability is based on a simple Han-Kobayashi [10] coding scheme,

where the signal to be transmitted by the 2nd user depends only on the channel matrix to the first

receiver, whereas the transmitted signal of the first user does not use any CSIT. The converse is

proved by deriving a set of upper bounds to the achievable DMT, from a set of upper bounds to

the capacity region of the ZIC. The set of upper bounds to the capacity region in turn is obtained

assuming a genie aided interfered receiver. The computation of the DMT of the MIMO ZIC involves

the asymptotic joint eigenvalue distribution of two specially correlated random Wishart matrices

which was recently derived by the authors in [52] in a different context. Using this distribution

result, the fundamental DMT of the MIMO ZIC channel with CSIT is established as the solution

of a convex optimization problem. While it is argued that in general the optimization problem

can be solved using numerical methods, closed-form solutions are computed for several special

cases. Secondly, we characterize the achievable DMT of a transmission scheme which does not
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utilize CSIT. Comparing the achievable DMT of this scheme with the F-CSIT DMT of the ZIC,

we identify two classes of MIMO ZICs on which the No-CSIT scheme can achieve the F-CSIT

DMT. The first class of ZICs have equal number of antennas at all the nodes and a stronger INR

than a certain threshold (e.g.,Theorem 5.6) and the second class of ZICs have a larger number of

antennas at the interfered node than a certain threshold (e.g., Theorem 5.7). The above result thus

effectively characterizes the DMT of these channels without CSIT because the F-CSIT DMT of the

channel is an upper bound to the No-CSIT DMT. For other channel configurations, this achievable

DMT represents a lower bound to the fundamental No-CSIT DMT of the channel.

An early work in this direction is [53], where the authors derive an achievable DMT on a

SISO ZIC with No-CSIT. The DMT of the SISO ZIC with F-CSIT can be obtained from [54], where

the DMT (F-CSIT) of the 2-user SISO IC was derived. In this work, we focus on the MIMO case.

In [30], an upper bound to the DMT of a 2-user MIMO IC with CSIT was derived for the case in

which all nodes have same number of antennas and the direct and cross links have the same SNRs

and INRs, respectively. This result, if specialized for the MIMO ZIC, provides only an upper bound.

Our result will prove that for the special case considered in [30], this upper bound is actually tight

on a ZIC with F-CSIT. However, the result of this chapter on MIMO ZIC is much more general,

in the sense that we consider arbitrary number of antennas at each node and arbitrary scaling

parameters for the different SNRs and the INR of the system. Moreover, we also characterize the

DMT of the channel with no CSI at the transmitters for some specific channel configurations.

The rest of the chapter is organized as follow. In section 5.2, we first provide a description of

the channel model considered in this chapter and define the SNRs and INRs of the different links

which is followed by the definition of the DMT framework on a MIMO ZIC in subsection 5.2.1.

In subsection 5.2.2 we derive upper and lower bounds to the instantaneous capacity regions of the

channel which is used in section 5.3 to establish the DMT of the channel as a solution of an convex

optimization problem. In subsection 5.3.1 we derive analytic solutions to this general optimization

problem and hence the DMT of various classes of ZICs with specific number of antennas and SNR

and/or INR parameters. In section 5.4 we characterize the DMT of the channel with no-CSIT
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which is then followed by the conclusion in section 6.6. Some of the proofs are relegated to the

appendix for a better flow of the main concepts of the chapter.

Notations: We denote the conjugate transpose of the matrix A as A† and its determinant as

|A|. C and R represent the field of complex and real numbers, respectively. The set of real numbers

{x ∈ R : a ≤ x ≤ b} will be denoted by [a, b]. Furthermore, (x ∧ y), (x ∨ y) and (x)+ represent the

minimum of x and y, the maximum of x and y, and the maximum of x and 0, respectively. All

the logarithms in this chapter are with base 2. We denote the distribution of a complex circularly

symmetric Gaussian random vector with zero mean and covariance matrix Q as CN (0, Q). Any

two functions f(ρ) and g(ρ) of ρ, where ρ is the signal to noise ratio (SNR) defined later, are said

to be exponentially equal and denoted as f(ρ)=̇g(ρ) if, limρ→∞
log(f(ρ))

log(ρ) = limρ→∞
log(g(ρ))
log(ρ) .

The same is true for ≥̇ and ≤̇.

5.2 Channel Model and Preliminaries

We consider a MIMO ZIC as shown in Figure 5.1, where user 1 (Tx1) and user 2 (Tx2) have

M1 and M2 antennas and receiver 1 (Rx1) and 2 (Rx2) have N1 and N2 antennas, respectively. This

channel will be referred hereafter as a (M1, N1,M2, N2) ZIC. A slow fading Rayleigh distributed

channel model is considered where Hij ∈ CNj×Mi represents the channel matrix between Txi

and Rxj . It is assumed that H11, H21 and H22 are mutually independent and contain mutually

independent and identically distributed (i.i.d.) CN (0, 1) entries. These channel matrices remain

fixed for a particular fade duration of the channel and changes in an i.i.d. fashion, in the next.

Perfect channel state information is assumed at both the receivers (CSIR) and both the transmitters

(CSIT). At time t, Txi chooses a vector Xit ∈ CMi×1 and sends
√

PiXit over the channel, where

for the input signals we assume the following short term average power constraint:

1
N

N+N(k−1)∑

t=1+N(k−1)

tr(Qit) ≤ 1, ∀ k ≥ 1, i = 1, 2, where Qit = E
(
XitX

†
it

)
, (5.1)
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where N represents the number of channel uses for which the channel matrices remain fixed, or in

other words the fade duration.

Remark 5.1 Note that since the transmitters are not allowed to allocate power across different

fades of the channel, the channel is still in the outage setting, i.e., the delay limited capacity of

each of the links of the ZIC is zero [55]. Thus, the DMT characterization of this outage limited

channel make sense.

-

-

©©©©©©©©©©©©*

(M2) (N2)

(M1) (N1)

Tx2 Rx2

Tx1 Rx1

H22

H11

H21

Figure 5.1: Channel model for the ZIC.

The received signals at time t can be written as

Y1t = η11

√
P1H11X1t + η21

√
P2H21X2t + Z1t,

Y2t = η22

√
P2H22X2t + Z2t,

where Zit ∈ CNi×1 are i.i.d as CN (0, INi) across i and t and ηij represents the signal attenuation

factor [51] from Txi to Rxj . The above equations can be equivalently written in the following form.

Y1t =
√

SNR11H11X̂1t +
√

INR21H21X̂2t + Z1t; (5.2)

Y2t =
√

SNR22H22X̂2t + Z2t, (5.3)

where the normalized inputs X̂is satisfy equation (5.1) with equality and SNRii and INRji are

the signal-to-noise ratio and interference-to-noise ratio, respectively at receiver i, which from now

onwards will be denoted by ρii and ρji, respectively. Further, the difference in performance due

to relative difference in strengths of SNRs and INRs of the different links of the channel can not

be captured through the DMT metric, if they differ by only a constant factor. To overcome this
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problem and characterize the DMT under a more general scenario of arbitrary SNR and INR

strengths, we let the different SNRs and INRs to vary exponentially with respect to a nominal

SNR, ρ with different scaling factors as follows:

α11 =
log(SNR11)

log(ρ)
, α22 =

log(SNR22)
log(ρ)

, (5.4)

α21 =
log(INR21)

log(ρ)
. (5.5)

For brevity, in the sequel we shall use the following notations: H = {H11,H21,H22}, ρ̄ = [ρ11, ρ21, ρ22]

and ᾱ = [α11, α21, α22].

Diversity order of a point-to-point channel [48] is defined as the negative SNR exponent of

the average probability of error at the receiver. Since in the present channel model there are 2

receivers and more than one SNR and INR parameters, in the next subsection, we provide the

definitions of diversity order and the multiplexing gains appropriate to the ZIC.

5.2.1 Definition of DMT of a MIMO ZIC

Let us start by defining the DMT of the channel formally. Let Txi is transmitting information

using a codebook Ci(ρ) having 2LRi(ρ) codewords, each of length L, at a rate Ri(ρ), then the

corresponding multiplexing gain is denoted by ri where

ri = lim
ρ→∞

Ri(ρ)
log(ρ)

, for i = 1, 2. (5.6)

Remark 5.2 Note that the maximum asymptotic rate supportable by the first direct link is Rmax
1 =

min{M1, N1} log(ρ11), when the second user is silent. Putting this into equation (5.6) we have

ri = min{M1, N1}α11 > min{M1, N1}, if α11 > 1. (5.7)

Apparently, it seems that the direct link can support a multiplexing-gain strictly larger than

min{M1, N1}. However, this is only a consequence of the fact that the multiplexing gain r1 in

(5.6) is defined with respect to (w.r.t.) the nominal SNR ρ and therefore, a by product of the more

general mathematical model that we assume here in this chapter. With respect to the direct link’s
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SNR ρ11 the multiplexing-gain is still min{M1, N1}, irrespective of the value of α11, i.e.,

r̂i = lim
ρ11→∞

R1(ρ)
log(ρ11)

= min{M1, N1}. (5.8)

Alternatively, this apparent difference can also be removed by equating the nominal SNR ρ to the

direct links SNR ρ11 which amounts to setting α11 = 1 in equation (5.7).

Now, to define the diversity order, let Pe,Ci(ρ̄, r1, r2) represents the maximum of the average

probability of errors at the receivers (averaged over the random channel, Gaussian additive noise at

the receivers and different codewords of a codebook) at a multiplexing gain pair (r1, r2) and SNR

of ρ, and P∗e (ρ̄, r1, r2) represents the minimum Pe,Ci(ρ̄, r1, r2) among all possible coding schemes,

i.e.,

P∗e (ρ̄, r1, r2) = min
{All possible coding scheme,Ci(ρ)}

Pe,Ci(ρ̄, r1, r2), (5.9)

then the corresponding diversity order [48] is defined as

d∗ZIC(r1, r2) = lim
ρ→∞

− log (P∗e (ρ̄, r1, r2))
log(ρ)

. (5.10)

Note that the diversity order d∗ZIC(r1, r2) is a function of the relative scaling parameters of the

different links ᾱ. However, for brevity we shall not mention them explicitly in it’s notation.

The typical approach to characterize the DMT of a communication channel, whose exact

instantaneous end-to-end mutual information (IMI) is not known, is to find an upper and a lower

bound to it. Then, from this upper and lower bound to the IMI a lower and upper bound to

the appropriately defined outage event is derived, respectively. If the later set of bounds have

identical negative SNR exponents then that represents the DMT of the corresponding channel. In

this chapter we adopt the same approach and therefore, need a subset and a superset to the IMI

region of the channel, which we specify in the next subsection.

5.2.2 A Subset and a Superset to the instantaneous mutual information region

In this subsection, we shall first derive a set of upper bounds to the various end-to-end

mutual information defining a superset to the IMI region of the MIMO ZIC. Next, we shall propose
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a simple superposition coding scheme, which can achieve a IMI region, with its various bounds

within constant (independent of SNR and channel coefficients) number of bits to those of the

superset. These bounds will then be used to derive the fundamental DMT of the channel.

Lemma 5.1 The IMI region of the 2-user MIMO ZIC with F-CSIT, for a given realization of

channel matrices H, denoted by C(H, ρ̄), is contained in the set of real-tuples Ru(H, ρ̄), where

Ru(H, ρ̄) represents the set of rate pairs (R1, R2) such that R1, R2 ≥ 0 and satisfy the following

constraints:

Ri ≤ log
∣∣∣
(
INi + ρiiHiiH

†
ii

)∣∣∣ , Ibi, i ∈ {1, 2};

R1 + R2 ≤ log
∣∣∣
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)∣∣∣+

log
∣∣∣∣
(

IN2 + ρ22H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22

)∣∣∣∣ , Ibs.

Proof 5.1 (Proof of Lemma 5.1) The expression for the super set Ru(H, ρ̄) is obtained by sub-

stituting H12 = 0N2×M1 in Lemma 1 of [40], which converts the 2-user IC into an ZIC.

In what follows, we find a subset to the IMI region of the channel. Consider a coding

scheme where the first transmitter uses a random Gaussian code book and the second user uses a

superposition code as follows

X2 = U2 + W2, (5.11)

where U2 (hereafter mentioned as the private part of the message) and W2 (public part of the

message) are mutually independent complex Gaussian random vectors with covariance matrices as

follows:

E(X1X
†
1) = IM1 , E(W2W

†
2 ) =

IM2

2
and

E(U2U
†
2) =

1
2

(
IM2 + ρα21H†

21H21

)−1
. (5.12)

Remark 5.3 Note that this covariance split satisfies the power constraint in equation (5.1).

Remark 5.4 The above described coding scheme is clearly a special case of the Han-Kobayashi

coding scheme where the first transmitter’s message does not have any private part. Also the DMT
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characterized in this chapter represents the best DMT achievable on a ZIC when both transmitters

have full CSIT. It will be shown shortly that the above coding scheme which use the knowledge of

only H21 at Tx2 can achieve the F-CSIT DMT.

Lemma 5.2 For a given channel realization H, the above described coding scheme can achieve an

IMI region Rl (H, ρ̄), where Rl (H, ρ̄) represents the set of rate pairs (R1, R2) such that R1, R2 ≥ 0

and satisfies the following constraints:

Ri ≤log
∣∣∣
(
INi + ρiiHiiH

†
ii

)∣∣∣− ni , Ili, i ∈ {1, 2};

R1 + R2 ≤log
∣∣∣
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)∣∣∣+

log
∣∣∣∣
(

IN2 + ρ22H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22

)∣∣∣∣− (n1 + n2) , Ils,

where

ni = max {(mii log(Mi) + mij log(Mi + 1)) , min{Ni, Ms} log(Mx)}+m̂ji, for 1 ≤ i 6= j ≤ 2 (5.13)

with Mx = max{M1,M2}, Ms = (M1 + M2), mij representing the rank of the matrix Hij , and

m̂ij = mij log
(

(Mi+1)
Mi

)
. Note that mij ≤ min{Mi, Nj}.

Proof 5.2 (Proof of Lemma 5.2) The achievability of the rate region on the ZIC follows by

substituting H12 = 0N2×M1 in Lemma 4 of [40], which converts the 2-user IC into an ZIC.

It has been explained earlier that the superset, Ru(H, ρ̄) given by Lemma 5.1 and the subset,

Rl(H, ρ̄), given by Lemma 5.2 to C(H, ρ̄) can be used to derive a set of upper and lower bounds to

DMT of the channel, respectively. In what follows, we prove this fact formally. Let Txi is operating

at a rate Ri(ρ) bits per channel use where the corresponding multiplexing-gain is ri = limρ→∞
Ri(ρ)
log(ρ)

for i = 1, 2 and the outage event O is defined as follows

O = {H : (R1, R2) /∈ C(H, ρ̄)}. (5.14)

Following similar method as in [48] it can be easily proved that

P∗e (ρ̄, r1, r2) =̇ Pr (O) , (5.15)
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where P∗e (ρ̄, r1, r2) represents the minimum average probability of error achievable on the ZIC,

as defined in subsection 5.2.1. Now, from Lemma 5.1 and 5.2 for any realization of the channel

matrices H we have,

Rl(H, ρ̄) ⊆ C(H, ρ̄) ⊆ Ru(H, ρ̄);

Or, {H : (R1, R2) /∈ Ru(H, ρ̄)} ⊆ O ⊆ {H : (R1, R2) /∈ Rl(H, ρ̄)};

Or, Pr {(R1, R2) /∈ Ru(H, ρ̄)} ≤̇P∗e (ρ̄, r1, r2) ≤̇Pr
{

(R1, R2) /∈ Rl(H, ρ̄)
}

;

Or, Pr {(R1, R2) /∈ Ru(H, ρ̄)} ≤̇ρ−d∗ZIC(r1,r2)≤̇Pr
{

(R1, R2) /∈ Rl(H, ρ̄)
}

;

Or, Pr {∪i{Ibi ≤ Ri}} ≤̇ρ−d∗ZIC(r1,r2)≤̇Pr {∪i{Ili ≤ Ri}} ;

Or, max
i∈{1,2,s}

Pr {Ibi ≤ Ri} ≤̇ρ−d∗ZIC(r1,r2)≤̇
∑

i=1,2,s

Pr {Ili ≤ Ri} , (5.16)

Or, max
i∈{1,2,s}

Pr {Ibi ≤ Ri} ≤̇ρ−d∗ZIC(r1,r2)≤̇ max
i∈{1,2,s}

Pr {Ili ≤ Ri} , (5.17)

where Rs = (R1 +R2) and Ibi’s and Ili’s are as defined in Lemma 5.1 and Lemma 5.2, respectively.

Note that, Ibi = Ili + ni, for i = 1, 2 and Ibs = Ils + (n1 + n2) where ni’s given by equation (5.13)

are constants independent of ρ, for i ∈ {1, 2}, which becomes insignificant at asymptotic SNR.

Therefore, at asymptotic values of ρ equation (5.17) is equivalent to

ρ−d∗ZIC(r1,r2)=̇ max
i∈{1,2,s}

Pr {Ibi ≤ Ri} ,

which can be written as

d∗ZIC(r1, r2) =min
i∈I

dOi(ri), where (5.18)

dOi(ri) = lim
ρ→∞−

Pr (Ibi ≤ ri log(ρ))
log(ρ)

, (5.19)

for all i ∈ I = {1, 2, s} and rs = (r1 + r2).

The only remaining step to characterize the DMT completely is to evaluate the probabilities

in equation (5.19), which in turn requires the statistics of the mutual information terms Ibi
’s. It

will be shown in the next section that this statistics and therefrom the DMT of the channel can

be characterized, if only the joint distribution of the eigenvalues of 2 mutually correlated random

Wishart matrices are known.
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5.3 Explicit DMT of the ZIC

In this section, we shall evaluate the different SNR exponents, dOi(ri)’s, of the various out-

age events given in equation (5.18), which would yield the explicit DMT expression for the ZIC.

Substituting the right hand sides of the first and second bound’s in Lemma 5.1 in equations (5.19)

we have

dOi(ri) = lim
ρ→∞−

Pr
(∑min{Mi,Ni}

k=1 (αii − υi,k)+ ≤ ri

)

log(ρ)
, i ∈ {1, 2}, (5.20)

where υi,k’s are the negative SNR exponents of the ordered eigenvalues of the matrices HiiH
†
ii. The

joint distribution of {υi,k}min{Mi,Ni}
k=1 was specified in [48]. Using this distribution and a similar

technique as in [48], it can be shown that

dOi(ri) = min
min{Mi,Ni}∑

k=1

(Mi + Ni + 1− 2k)υi,k (5.21a)

subject to:
min{Mi,Ni}∑

k=1

(αii − υi,k)+ ≤ r; (5.21b)

0 ≤ υi,1 ≤ · · · ≤ υi,min{Mi,Ni}. (5.21c)

Similar optimization problem will recur in the remaining part of the chapter. So we formally state

the solution of the above problem in the following Lemma for convenience of reference later.

Lemma 5.3 If d(r) represents the optimal solution of the optimization problem,

min
m∑

i=1

(M + N + 1− 2i)µi (5.22a)

subject to:
m∑

i=1

(α− µi)+ ≤ r; (5.22b)

0 ≤ µ1 ≤ · · · ≤ µm, (5.22c)

then,

d(r) = αdM,N

( r

α

)
, for 0 ≤ r ≤ mα, (5.23)

where m = min{M, N} and dM,N (r) represents the DMT of a M ×N point-to-point channel and

is a piecewise linear curve joining the points (M − k)(N − k) for k = 0, 1, · · ·m.
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Proof 5.3 (Proof) Putting µ
′
i = µi

α in the optimization problem (5.22) we get,

d(r)
α

=min
m∑

i=1

(M + N + 1− 2i)µ
′
i (5.24a)

subject to:
m∑

i=1

(1− µ
′
i)

+ ≤ r

α
; (5.24b)

0 ≤ µ
′
1 ≤ · · · ≤ µ

′
m. (5.24c)

The solution of this modified optimization problem was derived in [48] and is given by

d(r)
α

=dM,N

( r

α

)
, for 0 ≤ r

α
≤ m,

or, d(r) =αdM,N

( r

α

)
, for 0 ≤ r ≤ mα.

The solution of the optimization problem (5.21) is now evident from Lemma 5.3, and is given

by

dOi(ri) = αiidMi,Ni

(
ri

αii

)
, ∀ ri ∈ [0,min{Mi, Ni}αii] and i ∈ {1, 2}, (5.25)

where dm,n(r) is the optimal diversity order of a point-to-point MIMO channel with m transmit

and n receive antennas, at integer values of r and is point wise linear between integer values of r.

To evaluate dOs(rs), we write the bound Ibs of Lemma 5.1 in the following way

Ibs =log
∣∣∣∣
(

IM1 + ρ11H
†
11

(
IN1 + ρ21H21H

†
21

)−1
H11

)∣∣∣∣ + log
∣∣∣∣
(

IN2 + ρ22H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22

)∣∣∣∣
+ log

∣∣∣
(
IN1 + ρ21H21H

†
21

)∣∣∣ ,

(a)
=





p∑

i=1

(1 + ρα21λi) +
q1∑

j=1

(1 + ρα11µj) +
q2∑

k=1

(1 + ρα22πk)



 ,

where in step (a), p = min{M2, N1}, q1 = min{M1, N1}, q2 = min{M2, N2} and we have denoted

the ordered non-zero (with probability 1) eigenvalues of W1 = H†
11

(
IN1 + ρ21H21H

†
21

)−1
H11, W2 =

H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22 and W3 = H21H
†
21 by µ1 ≥ · · · ≥ µq1 > 0, π1 ≥ · · · ≥ πq2 > 0 and

λ1 ≥ · · · ≥ λp > 0, respectively. Now, using the transformations λi = ρ−υi , for 1 ≤ i ≤ p,

µj = ρ−βj , for 1 ≤ j ≤ q1 and πk = ρ−γk , 1 ≤ k ≤ q2 in the above equation and substituting that
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in turn in equation (5.19) we get

ρ−dOs (rs)=̇Pr








p∑

i=1

(α21 − υi)+ +
q1∑

j=1

(α11 − βj)+ +
q2∑

k=1

(α22 − γk)+



 < rs


 . (5.26)

To evaluate this expression we need to derive the joint distribution of ~γ, ~β and ~υ where ~γ =

{γ1, · · · , γq2} and similarly ~υ = {υ1, · · · , υp} and ~β = {β1, · · · , βq1}. Note that W1,W2 and W3 are

not independent and hence neither are ~γ, ~β and ~υ. However, this distribution can be computed

using Theorems 1 and 2 of [52]. Using this joint distribution, equation (5.26) and a similar argument

as in [48] dOs(rs) can be derived as the solution of an convex optimization problem as stated in the

following Lemma.

Lemma 5.4 The negative SNR exponent of the outage event corresponding to the sum bound in

Lemma 5.2, i.e., dOs(rs), is equal to the minimum of the following objective function:

FFCSIT
(M1,N1,M2,N2) =

p∑

i=1

(M2 + N1 + M1 + N2 + 1− 2i)υi +
q1∑

j=1

(M1 + N1 + 1− 2j)βj

+
q2∑

k=1

(M2 + N2 + 1− 2k)γk − (M1 + N2)pα21

+
q2∑

k=1

min{(M2−k),N2}∑

i=1

(α21 − υi − γk)+ +
q1∑

j=1

min{(N1−j),M1}∑

i=1

(α21 − υi − βj)+;(5.27)

constrained by

p∑

i=1

(α21 − υi)+ +
q1∑

j=1

(α11 − βj)+ +
q2∑

k=1

(α22 − γk)+ < rs; (5.28a)

0 ≤ υ1 ≤ · · · ≤ υp; (5.28b)

0 ≤ β1 ≤ · · · ≤ βq1 ; (5.28c)

0 ≤ γ1 ≤ · · · ≤ γq2 ; (5.28d)

(υi + βj) ≥ α21, ∀(i + j) ≥ (N1 + 1); (5.28e)

(υi + γk) ≥ α21, ∀(i + k) ≥ (M2 + 1). (5.28f)

Proof 5.4 The proof is given in Appendix A.13.
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Differentiating the objective function with respect to {υi}, {βj} and {γk}, it can be easily verified

that (5.27) is a convex function of these variables. The constraints on the other hand are all

linear. Therefore, equations (5.27) and (5.28) represent an convex optimization problem (e.g., see

subsection 4.2.1 in [56]) and hence can be solved efficiently using numerical methods. Since we

have already found expressions for dOi for i = 1, 2 as in equation (5.25), Lemma 5.4 provides the

last piece of the puzzle required to characterize the DMT of the MIMO ZIC, by evaluating dOs .

This is stated formally in the following Theorem.

Theorem 5.1 The DMT of the (M1, N1,M2, N2) ZIC, with FCSIT and short term power allocation

scheme, is given as

d∗,FCSIT
ZIC (r1, r2) = min

i∈{1,2,s}
dOi(ri),

where dOi(ri) for i = 1, 2 and i = s are given by equation (5.25) and Lemma 5.4, respectively.

Although the computation of dOs(rs) and hence characterization of the DMT of a general

ZIC with arbitrary number of antennas at each node require application of numerical methods,

in what follows, we shall provide closed form expressions for it for various special cases. Since

the DMT with FCSIT acts as an upper bound to the DMT of the channel with no-CSIT or only

CSIR, these expressions facilitates an easy characterization of the gap between perfect and no CSIT

performances of the channel. The no-CSIT DMT of the channel will be characterized in section 5.4,

for different range of values of α21 and no of antennas at different nodes.

The central idea in all of the following proof is the fact that the steepest descent method

provides a global optimal value of a convex optimization problem: it is well known that the steepest

descent method provides a local optimal value of the objective function. However, a local optimal

solution is equal to a global one as well, for a convex function [56]. Combining the above two facts

we conclude that the value obtained by the steepest descent method is actually the global minimum

of the objective function. The first case considered is a class of channels where all the nodes have

equal number of antennas.
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Theorem 5.2 Consider the MIMO ZIC with M1 = M2 = N1 = N2 = n and SNRs and INRs of

different links are as described in Section 5.2 with α21 = α and α22 = 1 = α11. The best achievable

diversity order on this channel, with F-CSIT and short term average power constraint (5.1), at

multiplexing gain pair (r1, r2), is given by

d∗,FCSIT
ZIC,(n,n,n,n)(r1, r2) = min

{
dn,n(r1), dn,n(r2), dFCSIT

s,(n,n,n,n)(rs)
}

(5.29)

where dOs(rs) for the special channel configuration being considered is denoted by dFCSIT
s,(n,n,n,n)(rs),

with

dFCSIT
s,(n,n,n,n)(rs) =





αdn,3n( rs
α ) + 2n2(1− α), for 0 ≤ rs ≤ nα;

2(1− α)dn,n( (rs−nα)
2(1−α) ), for nα ≤ rs ≤ n(2− α).

(5.30)

if α ≤ 1 and

dFCSIT
s,(n,n,n,n)(rs) =





dn,3n(rs) + n2(α− 1), 0 ≤ rs ≤ n;

(α− 1)dn,n

(
rs−n
α−1

)
, n ≤ rs ≤ nα,

(5.31)

for 1 ≤ α.

Proof 5.5 (Proof of Theorem 5.2) The proof is given in Appendix A.14.

Remark 5.5 Note that for α = 1, the optimal DMT becomes dFCSIT
s,(n,n,n,n)(rs) = min {dn,n(r1), dn,n(r2), dn,3n(r1 + r2)}

which is exactly the upper bound to the DMT of the 2-user MIMO IC with n antennas at each

node, derived in [30]. Since in the ZIC, the second receiver is free of interference, the fundamental

DMT of the ZIC serves as an upper bound to the DMT of the 2-user IC.

5.3.1 The DMT of a Femto-Cell

A practical communication channel following the ZIC signal model appears in the so called

Femtocell environment. The Femtocell [49] concept is an outcome of the telecommunication in-

dustry’s efforts to provide high-throughput, high quality services into the user’s home. Consider

the scenario depicted in figure 5.2, where the larger circle represents the macro cell serviced by the

macro cell base station (MCBS). Within this macro cell is the smaller circle represents a small area
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where the signal from the MCBS either does not reach with enough strength or does not reach at

all, hereafter referred to as the Femtocell. To provide coverage in this region a smaller user deployed

base station connected to the backbone can be used, which is called the Femto cell BS (FCBS).

This FCBS can provide mobile services to the users within the Femtocell just like a WiFi access

point. The basic difference between the FCBS and WiFi access point is that the former operates

in a licensed band.

Figure 5.2: Femtocell channel model: down link.

Now, let us consider the downlink communication on such a channel with one mobile user in

both the Femtocell and the macro-cell. Note that since the MCBS signal does not reach the mobile

user within the Femtocell, the signal input-output follows the ZIC model. To model the larger SNR

of the Femtocell direct link we can assume that α22 ≥ 1. In what follows, we shall derive the DMT

of this channel.

Theorem 5.3 Consider a ZIC with M1 = M2 = N1 = N2 = n, α22 = α ≥ 1 and α11 = α21 = 1,

F-CSIT and short term average power constraint given by (5.1). The optimal diversity order of

this channel at a multiplexing gain pair (r1, r2) is given by

dFemto
(n,n,n,n)(r1, r2) = min

{
dn,n(r1), dn,n(r2), dFemto

s,(n,n,n,n)(rs)
}

where dOs(rs) for the special channel configuration being considered, is denoted by dFemto
s,(n,n,n,n)(rs),
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and

dFemto
s,(n,n,n,n)(rs) =





dn,3n(rs) + n2(α− 1), for 0 ≤ rs ≤ n;

(α− 1)dn,n( (rs−n)
(α−1) ), for n ≤ rs ≤ nα.

Proof 5.6 The proof is given in Appendix A.15.

Remark 5.6 Note that the fundamental DMT of the ZIC with single antenna nodes and α22 =

α, α11 = α21 = 1 was derived in [57]. This clearly is a special case of Theorem 5.3 and can be

obtained by putting n = 1.

Typically, in a multiuser communication scenario one end – say the base station in a cellular

network – can host more antennas than the other. Motivated by this fact in what follows we

consider a case which addresses the DMT of such a practical communication network, i.e., where

M1 = M2 = M ≤ min{N1, N2}.

Theorem 5.4 Consider the ZIC with M1 = M2 = M ≤ min{N1, N2}, α11 = α22 = α21 = 1,

F-CSIT and short term average power constraint given by (5.1). The optimal diversity order

achievable on this channel at a multiplexing gain pair (r1, r2) is given by

dFCSIT
M,N1,M,N2

(r1, r2) = min
{

dM,N1(r1), dM,N2(r2), dFCSIT
s,(M,N1,M,N2)(rs)

}

where dOs(rs) for the special channel configuration being considered, is denoted by dFCSIT
s,(M,N1,M,N2)(rs),

and

dFCSIT
s,(M,N1,M,N2)(rs) =





dM,(M+N1+N2)(rs) + M(N1 −M); 0 ≤ rs ≤ M ;

d2M,N1(rs); M ≤ rs ≤ min{N1, 2M}.

