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Lexical and syntactic information have been shown to play important roles in semantic pars-

ing. However, there is still no solid research on the relationship between semantic parsing and

different types of linguistic knowledge that support this, e.g., lexical cues, dependency structures,

semantic roles, etc. It is also known that dependency structures provide rich syntactic information

for various NLP applications. Yet, few applications use dependency structures in an underlying

neural network framework. This dissertation introduces a complete framework designed to parse

Abstract Meaning Representations (AMRs), a semantic representation that expresses the meaning

of a sentence as a directed acyclic graph. To enhance our AMR parser, we first develop a light verb

construction (LVC) detector using a SVM. We also link input dependency parses to AMR concepts

taking an EM-based approach to generate alignment pairs.

The main parser is split into three sub-components: a frame identifier, a concept identifier,

and a transition action identifier. To support these components, we develop a Recursive Neural

Network (RevNN) based model as the underlying framework of all three components. RevNN is

based on dependency structures combined with distinct linguistic features. RevNN generates a

corresponding vector representation for each dependency node, passing these vectors to the three

identifiers as the underlying framework. By integrating all the above components, we design a

transition-based parser which generates AMR graphs from input dependency parses.

Results show that our LVC detector surpasses comparable systems by 3 to 4% in F1 score,

and that this LVC detector supports the AMR parser. Our aligner improves F1 score by 2 to

5% with LVCs information. Moreover, the resulting AMR parser achieves the best Smatch scores

among other transition-based AMR parsers. We also show that the RevNN framework helps to

integrate different linguistic features for improvement in accuracy of individual components.
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Chapter 1

Introduction

1.1 Motivation

As natural language understanding becomes more popular, the demand for semantic parsing

in natural language continues to grow. Meanwhile, with the availability of large annotated corpora

and comprehensive lexical resources, as well as advances in statistical machine learning techniques,

people are interested in how these resources and techniques can help semantic parsing. Traditionally,

there are several different semantic representations, e.g., First-Order Logic, Abstract Meaning

Representation (AMR) (Banarescu et al., 2013), and semantic role labeling (SRL), i.e., predicate-

argument structure representation, etc. Each representation focuses on different linguistic aspects.

The first two aim to express sentence level semantics, and the last one focuses more narrowly

on predicate-argument structures, which are closely tied to syntax. Natural Language Processing

(NLP) applications, e.g., question answering, temporal resolution, and entailment, all benefit from

high quality, quick and automatic semantic parsing systems.

Nonetheless, although sentence-level semantic analysis is deeply connected to predicate-

argument structures, and hence syntactic structure, recent research on semantic parsing favors

the use of contextual information, e.g., distributional semantic features, over the use of syntactic

structural information, e.g., dependency parses. As deep learning methods have become more pop-

ular, researchers tend to prefer methods involving lexical and distributional features as these are

able to insert more data into their model. Recently, there have been attempts to apply a joint model

which uses both lexical and syntactic information on semantic parsing tasks, both sentence-level
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semantic parsing and semantic role labeling (SRL). Due to the scarcity of gold standard semantic

annotation data, most semantic parsing systems need to address the data sparsity problem. We

believe that predicate-argument structure can play an influential role in semantic parsing since it

supplies more coarse-grained patterns than lexical information.

AMR depends heavily on PropBank (PB) (Palmer et al., 2005) predicate-argument informa-

tion since it uses semantic role labels as the relation labels between AMR concepts. This sharing

aspect leads to speculation that a model that improves the performance of a semantic role labeler

system may improve the accuracy and performance of an AMR parser as well. One way of doing

this is to integrate semantic role information directly into a graph structure that also includes co-

reference. A dependency structure is a natural choice for such integration; it is possible to replace

some syntactic dependencies with semantic roles without altering the properties of the dependency

structure. Once the integration is accomplished, an AMR parser can learn from this semantically-

enriched dependency structure and its semantic roles, thus improving the identification of AMR

concept and relation labels.

Certain linguistic phenomena that have not drawn much attention with respect to sentence-

level semantic parsing may turn out to also be useful sub tasks in this process. For example, both

nominal predicates and light verb constructions (LVCs), which consist of semantically general verbs

and a noun that denotes an event or state, can function as the main predicate of a sentence and

have been shown in recent studies to be important characteristics for semantic role labeler systems

(Gerber and Chai, 2012; Do et al., 2017). We believe that these linguistic phenomena can assist

the sentence-level semantic parsing task as well.

Meanwhile, deep learning has recently shown much promise for NLP research. Convolutional

networks, recursive networks, recurrent networks, long short-term memory networks, sequence-to-

sequence models, and attention mechanisms, all have achieved success in different NLP applications,

including in machine translation (Devlin et al., 2014), dependency parsing (Chen and Manning,

2014), and semantic role labeling (FitzGerald et al., 2015; Zhou and Xu, 2015). In general, most

applications use word vector representations, or what are called “word embeddings”, as training
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features, and process each sentence at a surface form level. Word embeddings allow a model to

share meaning between similar words. Syntactic information contributes less in these frameworks.

However, dependency relations and dependency paths have proven to be important features in some

tasks, e.g., SRL. The inclusion of syntax-based structures in a neural network provides not only a

syntax-rich framework for NLP tasks but can also supply more general features than word-based

systems, thus addressing data sparsity problems. On the other hand, there have also been attempts

to incorporate syntactic and dependency information into the word embeddings directly (Levy and

Goldberg, 2014; Melamud et al., 2015). We are specifically interested in seeing to what extent

syntax-enriched word embeddings can aid the overall performance of semantic parsing.

1.2 Background

1.2.1 Semantic Role Labeling

Semantic role labeling is a process that identifies the participants that are involved in

sentence-level semantic analysis. This analysis represents the roles of “who” did “what” to “whom”,

“when,” and “where.” For instance, in Sentence (1)

(1) Every day, [Rider Martin] rode [V ehicle the bus ] [Road on highway 880] .

the predicate ride profiles a ride vehicle event, with participant Martin as a rider, the bus as

a vehicle, and on highway 880 as the road. The predicate is usually a verb. In some cases,

however, the predicate can be a nominal, an adjective or even an adverb phrase. Multi-word

expressions (MWEs) can also function as predicates (i.e., LVCs (see Section 1.2.2).) With an

individual predicate, the participants that are involved in the event are called arguments.

In this thesis, PropBank (PB) (Palmer et al., 2005) standards are used to represent each

predicate and its semantic role relations. PB uses numbered arguments to express the core roles of

the participants for each predicate. Generally, Arg0 exhibits features of a prototypical agent, causer,

or experiencer. Arg1 is a prototypical patient or theme; Arg2 is usually a prototypical beneficiary.

For example, in Sentence (1), PB annotates Martin as Arg0 and the bus as Arg1. In addition
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Table 1.1: PropBank frame file for free.

free.01: be available free.03: cost nothing free.04: be unrestricted
Arg0: causer Arg1: thing that costs nothing Arg1: source
Arg1: source Arg2: of charge Arg2: free from
Arg2: theme Arg3: resulting freedom

to core arguments, PB uses ArgM to represent non-core modifier roles, e.g., time (ArgM-TMP),

location(ArgM-LOC ), cause (ArgM-CAU ), etc. In Sentence (1), on highway 880 is annotated as

ArgM-LOC in PB. Each predicate in PB defines a set of senses and corresponding role sets. For

example, the predicate free allows three different word senses: be available, cost nothing, and be

unrestricted. (Table 1.1)

With the increasing availability of corpora annotated with semantic roles, people have turned

their focus to developing automatic SRL systems. Given a target sentence with its predicate

labeled for word sense, an automatic SRL system identifies the arguments with their proper roles.

Since annotated arguments are always in the form of phrasal units, SRL processing benefits from

syntactic structure which provides the phrasal units of a given sentence. Traditionally, there are

two syntactic representations for SRL: constituent-based parse trees and dependency parse trees.

Both constituent-based SRL (Gildea and Jurafsky, 2002) and dependency-based SRL (Johansson

and Nugues, 2008; Choi and Palmer, 2011) approaches label arguments on the tree vertices of the

phrase analysis. An example of semantic roles on both constituent and dependency parse trees is

shown in Figure 1.1.

In order to speed up SRL processing time and reduce the number of candidate tree vertices,

several constraints are proposed (Xue and Palmer, 2004; Zhao et al., 2009). For constituent-

based SRL, candidate arguments are the constituents that are siblings of either the predicate or

the predicate’s ancestors. Additionally, the direct children of prepositional phrase arguments also

become candidates. For dependency-based SRL, only the direct dependency children are considered

to be argument candidates.
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Figure 1.1: Semantic roles of Sentence (1) on a constituent parse tree(left) and dependency parse
tree(right). The semantic roles for the three participants are Arg0, Arg1, and ArgM-LOC (labeled
with black tags)

1.2.2 Light Verb Constructions

As a linguistic construction for which the relational semantics of verbs can be extended in

novel ways, English light verb constructions represent a powerfully expressive resource. These

constructions, such as make an offer and give a groan, consist of a semantically general verb and a

noun that denotes an event or state. However, an exact definition of LVCs, which would precisely

delimit these constructions from either idiomatic expressions or compositional, “heavy” usages of

the same verbs (e.g. She made a dress; He gave me a present; etc.) remains under debate. In

this thesis, we follow the definition for LVCs given by Butt (2003). LVCs are characterized by a

light verb and a predicate complement that “combine to predicate as a single element.” In LVCs,

the verb is considered semantically lightened in such a way that the verb does not fulfill its full

predicating power. Thus, the light verb plus its true predicate can often be paraphrased by a verbal

form of the true predicate without loss of the core meaning of the expression. As we compare LVCs

with nominalizations, a slight difference between these two constructions appears. The meaning

of an LVC can be affected by both the light verb plus the eventive noun. However, the nominal

dominates the whole meaning of the nominalization predicate. Also, the roles that are involved in

an LVC depend on both the light verb and the eventive noun, while the roles of a nominalization

are affected by the nominal predicate only. As we go through the OntoNotes (in Section 2.1.3) 4.99

data release, there are 15,349 nominal gold annotations across all genres of text. Of these, 1,659

are LVCs.

As a result of its complicated construction, it is no surprise that the automatic detection
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of English LVCs remains challenging, especially given the semi-productive nature of LVCs which

allows for novel LVCs to enter the language. Novel LVCs are particularly difficult to detect, yet

their identification and interpretation is key for NLP systems. For example, NLP systems need to

recognize that She made an offer to buy the house for $1.5 million is an offering event, rather than

a making or creation event.

1.2.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a semantic represen-

tation that expresses the meaning of an English sentence with a rooted, directed, acyclic graph.

An example AMR in both PENMAN(Matthiessen and Bateman, 1991) format and GRAPH for-

mat is shown in Figure 1.2. AMR associates semantic concepts with the nodes on a graph, such

that “( p/person )” refers to an instance of the concept person. In addition, a semantic rela-

tion is the label edge between concept nodes, such that “(j / join-01 :time (d / date-entity ))”

means there is a “join”(j ) event in time unit “date-entity”(d). Meanwhile, AMR relies heavily on

predicate-argument structures from PropBank, which share several core arguments as edge labels

with AMR, i.e., all the ArgN tags. When one concept is involved in multiple roles, AMR employs

a re-entrancy to represent co-reference. For example, in Figure 1.2, the concept person is related to

two concepts, join-01 and have-org-role-91. Moreover, the representation also encodes additional

rich information, including named entities (NEs) (e.g., “person” in Figure 1.2), wiki-links, and dis-

course connectives. The design principle of AMR is to abstract away from syntactic idiosyncrasies.

This means that when two sentences express the same semantic meaning with different syntactic

structures, their AMR representations remain identical.

The AMR sembank provides a large whole sentence corpus with AMR annotations. With

the availability of this corpus, researchers are focusing on AMR parsing. Basically, there are two

approaches. The first approach is to treat the concept-relation matching problem as that of finding

a maximum spanning graph (Flanigan et al., 2014; Werling et al., 2015). After identifying the

corresponding word span of the sentence for the concept and learning a scoring function for a given
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:ARG1 (b / board

:ARG1 -of (h / have -org -
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Figure 1.2: The AMR annotation of sentence “Pierre Vinken, 61 years old, will join the board as
a nonexecutive director Nov. 29.” in PENMAN format (left) and GRAPH format (right).

pair of concepts and their relations, this approach determines an AMR graph by maximizing the

sum of the score. A second approach uses a transition-based framework(Wang et al., 2015a,b) that

defines a group of actions to convert from the English sentence in the form of a syntax parse tree to

its corresponding AMR graph. As we mentioned above, AMR depends heavily on different types of

linguistic information, e.g., semantic roles, named entities, etc., in its graph structure. Therefore,

a transition-based parser benefits from the availability of these linguistic features in a dependency

tree when determining its parsing actions.

The design of an AMR-to-English-sentence aligner is the first step in implementing an AMR

parser, since AMR annotation does not contain links between AMR concepts and their correspond-

ing span of words. One basic alignment strategy is to link the AMR tokens (either concepts or edge

labels) with their corresponding span of words. Another strategy is to find the alignment from an

AMR concept to the word node in the dependency parse tree. Since a dependency parse tree is a

good structure for attaching rich information, e.g., NE tags, on its tree nodes, this rich linguistic

information can be provided to develop a more accurate aligner. An alignment between an AMR

concept and a dependency node represents a correspondence between the meaning of this concept
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and its child concepts and the phrase governed by this dependency node (i.e., head word).

1.2.4 Syntax-Based Vector Representation

Deep learning has become one of the most popular topics in machine learning in recent

years. One important application of deep learning in NLP is representing words in vector space,

or what we call “word embeddings”. This representation maps words or phrases to a vector of real

numbers, and aims to assign close vectors to words with similar meanings. The main advantage

of word embeddings over word classes is that embeddings incorporate various aspects of semantic

and syntactic information in a vector in which each dimension corresponds to a latent feature of

the word. As a result, a distributed representation is compact and less susceptible to data sparsity.

Furthermore, some real world knowledge is learned implicitly for word embeddings with vector

geometry operations. For example, the property “gender” is learned if we examine the following

equation: Vking − Vmale + Vfemale ≈ Vqueen, where V is the vector representation of a given word,

and +/− is the plus or minus vector operation. To train a general purpose word representation,

unsupervised techniques, such as a skip-gram model (Mikolov et al., 2013; Collobert and Weston,

2008), are adopted. Word embeddings, when used as an underlying input representation, have

demonstrated the ability to improve several NLP applications, including part-of-speech (POS)

tagging (Collobert and Weston, 2008), syntactic parsing (Collobert and Weston, 2008; Socher et al.,

2010) and sentiment analysis (Socher et al., 2013; Tai et al., 2015).

A word embedding represents word meaning based on the word or phrase itself and its sur-

rounding words in the same sentence, omitting syntactic information. Researchers have attempted

to introduce syntactic features into a neural network framework for NLP applications through dif-

ferent approaches. One idea is to include syntactic parse tree features in the framework. In this

strategy, each tree node (either a constituent or dependency node) holds a distributed vector rep-

resenting the syntactic information from the tree node itself and all its child nodes. Another idea is

to use the path feature, which concatenates all the syntactic and direction labels through the tree

path between two target tree nodes. The path feature has been shown to be a useful feature for
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semantic role labeling (Gildea and Jurafsky, 2002). However, neither the number of child nodes nor

the number of nodes along the tree path are fixed. To gather all the feature vectors into one fixed

n-dimensional vector, we need a technique that merges different vectors without losing essential

information. For instance, a convolutional neural network (Waibel et al., 1990) is a traditional

feed-forward network which processes portions of input elements and encloses them sequentially,

“wrapping” the generated vector and the rest of the elements into a new vector. A recurrent neural

network (RNN) (Elman, 1990) is designed to model sequential data and contains the memory units

to record status from previous inputs. The information from previous elements is compressed and

sent to the next neural unit. Then the next neural unit processes the output from the previous

neural unit and the current input, generates a new information vector, and feeds it to the next

neural unit.

RNNs have achieved significant success in different domains, including speech recognition,

language modeling, image processing, etc. However, RNNs cannot control the flow of the informa-

tion that the neural units really needs. RNNs tend to maintain too much information from nearby

neural units while forgetting too much information from faraway neural units. To overcome this

issue, long short-term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) have been

designed. The LSTM network introduces three different gates to control the information: a forget

gate, which controls how much information to throw away from previous neural units; an input

gate, which decides how much information from the current input should be kept; and, an output

gate, which determines how much information should be transferred to the next neural unit. The

benefit of LSTMs for NLP applications is great, especially in the context of sentence sequential

processing, e.g., machine translation and POS tagging.

A common assumption about word embeddings is that neighboring words in the window size

affect the target word sense the most. However, there are several arguments that question this

assumption, including about how a dependency relation with the head word may affect the word

sense more than that of any other dependency relation. By reducing the weight of the relations

between a word and its surrounding context, the effects of function words and prepositional phrases
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are lowered, thus allowing long distance relations, e.g. relative clauses, to be better modeled. To

achieve this, dependency grammars are incorporated into the model, adding syntactic information

between a word and its head word to the word embeddings itself. As such, the dependency-based

embeddings are less topical and exhibit more functional similarity than word embeddings generated

in linear contexts.

Another attempt to inject syntactic knowledge into vector representations is to add syntactic

information into the model itself. A recursive neural network is designed to extract vector represen-

tations for each node along a parse tree. By giving a syntax tree (i.e., constituent or dependency

parse tree), the representation of a node is inferred by the lexical and syntactic information of

the node itself and by the representation of its child tree nodes. This model keeps the syntactic

information on the tree node representation. Since the representation is composed of nodes with

direct syntax relations (e.g., head word and child nodes), a recursive neural network is helpful when

dealing with long distance relations within a sentence.

1.3 Research questions and aims

This thesis sets out to answer three questions, 1) “Does better dependency parse to AMR

alignment help the AMR parser?”, and 2) “Do syntactic and semantic knowledge improve the

performance of AMR parsing?” and 3) “Are syntax-based recursive neural networks useful, general

approaches for AMR parsing?” Until now, AMR parsing and SRL have been treated as independent

tasks. However, if our final goal is to find the correct AMR, and the elements of the AMR and

semantic roles highly overlap, can we use SRL more effectively in the AMR parsing process?

On the other hand, although deep learning techniques have shown encouraging results in

different NLP tasks, the application of syntactic structures in a neural network based framework

has not been widely used. We have implemented a general recursive neural network based framework

that supports AMR parsing well and which also uses powerful features.

Figure 1.3 shows the overall framework of the thesis. The computational systems that have

been implemented are described in double-lined boxes (i.e., AMR parser, AMR-to-Dependency
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Parse aligner, Frame Identifier, and Semantic Role Labeler). The primary four goals of this work

are: First, to incorporate a LVC detector to support frame identification (Chapter 3); Second, to

demonstrate the benefits of using dependency parses in AMR alignment for AMR parsing (Chap-

ter 4); Third, to build a memory-unit-based AMR parser with rich lexical and syntactic information

that generates correct AMRs (Chapter 5); Fourth, to develop a dependency node-based embedding

feature and dependency-based word embeddings which are useful for the general purpose of various

NLP applications (Section 5.2).

1.4 Thesis statement

The goal of this thesis is to improve the overall performances of AMR parsing components,

including a frame identifier, concept identifier, and relation identifier, by leveraging the syntactic

and semantic information from dependency parses and semantic roles. By constructing a recursive

neural network based framework for AMR parsing with rich lexical and syntactic information

(including syntactic dependencies, word embeddings, dependency node-based embeddings, named

entities, semantic roles, and light verb construction information), we can improve all the various

AMR parsing components. An essential prerequisite for this task is shown to be the alignment of

dependency parses to AMRs.
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Figure 1.3: Overall framework. Systems to be implemented are described in double-lined boxes,
and the data sets are described in rounded corner boxes. The plain rectangles are external systems
that can automatically procide additional enrichments to dependency trees when gold annotations
are not available.



Chapter 2

Related Work

2.1 Corpora

2.1.1 Semantic Corpus

The main semantic corpus we use in this thesis is PropBank (PB) (Section 1.2.1). The

primary goal of PB is the development of an annotated corpus to be used as training data for

supervised machine learning systems. The first PB release consists of 1M words of the Wall Street

Journal portion of the Penn Treebank II (Marcus et al., 1994), annotated with predicate-argument

structures for verbs, using semantic role labels for each verb argument.

In the past, PB annotation had been restricted to verb relations, but recent work has extended

coverage to noun relations and complex relations like LVCs. In current practice, annotators identify

light verbs and the main noun predicate in an initial verb pass of annotation. In a second pass,

annotation is completed for the full span of the complex predicate, using the roleset of the noun.

Consider the following example sentence,

(2) [ArgM−temporal Yesterday], [Arg0 John] [LightV erb made] an [rel offer] [Arg1 to buy the house]

[Arg2 for $350,000]

, which uses the offer roleset but not the roleset of the light verb make. PB ensures that the

complete argument structure of the complex predicate receives annotation, regardless of whether

the argument is within the domain of locality of the noun or verb, and ensures that the roles assigned

reflect the event semantics of the noun. The latest PropBank (Unification version) consists of 5,556
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English frame files and 8,690 role sets. The latest PropBank (Unification version) consists of 5,556

English frame files and 8,690 role sets. And it contains 390,266 predicates in total, including 349,352

verb, 40,163 noun, and 2,191 adjective predicates. Among the verb predicates, there are 2,191 light

verb constructions in the corpus.

Another available semantic corpus is Berkeley FrameNet (Baker et al., 1998), a computa-

tional lexicon which gathers a collection of annotated corpus attestations with examples of “frame

elements” and their syntactic realizations. In frame semantics, a frame involves an interaction

(frame) and its participants (roles). Currently there are 1,161 frames in the FrameNet database.

A total of 12,609 lexical units are listed. Around 4,861 verbs, 5,135 nouns and 2,253 adjectives are

attached to different frames. The British National Corpus (BNC) (Clear, 1993) was chosen as the

FrameNet project example corpus. This balanced corpus with broad domains of data provides more

than 100 million words and nearly 10,000 example sentences have been annotated with FrameNet.

There is no overlap between AMR annotations and FrameNet so it was not used in this thesis.

2.1.2 Lexical Corpus

WordNet (WN) is a large electronic database of English words1 , which was in part inspired

by work in psycholinguistics investigating how and what type of information is stored in the human

mental lexicon (Miller, 1995). WN is divided first into syntactic categories: nouns, verbs, adjectives

and adverbs, and second by semantic relations. The semantic relations that organize WN are:

synonymy (given in the form of “synsets”), antonymy, hyponymy (e.g. a Maple it is a tree; therefore,

tree is a hypernym of Maple), and meronymy (part-whole relations). These relations make up a

complex network of associations that is useful for both computational linguistics and NLP, and are

also informative in situating a word’s meaning with respect to other words.

Another interesting part of WN is the noun’s “type”, as indicated by the lexical file informa-

tion. For each noun in WN, lexicographers have coded the noun with one primary superordinate,

or lexical file, given forty-five numbered options. This thesis also focuses on this noun type since it

1 http://wordnet.princeton.edu/wordnet/
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can possibly denote events or states of a noun, which can theoretically combine with a light verb

to form an LVC. The type designations that may denote eventive and stative nouns are listed in

Table 2.1, and proved helpful in LVC detection.

Table 2.1: WordNet lexical file information types of interest for eventive and stative nouns

Name Nouns denoting... Name Nouns denoting...

noun.act acts or actions noun.motive goals
noun.cognition cognitive process noun.phenomenon natural phenomena
noun.communication communicative process noun.possession possession and transfer
noun.event natural events noun.process natural processes
noun.feeling feelings and emotions noun.relation relations between things
noun.location spatial position noun.state stable states of affairs

2.1.3 OntoNotes

The OntoNotes project (ON) (Hovy et al., 2006) corpus integrates several layers of different

annotation types in a single corpus, making it ideal training data for semantic analysis (Pradhan

et al., 2007). The five layers of annotation include: 1) the syntactic parse from the Penn Treebank,

2) proposition structure from PB, 3) coarse-grained word senses from the ON sense grouping inven-

tory, 4) named entity types, and 5) anaphoric coreference. The latest release, ON 5.0 (Weischedel

et al., 2013), contains five various genres of text (newswire, broadcast news, broadcast conversation,

telephone conversation, and web data) with 1.4 million English words.

ON sense groupings can be thought of as a more coarse-grained view of WN senses because

these sense groupings were based on WN senses, which were successively merged into more coarse-

grained senses, based on the results of inter-annotator agreement (Duffield et al., 2007). Essentially,

where two annotators were consistently able to distinguish between two senses, the distinction was

kept. Where annotators were not able to consistently distinguish between two senses, the senses

were reorganized and tagged again. It was found that sense distinctions with this level of granularity

can be detected automatically at 87-89% accuracy, making them effective for NLP applications

(Dligach and Palmer, 2011). This sense inventory was used to annotate all ON verbs with more

than three WN senses and some nouns. Unfortunately, the sense tagging is not complete for all
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of the ON corpus: there are about one million verbs and nouns in ON 5.0, but only 293,359 of

these have sense tags (although many are surely monosemous), including 120,400 nouns with sense

tags, 2,500 verbs, almost all verbs in WN with 3 or more senses, have tagged senses, comprising

over 150,000 tagged instances. Each ON sense also lists which WN senses it includes, providing a

mapping between ON annotations and WN senses.

2.1.4 Abstract Meaning Representation Corpus

A manually annotated AMR corpus in English is currently available. The LDC DEFT Phase

2 AMR Annotation Release 22 consists of AMRs with English sentence pairs. Annotated selec-

tions from various genres (including newswire, discussion forum, other web logs, and television

transcripts) are available, for a total of 39,260 sentences. Among these gold standard AMRS,

446,214 concepts, 847,286 relations, and 401,372 attributes are included. This release follows the

PropBank Unification frame file. In addition, the Little Prince Corpus, which annotates the novel

The Little Prince by Antoine de Saint-Exupry, is available for pilot study. It consists of English

and Chinese translations of 1,562 sentences in total.

2.2 English Light Verb Identification

There are two main approaches for the automatic identification of LVCs: contextually-

based and statistically-based. Contextually-based approaches detect surrounding tokens and de-

cide whether the verb-noun pair with the identified context words should be considered an LVC.

Vincze et al. (2013) propose a contextually-based model, with a conditional random field machine

learning method, for detecting English and Hungarian LVCs. Evaluation showed that their model

performs well in various domains of LVCs and in detecting low-frequency LVCs. On the other

hand, the statistically-based approach, which computes the degree of cohesion or association be-

tween target terms (e.g., log-likelihood ratio (Dunning, 1993) and mutual information (Church and

Hanks, 1990)), finds LVCs among verb-noun pairs from a well-defined set of verbs and eventive

2 https://catalog.ldc.upenn.edu/LDC2016E25
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nouns (nouns denoting events, like declaration), with a classifier function deciding whether a pair

should be considered an LVC or not. Van de Cruys and Moirón (2007) propose a statistically

and semantically-based method for recognizing verb-preposition-noun dependency relation combi-

nations of LVCs. Furthermore, Gurrutxaga and Alegria (2012) detect idiomatic and light verb-noun

pairs from Basque using statistical methods.

To compare these two approaches, Tu and Roth (2011) propose a Support Vector Machine

(SVM) based classifier to identify LVCs. They develop their system using both contextual and sta-

tistical features and analyze the deep interaction between them. They select 2,162 sentences with

LVCs drawn from the BNC data as experimental data. Their SVM-based identification perfor-

mances are 85.33% and 86.46% F1 score on contextual and statistical feature models, respectively,

for positive LVC instances, and 86.46% and 87.06% for negative LVC instances, respectively. They

concluded that local contextual features perform better than statistical features on ambiguous

examples, and combining them did not give better performance.

