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ABSTRACT

We are applying a three part, investigative approach to the
formal design method described by Gries in his book The Sci-
ence of Programming. First, we walkthrough the process on
a number of small problems; second, we construct a simula-
tion program which duplicates the designs produced by the
walkthroughs; and third, we produce a process program that
supports human application of the method. We have com-
pleted two iterations of the three step procedure including
construction of a simulation engine and adaptation of a
language-oriented editor to support the method. In this paper,
we describe the design process using cliches: complex
knowledge structures representing commonly occurring situa-
tions.

1. Introduction

Some have suggested that formal methods can
enhance both the software specification and design
processes [1,13,16,17]. For example, Dijkstra and
Gries [4,5,10,11] have developed a process which
takes a pre- and post-condition specification written in
first-order predicate logic and incrementally transforms
it into a verified design written using guarded com-
mands. Although this technique has been used and
taught for over a decade, at present is it difficult to
either correctly apply it, determine if it has been
applied properly, or evaluate it for effectiveness.

One approach to gathering information about
development processes is the use of walkthroughs and
inspections [6,7,32,34]. In these situations, a software
item or the method used to produce it is presented to a
group who evaluate it according to an appropriate set
of criteria. Even more information can be gathered
through process programming [12,18,23,24]: describ-
ing software processes using programming language
constructs and notations. To a certain extent, this is
similar to previous work on automatic programming
[9,14,19,21]. An important contribution of these pro-
Jects is the notion of cliche (or plan or schema): a com-
plex knowledge structure representing a commonly
occurring situation.

We are applying a three part, investigative

approach to the formal design method described by
Gries in his book The Science of Programming. First,

we walkthrough, in other words hand simulate, the pro-
cess on a number of small problems. This produces an
increased understanding of the method as well as a
suite of example designs. Second, we produce a pro-
gram that simulates the design process discovered dur-
ing the walkthroughs; ideally, it should be able to
recreate the suite of designs previously produced.
Third, we produce a process program that supports
human application of the method.

We have currently completed two iterations of
our three part approach on the Gries/Dijkstra process
[27,28,30,31]; our understanding of the method has
evolved significantly during the time we have spent
studying it. After performing the initial walkthroughs,
we viewed the design method as a linear sequence of
small, relatively independent steps; however, our
attempts to automate the process based on this model
met with no success. Instead, both our simulation and
process programs are based on a library of relatively
large cliches representing solutions to common design
problems.

Our first iteration cliches combine a number of
what were considered distinct steps during the initial
walkthroughs into a single unit. Our second iteration
cliches combine several steps from the initial walk-
throughs, but not nearly as many as the first iteration
cliches do. They also better reflect the process
described by Gries [11]. We believe our second itera-
tion cliches are a significant step towards an accurate
and detailed description of the method.

In the remainder of this paper, we describe the
results of our investigations in more detail. In section
two we describe the Gries/Dijkstra design process as
we understood it after our initial walkthroughs, and in
section three we describe the architecture used in both
our simulation and process programs. In section four,
we give an example of our first iteration cliches and
their use in design derivation, and in section five we do
the same for the second iteration. Finally, in section
six, we summarize and draw some conclusions from
our.experience.



2. Gries/Dijkstra Design

Figure 1 shows a pictorial representation of the
process described in [11] as we understood it after
completing our initial walkthroughs. The design
derivation process uses stepwise refinement to
transform pre- and post-condition specifications written
in first-order predicate logic into verified programs
written using guarded commands. At each step, stra-
tegies determine how the current partial program is to
be elaborated, and proof rules are used to verify the
correctness of the transformation.

For example, loops are specified using a predi-
cate called the invariant, which must be true both
before and after each iteration of the loop, and an
integer function called the bound, which is an upper
limit on the number of iterations remaining. The proof
rule for loops has five conditions for correctness [11]:

1) the invariant must be initialized correctly

2) execution of the loop body must maintain the
invariant

3) termination of the loop with the invariant true must
guarantee the post-condition

4) the bound function must be greater than zero while
the loop is running

5) execution of the loop body must decrease the
bound.

A loop development strategy closely parallels the proof
rule; each step in the strategy suggests an action, whose
result can be verified using one of the items from the
proof rule.