Proof 5.7 The proof is given in Appendix A.16.

Let us now quantify the loss due the use of sub-optimal coding schemes on ZICs, with respect

to the fundamental DMT of the channel achievable by sophisticated coding schemes such as the

superposition coding scheme described in subsection 5.2.2. In Figure 5.3, explicit F-CSIT DMT

curves for a few antenna configurations are plotted and compared against the performance of
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Figure 5.3: Optimal DMT of different ZICs with ᾱ = [1, 1, 1].

orthogonal schemes such as frequency division (FD) or time division (TD) multiple-access which

do not even utilize CSIT. It can be noticed from the figure that the gain due to CSIT, over the

orthogonal access schemes can be significant, particularly in MIMO ZICs. While using better

coding-decoding schemes this gap can be reduced, in general with CSIT a better performance

can be achieved. However, to evaluate this gap in performance due to lack of CSIT exactly, it is

necessary to know the best DMT achievable on the channel without any CSIT. Popular approaches

of characterization of the No-CSIT DMT involves either evaluating the optimal instantaneous

mutual information region of the channel without CSIT exactly or finding subsets and supersets

of it which are within a constant number of bits to each other, as was done in the case of F-CSIT

considered so far. For the no CSIT case either of the above two objectives are very hard to achieve.

However, in the following section, we bypass this approach and characterize the No-CSIT DMT of

the ZIC for some specific values of the different channel parameters such as the number of antennas

at the different nodes and the INR parameter α.

5.4 DMT with No CSIT

To avoid the above mentioned difficulties in this section, we first note that the F-CSIT DMT

derived in the previous sections can serve as an upper bound to the No-CSIT DMT of the channel.
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Then, we derive the achievable DMT of a No-CSIT transmit-receive scheme, which for two special

classes of ZICs meets the upper bound and therefore, represents the fundamental No-CSIT DMT

of the corresponding ZICs. In what follows, we shall describe the No-CSIT transmit-receive scheme

first.

Let both the users encode their messages using independent Gaussian signals. Moreover,

we consider a decoder at Rx1 which does joint maximum-likelihood (ML) decoding of both the

messages. However, since Rx1 is not interested in the signal transmitted by Tx2, the event where

only the second user’s message is decoded incorrectly is not considered as an error event. Rx2 uses

an ML decoder to decode its own message. Hereafter, we will refer to this scheme as the Individual

ML (IML) decoder and the encoding-decoding scheme as the Independent coding IML decoding

scheme or the IIML scheme.

An achievable rate region of the individual ML decoder and independent Gaussian coding at

both the users is given by the following set of rate tuples

RIML =
{

(R1, R2) :R1 ≤ log det
(

IN1 +
ρ

M1
H11H

†
11

)
, Ic1 ; (5.32a)

R2 ≤ log det
(

IN2 +
ρ

M2
H22H

†
22

)
, Ic2 ; (5.32b)

(R1 + R2) ≤ log det
(

IN1 +
ρ

M1
H11H

†
11 +

ρα

M2
H21H

†
21

)
, Ics ;

}
(5.32c)

Note in the above set of equations we do not have a constraint on R2 due to the point-to-point

link from Tx2 to Rx1 because of the IML decoding definition, i.e., Rx2 does not consider it as

an error event if only the message of Tx2 is decoded erroneously. Using the above expression for

the achievable rate region, the corresponding achievable DMT of this transmit-receive scheme, i.e.,

mutually independent Gaussian coding at each transmitters and IML decoder at the interfered

receiver, can be easily computed using standard techniques. The result is specified in the following

Lemma.

Lemma 5.5 If we denote the achievable diversity order of the IML scheme, at multiplexing gain
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pair (r1, r2), by dIML
(M1,N1,M2,N2)(r1, r2) then,

dIML
(M1,N1,M2,N2)(r1, r2) ≥ min

i∈{1,2,s}
{dIML

i,(M1,N1,M2,N2)(ri)}, (5.33)

where rs = (r1 + r2) and

dIML
i,(M1,N1,M2,N2)(ri) = lim

ρ→∞−
log (Pr (Ici ≤ ri))

log(ρ)
, ∀ i ∈ {1, 2, s}. (5.34)

Proof 5.8 The proof is given in Appendix A.17.

Note that Ic1 and Ic2 represents the mutual information of a point-to-point channel with channel

matrices H11 and H22, respectively. Therefore, by the results of [48] we have

dIML
i,(M1,N1,M2,N2)(ri) = dMi,Ni(ri), 0 ≤ ri ≤ min{Mi, Ni}, (5.35)

and i ∈ {1, 2}. To analyze the outage event due to the third bound of the achievable rate region,

we first approximate Ics by another term which does not differ from it by more than a constant.

Note that

log det
(
IN1 + ρH11H

†
11 + ραH21H

†
21

)
−N1 log(max{M1, M2}),

≤ Ics ≤ log det
(
IN1 + ρH11H

†
11 + ραH21H

†
21

)
, I ′cs

. (5.36)

Since a constant independent of ρ, does not matter in the high SNR analysis, to compute dIML
s we

can use I ′cs
in place of Ics . Next, we write I ′cs

in the following manner:

I ′cs
=log det

(
IN1 + ρH11H

†
11 + ραH21H

†
21

)
, (5.37)

=log det
(
IM1 + ρH̃†

11H̃11

)
+ log det

(
IN1 + ραH21H

†
21

)
, (5.38)

(a)
=





q1∑

j=1

(1 + ρα11µj) +
p∑

i=1

(1 + ρα21λi)



 , (5.39)

where H̃11 =
(
IN1 + ραH21H

†
21

)− 1
2
H11 and in step (a), p = min{M2, N1}, q1 = min{M1, N1}.

Also, we have denoted the ordered non-zero (with probability 1) eigenvalues of W1 = H†
11

(
IN1 + ρ21H21H

†
21

)−1
H11

and W2 = H21H
†
21 by µ1 ≥ · · · ≥ µq1 > 0 and λ1 ≥ · · · ≥ λp > 0, respectively. Now, using the
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transformations λi = ρ−υi , for 1 ≤ i ≤ p, µj = ρ−βj , for 1 ≤ j ≤ q1 in the above equation and

substituting that in turn in equation (5.34) we get

ρ
−dIML

s,(M1,N1,M2,N2)
(rs)=̇Pr








p∑

i=1

(α21 − υi)+ +
q1∑

j=1

(α11 − βj)+



 < rs


 . (5.40)

To evaluate this expression we need to derive the joint distribution of ~β and ~υ. Note that, since

W1 and W2 are mutually correlated and so are ~β and ~υ. As already stated earlier, in general

characterizing the joint distribution of the eigenvalues of such mutually correlated random matrices

is a hard problem. However, in what follows, we show that this distribution can be computed using

Theorems 1 and 2 of [52], which in turn facilitates the characterization of dIML
s (rs).

Lemma 5.6 The negative SNR exponent of the outage event corresponding to the sum bound in

(5.32), i.e., dIML
s,(M1,N1,M2,N2)(rs), is equal to the minimum of the following objective function:

dIML
s,(M1,N1,M2,N2)(rs) = min

(~υ,~β)

p∑

i=1

(M2 + N1 + M1 + 1− 2i)υi +
q1∑

j=1

(M1 + N1 + 1− 2j)βj

−M1pα21 +
q1∑

j=1

min{(N1−j),M1}∑

i=1

(α21 − υi − βj)+; (5.41a)

constrained by:
p∑

i=1

(α21 − υi)+ +
q1∑

j=1

(α11 − βj)+ ≤ rs; (5.41b)

0 ≤ υ1 ≤ · · · ≤ υp; (5.41c)

0 ≤ β1 ≤ · · · ≤ βq1 ; (5.41d)

(υi + βj) ≥ α21, ∀(i + j) ≥ (N1 + 1). (5.41e)

Proof 5.9 The proof is given in Appendix A.18.

Theorem 5.5 (A lower bound to the No-CSIT DMT of the ZIC) (1) The optimal di-

versity order achievable by the IIML scheme described above, on a (M1, N1,M2, N2) ZIC

without CSIT is given as

dNo-CSIT
LB, ZIC (r1, r2) = min

i∈{1,2,s}
dIML

i,(M1,N1,M2,N2)(ri),
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where dIML
i,(M1,N1,M2,N2)(ri) for i = 1, 2 and i = s are given by equation (5.35) and Lemma 5.6,

respectively.

(2) This DMT also represents a lower bound to the No-CSIT DMT of the (M1, N1,M2, N2)

ZIC.

Proof 5.10 The first part of the Theorem follows from Lemma 5.5, and the second part of the

Theorem follows from the fact that the IIML scheme is only one of the numerous transmit-receive

schemes that are possible on the ZIC.

Although the computation of dIML
s,(M1,N1,M2,N2)(rs) and hence characterization of the lower

bound to the No-CSIT DMT of a general ZIC with arbitrary number of antennas at each node

require application of numerical methods, in what follows, we shall provide closed form expressions

for it for various special cases. We shall see that for two special classes of ZICs this lower bound

meets the upper bound, i.e., the FCSIT DMT of the channel. We start with the case where all the

nodes have equal number of antennas.

Lemma 5.7 On a MIMO ZIC with n antennas at all the nodes, α11 = α22 = 1 and α21 = α, the

IML decoder can achieve the following DMT

dIML
(n,n,n,n)(r1, r2) = min

{
dn,n(r1), dn,n(r2), dIML

s,(n,n,n,n)(rs)
}

where dIML
s,(n,n,n,n)(rs) is given as

dIML
s,(n,n,n,n)(rs) =





dn,2n(rs) + n2(α− 1), 0 ≤ rs ≤ n;

(α− 1)dn,n( rs−n
α−1 ), n ≤ rs ≤ nα.

(5.42)

Proof 5.11 The desired result is obtained by following the same steps as in the 2nd part of Theo-

rem 5.2.

Figure 5.4 illustrates that the IML decoder can achieve the DMT (with F-CSIT) of the MIMO ZIC

on a region of low multiplexing gains.
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Figure 5.4: Comparison of the DMT on a ZIC with ᾱ = [1, 1, 1] to PTP performance.

On the other hand, comparing equations (5.31) to (5.42) we see that the IML decoder can

achieve the F-CSIT DMT for high multiplexing gain values as well, when α ≥ 1. This fact raises the

natural question: is it possible for the IML decoder to achieve the F-CSIT DMT for all multiplexing

gains and if it is, under what circumstances? It turns out that if the interference is strong enough

then the IML decoder can achieve the F-CSIT DMT for all symmetric multiplexing gains. For

example, Figure 5.5 illustrates this effect on a ZIC with 2 antennas at all the nodes.
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Figure 5.5: The DMT on the (2, 2, 2, 2) ZIC with different ᾱ.

This characteristics of the DMT on MIMO ZICs for general n is captured by the following

Lemma.
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Theorem 5.6 The DMT specified in Lemma 5.7 represents the fundamental DMT of the channel

with No-CSIT and r1 = r2 = r, if

α ≥ 1 +
dn,n

(
n
2

)

n2
. (5.43)

Proof 5.12 Detailed proof will be provided in Appendix A.19.

Lemma 5.8 Consider the MIMO ZIC as in Theorem 5.4, but no CSI at the transmitters. The

achievable diversity order of the IIML scheme on this channel, at a multiplexing gain pair (r1, r2),

is given by

dIML
(M,N1,M,N2)(r1, r2) = min {dM,N1(r1), dM,N2(r2), d2M,N1(rs)} .

Proof 5.13 From Lemma 5.5 and equation (5.35) it is clear that to prove the Lemma it is sufficient

to derive an expression for dIML
s,(M,N1,M,N2)(rs). Towards that, for convenience we use I

′
cs

instead of

Ics to evaluate the corresponding outage event since the two are within a constant number which

does not matter at asymptotic SNR as was shown in equation (5.36). Using this in equation (5.34)

along with the facts that M1 = M2 = M and α = 1 we get

ρ
−dIML

s,(M,N1,M,N2)
(rs)=̇Pr

{
log det

(
IN1 + ρH11H

†
11 + ρH21H

†
21

)
≤ rs log(ρ)

}
,

=Pr
{

log det
(
IN1 + ρHeH

†
e

)
≤ rs log(ρ)

}
, (5.44)

where He = [H11 H21] ∈ CN1×(2M) is identically distributed as the other channel matrices, since

H11 and H21 are mutually independent. However the right hand side of the last equation represents

the outage probability of an N1×2M point-to-point MIMO channel whose negative SNR exponent

was computed in [48] and is given by dN1,2M (rs). Using this in equation (5.44) we get,

ρ
−dIML

s,(M,N1,M,N2)
(rs)=̇ρ−dN1,2M (rs),

or, dIML
s,(M,N1,M,N2)(rs) =dN1,2M (rs).

Substituting this and equation (5.35) into equation (5.33) we obtain the desired result.
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Figure 5.6: Effect of a larger number of antennas at the interfered node on ZICs with ᾱ = [1, 1, 1].

Figure 5.6 depicts the comparison of the achievable DMT of the IML decoder with that

of the fundamental F-CSIT DMT of the channel on two different MIMO ZICs. Comparing the

performance improvement of the IML decoder on the (3, 4, 3, 3) ZIC with respect to that on the

(3, 3, 3, 3) ZIC, we realize that a larger number of antennas at the interfered receiver can completely

compensate for the lack of CSIT. Again by the argument that the FCSIT DMT represents an upper

bound to the No-CSIT DMT of the channel, the observation from Fig. 5.6 imply that the DMT of

Lemma 5.8 represents the fundamental DMT of the (3, 4, 3, 3) ZIC with only CSIR. It turns out

that, this channel is only a member of a large class of ZICs for which the No-CSIT DMT can be

characterized. This class of channels is specified in the next Theorem.

Theorem 5.7 The DMT specified in Lemma 5.8 represents the fundamental DMT of the channel

with No-CSIT and r1 = r2 = r, if

N1 ≥ M +
dM,min{N1,N2}

(
M
2

)

M
.

Proof 5.14 Comparing Theorem 5.4 and Lemma 5.8, the desired result can be obtained following

the similar steps as in the proof of Theorem 5.6.
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5.5 Conclusion

The DMT of the MIMO ZIC with CSIT is characterized. It is shown that the knowledge

of H21 at the 2nd transmitter only is sufficient to achieve the F-CSIT DMT of the channel. The

No-CSIT DMT of two special class of ZICs have been characterized revealing useful insights about

the system such as: a stronger interference or a larger number of antennas at the interfered receiver

can completely compensate for the lack of CSIT on a ZIC. Characterizing the DMT of the general

ZIC with no CSIT is an interesting problem for future research.



Chapter 6

The Diversity Multiplexing Tradeoff of the MIMO Half-Duplex Relay Channel

6.1 Introduction

Cooperative communication techniques can advantageously utilize the fading environment

of a wireless network to provide better reliability and/or rate [58, 59]. The simplest theoretical

abstraction of a cooperative communication network is the 3-node relay channel (RC), where the

relay node helps the communication between the source and destination nodes by forwarding an

appropriately processed version of the source message received at the relay node to the destination.

Moreover, multiple antennas at the three nodes can markedly boost rate and reliability performance

by allowing for the exploitation of the inherent combined MIMO and cooperative communication

gains.

MIMO relay channel communications can be considered for various applications. For instance,

Fig. 6.1 depicts three different cooperative communication scenarios to which the theory of this

work applies. Fig. 6.1(a) depicts a cellular network, denoted CN1, wherein a mobile user (or mobile

set (MS)) uses another mobile user as the relay station (RS) to communicate its message to and

from the base station (BS). This cooperative model was proposed in [58]. Fig. 6.1(b) depicts a

scenario where, in a cellular network (denoted CN2), a particular cell area is divided into more than

one sub-cell and each sub-cell is served by an additional dedicated node (a smaller BS) to provide

better quality of service. Thus each user in these sub-cells can use this dedicated node to relay their

messages to and from the BS. The CN2 network is different from CN1 in the sense that in it the

relay station can host a larger number of antennas. It is under consideration to be implemented in
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(a) CN1: A mobile set acts as a
relay

(b) CN2: A smaller base station
acts as a relay

(c) CN3: A sensory network with
a mobile relay station (MRS)

Figure 6.1: Three Examples of Cooperative Networks.
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LTE-advanced and WiMAX technologies [60] and being standardized for broadband wireless access

by the IEEE 802.16’s relay task group [61] for expanded throughput and coverage with deployment

of relay stations of complexity and cost lower than that of legacy base stations but higher than

that of mobile stations [61]. A third example of a cooperative network (denoted CN3) is the sensor

network of Fig. 6.1(c) (cf. [62]), where a more capable mobile relay station (MRS) (i.e., with

more antennas) helps several less capable sensor nodes (SN) to communicate with each other. It is

possible to give other examples, see for instance, the application of cooperative communication in

ad-hoc networks in [63]. Note that the numbers of antennas at the different nodes vary across the

applications and also depend on whether the communication is uplink or downlink (such as in the

CN1 and CN2 networks), which points to the importance of studying MIMO relay channels with

an arbitrary number of antennas at each node.

The relay has two phases of operation: the listen phase, in which it receives the signal from

the source, and the transmit phase, in which it transmits some version of the received signal to the

transmitter. If the relay can simultaneously operate in both phases it is called a full-duplex (FD)

relay and the corresponding channel is called a full duplex relay channel (FD-RC). Otherwise, if

the relay can only operate in one phase at a time it is called a half-duplex (HD) relay and the

corresponding channel a half duplex relay channel (HD-RC). Due to the large difference between

the power levels of the transmitted and received signals however, it is difficult, if not impossible, to

design FD relays cost- and space-efficiently. The focus of this chapter is hence on MIMO HD-RCs.

Cooperative protocols proposed and analyzed for the HD-RC can be divided into different

classes. If a protocol uses the CSI at the relay to opportunistically decide the switching time – the

time at which it switches between the listen and transmit phases – it is called a dynamic protocol.

Dynamic protocols considered in the literature include the dynamic decode-and-forward (DDF)

protocol of [64] and the dynamic compress-and-forward (DCF) protocol of [65]. Otherwise, if the

relay is restricted to switch between the listen and transmit phases at a pre-determined, channel

independent time, it is called a static protocol. An important example is the static compress-and-

forward (SCF) protocol of [65,66]. An HD-RC on which protocols are restricted to be static is called
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a static HD-RC, and one on which they are not, is called a dynamic HD-RC (or simply HD-RC)

since any static protocol can be thought as a special case of dynamic protocols. On the other hand,

the transmit-receive phases on an HD-RC can be thought of as states and additional information

can be conveyed to the receiver through the sequence of these states. A cooperative protocol that

uses these states to send additional information is called a random protocol, otherwise it is a fixed

protocol (see [65,67]).

In this chapter we focus on the general three-node MIMO HD-RC, i.e., in which there are

an arbitrary number of antennas at each node and in which there are no constraints on the relay

operation so that it can operate via the static or dynamic and random or fixed mode. In order

to avoid repeated use of a complete descriptor of a channel we will use simplified ones when the

meaning is unambiguous from the context. For example, we may refer to the dynamic MIMO HD-

RC sometimes simply as the relay channel because this channel is the central focus of this chapter.

Similarly, we may refer to the MIMO FD-RC or the static MIMO HD-RC as the FD-RC or the

static RC, respectively, when the meaning is clear.

In spite of its apparent simplicity, neither the capacity nor the diversity-multiplexing tradeoff

[48] of the 3-node MIMO HD-RC is known till date. However, in a recent paper [68] the capacity

of this channel was characterized within a constant number of bits. It was proved that the so

called quantize-map and forward (QMF) scheme can achieve a rate which is within a constant

number of bits to the cut-set upper bound of the channel.1 On a slow fading HD-RC however,

the instantaneous end-to-end mutual information, and therefore the cut-set bound of the channel,

is a random quantity. A meaningful measure of performance on this channel is hence the outage

probability which is a measure of reliability as a function of the communication rate in that it

represents the (minimum) probability with which a particular rate cannot be supported on the

channel. The result of [68] provides upper and lower bounds on this outage probability, both in

terms of the instantaneous cut-set upper bound of the channel, denoted as C̄(H) for a channel
1 More recently, it was proved [69] that the classical CF protocol [70] can also achieve the same rate as the QMF

protocol on the 3-node relay channel.



117

realization of H, as

Pr{C̄(H) < R} ≤ Pout ≤ Pr{C̄(H) < R− κ},

where R is the operating rate and κ is a positive constant independent of the channel parameters and

the signal-to-noise ratio (SNR) of the channel (e.g., see Theorem 8.5 in [68]). The exact evaluation

of the outage probability requires both these bounds to be tight which in turn requires the exact

capacity of the channel. Instead, in this chapter we focus on the asymptotic (in SNR) behavior

of the tradeoff between rate and reliability as captured by the DMT metric, first introduced in

the context of the point-to-point MIMO channel by Zheng and Tse in [48]. Since it was proved

that a random protocol can increase the capacity by at most one bit in [65], there is no distinction

between random and fixed protocols in the DMT framework. Thus, from the DMT perspective,

characterizing the DMT of the HD-RC by allowing for dynamic operation of the relay but restricting

it to the fixed mode still amounts to characterizing the fundamental DMT of the HD-RC. It is noted

that the DMT of the static MIMO HD-RC for the symmetric configuration, where the destination

and source have equal number of antennas, was recently obtained by Leveque et al in [66]. It is

shown here that in general a restriction that relay protocols be static fundamentally limits DMT

performance over the MIMO HD-RC.

Since its first introduction and pioneering work by Van der Meulen [71] and the subsequent

significant progress made by Cover and El Gamal in [70], the relay channel and its more general

versions have been analyzed from both the capacity perspective in [63, 68, 72–75] and from the

diversity, or more generally, the DMT perspectives for the 3-node relay network in quasi-static

fading channels in [52, 64–66, 76–81]. The earliest works demonstrating the improved reliability

of the relay channel in terms of the diversity gain compared to the corresponding point-to-point

(PTP) channel were reported in [76–79], where a number of simple cooperative protocols were

proposed and their DMT performance was analyzed. Later in [64, 79, 80], more efficient protocols

were introduced. Notable among these were the dynamic decode-and-forward (DDF) protocol

which is DMT optimal on a single antenna relay channel for a range of low multiplexing gains and
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the so called enhanced dynamic decode-and-forward (EDDF) of [80]. All of the above protocols

were analyzed for the relay channel with single antenna nodes ( [79] considers multiple antennas at

the destination).

Multiple antenna relay channels were studied by Yuksel and Erkip in [65], where the DMTs of

a number of protocols were evaluated and the DMT optimality of the compress-and-forward (CF)

coding scheme of [70] for the MIMO FD- and HD-RCs was proved. In the DCF protocol of [65],

the relay node utilizes all the instantaneous channel realizations, i.e., global CSI, to compute the

quantized signal and the optimal switching time of the relay node. However, global CSI at the

relay is not necessary to achieve DMT optimal performance as we discuss next.

The static QMF protocol of [68] can achieve the cut-set bound of the HD-RC to within a

constant gap that is independent of CSI and SNR for a fixed scheduling of the relay, i.e., for

an a priori fixed time td at which the relay switches from listen to the transmit mode (e.g., see

Theorem 8.3 in [68]), and do so without knowledge of CSI at the relay. However, on a slow fading

dynamic HD-RC the cut-set bound, denoted by C̄(H, td), is a function of global CSI including td

and hence the optimal switching time t∗d that maximizes the cut-set bound can be a function of

the instantaneous channel matrices. If (just) this switching time information is hence available at

the relay node it then follows that the QMF protocol can achieve a rate that is within a constant

gap to C̄(H, t∗d) without requiring global CSI at the relay. Henceforth, the QMF protocol that

operates with a dynamic (channel-dependent) switching time of the relay node will be referred

to as the dynamic QMF protocol. Since a constant gap is irrelevant in the DMT metric, the

dynamic QMF protocol in which the relay switches from listen to transmit modes at t∗d achieves

the fundamental DMT of the MIMO HD-RC with only knowledge of t∗d at the relay, as opposed to

global CSI H required by the DCF protocol of [65]. The above discussion shows that the DMT of

the static MIMO HD-RC found in [66] for the static CF protocol requiring global CSI at the relay

also applies to the static QMF protocol and hence to the static MIMO HD-RC without any CSI at

the relay.

In this chapter, we are interested in establishing the DMT of the dynamic MIMO HD-RC.
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While the optimality in the DMT metric of the DCF was shown in [65] and that of the dynamic QMF

protocol [68] is evident from the discussion above, the characterization of this optimal performance,

i.e., the fundamental DMT of the MIMO HD-RC, is not yet known and is the subject of this

chapter. The key mathematical tool that prevented its computation thus far is the joint eigenvalue

distribution of three mutually correlated random Wishart matrices. Here we obtain this distribution

as a stepping stone to characterizing the DMT of the MIMO HD-RC. Not only is this distribution

result interesting in its own right as a problem in random matrices, it is also arises in establishing

the DMT of the MIMO interference channel as was done by the authors in [33,34].

The explicit DMT of the MIMO HD-RC evidently would serve as a theoretical benchmark

against which the performances of the various cooperative protocols proposed and analyzed in

the literature can be compared. Further, cooperative protocols which are suboptimal but cost-

efficient provide the system designer with an option to trade performance and complexity if their

performance loss can be quantified relative to optimal performance. Moreover, the answers of a

number of interesting and open questions hinge on the explicit characterization of the DMT of the

MIMO HD-RC. For instance, while the DMT of the MIMO FD-RC is an upper bound to that of

the MIMO HD-RC, it is not known whether the latter is strictly worse than that of the former.

The question is especially intriguing in light of the result by Pawar et at in [82] where it was shown

that the DMT of the single-antenna (or single-input, single-output (SISO)) HD-RC is identical to

that of the FD-RC. Comparing with the DMT of the MIMO FD-RC which was found in [65], this

question can be resolved if the explicit DMT of the MIMO HD-RC can be characterized. There

are also open questions regarding the comparative performances of the static and dynamic MIMO

HD-RCs. Although intuitively it seems that the dynamic HD-RC should have a better DMT than

the static HD-RC, there is no theoretical proof of this thesis to date. For instance, in the SISO

case, there is no difference in the DMTs of the static and dynamic HD-RCs as shown in [82] because

the DMT of the static QMF protocol coincides with that of the SISO FD-RC. The question here is

whether this result continues to hold in the more general static and dynamic MIMO HD-RCs. This

question can be answered if the DMT of the (dynamic) MIMO HD-RC were to be found, since in
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this case, one could simply compare with the DMT of the static MIMO HD-RC of [66].

This chapter answers the two questions raised above in the negative. In particular, the results

of this chapter, examples from which are shown in Fig. 6.2(a) and Fig. 6.2(b) depicting the DMTs

of the HD-RC with single-antenna source and destinations but with two and four antennas at the

relay (the (1, 2, 1) and2 (1, 4, 1) RCs (applicable for example, to CN3 of Fig. 6.1(c)), respectively,

show that in general neither is the DMT of the static MIMO HD-RC always equal to that of the

corresponding dynamic MIMO HD-RC, nor is the DMT of the MIMO FD-RC always identical to

that of the corresponding MIMO HD-RC.
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Figure 6.2: Comparison of DDF and SCF protocol with the fundamental DMT of the (1,k,1) relay
channel.

Besides resolving the above discussed problems, the explicit DMT computed in this chapter

provides sharper answers about the MIMO HD-RC. They include, but are not limited to the

following:

• While in general the DMT performance of the MIMO HD-RC is inferior to that of the

corresponding MIMO FD-RC, it is found that for two classes of channels, namely (a) the

(m, k, n) RCs with m > n ≥ k and (b) the (n, 1, n) RCs, the DMTs of the HD- and FD-RCs

are identical (see Remark 6.11). While the observation of case (a) is based on empirical
2 A relay channel with m, k and n antennas at the source, relay and destination, respectively will be denoted by

(m, k, n)-RC, hereafter.
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results (e.g., see Remark 6.3), case (b) is proved analytically. Therefore, for these classes of

RCs, an FD relay does not improve the DMT performance over that of the corresponding

HD-RC.

• In general, for a set of high multiplexing gain values, the optimal DMT of the MIMO HD-

RC can be achieved without CSI at the relay node. Again empirical results show that, on

other RCs besides the above described two classes, as the number of antennas at the relay

node increases, the size of this set increases (e.g., see Fig. 6.6(b)).

• It is well known from [65] that the fundamental DMT of (m, k, n) FD-RC is given by

min
{
d(m+k),n(r), dm,(n+k)(r)

}
, 0 ≤ r ≤ min{m,n}, (6.1)

where dp,q(r) represents the DMT of the p × q MIMO point-to-point channel [48]. From

this it is clear that an additional antenna at the relay node strictly improves the DMT

performance of an FD-RC at all multiplexing-gains. However, this is not true for the

MIMO HD-RC. When k is large enough, an extra antenna at the relay node does not

further improve the DMT of the HD-RC for high multiplexing gains (see Remark 6.5).

• Finally, it is proved that the DMT of the (1, k, 1) and the (n, 1, n) HD-RC can be achieved

by the QMF and the DDF protocol without CSI at the relay node, i.e., neither global CSI

nor even the switching time information is necessary at the relay node. Earlier, in [83] DMT

of the multi-hop MIMO relay channel, where there is no direct link between the source and

destination, was characterized without any CSI at the relay node. In contrast, for a relay

channel where there is a direct path to the destination as well, this chapter provides the

first result regarding the achievability of the DMT of a non-SISO HD-RC without CSI at

the relay node.

The rest of the chapter is organized as follows. In Section 6.2, we describe the system model

and provide some preliminaries including the asymptotic joint distribution of the eigenvalues of

three specially correlated random matrices which will be used later to derive the fundamental DMT
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of the MIMO HD-RC. In Section 6.3, we characterize the fundamental DMT of the MIMO HD-RC

as the solution of a simple optimization problem in three steps: 1) in Subsection 6.3.1 we obtain

an upper bound on the instantaneous capacity; 2) in Subsection 6.3.2, we obtain a lower bound on

the instantaneous capacity as the achievable rate of the dynamic QMF protocol, which is within a

constant gap from the upper bound, and finally, in Subsection 6.3.3, we characterize the DMT as a

solution to an optimization problem, which we subsequently simplify to a 2-variable optimization

problem. In Section 6.4, we provide closed-form expressions for the DMT of different classes of

MIMO HD-RCs including the class of symmetric (n, k, n) RCs and then prove in Section 6.5 that

the DMT of (1, k, 1) RC and (n, 1, n) HD-RC can be achieved without CSI at the relay node.

Section 6.6 concludes the chapter.