On the other hand, in The PARSEME Shared Task on Automatic Identification of Verbal

Multiword Expressions (VWMEs) (Savary et al., 2017), several teams participated in the task of

identifying multiword expressions, including idioms, light verbs, verb-particle constructions, and

inherently reflexive verbs. A set of multilingual corpora in European languages is provided as

experimental data. Most systems use shallow-based machine learning models, e.g., SVM and CRF,

to detect multiword expressions. Further, the MUMULS system (Klyueva et al., 2017) uses a

bidirectional recurrent neural network with single layer of GRUs. The output vector maps to the

label ID with a softmax layer.

The author proposes a LVC identification system (Chen et al., 2015) based on contextual

features with an SVM as well Tu and Roth (2011). On the other hand, although the experimental

results show that shallow-based systems perform better than neural network-based systems in the

VWME shared task, we are specifically interested in how a neural network-based model can improve

LVC detection. Details about this research and experimental results are described in Chapter 3.
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2.3 Semantic Role Labeling

In general, the processing of semantic role labeling is done in three steps (Gildea and Jurafsky,

2002). Upon giving the input as an English sentence with its parse tree, the SRL first identifies the

predicate word. If the predicate is nominative or adjectival, an extra pass is needed to identify and

label the token with the correct frame ID. The second step is to identify arguments. By following

Xue and Palmer (2004), SRL extracts the candidate parse tree nodes denoting the arguments.

Then a binary classifier determines whether the candidate is an argument or not. The final step

is to match the role label to the argument. Here we need another multiclass classifier to decide

the role label according to the frame file. This approach can be applied to either constituent-based

trees or dependency-based trees, with both reaching comparable performances.

Pradhan et al. (2008) propose ASSERT, a constituency-based automatic SRL system. By

using an SVM algorithm for argument identification and classifier, ASSERT demonstrates state-of-

the-art results in CoNLL’04 - 05 shared tasks (Carreras and Màrquez, 2005). A set of rich linguistic

features are used, including a parse tree path (see details in 2.6.1), phrase type, position, head word,

etc. On the other hand, Johansson and Nugues (2008) built a dependency-based SRL system that

reaches state-of-the-art results for CoNLL’08 - 09 shared tasks (Hajič et al., 2009). Choi and

Palmer (2011) also propose a dependency-based SRL system with transition-based shift-reducing

algorithm. To improve performance on unseen data, they use a clustering technique to group verb

predicates, and suggest this clustering information as feature. Their experimental results show that

their system achieves state-of-the-art performance in CoNLL’08 - 09 shared tasks.

Furthermore, several joint-inference SRL systems are proposed to improve SRL performance.

Basically, the SRL models mentioned above take a pipeline approach. An SRL system with a

pipeline approach means the target sentence must have a syntactic parse before it is submitted

to the SRL system. A joint-inference approach takes the inference step for both syntactic parsing

and SRL synchronously. The syntactic parser adds the arguments as external features, while the

argument identification task benefits from more accurate syntactic features as well. The CoNLL’08
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- 09 shared task profiles the challenge of learning both syntactic dependency parsing and SRL

jointly. One advantage of using the joint-inference approach is that an SRL system might improve

performance since the essential errors in SRL arise from incorrect syntactic structures (Pradhan

et al., 2005). Several joint-inference approaches (Henderson et al., 2008; Titov et al., 2009) are

proposed to learn the dependency parser and SRL simultaneously and achieve comparable results

against the pipeline approach SRL system.

2.3.1 Semantic Role Labeling with Neural Networks

With the raising popularity of deep learning, more and more SRL models have begun to

involve neural network techniques. Zhou and Xu (2015) propose an end-to-end SRL system which

labels predicate-argument structure from English sentences directly without an intermediate level,

including syntactic parse trees. To enfold the varied number of words in the target sentence

into the network, they use a deep bi-directional LSTM (DB-LSTM) network, which transits the

information in forward and backward passes and forms its subsequent hidden layer. At the top

of the network, an IOB classifier is trained to identify the arguments by a Conditional Random

Field model. Instead of using a predefined feature template on syntax parse trees, they choose

only the distributed representation of a word, predicate context, and region mark of predicate as

input features. They report comparable experimental results to other SRL systems which operate

on syntactic parse trees with rich linguistic features.

FitzGerald et al. (2015) propose another SRL approach to integrate neural networks into the

model. Their approach aims to generate distributed representations for predicates and arguments

and train hidden layers to obtain vector representations for predicate-argument pairs. On the other

hand, their approach maps the features of the target span of word into another vector representation.

Their goal is to embed these two distributed representations into the same vector space. In the

final layer, the score function, which denotes how likely it is that the span of the word is the correct

argument given the predicate, is learned from the product of these two vectors. At inference time,

a graphical model is used to represent global assignment of arguments to their semantic roles,
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subject to linguistic constraints. Their experimental results achieve a state-of-the-art SRL system

on CoNLL’04 - 05 and CoNLL’08 - 09 datasets. An inspirational finding is that different frame file

systems can improve the performance of frame identification for other systems. As they add more

CoNLL’04-05 data (in PropBank) to a FrameNet-based identification system and retrain it, they

gain better identification results.

2.4 Abstract Meaning Representation Parsing

There are three well-known AMR parsing models. One is a graph-based model (Flanigan

et al., 2014; Werling et al., 2015) which searches for the highest score of an edge from the fully

connected graph, a process which tends to optimize the AMR graph with global relations. The

second well-known model is transition-based (Wang et al., 2015a,b), determining the highest score

of an action which converts syntactic parse trees to AMR graphs greedily. In comparison with

the graph-based model, the transition-based model tends to optimize AMR graphs with local

relations. The third one is a sequence-to-sequence model (Peng et al., 2017; Barzdins and Gosko,

2016; Konstas et al., 2017) which is based on an encoder-decoder model and is inspired by neural

machine translation. The encoder accepts context-aware representations as inputs and map them

into hidden states. The decoder converts the hidden states to AMRs in linear form.

Meanwhile, although an AMR corpus is available, an AMR-to-English sentence aligner should

be designed first before we start to implement an AMR parser. The current AMR corpus does not

contain links between each AMR concept and its original span of words. Two different approaches,

a heuristic method and an unsupervised method, are proposed to design aligners. The heuristic

method (Flanigan et al., 2014) incorporates several straightforward alignment rules. Most of them

are based on word forms and lemmas. The unsupervised method (Pourdamghani et al., 2014; Wer-

ling et al., 2015) aims to align AMR tokens to word span pairs based on co-occurrence probabilities

in a corpus. Generally, the unsupervised method captures more underlying and reasonable align-

ment pairs than the heuristic method. All in all, a good aligner potentially improves AMR parser

performance.
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2.4.1 Graph-based AMR Parser

A graph-based AMR parser aims to find a connected graph with a maximum sum of edge

scores. JAMR (Flanigan et al., 2014) is the first system for AMR parsing that implements a graph-

based approach. This model first identifies concepts from a sequence of word spans in a given

English sentence. The identification function is a linear parameterized function that optimizes the

score generated by the product of the weight vector and feature vector of the word span. Features

include word span length, named entity, etc. In decoding time, a dynamic programming (DP)

algorithm is used to search for the best segmentation of a word span into concepts by maximizing

the sum of the identification function score. Concept identification has a time-complexity of O(n2).

The next stage is to identify relations between concept pairs by a maximum spanning con-

nected subgraph (MSCG) algorithm. This search algorithm is similar to a maximum spanning tree

algorithm. There are four constraints for posting a relation between two concepts:

• Preserving: All the concepts identified by the previous stage are part of the final graph.

• Simple: At most one edge between any two concepts.

• Connected: Every vertex is reached from another vertex regardless of edge direction.

• Deterministic: Outgoing edge labels from the same vertex are never duplicated.

An acyclicity constraint is not included here, hence JAMR uses Lagrangian relaxation (Geoffrion,

1974) to supplement the MSCG algorithm, which assures the final connected graph is acyclic. The

scoring function of relation identification is decomposed by edges and with linear parameterization.

The search algorithm is initialized with concepts and empty connected edges. Then the highest

scoring edge is added to the graph heuristically until all concepts are reached by another concept.

Relation identification runs in O(|V |2 log |V |). In 2014 JAMR reaches a 58% (and 56% in SemEval

task 8) Smatch score (Cai and Knight, 2012) on automatic concept and relation identification data,

and 80% on gold concept and automatic relation identification data.
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Werling et al. (2015) extends JAMR and improves JAMR’s concept identification. They claim

that the concept identification task is more difficult and important than the relation identification

task. Rather than combining span detection and label identification into one dynamic programming

processing, they separate concept identification with an action-type classifier task. By determining

the span of text in a given sentence with their aligner (described in Section 2.5), their action-type

classifier assigns an action to the given word span according to features and action reliability. In

the relation identification stage, their system reuses the MSCG algorithm from JAMR. This system

achieves a Smatch score of 62.3%.

Foland and Martin (2016;2017) propose another AMR parser based on bidirectional long

short term memory (BiLSTM). This approach is similar to the graph-based AMR parser, which

separates the parsing processing into concept identification and relation identification steps. To

express the underlying knowledge of sentence, they use the BiLSTM network to create an output

vector to represent each sentence, and use this output for further usage. They design their concept

identification, and four other sub-relation identification (argument, non-argument, leaf attribute,

and wikipedia category) using the BiLSTM network. Their experimental results lightly surpass

JAMR and CAMR in SemEval Task 8. In their latest publication, their Smatch score achieves

64.6%, which is the state-of-the-art result.

2.4.2 Transition-based AMR Parser

A transition-based method intends to generate AMR graphs through conversion from syntac-

tic parse trees. Wang et al. (2015a) designed the CAMR system, which parses dependency parse

tree structures into AMRs. CAMR first defines eight different actions (transitions), which transfer

dependency tree segments into AMR sub-graphs (See Appendix A for the details of transition ac-

tions.) By traversing dependency parse tree nodes from leaf nodes first (in-order traversal), CAMR

uses a greedy algorithm which selects the action with the highest score, and applies this action to

the current sub-graph. An extended version of CAMR is proposed by Wang et al. (2015b), which

acquires further features, including semantic roles, coreference, and word clusters. Their latest ver-
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sion of CAMR (Wang and Xue, 2017) improves their concept identifier by designing a bi-directional

LSTM, and a character-level Embedding. Unlike a graph-based system that separates the parsing

processing into two stages, the transition-based method collapses these two identification tasks into

their transition-based framework. An average perceptron learning algorithm (Collins and Roark,

2004) is selected for learning the action score function. Their evaluation shows that CAMR reaches

a Smatch score 5% better than JAMR for the LDC AMR 2013 release (63% vs. 58%.)

When compared to a graph-based method, a transition-based method shows two advantages.

First, it provides richer syntactic information attached to dependency tree nodes than a graph-based

model. This information potentially provides more hints in parsing. Second, the time-complexity

of a transition-based system is faster than a graph-based system. The worst-case running time for

CAMR is O(n2).

A comparison model that is worth mentioning is to use a transition-based model to parse Uni-

versal Conceptual Cognitive Annotation (UCCA) (Hershcovich et al., 2017). UCCA is a sentence

level semantic representation which contains reentrance, discontinuous units, and coordination con-

structions. Their transition-based parser inheritances from Nivre’s shift-reduce algorithm (Nivre,

2008). By applying a multi-layers bi-directional LSTM as their underlying structure, their parsr

reaches the best F1 score on in-domain and out-domain datasets.

2.4.3 Sequence-to-Sequence AMR Parser

Sequence-to-sequence models (Sutskever et al., 2014) have shown strong performance recently

on various domains of NLP applications, e.g., machine translation and constituent parsing (Luong

et al., 2015). A sequence-to-sequence model can be used for predicting future tokens when given

previous ones. To build a sequence-to-sequence model, an encoder and a decoder are two essential

components. An encoder receives a sequence of inputs (e.g., English sentence) and processes them

into an intermediate vector representation. Then, in the next step, a decoder is trained on both

the output sequence (e.g., the translated word in an MT system) as well as the fixed representation

from the encoder. Since the decoder receives the intermediate vector representing the context of
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input elements, the decoder predicts future words based on the current word and the intermediate

vector with greater accuracy. In general, a neural network model with memory units (e.g., RNN

or LSTM) is adopted to implement the encoder and decoder. The final outputs of the memory

unit in the encoding step are passed to the decoder as the context representation. These outputs

of the memory unit in the decoding step are the tokens we want to predict. Although the full

context representation is generated in the encoder step, the decoder just needs part of the context

information to predict the future word based on the current word. An attention mechanism is

designed to make the decoder focus on the relatively important part of the context representation

while filtering out irrelevant information. In implementation, a simple feed-forward network is used

to generate the attention. This feed-forward layer receives both the internal status from the encoder

and the output of the decoder. Then the attention layer weights the hidden state of the encoder

states. In the decoding step, the output vector of the attention feed-forward network is provided

as part of the decoder inputs to predict the following tokens.

Due to the success of applying the sequence-to-sequence model to various NLP domains,

researchers have turned their focus to using sequence-to-sequence models for AMR parsing. The

idea is the encoder receives a target sentence word-by-word as inputs, and then the decoder predicts

the AMR in a linear form. However, some issues that arise in this implementation have yet to be

resolved. First, an efficient linearization, which converts the AMR graph into a series of concepts

and relation tokens, is necessary. The linearization needs to either preserve the entire hierarchy

between entities, or recovery from the linear form to the original AMR graph. On the other hand,

the data sparsity problem is another critical issue that needs to be taken care of. The lack of

gold annotations is always a major difficulty for AMR parsing. This issue is more crucial for

sequence-to-sequence models which require extensive data for training an efficient encoder/decoder

and attention mechanism.

There have been several attempts to adopt a sequence-to-sequence model for AMR parsing.

Barzdins and Gosko (2016) propose an integrated model which mixes the results from a wrapped

CAMR system and the results of a sequence-to-sequence model. The wrapped CAMR system
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contributes the most to AMR parsing, while the sequence-to-sequence model results in a 44.3%

Smatch score. Their integrated model ties CAMR in the SemEval task, with a 62.0% Smatch

score. Later on, Peng et al. (2017); Konstas et al. (2017) propose the first two successful sequence-

to-sequence AMR parsers. Their models are built upon similar ideas. For linearization, they both

use depth-first search to traverse the graph, then generate a series of AMR tokens. A rendering

function which marks the scope of the AMR concept is also provided in their linearization. They

both use anonymization of named entities and categorization of concept entities to reduce sparsity

and account for unseen entities. However, the approaches of the two groups then diverge. Peng

et al. (2017) use a categorizing approach to generate a compact vocabulary set for the data, while

Konstas et al. (2017) use a large set of unlabeled sentences as an external data set. By taking a

self-learning approach which uses its initial model to parse the external dataset, they expand their

vocabulary size and reduce the unseen word rate. Konstas et al. (2017) achieve an AMR parsing

result of a 62.1% Smatch score without using external semantic resources, e.g. dependency parsing

and semantic role labeling.

2.4.4 Other AMR Parser Approaches

In addition to the previous two AMR parser models, there are other AMR parsing approaches

that treats the parsing question in different ways. Pust et al. (2015) conceive the AMR parsing

task as a string-to-tree syntax-based machine translation problem. They first convert AMR graph

to a flat style tree, which create fake concept node as syntactic tree node. Then they reconstruct

flat syntax trees with concept label and role label as intermediate tree node. This reconstructing

step aim to transform a flat syntax trees to deeper length and more natural syntax tree which

fit the syntax-based machine translation model better. Then tree relabeling step is applied. By

following traditional MT approach, a syntax-tree to sentence aligner is used here (Pourdamghani

et al., 2014). After the system obtain alignments between syntax tree node and phrase, the final

step is to reorder the tree structure, which follows the original word order. After taking previous

steps, they submit the resulting trees to a string-to-tree synta-based statistical machine translation
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system. Their experiment results surpass JAMR and CAMR system, and achieve 67% Smatch

score in LDC AMR 2013 release.

On the other hand, Artzi et al. (2015) propose a Combinatory Categorial Grammar(CCG)

(Steedman, 1996, 2000) based AMR parser. They first use CCG to construct lambda-calculus

representations of the compositional aspects of AMR. Several following steps, include a joint rep-

resentation of compositional and non-compositional semantics, and a CCG grammar induction

algorithm to scale to longer sentences, are taken as well. Their experimental results achieve 66.3%

Smatch score in LDC AMR 2013 release. In a similar work in Misra and Artzi (2016), the au-

thors modify the CCG approach to a neural-based one. Their Smatch score reaches 65.3% on the

newswire portion of LDC AMR 2013 release.

2.5 AMR-to-Sentence Aligner

In order to obtain links between AMR concepts and word spans before parsers learn their

models, we need an automatic aligner to estimate alignments. JAMR provides a heuristic aligner

between AMR concepts and words or phrases from the original sentence. They use a set of aligner

rules, like NE, fuzzy NE, data entity, etc., with a greedy strategy to match the alignments. This

aligner achieves a 90% F1 score on hand aligned AMR-sentence pairs. On the other hand, the ISI

Aligner (Pourdamghani et al., 2014) presents a generative model to align AMR graphs to sentence

strings. They propose a string-to-string alignment model which transfers the AMR expression to a

linearized string representation as the initial step. Their training method is based on the IBM word

alignment model (Brown et al., 1993) by modifying the objective function of the alignment model.

The IBM Model-4 with a symmetric method reaches the highest F1 score, 83.1%. When separating

the alignments into roles (edge labels) and non-roles (concepts), F1 scores are 49.3% and 89.8%,

respectively. In Werling’s AMR parser (Werling et al., 2015), they conceive of the alignment task as

a linear programming relaxation of a boolean problem. The objective function is to maximize the

sum of action reliability. Each concept is constrained to align to exactly one token in a sentence.

This ensures that only adjacent nodes or nodes that share the same title refer to the same token.
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They hand-annotate 100 AMR parses, and their aligner achieves an accuracy of 83.2. By providing

different alignments to their graph-based AMR parser, their aligner achieves a better Smatch score

than JAMR’s aligner.

However, two transition-based parsers, e.g., CAMR (Wang et al., 2015b) system and the

RIGA system (Barzdins and Gosko, 2016), tie for the best results in SemEval 2016 task 8 (May,

2016). These transition-based parsers rely heavily on a dependency parser for AMR alignment. It

is important to note that the JAMR aligner was not designed for this task where its alignment

F1 score is only 69.8%. In order to deal with this problem, we designed a dependency parse to

AMR aligner which estimates alignments by learning the feature probabilities of lexical (surface)

forms, relations, NEs and semantic roles jointly (Chen, 2015; Chen and Palmer, 2017). The goal

for estimating these feature probabilities is to further develop the AMR parser with these initial

models. Details and extensions of this aligner are discussed in Chapter 4.

2.6 Deep Learning with Syntactic Information

As neural networks have become popular in recent years, and neural network language models

achieve great success in various types of NLP applications, researchers hope to integrate syntactic

information into different neural networks. We group these approaches into three categories: a

parse tree path method, a syntax-based emebedding method, and a syntactic structure method.

2.6.1 Parse Tree Path Feature with Neural Networks

A parse tree path is the concatenation of tree node symbols and direction tags (upward or

downward movement) from one tree node through a parse tree to another node. In Figure 1.1, the

constituent parse tree path between predicate rode and Arg0 Martin is V B ↑ V P ↑ S ↓ NP , while

the dependency parse tree path between the same two words is nsubj ↓. A parse tree path is a

useful feature for extracting relations between any two tree nodes, e.g., SRL (Gildea and Jurafsky,

2002) and relation extraction (Bunescu and Mooney, 2005; Kambhatla, 2004; Xu et al., 2015). Take
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the SRL task that uses Figure 1.1 as an example here. The parse tree path V B ↑ V P ↑ S ↓ NP is

a reliable indicator to determine Martin is Arg0 of predicate rode, since it is capable of finding the

subject of rode, which is most likely an Arg0. The parse tree path not only captures the governing

category, e.g., subject or direct object, on parse trees, but it also captures the underlying knowledge

from the combination of syntax labels and directions. However, the number of variations of tree

paths is huge, which makes this feature more susceptible to data sparseness. With the development

of neural network techniques, a parse tree path is designed to map to a single vector representation

that sustains tree path information and overcomes data sparseness.

For instance, Hermann et al. (2014) design a dependency parse tree path feature in the form

of a distributed representation that composes words and dependency labels. This method is used

to identify the frame of each predicate. By giving the target predicate and argument, its parse tree

path feature is denoted as the average of word embeddings along the parse tree path. To learn a

mapping function that reduces the dimension of a parse tree path vector, the WSABIE algorithm

(Weston et al., 2011) is used here. The same technique is used in their argument identification task

as well. However, one problem for this approach is that the average of word embeddings cannot

maintain useful information and does not throw away irrelevant words along the path. To address

this issue, Xu et al. (2015) propose a shortest dependency path - long short-term memory model

(SDP-LSTM), which aims to capture and classify relations between any two dependency tree nodes.

After separating the dependency parse tree path by the common ancestor node of the two nodes,

these two sub-paths are mapped to vectors that are composed of four channels (i.e., word distributed

representation, POS, dependency label, and WordNet hypernyms) with the LSTM network. The

LSTM network can control information by three different control gates (Section 1.2.4.) They also

design a dropout strategy to alleviate the overfitting problem, which chooses to throw away word

embeddings, the gates in the LSTM unit, and the middle hidden layers of LSTM network. SDP-

LSTM is the first model to use LSTM and dependency parses on the relation classifier task.
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2.6.2 Syntax-based Embeddings

Word embeddings based on a linear bag-of-words model have achieved excellent success in

recent NLP research. Still, other attempts to incorporate both lexical and syntactic knowledge

into the word embeddings have been proposed. Dependency-based word embeddings (Levy and

Goldberg, 2014), which derive contexts based on the syntactic relations of each word, are designed

as an alternative to the bag-of-words approach. Using a corpus of dependency parse annotations,

this model extracts the relation label between a head word and its child words. These word pairs

replace the context words in a linear context model as input data. At training time, the model

reuses the approach from the skip-gram model (Mikolov et al., 2013), which uses a negative-sampling

objective function. With each pair (w,C) of word w and its context (i.e., dependency child) words

C from the dependency parse, the model generates a second pair (w′, C) as an extra training

instance, where w′ is a randomly selected word along with the original C. Both the training pair

(w′, C), which is the negative sample, and the positive sample, (w,C), are then provided for the

model to learn latent parameters.

One important advantage of this approach to word representations is that it captures the

relations between words that are far apart but are associated via long distance dependency relations.

Also, this model avoids “coincidental” contexts which are within the window but not directly related

to the target word. In addition, linear-context word embeddings tend to categorize words into the

related domain, while dependency-based word embeddings prefer to gather words with similar

syntactic functions.

2.6.3 Interaction between syntactic information and neural networks

To further develop grammatical relations and structures in the framework, a syntax-based

distributed representation is designed to either capture the relation between two nodes or train

the network hierarchically, based on the parse tree. Socher et al. (2010) propose a recursive neural

network (ReVNN) which learns a syntactic tree parsing model and word embedding jointly. The
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model aims to learn distributed representations for each constituent-based binary tree node by

folding vectors of its two child nodes. Then the corresponding vector is used to jointly learn 1) a

parse tree parsing model, and 2) distributed representations of phrases/words at the bottom of the

syntax tree by back-propagation during training. Based on ReVNNs, several alternative networks,

e.g., matrix-vector ReVNNs (MV-RNN) (Socher et al., 2012) and Recursive Neural Tensor Networks

(RNTN) (Socher et al., 2013), are presented as a general model for NLP applications. For example,

in Socher et al. (2013), the researchers compare these three different recursive-based neural networks

on a sentiment analysis task. On each tree node, the composition function outputs two items. The

first one is a distributed representation of the node itself (by giving the two vector representations

of its child and the composition function). The second one is a label to indicate positive/negative

sentiment of the text segment corresponding to the tree node.

Moreover, some researchers use ReVNNs for relation identification and similar tasks. Hashimoto

et al. (2013) propose a RNN-based model for semantic relation classification. Extending from

ReVNNs, they change the composition function by introducing weights on different child nodes.

In general, the syntactic head tends to be assigned with a higher weight. Syntactic paths are an-

other factor that affects the weight of different child nodes. Also, they obtain model parameters

by averaging these parameters from all rounds of training. In addition, Tai et al. (2015) propose

a LSTM-based model (Tree-Structured LSTMs) which applies a recurrent network technique to

the parse tree node composition function. Like regular ReVNNs, each tree node corresponds to

one composition function. In this, the composition function is a LSTM unit. Each LSTM unit

receives inputs from the vector representations of its child nodes. The biggest difference from

traditional LSTMs is that the forget gate in their LSTM unit controls information from its child

nodes. Then the information from more important child nodes (e.g., the syntactic head word) can

be preserved in the parent tree node. The Tree-Structured LSTM is fitted to both constituent and

dependency parse trees by using various models (N-ary Tree-LSTMs and Child-Sum Tree-LSTMs,

respectively.) They experiment with Tree-Structured LSTMs on two NLP applications: sentiment

classification and semantic relatedness, showing significant improvements on both tasks. They con-
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clude that Tree-Structured LSTMs have advantages over other networks especially with respect to

long distance relations.



Chapter 3

Light Verb Construction Identifier

3.1 Overview

Before we introduce our LVC identifier, we want to examine the important role that LVCs

play in AMR. We examine the overlapping sentences that we use in our aligner experiment (in

Section 4.2.), and count how many concepts are aligned to eventive nouns in the training data.

Results are shown in Table 3.1. As we can see, among 9,100 AMRs, there are 295 LVCs that

appear in original sentences. Among these 295 LVCs, we find only 59 of them (20%) use light verbs

as concepts in AMRs. The remaining AMRs (80%) use eventive nouns as concepts. Given this

observation, we have high confidence in asserting that if an LVC appears in a sentence, the eventive

noun should be used as the concept rather than the light verb.

An LVC identifier determines what combinations of potential light verbs and eventive nouns

should be labeled as LVCs. For a given dependency tree T , the system first checks if T meets

certain syntactic criteria in order to decide if T should be put into the candidate set (these criteria

are described in more detail in Section 3.2.1). Next, the light (or “Support”) verb VS and eventive

noun NE pair is submitted to an LVC binary classifier, which labels the VS-NE pair as an LVC or

Table 3.1: Number of LVC appearing in AMR.

# of sentence 9,100
# of predicate concept 40,102

# of LVC 295
# of light verbs in AMR 59
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not. This supervised classifier is trained with the LibLinear (Fan et al., 2008) algorithm.

3.2 Light Verb Construction Classifier

3.2.1 Candidate Identification

The first step in LVC recognition is to select the candidate dependency trees for the training

of the classifier. Here, the PB layer of the ON 4.99 corpus is used as a starting point. For this

research, we chose to exploit LVCs that are composed of a limited set of the most frequent light

verbs, focusing on the six most frequent light verbs in the data, which cover 99.26% of the VS-NE

pairs.

The second step is to select the eventive nouns on which to focus. Our starting point for this

process was to make use of a list of eventive and stative nouns drawn from WN (initial list provided

by Christiane Fellbaum, personal communication). For the next step, only the dependency trees

containing the previously mentioned six light verbs and eventive nouns on the candidate list are

selected.

The last stage is to extract the dependency relation between the light verb VS and eventive

noun NE . The following three cases are considered:

(1) The NE is the direct child of the VS with a direct object relation between them (see Figure

3.1)

(2) The NE follows a quantity or partitive expression, and the quantity is the direct object of

the VS (see Figure 3.2)

They took a look at the trials and tribulations of Martha Stewart

nsubj

root

dobj

det prep det

pobj

cc

conj

prep

compound

pobj

Figure 3.1: A dependency relation where nominal is the direct child of the verb. In this example,
the eventive noun NE = “look” is the direct object of the verb VS = took.
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We do not take much of a break for the holidays

nsubj

aux

advmod

root

dobj

obl

det

case

obl

case

det

Figure 3.2: A quantity is the direct object of the verb. In this example, the quantifier “much” is
the direct object of the verb VS = take, and the eventive noun NE = “break” follows the quantity.