Formal
Specifications

Proof Rules

Design
Derivation

Correct
Designs

Figure 1. Gries/Dijkstra Design Process

To develop a loop given a pre- and post-condition:

1) weaken the post-condition to obtain an invariant
and develop a statement to initialize it
- check item one of proof rule

2) develop a loop guard
- check item three of proof rule

3) develop a bound function
- check item four of proof rule

4) develop a statement that decreases the bound
- check item five of proof rule

5) develop a statement that restores the invariant
- check item two of proof rule.

The first step is to develop an invariant by weak-
ening the post-condition; in other words, the invariant
is an easier to satisfy version of the desired result.
There are at least three ways to weaken the post-
condition: delete a conjunct, replace a constant by a
variable, and enlarge the range of a variable. An ini-
tialization for the loop must also be developed and then
checked using item one of the proof rule. A good
invariant has a simple initialization; if none can be
found then the invariant is discarded and another weak-
ening method is tried.

The second step is to develop a loop guard; in
general, the guard will follow directly from the weak-
ening method. For example, if the invariant is created
by deleting a conjunct from the post-condition, then the
guard will be the negation of the deleted conjunci. The
guard’s correctness is verified using item three of the
proof rule.

The third step is to develop a bound function;
this is done by discovering a property that should be
decreased by each iteration of the loop body and then
formalizing it. Item three of the proof rule is used to
verify that the invariant, guard and bound are con-
sistent.

The fourth step is to develop a statement that
decreases the bound; this will form the first part of the
loop body. Item five of the proof rule is used to check
that the bound is diminished. The final step is to
develop a statement that restores the invariant after the
staterment which decreases the bound has invalidated it.
Item two of the rule is used to check that the loop body
maintaing the invariant.

The above strategy is a step by step procedure
for transforming a pre- and post-condition into a prov-
ably correct loop. Each step in the strategy is checked
using the appropriate item from the proof rule; the loop
and its proof of correctness are developed simultane-
ously. We can further clarify this process in the con-
text of an example.

Kemmerer’s Library problem has received con-
siderable attention in the software engineering litera-
ture [15,33]. The problem is concemned with a small



library database that provides both query and update
transactions to library staff and users. The architectural
design for our solution [28] consists of a single module
that encapsulates the database and provides an entry
routine for each transaction. The state of the module is
modeled abstractly using high-level data types, and the
entry routines are specified using pre- and post-
conditions.

For example, consider the "who_has" function,
which returns the set of all users who currently have a
particular book checked out.

function who_has( s:user ; b:book
) : set (user);
pre s.staff ;
post who_has =
{ueusers:corec(u,b)echecks};

This specification uses the type "corec” and variable
"checks" which are declared as follows.

type corec = record
name : user ;
item : book ;

end corec ;

var checks set (corec);

A "corec" records the fact that a book is checked out
from the library. It contains both the bock and the
patron who borrowed it. The set "checks" holds a
check out record for each book currently on loan from
the library.

The "who_has" function takes two arguments.
The first is the user performing the transaction, and the
second is the book in question. The pre-condition
states that the transaction is being invoked by a staff
member, while the post-condition states that the return
value is the set of all users who currently have the book
in question checked out. :

Using the Gries/Dijkstra process, design might
proceed as follows. First, we replace the constant
"users" in the post-condition with the variable (expres-
sion) "users-usrs” to obtain the following invariant.

usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks}}

The variable "usrs” holds the users still to be
examined. At any point during the loops execution,
"usrs" is a subset of "users” and "who_has" contains
the set of all users already examined who have the
book in question checked out. The invariant can be ini-
tialized  with  the  simultaneous  assignment
"who has,usrs:={},users", and this satisfies item

one of the proof rule.

We now develop a guard for the loop. Item three
of the proof rule tells us that the negation of the guard
and the invariant together must imply the post-
condition. Since we created the invariant from the
post-condition by replacing a constant with a variable,
the guard is just that the variable does not equal the
constant. In our example, the loop should stop when
"users-usrs” is equal to "users"; therefore, the guard is
"usrs={}", and it satisfies item three.

We now develop a bound function. In our exam-
ple, each iteration should decrease the number of ele-
ments in "usrs"; we formalize this as "[usrs|" and
check that it satisfies item four of the proof rule. We
now have the following.