Proof 6.1 (Notations) (x)+, x ∧ y, |S|, det(X) and (X)† represent the number max{x, 0}, the

minimum of x and y, the size of the set S, the determinant and the conjugate transpose of the

matrix, X, respectively. The symbol diag(.) represents a square diagonal matrix of corresponding

size with the elements in its argument on the diagonal. In represents an n×n identity matrix. We

denote the field of real and complex numbers by R and C, respectively. The set of real numbers

between r1 ∈ R and r2(≥ r1) ∈ R will be denoted by [r1, r2]. The set of all n ×m matrices with

complex entries is denoted as Cn×m. The distribution of a complex Gaussian random vector with

zero mean and covariance matrix Σ is denoted as CN (0, Σ). The trace of a square matrix A, is

denoted as Tr(A). A º B (or A Â B) would mean that (A − B) is a positive-semidefinite (psd)

matrix (or positive-definite (pd) matrix), respectively. Pr(E) represents the probability of the event

E . All the logarithms in this text are to the base 2. Finally, any two functions f(ρ) and g(ρ) of

ρ, where ρ is the signal-to-noise ratio (SNR) defined later, are said to be exponentially equal and

denoted as f(ρ)=̇g(ρ) if,

lim
ρ→∞

log(f(ρ))
log(ρ)

= lim
ρ→∞

log(g(ρ))
log(ρ)

, (6.2)

and ≤̇ and ≥̇ signs are defined similarly.
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Figure 6.3: System model of the MIMO 3-node relay channel.

6.2 System model and preliminaries

We consider a quasi-static, Rayleigh faded MIMO HD-RC, with a single relay node as shown

in Fig. 6.3. It is assumed that the source, destination and relay nodes have m, n and k antennas,

respectively. Let HSR ∈ Ck×m, HSD ∈ Cn×m and HRD ∈ Cn×k model the fading channel matrices

between the source and relay, source and destination and relay and destination nodes, respectively.

For economy of notation, the set of these channel matrices is denoted as H. It is assumed that these

matrices are mutually independent and their elements are independent and identically distributed

(i.i.d.) as CN (0, 1).

The channel matrices remain constant within a block of Lb channel uses, where Lb is the

block length of the source codeword. Suppose that during the first tdLb symbol times the relay

node only listens to the source transmission and during the remaining (1− td)Lb symbol times it

transmits its own codeword Xr ∈ Ck×(1−td)Lb , where td ∈ (0, 1). In what follows, the listening

phase and the transmitting phases of the relay node will be denoted by p1 and p2, respectively,

and the fraction td is called the switching time. Since the relay node operates dynamically, this

switching time should be chosen to maximize the end-to-end instantaneous mutual information and

can thus depend on all of H.

We assume that the destination and relay nodes have global CSI H, but the source node
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does not have any CSI. The relay node in this channel model is more capable than that of a relay

channel with only receive CSI (CSIR) at all the nodes.3 We assume short term power constraints

at the source and relay, i.e., these nodes cannot allocate power across different fades of the channel

as a function of H, see equation (6.6).

Further, we also assume that the source and relay nodes transmit information at fixed rates; in

particular, the relay node does not use the available transmit CSI (CSIT) to transmit information

at a variable, channel dependent rate. Note that an information outage can be avoided on a

communication link if CSIT is used to allocate power across different fading blocks (cf. [55,84,85])

under the so-called long-term power constraint and/or transmit information at a variable rate as

a function of the instantaneous channel realizations. It was shown in [85] that the DMT of a

point-to-point MIMO channel can be improved by either of these two techniques.

Denoting the signals transmitted by the source at time t in phases one and two as XS1 [t] and

XS2 [t], respectively, and the signal transmitted by the relay at time t as XR[t] (in phase two), the

received signals at the destination and relay nodes in phase one are given as

YD1 [t] = HSDXS1 [t] + ZD1 [t], (6.3)

YR[t] = HSRXS1 [t] + ZR[t], (6.4)

and the received signal at the destination node in phase two is given as

YD2 [t] = HSDXS2 [t] + HRDXR[t] + ZD2 [t],

where ZD1 [t], ZD2 [t] ∈ Cn×1 and ZR[t] ∈ Ck×1 represent mutually independent additive noise

random vectors at the destination and relay nodes, respectively. All the entries of these random

vectors are assumed to be independent and identically distributed (i.i.d.) as CN (0, 1). The power
3 Note that the DMT of the relay channel with only CSIR at all the nodes can not be better than the DMT of

the relay channel considered in this chapter, since the relay node can choose not to use any CSI except HSR. In
fact, intuitively it seems that the latter may use the additional information (HSD and HRD) at the relay for instance
to optimize the time to switch from its listening mode to the transmit mode and achieve a better DMT than the
former, on which the switching time can only be a function of HSR. Interestingly, in this chapter we shall prove that
depending on the number of antennas at different nodes the DMT of the above two relay channels (with and without
global CSI at the relay and destination node) can be identical, cf. Section 6.5.
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constraints at the relay and the source nodes are4

1
Lb




dtdLbe∑

t=1

Tr
(
E

(
XS1 [t]XS1 [t]

†
))

+
Lb∑

t=(dtdLbe+1)

Tr
(
E

(
XS2 [t]XS2 [t]

†
))



 ≤ ρ; (6.5)

1
(Lb − dtdLbe)

Lb∑

t=(dtdLbe+1)

Tr
(
E

(
XR[t]XR[t]†

))
≤ ρ. (6.6)

Let {C(ρ)} be a sequence of codebooks, where for each ρ the corresponding codebook C(ρ)

consists of 2LbR(ρ) codewords, each of which is a m × Lb matrix satisfying equation (6.5). The

sequence of codebooks is said to have a multiplexing gain of r if

lim
ρ→∞

R(ρ)
log(ρ)

= r.

Further, suppose for such a coding scheme C(ρ), Pe(C(ρ), ρ) represents the average probability

of decoding error at the destination node (averaged over the Gaussian noise, channel realizations

and the different codewords of the codebook) at an SNR of ρ, then the optimal diversity order of

the channel at a multiplexing gain r is defined as

d∗(r) , lim
ρ→∞

− log (P ∗
e (ρ))

log(ρ)
, (6.7)

where P ∗
e (ρ) represents the minimum average probability of error achievable on a relay channel

minimized over the collection of all possible coding schemes, C (ρ), i.e.,

P ∗
e (ρ) , min

{C(ρ)∈C }
Pe(C(ρ), ρ). (6.8)

In Subsection 6.3.3, we shall show that the optimal diversity order at a multiplexing gain of

r can be written as

d∗(r) = lim
ρ→∞−

log
(
Pr

{
r∗(ᾱ, β̄, δ̄) ≤ r

})

log(ρ)
, (6.9)

where r∗(ᾱ, β̄, δ̄) is given by (6.50) in Subsection 6.3.3 and ᾱ, β̄ and δ̄ are vectors containing the

negative SNR exponents of the eigenvalues (see equations (6.12)-(6.14) in the following section) of
4 Allowing distinct powers at the source and relay nodes of ρ and cρ, respectively, where c is a constant independent

of ρ, does not alter the diversity-multiplexing tradeoff. We assume c = 1 for ease of disposition.
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HSDH†
SD, HSR(Im +ρH†

SDHSD)−1H†
SR and H†

RD(In +ρHSDH†
SD)−1HRD, respectively. Evidently,

to evaluate the DMT, we need the joint probability density function (pdf) of the eigenvalues of

these matrices, which we obtain next.

6.2.1 Joint eigenvalue distribution of three mutually correlated Wishart matrices

Let us denote the matrices HSDH†
SD, HSR(Im+ρH†

SDHSD)−1H†
SR and H†

RD(In+ρHSDH†
SD)−1HRD

as W1, W2 and W3, respectively. It is evident from their structure that these matrices are not mu-

tually independent. In general, finding the joint pdf of 2 or more mutually correlated random

matrices is a difficult problem in the theory of random matrices. However, in this section we show

that by exploiting the specific structure of these matrices and the distribution of the constituent

matrices, we can compute a closed form expression for the joint pdf of their eigenvalues.

Let 0 < λu ≤ · · · ≤ λ1, 0 < µp ≤ · · · ≤ µ1 and 0 < γq ≤ · · · ≤ γ1 be the ordered non-zero

eigenvalues with probability 1 (w.p. 1) of W1, W2 and W3, respectively. Define λ̄ = [λ1, · · ·λu],

µ̄ = [µ1, · · ·µp] and γ̄ = [γ1, · · · γq] with u = min{m,n}, p = min{m, k} and q = min{n, k}.

It is convenient to denote the joint pdf of the three sets of eigenvalues as FW1W2W3(λ̄, µ̄, γ̄) and

similarly their marginal and conditional pdfs, i.e., the marginal pdf of λ̄ is denoted as FW1(λ̄), the

conditional pdf of µ̄ conditioned on λ̄ is denoted as FW2|W1
(µ̄|λ̄), etc. Consider the following lemma

which provides the first step towards simplifying the problem at hand.

Lemma 6.1 The eigenvalues of W2 are independent of the eigenvalues of W3 given the eigenvalues

of W1, i.e.,

FW2W3|W1
(µ̄, γ̄|λ̄) = FW2|W1

(µ̄|λ̄)FW3|W1
(γ̄|λ̄). (6.10)

Proof 6.2 (Proof) The proof is provided in Appendix B.1.

Using the above lemma, the joint pdf of the eigenvalues of the three matrices can be expressed as

FW1W2W3(λ̄, µ̄, γ̄) = FW2|W1
(µ̄|λ̄)FW3|W1

(γ̄|λ̄)FW1(λ̄). (6.11)
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The joint pdf of the eigenvalues of W1, which is a central Wishart matrix, can be found for example

in [86] whereas the conditional pdfs FW2|W1
(µ̄|λ̄) and FW3|W1

(γ̄|λ̄) involve complicated functions

such as determinants whose components are hypergeometric functions of the eigenvalues (e.g., see

the proof of Theorem 1 in [52]). However, since we are interested only in a high SNR analysis,

it is sufficient to obtain FW2|W1
(µ̄|λ̄) and FW3|W1

(γ̄|λ̄) exactly just up to their SNR exponents,

i.e., approximate expressions which have the same SNR exponents as the exact joint pdf. For this

purpose, we use the following theorem from [52].

Theorem 6.1 (Theorem 1 in [52]) Let H1 ∈ CN2×N1 and H2 ∈ CN2×N3 be two mutually in-

dependent random matrices with independent, identically distributed (i.i.d.) CN (0, 1) entries.

Suppose that ξ1 ≥ ξ2 ≥ · · · ξv > 0 and λ1 ≥ λ2 ≥ · · ·λu > 0 are the ordered non-zero eigenvalues

w.p. 1 of V1 , H†
1(IN2 + ρH2H

†
2)
−1H1 and V2 , H2H

†
2 , respectively, with u = min{N2, N3} and

v = min{N1, N2}, and where all the eigenvalues are assumed to vary exponentially with SNR in

the following sense:5

λi = ρ−αi , 1 ≤ i ≤ u; (6.12)

µj = ρ−βj , 1 ≤ j ≤ p; (6.13)

γl = ρ−δl , 1 ≤ l ≤ q. (6.14)

Then, the conditional asymptotic pdf of the eigenvalues ξ̄ given λ̄ is given as

f1(ξ̄|λ̄) =̇
v∏

j=1

(ξ(N1+N2−2j)
j e−ξj )

(u,v)∏

(n1=1,n2=1)
((n1+n2)=(N2+1))

(
e−ρξn2λn1

) u∏

i=1

(1 + ρλi)N1

v∏

j=1

(N2−j)∧N3∏

i=1

(
1− e−ρξjλi

ρξjλi

)
.

Note that the above theorem gives the conditional pdf of the joint eigenvalues of V1 given

the eigenvalues of V2 exactly up to its exponential order. This asymptotic distribution is simpler

to obtain than its exact counterpart and is also sufficient for the DMT analysis. It can be easily

verified [7] that the first product term corresponds to the joint distribution of the eigenvalues of
5 This assumption greatly simplifies an otherwise very complicated expression of the pdf. Further, in the context

of the problem being analyzed in this chapter, the usefulness of this assumption will be evident shortly.
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H†
1H1. The additional three product terms appear because V1 is a Wishart matrix with a non-

identity covariance matrix. To see this, note that V1 converges to H†
1H1 if each of the eigenvalues

of ρH2H
†
2 tends to zero. Indeed, putting ρλi → 0, ∀i in the above expression, it is easily shown

that the last three terms converge to 1 giving the joint distribution of H†
1H1.

Clearly, Theorem 6.1 can be used to derive the asymptotic conditional joint pdf of the eigen-

values of W3 given the eigenvalues of W1. Consequently, we have

FW3|W1
(γ̄|λ̄)=̇

q∏

l=1

(γ(k+n−2l)
l e−γl)

(u,q)∏

(i=1,l=1)
((i+l)=(n+1))

(
e−ργlλi

) u∏

i=1

(1 + ρλi)k
q∏

l=1

(n−l)∧m∏

i=1

(
1− e−ργlλi

ργlλi

)
.(6.15)

Next, since for each realization of HSD the eigenvalues of HSDH†
SD and H†

SDHSD are the

same, the conditional joint pdf of the eigenvalues of W2 given the eigenvalues of W1 can also be

derived from Theorem 6.1 and is hence given as

FW2|W1
(µ̄|λ̄)=̇

p∏

j=1

(µ(k+m−2j)
j e−µj )

(u,p)∏

(i=1,j=1)
((i+j)=(m+1))

(
e−ρµjλi

) u∏

i=1

(1 + ρλi)k
p∏

j=1

(m−j)∧n∏

i=1

(
1− e−ρµjλi

ρµjλi

)
.(6.16)

Substituting equations (6.15) and (6.16) in (6.11) and importing the expression for FW1(λ̄) from [86]

the joint pdf of (λ̄, µ̄, γ̄) up to its exponential order can be obtained.

Recall next that for the DMT analysis we need the joint pdfs of the negative SNR exponents

of these eigenvalues, i.e., those of the transformed variables (ᾱ, β̄, δ̄) defined via equations (6.12)-

(6.14). Using these change of variables in equation (6.11) we get the joint pdf of (ᾱ, β̄, δ̄) (where

each vector in this triple is simply the vector of the corresponding random variables), denoted as

fW1W2W3(ᾱ, β̄, δ̄), given as

fW1W2W3(ᾱ, β̄, δ̄) =
(
Πp

j=1|J(µj)|
)

gW2|W1
(β̄|ᾱ)

(
Πq

l=1|J(γl)|
)
gW3|W1

(δ̄|ᾱ) (Πu
i=1|J(λi)|) gW1(ᾱ),(6.17)

where gW2|W1
(β̄|ᾱ), gW3|W1

(δ̄|ᾱ) and gW1(ᾱ) are obtained by replacing the three sets of arguments

in (λ̄, µ̄, γ̄) using the transformations (6.12)-(6.14) in FW2|W1
(µ̄|λ̄), FW3|W1

(γ̄|λ̄) and FW1(λ̄), re-

spectively. The quantities J(λi) = −ρ−αi ln ρ, J(µj) = −ρ−βj ln ρ and J(γl) = −ρ−δl ln ρ represent

the Jacobians of the transformations in equations (6.12)-(6.14), respectively.
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We next evaluate the three sets of products of Jacobians and the associated g functions in

the overall product expression in the right hand side of equation (6.17) up to exponential order.

We begin with
(
Πp

j=1|J(µj)|
)

gW2|W1
(β̄|ᾱ) first. Using the transformations (6.12) and (6.13) in

equation (6.16) we get

gW2|W1
(β̄|ᾱ) =̇

p∏

j=1

(
ρ−(k+m−2j)βje−ρ−βj

) (u,p)∏

(i=1,j=1)
(s.t. i+j=m+1)

(
e−ρ(1−βj−αi)

) u∏

i=1

(1 + ρ−αi)k

p∏

j=1

(m−j)∧n∏

i=1

(
1− e−ρ(1−βj−αi)

ρ(1−βj−αi)

)
. (6.18)

For asymptotic SNR (ρ →∞) we have

lim
ρ→∞ e−ρ−βj = 0, if βj < 0 for any 1 ≤ j ≤ p; (6.19)

lim
ρ→∞ e−ρ(1−βj−αi) = 0, if (αi + βj) < 1 for any (i + j) ≥ (m + 1); (6.20)

lim
ρ→∞

(
1− e−ρ(1−βj−αi)

ρ(1−βj−αi)

)
=





ρ−(1−βj−αi) if (βj + αi) ≤ 1;

1 otherwise;

[
∵ lim

x→0

1− e−x

x
= 1

]
. (6.21)

Substituting the above asymptotic approximations and the fact that the limiting value of a

product of convergent sequences is equal to the product of the individual limiting values in equation

(6.18), we get

(
Πp

j=1|J(µj)|
)

gW2|W1
(β̄|ᾱ) =̇





ρ−E2(ᾱ,β̄), if (ᾱ, β̄) ∈ S2;

0, otherwise,
(6.22)

where S2 = {(ᾱ, β̄) : 0 ≤ α1 ≤ · · · ≤ αu; 0 ≤ β1 ≤ · · · ≤ βp; (βj + αi) ≥ 1, ∀(i + j) ≥ (m + 1)} and

E2(ᾱ, β̄) =




p∑

j=1

(m + k − 2j + 1)βj − k
u∑

i=1

(1− αi)+ +
u,p∑

i,j=1
j+i≤m

(1− αi − βj)+


 . (6.23)

Similarly, it can be shown that

(
Πq

l=1|J(γl)|
)
gW3|W1

(δ̄|ᾱ)=̇





ρ−E3(ᾱ,δ̄), if (ᾱ, δ̄) ∈ S3;

0, otherwise,
(6.24)

where S3 = {(ᾱ, β̄) : 0 ≤ α1 ≤ · · · ≤ αu; 0 ≤ δ1 ≤ · · · ≤ δq; (δl + αi) ≥ 1, ∀(i + l) ≥ (n + 1)} and

E3(ᾱ, δ̄) =




q∑

l=1

(n + k − 2l + 1)δl − k

u∑

i=1

(1− αi)+ +
u,q∑

i,l=1
l+i≤n

(1− αi − δl)+


 . (6.25)
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Finally, using the expression for the pdf of ᾱ given in [48] we have

(Πu
i=1|J(λi)|) gW1(ᾱ)=̇





ρ−
∑u

i=1(m+n−2i+1)αi , if 0 ≤ α1 ≤ · · · ≤ αu;

0, otherwise.
(6.26)

Finally, substituting equations (6.22), (6.24) and (6.26) into equation (6.17) we get the main result

of this section, namely, the joint distribution of (ᾱ, β̄, γ̄) up to exponential order, which we state in

the following theorem.

Theorem 6.2 If ᾱ, β̄ and γ̄ are the vectors containing the negative SNR exponents of the ordered

eigenvalues of the matrices W1, W2 and W3, respectively, as defined in the transformations (6.12)-

(6.14), then the joint distribution of (ᾱ, β̄, γ̄) is given up to exponential order as

fW1W2W3(ᾱ, β̄, δ̄)=̇





ρ−E(ᾱ,β̄,δ̄), if (ᾱ, β̄, δ̄) ∈ S;

0, if (ᾱ, β̄, δ̄) /∈ S,

(6.27)

where

S = S2 ∩ S3 =





(ᾱ, β̄, δ̄) :

(αi + βj) ≥ 1, ∀(i + j) ≥ (m + 1);

(αi + δl) ≥ 1, ∀(i + l) ≥ (n + 1);

0 ≤ α1 ≤ · · · ≤ αu,

0 ≤ β1 ≤ · · · ≤ βp,

0 ≤ δ1 ≤ · · · ≤ δq,





, (6.28)

and

E(ᾱ, β̄, δ̄) =
u∑

i=1

(n + m− 2i + 1)αi +
p∑

j=1

(k + m− 2j + 1)βj +
q∑

l=1

(k + n− 2l + 1)δj

−2k
u∑

i=1

(1− αi)+ +
u,p∑

i,j=1
j+i≤m

(1− αi − βj)+ +
u,q∑

i,l=1
l+i≤n

(1− αi − δl)+. (6.29)

6.3 DMT of the MIMO HD-RC

Assuming global CSI H at the relay node, it was proved in [65] that the DCF protocol based

on the CF scheme of [70] can achieve the DMT of the MIMO HD-RC. The actual DMT was however
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not obtained therein. Here, using the asymptotic eigenvalue distribution result of Theorem 6.2 of

the previous section, the DMT of the MIMO HD-RC is first characterized as the solution of a

convex optimization problem (see Theorem 6.3) and then simplified to a two-variable optimization

problem (see Theorem 6.4). Moreover, since it is shown that the dynamic QMF protocol achieves

this fundamental DMT, only knowledge of the optimal switching time is required at the relay to

achieve the DMT of the MIMO HD-RC. This is in contrast to the DCF protocol of [65] which

requires global CSI at the relay. Later in Section 6.5, it is proved that even the switching time

information, while sufficient, is not necessary under certain conditions. In particular, it is shown

that the DMT of the (n, 1, n) and (1, k, 1) HD-RCs can be achieved without CSI at the relay. This is

also the case for more general classes of MIMO HD-RCs but only for sufficiently high multiplexing

gains.

To characterize the DMT, we first prove that P ∗
e (ρ) (see (6.8)), the minimum average prob-

ability of decoding error achievable on the channel at an SNR of ρ, is exponentially equal (recall

definition in (6.2)) to the probability of an appropriately defined outage event. In Subsections

6.3.1 and 6.3.2 we derive an upper bound and a lower bound for the outage probability, respec-

tively, which are in turn exponentially equal. The lower bound to the outage probability is based

on an upper bound on the instantaneous cut-set bound of the channel. The upper bound on the

outage probability is derived from an achievable rate expression of the QMF protocol operating

dynamically on the relay channel. Finally, analyzing these bounds in Section 6.3.3, we derive the

DMT of the channel by computing the negative SNR exponent of the outage probability.

It is well known that on a slow fading point-to-point channel the maximum rate at which

information can be reliably transferred to the receiver depends on the channel realization, and is

hence a random quantity. In what follows, this rate will be referred to as the instantaneous capacity

of the channel. For a particular channel realization, if the rate of transmission is larger than the

instantaneous capacity of a point-to-point channel, we say the channel is in outage. The same is

true for a relay channel, where in addition a relay node helps the end-to-end transmission between

the source and the destination nodes. Further, on a dynamic HD-RC, the instantaneous capacity
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of the channel also depends on the switching time of the relay node and should be chosen optimally

to maximize it. Let t̂d(H) represent the optimal switching time and let the instantaneous capacity

be denoted as Co

(H, t̂d(H)
)
. Using this notation we next define the outage event.

Definition 6.1 (Outage event) The HD-RC is said to be in outage if for a particular channel

realization, H and SNR ρ, and the rate of transmission, R = r log(ρ) (in bits per channel use

(Bpcu)) is larger than its instantaneous capacity. The corresponding outage event is denoted as O,

so that

O ,
{H : Co

(H, t̂d(H)
)

< r log(ρ)
}

. (6.30)

Let Pr(O) denote the outage probability and let dO(r) denote its diversity order, i.e., dO(r) ,

limρ→∞− log(Pr(O))
log(ρ) . We have the following lemma.

Lemma 6.2 The minimum probability of decoding error achievable on the MIMO HD-RC, P ∗
e (ρ)

(see (6.8)) is exponentially equal to the outage probability. Hence the corresponding diversity

orders are also equal, so that

P ∗
e (ρ) .= Pr(O) =⇒ d∗(r) = dO(r), (6.31)

where d∗(r) is defined in (6.7).

Proof 6.3 (Proof of Lemma 6.2) The proof is identical to that in [48].

In the next section, an upper bound on the DMT of the MIMO HD-RC is obtained.

6.3.1 An upper bound on instantaneous capacity (and DMT)

From the discussion in Section 6.1 we have that an upper bound on the DMT for the family

of fixed and dynamic protocols is also an upper bound on the achievable DMT of any (cooperative)

communication scheme on the MIMO HD-RC. Thus we restrict attention, without loss of generality,

to the family of fixed and dynamic protocols. Assuming that the relay node switches from the
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listening mode to the transmit mode at time td, we have that any achievable rate R on the relay

channel for which the error probability can be made arbitrarily small is upper bounded using the

cut-set bounds for the HD-RC [87,88] so that

R ≤ max
{td,P (XS ,XR)}

min {ICS
(td), ICD

(td)} = max
td

C̄(H, td), (6.32)

where C̄(H, td) denotes the cut-set bound of the channel for a given td and

ICS
(td) = tdI (XS ; YD, YR|p1) + (1− td)I (XS ;YD|XR, p2) ; (6.33)

ICD
(td) = tdI (XS ;YD|p1) + (1− td)I (XS , XR; YD|p2) , (6.34)

represent the maximum mutual information that can flow across the cuts around the source and

destination, respectively.

The following two-part lemma provides (i) upper bounds to both ICS
and ICD

and (ii) a lower

bound to C̄(H, td).

Lemma 6.3 i. The cut-set mutual informations ICS
(td) and ICD

(td) in equations (6.33) and

(6.34), are upper bounded as

max
{PXS,XR

}
ICS

(td) ≤ I
′
CS

(td) , td log (LS,RD) + (1− td) log (LSD) , (6.35)

max
{PXS,XR

}
ICD

(td) ≤ I
′
CD

(td) , td log (LSD) + (1− td) log (LSR,D) , (6.36)

where HS,RD ,
[

HSR
HSD

]
, HSR,D , [HSD HRD] and

LSD , det
(
HSDH†

SDρ + In

)
, (6.37)

LSR,D , det
(
ρHSR,DH†

SR,D + In

)
; (6.38)

LS,RD , det
(
ρHS,RDH†

S,RD + In+k

)
. (6.39)

ii. Moreover, the cut-set bound C̄(H, td) is lower bounded as follows:

C̄(H, td) ≥min{I ′CS
(td), I

′
CD

(td)} − (m + k).

Proof 6.4 See Appendix B.2.
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Now, continuing from equation (6.32) we have

R ≤ max
{td,P (XS ,XR)}

min {ICS
(td), ICD

(td)} ,

≤max
{td}

min
{

max
{P (XS ,XR)}

ICS
(td), max

{P (XS ,XR)}
ICD

(td)
}

,

(a)

≤max
{td}

min
{

I
′
CS

(td), I
′
CD

(td)
}

= max
td

RU (td), (6.40)

where in step (a) we used the set of upper bounds from the first part of Lemma 6.3 and the definition

RU (td) = min
{

I
′
CS

(td), I
′
CD

(td)
}

. Note that td in equation (6.40) can be a function of the channel

matrices since we are considering a dynamic HD-RC. Since the right hand side of equation (6.40) is

maximized when I
′
CS

(td) = I
′
CD

(td), equating equations (6.35) and (6.36) we get the optimal value

for the switching time as

t∗d =
log

(
LSR,D

LSD

)

log
(

LSR,D

LSD

)
+ log

(
LS,RD

LSD

) . (6.41)

Putting this value of td in equation (6.40) we get

R ≤
log

(
LSR,D

LSD

)
log

(
LS,RD

LSD

)

log
(

LSR,D

LSD

)
+ log

(
LS,RD

LSD

) + log (LSD) , R∗
U . (6.42)

Since any rate up to the instantaneous capacity Co

(H, t̂d(H)
)

is achievable, we have Co

(H, t̂d(H)
) ≤

R∗
U . This inequality when used along with the definition of the outage probability in (6.30) yields

O(r) = {H : Co

(H, t̂d(H)
)

< r log(ρ)} ⊇ {H : R∗
U < r log(ρ)} , OU (r), (6.43)

from which we have a lower bound on the outage probability, Pr{O(r)} ≥ Pr{OU (r)}. Using (6.31),

we then obtain an exponential lower bound on the minimum achievable probability of decoding

error, and hence an upper bound on the DMT as

P ∗
e (ρ)≥̇Pr{OU (r)} =⇒ d∗(r) ≤ dU (r) (6.44)

where dU (r) is the diversity order of Pr{OU (r)}, i.e., dU (r) , limρ→∞− log(Pr(OU (r)))
log(ρ) .
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6.3.2 A lower bound on instantaneous capacity (and the DMT) via the QMF

scheme

Since the instantaneous capacity of a slow fading channel is the supremum of the achievable

rates of all possible coding schemes, the achievable rate of a particular coding scheme yields a lower

bound to it. We first derive such a lower bound for the HD-RC by computing the achievable rate

of the QMF protocol [68] which when substituted in the definition of the outage event results in

an upper bound to the outage probability yielding in turn the desired lower bound to the DMT.

Recall that the cut-set upper bound to the instantaneous capacity of the channel for a given

listen-transmit scheduling of the relay (i.e., fixed td) node was denoted by C̄(H, td) [87,88]. In [68]

it was proved that for a given td, the QMF protocol can achieve a rate Rq(H, td) on a relay channel

with channel matrices H, where

Rq(H, td) ≥ C̄(H, td)− τ, (6.45)

and τ is independent of both the channel matrices and ρ. The above rate satisfying equation (6.45)

can be achieved by the QMF protocol for any given td as long as it is known to the relay node. In

particular, putting td = t∗d (given by equation (6.41)) in equation (6.45) we get

Rq(H, t∗d) ≥ C̄(H, t∗d)− τ. (6.46)

In other words, a rate which is within constant number of bits to C̄(H, t∗d) can be achieved by the

QMF protocol. Note that, t∗d is a function of the instantaneous channel realizations, H (e.g., see

equation (6.41)) and can be computed by the relay node since we assume global CSI at the relay

node.

From the second part of Lemma 6.3 we have

C̄(H, t∗d) ≥min{I ′CS
(t∗d), I

′
CD

(t∗d)} − (m + k) ≥ R∗
U − (m + k),

where the last step follows from the fact that I
′
CS

(t∗d) = I
′
CD

(t∗d) = R∗
U (see equation (6.41)). Now,

substituting the last lower bound to C̄(H, t∗d) in equation (6.46) we get
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Rq(H, t∗d) ≥R∗
U − (m + k + τ)︸ ︷︷ ︸

R0

= R∗
U −R0 , R∗

L, (6.47)

where R0 = (m + k + τ).

Clearly, the instantaneous capacity Co

(H, t̂d(H)
)

is larger than or equal to any achievable

rate on the channel, i.e., Co

(H, t̂d(H)
) ≥ R∗

L. This inequality along with the definition of outage

probability in (6.30) yields

O(r) = {H : Co

(H, t̂d(H)
)

< r log(ρ)} ⊆ {H : R∗
L < r log(ρ)} , OL(r),

which in turn implies that P ∗
e (ρ) .= Pr{O(r)} ≤ Pr{OL(r)}, where the exponential equality is from

(6.31). Now, since R∗
L = R∗

U − R0 and R0 is independent of the SNR (ρ) and H, we have at

asymptotically high SNR that

Pr{OL(r)} =Pr{R∗
L < r log(ρ)} = Pr{R∗

U −R0 < r log(ρ)}

=̇Pr{R∗
U < r log(ρ)} = Pr{OU (r)}.