This is very much a statement that the president was not going to be deterred from making

root

nsubj

cop

advmod

advmod det

acl

nsubj

det aux

mark

aux

advmod

aux

ccomp

mark

obj

Figure 3.3: A dependency relation where the eventive noun is the head of the clause. In this
example, the eventive noun NS = “statement” is the head word of the clause that contains the
verb VS = making.

(3) The NE is the head word of the clause (see Figure 3.3)

Only the dependency trees containing the VS and NE in one of the previous three syntactic relation

combinations could be considered as candidate sets. By following these steps, we extract 1,739 LVCs

among the 1,768 LVC instances in the entirety of the ON 4.99 data. Thus, we detect 98.42% of the

LVCs in the gold annotations. Error analysis of the 28 instances that were not detected revealed

that they were missed either because of long-distance dependences and/or intervening relative

clauses, and a few were annotation mistakes. The distribution of the three relation combinations is

displayed in Table 3.2. The most frequent relation type is the direct object relation, which makes

up 87.44% of all the LVCs.

3.2.2 Classifier

In LVC recognition, our classifier assigns a binary label (+1/-1) to an individual VS-NE

pair on the dependency tree. Here, we use the LibLinear machine learning algorithm, adopt-
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Table 3.2: Distribution of Dependency Relation Type of LVCs in ON 4.99 data

Relation Type Numbers Portion

I. Direct Chlid 1,546 87.4%
II. Quantity 16 0.9%
III. Head of the clause 178 10.1%

Sub-Total 1,740 98.4%

Other Type 28 1.6%

Total 1,768 100.0%

ing L2-regularized logistic regression. This algorithm uses the following approach: given a set of

instance-label pairs (xi, yi), where xi ∈ Rd, yi ∈ {1,-1}, a function f : xi → yi is found that

maximizes the likelihood estimation of the classifier’s parameters, which assumes that xi was gen-

erated by a binomial model that depends on yi (McCullagh and Nelder, 1989). One advantage of

using LibLinear over a Support Vector Machine (SVM) is the training and prediction speed. The

dimensionality of our features is often very high, but the training sample size is small. LibLinear

performs only logistic regression without using a kernel. Results show that LibLinear reduces both

training and decoding times, while maintaining the accuracy of the prediction.

Several features are used by the classifier. We categorize them into three different types:

Basic Features, OntoNotes Word Sense Features, and WordNet Features.

Basic Features Basic features include the word and its lemma, the part of speech (POS) tag, and

the dependency relation of VS and NE . Two paths, the sequence of POS tags and the sequence

of dependency relation labels, are included as well. Additionally, a subcategorization frame which

concatenates the dependency labels of VS and NE is adopted. These features are used either

individually or jointly (e.g., POS of VS and lemma of NE make another new feature). The basic

features are listed in Table 3.3.

OntoNotes Word Sense Features Word sense plays an important role in recognizing LVCs. In

the ON 4.99 corpus, a word sense tag is annotated on the verbs with three or more senses and

many nouns. The coarse-grained sense inventory, described in Section 2.1.3, gives a definition for

each word sense. Ideally, for the data to be the most effective for LVC detection, all verbs and
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Table 3.3: Basic Features (W−1/+1 refer to the left word / right word of W , and W h refers to the
head word of W ).

Lemma: The lemma of VS , NE , V −1
S , V +1

S , N−1
E , N+1

E , V h
S , Nh

E

POS: The part of speech tag of VS , NE , V −1
S , V +1

S , N−1
E , N+1

E , V h
S , Nh

E

Dep: The dependents of VS , NE , V −1
S , V +1

S , N−1
E , N+1

E , V p
S , Nh

E

RelPath: The concatenation of the relation on the dependency tree path from VS to NE

PosPath: The concatenation of the POS on the dependency tree path from VS to NE

DepSubcatSet: The subcategorization set that is derived by collecting all dependency labels
of VS and NE

Voice: Active or Passive for the VS
Distance: The dependency tree node distance between VS and NE

nouns would have sense tags. Unfortunately, not all of the subcorpora of the ON corpus are sense

tagged. In the first step of our ON data experiment (in Section 3.3.2), the verbs and nouns in

the automatically generated dependency trees do not contain any of the word sense tags. Hence,

a Word Sense Disambiguation (WSD) model is necessary. In Lee and Ng (2002), a SVM-based

WSD model that integrates the lemma, POS tag, and collocation information from nearby words

is proposed. We apply this model to the WSD task with ON word senses labels and implement

our WSD classifier with the LibLinear algorithm with L2-regularization and L1-loss support vector

classification. This algorithm uses a linear classifier to maximize the margin instead of using a

kernel. For the target word, we select ±3 words as the window size, while we adopt the same

feature list that was used in Lee and Ng (2002).

We train and test our model on the ON data for out-of-genre experiments (See Section 3.3

for the details of the data preparation). Our WSD model reaches 76.16 Precision, 71.32 Recall, and

73.66 F1 score. Although the overall performance of our WSD model is not ideal, the predicted word

sense tag is only used in the automated generated dependency trees as one feature that supports

the improvement of our LVC recognition.

WordNet Features WordNet (WN) contains rich word sense information and relational informa-

tion between words. In our model, several pieces of WN information are used as features:

WordNet Sense: The fine-grained WN sense inventory provides word sense information for each
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Table 3.4: OntoNotes Sebse Inventory Mapping Example

id = 1.1 id = 1.4 id = 1.5
carry out, enact bring with, select, accept,

transport, move come into possession of

WordNet take: 1, 15, 16, take: 3, 7, 27, 30 take: 4, 8, 10, 12,
24, 25, 28 take back : 1, 3 18, 19, 20, 23,

take apart : 1, 2, 4 take down: 1, 3, 7, 8 26, 31, 32, 33
take off : 4 take up: 9 take a joke: 1
take over : 6 take back : 2,3

take in: 1, 5, 7, 10,
15, 16

take in charge: 1
take lying down: 1
take on: 1, 2, 3, 4, 5
take orders: 1, 2
take out : 4
take up: 1, 2, 3, 5, 6,

7, 13

PropBank take.01, take.14, take.01, take.19 take.01, take.06, take.09, take.21
take.18

VerbNet performance-26.7-2 bring-11.3, steal-10.5 characterize-29.2

verb and noun. As mentioned previously, the ON data is annotated with the ON sense inventory tag

only. However, the ON sense inventory provides a mapping between each coarser-grained ON sense

and the WN senses that it comprises. An example of this mapping from the On sense inventory

for take is shown in Figure 3.4. The WN sense tag can be extracted via the ON sense tag, recalling

that the WN sense inventory is more fine-grained than the ON sense inventory and that one ON

sense may map to multiple WN senses. We opted to extract 1) The highest frequency sense (with

the lowest WN sense label number) as the WN Sense feature, and 2) The set of WN senses mapped

to the ON sense. These two features are applied to both VS and NE .

WordNet Noun Type (Lexical File Information): For each of the noun senses in WN, the manually

assigned lexical file information is given. This can be thought of as the word’s supertype. In this

research, twelve basic types that indicate a noun could be either eventive or stative are selected

(given in Section 2.1.2). This base type is a more generalized property for each noun, and provides



38

more common patterns for discovering previously unattested LVCs. 1

WordNet Hyponymy : Each word sense in WN contains the hypernym derived by the knowledge

structure. The hypernym of the NE provides a more generalized feature than the WN sense itself,

but more fine-grained information than the base noun type.

3.2.3 Recursive Neural Network-based Classifier

Since neural network models have been shown to perform so remarkably in various NLP

tasks, we are interested in seeing if an NN model can improve LVC identification despite the

limited availability of gold training data. In this preliminary work, we use a dependency-based

recursive neural network (ReVNN) model as our classifier. The fundamental idea of dependency-

based ReVNN is to generate a vector representation, i.e. embeddings, for each dependency tree

node. Given a dependency tree as input, a tree node representation is built that is composed of

different vectors, i.e., the word embeddings of the tree node itself, the embeddings of each relation

label, and the vector representation of its child nodes. Further details of this model are included

in Section 5.2.

The design of our ReVNN-based LVC identification is straightforward. We first acquire the

dependency tree node representations which contain the word embeddings, POS, and dependency

relation label information. Then, the representation embeddings of the candidate pair of (VS , NE)

are extracted as (hVS , hNE ). The concatenated vector of hVS and hNE is then submitted to a

softmax layer f(x) as a binary classifier. The output of f(x) indicates whether the candidate pair

(VS , NE) is an LVC relation or not. More formally, this can be expressed as:

f(xi,W ) = Wxi = W (hVS ⊕ hNE ) (3.1)

where ⊕ refers to a vector concatenation.

In the dependency-based ReVNN model, we select distributional semantics (i.e. word embed-

dings), POS and semantic information as features. Lexical-rich resources like WN and ON sense

1 The initial list is provided by Christiane Fellbaum, personal communication
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tags are ignored in our model since we would like to determine if a neural network model with basic

features can improve tasks with only a small amount of training data. In the experimental results

below, we first present the SVM results and then compare them to the RNN results.

3.3 LVC Identifier Experiments and Results

For our experiments, we used two target corpora, the BNC LVC data provided by Tu and

Roth (2011) and the ON 4.99 data. The BNC data is a collection of the verb - noun object patterns

from the BNC corpus, and is annotated as a balanced data set. Among all the BNC LVC data,

1,039 positive examples and 1,123 negative examples are generated. We randomly sample 90% of

the instances for training and the rest for testing. We also experiment with the ON 4.99 data. In

order to evaluate the accuracy of our model for different genres, we split our training and test sets by

randomly selecting different parts of subcorpora in each genre of ON. Portions of the following six

corpora are used for the test set: MSNBC broadcast conversation, CNN broadcast news, Sinorama

news magazine, WSJ newswire, CallHome telephone conversation (TC), and GALE web-text (WB).

In all of the ON data, 1,768 LVCs are annotated (in Table 3.2). Among these LVCs in ON, 1,588

LVCs are listed in the training data set, and 180 LVCs are in the test data set. We first present

results below using the SVM classifier, and then compare this with the ReVNN model performance.

3.3.1 BNC Data

We first train and evaluate our model with the BNC data using automatic parsers produced

by ClearNLP (Choi and Mccallum, 2013). Table 3.5 shows the performance of Tu and Roth (2011)’s

model and our classifier on the BNC data set at each step: precision, recall, and F1-measure. Our

baseline model involves basic features only. Our SVM-All features model, which includes the three

WN features, gains around 3 to 4 % improvement for positive and negative examples, with respect

to Tu and Roth’s contextual features and statistical features.
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Table 3.5: Model Comparison for BNC data. TR-C refers to Tu & Roth’s model with contextual
features, while TR-S refers to their model with statistical features. SVM-Basic model is our
classifier with the basic features only, while SVM-All Features uses all the features. The ‘+’ refers
to the system’s performance in detecting LVCs, while the ‘-’ refers to the system’s performance in
detecting non-LVCs. The best results for each system are shown in bold.

Model P R F1

TR-C
+ 86.49 84.21 85.33
- 86.15 88.19 87.16

TR-S
+ 86.48 85.09 86.46
- 86.72 87.40 87.06

SVM-Basic
+ 81.13 86.00 83.50
- 88.89 84.85 86.82

SVM-All Features
+ 85.32 93.00 89.00
- 94.31 87.88 90.98

Table 3.6: Incremental Feature Contribution for ON gold trees

Feature P R F1 Diff

SVM-Basic 78.09 78.09 78.09 -

+WN-Sense 80.23 79.78 80.00 +1.81
+WN-Type 80.68 79.78 80.23 +0.23
+WN-Hyper 81.61 79.78 80.68 +0.46
+Word Sense 81.77 78.09 79.89 -0.80

3.3.2 OntoNotes Gold Data Evaluation

We first train and evaluate our model with automatic parse trees. The overall results are

lower than on the BNC test set, because the data exhibits more variety. We achieved Precision

of 54.94%, Recall of 77.22% and an F1 score of 64.20%. Then we use the identical data set with

Gold Standard dependency trees, to evaluate the contribution of each feature. Table 3.6 shows

the performance of our system with features added incrementally. These features are compared

with the baseline model. The basic feature already achieves 78.09% of F1 score. And all three WN

features contribute to the F1 score incrementally. After all the WN features are added, our model

reaches the best F1 score of 80.68. Although the addition of the ON Word Sense feature decreases

the F1 score, it still increases the precision.

To investigate the effectiveness of each individual feature, we carried out an ablation study
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Table 3.7: Individual Feature Contribution for ON gold trees

Feature P R F1 Diff

SVM-Basic 78.09 78.09 78.09 -

WN-Sense 80.23 79.78 80.00 +1.81
WN-Type 78.53 78.09 78.31 +0.22
WN-Hyper 80.00 78.65 79.32 +1.23
Word Sense 80.59 76.97 78.74 +0.65

using only one feature at a time. The results in Table 3.7 shows that all the WN and ON word sense

features improve the system’s performance. This demonstrates that the more fine-grained features,

including WN-Sense, WN-Hyper, and ON Word Sense, contribute most to precision, especially the

WN-Sense feature.

Table 3.8: Individual Feature Contribution for ON gold trees with dependency node ReVNN-based
model

Feature P R F1 Diff

Word Embeddings 64.04 64.77 64.41 -
+ POS Embeddings 67.01 71.59 69.23 +4.82
+ Dep. Label Embeddings 70.37 67.05 68.67 -0.56

On the other hand, we also evaluate our preliminary dependency-based ReVNN-based LVC

identification on gold standard ON dependency trees. Table 3.8 shows the performance of the

identifier with features added incrementally. After the word and POS embeddings are added, the

F1 score of our ReVNN model reaches 69.23. Although these feature embeddings contribute to the

F1 score, the overall performance is far behind the SVM model.



Chapter 4

AMR-Dependency Parse Aligner

4.1 Overview

In order to obtain better alignments between AMR concepts and original word spans, an

unsupervised AMR-sentence aligner is designed to improve alignments using heuristics. Since our

final goal is to design an AMR parser using dependency parses, an AMR concept to dependency

parse node aligner is a natural choice for such alignment. An example alignment is shown in Figure

4.1. Alignment between an AMR concept and a dependency node indicates that the meaning of

the sub-graph of the concept and its child concepts correspond to the phrase governed by the head

word node. The dependency node also contains additional information, e.g., lemma, syntactic label,

named entity (NE), semantic role, etc. For example, the word node “Vinken” on the dependency

parse side in Figure 4.1 links to the lexical concept of “Vinken” and, furthermore, links to the

“p2/name” and “p/person” concepts since “Vinken” is the head of the NE “Pierre Vinken” and the

head of the whole noun phrase “Pierre Vinken, 61 years old.” To incorporate these different features

in the aligner, we use the EM algorithm to train different feature probabilities, including rule-based

features, lexical forms, relation labels, NE tags, semantic role labels, and global features, etc. Then,

EM processing incorporates all the individual probabilities and estimates final alignments.

Our AMR-to-Dependency parse aligner represents one AMR as a list of Concepts C =

〈c1, c2, . . . , c|C|〉, and the corresponding dependency parse as a list of dependency word nodes

D = 〈d1, d2, . . . , d|D|〉. An alignment function a is designed to produce exactly one alignment

to a dependency node dcj within a single sentence. Alternatively, we can view a as a mapping
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Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29

nn punct

amod

npadvmodnum

punct

nsubj

aux

root

det

dobj

prep

det

amod

pobj

npadvmod

nummod

“Pierre” “Vinken” 61 year -

name - temporal-quantity executive

person director 11 29

have-org-role-91

board

date-entity

join-01

op1 op2 quant unit

name wiki
age

Arg0

Arg1

time

month 29

Arg1-of

Arg0 Arg2

mod

polarity

Figure 4.1: The alignment between an AMR (top) and a dependency parse (bottom) for the sentence
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.” Red, dashed
lines link dependency parse nodes and corresponding concepts.

function that accepts one input variable concept cj and outputs a dependency node dcj with which

cj is aligned. A is the alignment set that contains all different al that cover possible alignments

within C and D. Our model adopts an asymmetric alignment direction, where one concept maps

to exactly one dependency parse node, and each dependency parse node can be aligned by zero to

multiple concepts. We denote dependency node dcj linked by concept cj as dcj = a(cj). c
p is the

parent concept of concept c, while cs1 , cs2 , ..., csk are the k child concepts of concept c.

The following sections explain the approaches we take to design our aligner. We first discuss

the features that our aligner uses (Section 4.2). Next we propose an EM-based method to integrate

all the features into the model (Section 4.3). The design of our decoding tool based on dynamic-

programming (DP) is introduced in Section 4.4. The results of this aligner first proposed in Chen

(2015); Chen and Palmer (2017) are shown in Section 4.5. The results for AMR parsing with the

use of our aligner are reported in Section 4.5.3. Error analysis is found in Section 4.5.4.
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Table 4.1: Rules and distribution of basic match types

Match Type Portion at Concept Portion at Leaf

(1) Word 45.2% 73.4%
(2) Word (case insensitive) - 0.9%
(3) Lemma (case insensitive) 10.8% 0.3%
(4) Partial match with word 6.1% 8.2%
(5) Partial match with lemma 0.2% 0.3%
(6) Numbers - 3.1%
(7) Ordinal Numbers - 2.8%
(8) Date - 4.3%
(9) Others 37.7% 6.5%

4.2 Features

4.2.1 Basic Features

Several AMR concepts use word forms directly. For example, the concept “join-01” in Figure

4.1 aligns to the dependency node “join” naturally. Similarly, the leaf concepts usually align to

identical terms in the dependency parse. In Figure 4.1, the name “Pierre Vinken” is aligned to

its word forms on the dependency parse leaves. Therefore, we design a straightforward rule-based

probability, Prule, which catches the appearance of the surface form. Prule(c, dc) is defined as

the probability that the matching type for a given concept c and dependency node dc are linked.

The different types of rules, e.g., word, lemma, numbers, and data, etc., and their proportional

applicabilities to both AMR concepts and leaves are listed in Table 4.1. For example, the rule

“Date” type aligns concept “11” with word node “November” in Figure 4.1, while “Numbers”

aligns concept “5” with word node “five”. Prule decide which match type to apply following a

greedy matching strategy.

4.2.2 External Features

To capture alignments for concepts which do not match any of the above rules, we design the

following four external feature probabilities:

Lemma Probability PLemma(c, dc) = P (c|Word(dc))



45

Pierre Vinken , 61 years old , will join ...

nn punct

amod

npadvmodnum

punct

nsubj

aux

root

“Pierre” “Vinken” 61 year

name temporal-quantity

person

join

op1 op2 quant unit

name age

ARG0 ARG1

(a) Lemma Feature Probability
Plemma(c = temporal-quantity, dc = old)

Pierre Vinken , 61 years old , will join ...

nn punct

amod

npadvmodnum

punct

nsubj

aux

root

“Pierre” “Vinken” 61 year

name temporal-quantity

person

join

op1 op2 quant unit

name age

ARG0 ARG1

(b) Relation Feature Probability
Prel(c = 61, dc = 61, dcp = old)

PERSON
Pierre Vinken , 61 years old , will join ...

nn punct

amod

npadvmodnum

punct

nsubj

aux

root

“Pierre” “Vinken” 61 year

name temporal-quantity

person

join

op1 op2 quant unit

name age

ARG0 ARG1

(c) Named Entity Probability
PNE(c = person, dc = V inken)

Pierre Vinken , 61 years old , will join ...

nn punct

amod

npadvmodnum

punct

nsubj

aux

Arg0

root

“Pierre” “Vinken” 61 year

name temporal-quantity

person

join

op1 op2 quant unit

name age

ARG0 ARG1

(d) Semantic Roles Feature example
PSR(c = person, dc = V inken, dcp = join)

Figure 4.2: Example of features that are used in our aligner. Red dashed lines link AMR concepts
(top) and corresponding dependency parse nodes (bottom), while blue dashed lines link the parent
AMR concepts and their corresponding dependency parse nodes.

The lemma probability represents the likelihood that concept c aligns to a dependency word dc. For

example, in Figure 4.2a, the concept c =“temporal-quantity” is highly likely to align to the word

node dc = “old” since “old’’ is usually the head word of a phrase expressing age (“61 years old”

here). Also, have-org-role-91 can align to the word node “director” since “director” appears quite

often with have-org-role-91 (defined as roles in organizations.) Besides, some special leaf concepts,
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like “:polarity -” (negative), and “:mode expressive” (used to mark exclamations), also rely on this

feature rather than the basic rules.

Relation Probability Prel(c, dc, dcp) = P (AMRLabel(c)|Path(dc, dcp))

Relation probability is the conditional probability of the AMR relation label of c given the parse

tree path between dc and dcp , where dc and dcp represent the dependency nodes that are aligned

by c and cp, respectively. Parse tree path is the concatenation of all dependency tree and direction

labels through the tree path between dc and dcp . For example, the relation probability of c = 61,

dc = 61, and dcp = old in Figure 4.2b is P (quant|npadvmod ↓ num ↓). A parse tree path is a useful

feature for extracting relations between any two tree nodes, e.g., Semantic Role Labeling (SRL)

(Gildea and Jurafsky, 2002) and relation extraction (Bunescu and Mooney, 2005; Kambhatla, 2004;

Xu et al., 2015), so we add the relation probability with path feature to our model.

Named Entity Probability PNE(c, dc) = P (c|NamedEntity(dc))

The named entity probability is the probability of the concept c conditioned on different NE types

(e.g., PERSON, DATE, ORGANIZATION, etc.). NamedEntity(d) indicates the named entity

type of the phrase with d as the head word. For example, after NER tagging, the label assigned

to “PERSON” is the dependency parse tree node “Vinken”. So the NE probability of PNE(c =

person, dc = V inken) in Figure 4.2c is P (person | PERSON). As AMR contains a large amount

of named entity information, we assume that a feature based on an external named entity module

should improve the alignment accuracy.

Semantic Role Probability PSR(c, dc, dcp) = P (AMRLabel(c)| SemanticRoles(dcp , dc))

The semantic role probability is the conditional probability of the AMR relation label of c, given

the semantic role dc if dcp is a predicate and dc is dp’s argument. If a predicate-argument structure

does not exist between dcp and dc, the semantic role probability is omitted. For example, in

Figure 4.2d, the semantic role probability of PSR(c = person, dc = V inken, dcp = join) is equal to

P (ARG0|Arg0). Since AMR depends heavily on predicate-argument relations, external predicate-

argument information from an external SRL system should enhance the overall alignment.
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The above four feature probabilities are learned by the EM algorithm (Section 4.3).

4.2.3 Global Feature

61 years old

advmodnum

temporal-
quantity

61 year

quant unit

Figure 4.3: An example of incorrect alignment.The overlapping ratio Rcc is calculated as follows:
let c = temporal-quantity
W (c) = {61, year},Wchild(c) = {61} ∪ {61, year, old} = {61, year, old}
Wchild(c) ∩W (c) = {61, year}, penalty(c) = exp(−|{old}|) = 0.37

Rcc(c) = (2
2)× pen(c) = 0.37

The above basic and external features capture local alignment information. However, to make

sure that a concept is aligned to the correct phrase head word representing the same sub-meaning,

a global feature is needed to calculate coverage. The design of our concept coverage feature is as

follows:

Overlapping Ratio RCC(cp): The overlapping ratio of the child concept aligned phrases to their

parent concept aligned phrases plus the non-covered penalty. The ratio is defined as:

RCC(c) =
|Wchild(c) ∩W (c)|

|W (c)|
× penalty(c)

W (c) = dc;Wchild(c) =
⋃

csi∈child(c)

dcsi

penalty(c) = exp(−|Wchild(c) \ (Wchild(c) ∩W (c))|)

where W refers to the set of words that the aligned dependency word node contains. The first

term of RCC ensures the child concepts contain the largest possible subspan of the parent concept

span. The non-covered penalty term is to prevent a child concept from aligning to a word node

that contains a larger word span than the child’s parent concept. The penalty term will increase
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exponentially if child concepts align to a larger word span. The back slash term “́’ refers to set

subtraction. Figure 4.3 shows an example of an incorrect alignment where the concept “temporal-

quantity” aligns to “year” and the concept “year” aligns to “old”. The overlapping ratio of this

alignment is 0.37 since it suffers a penalty. We compare it with the correct alignment in Figure 4.2b,

the overlapping ratio of this alignment is 0.67, which is much higher than the incorrect one.

4.3 Training with EM Algorithm

The objective function of our AMR-to-Dependency Parse aligner is implement as follows.

Since our long term goal is to design a dependency parse to AMR parser, we define the objective

function Lθ as the probability that dependency parses transfer to AMR graphs for the AMR-to-

Dependency Parse aligner:

θ = argmaxLθ(AMR|DEP), (4.1)

Lθ(AMR|DEP) =
∏

(C,D,A)∈S

P (C|D) =
∏

(C,D,A)∈S

∑
a∈A

P (C, a|D) (4.2)

P (C, a|D) =

|C|∏
j=1

P (cj |dcj = a(cj), dcpj = a(cpj )) (4.3)

where θ = (Plemma, Prel, PNE , PSR) is the set of feature probabilities (parameters) we want to

estimate, alignment set A is the latent variable we want to observe, and S is the training samples

that contain a set of tuples (C,D,A). In equation 4.3, the probability that dependency tree D

translates to AMR C with one alignment combination a is equal to the product of all probabilities

that concept cj in C aligns to dependency node dcj and cpj (the parent concept of cj) aligns to

dependency node dcpj . The Expectation-Maximization (EM) (Dempster et al., 1977) algorithm is

used to estimate the feature probabilities that maximize our objective function.
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4.3.1 Expectation-Step

The E-Step estimates all the different alignment probabilities of an input AMR and depen-

dency parse pair by giving the product of feature probabilities. The alignment probability can be

calculated using:

P (a|C,D) =

|C|∏
j=1

P (cj |dcj = a(cj), dcpj = a(cpj ))∑|D|
l=1

∑|D|
i=1 P (cj |di, dl)

(4.4)

P (cj |di, dl)

= Prule(cj , di)× Plemma(cj , di)× Prel(cj , di, dl)× PNE(cj , di)× PSR(cj , di, dl) (4.5)

The alignment probability is equal to the product of all tuple (c, dc, dcp)’s aligning probabilities.

Prule is obtained by a simple calculation from the development set, while Plemma, Prel, PNE , and

PSR are initialized uniformly before the first round of the E-step. These feature probabilities will

be updated during the M-step.

4.3.2 Maximization-Step

In the M-step, feature probabilities are reestimated by collecting the count of all AMR-

dependency parse pairs. The feature probabilities are estimated with

cntlemma(c|Word(dc);C,D) =
∑
a∈A

P (c|dc, dcp)∑|D|
i=0

∑|D|
l=0 P (c|di, dl)

(4.6)

cntrel(AMRLabel(c)|path(dc, dcp);C,D) =
∑
a∈A

P (c|dc, dcp)∑|D|
i=0

∑|D|
l=0 P (c|di, dl)

(4.7)

cntNE(c|NamedEntity(d);C,D) =
∑
a∈A

P (c|dc, dcp)∑|D|
i=0

∑|D|
l=0 P (c|di, dl)

(4.8)

cntSR(AMRLabel(c)|SemanticRole(dc, dcp);C,D) =
∑
a∈A

P (c|dc, dcp)∑|D|
i=0

∑|D|
l=0 P (c|di, dl)

(4.9)

where cntlemma, cntrel, cntNE , and cntSR are the normalized counts that are collected from the

accumulating probability of all possible alignments from the E-step. After we collect all counts
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for different features, the four feature probabilities, Plemma, Prel, PNE , and PSR, are updated with

their feature counts.