{Q: true}
var usrs set (user) ;
who_has,usrs:={},users ;
{inv P:usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks}}

{bnd t: |usrs|}
do usrs#{} — < S > od
{R: who_has =

{ueusers:corec (u,b)echecks}}

We now develop a statement that decreases the
bound. We declare a local variable "usr" of type "user"
and use the statement sequence "choose(usrs,usr);
usrs:=usrs-ust” is to remove an element from "usrs".
Using item five of the proof rule we verify that this
decreases " |usrs | ", and it becomes the first part of the
loop body.

Finally, we must develop a statement that
restores the invariant after the previous command has
invalidated it. There are two cases; therefore, the body
contains an if statement. If "usr" has the book in ques-
tion checked out ("corec(usr,b) € checks"), then they
must be added to the result set; otherwise, nothing
needs to be done.

Using item two of the proof rule we verify that
the body of the loop maintains the invariant, and we
have now produced the complete design shown in Fig-
ure 2. Since we ensured that all five items of the
appropriate proof rule were satisfied as we constructed
the loop, we have already proven it correct.

As we have just described it, the design process
consists of a single level; the developer proceeds
through a sequence of small, relatively independent
steps to produce a final design. While we found this
model adequate for performing walkthroughs, our
attempts to automate the process based on it met with
no success. Instead, both our simulation and process
programs are based on a library of relatively large
cliches representing solutions to common design prob-
lems.



{Q: true}
var usrs : set (user) ;
var usr : user ;
who_has,usrs:={},users ;
{inv P:usrscusers A
who_has = {uc€users-usrs:
corec (u,b)echecks}}
{bnd t: |usrs]|}
do usrs#{} —
choose (usrs,usr); usrs:=usrs—usr;
if corec (usr,b)echecks —
who_has:=who_has+usr ;
[ corec(usr,b)échecks —
skip ;
fi
od
{R: who_has =
{ueusers:corec(u,b)echecks}}

Figure 2. Completed Who_Has Design

3. Automation Architecture

Figure 3 shows a pictorial representation of the
design process implemented in both our simulation and
process programs. It has two levels. At the lower
level, a design derivation sub-process transforms for-
mal specifications into correct designs using a library
of pre-verified cliches. On the upper level, a cliche
derivation sub-process uses strategies and proof rules
to construct and verify cliches for the library.

The correctness of a final design depends on the

correctness of the cliches used in its derivation; there-
fore, each cliche must be proven to produce only
designs that satisfy the corresponding specification.
The advantage of our two level architecture is that
proofs are performed mostly at "compile” rather than
"run" time. Cliche construction and verification is
quite difficult, but is done only once for each cliche and
performed by a human. On the other hand, cliche
application is reasonably easy and is performed repeat-
edly by the machine.

We have created both simulation and process
programs based on this architecture. The input to our
simulation [27,29-] is a pre- and post-condition for the
unit to be constructed, as well as a library of pre-
verified cliches. Each cliche has an applicability condi-
tion, as well as a rule for transforming specifications
into more complete programs. The simulation applies
cliches until a complete design is produced or no
cliches are applicable. Application of a cliche may
generate sub-specifications for which a design must be
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Figure 3. Design Process as Automated

created, and a simple backtracking scheme allows
transformations to be undone if they do not lead to a
complete solution. '

Our process program [31] is based on ISLET, a
language-oriented program/proof editor originally
developed as part of the ENCOMPASS project
[25,26]. The editor provides commands to add, delete
and refine constructs. As the program/proof is incre-
mentally constructed, the syntax and semantics are con-
stantly checked, and verification conditions are gen-
erated when necessary. Our process program also
allows a designer to perform the technique described
by the simulation; they can browse a library of pre-
verified cliches, select a promising candidate, and
apply it to a specification.

The architecture presented in this section is quite
simple, but adequate for its purpose. The use of a
library of cliches allows the process to be separated
into a difficult, possibly intuitive part performed by a
human, and a simple, mechanistic part performed by a
machine. The simplicity of the design derivation sub-
process implies that the power the overall process
depends on the complexity of the cliches in its library.



4. Cliches - First Iteration

The number of cliches that can be used in the
design process is literally infinite; however, a single
example is sufficient to transmit the flavor of our first
iteration. The real thrust of this effort was the con-
struction of relatively powerful cliches that combined a
number of steps from the walkthroughs into a single
unit,

For example, Figure 4 shows a simplified
representation of the "conditional_iteration_on_set"
cliche. Application of this cliche can solve problems
that require the use of a loop with an embedded condi-
tional. In such cases, computation of the desired result
involves processing each element of a set in turn. The
post-condition for the cliche states that the result vari-
able, "Var", is equal to the value of "Iop(Set,Cond)"; in
other words, to the value of an iteration operator
applied to a set with a certain condition.