Hence, P ∗
e (ρ)≤̇Pr{OU (r)} and combining with (6.44) we have that Pr{OU (r)} characterizes P ∗

e (ρ)

exactly up to exponential order, i.e.,

P ∗
e (ρ)=̇ Pr{OU (r)}

so that the DMT of the MIMO HD-RC can be expressed as

d∗(r) = dU (r) = lim
ρ→∞−

log (Pr{OU (r)})
log(ρ)

. (6.48)

with OU (r) defined in (6.43) in terms of R∗
U which in turn is defined in (6.42). In the next section,

we evaluate this DMT.

Remark 6.1 The QMF protocol can achieve the DMT of the MIMO HD-RC with knowledge of

only t∗d, the switching time that maximizes the cut-set bound (in lieu of the true optimal switching

time t̂d)., i.e., it does not require the explicit knowledge of HSR, HSD and HRD. However, although
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in the QMF protocol the relay node does not require global CSI, the destination node requires

global CSI. In particular, the channel realization HSR has to be forwarded by the relay node to the

destination which can not directly measure the channel between the source and relay node. The

other two channel matrices, i.e., HSD and HRD can be estimated by the destination node itself.

6.3.3 The DMT as a solution to an optimization problem

Evidently, to obtain d∗(r) the probability distribution of R∗
U , which is a function of the three

channel matrices, is needed. However, by simplifying the expression for R∗
U , it is shown that just

the joint eigenvalue distribution of the three composite channel matrices Wi, for 1 ≤ i ≤ 3, defined

in Section 6.2.1, suffices. Further simplification shows that only the joint distribution of the SNR

exponents of these eigenvalues is sufficient to obtain d∗(r).

Lemma 6.4 The optimal diversity order of the MIMO HD-RC can be written as

d∗(r) = lim
ρ→∞−

log
(
Pr

{
r∗(ᾱ, β̄, δ̄) ≤ r

})

log(ρ)
, (6.49)

where r∗(ᾱ, β̄, δ̄) is given as

r∗(ᾱ, β̄, δ̄) ,
[ ∑q

l=1(1− δl)+
∑p

j=1(1− βj)+∑q
l=1(1− δl)+ +

∑p
j=1(1− βj)+

]
+

(
u∑

i=1

(1− αi)+
)

; (6.50)

and αi’s, βj ’s and δl’s are the negative SNR exponents of the eigenvalues of HSDH†
SD, HSR(Im +

ρH†
SDHSD)−1H†

SR and H†
RD(In + ρHSDH†

SD)−1HRD, respectively.

Proof 6.5 (Proof) The proof is given in Appendix B.3.

Using the joint pdf of {ᾱ, β̄, δ̄} given by equation (6.27), Pr
{
r∗(ᾱ, β̄, δ̄) ≤ r

}
is evaluated

and using equation (6.49), the optimal diversity order d∗(r) is obtained, leading to the following

theorem.

Theorem 6.3 The solution of the following optimization problem yields the fundamental DMT of

the MIMO HD-RC:

min
(ᾱ,β̄,δ̄)

F
(
ᾱ, β̄, δ̄

)
(6.51)
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subject to the following constraints
u∑

i=1

(1− αi) +

∑p
j=1(1− βj)

∑q
l=1(1− δl)∑p

j=1(1− βj) +
∑q

l=1(1− δl)
≤r, (6.52)

αm−j+1 + βj ≥ 1 ∀1 ≤ j ≤p, (6.53)

αn−l+1 + δl ≥ 1 ∀1 ≤ l ≤q, (6.54)

0 ≤ α1 ≤ · · · ≤ αu ≤1, (6.55)

0 ≤ β1 ≤ · · · ≤ βp ≤1, (6.56)

0 ≤ δ1 ≤ · · · ≤ δq ≤1; (6.57)

where

F
(
ᾱ, β̄, δ̄

)
=

u∑

i=1

(n + m + 2k − 2i + 1)αi+
p∑

j=1

(k + m− 2j + 1)βj +
q∑

l=1

(k + n− 2l + 1)δj − 2ku

+
u,p∑

i,j=1
j+i≤m

(1− αi − βj)+ +
u,q∑

i,l=1
l+i≤n

(1− αi − δl)+. (6.58)

Proof 6.6 (Outline of proof) It is clear from equation (6.49) that the optimal diversity order is

equal to the negative SNR exponent of Pr
{
r∗(ᾱ, β̄, δ̄) ≤ r

}
. Using the joint pdf of (ᾱ, β̄, δ̄) obtained

in Subsection 6.2.1, this probability can be written as an integral of the pdf over the subset of the

sample space of (ᾱ, β̄, δ̄) where r∗(ᾱ, β̄, δ̄) ≤ r (call it D). From Laplace’s method it follows that

this integral is dominated by a term having the minimum negative SNR exponent over D. The

details are provided in Appendix B.4.

Remark 6.2 It is well known that the fundamental DMTs of the (m,n) and the (n,m) point-

to-point MIMO channels are identical. From (6.1) it is also clear that the DMTs of the (m, k, n)

and the (n, k, m) MIMO FD-RCs are identical. The above theorem proves that this reciprocity

property of DMT extends to the MIMO HD-RC as well as can be seen from the symmetry in m and

n of the optimization problem of (6.51). In other words, the fundamental DMTs on the (m, k, n)

and (n, k, m) MIMO HD-RCs are identical. Henceforth, we let m ≥ n without loss of generality.

Note that
∑u

i=1 αi,
∑p

j=1 βj and
∑q

l=1 δl are affine functions of the αi’s, βj ’s and δl’s, respec-

tively. Furthermore, by computing its Hessian, it can be easily proved that the function (p−x)(q−y)
(p−x)+(q−y)
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is not convex with respect to x and y. Thus, it is evident that
(p−∑p

j=1 βj)(q−
∑q

l=1 δl)

(p−∑p
j=1 βj)+(q−∑q

l=1 δl)
is a not a

convex function. Hence the left hand side of the inequality constraint (6.52) is not a convex function

either. Therefore, the optimization problem in Theorem 6.3 is not a convex optimization problem

and hence is not amenable to the convex programming methods [56]. Moreover, the number of

variables in the optimization also grow with m, k and n linearly. To overcome these problems, in

what follows we shall find an equivalent optimization problem with only two variables (independent

of m, k and n), which can then be solved by exhaustive search in the closed domain of the problem.
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Figure 6.4: The fundamental DMTs of the MIMO HD-RC and the corresponding point-to-point
MIMO channel.

Theorem 6.4 The fundamental diversity-muliplexing tradeoff of the (m, k, n) HD-RC is given as

d∗(r) = min
{a∈R, b∈B}

F

(
φα(a), φβ(b), φδ

(
b(r − a)

(b− r + a)

))
, (6.59)

where the interval R is specified in equation (B.28) in Appendix B.5, B =
[

sm(r−a)
(sm−r+a) , bm

]
, bm =

min{p, (m − a)}, sm = min{q, (n − a)} and φi’s are as defined in equations (B.18)-(B.20) in Ap-

pendix B.5.

Proof 6.7 (Proof) The proof is given in Appendix B.5.

Example 6.1 We illustrate the advantage of relaying relative to point-to-point communication by

considering the networks CN1 and CN2 of Fig. 6.1(a) and Fig. 6.1(b). Fig. 6.4(a) applies to
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the uplink of CN1 (in which m = k < n) and depicts the DMT performance of the relay channel

with respect to that achievable on the corresponding point-to-point channel. Similarly, Fig. 6.4(b)

applies to the uplink of CN2 (in which m < k < n). These figures clearly demonstrate the superior

performance of cooperative MIMO over point-to-point MIMO communication.
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Figure 6.5: DMTs Comparisons for MIMO HD- vs. FD-RCs.

Remark 6.3 The explicit numerical computation of the fundamental DMT reveals several inter-

esting characteristics of the MIMO HD-RC. For example, for the class of (m, k, n) HD-RCs where

m > n ≥ k we found that the DMT is identical to that of the corresponding MIMO FD-RC. It

appears to be difficult however to show this analytically. Note that this scenario applies to the

downlink of the two networks CN1 (with m > n = k) and CN2 (with m > n > k) of Fig. 6.1(a)

and Fig. 6.1(b), respectively. Fig. 6.5(a) illustrates this fact for a few specific examples of MIMO

RCs. Thus, for the class of MIMO HD-RCs for which m > n ≥ k, the half-duplex constraint does

not appear to be restrictive in terms of DMT performance. In general however, the MIMO HD-RC

has different DMT characteristics than the MIMO FD-RC. For instance, see Fig. 6.5(b) (which

is relevant for the sensor network CN3 of Fig. 6.1(c)). This will be further discussed in the next

section.
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Conjecture 6.1 For the class of (m, k, n) HD-RCs for which m > n ≥ k the DMT is equal to that

of the corresponding MIMO FD-RC.

6.4 Closed form expressions for the DMTs of a few classes of relay channels

A closed form expression of the DMT would provide more insights about the system than a

numerical solution. Motivated by this fact, we next provide closed-form solutions for the fundamen-

tal DMT of special classes of MIMO HD-RCs specified by the relationship between the numbers

of antennas at the three nodes, including the (n, k, n) (henceforth, called symmetric since m = n)

HD-RC.

Theorem 6.5 The optimal diversity order d∗(r), at a multiplexing gain of r, of the (n, k, n) HD-RC

is upper bounded by ds
U (r) (defined below) as

d∗(r) ≤ ds
U (r) ,





min{1≤i≤(3+p)} dUi(r), k ≤ n,

min{1≤i≤(3+2p)} dUi(r), k ≥ n,

(6.60)

where recall that p = min{m, k} = min{k, n} (since m = n) and for N = 1, · · · , p, and recalling that

d(nt,nr)(·) represents the fundamental DMT of a MIMO point-to-point channel with nt transmit

and nr receive antennas, we define

dU1(r) = d(n,n+k)(r), for 0 ≤ r ≤ n, (6.61)

dU2(r) = d(2n,2n)(2r), for n− p

2
≤ r ≤ n, (6.62)

dU3(r) = n2 +
p∑

l=1

(n + k − 2l + 1)

(
1−

(
pr

(p− r)
− l + 1

)+
)+

, for 0 ≤ r ≤ p

2
, (6.63)

dU(3+N)
(r) = N2 + d(n−N),(n+2k−N)

(
r − N

2

)
, for

N

2
≤ r ≤ min

{
n− N

2
, n− N2

(2p−N)

}
,(6.64)

dU(3+p+N)
(r) =

(n−N)∑

i=1

(2n + k −N − 2i + 1)
(
1− (aN − i + 1)+

)+
+ N2, for

Nn

(N + n)
≤ r ≤ n− N

2
,(6.65)

and aN is given by equation (B.43) in Appendix B.6.

Proof 6.8 (Proof) The proof is given in Appendix B.6.
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Evaluating the exact DMT of the (n, k, n) relay channel using Theorem 6.4 for several values

of n and k we found that d∗(r) = ds
U (r) which leads us to make the following conjecture that the

upper bound ds
U (r) is in fact tight.

Conjecture 6.2 On a symmetric (n, k, n) relay channel d∗(r) = ds
U (r), where ds

U (r) is given by

equation (6.60).

Remark 6.4 From the expression of dU2(r) in equation (6.62) we see that this particular upper

bound does not depend on k for k ≥ n. Thus, when this bound is active, adding an extra antenna

at the relay node does not improve the DMT performance of the channel. This is an interesting

difference between the HD- and FD-RCs since for FD-RCs every additional antenna at the relay

improves the diversity order for all values of multiplexing gains (recall (6.1)). Empirical results

show that dU2(r) is a tight bound for the DMT on the (n, k, n) HD-RC for r ≥ n
2 and k ≥ d3n

2 e.

For example, Fig. 6.5(b) illustrates this fact by showing that while adding an extra antenna on the

(2, 3, 2) FD-RC uniformly increases the achievable diversity orders at all multiplexing gains, the

achievable diversity order on the corresponding HD-RC does not change for r ≥ 1.

Remark 6.5 Another interesting fact revealed by Theorem 6.5 is that, as the number of antennas

increases at the relay node, the difference in the DMT performance between the FD-RC and the

HD-RC increases. From the expression of the upper bound dU3(r) in equation (6.63) we see that

at a multiplexing gain of r = p
2 the diversity order achievable on the HD-RC is upper bounded

by n2 but on an FD-RC this is clearly not the case where the diversity order increases with k.

Fig. 6.6(a) demonstrates this phenomenon on a (2, k, 2) relay channel which is applicable to the

CN3 scenario of Fig. 6.1(c). Intuitively, the above phenomenon occurs because as the number of

antennas at the relay increases the signal forwarded by the relay node can significantly contribute

to enhancing the diversity of the received signal at the destination node and hence the half-duplex

constraint becomes increasingly more restrictive (relative to the FD relay) because the relay node

can not transmit in the listening phase.
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Figure 6.6: A comparison of DMTs on Dynamic vs. Static and HD- vs. FD-RCs.
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Remark 6.6 A similar argument holds for the comparison between the DMT performance of the

static and dynamic HD-RCs. In contrast to a static channel, since on a dynamic channel the

switching time varies depending on the instantaneous channel matrices, it is expected that a larger

number of antennas at the relay node make a bigger difference on the DMT performance.

The following result gives an explicit formula for the DMT of the (1, k, 1) HD-RC.

Theorem 6.6 The optimal DMT of a half-duplex (1, k, 1) HD-RC is given as

d∗(1,k,1)(r) =





(k + 1)(1− r), 0 ≤ r ≤ 1
(k+1) ;

1 + k
(

1−2r
1−r

)
, 1

(k+1) ≤ r ≤ 1
2 ;

2(1− r), 1
2 ≤ r ≤ 1.

(6.66)

Proof 6.9 (Proof) The proof is given in Appendix B.7.

Remark 6.7 A comparison with the DMT of the class of static (1, k, 1) HD-RCs (derived in [66]),

numerical examples of which are given in Fig. 6.2(a) and Fig. 6.2(b), reveals that the DMT of

such static HD-RCs are strictly smaller than that for their dynamic counterparts for r ≤ 1
2 .

The next result gives an explicit DMT formula for the class of symmetric HD-RCs with

single-antenna relays.

Theorem 6.7 The DMT of the (n, 1, n) HD-RC is given by a piece-wise linear curve whose corner

points at integer values of r are given as

d∗(n,1,n)(r) = d(n+1,n)(r)

= (n− r)(n + 1− r), 0 ≤ r ≤ n. (6.67)

Proof 6.10 (Proof) The proof involves computation of an upper and a lower bound to d∗(n,1,n)(r)

and showing that they are identical. The upper bound, du
(n,1,n)(r) is based on the DMT of the FD

relay channel and the DMT of the static (n, 1, n) RC, denoted as dstat
(n,1,n)(r) serves as a lower bound

(since dynamic protocols include static protocols as a special case).
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6.4.1 An expression for du
(n,1,n)(r)

Clearly, the the performance of the FD relay channel can not be exceeded by a HD relay

channel. The DMT of the FD (n, 1, n)-RC can easily be computed from [65] and is given by

dn,(n+1)(r), 0 ≤ r ≤ n.

This in turn by the above argument imply that

d∗(n,1,n)(r) ≤ du
(n,1,n)(r) = dn,(n+1)(r), 0 ≤ r ≤ n. (6.68)

6.4.2 Lower bound

Clearly, the DMT of the static (n, 1, n) HD-RC, denoted as dstat
(n,1,n)(r) serves as a lower bound

to the fundamental DMT of the HD relay channel which in general is not restricted to operate in

a static manner. In the following we shall derive an expression for the DMT of the static (n, 1, n)

HD-RC.

The DMT of the symmetric (n, k, n) static HD-RC was established as the solution of a convex

optimization problem in [66] and an analytic expression for only an upper bound6 to the DMT

was provided therein. Here we obtain an exact closed form solution to that optimization problem

analytically, for the case of k = 1. Our starting point is thus equation (13) in [66] which is restated

here for convenience,

dstat
(n,1,n)(r) = min

{(ᾱ,β1)∈T }

n∑

i=1

(2n− 2i + 1)αi+nβ1 −
n∑

i=1

(1− αi)+ +
n−1∑

i=1

(1− β1 − αi)+ (6.69)

where

T =
{

(ᾱ, β1) :
n∑

i=1

(1− αi)+ +
1
2
(1− β1)+ ≤ r; 0 ≤ α1 ≤ α2 ≤, · · · ≤ αn; 0 ≤ β1; (β1 + αn) ≥ 1

}
.(6.70)

Using an argument similar to that in the proof of Theorem 6.3 in Appendix B.4, it can be shown

that a further restriction to αn, β1 ∈ [0, 1] can be made without changing the solution of (6.69) but
6 However, in [66] based on numerical simulations it was claimed that this upper bound is tight and represents

the DMT of the channel.
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it greatly simplifies the problem as

dstat
(n,1,n)(r) = min

{(ᾱ,β1)∈T̂ }

n∑

i=1

(2n− 2i + 2)αi + nβ1 − n +
n−1∑

i=1

(1− β1 − αi)+. (6.71)

where

T̂ =
{

(ᾱ, β1) :
n∑

i=1

(1− αi) +
1
2
(1− β1) ≤ r; 0 ≤ α1 ≤ α2 ≤, · · · ≤ αn ≤ 1; 0 ≤ β1 ≤ 1; (β1 + αn) ≥ 1

}
.(6.72)

The proof that the solution of (6.71) is indeed identical to dn,(n+1)(r), follows from induction and

the details are relegated to Appendix B.8.

The Theorem then follows from the fact that the lower bound and upper bounds derived

above coincides.

Before proceeding to the next section, we summarize the findings of the previous two sections.

The explicit computation of the DMT of the MIMO HD-RC enabled the proof of the existence of

classes of HD-RCs whose DMT performances are (a) strictly inferior to that of the corresponding

FD-RCs (with certain m, k, n) and (b) equal to that of the corresponding FD-RCs (when m > n ≥ k,

see Remark 6.3, which was proved empirically for a large number of values of m, k and n satisfying

the constraint). Furthermore, closed-form solutions for the two-variable optimization problem are

obtained for two classes of symmetric HD-RCs, namely, the (n, 1, n) and the (1, k, 1) HD-RCs (see

Theorems 6.6 and 6.7). More generally, the explicit DMT is upper bounded for the symmetric

(n, k, n) HD-RCs and is conjectured to be tight (see Theorem 6.5 and Conjecture 6.2). These

solutions reveal certain special characteristics of the HD-RC which are different from that of the

FD-RC and the static HD-RC. For example, while an extra antenna at the relay node uniformly

improves the DMT for an FD-RC this is not the case for the HD-RC. Moreover, the greater the

number of antennas at the relay, the greater is the difference between the DMT performances of

the FD- and HD-RCs. It is also observed that within the class of HD-RCs, static operation of the

relay in general limits performance relative to unconstrained (or dynamic) operation of the relay

with the difference in DMT performance becoming more pronounced with an increasing number of

antennas at the relay.
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6.5 Achievability of the DMT without switching time at the relay node

In the previous section we established the fundamental DMT for the MIMO HD-RC. It hence

represents the DMT achievable by the best cooperative protocol among all admissible ones with

global CSI at both the relay and the destination. The QMF scheme of Section 6.3.2 however

achieves this fundamental tradeoff with just the relay having knowledge of the switching time t∗d

defined in (6.41) (with the destination node having global CSI). In this section, we explore the

question of whether there are situations in which even the switching time knowledge at the relay

is not necessary. Note that the DCF protocol was shown to be optimal from the DMT perspective

in [65] so that the DMT of the previous section is achievable by this protocol too but it requires

global CSI at the relay. In the case of the SISO HD-RC, the QMF scheme of [68] was shown in [82]

to achieve, with switching time of 1/2 (and hence without knowledge of switching time at relay),

the fundamental DMT of the SISO FD-RC which in turn is an upper bound for the SISO HD-RC,

so that dynamic operation of the relay in this case does not help from the DMT perspective. Does

this result generalize to MIMO HD-RCs? It turns out that it does in some cases. In particular, we

show that for the (n, 1, n) MIMO HD-RCs the DMT (given by Theorem 6.7) can indeed be achieved

by the QMF protocol with a channel independent switching time. In other words, on this class of

RCs even global CSI at the relay node does not help in terms of DMT performance, generalizing

the SISO HD-RC result of [82]. Moreover, for the class of (1, k, 1) HD-RCs we show that for all

multiplexing gains r ∈ [0, 1/2] the optimal tradeoff curve can be achieved by the dynamic decode-

and-forward (DDF) protocol analyzed for the general MIMO HD-RC by the authors in [52] and for

all multiplexing gains r ∈ [1/2, 1] it is achieved by the static QMF protocol and neither of these

protocols requires knowledge of HSD and HRD at the relay node.

We shall show that while on the two specific classes of RCs as specified earlier the optimal

diversity order at all multiplexing gains can be achieved without any CSI at the relay node, the

same is also true in general but only for higher multiplexing gain values (e.g., see Fig. 6.6(b)).

Remark 6.8 The DMT of the static MIMO HD-RC was obtained in [66] with the static CF
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protocol as the achievability scheme which requires global CSI at the relay. From Theorem 8.5

in [68] however, we have that on the static HD-RC, the QMF protocol, which doesn’t require any

CSI at the relay node (cf. Section VIII-A of [68]), can achieve the instantaneous capacity within a

constant gap. Since a constant number of bits is insignificant in DMT metric, the QMF protocol

can hence achieve the DMT of the static HD-RC.

Remark 6.9 If the DMT of the static and dynamic HD-RCs are identical over some range of

multiplexing gains then the optimal diversity orders at those values of the multiplexing gains can

be achieved without any CSI at the relay node.

Example 6.2 From Fig. 6.6(b) it is clear that the optimal diversity order achievable on the

(2, 2, 2) and (2, 4, 2) HD-RCs can be achieved by the QMF protocol without any CSI at the relay

for r ∈ [1.5, 2] and r ∈ [1, 2], respectively. For all other values of r, the relay node requires the

optimal switching time (or t∗d) to achieve the maximum diversity orders achievable by a dynamic

protocol.

We turn our attention now to the MIMO FD-RC. The optimality of the CF protocol in the

DMT metric was proved in [65] (and the DMT itself was found to be given by (6.1)) but this

protocol requires global CSI as discussed earlier.

Remark 6.10 It was shown in [68] that the (full-duplex version of the) QMF protocol can achieve

the instantaneous capacity of the FD-RC to within a constant number of bits. Hence, the DMT of

the MIMO FD-RC can be achieved by the QMF protocol without any CSI at the relay node and

global CSI at the destination node.

As an immediate application of Remark 6.8 and Theorem 6.6 we get the following result.

Corollary 6.1 The fundamental DMT of the (1, k, 1) relay channel can be achieved by the DDF

protocol, for multiplexing gains in
[
0, 1

2

]
and by the static QMF protocol for multiplexing gains

in the interval
[

1
2 , 1

]
. While the DDF protocol requires only CSIR, the QMF protocol does not
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require any CSI at the relay node, i.e., neither the DDF nor the QMF protocol requires global CSI

at the relay node.

Proof 6.11 (Proof) Theorem 6.6 provides the optimal DMT on a (1, k, 1) relay channel. Com-

paring it with the DMT of the DDF protocol on this channel derived in [52] which is restated here

for convenience, namely,

dDDF
(1,k,1)(r) =





(k + 1)(1− r), 0 ≤ r ≤ 1
(k+1) ;

1 + k
(

1−2r
1−r

)
, 1

(k+1) ≤ r ≤ 1
2 ;

(
(1−r)

r

)
, 1

2 ≤ r ≤ 1,

it is evident that the fundamental DMT of the (1, k, 1) HD-RC can be achieved by the DDF protocol

for 0 ≤ r ≤ 1
2 . Further this DMT can be achieved by the DDF protocol with only the knowledge

of HSR at the relay node.

On the other hand, it was proved in [66] that the DMT of the static (1, k, 1) HD-RC is 2(1−r)

for 1
2 ≤ r ≤ 1. For 1

2 ≤ r ≤ 1, this DMT can be achieved by the QMF protocol without any CSI

at the relay by Remark 6.9.

The key enabling result for Corollary 6.1 beyond the DMTs of the DDF and the static HD-RC

is the explicit DMT of the (1, k, 1) HD-RC of Theorem 6.6. Moreover, to the best of our knowledge,

Corollary 6.1 is the first result on the achievability of the DMT of a non-SISO HD-RC without

global CSI at the relay node. This result however requires two different protocols for the two ranges

of multiplexing gains. In this sense, the above result doesn’t truly generalize the result of [82] in

which it is shown that the QMF protocol achieves the DMT of the SISO HD-RC.

Example 6.3 Comparing the DMT of the DDF protocol with the fundamental DMT of the (1, 2, 1)

relay channel depicted in Fig. 6.2(b), we see that the DDF protocol is DMT optimal on this channel

for a multiplexing gain in the range [0, 1
2 ]. Moreover, since the static DMT is strictly smaller than

that of the corresponding dynamic channel in this range, the CF and QMF protocols require global

CSI and the optimal switching time information at the relay node, respectively, to achieve optimal
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DMT performance. However, the DDF protocol needs only source-to-relay CSI at the relay node.

Clearly, the cooperative protocol of choice in this case (i.e., with r ∈ [0, 1
2 ] ) is the DDF protocol.

In what follows, we identify a class of non-SISO RCs, namely the (n, 1, n) HD-RCs, on which

the DMT of the channel can be achieved by a single protocol, namely the static QMF protocol with

no CSI at the relay node, thereby generalizing the result of [82]. This result is shown by proving

that the DMTs of the static and dynamic (n, 1, n) HD-RCs are identical. In other words, for this

class of HD-RCs dynamic operation of the relay does not help from the DMT perspective. We start

by first finding in closed form the DMT of the static (n, 1, n) HD-RC.

Theorem 6.8 The DMT of the static and dynamic (n, 1, n) HD-RCs are identical, i.e., is given by

dstat
(n,1,n)(r) = d∗(n,1,n)(r) = d(n+1),n(r), 0 ≤ r ≤ n. (6.73)

Hence, the DMT of the (n, 1, n) HD-RC can be achieved by the static QMF protocol with no CSI

at the relay node (i.e., without the knowledge of even the optimal switching time).

Proof 6.12 (Proof) The second equality in (6.73) was proved in Theorem 6.7 and it was shown

that the DMT is identical to that achievable on a static HD-RC. In other words, the static QMF

protocol (which, by Remark 6.8, achieves the DMT of the static HD-RC without any CSI at the

relay node) achieves DMT of the dynamic (n, 1, n) HD-RC without any CSI at the relay node.

Remark 6.11 Note that the DMT of the FD (n, 1, n) RC is also given be d(n+1),n(r) [65]. There-

fore, on the (n, 1, n) HD-RC, the DMT of the (n, 1, n) FD-RC can be achieved by an HD relay

without any CSI at the relay node.

Remark 6.12 Although, for a large number of n ∈ N the DMT of the static (n, 1, n) RC was

computed in [66] and was observed to be equal to d(n+1),n(r), the analysis of [66] only proves

that d(n+1),n(r) represents an upper bound to the DMT of the static (n, 1, n) RC. Therefore, the

conclusion of Theorem 6.8 cannot be obtained from the result of [66].
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6.6 Conclusion

The fundamental DMT of the three-terminal (m, k, n) HD-RC is characterized. This allows

an in-depth comparison of half-duplex and full duplex relaying as well as dynamic and static

operation of the relay as a function of the numbers of antennas at the three nodes. Unlike in

the single-antenna relay channel, half-duplex relaying in general results in a penalty relative to a

full-duplex relaying and an improved performance relative to static half-duplex relaying at high

SNR performance as measured by the DMT metric. The achievability of the fundamental DMT

is shown via the dynamic QMF protocol [68] which requires only the knowledge of the optimal

switching time at the relay. Classes of HD-RCs for which dynamic operation of the relay doesn’t

improve performance over that of static relaying are identified. For such RCs the knowledge of

switching time is not needed either. The problem of characterizing the DMT of the relay channel

with multiple relays is one for future research as is the problem of finding finite block-length coding

schemes that are DMT optimal.



Appendix A

MIMO IC

A.1 Proof of Theorem 2.2

Let us denote the two random vectors involved in equation (2.16) by W̃1 and W̃2 respectively,

i.e.,

W̃1 = H1X1 + Z̃1; W̃2 = H2X1 + Z̃2,

and the svd of the matrices Hi as follows

H1 = V1Σ1U
†
1 ; H2 = V2Σ2U

†
2 ,

where Ui ∈ UNi×Ni , Vi ∈ UM×M and Σi contains the singular values of Hi in the decreasing order

along its diagonal. Since a unitary transformation does not change the differential entropy of a

random vector we have

h
(
W̃i

)
= h

(
Wi = ΣiU

†
i X1 + Zi

)
, 1 ≤ i ≤ 2,

where Zi = V †
i Z̃i ∼ Z̃i. Now, depending on the relative values of Ni and M we modify the vector

Wi in two different ways:
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• Case (Ni ≥ M): In this case, the last (Ni −M) rows of Σi have only zeros and Wi can be

written as

Wi =ΣiU
†
i X1 + Zi =




Σ̂i

0


U †

i X1 + Zi,

=




Ŵi

Zie


 , where Ŵi = Σ̂iU

†
i X1 + Ẑi,

Ẑi ∼ CN (0, IM ) and Zie ∼ CN (0, I(Ni−M)+) are mutually independent and Σ̂i contains the

non-zero singular values of Hi. Since Zie is independent of Ẑi and X1 we can write

h(Wi) =h(Ŵi) + h(Zie|Ŵi) = h(Ŵi) + h(Zie)

=h(Ŵi) + (Ni −M) log(2πe). (A.1)

• Case (Ni < M): In this case the last (M −Ni) columns of Σi are zeros, i.e.,

Σi =
[

Σ̃i 0Ni×(M−Ni)+

]
,

where Σ̃i contains along its diagonal the non-zero singular values of Hi. Defining Σ̂i as

Σ̂i =




Σ̃i + δINi 0Ni×(M−Ni)+

0(M−Ni)+×Ni
δI(M−Ni)+×(M−Ni)+


 ,

the differential entropy of Wi can be written as

h(Wi) =h(ΣiU
†
i X1 + Zi),

=lim
δ→0

[
h

(
Σ̂iU

†
i X1 + Ẑi

)

−h
(
LU †

i X1 + Zie|Wi

)]
,

(a)
= lim

δ→0

[
h

(
Ŵi

)]
− h (Zie|Wi) ,

(b)
=lim

δ→0

[
h

(
Ŵi

)]
− (M −Ni) log (2πe) , (A.2)

where Ẑi = [ZT
i ZT

ie]
T ∼ CN (0, IM ) and Zie ∼ CN (0, I(M−Ni)) is independent of Zi and X1

and L =
[
0(M−Ni)+×Ni

δI(M−Ni)+×(M−Ni)+
]
. In step (a) we applied the limit in the second
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term and used the notation Ŵi = Σ̂iU
†
i X1 + Ẑi. Whereas, step (b) follows because Zie is

independent of Wi.