Plemma(c, d)←
∑

C∈AMR,D∈DEP

cntlemma(c|Word(d));C,D)∑
c cntlemma(c|Word(d);C,D)

(4.10)

Prel(c, d, d
p)←

∑
C∈AMR,D∈DEP

cntrel(AMRLabel(c)|Path(d, dp);C,D))∑
amrLabel cntrel(amrLabel|Path(d, dp);C,D)

(4.11)

PNE(c, d)←
∑

C∈AMR,D∈DEP

cntNE(c|NamedEntity(d));C,D)∑
c cntNE(c|NamedEntity(d);C,D)

(4.12)

PSR(c, d, dp)←
∑

C∈AMR,D∈DEP

cntSR(AMRLabel(c)|SemanticRole(dp, d);C,D))∑
amrLabel cntSR(amrLabel|SemanticRole(dp, d);C,D)

(4.13)

After this, we apply the newer feature probabilities to recalculate alignment probabilities in the

E-step again. Iteration of the E- and M-steps continues until convergence or certain criteria are

met.

4.4 Decoding

At decoding time, we want to find the most likely alignment a for the given 〈C,D〉. Applying

Equations (4.4) and (4.5), we define the search for alignments as follows:

argmax
a

P (a|C,D) = argmax
a

|C|∏
j=1

RCC(cj) ∗ P (cj |dcj = a(cj), dcpj = a(cpj )) (4.14)

This decoding problem finds the alignment a that maximizes the likelihood defined in Equation 4.2.

The overlapping ratio (RCC) is introduced as part of the likelihood function to ensure that a parent

concept covers a wider word span range than its child concepts. A beam search algorithm is designed

to extract the target alignment without exhaustively searching all of the candidate alignments

(which has a complexity of O(|D||C|).) The beam search starts from the leaf concepts and then

walks through concepts after their child concepts have been traversed. When we go through concept

cj , we need to consider all the following likelihoods: 1) the accumulated likelihood for aligning to
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any dependency word node dcj from all the child concepts of cj , and 2) the product of Plemma,

PNE , Prel, PSR, and RCC for cj . Instead of being used during training, RCC is only applied during

decoding time. The probabilities are obtained simply from the product of all the above likelihood.

We keep the top-|b| alignment probabilities and their aligned dependency node dcj for each cj until

we reach the root concept, where |b| is the beam size. Finally we can trace back and find the most

likely alignment. The running time for the beam search algorithm is O(|b| ∗ |C| ∗ |D|2).

4.5 Experiments and Results

4.5.1 Experimental Data

The LDC DEFT Phase 2 AMR Annotation Release 1.0 consists of AMRs with English

sentence pairs. To match an AMR with its corresponding dependency parse, we select the sentences

which appear in OntoNotes (ON) 5.01 . The ON data contains TreeBank, PropBank, and NE

annotations. For evaluation purposes, we manually align the AMR concepts and dependency

word nodes for the development and test sets. A total of 1,000 sentences with gold alignments is

available. Table 4.2 presents the statistics for the experimental data. For the data without gold

standard parses, the DEFT AMR training data, we need an automatic dependency parser. We

retrained the ClearNLP model with ON 5.0 after first removing the sentences that also appear in

the DEFT AMR corpus. We then run it on the training data. The manually aligned data and the

source code of the web browser based alignment tool is available on our website: https://verbs.

colorado.edu/~wech5560/amrAlignment and GitHub: https://github.com/weitechen/.

4.5.2 Experimental Results

We run EM for 50 iterations and ensure the EM model converges. Afterwards, we use our

decoding algorithm to find the alignments that maximize the likelihood. The test set data is used

to evaluate performance.

1 LDC OntoNotes Release 5.0, Release date: October 16, 2013 https://catalog.ldc.upenn.edu/LDC2013T19

https://verbs.colorado.edu/~wech5560/amrAlignment
https://verbs.colorado.edu/~wech5560/amrAlignment
https://github.com/weitechen/
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Table 4.2: The data split of the LDC DEFT AMR corpus. Gold Dep. refers to the sentences also
appearing in OntoNotes 5.0 with gold annotations, while Auto Dep. refers to all sentences in DEFT
AMR corpus with dependency parses, named entities, and semantic roles generated by ClearNLP.
Number of tokens, named entities, and arguments(Arg.) in each data set are also presented

Sent. Token

Train
Gold Dep. 8,276 176,422
Auto Dep. 36,521 649,219

Dev. 500 8,695
Test 500 8,786

We first evaluate the performance of our system with external features added incrementally.

Table 4.3 indicates the results. By running with the “Gold Dep.” data, the only feature that

improves significantly over the baseline (rule-based and lexicon features only) is the semantic role

feature. The named entity feature actually hurts performance. On the other hand, all the features

contribute to the F-Score incrementally for “Auto Dep.”. Again, the semantic role feature results

in the most positive impact compared to other features with a significant improvement over the

baseline.

As we compare the F1 score on training with “Auto Dep.” and “Gold Dep.” data set,

training with “Auto Dep.” outperforms training with “Gold Dep.” data in all different feature

combinations. We believe there are two reasons for this. First, the “Auto Dep.” data contains

richer information than the “Gold Dep.” data: “Auto Dep.” has double the sentence size of “Gold

Dep.” and proportionally more named entity labels. Second, the automatic dependency parses do

not hurt the performance of our aligner very much. We believe that our unsupervised alignment

model works better with more data, even without access to gold standard dependency parses.

We then compare our latest aligner (Chen and Palmer, 2017) with three other aligners:

JAMR, our basic version of aligner (Chen, 2015), and ISI (Pourdamghani et al., 2014). To make

them fit our evaluated data, we design a heuristic method to force every un-aligned concept (e.g.,

NE and “:polarity -” concepts) to align to a dependency word node according to rule-based and

global features (see Section 4.2). The alignments from concept relation to word span (applied in

ISI) are discarded in our task. The results of the experiment are shown in Table 4.4. Our latest
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Table 4.3: Incremental Feature Contributions for different features: L: lemma; R: relation; N :
NE; S: semantic role.

Data Feature P R F-Score

Gold Dep.

L 84.0 85.0 84.5
L + S 85.2 86.3 85.7
L + S + R 82.8 83.8 83.3
L + S + R + N 80.9 81.9 81.4

Auto Dep.

L 84.9 85.4 85.1
L + S 85.7 87.4 86.5
L + S + R 85.8 87.7 86.7
L + S + R + N 86.3 88.0 87.1

aligner achieves the best F1 score, as it should, since it is designed to align AMRs to dependency

parses, as was the (Chen, 2015) aligner. Our aligner performs better than Chen (2015) by around

28% of F1 score. We can conclude that the addition of rule-based feature, global features, and

beam-search in decoding time helps the alignment task substantially.

4.5.3 Apply to AMR Parsing

To evaluate how alignment can enhance AMR parsing, we compare the parsing performance

of the CAMR parser with different alignments produced by JAMR, ISI, and our aligner. To make

the alignments fit the CAMR parser, we convert our alignments to the original JAMR alignment

format, word span to AMR concept. We get rid of the “:wiki” tag, which links the named entity to

its Wikipedia page, to simplify the parsing task since we consider the Wikification task (Mihalcea

and Csomai, 2007) to be inherently different than the AMR parsing task. Smatch v2.0.2 is used

to evaluate AMR parsing performance (Cai and Knight, 2012). The evaluation script is obtained

from the SemEval 2016 Task 8 website.2

A comparison of parsing results is given in Table 4.5. We first train the parser with “Gold

Dep.” Standard dependency parses and alignments from the different aligners. Results show that

our aligner improves by a 2% F1 score over the two other aligners. Then we train the AMR Parser

system with “Auto Dep.” data set. The dependency parses attached with semantic roles and

2 http://alt.qcri.org/semeval2016/task8/index.php?id=data-and-tools

http://alt.qcri.org/semeval2016/task8/index.php?id=data-and-tools
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Table 4.4: Results of different alignment models

Data Aligner P R F-Score

Gold Dep.

Chen 2015 61.1 53.4 57.0
JAMR 78.5 62.8 69.8
ISI 78.6 71.4 74.9
Ours 85.2 86.3 85.7

Auto Dep.

Chen 2015 62.4 55.5 58.7
JAMR 80.2 65.9 72.4
ISI 80.4 74.9 77.6
Ours 86.3 88.0 87.1

named entities generated by ClearNLP (Choi and Mccallum, 2013) are also provided to CAMR as

training data. CAMR uses dependency parsing results from the Stanford dependency parser (Klein

and Manning, 2003) by default. Our aligner still achieves slightly better performance than the

other two. Modifying the AMR parser to take advantage of parse node-concept alignments could

potentially result in greater improvement, since CAMR takes the input alignments as word span

to AMR concepts.

4.5.4 Error Analysis

To further understand the advantages and the disadvantages of our model, we go through

all incorrect alignments and manually categorize 40% of them into different error types, with their

proportion:

Automatic Parsing Errors - 3.8%: ClearNLP has a 92.96% unlabeled attachment score on the

Penn English Treebank evaluation set (Marcus et al., 1994), Section 23, for dependency parsing.

Therefore, when training our aligner on the “Auto Dep.” data set with dependency parses, named

entities, and semantic roles generated by ClearNLP, incorrect parses occasionally show up. Since NE

and semantic roles are attached to dependency parses, incorrect dependency parses cause additional

NE and semantic roles alignment errors, on top of the dependency parse alignment errors.

Long Distance Dependencies - 14.2%: Long sentences with long distance dependencies tend

to introduce errors into NLP parsing tasks. Experimental results show that our model runs into
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Table 4.5: Using alignments with Brandeis AMR Parser. The Gold Dep. corpus uses the gold
dependency parses from ON 5.0, while the Auto Dep. corpus uses the whole DEFT AMR data
(twice the size) with dependency parses generated by ClearNLP.

Data Aligner P R F1 Diff

Gold Dep.
JAMR 62.2 61.0 61.1 +5.3
ISI 65.3 63.9 64.5 +1.9
Our 68.6 64.2 66.4

Auto Dep.
JAMR 64.2 63.0 63.1 +3.6
ISI 66.1 65.1 65.6 +1.1
Our 68.1 64.7 66.7

trouble when nearby concepts align to dependency nodes which are far from each other. Co-

reference is an example that is highly likely to align to long distance dependencies, and our model

can not deal with it well.

Duplicate Words - 17.4%: When two identical concepts align to different word nodes, our model

is confused by duplicate words. In Figure 4.4, there are two “first”s in the sentence. One refers to

“first 6 rounds”, and the other refers to “first position”. However, our model faultily aligns both

ordinal-entity concepts to the same “first” word node. Our model did not distinguish these two

ordinal-entities since the lexicon and named entity tags of the two “first”s are identical.

Meaning Coverage Errors - 40.4%: We define a good alignment as a concept that aligns to the

correct phrase head word representing the same sub-meaning. So instead of aligning to a concept’s

word and lemma, sometimes a concept aligns to its parent node (head word). However, the lexicon

features dominate the alignment probability in our EM calculation, causing our model to tend

to align a concept with its word form instead of its head word. For example, English light verb

constructions (LVCs), e.g., take a bath, are thought to consist of a semantically general verb and

a noun that denotes an event or state. AMR representation always drops the light verb, selecting

the eventive noun as the concept. Our model sometimes aligns this eventive noun concept to its

nominal word node, which is incorrect as the light verb in the dependency parse covers the same

sub-meaning and should for that reason be aligned instead.
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(a / and

:op1 (o / occupy -01

:ARG0 (p3 / person :name (n / name :op1 "Mingxia" :op2 "Fu"))

:ARG1 (p4 / position

:ord (o3 / ordinal -entity :value 1))

:op2 (o2 / occupy -01

:ARG0 (p / person :name (n2 / name :op1 "Bin" :op2 "Chi"))

:ARG1 (p2 / position :ord (o4 / ordinal -entity :value 3))

:mod (r / respective)

:time (r3 / round -05 :quant 6 :ARG1 (c / compete -01)

:ord (o5 / ordinal -entity :value 1)))

Figure 4.4: The AMR annotation of the sentence “In the first 6 rounds of competition, Mingxia Fu
and Bin Chi are occupying the first and third positions respectively”



Chapter 5

AMR Parser Framework

5.1 Overview

We address the main components of our AMR parser in this chapter. The bottom part of

Figure 1.3 provides an overview of our parser. We first propose a frame identifier which recognizes

and labels the frame of a candidate predicate in Section 5.3.1. Then we divide our parser into

two sub-models: the concept identifier and the relation identifier. This design is different from

other transition-based AMR parsers which merge a concept identifier and a relation identifier into

a single task. The concept identifier receives a dependency tree node as input and generates a

series of candidate concepts. The proposed concept identifier is described in Section 5.3.4. Our

relation identifier, a transition-based parser which decides each parsing transition (action) based

on the current status is described in Section 5.3.5. We present the decoder and post-processing in

Section 5.3.6. Lastly, to show how we inject syntactic knowledge into our model, we introduce a

dependency-based ReVNN as an essential feature in all the above sub-models. We begin with a

brief description of this feature is in Section 5.2.

5.2 Dependency-Based Recursive Neural Network

A dependency parse tree, a model of syntactic knowledge including head words, dependency

labels, and NEs (from an external system), is a prominent linguistic structure in our model. It is

obvious that the design of the sub-models of our AMR parser, including frame identification, concept

identification, and relation identification, all rely heavily on dependency parse trees. Our models
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reuse basic features like word forms, lemmas, POS tags, and dependency relations repeatedly.

Meanwhile, since the NN-based models we use all acquire vectors as inputs, we need to convert all

features into vector representation form, e.g., word embeddings. With these considerations in mind,

we design a general dependency node vector representation (embedding) to capture the meaning

of each dependency node and all its children. The goal of producing such a dependency node

embedding is to use this vector as a helpful feature for our sub-models of an AMR parser which

takes dependency trees as input. This feature is expected to benefit other NLP applications.

We define our Dependency-Based Recursive Neural Network (ReVNN) here. Given a de-

pendency tree D, our model generates the vector representation of dependency tree node d as ed.

To generate ed, we compose two types of feature vectors. The first type is a basic feature vector

(ebasicd ), which is a concatenation of basic feature vectors from the dependency tree node itself.

The basic features include the word embedding (ewd ), POS embedding (ePOSd ), dependency relation

embedding (erd), etc. The second type is a feature vector accumulated from the vector representa-

tions of its children with the RNN-based model (vd), which represents information from the child

nodes. To facilitate information accumulation, we use two LSTM models, LSTML and LSTMR,

to record and process each child vector representation (echildid
), where childid represents the i-th

child node of d. The features that we use to compose echildid
are identical to the features of ebasicd .

Both LSTM models process the child node vectors. The only difference is that LSTML processes

child nodes before d, while LSTMR processes child nodes after d. The LSTMs receive childid as

inputs according to the word order of childid from far to near. The reason that we design two LSTM

models rather than just one is that the behaviors of child nodes before d and after d varies. The

outputs of these two LSTM models, vLd and vRd , are then concatenated into vd. For the tree node

that does not contain any left or right child nodes, i.e., a leaf node, we use an empty vector (vempty)

to replace vLd or vRd .

The two types of feature representations, ebasicd and vd, are then concatenated and passed to

a feedforward layer with a sigmoid activation function. This layer maps the concatenation feature

vector to the final dense vector representation, ed. The idea of the dependency-based ReVNN can
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vLjoin ewjoin ePOSV B erROOT vRjoin

nsubj aux dobj prep npadvmod

LSTML LSTML LSTMRLSTMRLSTMR

eV inken ewill eboard eas eNov.

FeedForward NN

ejoin

Figure 5.1: Overall framework of Learning Dependency-Based ReVNN

be expressed formally as:

ed = FeedForward(ebasicd ⊕ vd)

ebasicd = ewd ⊕ ePOSd ⊕ erd; vd = vLd ⊕ vRd

vLd = hLchildid
; vRd = hR

childjd

hLchildid
= LSTML(echildid

, hchildi−1
d

); hR
childjd

= LSTMR(e
childjd

, h
childj+1

d
) (5.1)

where FeedForward is the feedforward layer with sigmoid activation, hLi is the hidden state of

LSTML after processing ei, child
i
d is the i-th child node of d which is before the closest word node

to d, while childjd is the j-th child node of d which is after d and the closest word node to d, and

⊕ indicates vector concatenation.

The hierarchy of our model is presented in Figure 5.1. In this figure, colored circles indicate

vector values; rounded squares indicate the concatenation of different vectors; the squares are

the NN model itself. Our model creates the feature vector of dependency node “join” (ejoin) for

the same dependency parse in Figure 4.1. “Vinken” and “will” are the two direct child nodes

that appear before “join”, while “board”, “as”, and “Nov.” are the three direct child nodes that

appear after “join”. Therefore, the vector representations of “Vinken” and “will” are processed by

LSTML, while the vector representation of “Nov.”, “as”, and “board” are processed by LSTMR,
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respectively. On top of the figure, the concatenated vector is processed by a feedforward layer, then

the feature representation ejoin is created.

To train the parameters in our model, i.e., the feedforward network and LSTM, we need a loss

function to help us update the parameters with stochastic gradient descent during backpropagation.

For this reason, the ReVNN model is covered by other parent models, including our frame, concept,

and action identifiers, which are all multi-label classifiers. The parent model defines its own loss

function J(θ) for training, where θ refers to all trainable module parameters. In the forward-

propagation step, our ReVNN model uses Equation 5.1 to generate the vector representation for

all dependency tree nodes. The parent model uses these vector representations as input features.

In backpropagation, the parent model returns the gradient descent of the vector representation in

respect to its loss function J(θ). The vector ed is then updated by the gradient descent term with

a learning rate α as

ed ← ed − α
∂

∂ed
J(θ) (5.2)

Applying the chain rule, all parameters in the set θReV NN = {θLSTML , θLSTMR , θFeedForward} can

be estimated in the backpropagation step as well. The LSTM parameter θLSTM includes the forget

gate parameters (W (f), b(f)), the input gate parameters (W (i), b(i)), and the output gate parameters

(W (o), b(o)). Additional details of LSTM implementation with definitions of these parameters can

be found in (Hochreiter and Schmidhuber, 1997). Also, the feedforward parameters θFeedForward

include a weight matrix W (ff) ∈ R(|vd|+|ebasicd |)×|ed| and a bias term b(ff) ∈ R|ed|. These parameters

in θReV NN are updated repeatedly with numerous epochs of training.

5.3 Parser

In this section, we will briefly describe the essential parts of our AMR parser. First, we will

design a frame identifier to label PropBank frame IDs for verbal and nominal predicates (Section

5.3.1). The next step is to develop the concept identifier, which predicts a list of candidate concepts

for each dependency tree node (Section 5.3.4). Once we have these concept candidates with IDs, we
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will be ready to train our transition-based relation identifier (Section 5.3.5). The transition-based

parser predicts the action that indicates the conversion of a dependency tree to its AMR graph.

The conversion includes the changing of dependency parse structures and the prediction of the

relations between concepts. The transition-based parser predicts the action (transition) according

to the status of parsing states. An action extractor which selects the oracle actions in training time

(Section 5.3.5.2) is needed to explore gold training data. By giving the oracle actions as inputs, we

then train our transition-based parser with several NN components and their corresponding features

(Section 5.3.5.3). After our parser converts a dependency tree to a list of AMR root concepts, a

series of post-processing steps is taken to form a complete AMR graph (Section 5.3.6).

5.3.1 Frame Identifier

A Frame Identifier (FI) is similar to a traditional word sense disambiguation task. Given a

target word wp and its surrounding words, an FI automatically labels the frame ID of wp according

to its corresponding frame file. For example, given the entire “Pierre Vinken” sentence, an FI marks

“join” as the predicate and selects the frame ID “join.01” which expresses the meaning of “attach,

connect things together.” FI is a preliminary step for our AMR parsing task. As we mentioned in

Section 1.2.3, AMR uses OntoNotes predicates as core role concepts. Also, AMR depends heavily on

predicate-arguments from PropBank and labels edges as PropBank core arguments. By combining

a separated FI and additional parts of concept identification, e.g., named entity recognition and

wikification, the AMR parser enhances its overall performance. For this reason, we treat the FI

task as a separate sub-system within our parser.

Although light verb constructions potentially play an important role in the semantic parsing

task, they have not been considered as an important characteristic in the frame identification task.

An LVC detector can conceivably improve the performance of AMR parsing and the SRL task. For

concept identification in AMR, the eventive noun in an LVC, rather than the accompanying light

verb, is always picked as the real concept.

In this section, we will focus on designing an FI to fit the requirements of the AMR parser.
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This identifier is based on our dependency-based ReVNN network combining various linguistic

features (Section 5.3.2). In the second part, the LVC detector which we introduced in Chapter

3 is introduced to our pipeline. The resulting predicates with frame ID are then provided to our

concept identifier in the next step.

5.3.2 Dependency-Based ReVNN Frame Identifier

Our frame identifier is a classifier which takes our dependency-based ReVNN network as

its underlying structure. Here, PropBank is the Frame sembank we select. The first step is to

indicate the candidate word that we want to identify. We select verbs and nouns that appear in

the PropBank frame files as candidate words. The next step is to decide the frame ID for the

given words. Here we use the dependency-based ReVNN network to execute our classifier. The

design of our identifier is shown in Figure 5.2. This framework is identical to the ReVNN model

introduced in Section 5.2. We are assuming we want to disambiguate the frame ID of word d (join

in Figure 5.2.) Given the dependency parse tree of the input sentence, k-direct child nodes of d

are extracted. We use three basic linguistic features to represent each child node, including word

form, part-of-speech, and a relation label. As we follow the same workflow as our dependency tree

ReVNN, the vector representation of the candidate tree node d is then generated. In the FI task,

the next step is to submit the vector representation of d (ejoin in Figure 5.2), to another feedforward

layer with a hyperbolic tangent (tanh) function as activation, which generates the representation

vector, zd. In the last step, zd is submitted to a softmax layer to train a multi-class classifier. The

softmax classifier outputs the frame ID of word d.

Generally speaking, a softmax layer generates a list of K values where the i-th element

represents the probability that the input instance belongs to class-i and K is the number of classes

we want to classify. Thus, our FI can be formally described as:

P (ȳ = fi|d) = softmax(zd) =
exp(zfid )∑|FRAME|

j=1 exp(zjd)

zd = tanh(eTdW
FI + bFI)



63

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29
NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN NNP CD

nn punct

amod

npadvmodnum

punct

nsubj

aux

root

dobj

det

prep amod

det

amod

npadvmod

num

[Vinken|NNP|nsubj] [will|MD|aux] [board|NN|dobj] [as|IN|prep] [Nov.|NNP|npadvmod]

LSTML LSTML LSTMR LSTMR LSTMR

[join|VB|root]

Feed Forward
RevNN

Feed Forward
FrameID

Softmax Classifier

eV inken ewill eboard eas eNov

ejoin

zFIjoin

Frame ID

Figure 5.2: Dependency-based ReVNN Frame Identifier Framework. The square blocks indicate
NN units, with “[ ]” denoting vector combinations.

where |FRAME| is the total number of frames in PropBank, WFI ∈ Rdim(ed)×|FRAME| is the

weighted matrix in FFFrameID layer, bFI is the bias term of FFFrameID, zd ∈ R|FRAME| is the

output vector of FFFrameID layer. The summation term in the softmax function ensures that the

total probabilities sum to 1. The softmax layer uses multinomial logistic regression to calculate

resulting probabilities. Given gold standard frame IDs during training time, the loss function of

our classifier is defined as:

JFI(θ) = − 1

m
[
m∑
i=1

|FRAME|∑
fi=1

1{y(i) = fi} log
exp(zfi(i))∑|FRAME|

j=1 exp(zj(i))
] (5.3)

where 1{k} is the indicator function which generates a vector whose k-th element is 1 with the rest

of the vector being 0. We can then use backpropagation and stochastic gradient descent on JFI

to update w. Moreover, by applying Equation 5.2, all parameters in θReV NN can be updated via

backpropagation as well.

After our FI predicts frame IDs for the candidate predicates, we then compare the resulting

frame ID with the output of our LVC detector. It is straightforward to treat all the results from

our LVC detector as correct. If a verb predicate is assigned to a frame ID but also to an LVC,

this verb is reset as a non-predicate verb. Meanwhile, the eventive noun of the LVC is assigned a

frame ID. The comprehensive results of our Frame ID and LVC detector then pass to our concept
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identifier as inputs to the next step.

We use a dependency tree structure with ReVNN rather than the whole sentence for two

reasons. First, a dependency parse tree provides a larger number of related words for the target

word d. In a word sense disambiguation task, local context tends to provide stronger word sense

evidence than long distance context words (Yarowsky, 1995), which we believe is also applicable to

the frame identification task. The second reason is that direct child nodes affect the target word

sense more than other dependency word nodes. Direct child nodes are always the head word of

the child phrase. Using the direct child node childid and the word d itself as features can filter

out irrelevant word node information, e.g. articles. Also, using only direct child nodes reduces the

training and running time of our LSTM network. To compare the dependency-based ReVNN FI to

the traditional whole sentence FI, we design a window-based FI which accepts a sentence as input

and identifies the frame ID of target word d considering the words nearest to d. The design of this

window-based model is in Figure 5.3. This model extracts features from the n-near content words

of d. The feature representation of each word is its word embeddings and POS embeddings. Then

the concatenation of the vector representations of these nearby words plus the target words itself is

then passed to the feedforward and softmax layers, like the last two layers of the ReVNN model. An

alternative model of the window-based one is to use the left and right LSTMs, like the two LSTMs

in ourReVNN model, to replace the concatenation of vectors. We called it the Window-Based+NN

model. The design of the window-based model is quite straightforward and easy to train. Only the

softmax weight and feedforward matrix need to be updated in the backpropagation step. On the

other hand, to train the window+NN-based model is as complicated as the ReVNN model.

5.3.3 Data Pre-processing

AMR is enriched by different types of linguistic information on its graph. To simplify our

parser, we use several external systems to pre-process our data and obtain this information. For

semantic labels (SR), we use the SRL system in the NLP4j toolkit1 to mark the predicate-argument

1 https://github.com/emorynlp/nlp4j
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Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29
NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN NNP CD

[years|NNS] [old|JJ] [will|MD] [join|VB] [board|NN] [as|IN] [nonexecutive|JJ]

Feed Forward

Softmax Classifier

Frame ID

Figure 5.3: Window-based Frame Identifier Framework with window size = 3.

labels on the dependency trees. We re-train the NLP4j SRL system with the unification version

of PropBank frame files from ON 5.0. For named entity (NE) tags, we use the named entity

recognition (NER) system in the NLP4j toolkit. NLP4j NER uses a fine-grained tag set, including

eleven entity name types and seven value types, using the same tag set as in ON 5.0. For wiki-links,

we select the Illinois wikifier2 (Ratinov et al., 2011; Cheng and Roth, 2013) to help us connect

entities in sentences to their most relevant Wikipedia page (link). Both systems detect a reasonable

range of short phrases (usually noun phrases), which assists the concept identification task. After

entities and terms are extracted, named entity tags and wiki-links are attached to head words of

the short phrase on a dependency tree. In the case that these extracted phrases do not match

the phrase structure of the dependency tree, we heuristically take the lowest common ancestor

node as the attachment place. Additional helpful external information includes coreference chains,

which aids our post-processing step. We use the coreference resolution system from the Stanford

CoreNLP system (Clark and Manning, 2016) to extract the coreference chains.

Another phase of data pre-processing is to use an aligner (Chapter 4) and a frame identifier

(Section 5.3.1) on the data set. At the end of this phase, the data set contains dependency trees with

attached semantic roles, named entity tags, wiki-links, and alignments between dependency tree

nodes, and AMR concepts. An example dependency parse tree with this rich linguistic information

is in Figure 5.4.