The body of "conditional iteration_on_set"
declares two local variables. "Lset" is a set containing
all the items still to be considered, while "Lvar" is the
item currently being processed. "Lset" is initialized to
"Set" and the result to the identity element, "Id". The
loop interates over all the items in "Set". If the item in

cliche conditional iteration_on_set is

{Q}

var Lset : set (Stype) ;
var Lvar : Stype ;
Lset,Var := Set,Id H

{inv P:LsetcSet A
Var=Iop(Set-Lset, Cond)}
{bnd t:|Lset]}
do Lset#{} —
choose (Lset, Lvar) ;
Lset:=Lset-Lvar H
{Ql:Var=VAR}
< 81 >( Var:inout Rtype ) ;
{R1l:-Cond (Lvar) A Var=VAR V
Cond (Lvar) A
Var=0p (VAR, Lvar) }
od
{R: Var = Iop(Set,Cond)} ;
if :
(Id,0p (Var,Lvar), Iop(Set,Cond))
€ iop table ;

end conditional iteration on_set ;

Figure 4. Conditional_Iteration_on_Set Cliche

question - satisfies "Cond" then "Var" is set to
"Op(Var,Lvar)". The correct result has been calculated
when all the items have been considered.

In general, knowing when this cliche can be
applied is difficult; how can we determine which opera-
tors are allowed, what the identity elements are, and
how the result is updated when an appropriate element
is found? In practice, checking for applicability is sim-
ple; the cliche can be applied if the operator unifies
with one of the elements in a pre-computed table. Each
entry in "iop_table" contains the above information and
is gnaranteed to satisfy the following properties.

1 Id = Iop({},Cond)
2.1)  (sess ACond(s) =>

Iop(ss,Cond) = Op(lop(ss-s,Cond),s))
22) (sess A—Cond(s) =>

Iop(ss,Cond) = Iop(ss-s,Cond))

These properties are exactly those necessary to prove
the correctness of the cliche body and ensure that all
the designs produced from the cliche will be correct.

A number of small cliches are also necessary to
handle the details of design derivation. For example,
the "simple_assignment” cliche generates (multiple)
assignment statements.

cliche simple assignment is

{Q} Var;..Vary := Soln,..Solny {R}
if

Q => R[[Var;..Vary / Soln,..Solnyl]

end simple_ assignment ;

This cliche states that a simultaneous assignment is
correct if the pre-condition implies the post-condition
with the left hand side of the assignment substituted for
the right. This cliche presents certain difficulties in that
a completely general implementation of its applicabil-
ity test involves an undecidable problem [8,17]. Our
solution is to use a somewhat less general, but much
less expensive test.

The "simple_if_then_else" cliche is somewhat
more complex; it generates generates two branch if-
then-else statements where one guard is the logical
negation of the other.



cliche simple if then else is
{Q}
if Bl —» {Q A Bl} < 81 > (Bl A E1}
[ B2 - {Q A B2} < 82 > {B2 A E2}
£i
{R: Bl A EL V B2 A E2}

if
is_negation(B1,B2) ;

end simple if then else ;

A number of small, necessary, but relatively
uninteresting cliches were developed during our first
iteration, as well as some relatively powerful cliches
which combined a number of steps from the initial
walkthroughs into a single unit. The first iteration
cliches are presented in more detail and verified in [27].
In line with our two level process model, cliche appli-
cation was made as easy as possible, even at the cost of
more effort in cliche construction. Where appropriate,
specialized tables are used to "cache" computationally
expensive items.

Although the framework we constructed is
minimal, it does have enough power to duplicate some
of the designs produced by a human.

4.1. Example Design Derivation

Let us reconsider the "who_has" function
presented in section two. We can see that the
"conditional_iteration_on_set" cliche is applicable to
the specification.

{Q: s.staff}

< 8 >( who_has:out set (user) );

{R: who_has =
{ueusers:corec(u,b)echecks}}

{0}
< conditional_iteration on_set >
{R: Var = Iop(Set,Cond) }

The specification and cliche unify with "Var" =
"who_has", "lop" = "set_of_all", "Set" = "users", and
"Cond" = "corec(u,b)e checks".