Denoting Σ̂iU
†
i by Ĥi it can be proved that

Ĥ†
1Ĥ1 ¹ Ĥ†

i Ĥ2 (A.3)

For Ni ≥ M , this fact follows directly from the assumption of the Lemma. For Ni < M , it can be

proved as follows. From the assumption (2.15) we have

U1Σ
†
1Σ1U

†
1 ¹U2Σ

†
2Σ2U

†
2 ,

or, U1Σ
†
1Σ1U

†
1 + δ2U1IMU †

1 ¹U2Σ
†
2Σ2U

†
2 + δ2U2IMU †

2 ,

or, lim
δ→0

U1Σ̂
†
1Σ̂1U

†
1 ¹U2Σ̂

†
2Σ̂2U

†
2 ,

or, lim
δ→0

Ĥ†
1Ĥ1 ¹Ĥ†

2Ĥ2.

Using equation (A.1) and (A.2) in the desired expression of the Lemma we get

Γ ,h
(
H1X1 + Z̃1

)
− h

(
H2X1 + Z̃2

)
− h(Z̃1) + h(Z̃2),

=lim
δ→0

h
(
Ĥ1X1 + Z̃1

)
− h

(
Ĥ2X1 + Z̃2

)
.

Note that although the above equation is valid for all values of M and Ni allowed in the Lemma,

for N1, N2 < M it is independent of δ. Moreover, since Ĥi for i = 1, 2 are full rank and satisfies

equation (2.15), we can use Lemma 2.1 which results in the following

Γ ≤ 0. (A.4)

A.2 Proof of Theorem 2.3

The proof is divided into two parts: first we prove the converse, where it is shown that any

rate pair in the capacity region satisfies the set of constraints specified in (5.11)-(3.10). Then we

prove that any rate pair in the capacity region can also be achieved by Gaussian and independent

coding at both the receivers, which is also an optimal coding scheme for the compound MAC

channel present within the 2-user IC.
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Before going into the details of the proof we define some notations. Let Sij,t = HijXit + Zjt

represents the signl/interference from user i plus the additive noise at receiver j at time t. Then

Sn
ij = [S†ij,1 S†ij,2 · · ·S†ij,n]† can be written as

Sn
ij =




Hij 0 · · · 0

0 Hij · · · 0
...

...
. . .

...

0 0 · · · Hij







Xi1

Xi2

...

Xin




+




Zj1

Zj2

...

Zjn




=(In ⊗Hij) Xn
i + Zn

j .

If we denote the signal received at Rxi over n channel uses by Y n
i . Then using Fano’s inequality

and the fact that conditioning does not increase the average entropy the following inequalities can

be easily proved.

h(Y n
i ) ≤ n log det

(
INi + HjiKxjH

†
ji + HiiKxiH

†
ii

)

+ nNi log(2πe), i 6= j ∈ {1, 2}, (A.5)

h((In ⊗Hij)Xn
i + Zn

j ) ≤ n log det
(
INj + HijKxiH

†
ij

)

+ nNj log(2πe), i, j ∈ {1, 2}. (A.6)

A.2.1 An upper bound to the capacity region

To derive the upper bounds we will assume that a genie provides some additional information

about the signal of interest to one or both of the receivers.

(1) From Fano’s lemma we have

nR1 ≤I(Xn
1 ; Y n

1 ) + nεn

(a)

≤ I(Xn
1 ; Y n

1 , Xn
2 ) + nεn,

(b)
=I(Xn

1 ; Xn
2 ) + I(Xn

1 ; Y n
1 |Xn

2 ) + nεn,

=h((In ⊗H11)Xn
1 + Zn

1 )− h(Zn
1 ) + nεn

(c)

≤n log det
(
IN1 + H11Kx1H

†
11

)
+ nεn,
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where step (a) follows from the fact that some extra information (Xn
2 ) at the receiver does

not reduce the average mutual information, step (b) follows from the fact that I(Xn
1 ; Xn

2 ) =

0, since X1t and X2t are independent and step (c) follows from equation (A.6). Now dividing

both sides by n in the limit when n →∞, we get

R1 ≤ log det
(
IN1 + H11Kx1H

†
11

)
,

(2) Derivation of the second bound is similar.

(3) To derive the third upper bound we assume that a genie provides the side information (Xn
2 )

to Rx1. Starting with the Fano’s lemma we get

n(R1 + R2) ≤ I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 ) + nεn

(a)

≤ I(Xn
1 ;Y n

1 , Xn
2 ) + I(Xn

2 ; Y n
2 ) + nεn,

= I(Xn
1 ;Xn

2 ) + I(Xn
1 ; Y n

1 |Xn
2 ) + I(Xn

2 ; Y n
2 ) + nεn,

where the inequality in step (a) follows due to the extra information provided by the genie.

Since Xn
1 and Xn

2 are independent we have I(Xn
1 ; Xn

2 ) = 0 using this in the last equation

we get

n(R1 + R2)

≤h(Y n
1 |Xn

2 )− h(Zn
1 ) + h(Y n

2 )− h(Y n
2 |Xn

2 ) + nεn,

=h((In ⊗H11)Xn
1 + Zn

1 )− h(Zn
1 )

+ h(Y n
2 )− h((In ⊗H12)Xn

1 + Zn
2 ) + nεn,

≤h((In ⊗H11)Xn
1 + Zn

1 )− h((In ⊗H12)Xn
1 + Zn

2 )

+ h(Y n
2 )− h(Zn

1 ) + nεn,

(b)

≤h(Y n
2 )− h(Zn

2 ) + nεn,

(c)

≤n log det
(
IN2 + H12Kx1H

†
12 + H22Kx2H

†
22

)
+ nεn

where step (b) follows from Corollary 2.1 and step (c) follows from equation (A.5). Now,
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dividing both sides by n and taking limit with respect to n, we get the third bound since

εn → 0 as n →∞.

(4) The fourth bound can be derived similarly assuming the genie provides the side information

(Xn
1 ) to Rx2.

A.2.2 Achievability

As an achievable coding scheme we allow both of the transmit signals to be decoded by

both the receivers. Essentially, the IC becomes a compound multiple-access channel (CMAC). The

achievable rate region of the discrete memoryless CMAC is given as

RCMAC = RMAC−R1 ∩RMAC−R2 , (A.7)

where RMAC−Ri denotes the MAC formed by the transmitters and receiver i, for i = 1, 2,

RMAC−R1 =
{

(R1, R2) : R1 ≤ I(X1;Y1|X2);

R2 ≤ I(X2;Y1|X1);

R1 + R2 ≤ I(X1, X2; Y1)
}

(A.8)

and

RMAC−R2 =
{

(R1, R2) : R1 ≤ I(X1;Y2|X2);

R2 ≤ I(X2;Y2|X2);

R1 + R2 ≤ I(X1, X2; Y2)
}

(A.9)

Moreover, we assume that each transmitter uses a random i.i.d. Gaussian code book which

can be written as

Xit ∼ CN (0,Kxi), 1 ≤ i ≤ 2, ∀ t. (A.10)

Note that this distribution satisfies the input power constraint (2.1). Substituting this into equation

(A.8) and (A.9) we obtain the achievable rate regions for the two MACs as follows.

Rg
MAC−R1

=
{

(R1, R2) : R1 ≤ log det
(
IN1 + H11Kx1H

†
11

)
;

R2 ≤ log det
(
IN1 + H21Kx2H

†
21

)
;

R1 + R2 ≤ log det
(
IN1 + H21Kx2H

†
21 + H11Kx1H

†
11

)}
(A.11)
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and

Rg
MAC−R2

=
{

(R1, R2) : R1 ≤ log det
(
IN2 + H12Kx1H

†
12

)
;

R2 ≤ log det
(
IN2 + H22Kx2H

†
22

)
;

R1 + R2 ≤ log det
(
IN2 + H12Kx1H

†
12 + H22Kx2H

†
22

)}
(A.12)

On the other hand, from the constraint among the channel matrices that defines the strong in

partial order IC we get

log det
(
IN1 + H11Kx1H

†
11

)
≤log det

(
IN2 + H12Kx1H

†
12

)
; (A.13)

log det
(
IN2 + H22Kx2H

†
22

)
≤log det

(
IN1 + H21Kx2H

†
21

)
. (A.14)

Substituting the above capacity expressions for Rg
MAC−Ri

in equation (A.7) and using the last two

inequalities we get the following achievable rate region for the CMAC which as explained earlier is

also achievable on the 2-user MIMO IC.

RGIC =
{

R1 ≤ log det
(
IN1 + H11Kx1H

†
11

)
;

R2 ≤ log det
(
IN2 + H22Kx2H

†
22

)
;

R1 + R2 ≤ log det
(
IN2 + H12Kx1H

†
12 + H22Kx2H

†
22

)
;

R1 + R2 ≤ log det
(
IN1 + H21Kx2H

†
21 + H11Kx1H

†
11

)}
.

A.3 Proof of Lemma 3.1

The set of upper bounds to the achievable rate region will be derived in two steps. In the

first step, the different mutual information terms in Fano’s inequality are expanded in terms of the

corresponding differential entropies. The genie-aided signaling strategies of [27] are employed that

provide side information to the receivers so that no negative entropy term involving inputs appear

in the upper bound, thereby allowing for a single-letterization of the resulting bounds. The positive

differential entropies are then upper bounded using Lemma A.1 and its corollaries in Appendix A.4.
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(1) From Fano’s lemma we have

nR1 ≤I(Xn
1 ; Y n

1 ) + nεn

(a)

≤I(Xn
1 ; Y n

1 , Xn
2 ) + nεn,

=I(Xn
1 ; Xn

2 ) + I(Xn
1 ; Y n

1 |Xn
2 ) + nεn, [I(Xn

1 ;Xn
2 ) = 0, since X1t and X2t are independent]

=h(
√

ρ11(In ⊗H11)Xn
1 + Zn

1 )− h(Zn
1 ) + nεn

(b)

≤n log det
(
INi + ρ11H11H

†
11

)
− log det(IN1) + nεn,

=n log det
(
INi + ρ11H11H

†
11

)
+ nεn,

where step (a) follows from the fact that the extra information (Xn
2 ) at the receiver does

not reduce mutual information and step (b) follows from Corollary A.3 in Appendix A.4.

Now dividing both sides by n and taking the limit as n →∞, we have

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
,

jX2t
j

jX1t
j -

-

Y1t = H11X1t + S2t

Y2t = H22X2t + S1t

j

j

+

+

-
H22

-H11

©©©©©©©©©©©©©©©©©©©©©©*

H21

HHHHHHHHHHHHHHHHHHHHHHj

H12

?
- S1t = H12X1t + Z2t

6- S2t = H21X2t + Z1t

?

6

Z2t

Z1t

Tx2 Rx2

Tx1 Rx1

Figure A.1: 2-user MIMO IC with genie aided receivers.

(2) The second bound can be obtained similarly.

(3) The third upper bound is derived with the genie providing the side information (Sn
1 , Xn

2 )

to Rx1 where Sit is the interference plus noise at Rxj j 6= i (as shown in Fig. A.1). Since
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additional information does not reduce mutual information we have from Fano’s lemma

n(R1 + R2) ≤I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 ) + nεn

(a)

≤I(Xn
1 ; Y n

1 , Sn
1 , Xn

2 ) + I(Xn
2 ; Y n

2 ) + nεn,

=I(Xn
1 ; Xn

2 ) + I(Xn
1 ; Sn

1 |Xn
2 ) + I(Xn

1 ;Y n
1 |Sn

1 , Xn
2 ) + I(Xn

2 ; Y n
2 ) + nεn.

Again I(Xn
1 ; Xn

2 ) = 0, so that

n(R1 + R2) ≤h(Sn
1 |Xn

2 )− h(Zn
2 ) + h(Y n

1 |Sn
1 , Xn

2 )− h(Zn
1 ) + h(Y n

2 )− h(Y n
2 |Xn

2 ) + nεn,

=h(Sn
1 )− h(Zn

2 ) + h(Y n
1 |Sn

1 , Xn
2 )− h(Zn

1 ) + h(Y n
2 )− h(Sn

1 ) + nεn,

=h(
√

ρ11(In ⊗H11)Xn
1 + Zn

1 |Sn
1 ) + h(Y n

2 )− n(N1 + N2) log(2πe) + nεn,

(b)

≤n log det
(

IN1 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)
+ nεn+

n log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
,

where (b) follows from Corollaries A.1 and A.2 in Appendix A.4. Now, dividing both sides

by n and taking the limit as n →∞, we get the third bound since εn → 0 as n →∞.

(4) The fourth bound can be obtained similarly assuming the genie provides the side informa-

tion (Sn
2 , Xn

1 ) to Rx2.

(5) To derive the fifth upper bound we assume that the genie gives side information Sn
i to Rxi.
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Using Fano’s lemma we have

n(R1 + R2) ≤I(Xn
1 ;Y n

1 ) + I(Xn
2 ; Y n

2 ) + nεn,

≤I(Xn
1 ;Y n

1 , Sn
1 ) + I(Xn

2 ; Y n
2 , Sn

2 ) + nεn,

=I(Xn
1 ;Sn

1 ) + I(Xn
1 ; Y n

1 |Sn
1 ) + I(Xn

2 ; Sn
2 ) + I(Xn

2 ;Y n
2 |Sn

2 ) + nεn,

=h(Sn
1 ) + h(Y n

1 |Sn
1 )− h(Y n

1 |Sn
1 , Xn

1 ) + h(Sn
2 ) + h(Y n

2 |Sn
2 )

− h(Zn
2 )− h(Zn

1 )− h(Y n
2 |Sn

2 , Xn
2 ) + nεn,

=h(Sn
1 ) + h(Y n

1 |Sn
1 )− h(Sn

2 |Sn
1 ) + h(Sn

2 ) + h(Y n
2 |Sn

2 )− h(Sn
1 |Sn

2 )

− h(Zn
2 )− h(Zn

1 ) + nεn,

=h(Y n
1 |Sn

1 ) + h(Y n
2 |Sn

2 )− n(N1 + N2) log(2πe)

+ nεn, [∵ Sn
i is independent of Sn

j , for i 6= j]

(d)

≤n log det
(

IN1 + ρ21H21H
†
21 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)
+

n log det
(

IN2 + ρ12H12H
†
12 + ρ22H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22

)
+ nεn

where in step (d) we used Lemma A.1 of Appendix A.4, twice.

(6) Again from Fano’s lemma we have

n(2R1 + R2) ≤I(Xn
1 ; Y n

1 ) + I(Xn
1 ;Y n

1 , ) + I(Xn
2 ; Y n

2 ) + nεn,

≤I(Xn
1 ; Y n

1 ) + I(Xn
1 ;Y n

1 , Sn
1 , Xn

2 ) + I(Xn
2 ; Y n

2 , Sn
2 ) + nεn,

where the last step again follows from the fact that extra information does not reduce
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mutual information. Next, using the chain rule of mutual information we get

n(2R1 + R2) ≤I(Xn
1 ;Y n

1 ) + I(Xn
1 ; Sn

1 |Xn
2 ) + I(Xn

1 ; Y n
1 |Sn

1 , Xn
2 ) + I(Xn

2 ; Sn
2 ) + I(Xn

2 ;Y n
2 |Sn

2 ) + nεn,

=h(Y n
1 )− h(Y n

1 |Xn
1 ) + h(Sn

1 |Xn
2 )− h(Sn

1 |Xn
2 , Xn

1 ) + h(Y n
1 |Sn

1 , Xn
2 )−

h(Y n
1 |Sn

1 , Xn
2 , Xn

1 ) + h(Sn
2 )− h(Sn

2 |Xn
2 ) + h(Y n

2 |Sn
2 )− h(Y n

2 |Sn
2 , Xn

2 ) + nεn,

=h(Y n
1 )− h(Sn

2 ) + h(Sn
1 )− h(Zn

2 ) + h((In ⊗H11)Xn
1 + Zn

1 |Sn
1 )− h(Zn

1 )+

h(Sn
2 )− h(Zn

1 ) + h(Y n
2 |Sn

2 )− h(Sn
1 |Sn

2 ) + nεn,

=h(Y n
1 ) + h(

√
ρ11(In ⊗H11)Xn

1 + Zn
1 |Sn

1 ) + h(Y n
2 |Sn

2 )− n(2N1 + N2) log(2πe) + nεn,

(e)

≤n log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+

n log det
(

IN1 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)
+

n log det
(

IN2 + ρ12H12H
†
12 + ρ22H22

(
IM2 + ρ21H

†
21H21

)−1
H†

22

)
+ nεn,

where in step (e) we used Corollary A.2, Corollary A.1 and Lemma A.1 of Appendix A.4.

Finally, dividing both sides by n and taking the limit with respect to n, we get equation

(3.12).

(7) The 7th bound can be similarly derived as the last one.

A.4 Proof of Lemma A.1

From equation (5.2) we know that Sit = √
ρijHijXit + Zj represents the interference from

user i plus the additive noise at receiver j at time t and Sn
i = [S†i1 S†i2 · · ·S†in]† can be written as

Sn
i =

√
ρij




Hij 0 · · · 0

0 Hij · · · 0
...

...
. . .

...

0 0 · · · Hij







Xi1

Xi2

...

Xin




+




Zi1

Zi2

...

Zin




=
√

ρij (In ⊗Hij) Xn
i + Zn

i .

Similarly, the output at Rxi over n channel uses can be written as

Y n
i =

√
ρii(In ⊗Hii)Xn

i +
√

ρji(In ⊗Hji)Xn
j + Zn

i , for i 6= j ∈ {1, 2},
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where Xit ∈ CMi×1, ∀ t ≤ n satisfies the power constraints of equation (5.1).

Lemma A.1 For the n-length vector sequences Y n
i and Sn

i as described above

h(Y n
i |Sn

i ) ≤n log det
(

INi + ρjiHjiH
†
ji + ρiiHii

(
IMi + ρijH

†
ijHij

)−1
H†

ii

)
+ nNi log(2πe),

for i 6= j ∈ {1, 2}.

Proof A.1 We shall prove the Lemma for i = 1 with i = 2 case being identical. Denoting the

covariance matrix of a zero-mean random vector V by Cov(V ), i.e., Cov(V ) = E(V V †) and the

composite vector Vt by

Vt =




S1t

Y1t


 =




√
ρ12H12X1t + Z2t

√
ρ11H11X1t +

√
ρ21H21X2t + Z1t


 , ∀ t ≤ n, (A.15)

it can be easily verified that

KJt , E
(
VtV

†
t

)
=




ρ12H12Q1tH
†
12 + IN2

√
ρ12
√

ρ11H12Q1tH
†
11

√
ρ11
√

ρ12H11Q1tH
†
12 ρ11H11Q1tH

†
11 + ρ21H21Q2tH

†
21 + IN1


 , ∀ t ≤ n.

(A.16)

Note that in the above computation we assumed that input distribution has zero mean, which is

standard since a non-zero mean only contributes to power inefficiency. Let us define

Ŝ∗1 =
√

ρ12H12X
G
1 + Z2,

Ŷ ∗
1 =

√
ρ11H11X

G
1 +

√
ρ21H21X

G
2 + Z1,

where XG
i ∼ CN (0, 1

n

∑n
i=1 Qit) for 1 ≤ i 6= j ≤ 2 and XG

1 and XG
2 are mutually independent. It

can be easily verified that Ŝ∗1 and




Ŝ∗1

Ŷ ∗
1


 are Gaussian vectors with covariance matrices K̄ and

K̄J , respectively, where K̄ = ρ12H12Q̄1H
†
12 + IN2 , Q̄i = 1

n

∑n
t=1 Qit and

K̄J =




ρ12H12Q̄1H
†
12 + IN2

√
ρ12
√

ρ11H12Q̄1H
†
11

√
ρ11
√

ρ12H11Q̄1H
†
12 ρ11H11Q̄1H

†
11 + ρ21H21Q̄2H

†
21 + IN1


 (A.17)
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which follows from the fact that any linear transformation of a Gaussian vector is also Gaussian

(Proposition 5.2, [89]) and the sum of several mutually independent Gaussian vectors is also Gaus-

sian. In other words,

Cov




Ŝ∗1

Ŷ ∗
1


 =

1
n

n∑

t=1

Cov




S1t

Y1t


 .

Under the constraints satisfied on Ŝ∗1 , Ŷ ∗
1 and Vt, 1 ≤ t ≤ n, it was proved in Lemma 2 of [23] that

h(Y n
1 |Sn

1 ) ≤nh(Ŷ ∗
1 |Ŝ∗1)

=n


h







Ŝ∗1

Ŷ ∗
1





− h(Ŝ∗1)


 ,

=n
(
log det(K̄J)− log det(K̄)

)
.

Putting the values of K̄J and K̄ in the above equation and after some simplification, we get

h(Y n
1 |Sn

1 ) ≤n log det
(
IN1 + ρ11H11Q̄1H

†
11 + ρ21H21Q̄2H

†
21−

ρ11ρ12H11Q̄1H
†
12

(
IN2 + ρ12H12Q̄1H

†
12

)−1
H12Q̄1H

†
11

)
+ nN1 log(2πe),

(c)
=n log det

(
IN1 + ρ21H21Q̄2H

†
21 + ρ11H11Q̄

1
2
1

(
IM2 + ρ12Q̄

1
2
1 H†

12H12Q̄
1
2
1

)−1

Q̄
1
2
1 H†

11

)

+ nN1 log(2πe),

(d)

≤n log det
(

IN1 + ρ21H21H
†
21 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)

+ nN1 log(2πe), [∵ Q̄i ¹ IMi ]

where step (c) follows from the Woodbury identity and the last step follows from the fact that

log det(.) is a monotonically increasing function on the cone of p.d. matrices and Lemma A.2

(below) with G1 = Q̄
1
2
1 , A = H†

12H12 and G2 = IM1 .

Lemma A.2 Let 0 ¹ G1 ¹ G2 and 0 ¹ A are p.s.d. matrices of size n, then for any given π ∈ R+

G1 (I + πG1AG1)
−1 G1 ¹ G2 (I + πG2AG2)

−1 G2.
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Proof A.2 Let ε ∈ R+, G1ε = (G1 + εI) and G2ε = (G2 + εI). For any such ε, we have

G2ε º G1ε Â 0, or

G−2
1ε º G−2

2ε Â 0, or

(
G−2

1ε + πA
) º (

G−2
2ε + πA

) Â 0, or

(
G−2

1ε + πA
)−1 ¹ (

G−2
2ε + πA

)−1
, or

G1ε (I + πG1εAG1ε)
−1 G1ε ¹ G2ε (I + πG2εAG2ε)

−1 G2ε.

From the definition of partial order between p.s.d. matrices we get

x
(
G1ε (I + πG1εAG1ε)

−1 G1ε

)
x† ≤ x

(
G2ε (I + πG2εAG2ε)

−1 G2ε

)
x†, ∀ x ∈ C1×n;

⇒ lim
ε→0

x
(
G1ε (I + πG1εAG1ε)

−1 G1ε

)
x† ≤ lim

ε→0
x

(
G2ε (I + πG2εAG2ε)

−1 G2ε

)
x†, ∀ x ∈ C1×n;

⇒ x
(
G1 (I + πG1AG1)

−1 G1

)
x† ≤ x

(
G2 (I + πG2AG2)

−1 G2

)
x†, ∀ x ∈ C1×n.

Invoking the definition of partial ordering once again, the lemma is proved.

The following corollaries can be proved from Lemma A.1. In particular, Corollary A.1 by

setting Hji = 0, Corollary A.2 by setting Hij = 0 and Corollary A.3 by putting Hji = 0 and

Hij = 0.

Corollary A.1

h(
√

ρii(In ⊗Hii)Xn
i + Zn

i |Sn
i ) ≤n log det

(
INi + ρiiHii

(
IMi + ρijH

†
ijHij

)−1
H†

ii

)
,

+ nNi log(2πe), i 6= j ∈ {1, 2}.

Corollary A.2

h(Y n
i ) ≤ n log det

(
INi + ρjiHjiH

†
ji + ρiiHiiH

†
ii

)
+ nNi log(2πe), i 6= j ∈ {1, 2}.

Corollary A.3

h(
√

ρii(In ⊗Hii)Xn
i + Zn

i ) ≤ n log det
(
INi + ρiiHiiH

†
ii

)
+ nNi log(2πe), i 6= j ∈ {1, 2}.
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A.5 Proof of Lemma 3.4

As stated in the Outline, it is only required to show that the right hand sides of the different

bounds in the Lemma are actually lower bounds to the corresponding terms in (3.25a)-(3.25i).

However, first we shall derive some common inequalities which will be used throughout the proof.

From the definition of p.s.d. matrices [90] we get

(
ρijHijKiuH†

ij

)
=

(
ρij

Mi
Hij

(
IMi + ρijH

†
ijHij

)−1
H†

ij

)
º 0,

[
∵

(
IMi + ρijH

†
ijHij

)−1
Â 0

]
.(A.18)

On the other hand, for any given 0 6= x ∈ C1×Nj we have

x

(
ρij

Mi
Hij

(
IMi + ρijH

†
ijHij

)−1
H†

ij

)
x† =

ρij

Mi
(xUij)Σij

(
IMi + ρijΣ

†
ijΣij

)−1
Σ†ij (xUij)

† ,

(a)

≤ 1
Mi

(xUij)(xUij)† ≤ xx†

Mi
,

where Σij ∈ CNj×Mi is the singular value matrix of Hij , i.e., Hij = UijΣijV
†
ij and step (a) follows

from the fact that ρijΣij

(
IMi + ρijΣ

†
ijΣij

)−1
Σ†ij ¹ INj . However, the last inequality along with

the definition of p.s.d. matrices imply

ρijHijKijH
†
ij =

(
ρij

Mi
Hij

(
IMi + ρijH

†
ijHij

)−1
H†

ij

)
¹ 1

Mi
INj . (A.19)

Each of the eigenvalues of the matrix on the left hand side of equation (A.19) is smaller than or

equal to 1. However, it has only min{Mi, Nj} = mij non-zero eigenvalues since the rank of Hij is

mij , which in turn implies that

log det
(
INj + ρijHijKiuH†

ij

)
≤ mij log

(
(1 + Mi)

Mi

)
= m̂ij , (A.20)

for all 1 ≤ i 6= j ≤ 2.

As a first step towards deriving the lower bounds, in what follows, we shall first derive lower

bounds for the different mutual information terms of equation (3.27)-(3.33). From equation (3.27)

we obtain
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I(Xg
1 ;Y g

1 |W g
1 ,W g

2 ) =log det
(

ρ11

M1
H11K1H

†
11 +

ρ21

M2
H21K2H

†
21 + IN1

)

− log det
(
ρ21H21K2uH†

21 + IN1

)
,

(a)

≥ log det
(

ρ11

M1
H11K1H

†
11 +

1
M1

IN1

)
− m̂21,

=log det
(
ρ11H11K1H

†
11 + IN1

)
− (m11 log(M1) + m̂21), (A.21)

where step (a) follows from the fact that log det(.) is a monotonically increasing function over the

cone of positive-definite matrices with respect to the partial ordering and equations (A.18) and

(A.20). The last equality follows from the fact that H11 is a rank m11 matrix. Similarly,

I(Xg
2 ; Y g

2 |W g
2 ,W g

1 ) ≥log det
(
ρ22H22K2H

†
22 + IN2

)
− (m22 log(M2) + m̂12). (A.22)

From equation (3.29) we obtain

I(W g
2 ; Y g

1 |Xg
1 ) =log det

(
ρ21

M2
H21H

†
21 + IN1

)
− log det

(
ρ21H21K2uH†

21 + IN1

)
,

≥log det
(

ρ21

M2
H21H

†
21 + IN1

)
− m̂21, [∵ (A.20)]

≥log det
(

ρ21

M2
H21H

†
21 +

1
M2

IN1

)
− m̂21,

=log det
(
ρ21H21H

†
21 + IN1

)
− (m21 log(M2) + m̂21), (A.23)

where the last step follows from the fact that the rank of H21 is m21. Similarly, we have

I(W g
1 ; Y g

2 |Xg
2 ) ≥log det

(
IN2 + ρ12H12H

†
12

)
− (m12 log(M1) + m̂12). (A.24)

From equation (3.30)

I(Xg
1 ; Y g

1 |W g
2 ) =log det

(ρ11

M1
H11H

†
11 + ρ21H21K2uH†

21 + IN1

)
− log det

(
ρ21H21K2uH†

21 + IN1

)
,

(b)

≥log det
(

ρ11

M1
H11H

†
11 + IN1

)
− m̂21 ≥ log det

(
ρ11

M1
H11H

†
11 +

1
M1

IN1

)
− m̂21,

=log det
(
ρ11H11H

†
11 + IN1

)
− (m11 log(M1) + m̂21), (A.25)

where steps (b) follows from equations (A.18) and (A.20) and the fact that log det(.) is a monoton-

ically increasing function over the cone of positive-definite matrices. The last equality follows from
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the fact that H11 is a rank m11 matrix. Similarly, we have

I(Xg
2 ; Y g

2 |W g
1 ) ≥ log det

(
ρ22H22H

†
22 + IN2

)
− (m22 log(M2) + m̂12). (A.26)

Next, we focus on the term I(Xg
2 ,W g

1 ; Y g
2 ).

I(Xg
2 ,W g

1 ; Y g
2 ) =log det

(
ρ12

M1
H12H

†
12 +

ρ22

M2
H22H

†
22 + IN2

)
− log det

(
ρ12H12K1uH†

12 + IN2

)
,

≥log det
(

ρ12

Mx
H12H

†
12 +

ρ22

Mx
H22H

†
22 +

1
Mx

IN2

)
− m̂12, [∵ (A.20)]

=log det
(
ρ12H12H

†
12 + ρ22H22H

†
22 + IN2

)
− (min{N2, Ms} log(Mx) + m̂12),

where the last step follows from the fact that the matrix
(

ρ12

Mx
H12H

†
12 + ρ22

Mx
H22H

†
22

)
has rank

min{N2,Ms}, Ms and Mx are as defined in Section 3.3. Similarly, we have

I(Xg
1 ,W g

2 ;Y g
1 ) ≥log det

(
ρ21H21H

†
21 + ρ11H11H

†
11 + IN1

)
− (min{N1,Ms} log(Mx) + m̂21).