2 https://cogcomp.cs.illinois.edu/page/software view/Wikifier
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Figure 5.4: Dependency tree with rich linguistic information, include predicate-argument structures,
NE tags, and wiki-links.

5.3.4 Concept Identifier

The goal of concept identification (CI) is to extract AMR concepts from an input dependency

tree with attached linguistic information. After pre-processing, the dependency parse to AMR

concept alignments and the linguistic information are both assembled on the dependency nodes.

By extracting the alignments, we can design our concept identifier to receive a dependency parse

tree node and return a list of concept candidates. We take the alignments in Figure 4.1 as an

example. Our CI generates the “Person”, “name”, “Vinken”, and “-” (the wiki-links) concepts

when it receives the dependency tree node “Vinken” as input, while the “Pierre” concept will

be generated upon receiving the dependency tree node “Pierre.” Thus, the concepts that our CI

produces correspond to our alignment results. The complete list of the producing concepts from

the sample alignments in Figure 4.1 is in Table 5.1. Since the generated concepts are derived from

dependency-to-AMR alignments, we can also assign the type of concept generation by reusing the

basic feature rules in Table 4.1. In Table 5.1, terms in parentheses represent aligning types.

Observation of these generation rules leads us to conclude these constraints of our CI:

• A dependency tree node only produces one or zero concepts by the basic rules or frame ID.

• A dependency tree node can generate any number of concepts by the “Others” and “Wiki-

links” rule types.



67

Table 5.1: Concepts extracted from aligned dependency trees. The table shows the sample align-
ment from Figure 4.1. Basic aligning types are followed by concepts.

Words Concepts Words Concepts

(1) Pierre “Pierre” (Word) (9) join j / join-01 (Frame ID)
(2) Vinken “Vinken” (Word), p2 / name (Others), (10) the -

“-” (Wiki-link), p / person (Others) (11) board b / board (Lemma)
(3) , - (12) as h / have-org-role-91 (Others)
(4) 61 61 (Numbers) (13) a -
(5) years y / year (Lemma) (14) nonexecutive “-” (Others),
(6) old t / temporal-quantity (Others) e / executive (Partial Lemma)
(7) , - (15) director d2 / director (Lemma)
(8) will - (16) Nov. 11 (Date)

(17) 29 29 (Date)

• A dependency tree node is marked as “Remove” if it does not match any rules above.

According to the distribution in Table 4.1, more than 60% of concept alignments belong to

the basic match type. Meanwhile, as we calculate the number of concept types in the Gold Dep.

dataset (Table 4.2), there are more than 8,000 different concepts that belong to the “Other” type.

This unbalanced data distribution increases the difficulty of developing our classifier. Instead of

designing a multi-label classifier on top of our model, we divide our identifier into a dual-classifier

model.

Figure 5.5 shows the design of our CI. The underlying part is similar to our FI, which uses

the dependency-based ReVNN as its essential model. One minor difference is that we add more

linguistic features, e.g., frame IDs, NEs, and wiki-links, to generate the dependency-based vector

representation, ed. Both ed and echildid
expand their feature representations from the basic feature

vector (ebasicd ). Then the model follows the same workflow as the vector representation ed generated

by the feedforward layer (FFReV NN ). The next step is to use the same ed to train two domain-

specific feedforward layers: a basic feedforward (FFbasic) layer as well as an additional feedforward

(FFother) layer. The output of these two feedforward layers are zBasic and zOther. Since the goals of

the “basic” and “other” classifiers are different, the logistic regression layers are also different. The

“basic” classifier uses a softmax layer which outputs exactly one of the basic concept generation

rules. In figure 5.5, we assign a “non-exist” label for an instance that does not generate any
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Figure 5.5: Dependency-based ReVNN Concept Identifier Framework. Square blocks indicate the
NN units, while “[ ]” denotes vector combinations.

basic type concept. The “other” classifier uses a sigmoid layer which outputs several different

“other” concept labels. The sigmoid function is typically designed for binary logistic regression.

This type of classifier which outputs multiple possible labels performs as well as training n binary

classifiers. Concept labels with probabilities larger than 0.5 are regarded as candidate concepts.

The formulation of the softmax and sigmoid layers are listed below:

Pbasic(ȳ = bid|d) = softmax(zbasicd ) =
exp(zbidd )∑|BID|
j=1 exp(zjd)

zbasicd = tanh(eTdW
Basic + bBasic)

Pother(ȳ = oid|d) = sigmoid(zotherd ) =
1

1 + exp(−zoidd )

zotherd = tanh(eTdW
Other + bOther)

where |BID| is the total number of basic types, |OID| is the total number of concepts in the other

type, WBasic ∈ Rdim(ed)×|BID| and WOther ∈ Rdim(ed)×|OID| are the weighted matrices in FFBasic

and FFOther, b
Basic and bOther are the bias terms, zbasicd ∈ R|BID| and zotherd ∈ R|OID| are the

output vectors of FFBasic and FFOther. With the alignment between dependency parse node and
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AMR concepts, the loss functions of our CI are defined as:

JBasic(θ) = − 1

m
[

m∑
i=1

|BID|∑
bid=1

1{y(i) = bid} log
exp(zbid(i) )∑|BID|

j=1 exp(zj(i))
] (5.4)

JOther(θ) = − 1

m
[
m∑
i=1

|OID|∑
oid=1

1{y(i) = oid} log
1

1 + exp(−zoidd )
] (5.5)

By traversing all dependency tree nodes and applying all alignments to the Pbasic and Pother func-

tions, we obtain the predicted “basic” and “other” labels for all dependency tree nodes in the for-

ward step. Moreover, by applying the two loss functions above, all parameters, including WBasic,

WOther, bBasic, bOther, and ed, will be updated during backpropagation.

The final step for our CI is to gather discrete concepts and attributes to form the concept

in a meta-unit. For example, the name concept is a better unit than treating all subcomponents

individually. The elements to form the name concept are quite solid, which usually contain “:opN”

only (e.g., name :op1 “Pierre” :op2 “Vinken” in Table 5.1.) By observing the AMR graphs in the

DEFT test and development sets, we categorize the concepts into different types. Descriptions and

definitions of these concept types are in Table 5.2. All concepts belong to exactly one concept type.

Gathering the concept segments to the concept type makes the relation identification in the next

step more efficient. First, gathering concepts avoids identifying leaf concepts in our relation parser.

By employing manual rules, the resulting concepts are well-formed and almost in the correct form.

In addition, the concept type is coarse-grained information which is a useful feature for our relation

identifier. Because the behavior of a single concept type is stable, our relation identifier benefits

from this coarse-grained type feature.

After we apply the manual rules above, the resulting concepts with labels are presented. All

dependency parse tree nodes with their identified concepts are passed to the relation identifier. The

resulting concepts and concept types from Figure 4.1 and Table 5.1 are in Table 5.3.
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Table 5.2: Illustrates meta-entity types with their definitions, main components, relation label to
parent, and sample concept types. The first part is the basic concept category, while the second
part is the attribute category.

Name Main Elements
Relation
Label

Sample

Multiple Sentences :sntN ROOT (m / multi-sentence :snt1 (...) :snt2 (...))

And :opN - (a / and :op1 (...) :op2 (...))

Quantity :quant, :unit - (temporal-quantity :quant 5 :unit (w / week))

Date Entity :month, :day, :time (d / date-entity :month 1 :day 29)
:weekday, etc.

Name :opN :name :name (n / name :op1 “Pierre” :op2 “Vinken”)

Predicate Core and - (j / join-01 :ARG0 (...) :ARG1 (...) :time (...))
Non-Core Roles (h / have-org-role-91 :ARG0 (...) :ARG1 (...))

Basic Non-Core Roles - (d2 / director :mod (...) )

Wiki - :wiki :wiki “United Kingdom”

Mode imperative, expressive, :mode :mode imperative
interrogative,

Negative - :polarity :polarity -

Attribute - - :value 5

5.3.5 Transition-Based Parser

5.3.5.1 Inverse Relation

To maintain AMRs as rooted acyclic graphs, the “inverse” tag is used. To use an “inverse”

tag on an AMR relation, an ”-of” string is appended to the end of the relation. For example, an

AMR concept (p / person :ARG0-of l / lead-02) expresses the same meaning as (l / lead-02 :ARG0

p / person). The “inverse” tag is implemented for three reasons. First, the root concept of an

AMR graph serves as a representation of overall focus. The “inverse” tag can help AMR to “pop”

the concept being focused on up to the root node. Second, it avoids forming cycles in the graph.

Third, it reduces the number of re-entrancies. Two tags have solely an inverse form: “part-of” and

“consist-of”.

When designing an AMR parser, the inverse relation is observed to increase data sparsity.

The number of relation types almost doubles. The statistics of the number of core and non-core

arguments in DEFT AMR Corpus are shown in Table 5.4. According to the number, 19.6% of

the core arguments and 5.1% of the non-core arguments are in the inverse form. Since the inverse

relation represents the same meaning as the original relation tag, we can simply “reverse” an inverse
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Table 5.3: Resulting concepts of our concept identifier from Figure 4.1 and Table 5.1. Concept
types are listed as well

# Concept Type # Concept Type

c0 - Wiki c6 (d2 / director) Basic

c1 (p2 / name Name c7 (h / have-org-role-91) Predicate
:op1 “Pierre” :op2 “Vinken”)

c2 (t / temporal-quantity Quantity c8 (b / board) Basic
:quant 61 :unit (y / year))

c3 (p / person) Basic c9 (d / date-entity Date Entity
:month 11 :day 29)

c4 - Negative c10 (j / join-01) Predicate

c5 (e / executive) Basic

Table 5.4: Distribution of AMR Core and Non-Core argument relation types and inverse forms in
LDC DEFT AMR corpus test set

Core Arguments # of tags # of inverse tags Non-Core Arguments # of tags # of inverse tags

:ARG0 82,458 17,439 :location 7,722 423
:ARG1 127,836 28,647 :manner 4,324 374
:ARG2 37,694 3,161 :quant 7,195 289
:ARG3 3,643 338 :time 12,918 285
:ARG4 1,199 54 :instrument 416 193
Other Core Arguments 38 7 :concession 787 149

relation before parsing. The reversed AMR graph of Figure 1.2 is in Figure 5.6. By following

the reversed strategy, the “:ARG1-of relation is then reversed to “:ARG1 relation (the label in

the round square). The advantage of reversing an inverse relation is that this reduces the data

variety of the relation tags, which is important when identifying the relation between two entities.

However, the drawbacks of applying the reverse strategy on an inverse relation are also apparent.

First, it will generate additional re-entrancies. For example, in Figure 5.6, the concept “board” is

referred to twice: by its original parent concept “join-01 ” and also by the additional parent concept

“have-org-role-91 ”. Another drawback is, the reverse strategy may generate multiple roots, which

conflicts with the single-rooted graph constraint. For example, in Figure 5.6, “have-org-role-91 ” is

an additional root concept besides the original concept “join-01 ”.
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Figure 5.6: The AMR annotation of sentence “Pierre Vinken, 61 years old, will join the board as
a nonexecutive director Nov. 29.” with reversed relations.

5.3.5.2 Action Extractor

Relation identification of AMRs is defined as follows: given a dependency tree D with a list

of dependency nodes [d1, ..., dm], a list of concept candidates [c1, ..., cn], and the alignments A, the

transition-based parser aims to 1) convert the dependency tree structure to an AMR graph, 2)

identify the relations between a pair of concepts, and 3) assign a relation label to this concept pair.

We define our transition-based AMR parser as a tuple Γ = (S,Λ, s0, sterm), where

• S: a set of parsing states. All parsing states are represented as tuples (λstore, λin, λpost,

λcomp, ca, R), where λstore, λin, λpost, and λcomp are stacks of concepts which store non-

processing concepts, in-processing concepts, post-processing concepts, and concepts that

have completed processing, respectively. ca is the concept that our parser currently focuses

on. R is a set of labeled arcs storing identified relations and labels.

• Λ: a set of parsing actions (transitions), each of which is a function Si → Sj . After applying

the transition action on the current parsing state, the contents in the stacks or the labeled

arcs in S change.

• s0: initial state. Here we set the initial state as (λstore, λin, λpost, λcomp, ca, R) = ([c1, c2, ...cn],
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[], [], [], φ, ∅). λstore initiates with concept candidates arranged in post-order traversal.

• sterm: terminal state. We set sterm as (λstore, λin, λpost, λcomp, ca, R) = ([], [], [], [croot1, croot2,

..., crootN ], [], φ,Rfinal), where croot consists of the root concepts of the output AMR graph.

There are seven different actions in our algorithm. The descriptions of the actions are shown in

Table 5.5.

• Forward-Move: Move the top concept cj in λin to λpost if there is no relation between

ca and cj .

• Shift: Move the top concept in λstore which is aligned with the current dependency node

to the focusing concept ca. Also, a set of concepts in λpost which are relative to ca are

moved to λin.

• Link-Rel
rel−−→: Assign arc with label rel between ca and cj (the top concept at λin).

• Link-Arg
arg−−→: Assign arc with semantic label arg between ca and cj (the top concept at

λin).

• Swap: Switch ca with the top concept in λin.

• Next-Node: Move ca to λpost. This happens when λin is empty.

• Move-Complete: Move ca to λcomp. This happens if ca is a root concept and all its child

concepts have been linked.

All these actions are performed with some preconditions. For example, Link-Rel, Link-Arg, and

Swap can only be applied when ca is assigned and λin is not empty. All preconditions are listed in

Table 5.5.

The Shift action moves the top concept in λstore to the concept ca in focus. Meanwhile, the

concepts in λpost that are related to ca are moved to λin, which aims to discover the relation or

argument links later. Thus, there are two fundamental strategies we need to design carefully. The
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Table 5.5: Actions in our Transition-based Relation Identification. For each row, the first line
indicates an action and the second line indicates preconditions of that action.

Forward-Move (λstore, [λin|cj ], [λpost], λcomp, ci, R)⇒ (λstore, [λin], [λpost|cj ], λcomp, ci, R)
oracle(ci, cj) = ∅ ∧ ci 6= φ

Shift ([λstore|ci], λin, [λpost|cj0, cj1, ..., cjn], λcomp, φ, R)⇒ ([λstore], [cj0, cj1, ..., cjn], [λpost], λcomp, ci, R)
λin = [] ∧ ∀cjkhasDepRelation(ci, cjk) ∧ previousAction = Next-Node

Link-Rel
rel−−→ (λstore, [λin|cj ], λpost, λcomp, ci, R)⇒ (λstore, [λin], λpost, λcomp, ci, R ∪ {ci

rel−−→ cj)

∃oracle(ci, cj) = {ci
rel−−→ cj}

Link-Arg
arg−−→ (λstore, [λin|cj ], λpost, λcomp, ci, R)⇒ (λstore, [λin], λpost, λcomp, ci, R ∪ {ci

arg−−→ cj)

∃oracle(ci, cj) = {ci
arg−−→ cj}

Swap (λstore, [λin|cj ], λpost, λcomp, ci, R)⇒ (λstore, [λin|ci], λpost, λcomp, cj , R)
isDescendantConcept(cj , ci)

Next-Node (λstore, λin, [λpost], λcomp, ci, R)⇒ (λstore, λin, [λpost|ci], λcomp, φ, R)
λin = []

Move-Complete (λstore, λin, λpost, [λcomp], ci, R)⇒ (λstore, λin, λpost, [λcomp|ci], φ, R)
λin = [] ∧ isAllDescendantConceptLinked(ci)

first strategy involves the order in which we move concepts in λstore to the focusing concept ca. The

second strategy involves which concepts in λpost should be pushed to λin for further processing.

Non-optimal strategies might cause non-desirable actions during parsing, for example causing extra

Swap actions, which are difficult to detect. As the structure of a dependency parse and its AMR

graph correspond to a high degree, we can rely on the dependency parse tree as the basic input

structure. Therefore, the order of popping the concept from λstore is identical to the post-order

traversal of the dependency tree nodes and popping its aligned concepts. For the dependency tree

nodes that are aligned to multiple concepts, we prefer to pop a concept located near the leaf earlier

than a concept at a higher level. As such, we define the popping order as follows:

Attributes (e.g., :polarity negative, number, Wiki links)⇒ Name Concept = Quantity Concept

⇒ Basic Concept⇒ And Concept⇒ Multiple Sentences Concept (5.6)

When popping from a dependency tree node with multiple concepts, our parser extracts the concept

belonging to the top category first. Next, when our parser performs another Shift action, the

category belonging to the bottom category will be popped. The concepts that are moved from

λpost to λin are the target child concepts that likely contain links with concept ca in focus. We

want the concepts in λin to cover all the concepts that are highly likely to link to ca. Conversely,
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if we place too many concepts in λin, our parser needs to perform extra Forward-Move steps to

skip concepts without any relations to ca. Thus the following rules are designed to decide which

concepts need to be popped when the focusing concept ca aligns to dependency node d:

(1) Pop the concepts in λin that are aligned to the descendant dependency nodes of d

(2) Pop the concepts in λin that are aligned to the sibling dependency nodes of d. This only

happens when d is the rightmost child nodes of its parent node.

Table 5.6 illustrates parsing states generated by our algorithm. There are two things to point

out in this parsing state sample. First, we only create the major links in our transition parser.

Reentrancies are skipped here as these usually link two concepts whose aligned dependency tree

nodes are not nearby. Capturing the reentrancy in the parser will increase the number of transitions

dramatically. We figure out the reentrancies as a post-processing step. Second, two concepts (c7

and c10) exist in λcomp when our parsing processing terminates. Since there are no direct relations

between these root concepts and they do not consist of a disjoint subset, our parser can terminate

the parsing and move all root concepts to the next step, which is to reconstruct and form the AMR

graph.

Our transition-based parser is somewhat more complicated than a basic shift-reduce parsing

algorithm (Nivre, 2008). A basic shift-reduce algorithm contains a buffer to store word tokens and

a stack to store elements that are being processed. Our parser increases the number of stacks to

four. We also extend the set of transitions from the basic shift-reduce algorithm by adding Swap

and Move-Complete. Therefore, our parser has a greater ability to create directed acyclic graphs

that are more complex than a non-projective tree. Clearly, time complexity becomes an issue as

we improve the power of our transition-based parser. To observe the increased of actions when

we parse longer sentences, we count the number of different oracle actions applied when parsing

all AMR graphs in the DEFT test set. A stacked bar graph describing the average number of

actions for different sentence lengths is given in Figure 5.7. According to the figure, the number of

actions increases linearly as sentence length increases. In the same figure, we list the distribution
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Table 5.6: All relation parsing states achieved by applying our transition-based parsing algorithm
to the dependency tree in Figure 4.1 and concept candidates in Table 5.3.

λstore λin λpost λcomp Dep. Tree Node ca R Oracle Action
1 [c0, ..., c10] [] [] [] - - {∅} Next-Node
2 [c0, ..., c10] [] [] [] Pierre(1) - Delete
3 [c0, ..., c10] [] [] [] - - Next-Node
4 [c0, ..., c10] [] [] [] ,(3) - Delete
5 [c0, ..., c10] [] [] [] - - Next-Node
6 [c0, ..., c10] [] [] [] 61(4) - Delete
7 [c0, ..., c10] [] [] [] - - Next-Node
8 [c0, ..., c10] [] [] [] years(5) - Delete
9 [c0, ..., c10] [] [] [] - - Next-Node

10 [c0, ..., c10] [] [] [] old - Shift
11 [c0, c1, c3, ..., c10] [] [] [] - c2 Next-Node
12 [c0, c1, c3, ..., c10] [] [c2] [] ,(7) - Delete
13 [c0, c1, c3, ..., c10] [] [c2] [] - - Next-Node
14 [c0, c1, c3, ..., c10] [] [c2] [] Vinken(2) - Shift
15 [c1, c3, ..., c10] [c2] [] [] - c0 Forward-Move
16 [c1, c3, ..., c10] [] [c2] [] - c0 Next-Node
17 [c1, c3, ..., c10] [] [c2, c0] [] Vinken(2) - Shift
18 [c3, ..., c10] [c0, c2] [] [] - c1 Forward-Move
19 [c3, ..., c10] [c0] [c2] [] - c1 Forward-Move
20 [c3, ..., c10] [] [c2, c0] [] - c1 Next-Node
21 [c3, ..., c10] [] [c2, c0, c1] [] Vinken(2) - Shift

22 [c4, ..., c10] [c1, c0, c2] [] [] - c3 Link-Rel
:age−−−→

23 [c4, ..., c10] [c1, c0] [] [] - c3 R ∪ {c3
:age−−−→ c2} Link-Rel

:wiki−−−−→
24 [c4, ..., c10] [c1] [] [] - c3 R ∪ {c3

:wiki−−−−→ c0} Link-Rel
:name−−−−−→

25 [c4, ..., c10] [] [] [] - c3 R ∪ {c3
:name−−−−−→ c1} Next-Node

26 [c4, ..., c10] [] [c3] [] will(8) - Delete
27 [c4, ..., c10] [] [c3] [] - - Next-Node
28 [c4, ..., c10] [] [c3] [] the(10) - Delete
29 [c4, ..., c10] [] [c3] [] - - Next-Node
30 [c4, ..., c10] [] [c3] [] board(11) - Shift
31 [c4, ..., c7, c9, c10] [] [c3] [] - c8 Next-Node
32 [c4, ..., c7, c9, c10] [] [c3, c8] [] a(13) - Delete
33 [c4, ..., c7, c9, c10] [] [c3, c8] [] - - Next-Node
34 [c4, ..., c7, c9, c10] [] [c3, c8] [] nonexecutive(14) - Shift
35 [c5, ..., c7, c9, c10] [] [c3, c8] [] - c4 Next-Node
36 [c5, ..., c7, c9, c10] [] [c3, c8, c4] [] nonexecutive(14) - Shift

37 [c6, c7, c9, c10] [c4] [c3, c8] [] - c5 Link-Rel
:polarity−−−−−−−→

38 [c6, c7, c9, c10] [] [c3, c8] [] - c5 R ∪ {c5
:polarity−−−−−−−→ c4} Next-Node

39 [c6, c7, c9, c10] [] [c3, c8, c5] [] director(15) - Shift

40 [c7, c9, c10] [c5] [c3, c8] [] - c6 Link-Rel
:mod−−−−→

41 [c7, c9, c10] [] [c3, c8] [] - c6 R ∪ {c6
:mod−−−−→ c5} Next-Node

42 [c7, c9, c10] [] [c3, c8, c6] [] as(12) - Shift
43 [c9, c10] [c8, c6] [c3] [] - c7 Forward-Move

44 [c9, c10] [c6] [c3, c8] [] - c7 Link-Arg
:ARG2−−−−−→

45 [c9, c10] [] [c3, c8] [] - c7 R ∪ {c7
:ARG2−−−−−→ c6 Move-Complete

46 [c9, c10] [] [c3, c8] [c7] - - Next-Node
47 [c9, c10] [] [c3, c8] [c7] 29(17) - Delete
48 [c9, c10] [] [c3, c8] [c7] - - Next-Node
49 [c9, c10] [] [c3, c8] [c7] Nov.(16) - Shift
50 [c10] [] [c3, c8] [c7] - c9 Next-Node
51 [c10] [] [c3, c8, c9] [c7] .(18) - Delete
52 [c10] [] [c3, c8, c9] [c7] - - Next-Node
53 [c10] [] [c3, c8, c9] [c7] join(9) - Shift

54 [] [c9, c8, c3] [] [c7] - c10 Link-Arg
:ARG0−−−−−→

55 [] [c9, c8] [] [c7] - c10 R ∪ {c10
:ARG0−−−−−→ c3} Link-Arg

:ARG1−−−−−→
56 [] [c9] [] [c7] - c10 R ∪ {c10

:ARG1−−−−−→ c8} Link-Rel
:time−−−−→

57 [] [] [] [c7] - c10 R ∪ {c10
:time−−−−→ c9} Move-Complete

58 [] [] [] [c7, c10] - - Next-Node
59 [] [] [] [c7, c10] - - -

of different actions to generate AMR graphs from the test set. The actions that appear most likely

are Forward-Move and Next-Node while Swap actions appear to be the least likely. However,

the Swap action is essential since some AMR graphs can only be generated by applying Swap at

the correct time. The lack of training instances with Swap actions causes our parser difficulty in

decoding the correct AMR graph at running time.
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Figure 5.7: Distribution of different action types vs. length of sentence. Numbers by the legends
are the distribution of different actions our parser needs to apply when parsing all sentences in the
DEFT test set.

5.3.5.3 Relation Identification Model

With the parsing states and oracle transitions from our action extractor, we can train a clas-

sifier that decides the correct action under different states. Traditionally, a transition-based parser

decides the action and the arc labels simultaneously. For example, in Nivre (2008)’s dependency

parser, the classifier selects the correct action from |T | = 2*Nl + two options, where Nl is the num-

ber of different dependency labels. However, the feature usages and weight parameters for training

an action classifier are different from training an arc label classifier. Instead of using one model to

decide both actions and arc labels, we design three separate output feedforward layers, zaction, zarg,

and zrel for our parser. The zaction layer decides which action our parser should take, while zarg

and zrel decide the arguments and relation tags, respectively. Figure 5.8 illustrates the hierarchy

of our parser. The underlying layer outputs, hstate, which contains the feature representations of

the states, are shared by the three output feedforward layers.

For the underlying feature output layer (hstate), two sub-vectors are composed. The first part
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Figure 5.8: Overall Relation Identification Model. This figure demonstrates the state of the 55-th
action in Table 5.3, where ea = e10 (join-01) and the top concept in λin = e9 (d / date-entity).
Small circles represent an element in a vector. Blue circles represent elements set to 1, while hollow
circles represent elements set to 0.

is hλ, which represents the concepts in λin, λpost, and ca. The second part is hβ, which contains

the features between ca and the top concept in λin, e.g., predicate-argument relation eSR and

dependency path edepPath, and the features of the parser status, e.g., the previous action eprevAct

that the parser took. For the first sub-vector hλ, we extract the concept vector representations of

the top two concepts in λin, the top concepts in λpost, and ca. These four vectors are concatenated

to form hλ. When the stack is empty, a random vector is generated to represent an empty concept.

For the second vector hβ, the vector representation of the semantic role, dependency path, and

previous action are also generated and concatenated. hλ and hβ then form the underlying feature

output layer hstate.

Next, we shift our attention to deciding how to map a concept to its vector representation

which composes the hλ vector. Since each concept aligns to one dependency node, we can obtain

lexical and dependency relations of concept c from its aligning dependency node d plus other
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linguistic information attached to d, e.g., the named entity and semantic roles that c contains. The

vector representation is the combination of six different categories of features:

• Dependency-Based ReVNN (ed): The dependency-based ReVNN which we described

in Section 5.3.2 represents the meaning of the dependency node based on the node itself

and all its child nodes. This feature vector is a combination of various linguistic features

attached to a dependency tree node, including word embedding, POS embedding, and

dependency relation embedding.

• Alignment Type and Frame ID Embedding (ef ): Alignment types to which the

Concept c - Dependency tree node d pair belongs are defined in Section 4.2.1. Additionally,

if c belongs to a frame, we use its frame ID as the representation instead. As such, we create

random embeddings to express each alignment type and frame ID.

• Concept Type (etype): We define eleven concept types in Table 5.2 resulting in etype being

a one-hot vector with eleven elements. The i-th element is set to 1 if c belongs to the i-th

concept type. Otherwise, all other elements are set to 0.

• Named Entity (eNE): the named entity tag vector representation.

• Frame Role Sets (erole): The core argument usages for a frame are defined in its frame

file. For example, Table 1.1 defines the core argument usages for the different frames of

“free.” When c belongs to a frame ID, we use a one-hot vector to express the core argument

usages. For example, if the target frame has “Arg1” and “Arg2” as its core arguments, we

then mark the 2-nd and 3-rd elements in erole as 1, and set the rest of the elements to 0.