Figure 5 shows the result of applying the
"conditional_iteration_on_set" cliche to the
specification. The overall structure of the design is
now evident. The loop iterates over all the users in the
library. The variable "usrs" holds the set of all users
still to be considered, while "usr" holds the user
currently being examined.

The loop body must still be completed before the
design is finished. The "simple_if_then_else" cliche is
applicable, and instantiation produces the following
design for the loop body.

{Q: true}
var usrs set (user) ;
var usr : user ;

who has,usrs:={},users ;
{inv P:usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks}}
{bnd t: |usrs]|}
do usrs#{} —
choose (USrs,usr); USrs:=usrs-usr ;
{Ql: who_has=WHO_HAS}
< 81 >(who_has:inout set (user));
{Rl:corec (usr,b)echecks A
who_has=WHO HAS+usr V
corec (usr,b)échecks A
who_has=WHO_HAS}
od ’
{R: who_has =
{ueusers:corec (u, b)echecks}}

Figure 5. Instantiated Cliche

if corec(usr,b)echecks —
{Q2:who_has=WHO_HAS A
corec (usr,b)echecks}
< 82 >(who_has:inout set (user));
{R2: corec(usr,b)echecks A
who_has=WHO_HAS+usr}
[ corec (usr,b)échecks —
{03:who_has=WHO HAS A
corec (usr,b)échecks}
< 83 >(who_has:inout set (user));
{R3:corec (usr, b)¢checks A
who_has=WHO_ HAS}
£i

For each user, the loop body checks if the user
has the book in question checked out. If so, then the
user is added to "who_has", if not then nothing is done.
The design of the loop body is completed by applying
the "simple_assignment" cliche twice. As a final flour-
ish, "who_has:=who_has" is optimized to "skip",
thereby reproducing the hand derived design shown in
Figure 2. This development is presented in more detail
in [27,301.

5. Cliches - Second Iteration

In the first iteration of our investigative process,
we concentrated on constructing a system that could
reproduce some of the designs created by a human; we
did not devote a lot of effort to developing a process



that closely matched the descriptions of the original
authors [4,5,10,11], or the detailed activities of a
human using pencil and paper. In the second iteration
of our three part approach, we produced a new library
of cliches that more closely reflect the method
described by Gries in his book The Science of Pro-
gramming [11].

The first iteration cliches combine a large
number of steps from the walkthroughs into a single
unit. In general, the second iteration cliches combine
fewer steps than the first iteration cliches do; therefore,
it may take more cliche applications to transform a
specification into a completed design.

As an illustration, let us again consider the
"who_has" function. In this case, three second iteration
cliches replace "conditional_iteration_on_set" from the
first iteration. The "simple_replace_constant” cliche
replaces a constant in a post-condition with a variable
expression to create a loop invariant; - the
"decrease_then_restore” cliche decomposes a loop
body into a statement which decreases the bound func-
tion and another that restores the invariant; and the
"conditional_operation" cliche generates a loop body
with an embedded conditional.

Figure 6 shows a simplified representation of the
"simple_replace_constant” cliche. This cliche replaces
a constant in a post-condition with a variable expres-

-sion to create a loop invariant. Specifically, the cliche
states that a loop with initialization "S0" and body "S1"

cliche simple replace_constant is
{Q}
var V ;
< S0 > ;
{inv P: Rng AR[[ C / E 1]}
{bnd t: |C|-|E|}
do B: E#C —
{Ql: P A B A t=tl}
< 81 > ;
{R1: P A t<tl}
od
{R}
if
C € constants(R) A
(C,E,V,Rng) € mkvariable ;

end simple_replace constant ;

Figure 6. Simple_Replace_Constant Cliche

is correct if: "C" is a constant in the post-condition, the
tuple "(C,E,V.Rng)" is an element of the relation
"mkvariable", and the loop invariant is equivalent to
"Rng" conjoined with the result of substituting "E" for
"C" in the post-condition. Here, "V" is a variable, "E"
is an expression in "C" and "V", and "Rng" is a boolean
expression restricting the range of "V".

The applicability test for this cliche is simplified
by caching computationally expensive items., "Mkvari-
able” can be viewed both as a relation and as a Prolog-
style procedure. Given a constant "C", it produces an
expression "E" to be substituted in the post condition,
as well as the appropriate declaration and range. Each
tuple in (or produced by) "mkvariable" is guaranteed to
satisfy the following property.