From equation (3.31)

I(Xg
1 ,W g

2 ; Y g
1 |W g

1 ) =log det
(

ρ11H11K1uH†
11 +

ρ21

M2
H21H

†
21 + IN1

)

− log det
(
ρ21H21K2uH†

21 + IN1

)
,

≥log det
(

ρ11

M1
H11K1H

†
11 +

ρ21

M2
H21H

†
21 + IN1

)
− m̂21, [∵ (A.20)]

≥log det
(

ρ11

Mx
H11K1H

†
11 +

ρ21

Mx
H21H

†
21 +

1
Mx

IN1

)
− m̂21,

(a)
=log det

(
ρ11H11K1H

†
11 + ρ21H21H

†
21 + IN1

)

− (min{N1,Ms} log(Mx) + m̂21) , IL
e1

,

where step (a) follows from the fact that the sum of the first two matrices inside log det(.) has a

rank of min{N1,Ms} and similarly,

I(Xg
2 ,W g

1 ; Y g
2 |W g

2 ) ≥log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)

− (min{N2,Ms} log(Mx) + m̂12).

Note that each of the lower bounds are difference of a channel dependent term and a constant.

To denote the constants by a common notation we define n∗i = min{Ni,Ms} log(Mx) + m̂ji, for
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i 6= j ∈ {1, 2}. Using this notations and equations (A.21)-(A.27) we get the following bounds:

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
− n∗1; (A.27a)

R1 ≤ log det
(
IM1 + ρ11H

†
11H11 + K−1

1

)
− (m11 log(M1) + m12 log(M1 + 1))− m̂21;

(A.27b)

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
− n∗2; (A.27c)

R2 ≤ log det
(
IM2 + ρ22H

†
22H22 + K−1

2

)
− (m22 log(M2) + m21 log(M2 + 1))− m̂12;

(A.27d)

R1 + R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)

+ log det
(
IN1 + ρ11H11K1H

†
11

)
− (n∗1 + n∗2); (A.27e)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)

+ log det
(
IN2 + ρ22H22K2H

†
22

)
− (n∗1 + n∗2); (A.27f)

R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (n∗1 + n∗2); (A.27g)

2R1 + R2 ≤ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11H

†
11

)
+ log det

(
IN1 + ρ11H11K1H

†
11

)

+ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)
− (2n∗1 + n∗2); (A.27h)

R1 + 2R2 ≤ log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN2 + ρ22H22K2H

†
22

)

+ log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)
− (n∗1 + 2n∗2), (A.27i)

Clearly, the right hand sides of each of the bounds in equation (A.27) is smaller than those in the

corresponding bound in equation (3.25). However, in equation (A.27) there are two bounds on each

Ri. To combine them into one we define

ni = max{(mii log(Mi) + mij log(Mi + 1)) + m̂ji, n
∗
i }, ∀ i 6= j ∈ {1, 2}.

Using this notation the first four bounds on R1 and R2 in equation (A.27) can be written as

R1 ≤ log det
(
IN1 + ρ11H11H

†
11

)
− n1;

R2 ≤ log det
(
IN2 + ρ22H22H

†
22

)
− n2,
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where we have used the fact that K−1
i is a p.d. matrix and log det(.) is a monotonically increasing

function in the cone of p.s.d. matrices. The remaining bounds in Lemma 3.4 follows from equation

(A.27) and the fact that ni ≥ n∗i , for all i ∈ {1, 2}.

A.6 Proof of Lemma 3.5

As stated in the outline, first we show that when (R1, R2) ∈ R2, equations (3.25b) and

(3.25d) both can not be violated simultaneously. Suppose, it is not true, i.e., (R1, R2) ∈ R2 but

R1 >I(Xg
1 ;Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ; Y g

2 |Xg
2 );

R2 >I(Xg
2 ;Y g

2 |W g
1 ,W g

2 ) + I(W g
2 ; Y g

1 |Xg
1 ).

Adding the above two equations we get

R1 + R2 >I(Xg
1 ; Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ;Y g

2 |Xg
2 ) + I(Xg

2 ; Y g
2 |W g

1 ,W g
2 ) + I(W g

2 ;Y g
1 |Xg

1 ),

≥I(Xg
1 ; Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ;Y g

2 |W g
2 ) + I(Xg

2 ; Y g
2 |W g

1 , W g
2 ) + I(W g

2 ; Y g
1 |W g

1 ),

=I(Xg
1 ,W g

2 ; Y g
1 |W g

1 ) + I(Xg
2 ,W g

1 ;Y g
2 |W g

2 ),

which violates equation (3.49e) and contradicts the assumption that (R1, R2) ∈ R2. Therefore,

whenever (R1, R2) ∈ R2 but (R1, R2) /∈ RGe
HK(Ps) only one among (3.25b) and (3.25d) is violated

and not both.

Next we shall show that such a rate tuple is always achievable by the explicit HK coding

scheme. Suppose (R1, R2) ∈ R2 but (R1, R2) /∈ RGe
HK(Ps) because it violates equation (3.25b), i.e.,

R1 >I(Xg
1 ;Y g

1 |W g
1 ,W g

2 ) + I(W g
1 ; Y g

2 |Xg
2 ). (A.28)

From definition 3.3 we know that in this case, Tx1 transmit only private message, i.e., the coding

scheme HK({ 1
M1

IM1 ,0,K2u,K2w}) is used. To distinguish the codewords of the first user in this

case to those used in the simple HK scheme we use the following notations:

X̃g
1 = Ũg

1 ∼ CN (0,
1

M1
IM1), W̃

g
1 = φ, W̃ g

2 = W g
2 and Ũg

2 = Ug
2 , (A.29)
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are mutually independent and X̃g
2 = W̃ g

2 + Ũg
2 , where Ỹ g

i ’s are the outputs of the channel (e.g.,

see equations (5.2)) when X̃g
i ’s are the inputs. Evidently, if the joint distribution of these random

vectors be denoted by Ps1(X̃
g
1 , Ũg

1 , W̃ g
1 , X̃g

2 , Ũg
2 , W̃ g

2 ), then Ps1(.) ∈ P∗. Putting P ∗ = Ps1 in the ex-

pression for Re
HK(P ∗) we get the achievable region of the coding schemeHK({ 1

M1
IM1 ,0, K2u,K2w})

as

RGe
HK(Ps1) =

{
(R1, R2) : R1 ≤I(X̃g

1 ; Ỹ g
1 |W̃ g

2 );

R2 ≤I(X̃g
2 ; Ỹ g

2 );

R2 ≤I(W̃ g
2 ; Ỹ g

1 |X̃g
1 ) + I(X̃g

2 ; Ỹ g
2 |W̃ g

2 );

R1 + R2 ≤I(X̃g
1 , W̃ g

2 ; Ỹ g
1 ) + I(X̃g

2 ; Ỹ g
2 |W̃ g

2 )
}

which can easily be shown to be equivalent to

RGe
HK(Ps1) =

{
(R1, R2) : R1 ≤I(Xg

1 ; Y g
1 |W g

2 ); (A.30)

R2 ≤I(Xg
2 ; Y g

2 ); (A.31)

R2 ≤I(W g
2 ;Y g

1 |Xg
1 ) + I(Xg

2 ; Y g
2 |W g

2 ); (A.32)

R1 + R2 ≤I(Xg
1 ,W g

2 ;Y g
1 ) + I(Xg

2 ;Y g
2 |W g

2 )
}

(A.33)

using the relations between Ṽ g
i ’s and V g

i ’s defined earlier, where V ∈ {U,W,X, Y }. In what follows,

we shall shown that (R1, R2) ∈ RGe
HK(Ps1) and hence achievable by H̃K.

From (3.49a) we know that

R1 ≤I(Xg
1 ; Y g

1 |W g
2 ). (A.34)

From (A.28) and (3.49d) we obtain

R2 ≤I(Xg
2 ; Y g

2 ). (A.35)

From (A.28) and (3.49e) we obtain

R2 <I(W g
2 ;Y g

1 |W g
1 ) + I(Xg

2 ; Y g
2 |W g

2 ); (A.36)

≤I(W g
2 ;Y g

1 |Xg
1 ) + I(Xg

2 ; Y g
2 |W g

2 ); (A.37)
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and from (A.28) and (3.49f)

R1 + R2 ≤I(Xg
1 ,W g

2 ; Y g
1 ) + I(Xg

2 ; Y g
2 |W g

2 ). (A.38)

This proves that (R1, R2) ∈ RGe
HK(Ps1) and hence achievable by H̃K.

The other case when (R1, R2) ∈ R2 but equation (3.25d) is violated, i.e.,

R2 >I(Xg
2 ;Y g

2 |W g
1 ,W g

2 ) + I(W g
2 ; Y g

1 |Xg
1 ), (A.39)

can be similarly proved. Again from definition 3.3 we know that in this case the coding scheme

HK ({K1u,K1w, 1
M2

IM2 ,0}) is used. Defining

X̂g
2 = Ûg

2 ∼ CN (0,
1

M2
IM2), Ŵ

g
2 = φ, Ŵ g

1 = W g
1 , Ûg

1 = Ug
1 , (A.40)

and X̂g
1 = Ŵ g

1 + Ûg
1 , where Ŷ g

i ’s are the outputs of the channel (e.g., see equations (5.2)) when X̂g
i ’s

are the inputs, it is clear that the joint distributions of these variables, Ps2(X̂
g
1 , Ûg

1 , Ŵ g
1 , X̂g

2 , Ûg
2 , Ŵ g

2 ) ∈

P∗. Finally, putting P ∗ = Ps2 in the expression for Re
HK(P ∗) the achievable region of the coding

scheme HK({K1u,K1w, 1
M2

IM2 ,0}) can be computed. Now, combining equation (A.39) and (3.49),

in the same way as the previous case, it can be shown that (R1, R2) ∈ RGe
HK(Ps2) and hence achiev-

able by H̃K.

Finally, if (R1, R2) ∈ RGe
HK(Ps), then by Lemma 3.3 we know that HK({K1u,K1w, K2u,K2w})

or the simple HK scheme can achieve the rate tuple.

A.7 Proof of Lemma 3.7

We shall prove this lemma in two steps. In step one, we shall prove

Ru (H, ρ̄) = Ru
(
H̃, ρ̄r

)
,

where H̃ = {H†
11,H

†
21,H

†
12,H

†
22} and in the second step we shall prove that

Ru
(
H̃, ρ̄r

)
= Ru (Hr, ρ̄r) .

Clearly, the above two equalities prove the lemma.
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Step1: Let us consider the interference channel IC
(
H̃, ρ̄r

)
. Following a similar method as in

Lemma 3.1 we can derive an upper bound to the capacity region of this IC. Let the corresponding

bounds of Ru
(
H̃, ρ̄r

)
be denoted by Ir

k , 1 ≤ k ≤ 7. In what follows, we shall first prove that

Ib3 = Ir
4 , Ib4 = Ir

3 and Ibk = Ir
k for k ∈ {1, 2, 5, 6, 7}.

Towards proving the first equality, from equation (5.11) we get

Ib3 = log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IN1 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)
,

= log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IM1 + ρ12H

†
12H12 + ρ11H

†
11H11

)

− log det
(
IM1 + ρ12H

†
12H12

)
,

= log det
(
IN2 + ρ12H12H

†
12 + ρ22H22H

†
22

)
+ log det

(
IM1 + ρ12H

†
12H12 + ρ11H

†
11H11

)

− log det
(
IN2 + ρ12H12H

†
12

)
, [∵ log det(I + AB) = log det(I + BA)]

= log det
(

IM2 + ρ22H
†
22

(
IN2 + ρ12H12H

†
12

)−1
H22

)
+ log det

(
IM1 + ρ12H

†
12H12 + ρ11H

†
11H11

)
,

= Ir
4 .

Similarly, it can be proved that Ib4 = Ir
3 . The equality of the first two bounds follow trivially from

the identity log det(I + AB) = log det(I + BA). Now, towards proving the fifth bound we see

Ib5(1) = log det
(
IN1 + ρ21H21H

†
21 + ρ11H11K1H

†
11

)

= log det
(

IN1 + ρ11

(
IN1 + ρ21H21H

†
21

)−1
H11K1H

†
11

)
+ log det

(
IN1 + ρ21H21H

†
21

)

= log det
(

IM1 + ρ11H
†
11

(
IN1 + ρ21H21H

†
21

)−1
H11K1

)
+ log det

(
IM2 + ρ21H

†
21H21

)

= log det
(

K−1
1 + ρ11H

†
11

(
IN1 + ρ21H21H

†
21

)−1
H11

)
+ log det(K1) + log det

(
K−1

2

)

= log det
(

IM1 + ρ12H
†
12H12 + ρ11H

†
11

(
IN1 + ρ21H21H

†
21

)−1
H11

)

+ log det(K1)− log det (K2) .

Similarly, it can be easily proved that

Ib5(2) = log det
(
IN2 + ρ12H12H

†
12 + ρ22H22K2H

†
22

)

= log det
(

IM2 + ρ21H
†
21H21 + ρ22H

†
22

(
IN2 + ρ12H12H

†
12

)−1
H22

)

+ log det(K2)− log det (K1) .



174

Combining the last two equations we get

Ib5 =Ib5(1) + Ib5(2),

=log det
(

IM1 + ρ12H
†
12H12 + ρ11H

†
11

(
IN1 + ρ21H21H

†
21

)−1
H11

)

+ log det
(

IM2 + ρ21H
†
21H21 + ρ22H

†
22

(
IN2 + ρ12H12H

†
12

)−1
H22

)
,

=Ir
5 .

Proving the equality of the other two bounds is similar. Hence, the set upper bounds for the

capacity region of IC
(
H̃, ρ̄r

)
defines the same set of rate tuples as Ru (H, ρ̄).

Step2: Suppose S is a p.s.d. matrix and S∗ represents its complex conjugate, i.e., the matrix

obtained by replacing all its entries by the corresponding complex conjugates. Then, using the fact

that its eigen-values are real, it can be easily be proved that

log det(I + S) = log det(I + S∗).

However, note that all the terms in the different bounds of Lemma 3.1 are of the form just described.

This in turn proves that if we replace all the channel matrices of a 2-user MIMO IC by their complex

conjugates the set of upper bounds remain the same. From this fact, it easily follows that

Ru
(
H̃, ρ̄r

)
= Ru (Hr, ρ̄r) .

A.8 Proof of Lemma 4.2

We shall consider two different cases: 1) (u1 + u2) ≥ u; and 2) (u1 + u2) < u. The first case

was proved in Lemma 1 of [29] which gives

log det
(
Iu + ρaH1H

†
1 + ρbH2H

†
2

)
= min{u, u1}a log(ρ) + (u− u1)+b log(ρ) +O(1). (A.41)
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However when (u1 + u2) < u we have the following

log det
(
Iu + ρaH1H

†
1 + ρbH2H

†
2

)
=log det


Iu + [H1 H2]




ρaIu1 0

0 ρaIu2


 [H1 H2]†




=log det


I(u1+u2) + H†H




ρaIu1 0

0 ρaIu2





 , [∵ H = [H1 H2]]

(a)
=log det


H†H




ρaIu1 0

0 ρaIu2





 + o(1)

=(u1a + u2b) log(ρ) +O(1), (A.42)

where step (a) follows from the fact that H†H is full rank, since H is full rank by assumption.

Finally combining equations (A.41) and (A.42) we have the desired result.

A.9 Proof of Lemma 4.3

Without loss of generality, let us assume that a1 ≥ max{a2, a3}. In the proof we shall use

the following notations:

Lt = log det

(
Iu +

3∑

i=1

ρaiHiH
†
i

)
, Λ =




ρa2Iu2 0

0 ρa3Iu3


 , and H23 = [H2 H3],

where the entries of H23 are iid that come form a continuous distribution and hence H23 is is full

rank w.p.1. Using the identity log det(I + AB) = log det(I + BA) we get

Lt =log det
(
Iu + ρa1H1H

†
1 + H23ΛH†

23

)
,

=log det
(
Iu + ρa1H1H

†
1

)
+ log det

(
Iu2+u3 + ΛH†

23

(
Iu + ρa1H1H

†
1

)−1
H23

)
,

=min{u, u1}a1 log(ρ) + log det
(

Iu2+u3 + ΛH†
23

(
Iu + ρa1H1H

†
1

)−1
H23

)
+O(1), (A.43)

Next, we approximate the second term on the right hand side of the last equation as

Lt2 =log det
(

Iu2+u3 + ΛH†
23

(
Iu + ρa1H1H

†
1

)−1
H23

)

=log det


Iu2+u3 + ΛH†

23U




(
Imin{u,u1} + ρa1Λ1

)−1 0

0 I(u−u1)+


U †H23


 , (A.44)
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where in the last step we have used the eigen-decomposition of the matrix H1H
†
1 , where Λ1 is a

diagonal matrix containing the positive eigenvalues only and U is the unitary matrix containing all

the eigen-vectors. Since both H2,H3 ∈ P, H , U †H23 is identically distributed as H23 and thus

H ∈ P. Suppose the rows of the matrix H are divided into two sub sets: G†
1 = H(1:min{u,u1}) and

G†
2 = H(min{u,u1}+1:u), then both G†

1, G
†
2 ∈ P and from the last equation we get

Lt2 =log det
(
Iu2+u3 + ΛG1 (Iu1 + ρa1Λ1)

−1 G†
1 + ΛG2G

†
2

)
,

(c)
=log det

(
Iu2+u3 + ΛG2G

†
2

)
+O(1),

=log det
(
I(u−u1)+ + G†

2ΛG2

)
+O(1), (A.45)

where step (c) follows from the fact that a1 ≥ max{a2, a3}. Since G†
2 ∈ P, it is full rank and so are

(G†
2)

[1:u2] = G21 and (G†
2)

[u2+1:u2+u3] = G22. Putting these into equation (A.45) we get

Lt2 =log det
(
Iu−u1 + ρa2G21G

†
21 + ρa3G22G

†
22

)
+O(1),

=
(
min{(u− u1)+, u2}a2 + min{(u− u1 − u2)+, u3}a3

)
log(ρ) +O(1),

where the last step follows from Lemma 4.2. Finally, substituting this into equation (A.43), we get

the desired result.

A.10 Proof of Theorem 4.1

1st and 2nd bound: We start with the first two constraints in equation (5.11) and (3.8),

I1 ,log det
(
IN1 + ρH11H

†
11

)
= min{M1, N1} log(ρ) +O(1); [∵ Lemma 4.2 with a = 1 and b = 0]

I2 ,log det
(
IN1 + ρα22H22H

†
22

)
= min{M2, N2}α22 log(ρ) +O(1). [∵ Lemma 4.2 with a = α22 and b = 0]

Putting these into equations (4.14) and (4.15) we get

d1 ≤ lim
ρ→∞

I1

log(ρ)
= min{M1, N1}; (A.46)

d2 ≤ lim
ρ→∞

I2

(α22 log(ρ))
= min{M2, N2}. (A.47)
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3rd and 4th bound: Using Lemma 4.2 we get

I31 ,log det
(
IN2 + ρα12H12H

†
12 + ρα22H22H

†
22

)

=f (N2, (α12,M1), (α22,M2)) log(ρ) +O(1), (A.48)

where f(., ., .) is as defined in equation (4.6). The second term in equation (5.11) can again be

approximated by using Lemma 4.2 twice (recall Remark 4.1) as follows.

I32 =log det
(

IN1 + ρ11H11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)
,

=log det
(
IM1 + ρ12H

†
12H12 + ρ11H

†
11H11

)
− log det

(
IM1 + ρ12H

†
12H12

)
,

=f (M1, (α12, N2), (α11, N1)) log(ρ)−min{M1, N2}α12 log(ρ) +O(1), (A.49)

=f
(
N1, ((1− α12)+,m12), (1, (M1 −N2)+)

)
log(ρ) +O(1), (A.50)

where the last step follows from the definition of f(.), i.e., equation (4.6). Next, putting equations

(A.48), and (A.49) in equation (4.16) we get

d1 + α22d2 ≤ lim
ρ→∞

I3

log(ρ)
= lim

ρ→∞
I31 + I32

log(ρ)
;

=f (N2, (α12,M1), (α22,M2)) + f
(
N1, ((1− α12)+,m12), (1, (M1 −N2)+)

)
.

Similarly, approximating the terms in equation (3.10) by Lemma 4.2 and putting it in equation

(4.17) we get

d1 + α22d2 ≤f (N1, (α21,M2), (α11,M1)) + f
(
N2, ((α22 − α21)+,m21), (α22, (M2 −N1)+)

)
.

5th bound: Note that neither of the terms in equation (3.11) are in a form on which we

can apply Lemma 4.2 or 4.3. However, as we shall see next, these terms can be expressed in an

alternative format on which Lemma 4.3 can be used. Let the eigenvalue decomposition of the

matrix H†
12H12 is given as

H†
12H12 = UΛU †, where Λ =




Λ+ 0

0 0(M1−N2)+



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and Λ+ is a diagonal matrix containing only the positive eigenvalues. Using this decomposition we

get

I51 ,log det
(

IN1 + ρα21H21H
†
21 + ρH11

(
IM1 + ρ12H

†
12H12

)−1
H†

11

)

=log det


IN1 + ρα21H21H

†
21 + ρH11U




(Im12 + ρα12Λ+)−1 0

0 I(M1−N2)+


U †H†

11


 ,

=log det


IN1 + ρα21H21H

†
21 + ρH̃




(Im12 + ρα12Λ+)−1 0

0 I(M1−N2)+


 H̃†


 ,

[
∵ H̃ = H11U

]

Note that H̃ is identically distributed to H11. Therefore, both G1 = H̃ [1:m12] and G2 = H̃ [(m12+1):M1]

have the same distribution as specified in section 4.2, having all the properties of a typical channel

matrix of the 2-user MIMO IC. Substituting this in the last equation we get

I51 =log det
(
IN1 + ρα21H21H

†
21 + ρG1

(
Im12 + ρα12Λ+

)−1
G†

1 + ρG2G
†
2

)

=log det
(
IN1 + ρα21H21H

†
21 + ρ(1−α12)G1G

†
1 + ρG2G

†
2

)
+ o(1).

Clearly, we can now apply Lemma 4.3 on equation (A.51),

I51 = g
(
N1, (α21,M2), ((1− α12)+,m12), (1, (M1 −N2)+)

)
log(ρ) +O(1). (A.51)

Applying similar technique for the other term in equation (3.11) we get

I52 = g
(
N2, (α12, M1), ((α22 − α21)+,m21), (α22, (M2 −N1)+)

)
log(ρ) +O(1). (A.52)

Finally, using this expressions for I51 and I52 in equation (4.18) we get the 5th bound for the GDoF

region.

6th and 7th bound: Note that equations (3.12) and (3.13) involves terms whose approximations

are already computed. Using those approximations we get the remaining 2 bounds of the GDoF

region completing the proof.
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A.11 Proof of Corollary 4.2

We have to prove that the bounds in equations (4.22e)-(4.22g) are looser than the others. To

analyze the 5-th bound, we start from equation (4.22e),

(d1 + d2) ≤(N1 ∧M2) + ((N1 −M2)+ ∧ (M1 −N2)+) + (N2 ∧M1) + ((M1 −N2)+ ∧ (M2 −N1)+);

=





M2 + N2 + {(N1 −M2) ∧ (M1 −N2)}, if N1 > M2 and M1 > N2;

N1 + N2, if N1 ≤ M2 and M1 > N2;

M1 + M2, if N1 > M2 and M1 ≤ N2;

M1 + N1 + {(N2 −M1) ∧ (M2 −N1)}, if N1 ≤ M2 and M1 ≤ N2;

=





min{(M1 + M2), (N1 + N2)}, if N1 > M2 and M1 > N2;

N1 + N2, if N1 ≤ M2 and M1 > N2;

M1 + M2, if N1 > M2 and M1 ≤ N2;

min{(M1 + M2), (N1 + N2)}, if N1 ≤ M2 and M1 ≤ N2;

Clearly, this is looser than both the 3rd and the 4th bound. Consider next the 6th bound which,

from equation (4.22f), is given as
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(2d1 + d2) ≤(N1 ∧ (M1 + M2)) + N1 ∧ (M1 −N2)+ + (N2 ∧M1) + ((M1 −N2)+ ∧ (M2 −N1)+);

=





(N1 ∧ (M1 + M2)) + (N1 ∧ (M1 −N2)) + N2, if M1 ≥ N2;

(N1 ∧ (M1 + M2)) + M1 + ((N2 −M1) ∧ (M2 −N1)+), if M1 < N2;

=





(N1 ∧ (M1 + M2)) + (N1 ∧ (M1 −N2)) + N2, if M1 ≥ N2;

(N1 ∧ (M1 + M2)) + min{N2, (M1 + M2 −N1)}, if M1 < N2 and M2 > N1;

(N1 ∧ (M1 + M2)) + M1, if M1 < N2 and M2 ≤ N1;

=





(N1 ∧ (M1 + M2)) + min{(N1 + N2),M1}, if M1 ≥ N2;

min{(M1 + M2), (N1 + N2)}, if M1 < N2 and M2 > N1;

M1 + (N1 ∧ (M1 + M2)), if M1 < N2 and M2 ≤ N1;

=





(N1 ∧ (M1 + M2)) + min{(N1 + N2),max(N2,M1)}, if M1 ≥ N2;

min{M1 + max(M2, N1), N1 + max(N2, M1)}, if M1 < N2 and M2 > N1;

M1 + min{max(N1,M2), (M1 + M2)}, if M1 < N2 and M2 ≤ N1;

It is clear that this bound is looser than the sum of the 1st and 3rd or the sum of the 1st and the

4th bounds. The proof of the fact that the same is true for the 7th bound is identical and is hence

skipped.

A.12 Proof of Equivalent GDoF region

In the HK coding scheme [10], each user’s message is divided into two parts called the private

(Ui) and public (Wi) messages with rate Si and Ti, respectively. It was proved in [10] that for any

given probability distribution P(.) which factors as

P (Q,W1, U1,W2, U2, X1, X2) = P (Q)P (U1|Q)P (W1|Q)P (U2|Q)P (W2|Q)

P (X1|U1, U2, Q)P (X2|U2,W2, Q),(A.53)
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the rate region Ro
HK(P ) = R(o,1)

HK (P ) ∩R(o,2)
HK (P ) is achievable where

R(o,i)
HK (P ) =

{
(S1, T1, S2, T2) : Si ≤I(Ui; Yi|Wi,Wj , Q);

Ti ≤I(Wi;Yi|Ui,Wj , Q);

Tj ≤I(Wj ;Yi|Wi, Ui, Q);

(Si + Ti) ≤I(UiWi; Yi|Wj , Q);

(Si + Tj) ≤I(UiWj ; Yi|Wi, Q);

(Ti + Tj) ≤I(WiWj ; Yi|Ui, Q);

(Si + Ti + Tj) ≤I(UiWiWj ;Yi|Q);
}

for i 6= j ∈ {1, 2}. Let the 2-dimensional projection of the set Ro
HK(P ) be denoted by Π (Ro

HK),

which is defined as follows

Π (Ro
HK(P )) = {(0 ≤ R1 ≤ (S1 + T1), 0 ≤ R2 ≤ (S2 + T2)) : (S1, T1, S2, T2) ∈ Ro

HK(P )}.

Clearly, if (R1, R2) ∈ Π(Ro
HK(P )) then there exists a 4-tuple (S1, T1, S2, T2) ∈ Ro

HK(P ) such that

(Si +Ti) = Ri for i = 1, 2, and vice versa. This is true for any distribution satisfying (A.53). Using

the Fourier-Motzkin elimination method, a compact formula for the rate region Π (Ro
HK(P )) was

recently derived in Lemma 1 of [26], which when evaluated for the input distributions specified in

Section 3.2, results in an achievable rate region containing the rate region given in Lemma 3.4.

Let us denote the rate region Ro
HK(P ) by RG

HK, when P is same as the distributions specified in

Section 3.2. Using the technique in the proof of Lemma 3.4 it then follows that RG
HK = RG1

HK∩RG2
HK,
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where

RGi
HK =

{
(Si, Ti, Tj) : Si ≤log det

(
INi + ρiiHiiKiuH†

ii + ρjiHjiKjuH†
ji

)
− τji;

Ti ≤log det
(
INi + ρiiHiiKiwH†

ii + ρjiHjiKjuH†
ji

)
− τji;

Tj ≤log det
(

INi +
ρji

Mj
HjiH

†
ji

)
− τji;

(Si + Ti) ≤log det
(

INi +
ρii

Mi
HiiH

†
ii + ρjiHjiKjuH†

ji

)
− τji;

(Si + Tj) ≤log det
(

INi +
ρji

Mj
HjiH

†
ji + ρiiHiiKiuH†

ii

)
− τji

(Ti + Tj) ≤log det
(

INi +
ρji

Mj
HjiH

†
ji + ρiiHiiKiwH†

ii

)
− τji;

(Si + Ti + Tj) ≤log det
(

INi +
ρji

Mj
HjiH

†
ji +

ρii

Mi
HiiH

†
ii

)
− τji;

}

for i 6= j ∈ {1, 2} and τji’s for 1 ≤ i 6= j ≤ 2 are constants independent of ρ or channel matrices.

The GDoF region corresponding to the above achievable rate region can be defined as follows

Gi(M̄, ᾱ) =
{

(d1p, d1c, d2p, d2c) : dip = lim
ρii→∞

Si

log(ρii)
,dic = lim

ρii→∞
Ti

log(ρii)
for i = 1, 2,

and (S1, T1, S2, T2) ∈ RGi
HK

}
.

Using this definition, and following a similar approach as in Theorem 4.1, we get equation (4.23).

From the above analysis on one hand, we have the achievable rate regionRG
HK for the Gaussian

IC, which is Ro
HK(P ) evaluated for the distribution of Subsection 4.2.3. on the other hand, we have

Ra(H, ᾱ), which is a subset of the rate region obtained when Π (Ro
HK(P )) is evaluated at the

distribution in Subsection 4.2.3. This two facts together imply that

Ra(H, ᾱ) ⊆ Π
(RG

HK

)
, (A.54)

i.e., for any rate pair (R1, R2) ∈ Ra(H, ᾱ) there exists a 4-tuple (S1, T1, S2, T2) ∈ RG
HK such that

(Si + Ti) = Ri for i = 1, 2. In other words, Ra(H, ᾱ) is a subset of the 2-dimensional projection

of the set RG
HK. Since G(M̄, ᾱ) and Do(M̄, ᾱ) are the high SNR scaled versions of the rate regions

RG
HK and Ra(H, ᾱ), respectively the same is true for them. That is Do(M̄, ᾱ) is a subset of the

2-dimensional projection of the set G(M̄, ᾱ) or for every (d1, d2) ∈ Do(M̄, ᾱ), there exists a 4-tuple

(d1p, d1c, d2p, d2c) ∈ G(M̄, ᾱ) such that (dip + dic) = di for i = 1, 2.
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A.13 Proof of Lemma 5.4

Recall that, the negative SNR exponents of the eigenvalues of W1, W2 and W3 are denoted

by {βj}q1
j=1, {γk}q2

k=1 and {υi}p
i=1, respectively. Interestingly, these matrices have exactly the same

structure specified in Theorem 1 and 2 of [52], except from the ρα21 which can be easily taken care

of. Therefore, using these Theorems we obtain the following conditional distributions:

fW1|W3
(β̄|ῡ)=̇





ρ−E1(β̄,ῡ) if (β̄, ῡ) ∈ B1;

0 if (β̄, ῡ) /∈ B1

(A.55)

where

E1(β̄, ῡ) =





q1∑

j=1


(M1 + N1 + 1− 2j)βj +

min{(N1−j),M1}∑

i=1

(α21 − υi − βj)+


−M1

p∑

i=1

(α21 − υi)+



 ,(A.56)

B1 =
{

(β̄, ῡ) : 0 ≤ υ1 ≤ · · · ≤ υp; 0 ≤ β1 ≤ · · · ≤ βq1 ; (υi + βj) ≥ α21, ∀(i + j) ≥ (N1 + 1)
}

(A.57)

and

fW2|W3
(γ̄|ῡ)=̇





ρ−E2(γ̄,ῡ) if (γ̄, ῡ) ∈ B2;

0 if (γ̄, ῡ) /∈ B2

(A.58)

where

E2(γ̄, ῡ) =





q2∑

k=1


(M2 + N2 + 1− 2k)γk +

min{(M2−k),N2}∑

i=1

(α21 − υi − γk)+


−N2

p∑

i=1

(α21 − υi)+



 ,(A.59)

B2 =
{

(β̄, ῡ) : 0 ≤ υ1 ≤ · · · ≤ υp; 0 ≤ γ1 ≤ · · · ≤ γq2 ; (υi + γk) ≥ α21, ∀(i + k) ≥ (M2 + 1)
}

(A.60)

These pdfs are easily obtained from equation (10) of [52] by changing it properly due to the presence

of the ρα21 instead of ρ in [52].