• Child Concepts (echild): When deciding the argument labels and relation labels between

c and its child concept cchild, it is important to consider the relation labels that were

previously assigned to other child concepts. A single relation label usually appears once

under the same concept. Furthermore, the properties of the child concept are also important

features for relation identification. For this, we need a mechanism to record all child relation
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labels plus child concept properties. An LSTM network is an excellent fit for such purposes.

The child concept LSTM (LSTMchild) receives the embedding of the relation labels and

child concept properties, i.e., aligning type, frame ID embedding, and concept type, from

the previous linking child concepts. The output of LSTMchild then becomes echild. In

Figure 5.9b, the child concept model generates the echild for ca with two previous linking

child concepts, “:ARG0 Person” and “:ARG1 board”.

The concatenation vector of the above six features is then passed to a feedforward layer, zConcept,

which generates the concept vector representations.

Besides the vector representation of a concept, the features between concepts also need to be

addressed. hβ captures the relation features between the focusing concept ca and the top concept

in λin (denoted as λin[0] or cchild.) We assume that ca aligns to dependency tree node da, while

cchild aligns to node dchild. If either ca or cchild is empty, we simply fill in a randomly generated

vector to represent the empty concept. Otherwise, the following three feature vectors comprise hβ:

• Semantic Role (eSR): We have previously discussed the high degree to which AMR

relation labels rely on semantic roles. Thus we decode all semantic roles in PropBank to

their vector representations as one feature. Once there is a semantic role existing between

da and dchild, we map this role embedding to eSR.

• Dependency Path (edepPath): We have also previously discussed how dependency path

features are useful for identifying the relation between entities on the dependency tree. In

our parser, dependency path features are used to capture the syntactic relation between

da and dchild. Here we implement the shortest dependency path: the long short-term

memory model (SDP-LSTM) proposed by Xu et al. (2015). Figure 5.9a illustrates the

framework of our dependency path feature with the LSTM model. The first step is to find

the common ancestor node, dancestor, of da and dchild. In Figure 5.9a, the common ancestor

node for “Vinken” and “director” is “join”. Then we extract two separate dependency

tree paths: the first from da to dancestor (“Vinken” to “join”), the other from dchild to
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(b) Child concept features with LSTM

Figure 5.9: The figure on the left illustrates the dependency path relation between “Vinken” and
“director”. The figure on the right illustrates the generation of child concepts at the 59-th action
in Table 5.5

dancestor (“director” to “join”.) Unlike the original paper, here we only use dependency

labels as input feature vectors. The two output vectors (eUPdepPath and eDNdepPath) from the

LSTM models then compose the edepPath vector.

• Previous Action (eprevAct): The previous action is another important feature in a transition-

based parser. Here we decode all seven action types in our parser to action embeddings.

Then the previous action vector is extracted to form the eprevAct vector.

As our parser model is comprised of different sub-models and feature vectors, the number of

model parameters that we need to estimate is enormous. All model parameters and embeddings are

updated with the backpropagation algorithm during training. However, both forward and backward

propagation of the dependency-based ReVNN model is time-consuming. The ed vector is induced

from all its descendant nodes. When our model obtains the ed vector of a root node, our ReVNN

model needs to traverse and calculate the vector representations of all tree nodes with the tree

LSTM model. Also, a single dependency node man need to induce its ReVNN vector repeatedly if

our parser obtains the ReVNN vector of its ancestor nodes from different training batches. These

issues slow our parsing model down. To balance the power of ReVNN and the running speed, we

adopt the following two strategies:

• When the ReVNN model wants to apply forward and backward propagation to dependency

node da, it only traverses da’s direct child. The grandchild nodes are not affected.
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• The ReVNN model computes forward and backward propagation only once in each epoch

of training. The model induces all the vector representations at the start of each epoch,

then caches these values for further use in the same epoch. In backpropagation, the ReVNN

model accumulates all the gradients in respect to the same ReVNN parameter in the same

epoch. Then each parameter is updated only once in each epoch as well.

To train our model, with the training sample S = {(Ci, Di, Ai)}mi=1 that contains a set of

AMR(Ci)-dependency parse tree(Di) pairs with alignments(Ai), we need to extract the oracle

transition set {a(j)}
|Λi|
j=1 from their corresponding states s

(j)
i , where a(j) = oracle(s

(j)
i ), and s

(j)
i =

{λ(j)
storeλ

(j)
in , λ

(j)
post, λ

(j)
comp, c

(j)
a , R(j), a(j−1)}i. |Λi| is the number of oracle transitions we extracted

from training instance i. Also, when a(j) is Link-Arg or Link-Rel, we need to extract the

argN (argN(j)) or relation (rel(j)) labels by giving their corresponding states s
(j)
i . h

(j)
state−i is the

underlying feature output under current state s
(j)
i . The formal definition of our three parsers is

defined as:

Pact(ȳ = act|s(j)
i ) =

exp(tanh((h
(j)
state−iWact + bact)

(act)))∑|ACT |
k=1 exp(tanh((h

(j)
state−iWact + bact)(k)))

PargN (ȳ = argN |s(j)
i ) =

exp(tanh((h
(j)
state−iWargN + bargN )(argN)))∑|ARGN |

k=1 exp(tanh((h
(j)
state−iWargN + bargN )(k)))

Prel(ȳ = rel|s(j)
i ) =

exp(tanh((h
(j)
state−iWrel + brel)

(rel)))∑|REL|
k=1 exp(tanh((h

(j)
state−iWrel + brel)(k)))

The final training objective is to minimize the cross-entropy loss, plus a l2-regularization

term:

L(θ) = − 1∑m
i=1 |Λi|

[

m∑
i=1

[

|Λi|∑
j=1

(

|ACT |∑
act=1

1{a(j) = act}logPact(ȳ = act|s(j)
i ))

+ 1{a(j) = Link-Arg}
|ARGN |∑
argN=1

1{argN(j) = argN}logPargN ((ȳ = argN |s(j)
i ))

+ 1{a(j) = Link-Rel}
|REL|∑
rel=1

1{rel(j) = rel}logPrel(ȳ = rel|s(j)
i )]] +

λ

2
‖θ‖2
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where θ is the set of all parameters {θReV NN , θchildConcept, θdepPath, Ef , Etype, ENE , Erole, ESR,

Wact, bact,WargN , bargN ,Wrel, brel}. E stands for the embeddings we create for different words, POS,

named entity, etc. The W and b parameters are for the feedforward models. θReV NN , θchildConcept,

θdepPath are another set of parameters containing the parameters for ReVNN, child concept, and

dependency path models.

5.3.6 Decoding and Post Processing

At decoding time, our parser takes two steps to generate the AMR graph by giving the

dependency tree and a list of candidate concepts. The first step is to run the transition-based

parser from its initial states until it finalizes with a list of standalone root concepts. Our parser

inferences the transition actions from the parser parameters that we trained. The second step is

the post-processing part, which attaches the coreference mentions to the existing graphs, and links

the root concepts to form a complete AMR graph.

We start from the transition parsing. The input dependency parse tree is D, the input

candidate concept is a list of [c1, c2, ..., cn], and the model parameter is θ. We pass these inputs to

our parsing data structures to compose the initial state s0. Then we repeatedly apply the current

state s(j) and the trained parameters θ to the action classifier, Pact. Here we greedily pick the

action with the maximum probability as the predicted one.

¯a(j) = argmax
a∈ACT

Pact(a|s(j))

If the predicted action āj is Link-Arg or Link-Rel, our parser needs to infer the argN classifier

PargN or relation classifier Prel to predict the link labels between ca and the top node of λin.

¯argN(j) = argmax
argN∈ARGN

PargN (argN |s(j)) if ¯a(j) = Link-Arg

¯rel(j) = argmax
rel∈REL

Prel(rel|s(j)) if ¯a(j) = Link-Rel
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After the parser obtains the predicted action ¯a(j) (and predicted argN label ¯argN(j) or rel label

¯rel(j) if applicable), we will apply ( ¯a(j), ¯argN(j), ¯rel(j)) to update the parsing states. Our parser

follows the update rules in Table 5.5. To improve running speed, we implement several cache

mechanisms for the sub-models. For example, the ReVNN vectors are inferred at the beginning of

the decoding time by traversing all dependency tree nodes. Also, our parser initializes the empty

child concept vector echild for each concept candidate. Once our parser predicts that ca should

link to cchild with label l, we update the empty child concept with the vector that is generated

by LSTMchild giving (cchild, l). By repeatedly predicting the actions and updating the transition

states, our parser continues generating a list of root concepts in λcomp until it reaches the terminal

state sterm.

When our parser terminates with a list of root concepts [croot1, croot2, ..., crootN ], we move to

the post-processing step. First, we attach the mentions of coreference chains to the AMR graph.

Here we use an external coreference resolution system to extract the coreference chains within the

sentence. Say the coreference resolution system finds a coreference chain [m1,m2, ...,mn]. Our

parser ignores cross-sentence coreference chains. Then we apply the following heuristic strategies

to attach coreference mentions to the graph. A sample coreference chain attachment is in Figure

5.10.

(1) Links the mentions to their corresponding dependency tree nodes. Dependency nodes

containing coreference mentions are represented as dmi . In Figure 5.10, { I, I, my } are

coreference mentions in the dependency tree.

(2) Discovers the head concept ch that aligns to the mentioned dependency nodes. If

• exactly one mentioned dependency node dh is aligned to one concept, then this concept

is selected as the head concept;

• multiple mentioned dependency nodes are aligned to different concepts, then the con-

cept that aligns to the first mention is selected as the head concept;

• no mentioned dependency node is aligned to any concept, then the process is discarded.
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Figure 5.10: Sample of coreference mention attachment. The red line refers to the link between
a coreference head to its corresponding concepts. The blue lines refer to the links between the
parents of coreference mentions and their corresponding concepts

The head concept in Figure 5.10 is “i” in a red circle. The red line represents the link

between ch and dh.

(3) For the mentioned dependency node other than dh, we discover its parent concept, cp, that

covers the parent dependency node of this mention. This follows the same strategy as

finding the head concept. The “start-01” and “cut” concepts are the parent concepts that

cover the two mentions “I” and “my.”

(4) Attaches the reentrancy link between cp and ch with correct relation labels. In figure 5.10,

we attach the “i” concept under “start-01” with “:ARG0” label, and attach the “i” concept

under “arm” concept with “:part-of” label.

We will discuss the approach to find the appropriate relation labels in a subsequent section.

The approach is identical to the way we identify the relation label between root concepts.

The last step for decoding is to link the root concepts to form a complete AMR graph. The

goal is to discover the possible parent concepts for the root concepts one by one. Thus we want

to start the search from the root concept that should be attached to the lower level of the graph.

The last root concept in λcomp naturally becomes the root of the whole AMR graph. To order the
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root concepts, we follow Equation 5.6 which is first designed for popping aligned concepts in CI.

The type of concept that is at the beginning of the list is also to be processed earlier than other

concept types. In case two root concepts own the same popping priority, we just follow the same

order in λcomp. Next, we extract the candidate concepts by which the root concept, crootN , should

be linked. The candidates are acquired first from the dependency tree. We assume that crootN

aligns to dependency node drootN . So the concepts that are aligned to the parent and grandparents

of drootN are placed in the candidate list. Also, the existing root concepts in λcomp are also placed

on the candidate list. By giving the croot, the candidate list CrootN , and the model parameter θ,

we greedily pick the relation label with the highest probability combinations with the following

equation:

¯argNRelroot = argmax
c∈Croot

a∈{Link-Arg,
Link-Rel

}
argN∈ARGN
rel∈REL



Pact(Link-Arg|s) ∗ PargN (argN |s) if a = Link-Arg

Pact(Link-Arg|s′) ∗ PargN (argN |s′) if a = Link-Arg

Pact(Link-Rel|s) ∗ Prel(rel|s) if a = Link-Rel

Pact(Link-Rel|s′) ∗ Prel(rel|s′) if a = Link-Rel

where s = ([], [c], [], [], croot,Forward-Move, ∅)), s′ = ([], [croot], [], [], c,Forward-Move, ∅))

In these equations, we generate two “fake” states, s and s′, to calculate the probability

combinations for linking crootN and its concept in the candidate list. In s state, the concept in the

candidate list is placed at the focusing concept, and crootN is placed at the top concept on λin. On

the other hand, in s′ state, croot is placed at the focusing concept, and the concept in the candidate

list is placed at the top on λin. Then the above equations search for the (action, child concept,

argN/rel label ) tuple with the highest probability. We also use these equations to decide the label

between coreference mentions. The only difference is the mention has decided its parent concept

already. Once we predict the relation label, we just follow the best tuples to link the concepts. If

the best tuple comes from the s′ state, we use the “inverse tag” on the relation label. Then we

remove crootN from λcomp and move to the next root concept. Post-processing is complete until the

last root concept is in λcomp.



Chapter 6

Experiments

In this chapter, we present the settings for and results of our experiments. To begin with, the

design of our four experiments and the settings of the model’s hyperparameters are presented in

Section 6.1. After this, we address the evaluation of our sub-models: the Frame Identifier (Section

6.2), Concept Identifier (Section 6.3), and Relation Identifier (Section 6.4).

6.1 Experimental Settings

We design several experiments for the evaluation of our proposed models. For the Frame

Identifier (FI) and Concept Identifier (CI) models, we compare our ReVNN-based identifier with

two baseline models: the Window-Based and the Window+NN-Based model with various window

sizes. The FI task is trained and evaluated on the OntoNotes 5.0 corpus rather than the DEFT

AMR data because ON contains explicit frame IDs for target predicate words. In comparison, the

CI task is trained and evaluated on the DEFT AMR data. We use the AMR-to-Dependency Parse

aligner to generate the alignments between AMRs and dependency parses for the DEFT AMR

data. Then the alignment pairs of AMR concepts and dependency nodes are converted to produce

the training set. We evaluate our CI models by using the test set with manual alignments. The

concepts extracted from the gold alignments in the test set are the gold standard concepts. We also

evaluate our CI with LVC information. For our relation identifier, we design two experiments to

evaluate the performance of our transition-based parser. First, we evaluate its performance based

on action predictions. We also investigate the effectiveness of each feature. Second, we evaluate its
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performance based on the Smatch score and compare it with other AMR parsers.

To introduce linguistic features into our models, first we convert the features into vector

representations (embeddings). The first sub-table in Table 6.1 lists the embeddings we used and

their dimensions. The word embeddings are acquired from the Gigaword dataset1 , OntoNotes, and

DEFT AMR data. The Gigaword dataset contains an enormous number of documents from various

domains: around ten million documents and more than four billion English words. We use Google

Word2Vec2 to train the word embeddings from these datasets. Further, the other embeddings are

initialized randomly with real numbers between -1 and 1. All the embedding values are updated

during training except pre-trained word embeddings.

During training and inference, several hidden layers output the intermediate vectors. For

example, the output vector of the ReVNN sub-model (ed) is reused and shared several times by

our models. We list the dimensions of these hidden layers at the bottom left of Table 6.1. In all

our models for FI and CI tasks, including Window-based, Window+NN-based, and ReVNN-based,

a feedforward layer is placed before the final softmax or sigmoid layers of our classifiers. We set

the output dimension of each feedforward layers to 500 (Top right in Table 6.1.)

We implement all these models in PyTorch3 , a popular deep learning framework which

supports dynamic neural network functions. In PyTorch, several primary and advanced neural net-

works, e.g., feedforward, LSTM, attention mechanism, etc., are provided. Moreover, the essential

NN components, e.g., optimizer, automatic backpropagation, and loss functions, are ready to use.

With PyTorch as an NN framework, it is easy to combine and bridge different networks and compo-

nents into one model. Further, PyTorch’s dynamic computation graphing aids the implementation

of our ReVNN model since the number of dependency child nodes varies.

The hyperparameters for training our models are listed at the bottom right of Table 6.1.

To train our models, we use Mini-batch stochastic gradient descent with mini-batch size 100. To

speed-up mini-batch learning, we use the RMSprop (Tieleman and Hinton, 2012) algorithm to

1 https://catalog.ldc.upenn.edu/ldc2012t21
2 https://code.google.com/archive/p/word2vec/
3 http://pytorch.org/
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Table 6.1: The settings of the hyperparameters in our models of different tasks

Embeddings Dimensions

Embeddings Variable Dim.

Word ew 200
POS ePOS 10

Dependency
Relation Label

er 30

Aligning Type
and Frame ID

ef 20

Concept Type etype 11
Named Entity eNE 20

Frame Role Set erole 8
Semantic Role eSR 20

Concept
Relation Label

econ−r 20

Action eprevAct 10

Output Dimensions of
Final Feed Forward Layers

Model Sub-Model Variable Dim.

FI
Window 500

Window+NN 500
ReVNN WFI 500

CI
- Basic

Window 500
Window+NN 500

ReVNN WBasic 500

CI
- Other

Window 500
Window+NN 500

ReVNN WOther 500

Output Dimensions of Hidden Layers

Hidden Layer Variable Dim.

Concept econcept 500
ReVNN ed 300

Child Concept echild 300
Path epath 40

Other Hyperparameters

Name Value

Mini-Batch Size 100
Learning Rate 10−4

Smoothing Constant 0.99
Weight Decay 0.0

adjust the learning rate value α based on the number of epochs and training loss values.

Several features are adopted in our models. Table 6.2 illustrates feature usages between our

models. In the FI task, all models use words, POS tags, and dependency relations as features,

while in the CI tasks all models use this same feature set plus NEs, Frame IDs, and semantic roles

as external features. The relation identifier uses all the feature embeddings and hidden layers listed

in Table 6.1.

6.2 Frame Identifier

For the FI task, we evaluate our target models with the ON data set. First, we split 95% of

the predicates with their frame IDs off as the training set and use the remaining 5% as the test set.

Then we only pick the frames that contain multiple frame IDs as the target words. We remove the

frames with single frame IDs. We compare our ReVNN-based model with three baseline models:
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Table 6.2: Feature usages of all our models

Models Word POS
Dependency

Relation
Named
Entity

Frame
ID

Semantic
Role

ReVNN
Dependency

Path

FI - Window X X X
FI - Window+NN X X X

FI - ClearNLP X X X
FI - ReVNN X X X X
CI - Window X X X X X X

CI - Window+NN X X X X X X
CI - ReVNN X X X X X X X

Relation Identifier X X X X X X X X

the Window-based model and Window+NN-based model, which we describe in Section 5.3.2; the

ClearNLP which use a linear model. The Window-based model takes the n nearest words of the

target predicate as input feature words. These n nearest words then map to their feature vector

representations and are concatenated to form the input vector before the softmax layer classifier.

For the Window+NN-based model, one minor difference is that it uses two LSTMs to form the

input features for the n nearby words before and after the target predicate. We also add a linear

model based on Support Vector Machine. We use ClearNLP as the linear model, which identifies

the frmae ID in its semantic role labeling model.

Table 6.3 lists the accuracy of different FI models. Our ReVNN model surpasses Window-

based and Window+NN-based baseline models by 3.5% - 8.5%. Among the baseline models, the

additional LSTM networks raise the accuracy around 3% from the Window-based model. Increasing

the window size boosts accuracy by a small amount. And our ReVNN model also surpasses the

ClearNLP model by 2.0%.

One of our objectives is to discover the differences in accuracy between frames with different

occurrence frequencies. We first calculate the occurrence of all frames in ON 5.0. Observation

shows that the distribution of frame frequency is extremely unbalanced. Around 38% of the frame

occurrences belong to the top 10 frames. More than 71% of the occurrences belong to the top

250 frames. The low-frequency frame resembles a classic long tail distribution since 29% of the

occurrences belong to the remaining 5,291 frames. A histogram diagram of frequency distributions

excluding the top 10 frames is shown on the right of Figure 6.1.
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Table 6.3: Accuracy of the Frame Identifier between comparison models. Accuracy among different
frame ID frequencies also listed.

Model
Window

Size
High Freq. Med Freq. Low Freq. Total

Window 3 88.1 87.7 70.6 85.1
Window+NN 3 91.6 93.3 77.4 89.8
Window 5 88.2 87.8 72.5 85.5
Window+NN 5 91.8 93.6 77.9 90.1

ClearNLP 94.6 94.2 80.0 91.6

ReVNN 95.7 95.2 83.5 93.6

Frame
Appear
in ON

P R F1

1 be.01 44,950 99.3 90.5 94.7
2 be.03 33,662 86.9 99.5 92.8
3 have.01 16,633 98.8 100.0 99.4
4 say.01 14,492 91.8 100.0 95.7
5 do.01 8,801 97.9 100.0 98.9
6 have.03 6,562 91.5 99.6 95.4
7 be.02 3,841 98.3 76.5 86.0
8 do.02 3,697 86.9 97.3 91.8
9 know.01 3,047 93.2 85.1 89.0

10 think.01 2,921 100.0 100.0 100.0

250 1,000 2,000 3,000 4,000 5,000
0

217

500

1,000

1,500

2,000

2,500

Word

F
re

q
u
en

cy

Figure 6.1: On the left, high frequency frames in ON 5.0 are listed with experimental results of
identifying high frequency frames with our ReVNN model. On the right, the histogram shows
the frequency distribution of frames belonging to medium- and low-frequency groups. Blue dots
represent the medium-frequency group, while red dots represent the low-frequency group.

We divide frames into high-, medium-, and low-frequency groups. The frames in the high-

frequency group and their frequencies are on the left of Figure 6.1. F1 scores of all high-frequency

frames in our ReVNN model are also presented. The top 10 to top 250 frames belong to the medium-

frequency group. The gap frequency is 217. The remaining frames belong to the low-frequency

group.

Table 6.4 presents the contributions of different features individually. POS helps to increase
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Table 6.4: Accuracy of the Frame Identifier based on feature usages.

Model
Window

Size
Word +POS +

Dependency
Relation

Window 3 80.8 83.3 85.1
Window+NN 5 86.7 88.6 89.8
Window 3 82.5 83.09 85.5
Window+NN 5 87.7 88.6 90.1

ClearNLP 89.2 90.8 91.6

ReVNN 91.3 92.7 93.6

overall accuracy by around 1.5%, while dependency relations help to increase accuracy by about

1.2%. We can conclude that these lexical and syntactic features both aid the FI task.

6.3 Concept Identifier

In this section, we present the experimental results of our Concept Identifiers over the DEFT

AMR data. To train our models, we use the training set from the DEFT data, which contains

39,260 gold AMR graphs. We apply our data pre-processing step (Section 5.3.3) to our training

and test data. We then run our dependency parse to AMR aligner on the training data. The

resulting dependency parse to AMR alignments are the inputs of our CI models. At test time, we

evaluate on the test data set which contains 500 dependency parse - AMR pairs with gold standard

alignments, described in Section 4.5.1.

When given a dependency tree node d, the set of concepts that align to d represents the

gold standard concepts that we want to extract from our CI model. We design two classifiers,

“Basic” and “Other,” which generates zero to many concept candidates when giving the target

dependency node. When no concept is generated, i.e., the “Basic” classifier outputs a “non-exist”

label. When all the output probabilities of the “Other” classifier are lower than 0.5, we use a special

tag “Delete” as the output concept of the target dependency node. Otherwise, we compare the

resulting concepts to the gold standard concepts which align to the target dependency node and

calculate the F1 score. The baseline models are still the Window-based and Window+NN-based

models with different window sizes. All these underlying models generate the vector representation
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Table 6.5: F1 score of Concept Identifier based on feature usages.

Model
Window

Size

Word
+Frame ID

+Semantic Role
+POS +

Dependency
Relation

+NE

Window 3 73.8 75.4 77.1 78.3
Window+NN 5 77.4 78.8 80.2 81.1
Window 3 73.5 75.1 76.8 77.6
Window+NN 5 77.2 78.8 79.5 80.2

ReVNN 78.2 81.3 81.8 82.2

of the target dependency node and then pass it to the two classifier layers, FFBasic and FFOther.

Table 5.3 presents the F1 scores of all CI models. Our ReVNN-based model surpasses the best

Window+NN-based model by 1.1% F1 score. An interesting finding is that the increase in window

size in the baseline models does not improve the F1 score for the CI task. Instead, the F1 score

drops 0.7% - 0.9%. We categorize the resulting concepts based on the category types we describe

in Table 5.2. We evaluate the F1 score based on the corresponding concept types. The results of

the concept types we are interested in are listed in Table 5.3 as well. The F1 score of the predicate

concept is relatively high, reaching 91.2% with the ReVNN model. However, the generation of

the date entity concept does not turn out well, reaching only 70.0% with the ReVNN model. On

the other hand, for the attributes, the Wiki type works well. However, the mode attribute type is

extremely challenging to predict. The best F1 score only approaches 16.4%.

Table 6.5 lists the contributions of individual features. Our model uses words, frame IDs

and semantic roles as features at first. Then, the rest of the feature set is added one by one. The

adding of features behaves similarly to the adding of features in the FI task. All features contribute

positively to the F1 score. Although the improvements from adding the POS and the dependency

relation features are minor in the ReVNN model, they still aid performance in the baseline model.

The named entity feature improves the F1 score in all models as well.

To evaluate the effectiveness of LVC in the CI task, we also evaluate our ReVNN with and

without LVC information from our LVC detector (Chapter 3). Results are also shown in Figure 6.2.

We discover that by adding LVC information to our ReVNN-based CI, the overall F1 score increases
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Figure 6.2: The F1 score of the Concept Identifier between comparison models, and the F1 score
of our ReVNN Concept Identifier with and without LVC information. The score among different
concept types is also listed.

0.6%. Also, the individual concept types also benefit from the LVCs, especially the predicate type

concept. Both the prediction of the predicate type concept and the “Delete” label raise their F1

scores, 1.9%, and 0.9%, respectively. The improvement of other concept types is insignificant. When

we only compare the sentences that contain LVCs, the improvement to predicate identification is

around 5.0%.

6.4 Transition-Based Parser

In this section, we evaluate our transition-based parser from two perspectives. First, we

evaluate the transition-based parser based on the performance of the transition, argN, and relation
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classifier. Second, we evaluate our parser based on Smatch score, an evaluation metric for parsing

AMR graphs.

6.4.1 Action Identifier

We start the evaluation of the transition-based parser based on the performance of three

classifiers: transition, argN, and relation. Our ReVNN-based model generates the underlying layer

hstate which contains the feature representations of the current parsing state. hstate is then passed

to the three output feedforward layers: zaction, zarg, and zrel. We use the training set of DEFT

AMR data to train our parser. The test set is composed of DEFT AMR test data with manual

alignments between AMR concepts and dependency nodes. The experimental data is submitted to

the oracle action extractor (Section 5.3.5.2) to receive a list of oracle actions, argNs, and relation

labels with their corresponding parsing states. These labels and states are the inputs when training

our parser. In addition to these regular inputs, we also add some artificial inputs to deal with the

input order of the child concept module. Although the input order of the linking of child concepts

is nevertheless important during training, our child concept module still generates different child

concept hidden vectors (echild) by giving different child concept orders. Thus, we add the artificial

training instances, which randomly changes the input orders of the real child concepts and keeps

the other states. The addition of these artificial training instances increases the flexibility of our

parsing model.

Table 6.6 lists the accuracies of these three classifiers and the F1 scores of each action label

in different epochs. These values are tested on the model trained with all features described in

Section 5.3.5.3. The first thing to point out is that more epochs of training do not imply better

performance when training our model. The action and argN classifiers reach their best accuracies

at the 60th epoch with 79.3% and 78.1%, respectively, while the relation classifier reaches its best

69.5% at the 80th epoch. F1 scores of each action labels also show that they reach the best scores

at the 60th epoch. Accuracies drop a little when we train our model with more epochs. Second,

the relation classifier is more difficult to train since the number of relation labels is far more than
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Table 6.6: The left part of the table shows F1 scores of each action labels. This model trains with
the whole feature set. The accuracies of the three classifiers between different epochs are also listed
on the right of the table.