(C,E,V,Rng) € mkvariable =>
Rng A E#C => (|C|-|E|) 2 0

This is exactly what is necessary to prove the correct-
ness of the cliche body and thereby ensure that all the
designs produced by the cliche will satisfy their
specifications.

Figure 7 shows a simplified representation of the
"decrease_then_restore” cliche. This cliche decom-
poses a loop body into a statement which decreases the
bound function and another that restores the invariant.
The applicability test for this cliche requires that the
tuple "(T,V,E,SO,F,D)" is an element of the relation
"decrease_bnd", and that "S1" does not modify any of
the variables referenced in "T".

cliche decrease_then restore is

{Q: P ABA T=tl}

var D ;

< 80 >

{Ql: P[[ V/ E ]]1 AF}
< 81 >

{Rl: P}

{R: P A T<tl}

if
(r,v,E,S0,F,D) € decrease_bnd A
modify (S1) N use(T) = & ;

end decrease_then_restore ;

Figure 7. Decrease_Then Restore Cliche




Here, "T" is the bound function for the loop; "V"
is a variable that will be modified to decrease "T"; "S0"
is a statement that modifies "V"; "E" is an expression
reflecting the modifications to "V"; "F" is a formula
stating additional facts concerning the modification;
and "D" is a declaration of the iteration variable.

To prove the correctness of the cliche body, and
thereby guarantee the correctness of all the designs
produced from it, every tuple "(T,V,E,SO,F,D)" in the
"decrease_bnd" relation must satisfy the following
three properties .

1. {T=tl} SO0 {T<tl}
2. {true} SO0 {F}

3. {W} SO0 {wW) ¥} for any W

Figure 8 shows a simplified representation of the
"conditional_operation" cliche. Application of this
cliche generates a loop body with an embedded condi-
tional. The post-condition for "conditional_operation”
is the invariant for the enclosing loop. It states that
"Lset" is a subset of "Set", and that "Var" is equal to
the value of an iteration operator applied to the differ-
ence of "Set" and "Lset" with a certain condition.

The pre-condition for the cliche requires that the
loop invariant hold with "LSET" substituted for "Lset",
and that "Lset" be the result of removing "Lvar" from
"LSET". Here, "Lset" is a set containing all the items
still to be considered; "LSET" is the value of "Lset"
from the previous iteration; and "Lvar" is the item

cliche conditional operation is

{Q: LSETcSet A
Var = Iop (Set-LSET,Cond) A
Lset=LSET-Lvar A LvareLSET}
{Ql: Var=VAR}
< 81 >( Var:inout Rtype ) ;
{R1l: ( —Cond(Lvar) A Var=VAR V
Cond (Lvar) A Var=Op (VAR,Lvar) )}
{R: LsetcSet A
Var = Iop (Set-Lset,Cond)}
if
(Iop (Set, Cond),Op (Var, Lvar))
€ iteration_ops ;

end conditional operation ;

Figure 8. Conditional_Operation Cliche

currently being processed.

"Conditional_operation" can be applied to a
specification if the pre- and post-conditions unify and
the tuple "(Iop(Set,Cond), Op(Var,Lvar))" is an ele-
ment of "iteration_ops”. The cliche’s proof of correct-
ness requires that every tuple in ‘“iteration_ops"
satisfies two properties. These are exactly those desig-
nated 2.1 and 2.2 in the description of "iop_table" for
the “conditional_iteration_on_set" cliche in section
four.

The cliches presented in this section differ
significantly from those developed in the first iteration
of our investigative process. They more closely maich
the process described in [11], and in general combine
fewer of what were considered independent steps in
our initial walkthroughs. The second iteration cliches
are discused in more detail and verified in [29]. Since
they are in some sense "smaller”, more applications
may be required to produce a complete algorithm from
a specification; however, they are still adequate to the
task of reproducing the some of the designs created by
a human.

5.1. Example Design Derivation

Let us again consider the "who_has" function
first presented in section two. The
"simple_replace_constant” cliche is applicable to the
initial specification. The constant "users" is selected
from the post-condition; the "mkvariable" relation pro-
duces an expression "users-usrs" and range
"usrscusers”; and substitution yields the following
invariant,

usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks}

Instantiation of the guard yields “users-
usrszusers”, which simplifies to "usrs#{}" under the
assumption that "usrs" is a subset of "users". Similarly,
the bound function instantiates to "|users|- | users-
usrs | ", which simplifies to " | usrs | ", Therefore, appli-
cation of "simple_replace_constant” produces the par-
tial design shown in Figure 9.