It was proved in [91] that given the non-zero eigenvalues of W3, W1 and W2 are conditionally

independent random matrices. Since the non-zero eigenvalues of H21H
†
21 and H†

21H21 are exactly

the same for each realization of the matrix H21, given ῡ, β̄ and γ̄ are conditionally independent of

each other. Intuitively, it is a well known fact in the literature of random matrix theory that the

eigenvalues of W1 are dependent on the matrix W3 only through it’s eigenvalues. The same is true
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for W2. Therefore, given the eigenvalues of W3, the eigenvalues of W1 and W2 are conditionally

independent1 . Using this fact we have the following:

fW1,W2,W3(β̄, γ̄, ῡ) =fW1,W2|W3
(β̄, γ̄|ῡ)fW3(ῡ), (A.61)

(a)
=fW1|W3

(β̄|ῡ)fW2|W3
(γ̄|ῡ)fW3(ῡ). (A.62)

Now, substituting equations (A.55), (A.58) into the above equation we obtain the joint dis-

tribution fW1,W2,W3(β̄, γ̄, ῡ), where the marginal distributions of υi’s are given by

fW3(ῡ)=̇





ρ−
∑p

i=1(M2+N1+1−2i)υi if 0 ≤ υ1 ≤ · · · ≤ υp;

0 otherwise,
(A.63)

which was derived in [48]. Using this joint distribution fW1,W2,W3(β̄, γ̄, ῡ) and the Laplace’s method

and following the similar approach as in [48] equation (5.26) can be evaluated to obtain the following:

dOs(rs) = min
p∑

i=1

(M2 + N1 + 1− 2i)υi +
q1∑

j=1

(M1 + N1 + 1− 2j)βj +
q2∑

k=1

(M2 + N2 + 1− 2k)γk

− (M1 + N2)
p∑

i=1

(α21 − υi)+ +
q2∑

k=1

min{(M2−k),N2}∑

i=1

(α21 − υi − γk)+

+
q1∑

j=1

min{(N1−j),M1}∑

i=1

(α21 − υi − βj)+; (A.64a)

constrained by:
p∑

i=1

(α21 − υi)+ +
q1∑

j=1

(α11 − βj)+ +
q2∑

k=1

(α22 − γk)+ < rs; (A.64b)

0 ≤ υ1 ≤ · · · ≤ υp; (A.64c)

0 ≤ β1 ≤ · · · ≤ βq1 ; (A.64d)

0 ≤ γ1 ≤ · · · ≤ γq2 ; (A.64e)

(υi + βj) ≥ α21, ∀(i + j) ≥ (N1 + 1); (A.64f)

(υi + γk) ≥ α21, ∀(i + k) ≥ (M2 + 1). (A.64g)

1 For a detailed proof of this fact the reader is referred to Lemma 1 of [91].
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Finally, the desired result follows from the fact that by restricting αi ≤ α21 for all i ≤ p does

not change the optimal solution of the above problem. This can be proved as follows: suppose

the optimal solution have αi > α21 for some i. Now, since the objective function is monotonically

decreasing function of αi for all i, substituting αi = α21 does not violate any of the constraints

but reduces the objective function. But, that means the earlier solution was not really the optimal

solution. Therefore, in the optimal solution we must have αi ≤ α21 for all i ≤ p. However, with

this constraint we have

(α21 − υi)+ = (α21 − υi), ∀ i ≤ p.

Substituting this in equation (A.64a) we get the desired result.

A.14 Proof of Theorem 5.2

The main steps of the proof can be described as follows. First, we simplify the optimization

problem in equations (5.27) and (5.28) by putting specific values of the different parameters, such

as Mi, Ni and αij as stated in the statement of the Theorem, in equations (5.27) and (5.28). Then

we calculate a local minimum of this simplified optimization problem for each value of r, using the

steepest descent method, which by the previous argument then represents a global minimum. The

later part of the problem, i.e., the computation of the local minimum will be carried out in two

steps: in step one, we consider the case when α ≤ 1 and then in the second step we consider the

remaining case. Let us start by deriving the simplified optimization problem.

Substituting M1 = M2 = N1 = N2 = n, α11 = α22 = 1 and α21 = α in the optimization
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problem of Lemma 5.4 we obtain the following:

minOs , min
(~υ,~γ,~β,ᾱ)

n∑

i=1

(4n + 1− 2i)υi+
n∑

j=1

(2n + 1− 2j)βj +
n∑

k=1

(2n + 1− 2k)γk

−2n2α +
n∑

k=1

(n−k)∑

i=1

(α− υi − γk)+ +
n∑

j=1

(n−j)∑

i=1

(α− υi − βj)+;

(A.65a)

constrained by:
n∑

i=1

(α− υi)+ +
n∑

j=1

(1− βj)+ +
n∑

k=1

(1− γk)+ < rs; (A.65b)

0 ≤ υ1 ≤ · · · ≤ υn; (A.65c)

0 ≤ β1 ≤ · · · ≤ βn; (A.65d)

0 ≤ γ1 ≤ · · · ≤ γn; (A.65e)

(υi + βj) ≥ α, ∀(i + j) ≥ (n + 1); (A.65f)

(υi + γk) ≥ α, ∀(i + k) ≥ (n + 1). (A.65g)

As stated earlier, in what follows, we solve this optimization problem in two steps; in the

first step, we assume α ≤ 1.

A.14.1 Step 1: (α ≤ 1)

To apply the steepest descent method we first compute the rate of change of the objective

function with respect to the various parameters. Differentiating the objective function in equation

(A.65a) we obtain the following:

∂Os

∂αi

∣∣∣∣
α1=0,··· ,αi−1=0,αi+1=1,··· ,αn=1,β1=1,γ1=1

= (4n + 1− 2i), 1 ≤ i ≤ n; (A.66)

∂Os

∂β1

∣∣∣∣
α1=1,γ1=1

= (2n− 1) ≤ (4n + 1− 2i), ∀ 1 ≤ i ≤ n; (A.67)

∂Os

∂γ1

∣∣∣∣
α1=1,β1=1

= (2n− 1) ≤ (4n + 1− 2i), ∀ 1 ≤ i ≤ n. (A.68)

Note that it is sufficient, to consider the decay of the function with respect to (w.r.t.) β1 and

γ1 only, because of the decreasing slope of the objective function with increasing index of β and
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γ and equation (A.65d) and (A.65e). Therefore, it is clear from the slopes of the function given

above that for (i − 1)α ≤ rs ≤ iα, the steepest descent of the function is along decreasing values

of αi, while β1 = γ1 = 1. Note that for these values of β1 and γ1 the last two terms of equation

(A.65a) vanishes and equations (A.65d)-(A.65g) becomes redundant and as a result the optimization

problem of (A.65) simplifies to the following:

min
n∑

i=1

(4n + 1− 2i)υi + 2n2(1− α); (A.69a)

constrained by:
n∑

i=1

(α− υi)+ ≤ rs; (A.69b)

0 ≤ υ1 ≤ · · · ≤ υn. (A.69c)

The solution of this optimization problem follows from Lemma 5.3 and is given by,

ds(rs) = αdn,3n

(rs

α

)
+ 2n2(1− α), 0 ≤ rs ≤ nα. (A.70)

The above solution also imply that for α ≥ nα, the optimal solution have αi = 0, ∀i, which

when substituted in equation (A.65) we obtain the following problem.

min
n∑

j=1

(2n + 1− 2j)βj +
n∑

k=1

(2n + 1− 2k)γk − 2n2, (A.71a)

constrained by:
n∑

j=1

(1− βj)+ +
n∑

k=1

(1− γk)+ < (rs − nα); (A.71b)

α ≤ β1 ≤ · · · ≤ βn; (A.71c)

α ≤ γ1 ≤ · · · ≤ γn. (A.71d)

Note that the last two summands in the objective function (A.65) is zero because of equations

(A.71c) and (A.71d). Now, from the symmetry of the optimization problem (A.71) w.r.t. βi and

γi, we can assume without loss of generality that the optimal solution will have βi = γi, ∀i.

Substituting this and δi = βi − α in equation (A.71) we get the following equivalent optimization
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problem:

min2
n∑

j=1

(2n + 1− 2j)δj , (A.72a)

constrained by:
n∑

j=1

(1− α− δj)+ ≤
(

rs − nα

2

)
; (A.72b)

0 ≤ δ1 ≤ · · · ≤ δn. (A.72c)

The solution of this optimization problem follows again from Lemma 5.3 and is given by

ds(rs) =2(1− α)dn,n

(
rs − nα

2(1− α)

)
, 0 ≤ rs − nα

2
≤ n(1− α)

=2(1− α)dn,n

(
rs − nα

2(1− α)

)
, nα ≤ rs ≤ n(2− α). (A.73)

Combining equations (A.70) and (A.73) we obtain equation (5.30) of Theorem 5.2 and we have

completed the first step of this proof. In what follows we consider the remaining case, when α ≥ 1.

A.14.2 Step 2: (α ≥ 1)

Differentiating the objective function in equation (A.65a) we obtain the following:

∂Os

∂α1

∣∣∣∣
αi=α ∀ i≥2,β1=1,γ1=1

=





(4n− 1), for α1 ≥ (α− 1);

(2n− 1), for 0 ≤ α1 ≤ (α− 1);
(A.74)

∂Os

∂β1

∣∣∣∣
αi=α ∀ i≥2,γ1=1

=
∂Os

∂γ1

∣∣∣∣
αi=α ∀ i≥2,β1=1

=





(2n− 1), for α1 ≥ (α− 1);

(2n− 2), for 0 ≤ α1 ≤ (α− 1);
(A.75)

∂Os

∂α1

∣∣∣∣
α1=(α−1),αi=α ∀ i≥3,β1=1,γ1=1

= (4n− 3), for α2 ≥ (α− 1). (A.76)

Comparing equations (A.74) and (A.75), we realize that for 0 ≤ rs ≤ 1, the steepest descent is

along the direction of decreasing α1, while β1 = γ1 = 1. On the other hand, comparing equations

(A.74), (A.75) and (A.76) it is clear that beyond rs = 1, decreasing α2 has the steepest descent

than β1, γ1 and even α1. In the same way it can be proved that for (i − 1) ≤ rs ≤ i, the steepest

descent of the function is along decreasing values of αi, while β1 = γ1 = 1. Note that for these

values of β1 and γ1 the last two terms of equation (A.65a) vanishes and equations (A.65d)-(A.65g)
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becomes redundant and as a result the optimization problem of (A.65) simplifies to the following:

min
n∑

i=1

(4n + 1− 2i)υi − 2n2(α− 1); (A.77a)

constrained by:
n∑

i=1

(α− υi)+ ≤ rs; (A.77b)

(α− 1) ≤ υ1 ≤ · · · ≤ υn. (A.77c)

By the aforementioned argument, each of the υi’s can decrease with the constraint υi ≥ (α − 1)

with increasing rs. Therefore, substituting υ′i = υi − (α− 1) for all i in the above set of equations

we obtain the following equivalent optimization problem:

min
n∑

i=1

(4n + 1− 2i)υ′i + n2(α− 1); (A.78a)

constrained by:
n∑

i=1

(1− υ′i)
+ ≤ rs; (A.78b)

0 ≤ υ′1 ≤ · · · ≤ υ′n, (A.78c)

which in turn by Lemma 5.3 have the following optimal value

ds(rs) = αdn,3n (rs) + n2(α− 1), 0 ≤ rs ≤ n. (A.79)

It is clear from this solution that for rs ≥ n, αi ≤ (α − 1) for all i, and the optimization
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problem (A.65) reduces to the following:

minOs , min
(~υ,~γ,~β,ᾱ)

n∑

i=1

(4n + 1− 2i)υi+
n∑

j=1

(2n + 1− 2j)βj +
n∑

k=1

(2n + 1− 2k)γk

−2n2α +
n∑

k=1

(n−k)∑

i=1

(α− υi − γk)+ +
n∑

j=1

(n−j)∑

i=1

(α− υi − βj)+;

(A.80a)

constrained by:
n∑

i=1

(α− 1− υi) +
n∑

j=1

(1− βj)+ +
n∑

k=1

(1− γk)+ ≤ (rs − n);

(A.80b)

0 ≤ υ1 ≤ · · · ≤ υn ≤ (α− 1); (A.80c)

0 ≤ β1 ≤ · · · ≤ βn; (A.80d)

0 ≤ γ1 ≤ · · · ≤ γn; (A.80e)

(υi + βj) ≥ α, ∀(i + j) ≥ (n + 1); (A.80f)

(υi + γk) ≥ α, ∀(i + k) ≥ (n + 1). (A.80g)

Note the upper bound in equation (A.80c), which is different from equation (A.65c). Also, since

we are seeking for the minimum value of the objective function which decreases with every βi and

γj , in the optimal solution these parameters must take their minimum value, which from equations

(A.80f) and (A.80g) is given by

βj |min = γj |min = α− υn−j+1, (A.81)

which along with the ordering among the υi’s, βj ’s and γj ’s imply that all the terms in the last

two summands of the objective function are non-negative. Substituting these minimum values and

thereby eliminating βj ’s and γj ’s from the optimization problem we obtain the following equivalent

optimization problem:
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min
n∑

i=1

(2n + 1− 2i)υi, (A.82a)

constrained by:
n∑

i=1

(α− 1− υi) ≤ (rs − n); (A.82b)

0 ≤ υ1 ≤ · · · ≤ υn ≤ (α− 1), (A.82c)

where the simplification of the objective function involves the following algebraic computations

Os =
n∑

i=1

(4n + 1− 2i)υi + 2
n∑

j=1

(2n + 1− 2j)(α− υn−j+1)− 2n2α

+
n∑

k=1

(n−k)∑

i=1

(α− υi − (α− υn−k+1)) +
n∑

j=1

(n−j)∑

i=1

(α− υi − (α− υn−j+1));

=
n∑

i=1

(4n + 1− 2i)υi + 2
n∑

j=1

(2n + 1− 2j)(α− υn−j+1)− 2n2α

+n(n− 1)α−
n∑

i=1

2(n− i)υi −
n∑

k=1

(α− υn−k+1)−
n∑

j=1

(n− j)(α− υn−j+1);

=
n∑

i=1

(2n + 1)υi + 2
n∑

j=1

(n + 1− j)(α− υn−j+1)− n(n + 1)α

=
n∑

i=1

(2n + 1− 2i)υi + 2
n∑

j=1

(n + 1− j)α− n(n + 1)α

=
n∑

i=1

(2n + 1− 2i)υi.

The solution of this optimization problem follows again from Lemma 5.3 and is given by

ds(rs) =(α− 1)dn,n

(
rs − n

(α− 1)

)
, 0 ≤ (rs − n) ≤ n(α− 1)

=(α− 1)dn,n

(
rs − n

(α− 1)

)
, n ≤ rs ≤ nα. (A.83)

Combining equations (A.79) and (A.83) we obtain equation (5.31) of Theorem 5.2.
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A.15 Proof of Theorem 5.3

When we substitute the specific values of the different parameters in equation (5.28), it

reduces to the following

dFemto
s,(n,n,n,n)(rs) = min

n∑

i=1

(4n + 1− 2i)υi +
n∑

j=1

(2n + 1− 2j)βj +
n∑

k=1

(2n + 1− 2k)γk

− 2n2 +
n∑

k=1

(n−k)∑

i=1

(1− υi − γk)+ +
n∑

j=1

(n−j)∑

i=1

(1− υi − βj)+; (A.84a)

constrained by:
n∑

i=1

(1− υi)+ +
n∑

j=1

(1− βj)+ +
n∑

k=1

(α− γk)+ < rs; (A.84b)

0 ≤ υ1 ≤ · · · ≤ υn; (A.84c)

0 ≤ β1 ≤ · · · ≤ βn; (A.84d)

0 ≤ γ1 ≤ · · · ≤ γn; (A.84e)

(υi + βj) ≥ 1, ∀(i + j) ≥ (n + 1); (A.84f)

(υi + γk) ≥ 1, ∀(i + k) ≥ (n + 1). (A.84g)

Differentiating the objective function with respect to υi, ∀ i, β1 and γ1 we find that

∂FFemto

∂υi

∣∣∣∣
β1=1,γ1=α

=(4n + 1− 2i) ≥ ∂FFemto

∂β1

∣∣∣∣
γ1=α,υk=0, ∀k<i,υk=1,∀k>i

= (2n− i), (A.85)

=
∂FFemto

∂γ1

∣∣∣∣
β1=1,υk=0, ∀k<i,υk=1,∀k>i

, ∀ i ≤ n, (A.86)

where we have denoted the objective function by FFemto. It is clear form these values that, for

(i− 1) ≤ rs ≤ i, the steepest descent is along decreasing υi with β1 = 1 and γ1 = α. Putting this

in equation (A.84) we get

dFemto
s,(n,n,n,n)(rs) =min

n∑

i=1

(4n + 1− 2i)υi + n2(α− 1); (A.87a)

constrained by:
n∑

i=1

(1− υi)+ ≤ rs; (A.87b)

0 ≤ υ1 ≤ · · · ≤ υn. (A.87c)
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Now, using Lemma 5.3 we obtain the minimum value of the the above optimization problem, which

can be written as

dFemto
s,(n,n,n,n)(rs) = dn,3n(rs) + n2(α− 1), 0 ≤ rs ≤ n. (A.88)

Next, we obtain the optimal value of the objective function for values of rs ≥ n. Note that

for any rs ≥ n, υi = 0 ∀ i, which along with equations (A.84f) and (A.84g) imply that βj ≥ 1, and

γj ≥ 1 ∀j. Putting this in equation (A.84) we get

dFemto
s,(n,n,n,n)(rs) =min

n∑

i=1

(2n + 1− 2i)γi − n2, (A.89a)

constrained by:
n∑

i=1

(α− γi)+ ≤ (rs − n); (A.89b)

1 ≤ γ1 ≤ · · · ≤ γn. (A.89c)

To bring the above problem into a form amenable to Lemma 5.3 we use the following variable

transform in the above set of equations: γ′i = γi − 1. This results in the following equivalent

optimization problem.

dFemto
s,(n,n,n,n)(rs) =min

n∑

i=1

(2n + 1− 2i)γ′i, (A.90a)

constrained by:
n∑

i=1

(α− 1− γ′i)
+ ≤ (rs − n); (A.90b)

0 ≤ γ′1 ≤ · · · ≤ γ′n, (A.90c)

which in turn by Lemma 5.3 attains the following optimal value:

dFemto
s,(n,n,n,n)(rs) =(α− 1)dn,n

(
(rs − n)
(α− 1)

)
, 0 ≤ (rs − n)

(α− 1)
≤ n (A.91)

=(α− 1)dn,n

(
(rs − n)
(α− 1)

)
, n ≤ rs ≤ nα. (A.92)

Finally, combining equations (A.88) and (A.91) we obtain the desired result.
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A.16 Proof of Theorem 5.4

Substituting M1 = M2 = M and αij = 1 in equation (5.28) we obtain

dFCSIT
s,(M,N1,M,N2)(rs) =

M∑

i=1

(2M + N1 + N2 + 1− 2i)υi +
M∑

j=1

(M + N1 + 1− 2j)βj +
M∑

k=1

(M + N2 + 1− 2k)γk

− (M + N2)M +
M∑

k=1

(M−k)∑

i=1

(1− υi − γk)+ +
M∑

j=1

min{(N1−j),M}∑

i=1

(1− υi − βj)+;

(A.93a)

constrained by:
p∑

i=1

(1− υi)+ +
q1∑

j=1

(1− βj)+ +
q2∑

k=1

(1− γk)+ < rs; (A.93b)

0 ≤ υ1 ≤ · · · ≤ υp; (A.93c)

0 ≤ β1 ≤ · · · ≤ βq1 ; (A.93d)

0 ≤ γ1 ≤ · · · ≤ γq2 ; (A.93e)

(υi + βj) ≥ 1, ∀(i + j) ≥ (N1 + 1); (A.93f)

(υi + γk) ≥ 1, ∀(i + k) ≥ (M + 1). (A.93g)

Differentiating the objective function with respect to υi, ∀ i, β1 and γ1 we find that

∂Fa-FCSIT

∂υi

∣∣∣∣
β1=1,γ1=1

≥





∂Fa-FCSIT
∂β1

∣∣∣
γ1=1,αk=0, ∀k<i,αk=1,∀k>i

,

∂Fa-FCSIT
∂γ1

∣∣∣
β1=1,αk=0, ∀k<i,αk=1,∀k>i

,

∀ i ≤ n, (A.94)

where we have denoted the objective function by Fa-FCSIT. It is clear form these values that, for

(i − 1) ≤ rs ≤ i, the steepest descent is along decreasing υi with β1 = γ1 = 1 and i ≤ n. Putting

this in equation (A.93) we get

dFCSIT
s,(M,N1,M,N2)(rs) = min

n∑

i=1

(2M + N1 + N2 + 1− 2i)υi + M(N1 −M); (A.95a)

constrained by:
M∑

i=1

(1− υi)+ ≤ rs; (A.95b)

0 ≤ υ1 ≤ · · · ≤ υn. (A.95c)

Now, using Lemma 5.3 we obtain the minimum value of the the above optimization problem, which
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can be written as

dFCSIT
s,(M,N1,M,N2)(rs) = dM,M+N1+N2(rs) + M(N1 −M), 0 ≤ rs ≤ M. (A.96)

Next, we evaluate the optimal value of the objective function for values of rs ≥ M . Note

that for any rs ≥ M , υi = 0 ∀ i, which along with equations (A.93f) and (A.93g) imply that βj ≥ 1

for j ≥ (N1 + 1 −M) and γk ≥ 1 ∀k. Clearly, the objective function is minimized for βj = 1 for

j ≥ (N1 + 1−M) and γk = 1 ∀k. Putting this in equation (A.93) we get

dFCSIT
s,(M,N1,M,N2)(rs) = min

M∑

j=1

(M + N1 + 1− 2j)βj −M2 +
M∑

j=1

min{(N1 − j),M}(1− βj)+,

(A.97a)

constrained by:
M∑

i=1

(1− βj) ≤ (rs −M); (A.97b)

0 ≤ β1 ≤ · · · ≤ βM , (A.97c)

where βu = 1 for u ≥ min{(N1 −M),M}. Since βu = 1 only for u ≥ min{(N1 −M),M} the last

term in equation (A.97a) reduces to

M∑

j=1

min{(N1 − j),M}(1− βj)+ =
τ∑

j=1

M(1− βj),

where we denote min{(N1 −M),M} = τ . When we substitute this, the last optimization problem

further reduces to the following:

dFCSIT
s,(M,N1,M,N2)(rs) =min

τ∑

j=1

(N1 + 1− 2j)βj + (M − τ)(N1 − τ)−M2 + τM, (A.98a)

=min
τ∑

j=1

(N1 + 1− 2j)βj + (M − τ)(N1 −M − τ),

=min
τ∑

j=1

(max{N1 −M, M}+ τ + 1− 2j)βj ,

constrained by:
τ∑

i=1

(1− βj) ≤ (rs −M); (A.98b)

0 ≤ β1 ≤ · · · ≤ βτ . (A.98c)
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Using Lemma 5.3 in the above optimization then it yields the following solution:

dFCSIT
s,(M,N1,M,N2)(rs) =dτ,max{N1−M,M}(rs −M), 0 ≤ rs −M ≤ τ ;

=d2M,N1(rs), M ≤ rs ≤ min{N1, 2M}. (A.99)

Finally, combining equations (A.96) and (A.99) we obtain the desired result.

A.17 Proof of Lemma 5.5

Let us denote the event that a target rate tuple (r1 log(ρ), r2 log(ρ)) does not belong to RIML

by OIML, i.e.,

OIML =
{
H : (r1 log(ρ), r2 log(ρ)) /∈ RIML

}
.

Now, let us denote the maximum among the average probability of errors at both the receivers be

denoted by Pe, then using Bayes’ rule we get

Pe =Pe|OIML
Pr{OIML}+ Pe|Oc

IML
Pr{Oc

IML}, (A.100)

≤Pr{OIML}+ Pe|Oc
IML

, (A.101)

where Pe|E denote the conditional average probability of error given the event E . Note that, the

above equation holds for any SNR. When the target rate tuple belongs to RIML, letting the block

length be sufficiently large the probability of error given Oc
IML can be be made arbitrarily close

to zero. Therefore, letting the block length of the code goes to infinity at both side of the above

equation we obtain

Pe ≤ Pr{OIML} =Pr {{Ic1 ≤ r1 log(ρ)} ∪ {Ic2 ≤ r2 log(ρ)} ∪ {Ics ≤ rs log(ρ)}} , (A.102)

≤
∑

i=1,2,s

Pr {Ici ≤ ri log(ρ)} , (A.103)

(a)

=̇ max
i=1,2,s

Pr {Ici ≤ ri log(ρ)} , (A.104)

=̇ max
i=1,2,s

ρ
−dIML

i,(M1,N1,M2,N2)
(ri) = ρ

−mini=1,2,s{dIML
i,(M1,N1,M2,N2)

(ri)}, (A.105)
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where step (a) follows from the fact that in the asymptotic SNR the largest term dominates and

the last step follows from equation (5.34). Finally, the desired result follows from the fact that

Pe=̇ρ
−dIML

(M,N1,M,N2)
(r1,r2).

A.18 Proof of Lemma 5.6

The joint distribution of (β̄, ῡ) can be obtained from equation (A.61) substituting fW2|W3
(.) =

1. The rest of the proof follows the same steps as the proof of Lemma 5.4 and hence skipped to

avoid repeating.

A.19 Proof of Theorem 5.6

Since the FCSIT DMT is an upper bound to the No-CSIT DMT, it is sufficient to prove that

when the condition of equation (5.43) is satisfied the expressions of Theorem 5.2 and Lemma 5.7

are identical.

It is clear from the comparison of equations (5.31) and (5.42) that for rs = 2r ≥ n they

are identical for all values of α ≥ 1 and hence when α satisfies equation (5.43). Now, it is only

necessary to find a condition when the expressions in equations (5.31) and (5.42) are identical even

when rs < n, which is what we derive next and turns out to be identical to the condition of equation

(5.43).

It is clear from equation (5.42) and (5.31) that,

dIML
s,(n,n,n,n)(rs) < dFCSIT

s,(n,n,n,n)(rs), for rs ≤ n.

Therefore, the DMTs given by Theorem 5.2 and Lemma 5.7 are identical only if for rs ≤ n, the

single user performance is dominating, i.e.,

dn,n(r) ≤dIML
s,(n,n,n,n)(rs = 2r);

dn,n(r) ≤dn,2n(2r) + n2(α− 1), (A.106)

where in the last step we have substituted the value of dIML
s,(n,n,n,n)(2r) from equation (5.42). Since

dIML
s,(n,n,n,n)(2r) decays much faster than dn,n(r) with increasing r and both are continuous functions
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of r, equation (A.106) will be valid for all r ≤ n
2 if it is true for r = n

2 . Substituting this in equation

(A.106) we get

dn,n

(n

2

)
≤n2(α− 1),

or, α ≥1 +
dn,n(n

2 )
n2

.



Appendix B

Relay channel

B.1 Proof of Lemma 6.1

Let the singular value decomposition of HSD be given as UΛ0V
†, where U ∈ Cn×n and

V ∈ Cm×m are mutually independent unitary random matrices distributed uniformly over the set

of square unitary matrices of corresponding dimensions (e.g., see equation (3.9) in [92]). Using this

fact we can write

HSDH†
SD = UΛU †, and H†

SDHSD = V Λ2V
†, (B.1)

where the sets of non-zero elements of Λ2 and Λ are identical. In particular, given one, the other

is fixed. Putting this in the expressions for W2 and W3 we get

W2 = HSRV (Im + Λ2)
−1 V †H†

SR = H̃SR (Im + Λ2)
−1 H̃†

SR, (B.2)

W3 = H†
RDU (In + Λ)−1 U †HRD = H̃†

RD (In + Λ)−1 H̃RD, (B.3)

where H̃SR = HSRV and H̃RD = U †HRD are mutually independent random matrices that have

the same distributions as HSR and HRD, respectively, since HSR and HRD are unitarily invariant

(cf. [7]). Letting A = H̃SR (Im + Λ2)
− 1

2 and B = H̃†
RD (In + Λ)−

1
2 we realize that both A and B

still have mutually independent Gaussian entries conditioned on Λ. Computing the conditional

correlation between the two we get

E
(
B†A|Λ2,Λ

)
=E

(
(In + Λ)−

1
2 H̃RDH̃SR (Im + Λ2)

− 1
2 |Λ2,Λ

)
,

=E
(
(In + Λ)−

1
2 U †HRDHSRV (Im + Λ2)

− 1
2 |Λ2, Λ

)
= 0k×k,
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where the last step follows from the fact that components of HSR and HRD are zero mean and

mutually independent. This, along with the fact that A and B are Gaussian [89] proves that

conditioned on Λ2 or Λ, they are independent. This in turn implies that W2 = AA† and W3 = BB†

are independent given Λ. Consequently, the eigenvalues of W2 are independent of the eigenvalues

of W3 given Λ.

B.2 Proof of Lemma 6.3

B.2.1 Proof of Part i

The proof consists of upper bounding in two steps the mutual information terms of the form

I(X; X + Z), subject to a sum power constraint on X. First, we use the fact Gaussian input is

optimal, and then in the second step, we use the monotonically increasing property of the log det(.)

function in the cone of positive semi-definite matrices.