Epoch
Forward
-Move

Link
-Arg

Link
-Rel

Swap
Move

-Complete
Action
Avg.

ArgN
Avg.

Rel.
Avg

(in F1 score) (in accuracy)

30 83.4 78.0 78.6 53.5 64.5 79.2 75.6 62.6
60 83.6 78.7 78.1 54.1 64.5 79.3 78.1 68.0
80 83.4 77.5 77.8 53.4 64.6 78.9 77.1 69.5

100 82.9 76.4 77.9 52.3 63.9 78.5 77.4 68.6

the action and argN labels. Also, predictions for Swap and Move-Complete actions are more

difficult than the predictions for other action labels. For Swap, the classifier needs to compare the

structures of the parent concept with the child concept and decide whether to switch them or not.

Swap happens only in a few situations. For Move-Complete, the action classifier needs to know

that the target concept has already linked all child concepts as well as recognize itself as a root

concept. Move-Complete also appears rarely in our oracle action lists. On the other hand, the

Forward-Move, Link-Arg, and Link-Rel are somewhat easy to predict. Their F1 scores are

higher than 77%.

The incremental contributions of each feature are presented in Table 6.7. Results are tested

on the model trained at the 60-th epoch. Each feature listed improves the accuracy of the three

classifiers. Results show that the fundamental lexical and semantic features, i.e., word, POS, and

dependency relation, provide minor but stable improvements. Furthermore, the semantic roles and

dependency path boost the accuracy from 1.0% to 2.5%, even though the underlying parser used

other linguistic features. All three classifiers reach their best accuracy when adding all features.

Figure 6.3 provides the comprehensive view of the accuracies of the three classifiers with different

feature combinations at different epochs. The graphs are consistent with the view that additional

epochs of training after the 60-th epoch do not obtain better performance on all three classifiers.

Moreover, the adding of any features improves the accuracy by certain amounts.

To further evaluate the argN and relation classifiers, we present the confusion matrices of
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Table 6.7: Incremental feature contribution of accuracy on Action, ArgN, and Relation tasks at
the 60th epoch.

Task Word +POS +
Dependency

Relation
+NE +

Semantic
Role

+
Dependency

Path

Action 73.9 74.2 76.4 76.5 77.7 79.3
ArgN 70.2 71.8 74.4 75.7 77.1 78.1

Relation 59.2 59.6 62.9 64.1 66.5 68.0

these two classifiers in Table 6.8. For the confusion matrix of the argN labels, “ARG1” is the top

majority core label with more than half of the core argument occurrences. The identification of

“ARG2” labels is suboptimal. One third of “ARG2” gold labels are recognized as “ARG1” by

our argN classifier. For the confusion matrix of the top 11 relation labels, “:mod” is used most

frequently. We note that the classifiers do not disambiguate “:mod” from “:quant”, “:degree”, and

“:location” well. Also, “:manner” and “:quant” are difficult to disambiguate.

6.4.2 AMR Parser

The final experiment we design is to apply the whole parsing pipeline, including FI, CI,

oracle action extractor, decoding, and post-processing, to generate AMR graphs from sentences in

the test set. The DEFT AMR 2016 dataset is our experimental data which contains various genres

of corpora and AMRs, including newswires, TV broadcast scripts, web blogs, machine translation
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Figure 6.3: Accuracies of Transition, ArgN, and Relation classifier using incremental feature addi-
tion. The X-axis represents the number of epochs in training
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Table 6.8: Confusion matrices of ArgN labels (left) and Rel labels in the top 11 majority (right)
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:mod 494 0 22 12 15 27 1 8 3 2 3
:name 0 302 0 0 2 0 0 0 0 0 0
:time 16 0 209 0 3 2 6 0 1 7 1

:op 10 1 2 173 15 0 0 5 0 0 1
:quant 28 2 1 7 95 10 1 2 3 0 23

:degree 29 0 1 0 4 96 0 2 1 0 1
:location 22 0 8 10 3 2 65 0 0 3 0
:domain 10 0 4 3 0 0 0 60 0 0 0

:unit 2 0 0 1 0 0 0 2 63 0 0
:condition 4 0 8 3 0 0 0 0 0 26 2

:manner 17 0 6 1 0 1 0 0 0 3 20

Table 6.9: Data split by domain from the LDC DEFT AMR corpus and the SemEval Blind Eval-
uation Data.

Dataset Training Dev Test
Blind

Evaluation
BOLT Discussion Forum MT 1,061 133 133 0

Broadcast Conversation 214 0 0 0
Weblog and WSJ 0 100 100 0

BOLT Discussion Forum English 6,455 210 229 0
DEFT Discussion Forum English 19,558 0 0 257

Guidelines AMRs 819 0 0 0
2009 Open MT 204 0 0 0

Proxy reports 6,603 826 823 0
Weblog 866 0 0 232

Xinhua MT 741 99 86 18
Agence France-Presse news 0 0 0 23

Associated Press news 0 0 0 52
New York Times news 0 0 0 471

Totals 36,521 1,368 1,371 1,053

evaluation text, etc. We use the same training and test set as previous CI and action identifier

experiments. In addition to the test set used in previous experiments, a blind evaluation set from

the SemEval 2016 task is provided as additional test data. Comparing this blind evaluation set

with the original test set, the blind one contains more sentences from different genres. Half of the

sentences are from discussion forums, and the other half from newswire. The domain distribution

of the blind dataset is different from the distribution of the training dataset. The data split by

domain of experimental data is listed in Table 6.9.
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Table 6.10: Incremental feature contribution to Smatch scores at the 60th epoch on our transition-
based parser

Epoch Word +POS +
Dependency

Relation
+NE +

Semantic
Role

+
Dependency

Path

30 61.3 62.1 64.1 65.3 67.6 69.2
60 63.4 64.3 65.6 66.1 68.6 69.6
80 63.9 64.0 65.5 66.8 68.5 69.6

100 63.8 63.4 65.9 66.0 68.6 69.0

Table 6.10 presents the incremental feature contributions of Smatch scores at different epochs.

These scores are evaluated on the DEFT test set. Results show that every feature contributes a

certain amount to Smatch scores. Generally speaking, semantic role features provide the most

Smatch score improvements among all features. Syntactic features, i.e., dependency relations and

dependency paths, also provide substantial contributions to the system. As we change our attention

to the number of epochs, we see that after the 60th epoch, the improvement of the Smatch score

becomes insignificant. After the 80th epoch, Smatch scores start to drop. The variety of Smatch

scores based on the feature combinations and based on the epochs are consistent with the variety

of action identification accuracy described in the previous section. The scores in Table 6.10 are

also illustrated on the left of Figure 6.4 as the ling graph.

We are also interested in the relation between Smatch score and the length of test sentence.

In right Figure 6.4, we draw a line graph to illustrate the association between average Smatch scores

and sentence lengths. Like other parsing tasks, e.g., dependency parsing and relation extraction,

performance drops dramatically with longer sentences. Average Smatch scores for sentences shorter

than 20 words are above the average score. Otherwise, average Smatch scores for sentences longer

than 20 words are lower than average. Sentences longer than 80 words reach the lowest Smatch

score at 0.605. Discovering the relations between two concepts with long distance dependencies is

always difficult, especially as our parser is based on the dependency parse hierarchy. Automatic

dependency parsers still have trouble dealing with long distance relations. The same difficulty

affects our AMR parser as well.
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Figure 6.4: Smatch scores of our parser with different feature combinations (left) and with different
sentence lengths (right). In the right figure, the model is trained with all available features at the
60th epoch. The blue dotted line represents the average Smatch score (69.6).

Table 6.11: Comparison of different AMR parsers in SemEval test and blind evaluation dataset.
The systems marked with * are transition-based parsers.

System Test Set Blind Evaluation Set

CAMR∗ 66.5 62.0
RIGA ∗ 67.2 62.0
JAMR (2016) 67.0 56.0
CAMR(2017)∗ 68.1 63.6
CU-NLP 70.7 65.1
Our parser 69.6 64.2

One last step is to compare our parser to different AMR parsing systems. We list comparable

systems and their results in Table 6.11. The CAMR system (Wang et al., 2015a) is a transition-

based parser which uses dependency parses as inputs. They proposed an updated version as CAMR

(2017) (Wang and Xue, 2017), which improves their concept identifier with a bi-directional LSTM

and character-based encoding. RIGA (Barzdins and Gosko, 2016) is another transition-based sys-

tem which inherits from the CAMR system. CAMR and RIGA are the two winners in the SemEval

2016 AMR parsing task. On the other hand, JAMR (2016) is the revision of the very first JAMR

AMR parser (Flanigan et al., 2014), which uses the MSCG algorithm for parsing. Foland and Mar-

tin (2016; 2017) proposed their latest version of the CU-NLP system, which uses a bidirectional

LSTM and an improved concept identifier to develop their parsing system. CU-NLP is currently
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the state-of-the-art system. Results show that our system reaches the best Smatch score among

all the transition-based systems in both test and blind evaluation datasets. Our system is 1.0%

lower in Smatch score than the CU-NLP system. The Smatch score of parsing sentences from blind

evaluation data drops 5.0% in average.

6.4.3 Error Analysis

To further understand the advantages and the disadvantages of our AMR parser, we randomly

select 50 sentences from the DEFT AMR test set and manually compare our AMR graphs with

the gold standard. The list of the selected sentences with the gold standard AMRs and the AMRs

produced by our parser is presented in Appendix B. The AMR graphs on the left are the gold

standard AMRs, while the graphs on the right are the parser AMRs. We categorize the errors into

three different types:

• Semantic Error: Semantic error refers to producing incorrect concepts that represent

different semantic meanings, i.e., missing nodes, inaccurate label, etc. For example, the

AMR with ID DF-199-194215-653 0484.15 shows that our parser picks “threaten-01” as

an ARG1 of “cave-01”, while in the gold standard AMR, “you” is the correct ARG1 of

“threaten-01”. The reason for this problem might be semantic role AM-CAU (Agent/-

Causer) on the phrase “to his threats”. Thus our parser links “cave-01” to “threaten-01”

with an ARG1 label, missing the implicit “you” argument. Another example of semantic

error is connecting two concepts with an incorrect label. For example, in the same graph,

our parser misses the LVC for “right-05”, when our parser recognizes “right” as a basic

attribute “right”. Around 42% of the errors belong to the semantic error category.

• Structural Error: Structural errors involve the graph structure, including incorrect place-

ment in DAG, missing arguments, and missing frames. For example, in the AMR ID

DF-200-192400-625 6304.5, “more” should modify “(p/point)”. However, our parser puts

it under “(c /contrast-01)”. Also, in the AMR ID DF-200-192400-625 6304.3, our parser
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misses the ARG0 of “have-org-role-91”. Structural errors most likely occur because our

transition-based parser predicts the wrong action during decoding. Our concept identifier

generates the correct concept candidates. However, our parser does not put them in the

correct position on the graph. Around 41% of the errors belong to the structural error

category.

• Frame Error: Frame error means the graph contains duplicated core arguments or incorrect

frame assignments. For example, in the AMR ID DF-199-194215-653 0484.17, there are

two “ARG0 ”s under concept “say-01”. Also, in AMR ID DF-200-192400-625 6304.24, our

parser mislabels two frames with concept “normalize-02” and “get-03”. This type of error

is due to our frame identifier and concept identifier producing correct concept candidates.

Around 27% of the errors belong to the frame error category.

Besides, there are some errors that come from the wrong dependency parse trees, semantic

roles, coreference chains, or wiki-links. However, generally speaking, most of the errors are due to

our action identification which produces incorrect structures. Our frame identifier and concept iden-

tifier predicting wrong concepts are also another primary reason, and the insertion of unnecessary

“condition” concepts.



Chapter 7

Conclusion

7.1 Contributions

This dissertation focuses on a pipeline of parsing AMR graphs from raw English sentences.

Among all fundamental and essential modules, we discover that basic linguistic information, in-

cluding lexical and syntactic features, still play important roles in the semantic parsing task. For

the LVC detector, new rules and heuristics based on syntactic relations are introduced to select

LVC candidates. A set of features, including lexical features, word senses, and WordNet features,

are presented to aid the LVC detector. The SVM-based LVC detector allows us to identify LVCs

more reliably and with more accuracy than comparable models. Our model gives a significant

improvement in F1 scores in the detection of LVCs compared to other models. LVCs are also shown

to support our AMR parsing task. For the dependency parse to AMR aligner, a list of basic match-

ing types is defined, covering approximately 60% of the aligning pairs between dependency nodes

and AMR concepts. Our EM-based algorithm, which estimates individual feature probabilities,

improves the performance of aligning dependency nodes to AMR concepts. The more accurately

aligned pairs help improve AMR parsing Smatch scores. For our AMR parser, several sub-models

are designed to build our parser. The Rev-Neural Network as our underlying structure is intro-

duced and shown to generate syntactic-rich and more robust vector representations of dependency

parse nodes than window-based models. For the Frame Identifying task, our ReVNN-based Frame

Identifier shows significant improvements on all frequency groups of frames against the Window-

based and Window+NN-based models. The addition of individual features contributes consistently
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to the accuracy of frame identification. For the Concept Identification task, our ReVNN-based

Concept Identifier shows improvements in accuracy in the identification of different concept types.

The addition of individual features also improves the accuracy of concept identification. Moreover,

by adding LVC information to the model, the CI model demonstrates a small but stable boost in

accuracy. For action identification, our transition-based parser extracts oracle actions in a linear

relationship to input sentence length. For the AMR parsing task, our ReVNN transition-based

parser shows improvement of accuracy on action and argument identification. The addition of indi-

vidual features also contributes to action identification. For the parsing, our ReVNN-based AMR

parser reaches the highest Smatch score compared to other transition-based AMR parsers.

To the best of our knowledge, this is the first time that these AMR parsing components

have been applied to the ReVNN-based model. Our results for identifying frames, concepts, and

actions show that the ReVNN model gives helpful feedback for many NLP tasks, e.g., word sense

disambiguation and relation identification, tasks which depend heavily on syntactic structures and

long-distance word relations. Additionally, the ReVNN model is a great “container” which can

integrate different types of linguistic knowledge and features into a single structure. The three

identifiers in our AMR parser show that the addition of individual features steadily increases

the performances of our classifiers, even when the characteristics of these features are diverse.

Particularly, semantic roles and dependency paths are the two main features added last to our

feature set, yet contributing the most in our transition-based parser. The later a feature is added

to a feature set, in general, the less it contributes to accuracy. The increase of accuracy when adding

semantic role and dependency path features to our ReVNN model shows that the ReVNN model is

still benefited by very different features for different kinds of tasks. Above all, our ReVNN-based

parser can be extended to implement other transition-based semantic parsing tasks, e.g., first-order

logical form and Universal Conceptual Cognitive Annotation (UCCA) (Hershcovich et al., 2017),

which can be parsed and derived from dependency parse structures. These semantic parsing tasks

also need to adopt different linguistic information as input features, the advantage of the ReVNN

model.
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7.2 Future Work

There is still much room for improvement. First, no oracle optimal transition algorithm is

performed in our oracle action extractor. Consequently, the action extractor might generate a se-

quence of actions with extra actions to form the final AMR graph, or even make the final AMR

graph unreachable. We intend to apply a dynamic oracle (Goldberg and Nivre, 2012), which pro-

vides transitions that lead to the best reachable graph from the given state, to our transition-based

parser. Improvement to the oracle action extractor will increase parsing performance. Second,

we plan to integrate a sequence-to-sequence model into our transition-based parser. Sequence-to-

sequence models have achieved great success in machine translation. The encoder receives entire

source sentences and generates intermediate vectors which represent sentence meaning and parsing

states. The decoder receives intermediate vectors and source words as inputs and outputs corre-

sponding translated words. An attention mechanism is introduced to link the source word and

corresponding translated word during parsing. As such, the attention mechanism is an alternative

design for word alignment. Inspired by this idea, we can apply a sequence-to-sequence model with

attention to our AMR parser framework. Such encoders usually use multi-layers of recurrent neural

networks, i.e., LSTMs or gated recurrent units, to generate intermediate vectors from input words.

We plan to change this underlying RNN layer to our ReVNN-model which we believe can better

represent sentence meaning. Furthermore, our dependency parse to AMR aligner can assist the

attention mechanism. Previous attempts to design the sequence-to-sequence based AMR parser

(Peng et al., 2017; Barzdins and Gosko, 2016; Konstas et al., 2017) ran into the problem of in-

sufficient training data. Because of this, the attention mechanism cannot perform as expected.

By integrating our aligner with attention, we believe the resulting sequence-to-sequence model can

improve parsing results.

We also plan to further observe the intermediate vectors on each dependency tree node gen-

erated by the ReVNN model. The ReVNN model integrates linguistic features to dependency tree

nodes, which can also represent the phrase that it covers. After experimenting with different mod-
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els and different feature combinations, 3 of the best and most distinctive can always be combined

into an ensemble approach to improve performance. Resulting vectors are potentially better units

for the representation of the meaning of corresponding phrases. One direction is to apply phrase

vector representations to a paraphrase identification task since the resulting vectors of paraphrase

pairs are ideally similar to each other. Another direction is to provide distinct vector represen-

tations based on word senses. Current word embedding approaches treat individual words with

different word senses as the same vector representation. The ReVNN model generates different

vector representations for distinct word senses based on dependency structures. We believe such

vector representations will support many NLP applications. Last but not least, we can apply our

AMR parses and the ReVNN model to other NLP applications, e.g., textual entailment and natural

language inference. These NLP applications require rich semantic representations of the sentences.

Thus we can apply our ReVNN model for semantic parsing. Instead of using dependency parse

trees as the input graph, we can use AMRs that our model produces as the input structures of the

ReVNN model.
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Appendix A

Transitions of CAMR Parser

CAMR parser is a transition-based system. They define their parser as a state triple (α, β,G).

α is a buffer that stores indices of the nodes which have not been processed. β is another buffer

[β0, β1, ..., βj ] and each element βi in β indicates the edge (α0, βi) which has not been processed.

The span graph G stores the partial parses for the input sentence.

When the parsing procedure starts, α is initialized with a post-order traversal of the input

dependency tree with top most element α0. β is initialized with node α0s children or set to null

if α0 is a leaf node. G is initialized with all the nodes and edges in dependency tree. Initially, all

the nodes of G have a span length of one and all the labels for nodes and edges are set to null.

As the parsing procedure goes on, the parser will process all the nodes and their outgoing edges in

dependency tree in a bottom-up left-right manner, and at each state certain action will be applied

to the current node or edge. The parsing process will terminate when both α and β are empty.

There are 8 types of actions in the parser, which is summarized in Table A.1. The action set

could be divided into two categories based on conditions of buffer β. When β is not empty, parsing

decisions are made based on the edge (α0, β0); otherwise, only the current node α0 is examined.

Also, to simultaneously make decisions on the assignment of concept/relation label, extra parameter

lr or lc with some actions. γ : V → LV is the concept labeling function for nodes, and δ : A→ LA

is the relation labeling function for arcs. So δ[(α0, β0)→ lr] means assigning relation label lr to arc

(α0, β0). All the actions update buffer α, β and apply some transformation G ⇒ G′ to the partial

graph.
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Table A.1: Transitions designed in CAMR Parsing system

Action Current State ⇒ Result State Assign Labels Precondition
Next Edge-lr (α0|α′, β|β′, G) ⇒ (α0|α′, β′, G′) δ[(α0, β0)→ lr]

β is not empty

Swap-lr (α0|α′, β|β′, G) ⇒ (α0|β0|α′, β′, G′) δ[(β0, α0)→ lr]
Reattachk-lr (α0|α′, β|β′, G) ⇒ (α0|α′, β′, G′) δ[(k, β0)→ lr]
Replace Head (α0|α′, β|β′, G) ⇒ (β0|α′, β = CH(β0, G

′), G′) NONE
Reentrancek-lr (α0|α′, β|β′, G) ⇒ (α0|α′, β0|β′, G′) δ[(k, β0)→ lr]
Merge (α0|α′, β|β′, G) ⇒ (α̃|α′, β′, G′) NONE
Next Edge-lc (α0|α1|α′, [], G) ⇒ (α1|α′, β = CH(α1, G

′), G′ γ[α0 → lc] β is empty
Delete Node (α0|α1|α′, [], G) ⇒ (α1|α′, β = CH(α1, G

′), G′ NONE



Appendix B

Sample of AMR Parsing Results

::id wb.eng_0003 .8 :: smatch 0.8000

::snt Speeding and accidents have surged as

well :

(s / surge -01

:ARG1 (a / and

:op1 (s2 / speed -01)

:op2 (a2 / accident))

:mod (a3 / as -well))

(s / surge -01

:ARG1 (a / and

:op1 (a2 / accident)

:op2 (s2 / speed -01))

:mod (a3 / as -well))

::id wb.eng_0003 .11

::snt Of course , VDOT has no more money for

road construction in the Richmond region .

:: smatch 0.6531

(h / have -03 :polarity -

:ARG0 (g / government -organization :wiki "

Virginia_Department_of_Transportation"

:name (v / name :op1 "VDOT"))

:ARG1 (m / money

:purpose (c2 / construct -01

:ARG1 (r2 / road

:location (r3 / region

:part (c / city :wiki "Richmond ,

_Virginia"

:name (r / name :op1 "Richmond ")))

)))

:mod (o / of-course))

(o / of-course

:condition (h / have -02

:ARG0 (g / government -organization

:wiki ""

:name (v / name :op1 "VDOT"))

:ARG1 (c / construct -01

:ARG1 (r / road)

:location (r2 / region

:mod (c2 / city

:wiki "Richmond ,_Virginia"

:name (r3 / name :op1 "Richmond ")))

:location (m / money

:polarity -))))
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::id wb.eng_0003 .15

::snt As we predicted , Route 288 is

generating residential development in

scarcely populated areas all around its

exits , overtaxing the local country roads

.

:: smatch 0.6579

(g / generate -01

:ARG0 (r2 / road :wiki "

Virginia_State_Route_288"

:name (r / name :op1 "Route" :op2 288))

:ARG1 (d / develop -02

:ARG1 (r3 / residence)

:location (a / area

:ARG1 -of (p2 / populate -01

:mod (s / scarce))

:location (a2 / around

:op1 (e / exit

:part -of r2)

:mod (a3 / all)))

:ARG0 -of (o / overtax -01

:ARG2 (r4 / road

:ARG1 -of (l / local -02

:ARG2 (c2 / country)))))

:ARG1 -of (p / predict -01

:ARG0 (w / we)))

(p / predict -01

:ARG0 (w / we)

:ARG1 (o / overtax -01

:ARG3 (r / road

:mod (l / localize -01

:mod (c / country)))

:ARG1 (g / generate -01

:ARG0 (r2 / road

:wiki "Virginia_State_Route_288"

:name (r3 / name :op1 "Route" :op2

288))

:ARG1 (d / develop -01

:mod (r4 / residence)

:location (a / area

:mod (a2 / around

:mod (a3 / all)

:op1 (e / exit

:poss r2))

:frequency (p2 / populate -01

:degree (s / scarce)))))))

::id wb.eng_0003 .21

::snt Here ’s another prodiction :

:: smatch 0.5000

(t / thing

:ARG1 -of (p / predict -01)

:mod (a / another))

(p / predict -01

:ARG1 (a / another)

:ARG2 (t / thing))

::id wb.eng_0003 .23

::snt Before the end of the decade , we may

well see the unfunded liability zoom well

past the original \$ 400 million it took

to build the original highway .

:: smatch 0.7250

(p / possible -01

:ARG1 (s / see -01

:ARG0 (w / we)

:ARG1 (z / zoom -01

:ARG1 (l / liability

:ARG1 -of (f / fund -01 :polarity -))

:ARG4 (p2 / past

:op1 (m / monetary -quantity :quant

400000000

:unit (d / dollar)

:ARG1 -of (t / take -10

:ARG0 (b2 / build -01

:ARG1 (h / highway

:mod (o / original))))

:mod (o2 / original))

:mod (w2 / well)))

:time (b / before

:op1 (e / end -01

:ARG1 (d2 / decade))))

:degree (w3 / well))

(s / see -01

:time (b / before

:op1 (e / end -01

:ARG1 (d / decade)))

:ARG0 (w / we)

:mod (w2 / well)

:condition -of (p / possible -01)

:ARG1 (z / zoom -01

:ARG1 (l / liability

:mod (f / unfund))

:ARG2 (t / take -10

:ARG0 (b2 / build -01

:ARG1 (h / highway

:mod (o / original)))

:ARG1 (p2 / past

:mod -of e)

:compared -to (m / monetary -quantity

:mod (w3 / well)

:unit (d2 / dollar

:mod (o2 / original))

:quant 400000000))))
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::id wb.eng_0003 .29

::snt Additional traffic congestion in old

places ?

:: smatch 0.6667

(c / congest -01

:ARG2 (t / traffic)

:location (p / place

:mod (o / old))

:mode interrogative

:mod (a2 / additional))

(c / congest -01

:mod (a / additional)

:ARG1 (t / traffic -01)

:ARG0 (p / place

:mod (o / old)))

::id wb.eng_0003 .33

::snt You have a city , Richmond , that has

virtually no traffic .

:: smatch 0.6000

(h / have -03

:ARG0 (c / city :wiki "Richmond ,_Virginia" :

name (r / name :op1 "Richmond "))

:ARG1 (t / traffic)

:ARG1 -of (h2 / have -polarity -91

:ARG2 -

:degree (v / virtual)))

(h / have -03

:ARG1 (h2 / have -org -role -91

:value -

:mod (t / traffic

:quant (v / virtual))

:ARG1 (c / city

:wiki "Richmond ,_Virginia"

:name (r / name :op1 "Richmond "))))

::id wb.eng_0003 .57

::snt It seems to me that the whole point of

roads is to facilitate the public interest

in getting to and from private businesses

.

:: smatch 0.5714

(s / seem -01

:ARG1 (h / have -purpose -91

:ARG1 (r / road)

:ARG2 (f / facilitate -01

:ARG0 r

:ARG1 (i3 / interest -01

:ARG1 (p / public)

:ARG2 (a / and

:op1 (g / get -05

:ARG0 p

:ARG2 (b / business

:ARG1 -of (p2 / private -03)))

:op2 (g2 / get -05

:ARG0 p

:source b))))

:mod (w / whole))

:ARG2 (i / i))

(h / have -purpose -91

:ARG2 (f / facilitate -01

:ARG1 (i / interest -01

:mod (p / publicize -01)

:ARG1 (g / get -03

:ARG2 (a / and

:op1 (p2 / private -03)

:op2 (g2 / get -05

:ARG2 (b / business))))))

:time (r / road

:domain (w / whole

:mod (s / seem -01

:ARG2 (i2 / i)))))
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::id wb.eng_0003 .58

::snt Then , of course there is the sunday

drive , the trip to grandma ’s , and the

soccer games , but still , the

overwhelming need is to support business .