Application of the "simple_assignment” cliche
produces a  loop  initialization, and  the
"decrease_then_restore" cliche is applied to the
specification of the loop body. The "decrease bnd"
relation produces a bound " |usrs|", variable "usrs",

expression  "USRS", statement "choose(usrs,ust);
usrs:=usrs-usr”, and formula "usrs=USRS-usr A
usre USRS". Therefore, instantiation of

"decrease_then_restore" produces the following body
for the loop.



choose (usrs,usr); usrs:=usrs-usr;
{Q1l:USRScusers A
who_has = {ue€users-USRS:
corec (u,b)echecks} A
usrs=USRS-usr A usre USRS}
< 8 >(who_has:inout set (user));
{Rl:usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks}}

The "conditional_operation” cliche is applicable
to the remaining specification, and instantiation pro-
duces the following.

choose (usrs,usxr); usrs:=usrs-usr;

{Ql:who_has=WHO_HAS}

< § >(who_has:inout set (user));

{Rl:corec(usr,b)echecks A
who_has=WHO HAS+usr V

corec (usr,b)échecks A
who_has=WHO_ HAS}

The rest of the derivation proceeds exactly as
described in section four; a single application of
"simple_if_then_else” and two applications of
"simple_assignment” reproduce the hand derived
design shown in Figure 2. This development is

{Q: true}
var usrs : set (user) ;
< 80 >(who_has,usrs:inocut set (user)) ;
{inv P:usrscusers A
who_has = {u€users-usrs:
corec(u,b)€echecks}}
{bnd t: |usrs]|}
do usrs#{} —
{Ql:usrscusers A
who_has = {u€users-usrs:
corec (u,b)echecks} A
usrs#{} A |usrs|=tl} ;
< 81 >(who_has:inout set (user));
{Rl:usrscusers A
who _has = {u€users-usrs:
corec (u,b)echecks} A
Jusrs|<tl} ;
od
{R: who_has =
{u€users:corec (u,b)echecks}}

Figure 9. Instantiated Cliche

presented in more detail in [29].

6. Summary and Conclusions

‘We have been applying a three part, investigative
approach to the formal design method described by
Gries in his book The Science of Programming [11].
First, we walkthrough, in other words hand simulate,
the process on a number of small problems. This pro-
duces an increased understanding of the method as well
as a suite of example designs. Second, we produce a
program that simulates the design process discovered
during the walkthroughs; ideally, it should be able to
recreate the suite of designs previously produced.
Third, we produce a process program that supports
human application of the method.

We have currently completed two iterations of
our three part approach on the Gries/Dijkstra process
[27,28,30,31]; our understanding of the method has
evolved significantly during the time we have spent
studying it. After performing the initial walkthroughs,
we viewed the design method as a linear sequence of
small, relatively independent steps; however, our
attempts to automate the process based on this model
met with no success. Instead, both our simulation and
process programs are based on a library of relatively
large cliches representing solutions to common design
problems.

This view of the process has two levels. At the
lower level, a design derivation sub-process transforms
formal specifications into correct designs using a
library of cliches. On the upper level, a cliche deriva-
tion sub-process uses strategies and proof rules to con-
struct and verify cliches. The advantage of our two
level architecture is that proofs are performed mostly at
"compile” rather than "run" time. Cliche construction
and verification is quite difficult, but is done only once
for each cliche and performed by a human. On the
other hand, cliche application is reasonably easy and is
performed repeatedly by the machine.

The question of how a human performs
Gries/Dijkstra design using pencil and paper is beyond
the scope of our work. It might be argued that even
when someone performs a linear sequence of steps as
described in section two, they are relying on a (possibly
sub-conscious) cliche. On the other hand, some might
say that the cliches are just a convenient way to store
information that can be easily rederived when needed.
As we understand it, the use of cliches is supported by
work on the psychological aspects of programming
[2,3,20,22].

Our first iteration cliches combine a number of
what were considered distinct steps during the initial
walkthroughs into a single unit. Our second iteration
cliches combine several steps from the initial walk-
throughs, but not nearly as many as the first iteration
cliches do. They also better reflect the process



described by Gries [11]. We believe our second itera-
tion cliches are a significant step towards an accurate
and detailed description of the method.
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