Suppose Y = HX + Z, where Z ∼ CN (0, I), H ∈ CN×M and Cov(X) ¹ Q, then it is well

known [87] that

max
{Cov(X)¹Q}

I(HX + Z; X) = I(HXG + Z; XG) = log det
(
I + HQH†

)
, (B.4)

where XG ∼ CN (0, Q). Similarly, for a sum power constraint we have

max
{Tr(Cov(X))¹ρ}

I(HX + Z; X) = max
Tr(Q)≤ρ

max
{Cov(X)¹Q}

I(HX + Z;X)

(a)
= max

Tr(Q)≤ρ
log det

(
I + HQH†

)
, (B.5)

≤log det
(
I + ρHH†

)
, (B.6)

where step (a) follows from (B.4) and the last step follows from the fact that Q ¹ ρI and log det(.)

is a monotonically increasing function in the cone of semi-definite matrices.

Using equation (B.6) we have

max
P (XS ,XR)

I(XS , XR; YD|p2) = max
P (XS ,XR)

I


HSR,D




XS

XR


 + ZD;




XS

XR







≤ log det
(
In + ρHSR,DH†

SR,D

)
= log(LSR,D),
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where HSR,D = [HSD HRD]. Using a similar method we obtain

max
P (XS ,XR)

I(XS ; YD|XR, p2) ≤ log det
(
In + ρHSDH†

SD

)
= log(LSD);

max
P (XS ,XR)

I(XS ; YD|p1) ≤ log det
(
In + ρHSDH†

SD

)
= log(LSD);

max
P (XS ,XR)

I(XS ; YR, YD|p1) ≤ log det
(
In + ρHS,RDH†

S,RD

)
= log(LS,RD).

Finally, substituting the above set of upper bounds in equation (6.33) and (6.34) we get

max
P (XS ,XR)

ICS
(td) ≤td log (LS,RD) + (1− td) log (LSD) , I

′
CS

(td),

max
P (XS ,XR)

ICD
(td) ≤td log (LSD) + (1− td) log (LSR,D) , I

′
CD

(td).

This proves the first part of the lemma.

B.2.2 Proof of Part ii

Let P ∗ represent the distribution where XS ∼ CN (0, ρ
mIm) and XR ∼ CN (0, ρ

kIk) and XS and

XR are mutually independent. Note that P ∗ satisfies the input power constraints at the source and

relay given in (6.5) and (6.6). Then denoting the mutual information I(XS , XR; YD|p2) evaluated

at P ∗ by I(XS , XR; YD|p2)
∣∣∣
P ∗

we see

I(XS , XR;YD|p2)
∣∣∣
P ∗

= I


HSR,D




XS

XR


 + ZD;




XS

XR







∣∣∣∣∣
P ∗

,

= log det
(
In +

ρ

m
HSDH†

SD +
ρ

k
HRDH†

RD

)
,

(a)

≥ log det
(

In

m + k
+

ρ

m + k
HSDH†

SD +
ρ

m + k
HRDH†

RD

)
,

= log det
(
In + ρHSR,DH†

SR,D

)
− (m + k),

=log(LSR,D)−m (B.7)



202

where step (a) follows from the fact that log det(.) is a monotonically increasing function in the

cone of positive semi-definite matrices. Using a similar method we get

I(XS ;YD|XR, p2)
∣∣∣
P ∗
≥log det

(
In + ρHSDH†

SD

)
−m = log(LSD)−m; (B.8)

I(XS ; YD|p1)
∣∣∣
P ∗
≥log det

(
In + ρHSDH†

SD

)
−m = log(LSD)−m; (B.9)

I(XS ; YR, YD|p1)
∣∣∣
P ∗
≥log det

(
In + ρHS,RDH†

S,RD

)
−m = log(LS,RD)−m. (B.10)

Now, from the definition of C̄(H, td) in equation (6.32) we get

C̄(H, td) = max
{P (XS ,XR)}

min{ICS
(td), ICD

(td)},
(a)

≥ max
{P (XS ,XR)=P ∗}

min {ICS
(td), ICD

(td)} ,

=min
{

ICS
(td)

∣∣∣
P ∗

, ICD
(td)

∣∣∣
P ∗

}
,

(b)

≥min{I ′CS
(td)−m, I

′
CD

(td)− tdm− (1− td)(m + k)},

≥min{I ′CS
(td), I

′
CD

(td)} − (m + k),

where step (a) follows from the fact that instead of maximizing over all possible input distributions,

we are evaluating the right hand side of the equation at a particular distribution P ∗ and in step (b)

we substituted the set of lower bounds from equations (B.7)-(B.10) in the expressions for ICS
(td)

and ICD
(td).

B.3 Proof of Lemma 6.4

We shall prove that

R∗
U = r∗(ᾱ, β̄, δ̄) log(ρ),
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which, when substituted in equation (6.48), proves the lemma. From the expression of LS,RD in

equation (6.39) and using elementary properties of determinants, we have

log(LS,RD) = log det
(
In+k + ρHS,RDH†

S,RD

)
,

= log det
(
Im + ρH†

S,RDHS,RD

)
(a)
= log det

(
Im + ρH†

SRHSR + ρH†
SDHSD

)
,

= log det
(

Im + ρH†
SRHSR

(
Im + ρH†

SDHSD

)−1
)

+ log det
(
Im + ρH†

SDHSD

)
,

= log det
(

Ik + ρHSR

(
Im + ρH†

SDHSD

)−1
H†

SR

)
+ log(LSD).

where in step (a) we have used the fact that H†
S,RD = [H†

SR H†
SD]. Hence, we have

log
(

LS,RD

LSD

)
=log det

(
Ik + ρHSR

(
Im + ρH†

SDHSD

)−1
H†

SR

)
.

Similarly, from the expression for LSR,D in equation (6.38) we get

log
(

LSR,D

LSD

)
= log det

(
Ik + ρH†

RD

(
In + ρHSDH†

SD

)−1
HSR

)
. (B.11)

Now, assuming 0 < λu ≤ · · · ≤ λ1, 0 < µp ≤ · · · ≤ µ1 and 0 < γq ≤ · · · ≤ γ1 represent the ordered

non-zero (w.p. 1) eigenvalues of the matrices W1 , HSDH†
SD, W2 , HSR(In + ρH†

SDHSD)−1H†
SR

and W3 , H†
RD(In + ρHSDH†

SD)−1HRD and substituting these in equation (6.42) we get

R∗
U =

log
(∏p

j=1(1 + ρµj)
)

log
(∏q

l=1(1 + ργl)
)

log
(∏p

j=1(1 + ρµj)
)

+ log
(∏q

l=1(1 + ργl)
) + log

(
u∏

i=1

(1 + ραi)

)
, (B.12)

To further simplify the expression on the right hand side of the above equation we use the following

transformations: λi = ρ−αi , 1 ≤ i ≤ u, µj = ρ−βj , 1 ≤ j ≤ p and γl = ρ−δl , 1 ≤ l ≤ q and get

R∗
U = log(ρ)

[ ∑q
l=1(1− δl)+

∑p
j=1(1− βj)+∑q

l=1(1− δl)+ +
∑p

j=1(1− βj)+

]
+ log(ρ)

(
u∑

i=1

(1− αi)+
)

, r∗(ᾱ, β̄, δ̄) log(ρ).

(B.13)
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B.4 Proof of theorem 6.3

From equation (6.48) d∗(r) is equal to the negative SNR exponent of Pr{OU (r)}. However,

from Lemma 6.4, Pr{OU (r)} is exponentially equal to Pr{r∗(ᾱ, β̄, δ̄) < r}. Hence,

Pr{OU (r)}=̇ ρ−d∗(r) (B.14)

=̇ Pr{r∗(ᾱ, β̄, δ̄) < r} (B.15)

=
∫

{(ᾱ,β̄,δ̄)∈OU (r)}
f

(
ᾱ, β̄, δ̄

)
dᾱ dβ̄ dδ̄,

=
∫

{(ᾱ,β̄,δ̄)∈OU (r)∩S}
ρ−E(ᾱ,β̄,γ̄) dᾱ dβ̄ dδ̄, (B.16)

where OU (r) = {(ᾱ, β̄, δ̄) : r∗(ᾱ, β̄, δ̄) < r} and f(.) is the joint pdf of (ᾱ, β̄, δ̄).

Roughly, the above integral is a sum of an infinite number of terms of the form ρ−E(ᾱ,β̄,δ̄),

one for each (ᾱ, β̄, δ̄)-tuple in OU (r). Laplace’s method suggest that at the asymptotic SNR only

the term having minimum negative exponent dominates, i.e.,

d∗(r) = min
{(ᾱ,β̄,δ̄)∈S∩OU (r)}

E
(
ᾱ, β̄, δ̄

)
, (B.17)

where S represents the support set of the joint pdf of (ᾱ, β̄, δ̄) given in equation (6.28) and the

expression of E(.) is given in equation (6.29). Suppose at a given r, the objective function attains

the minimum value for an ᾱ ∈ S where αi > 1 for one or more i’s. Let ˜̄α = min{[1, 1, · · · , 1], ᾱ},

where the minimization is component-wise. Clearly, ˜̄α ∈ S but at this point E(.) has a strictly

smaller value. This proves that in the optimal solution, αi ∈ [0, 1] for all i. The same is true for

β̄ and γ̄. This, however, simplifies both the objective function and the constraint set giving the

optimization problem in equations (6.51)-(6.57) and (6.58)in the statement of Theorem 6.3.

B.5 Proof of Theorem 6.4

The proof essentially contains two simplifying steps which consecutively simplify the opti-

mization problem of Theorem 6.3. In the first step a transformation of variables yields an equivalent

problem having three variables independent of the values of m, k and n. Analyzing the domain of



205

definition of the equivalent problem we find that in the optimal solution one of the variables is a

function of the other two resulting in an optimization problem having only two variables. We start

with the first step.

Step 1: The objective function in (6.58) decreases strictly monotonically as αi is decreased for

any i and the rate of decrease with αi is smaller for a larger value of i. The same is true for β̄

and δ̄. Thus, following a similar method as in [48], it can be shown that if
∑u

i=1(1 − αi) = a,
∑p

j=1(1− βj) = b,
∑q

l=1(1− δl) = s and
(
ᾱ, β̄, δ̄

)
satisfy equations (6.55)-(6.57), then the optimal

choice of
(
ᾱ, β̄, δ̄

)
that minimizes F (.) is given by (φα(a), φβ(b), φδ(s)), where

φα(a) = [α̂1, α̂2, · · · , α̂u]T : α̂i =
(
1− (a− i + 1)+

)+
, 1 ≤ i ≤ u, (B.18)

φβ(b) = [β̂1, β̂2, · · · , β̂p]T : β̂j =
(
1− (b− j + 1)+

)+
, 1 ≤ j ≤ p, (B.19)

φδ(y) = [δ̂1, δ̂2, · · · , δ̂t]T : δ̂l =
(
1− (s− l + 1)+

)+
, 1 ≤ l ≤ q. (B.20)

Denoting by T (a, b, s) the following set

{
(ᾱ, β̄, δ̄) :

u∑

i=1

(1− αi) = a,

p∑

j=1

(1− βj) = b,

q∑

l=1

(1− δl) = s,
(
ᾱ, β̄, δ̄

)
satisfy equations (6.55)-(6.57)

}
,

we have from the above argument that

min
{T (a,b,s)}

F
(
(ᾱ, β̄, δ̄)

)
= F (φα(a), φβ(b), φδ(s)) . (B.21)

Let us now define the following set of new variables

O1 =
{

(a, b, s) : a +
bs

b + s
≤ r, (a + b) ≤ m, (a + s) ≤ n, 0 ≤ a ≤ u, 0 ≤ b ≤ p, 0 ≤ s ≤ q

}
.(B.22)

It is clear from the definition of T (a, b, s) that,

Ô1 ,
⋃

{(a,b,s)∈O1}
T (a, b, s) ⊃ ˆO(r). (B.23)

Since the minimum of a function over a set is not larger than the minimum of that function over a

subset of it, the above relation along with equation (B.21) imply that

min
{(a,b,s)∈O1}

F (φα(a), φβ(b), φδ(s)) = min
{(ᾱ,β̄,δ̄)∈Ô1}

F
(
ᾱ, β̄, δ̄

)
(B.24)

≤ min
{(ᾱ,β̄,δ̄)∈ ˆO(r)}

F
(
ᾱ, β̄, δ̄

)
. (B.25)
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Before proceeding further we take note of a few properties of the newly defined variables a, b and

s. From the definition of φi’s it is clear that if (a, b, s) ∈ O1, then (φα(a), φβ(b), φδ(s)) satisfy

equations (6.52) and (6.55)-(6.57). Suppose for some (i + j) = (m + 1), (α̂i + β̂j) < 1, then it can

be shown that
∑u

i=1(1− α̂i) +
∑p

j=1(1− β̂j) > m, which is impossible. Thus (α̂i + β̂j) ≥ 1 for all

(i + j) ≥ (m + 1). Similarly, it can be shown that (α̂i + δ̂l) ≥ 1 for all (i + l) ≥ (n + 1), which in

turn imply that the (φα(a), φβ(b), φδ(s)) tuple also satisfies equations (6.53) and (6.54). That is

(a, b, s) ∈ O1 ⇒ (φα(a), φβ(b), φδ(s)) ∈ ˆO(r) which implies that

min
{(ᾱ,β̄,δ̄)∈ ˆO(r)}

F
(
ᾱ, β̄, δ̄

) ≤ min
{(a,b,s)∈O1}

F (φα(a), φβ(b), φδ(s)) .

Combining this with equation (B.24), we get

min
{(ᾱ,β̄,δ̄)∈ ˆO(r)}

F
(
ᾱ, β̄, δ̄

)
= min

{(a,b,s)∈O1}
F (φα(a), φβ(b), φδ(s)) . (B.26)

Therefore, we have an equivalent optimization problem to that presented in Theorem 6.3, but with

fewer variables, i.e., d∗(r) can be equivalently written as

d∗(r) = min
{(a,b,s)∈O1}

F (φα(a), φβ(b), φδ(s)) . (B.27)

When (a + b) = m or (a + s) = n, the objective function has a property which we state now

that will be helpful to solve the minimization problem in the next section.

Claim B.1 The fundctions F (φα(a), φβ(m− a), φδ(s)) and F (φα(a), φβ(b), φδ(n− a)) are mono-

tonically decreasing with a for a given s and b, respectively, whereas F (φα(a), φβ(m− a), φδ(n− a))

is monotonically decreasing with a.

Proof B.1 It can be shown using equations (B.18)-(B.20) that when (a + b) = m we have

(α̂i + β̂j) = 1, ∀(i + j) = (m + 1) and (α̂i + β̂j) ≤ 1, ∀(i + j) ≤ m.

Using these relations in the expression for F
(

¯̂α,
¯̂
β,

¯̂
δ
)
, after some algebra we get

F
(

¯̂α,
¯̂
β,

¯̂
δ
)

=
p∑

i=1

(m + n + k + 1− 2i)α̂i +
q∑

l=1

(n + k + 1− 2l)δ̂l − ku +
u,q∑

i,l=1
l+i≤n

(1− α̂i − δ̂l)+.
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The above function is a strictly monotonically increasing function of α̂i for each 1 ≤ i ≤ u. Each

of the α̂i’s in turn is a monotonically decreasing function of a which makes the above function a

monotonically decreasing function of a.

Similarly, it can be shown that F (φα(a), φβ(b), φδ(n− a)) is a monotonically decreasing func-

tion of a. However, when both (a + b) = m and (a + s) = n, then we have

(α̂i + β̂j) = 1, ∀ (i + j) = (m + 1) and (α̂i + β̂j) ≤ 1, ∀ (i + j) ≤ m;

(α̂i + δ̂l) = 1, ∀ (i + l) = (n + 1) and (α̂i + δ̂l) ≤ 1, ∀ (i + l) ≤ n.

Using this in the expression for F
(

¯̂α,
¯̂
β,

¯̂
δ
)

we get

F (φα(a), φβ(m− a), φδ(n− a)) = F
(

¯̂α,
¯̂
β,

¯̂
δ
)

=
p∑

i=1

(m + n + 1− 2i)α̂i,

which by a similar argument as above is a monotonically decreasing function of a.

Step 2: In this final step, we determine the minimum of F (.) on O1 and establish the

theorem. Note that if a, b, s ∈ O1, then b ≤ min{(m−a), p} and s ≤ min{(n−a), q}. Let us denote

these maximum values of b and s by bm and sm, respectively. Depending on the value of a the

set of feasible (b, s) pairs takes on different shapes as shown in the following figures. For example,

when a ∈ R1 = {a : bm(r−a)
(bm−r+a) ≤ sm} the feasible set of (b, s) pairs is the region ABCDE shown in

Fig. B.1(a).

For any given value of a the following observations will help us solve the problem:

• The optimal (b, s) pair always lies on the boundary BCDE or BDE, because the objective

function is monotonically decreasing with both b and s.

• By the same argument the optimal point on the line segment BC and ED are C and D,

respectively.

Now, we argue that the optimal solution does not lie in O1 ∩ Rc. Note that when a ∈ Rc

the optimal solution for the (b, s) tuple is point D where (b, s) = (bm, sm). However, when b = bm

we have either b = p or b = (n− a). In both of these cases the objective function is monotonically
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(a) R =
{

a : bm(r−a)
(bm−r+a)

≤ sm

}
(b) Rc =

{
a : sm < bm(r−a)

(bm−r+a)

}

Figure B.1: Sets of feasible (b, s) tuples for different values of a.
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decreasing with a (e.g., see Claim B.1). The same is true for s. Therefore, it is clear from the

definition of O1 that when (b, s) = (bm, sm), a should be (also can be) increased until the constraint

a + bmsm
bm+sm

≤ r becomes active. In that case however, we have a ∈ R because

bmsm

bm + sm
= (r − a) =⇒ bm(r − a)

(bm − r + a)
= sm.

So, the objective function does not attain its minimum value when a ∈ Rc and we need to optimize

the objective function only over the set O1 ∩R. In the definition of R the condition in terms of sm

and bm can be converted to constraints on a as

R =
[
max{r − pq

(p + q)
, r −

√
(m− r)(n− r), a∗n, a∗m}, r

]
, (B.28)

where

a∗n =
(

n + r

2

)
−

√(
n− r

2

)2

+ q(n− r);

a∗m =
(

m + r

2

)
−

√(
m− r

2

)2

+ p(m− r). (B.29)

Also by the previous argument the optimal (b, s) tuple lies on the arc CD and satisfies bs
(b+s) =

(r − a). Further on the arc CD b can take any value between point, E where b = bm and F, where

b = sm(r−a)
(sm−r+a) and thus lies in the range B =

[
sm(r−a)

(sm−r+a) , bm

]
. Using these facts, we see that the

optimal solution is given by

d∗(r) = min
{a∈R, b∈B}

F

(
φα(a), φβ(b), φδ

(
b(r − a)

(b− r + a)

))
. (B.30)

B.6 Proof of Theorem 6.5

To prove the theorem we evaluate the minimum value of the objective function in the opti-

mization problem of Theorem 6.4 over different carefully chosen subsets of the feasible set. The

choice of these subsets also helps us to obtain a closed form expression for the optimal solution in

each subset. The union of these sets might not be equal to the feasible set. The minimum of these

different optimal solutions represent the minimum value of the objective function over a subset of
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the feasible set and hence yields only an an upper bound to the actual minimum. The proof is

divided into different cases and each case considers a particular subset of the feasible set.

Case 1 (O1 ∩ {a = r}): We know the optimal (a, b, s) tuple satisfies a + bs
(b+s) = r. So, a = r

implies either b = 0 or s = 0. Since we are considering the symmetric case (m = n), without loss

of generality we assume s = 0. From the definition of φδ we get δ̂l = 1 for 1 ≤ l ≤ q. Since the

objective function is monotonically decreasing with b for a given a and s to minimize the objective

function the maximum possible value of b should be chosen, i.e., b = bm = min{(n − r), p}. We

need to consider two different cases: 1) (n− r) ≤ p and 2) (n− r) ≥ p. In the first case, b = (n− r)

and (a + b) = n which along with Claim B.1 implies that

d11(r) , minF =
n∑

i=1

(2n + k − 2i + 1)α̂i +
p∑

j=1

(k + n− 2j + 1)δ̂j − kn +
n,q∑

i,j=1
j+i≤n

(1− α̂i − δ̂j),

(a)
=

n∑

i=1

(2n + k − 2i + 1)α̂i = dn,(n+k)(r), (n− p) ≤ r ≤ n, (B.31)

where step (a) is obtained by putting δ̂l = 1, ∀l and the last step follows from the definition of

φα(a). Next we consider the case when (n−a) ≥ p and b = p, which in turn imply β̂j = 0, 1 ≤ j ≤ p.

Putting this in the objective function, we get

d12(r) , minF =
n∑

i=1

(2n + 2k − 2i + 1)α̂i +−kn +
n,p∑

i,j=1
j+i≤n

(1− α̂i),

=
n∑

i=1

(2n + k − 2i + 1)αi = dn,(n+k)(r), 0 ≤ r ≤ (n− p). (B.32)

Combining equations (B.31) and (B.32) we get the minimum value of the objective function over

the chosen subset

dU1 , min{d11(r), d12(r)} = dn,(n+k)(r), 0 ≤ r ≤ n. (B.33)

Case 2 (O1 ∩ {b = s = (n − a)}): Putting b = s = (n − a) in the constraint a + bs
(b+s) = r

which is always active we get a = (2r − n). Now, a ∈ R if and only if

max
{

r − p

2
, a∗n, 2r − n

}
≤ (2r − n) =⇒ (n− p

2
) ≤ r. (B.34)



211

Since (a + b) = n = (a + s), we know from Claim B.1 that the objective function gets simplified to

dU2(r) , minF =
n∑

i=1

(2n− 2i + 1)αi (B.35)

= dn,n(2r − n) (B.36)

= d2n,2n(2r), (n− p

2
) ≤ r ≤ n [∵ a = (2r − n)]. (B.37)

Case 3 (O1 ∩ {a = 0, b = p}): We know from Theorem 6.4 that a ∈ R if and only if

max
{

r − p

2
, a∗n, 2r − n

}
≤ 0 =⇒ (n− p

2
) ≤ r. (B.38)

Further, from the definition of φα and φβ we get β̂j = 0, ∀j ≤ p and α̂i = 1, ∀i ≤ n. Putting this

in the objective function we have

dU3(r) , minF= n(n + 2k) +
p∑

l=1

(k + n− 2l + 1)δ̂j − 2kn,

= n2 +
p∑

l=1

(n + k − 2l + 1)

(
1−

(
pr

(p− r)
− l + 1

)+
)+

, 0 ≤ r ≤ p

2
, . (B.39)

where the last step follows from the fact that the optimizing (a, b, s) tuple satisfies1 a + bs
(b+s) = r.

Case 4 (O1 ∩ {b = s = N, 1 ≤ N ≤ p}): From the constraint a + bs
(b+s) = r we get a = r− N

2 .

Now, a ∈ R if and only if

max
{

r − p

2
, (2r − n), a∗n

}
≤ r − N

2
, =⇒ N

2
≤ r ≤ min

{
n− N

2
, n− N2

(2p−N)

}
. (B.40)

Since b = s = N , from the definition of φi’s, we have δ̂j , β̂j = 1, ∀j ≥ (N+1) and δ̂j , β̂j = 0, ∀j ≤ N .

Putting this in the objective function we have

dU(3+N)
(r) , minF=

n∑

i=1

(2n + 2k − 2i + 1)α̂i +
p∑

j=(N+1)

2(k + n− 2j + 1) +−2kn + 2
N∑

j=1

(n−j)∑

i=1

(1− α̂i),

=
(n−N)∑

i=1

(2n + 2k − 2N − 2i + 1)α̂i + N2,

= N2 + d(n−N),(n+2k−N)

(
r − N

2

)
,

N

2
≤ r ≤ min

{
n− N

2
, n− N2

(2p−N)

}
. (B.41)

1 Recall the optimal solution lies on the arc CD in Fig. B.1(a).
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Case 5 (O1 ∩ {b = (n − a), s = N, 1 ≤ N ≤ p}): We further assume k ≥ n, i.e., p = q = n.

Using the fact that the optimal solution always lies on the arc CD in Fig. B.1(a) we have

a +
N(n− a)

(N + n− a)
= r. (B.42)

Solving the above equation for a we get

aN =
(n + r)

2
−

√(
(n− r)

2

)2

+ N(n− r), 1 ≤ N ≤ p. (B.43)

Now, a ∈ R if and only if

max
{

a∗n, (2r − n), r − n

2

}
≤ (n + r)

2
−

√(
(n− r)

2

)2

+ N(n− r), (B.44)

which implies

max
{

Nn

(N + n)
, n− p

}
≤ r ≤ n− N

2
. (B.45)

From Claim B.1 we get

dU(3+p+N)
(r) , minF=

n∑

i=1

(2n + k − 2i + 1)α̂i +
n∑

j=1

(k + n− 2j + 1)δ̂j − kn +
n∑

i=1

(n−i)∑

l=1

(1− α̂i − δ̂l).

Since s = N , from the definition of φδ, we have δ̂j = 1, ∀j ≥ (N + 1) and δ̂j = 0, ∀j ≤ N . Putting

this in the above equation we get

dU(3+p+N)
(r)=

n∑

i=1

(2n + k − 2i + 1)α̂i −N(n + k −N) +
n∑

i=1

(n−i)∧N∑

l=1

(1− α̂i),

(a)
=

n−N∑

i=1

(2n + k −N − 2i + 1)α̂i − N(2k −N + 1)
2

+
n∑

i=(n−N+1)

(n + k − i + 1),

=
(n−N)∑

i=1

(2n + k −N − 2i + 1)
(
1− (aN − i + 1)+

)+
+ N2,

Nn

(N + n)
≤ r ≤ n− N

2
,

where step (a) follows from the fact that
∑n

i=1(n− i) ∧N = N(2n−N−1)
2 .

B.7 Proof of Theorem 6.6

The optimization problem of Theorem 6.4 is solved analytically for m = n = 1. Denoting

the optimal solution for this case by d(1,k,1)(r) and specializing Theorem 6.4, we get

d(1,k,1)(r) = min
{a∈R,b∈B}

(2k + 1)(1− a) + k(1− b) + k (1− s)− 2k, (B.46)



213

where s = b(r−a)
(b−r+a) and R and B can be computed from equation (B.28) and Theorem 6.4 by setting

m = n = 1. Since the objective function is symmetric with respect to b and s, without loss of

generality, we can assume that b ≥ s = b(r−a)
(b−r+a) , which in turn implies b ≥ 2(r− a). Differentiating

with respect to b, we see that the function in (B.46) is a monotonically decreasing function of b for

any given a when b ≥ 2(r− a). It is thus minimized when b = maxB = max
[

(1−a)(r−a)
(1−r) (1− a)

]
=

(1− a). Putting this in the above equation we get

d(1,k,1)(r) =min
{a}

(2k + 1)(1− a) + ka + k

(
1− (1− a)(r − a)

(1− r)

)
− 2k

=min
{a}

(k + 1)(1− r) + (r − a)
(

1− k(r − a)
(1− r)

)

︸ ︷︷ ︸
T (r−a)

, (B.47)

where 0 ≤ (r − a) ≤ (r ∧ (1− r)). Note that T (r − a) in the above equation is a concave function

of (r − a) of the form depicted in Fig. B.2 (in this figure, k = 3 and r = .35) which intersects the

x-axis at (r − a) = R1 = (1−r)
k . Thus the objective function is minimized for the following values

of (r − a)

(r − a) =





0, if (r − a) ≤ (1−r)
k ;

(r ∧ (1− r)), if (r − a) > (1−r)
k

=⇒ (r − a) =





0, if 0 ≤ r ≤ 1
(1+k) ;

r, if 1
(1+k) ≤ r ≤ 1

2 ;

(1− r), if 1
2 ≤ r ≤ 1.

Putting these values for optimal (r − a) in equation (B.47), we get the DMT of the (1, k, 1)

HD-RC as in (6.66), thus proving the theorem.

B.8 Proof of Theorem 6.7 (Contd.)

Here we prove the following identity by mathematical induction

dstat
(n,1,n)(r) = d(n+1),n(r), 0 ≤ r ≤ n. (B.48)

For n = 1, the result is given in [82]. Assuming that (B.48) is true for n = (N −1), we prove that it

is also true for n = N . Now, from the objective function in equation (6.71) and the constraint (6.72)
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Figure B.2: Plot of T (r − a) vs. (r − a).
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it is clear that for 0 ≤ r ≤ 1, the objective function decays at the fastest rate if α1 is decreased

with increasing r.2 Therefore, for 0 ≤ r ≤ 1, the optimal solution is α1 = (1 − r)+, αi = 1 for

2 ≤ i ≤ N and β1 = 1. Putting this in equation (6.71) we get

dstat
(N,1,N)(r) =2N(1− r) + d(N−1),N (0), 0 ≤ r ≤ 1;

=d(N+1),N (r), 0 ≤ r ≤ 1. (B.49)

On the other hand, since α1 = (1− r)+ for r ≥ 1, substituting α1 = 0 in equation (6.71) we

see that the optimization problem can be written as

dstat
(N,1,N)(r) = min

{(ᾱ,β1)}

N∑

i=2

(2N − 2i + 2)αi + (N − 1)β1 − (N − 1) +
N−1∑

i=2

(1− β1 − αi)+,

= min
{( ¯̂α,β1)}

(N−1)∑

i=1

(2(N − 1)− 2i + 2)α̂i + (N − 1)β1 − (N − 1) +
N−1∑

i=1

(1− β1 − α̂i)+,

subject to the following constraints

(N−1)∑

i=1

(1− α̂i) +
1
2
(1− β1) ≤ (r − 1); 0 ≤ α̂1 ≤ α̂2 ≤, · · · ≤ α̂(N−1) ≤ 1; 0 ≤ β1 ≤ 1 and (β1 + α̂(N−1)) ≥ 1.

Evidently, the solution of (B.50) at a given r is the DMT of the static (N − 1, 1, N − 1) HD-RC

evaluated at r − 1, which by the induction assumption is

dstat
(N,1,N)(r) = dstat

(N−1,1,N−1)(r − 1), 0 ≤ (r − 1) ≤ (N − 1)

= d(N−1),N (r − 1), 0 ≤ (r − 1) ≤ (N − 1)

= d(N+1),N (r), 1 ≤ r ≤ N.

Combining this with equation (B.49) we get dstat
(N,1,N)(r) = d(N+1),N (r), 0 ≤ r ≤ N Hence, by

induction we have for all n ∈ N,

dstat
(n,1,n)(r) = d(n+1),n(r), 0 ≤ r ≤ n.

2 For 0 ≤ r ≤ 1
2
, the objective function decays at the same rate if β1 is decreased, but then for 1

2
≤ r ≤ 1, the

objective function decreases at a strictly smaller rate than if α1 was decreased from the beginning.
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