:: smatch 0.6769

(n / need -01

:ARG1 (s3 / support -01

:ARG1 (b / business))

:ARG0 -of (o / overwhelm -01)

:concession (a / and

:op1 (d / drive -01

:time (d2 / date -entity

:weekday (s / sunday)))

:op2 (t / trip -03

:ARG1 (l / location

:poss (p / person

:ARG0 -of (h / have -rel -role -91

:ARG2 (g / grandmother)))))

:op3 (g2 / game

:mod (s2 / soccer))

:mod (o2 / of -course)))

(n / need -01

:ARG1 (c / course -01)

:ARG1 (a / and

:op1 (g / game

:mod (s / soccer))

:op2 (t / trip -03

:ARG1 (h / have -rel -role -91

:ARG0 (p / person

:poss -of (l / location))

:ARG2 (p2 / person

:op1 (g2 / grandmother)))))

:op3 (d / drive -01

:mod (d2 / date -entity

:weekday (s2 / sunday)))

:time (o / overwhelm -01)

:condition -of (s3 / support -01

:ARG1 (b / business)))

::id wb.eng_0003 .60

::snt If we recognize that roads primaarily

benefit businesses then we should do two

things :

:: smatch 0.6667

(r2 / recommend -01

:ARG1 (d / do -02

:ARG0 w

:ARG1 (t / thing

:quant 2))

:condition (r / recognize -02

:ARG0 (w / we)

:ARG1 (b / benefit -01

:ARG0 (r3 / road)

:ARG1 (b2 / business)

:mod (p / primary))))

(d / do -02

:ARG1 (r / recognize -01

:ARG0 (w / we)

:ARG1 (b / benefit -01

:ARG0 (r2 / road)

:mod (p / primary)

:ARG1 (b2 / business)))

:ARG2 (r3 / recommend -01

:ARG1 (t / thing)

:quant 2))

::id wb.eng_0003 .66

::snt TMT said ‘‘ In Virginia , it ’s to

benefit private business plans and not to

serve the public interest . ’’

:: smatch 0.6667

(s2 / say -01

:ARG0 (p2 / person :wiki - :name (n / name :

op1 "TMT"))

:ARG1 (a / and

:op1 (h / have -purpose -91

:ARG1 (i / it)

:ARG2 (b / benefit -01

:ARG1 (p3 / plan

:mod (b2 / business

:ARG1 -of (p4 / private -03)))))

:op2 (h2 / have -purpose -91 :polarity -

:ARG1 i

:ARG2 (s / serve -01

:ARG1 (i2 / interest

:poss (p / public))))

:location (s3 / state :wiki "Virginia" :

name (n2 / name :op1 "Virginia "))))

(s / say -01

:ARG0 (p / person

:wiki -

:name (n / name :op1 "TMT"))

:ARG1 (i / it)

:ARG0 (a / and

:op1 (s2 / serve -01

:polarity -

:ARG1 (i2 / interest

:mod (p2 / public)))

:op2 (b / benefit -01

:ARG1 (p3 / plan

:mod (b2 / business)

:mod (p4 / private -03)))

:op3 (s3 / state

:wiki "Virginia"

:name (n2 / name :op1 "Virginia "))))
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::id wb.eng_0003 .68

::snt I think they are so tightly intertwined

that they are virtually one and the same .

:: smatch 0.7647

(t / think -01

:ARG0 (i / i)

:ARG1 (i2 / intertwine -01

:ARG1 (t2 / they)

:ARG0 -of (c / cause -01

:ARG1 (s / same -01

:ARG1 t2

:mod (v / virtual)))

:ARG0 -of (t3 / tight -05)))

(t / think -01

:ARG0 (i / i)

:time -of (s / same -01

:mod (v / virtual))

:time (t2 / tight -05)

:ARG1 (i2 / intertwine -01

:ARG1 (t3 / they)

:op -of (c / cause -01

:ARG1 t3)))

::id wb.eng_0003 .85

::snt we can actually get some commercial

development and have the ability to work

closer to where we live .

:: smatch 0.6977

(a / and

:op1 (p / possible -01

:ARG1 (d / develop -02

:ARG3 (w2 / we)

:mod (c / commerce)))

:op2 (p2 / possible -01

:ARG1 (w / work -01

:ARG0 w2

:location (c2 / close -10

:ARG2 (l / live -01

:ARG0 w2)

:degree (m / more)))))

(a / and

:op1 (w / work -01

:manner (c / close -01

:ARG2 (l / live -01

:ARG0 w2)

:degree (m / more))

:ARG1 (p2 / possible -01))

:op2 (p / possible -01

:ARG0 (w2 / we)

:ARG1 (d / develop -02

:mod (c2 / commerce))))

::id wb.eng_0003 .94

::snt Many people have legitimate preferences

- horses , hunting , gardening , certain

types of small business - that makes them

NOT want to live in an urban core .

:: smatch 0.5634

(p / prefer -01

:ARG0 (p2 / person

:quant (m / many))

:ARG1 (a / and

:op1 (h / horse)

:op2 (h2 / hunt -01)

:op3 (g / garden -01)

:op4 (b / business

:mod (s / small)

:mod (t / type

:mod (c / certain))))

:ARG1 -of (l / legitimate -02)

:ARG0 -of (m2 / make -02

:ARG1 (w / want -01 :polarity -

:ARG0 p2

:ARG1 (l2 / live -01

:ARG0 p2

:location (c3 / core

:mod (u / urban))))))

(a / and

:op1 (b / business

:mod (t / type

:mod (c / certain)

:mod (s / small)))

:op2 (p / person

:mod (m / many))

:op3 (w / want -01

:polarity -

:ARG1 (l / live -01

:location (c2 / core

:mod (u / urban)))

:mod p)

:op4 (l2 / legitimate -02)

:op5 (h / hunt -01)

:op6 (m2 / make -01

:ARG2 (g / garden)

:ARG1 (h2 / horse))

:op7 (p2 / prefer -01))
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::id wb.eng_0003 .98

::snt What ’s consistently overlooked in the

debate ovre 288 is what else that \$ 400

million could have been spent on .

:: smatch 0.5652

(o / overlook -01

:ARG1 (t / thing

:mod (e / else)

:ARG1 -of (s2 / spend -01

:ARG3 (m2 / monetary -quantity :quant

400000000

:unit (d2 / dollar))

:ARG1 -of (p / possible -01)))

:ARG1 -of (c / consistent -02)

:subevent -of (d3 / debate -01

:ARG1 (r / road :wiki "

Virginia_State_Route_288" :name (n /

name :op1 "288"))))

(t / thing

:condition (s2 / spend -01

:ARG1 (m2 / monetary -quantity

:unit (d2 / dollar)

:quant 400000000))

:domain (o / overlook -01

:manner (c / consistent)

:location (d3 / debate -01

:ARG0 (r / road

:wiki "Virginia_State_Route_288"

:name (n / name :op1 288)))))

::id wb.eng_0003 .99

::snt How much traffic congestion could have

been alleviated had the money been applied

to other pressing road projects or , god

forbid , even non -road projects .

:: smatch 0.6462

(p / possible -01

:ARG1 (a / alleviate -01

:ARG1 (c / congest -01

:ARG2 (t / traffic)

:quant (m2 / much)))

:condition (a3 / apply -02

:ARG1 (m / money)

:ARG2 (o / or

:op1 (p2 / project

:mod (r / road)

:ARG2 -of (p3 / press -01)

:mod (o2 / other))

:op2 (p4 / project

:mod (r2 / road :polarity -)

:mod (e / even)

:ARG1 -of (f / forbid -01 :mode

imperative

:ARG0 (g / god))))))

(a / alleviate -01

:ARG1 (c / congest -01

:mod (m / much)

:ARG1 (t / traffic))

:ARG2 (p / press -01

:ARG2 (o / or

:op1 (f / forbid -01

:ARG0 (g / god))

:op2 (p2 / project

:degree (e / even)

:mod (r / road

:polarity -))

:op3 (p3 / project

:mod (o2 / other)

:mod (r2 / road)))

:ARG2 (a2 / apply -02

:ARG1 (m2 / money))))
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::id DF -199 -194215 -653 _0484.6

::snt I want him to be there for his son

without needing me too.

:: smatch 0.6667

(w / want -01

:ARG0 (i / i)

:ARG1 (h / he

:location (t / there

:beneficiary (p / person

:ARG0 -of (h2 / have -rel -role -91

:ARG1 h

:ARG2 (s / son)))))

:manner (n / need -01 :polarity -

:ARG0 h

:ARG1 i

:mod (t2 / too)))

(w / want -01

:ARG0 (i / i)

:ARG1 (t / there

:domain (h / he)

:polarity -

:ARG0 -of (h2 / have -rel -role -91

:ARG2 (s / son)

:ARG2 (p / person

:poss h)))

:manner (n / need -01

:mod (t2 / too)

:ARG1 i))
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::id DF -199 -194215 -653 _0484 .10

::snt I do believe every child needs both

parents weather they are together or not.

:: smatch 0.6939

(b / believe -01

:ARG0 (i / i)

:ARG1 (n / need -01

:ARG0 (c / child

:mod (e / every))

:ARG1 (p / person

:mod (b2 / both)

:ARG0 -of (h / have -rel -role -91

:ARG1 c

:ARG2 (p2 / parent)))

:concession (o / or

:op1 (t / together

:domain p)

:op2 (t2 / together :polarity -

:domain p))))

(b / believe -01

:ARG0 (i / i)

:ARG1 (n / need -01

:ARG0 (c / child

:mod (e / every))

:ARG1 (p / person)

:mod (t / together)

:polarity -)

:purpose (h / have -rel -role -91

:ARG2 (p2 / parent

:mod (b2 / both))))

::id DF -199 -194215 -653 _0484 .15

::snt You have a right to live your own life

and be happy , so don ’t cave to his threats

.

:: smatch 0.4898

(r / right -05

:ARG1 (y / you)

:ARG2 (a / and

:op1 (l / live -01

:ARG0 y

:ARG1 (l2 / life

:poss y))

:op2 (h / happy -01

:ARG1 y))

:ARG0 -of (c / cause -01

:ARG1 (c2 / cave -01 :polarity -

:ARG1 y

:ARG1 -of (c3 / cause -01

:ARG0 (t / threaten -01

:ARG0 (h3 / he))))))

(c / cause -01

:ARG1 (c2 / cave -01

:condition (r / right

:mod (y / you)

:manner (a / and

:op1 (l / live -01

:ARG1 (l2 / life)

:degree (h / happy))))

:ARG1 (t / threaten -01

:ARG1 (h2 / he))

:condition (c3 / cause -01

:polarity -)))

::id DF -199 -194215 -653 _0484 .17

::snt Others say things like , "I’m going to

kill myself if you leave me"... get it?

:: smatch 0.6316

(m / multi -sentence

:snt1 (s / say -01

:ARG0 (p / person

:mod (o / other))

:ARG1 (t / thing

:ARG1 -of (r / resemble -01

:ARG2 (k / kill -01

:ARG0 (i2 / i)

:ARG1 i2

:condition (l / leave -15

:ARG0 (y2 / you)

:ARG1 i2)))))

:snt2 (g / get -through -12 :mode

interrogative

:ARG0 (i / it)

:ARG1 (y / you)))

(m / multi -sentence

:snt1 (g / get -01

:ARG1 (i / it

:purpose (s / say -01

:ARG0 (p / person

:mod (o / other))

:ARG1 (t / thing)

:ARG0 (y / you)))

:manner through)

:snt2 (r / resemble -01

:ARG2 (k / kill -01

:ARG2 (l / leave -15

:ARG0 (y2 / you)

:ARG1 -of p)

:ARG1 (i2 / i

:domain p))))
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::id DF -200 -192400 -625 _6304.3

::snt The first night I was here , all my

housemates and I went out and it was the

hardest thing I have ever ever had to do.

:: smatch 0.5185

(a / and

:op1 (g / go-out -17

:ARG0 (a2 / and

:op1 (p / person

:mod (a3 / all)

:ARG0 -of (h2 / have -rel -role -91

:ARG1 i

:ARG2 (h4 / housemate)))

:op2 i)

:time (d2 / date -entity

:dayperiod (n / night)

:ord (o / ordinal -entity :value 1)

:time -of (b / be-located -at -91

:ARG1 (i / i)

:ARG2 (h / here))))

:op2 (h3 / hard -02

:ARG1 g

:degree (m / most)

:compared -to (t / thing

:ARG1 -of (d / do -02

:ARG0 i

:time (e / ever)

:ARG1 -of (o2 / obligate -01)))))

(a / and

:op1 (h / hard -02

:mod (t / thing

:mod (m / most)))

:op2 (g / go -04

:time (n / night

:ord (o / ordinal -entity

:value 1))

:ARG1 (a2 / and

:op1 (h2 / have -org -role -91

:ARG2 (h3 / housemate

:mod (a3 / all)

:domain i))

:op2 (p / person)

:poss i))

:op3 (b / be-located -at -91

:ARG1 (i / i)

:degree (h4 / here))

:op4 (d / do -02

:time (e / ever)

:condition -of i))

::id DF -200 -192400 -625 _6304.5

::snt Anyways more to the point; Here are the

facts:

:: smatch 0.6667

(m2 / multi -sentence

:snt2 (f / fact

:location (h / here))

:snt1 (c / contrast -01

:ARG2 (p / point

:degree (m / more))))

(m / multi -sentence

:snt1 (f / fact

:mod (h / here))

:snt2 (c / contrast -01

:ARG2 (p / point)

:degree (m2 / more)))
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::id DF -200 -192400 -625 _6304 .24

::snt If you ’ve always been an anxious person

you might benefit from speaking to someone

(my friend got therapy on the NHS for

anxiety , so its really normal).

:: smatch 0.5684

(m / multi -sentence

:snt1 (p / possible -01

:ARG1 (b / benefit -01

:ARG0 (s / speak -01

:ARG0 y

:ARG2 (s2 / someone))

:ARG1 (y / you)

:condition (p2 / person

:mod (a2 / anxious)

:domain y

:time (a3 / always))))

:snt2 (g / get -01

:ARG0 (p3 / person

:ARG0 -of (h / have -rel -role -91

:ARG1 (i / i)

:ARG2 (f / friend)))

:ARG1 (t / therapy)

:ARG2 (o / organization :wiki "

National_Health_Service_(England)" :

name (n / name :op1 "NHS"))

:ARG0 -of (c / cause -01

:ARG1 (n2 / normal -02

:ARG1 (i2 / it)

:degree (r / really)))

:ARG1 -of (c2 / cause -01

:ARG0 (a4 / anxiety))))

(m / multi -sentence

:snt1 (s / speak -01

:ARG2 (s2 / someone)

:ARG1 (b / benefit -01

:ARG0 (p / person

:mod (a / anxious))

:ARG1 (y / you)))

:snt2 (n2 / normalize -01

:ARG1 (c / cause -01

:mod (i / it)

:domain (r / real))

:condition -of p)

:snt3 (h / have -rel -role -91

:ARG0 (i2 / i)

:ARG2 (f / friend))

:snt4 (c2 / cause -01

:ARG0 (a2 / anxiety)

:location (t / therapy)

:purpose (g / get -03

:ARG0 (p2 / person)

:ARG1 (o / organization

:wiki "National_Health_Service_(

England)"

:quant (n / name :op1 "NHS")))))

::id DF -200 -192400 -625 _6304 .25

::snt And try and get deadlines extended , if

you ’re honest I’m sure your uni will allow

it.

:: smatch 0.6071

(m / multi -sentence

:snt2 (s / sure -02

:ARG0 (i / i)

:ARG1 (a / allow -01

:ARG0 (u / university

:poss (y2 / you))

:ARG1 (i2 / it))

:condition (h / honest -01

:ARG0 y))

:snt1 (a2 / and

:op1 (t / try -01 :mode imperative

:ARG0 (y / you)

:ARG1 (g / get -04

:ARG0 y

:ARG1 (e / extend -01

:ARG1 (d / deadline))))))

(m / multi -sentence

:snt1 (e / extend -01

:ARG0 (d / deadline))

:snt2 (g / get -01)

:snt3 (a / and

:op1 (t / try -01

:ARG0 (y / you)))

:snt4 (a2 / allow -01

:ARG0 (u / university

:poss (y2 / you))

:ARG1 (i / it)

:mod (h / honest)

:ARG1 (i2 / i)))
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::id DF -200 -192400 -625 _6344.5

::snt I can ’t cope with her outbursts and

nasty hateful remarks when I’m at home.

:: smatch 0.7308

(p / possible -01 :polarity -

:ARG1 (c / cope -01

:ARG0 (i / i)

:ARG1 (a / and

:op1 (o / outburst

:poss (s / she))

:op2 (t / thing

:ARG1 -of (r / remark -01

:ARG0 s)

:mod (h / hateful)

:mod (n / nasty))))

:time (b / be -located -at -91

:ARG1 i

:ARG2 (h2 / home)))

(p / possible -01

:ARG0 (i / i)

:ARG1 (c / cope -01

:polarity -

:ARG1 (a / and

:op1 (s / she)

:op2 (t / thing

:domain (r / remark -01

:mod (n / nasty)

:ARG1 (h / hateful)))

:op3 (o / outburst)))

:time (b / be -located -at -91

:ARG2 (h2 / home)

:ARG1 i))

::id DF -200 -192400 -625 _6344 .18

::snt Thanks for reading.

:: smatch 0.7692

(t / thank -01

:ARG1 (y / you)

:ARG2 (r / read -01

:ARG0 y))

(t / thank -01

:ARG2 (r / read -01)

:ARG0 (y / you))

::id DF -200 -192400 -625 _6344 .25

::snt I had to deal with verbal abuse from my

dad for a long 8 years before I came to

uni and honestly , the only reason why I’m

here is because it was the only way out.

:: smatch 0.6226

(a / and

:op1 (o / obligate -01

:ARG2 (d / deal -01

:ARG0 (i / i)

:ARG2 (a2 / abuse -03

:ARG0 (p / person

:ARG0 -of (h3 / have -rel -role -91

:ARG1 i

:ARG2 (d2 / dad)))

:ARG1 i

:mod (v / verbal))

:time (b2 / before

:op1 (c / come -01

:ARG1 i

:ARG4 (u / university)))

:ARG1 -of (l / long -03

:ARG2 (t2 / temporal -quantity :quant 8

:unit (y2 / year)))))

:op2 (c2 / cause -01

:ARG0 (r / reason

:mod (o4 / only)

:domain (w / way

:mod (o2 / only)

:direction (o3 / out)

:domain (i2 / it)))

:ARG1 (b / be -located -at -91

:ARG1 i

:ARG2 (h / here))

:ARG1 -of (h2 / honest -01)))

(a / and

:op1 (r / reason

:mod (o / only)

:quant (h / honest))

:op2 (o2 / obligate -01

:ARG0 (i / i)

:ARG1 (d / deal -01

:location (a2 / abuse -01

:mod (v / verbal)

:ARG1 (p / person

:ARG1 -of (h2 / have -rel -role -91

:ARG2 (d2 / dad))

:poss i))

:time (l / long -03

:ARG2 (t / temporal -quantity

:quant 8

:unit (y / year)))

:time (c / come -01

:ARG0 (b / before)

:ARG4 (u / university)

:ARG1 i)))

:op3 (b2 / be -located -at -91

:ARG2 (h3 / here)

:ARG1 i)

:op4 (i2 / it

:mod (w / way

:mod (o3 / only)

:mod (o4 / out)

:manner t2)))
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::id DF -200 -192400 -625 _6344 .28

::snt You could call Childline or something

similar?

:: smatch 0.6486

(p / possible -01 :mode interrogative

:ARG1 (c / call -02

:ARG0 (y / you)

:ARG1 (o / or

:op1 (o2 / organization :wiki "ChildLine

"

:name (n / name :op1 "Childline "))

:op2 (s / something

:ARG1 -of (r / resemble -01

:ARG2 o2)))))

(p / possible -01

:ARG1 (c / call -02

:ARG0 (y / you))

:ARG1 (o / or

:op1 (s / something

:mod (r / resemble -01))

:op2 (o2 / organization

:wiki "ChildLine"

:op1 (n / name :op1 "Childline "))))

::id DF -200 -192400 -625 _6344 .31

::snt So you want her sectioned cos she is a

bit of a pain in the arse and you ’ve

blamed all your problems on her?

:: smatch 0.3704

(c / cause -01

:ARG0 (a2 / and

:op1 (p / pain

:location (a / arse)

:degree (b / bit)

:domain s)

:op2 (b2 / blame -01

:ARG0 y

:ARG1 s

:ARG2 (p2 / problem

:mod (a3 / all)

:poss y)))

:ARG1 (w / want -01 :mode interrogative

:ARG0 (y / you)

:ARG1 (s / section -02

:ARG1 (s2 / she))))

(w / want -01

:ARG1 (a / and

:mode interrogative

:op1 (y / you)

:op2 (s / section -01

:ARG0 (s2 / she))

:op3 (c / cause -01

:ARG0 (b / bit

:mod (p / pain)

:domain s2))

:op4 (b2 / blame -01

:ARG1 (p2 / problem

:quant (a2 / all))

:ARG0 s2)))
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::id DF -200 -192400 -625 _6677.1

::snt I think over the last year or 2 i’ve

become a much weaker person and in a way

have dulled down my personality inorder to

try and make some friends at uni.

:: smatch 0.6296

(t4 / think -01

:ARG0 (i / i)

:ARG1 (a2 / and

:op1 (b / become -01

:ARG1 i

:ARG2 (p / person

:ARG1 -of (w / weak -02

:degree (m / more

:degree (m2 / much))))

:time (b4 / before

:op1 (n / now)

:duration (b2 / between

:op1 (t / temporal -quantity :quant 1

:unit (y / year))

:op2 (t2 / temporal -quantity :quant

2

:unit (y2 / year)))))

:op2 (d / dull -01

:ARG0 i

:ARG1 (p2 / personality

:poss i)

:mod (d2 / down)

:purpose (t3 / try -01

:ARG0 i

:ARG1 (b3 / befriend -01

:ARG0 i

:ARG1 (p3 / person

:quant (s / some))

:location (u / university)))

:manner (w2 / way)

:time b2)))

(t / think -01

:ARG0 (i / i)

:ARG1 (a / and

:op1 (p / person

:mod (w / weak

:degree (m / more

:degree (m2 / much))))

:op2 (d / dull -01

:ARG1 (w2 / way)

:direction (d2 / down)

:ARG0 (p2 / personality

:poss i)

:purpose (t2 / try -01

:ARG1 (b / be.03

:ARG0 (f / friend)

:ARG1 (p3 / person

:mod (s / some)

:location (u / university)))))

:op3 (b2 / become -01

:ARG1 (t3 / temporal -quantity

:quant 2

:unit (b3 / before)

:unit (b4 / between

:op1 (y / year

:op1 (t4 / temporal -quantity

:op1 (y2 / year

:mod (n / now)

:quant 1)))))

:ARG1 i)))
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::id DF -200 -192400 -625 _7046.9

::snt Its not uncommon for people ’s existing

feelings about themselves to become more

intense when they are in new situations

and feel the pressure to socialise with

strangers and fit into new roles , i.e.

being a university student.

:: smatch 0.5773

(c / common

:domain (b / become -01

:ARG1 (t / thing

:ARG1 -of (f / feel -01

:ARG0 (p / person)

:ARG2 p)

:ARG1 -of (e / exist -01))

:ARG2 (i / intense -02

:ARG1 t

:degree (m / more))

:time (a / and

:op1 (b2 / be -located -at -91

:ARG1 p

:ARG2 (s / situation

:ARG1 -of (n / new -02)))

:op2 (f2 / feel -01

:ARG0 p

:ARG1 (p2 / pressure -01

:ARG1 p

:ARG2 (a2 / and

:op1 (s2 / socialize -01

:ARG0 p

:prep -with (s3 / stranger))

:op2 (f3 / fit -06

:ARG1 p

:ARG2 (r / role

:ARG1 -of n

:example (p3 / person

:ARG0 -of (s4 / study -01

:location (u / university)

))))))))))

(c / common

:condition -of (i / intense -02

:degree (m / more)

:ARG1 (b / become -01

:ARG1 (t / thing

:domain (f / feel -01

:ARG0 p

:time -of (e / exist -01

:ARG2 (p / person)))))

:time (a / and

:op1 (s / situation

:mod (n / new))

:op2 (f2 / feel -01

:ARG1 (p2 / pressure -01

:ARG2 (f3 / fit -06

:ARG2 (r / role

:mod (p3 / person)))

:ARG1 (a2 / and

:op1 (s2 / socialize -01

:location (s3 / stranger))))

:condition (s4 / study -01

:ARG1 (u / university)

:ARG2 r))

:op3 p)))
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::id DF -200 -192400 -625 _7046 .14

::snt If i were you id focus on an idol.

Someone you aspire to (not want to be them

but someone who your admire and have

respect for) e.g. someone who came from a

bad background and ended up successful and

happy with a family and married etc etc

:: smatch 0.5225

(m / multi -sentence

:snt1 (f / focus -01

:ARG0 (i / i)

:ARG2 (i2 / idol)

:condition (y / you

:domain i))

:snt2 (a / aspire -01

:ARG0 (y2 / you)

:ARG1 (s / someone

:example (s2 / someone

:ARG1 -of (c / come -03

:ARG2 (b / background

:ARG1 -of (b2 / bad -07)))

:ARG1 -of (e / end -up -03

:ARG2 (a2 / and

:op1 (s3 / succeed -01

:ARG0 s2)

:op2 (h / happy -01

:ARG1 s2)

:op3 (h2 / have -03

:ARG0 s2

:ARG1 (f2 / family))

:op4 (m2 / marry -01

:ARG1 s2)

:op5 (e2 / et -cetera))))))

:snt3 (c3 / contrast -01

:ARG1 (w / want -01 :polarity -

:ARG0 (y3 / you)

:ARG1 (t / they

:domain y3))

:ARG2 (s4 / someone

:ARG1 -of (a3 / admire -01

:ARG0 y3)

:ARG1 -of (r / respect -01

:ARG0 y3))))

(m / multi -sentence

:snt1 (r / respect -01)

:snt2 (s / someone

:op1 (f / focus -01

:mod (y / you)

:ARG0 (i / i)

:ARG1 (i2 / idol)))

:snt3 (a / aspire -01

:ARG0 (y2 / you))

:snt4 (c / contrast -01

:ARG0 (y3 / you

:op1 (s2 / someone))

:ARG1 (w / want -01

:polarity -

:ARG1 (t / they)))

:snt5 (c2 / come -01

:ARG1 (s3 / someone)

:ARG1 (b / background)

:mod (b2 / bad -07)

:time -of (e / end -up -03

:ARG1 (a2 / and

:op1 (h / happy)

:op2 (m2 / marry -01)

:op3 (s4 / succeed -01)

:op4 (f2 / family)))))

::id DF -200 -192400 -625 _7200.3

::snt What made them decide toe -walking is a

sign of autism since it seems so random

and isn ’t always indicative?

:: smatch 0.6032

(m / make -02

:ARG0 (a / amr -unknown)

:ARG1 (d / decide -01

:ARG0 (t / they)

:ARG1 (s / signal -07

:ARG0 (w / walk -01

:manner (t2 / toe))

:ARG1 (a2 / autism)))

:ARG1 -of (c / cause -01

:ARG0 (a3 / and

:op1 (s2 / seem -01

:ARG1 (r / random

:degree (s3 / so)

:domain w))

:op2 (i / indicate -01 :polarity -

:ARG0 w

:time (a4 / always)))))

(c / cause -01

:ARG0 (a / and

:op1 (r / random

:degree (s / so))

:op2 (a2 / always)

:op3 (s2 / seem -01

:condition s3)

:op4 (i / indicate -01

:polarity -

:ARG1 (m / make -02

:ARG1 (d / decide -01

:ARG0 (t / they)

:ARG1 (w / walk -01

:mod (t2 / toe)

:ARG1 (s3 / sign -02

:ARG1 (a3 / autism))))))))
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::id DF -200 -192400 -625 _7200 .11

::snt My brother ’s autistic but I haven ’t

noticed this with him either , but the

spectrum is so broad and I myself probably

have mild asperger ’s because I have

problems with communication and don ’t pick

up on social reactions/body language.

:: smatch 0.6667

(c / contrast -01

:ARG1 (c2 / contrast -01

:ARG1 (a / autistic

:domain (p4 / person

:ARG0 -of (h3 / have -rel -role -91

:ARG1 (i / i)

:ARG2 (b / brother))))

:ARG2 (n / notice -01 :polarity -

:ARG0 i

:ARG1 a

:mod (e / either)))

:ARG2 (a2 / and

:op1 (b2 / broad -02

:ARG1 (s2 / spectrum)

:degree (s / so))

:op2 (p / probable

:domain (h2 / have -03

:ARG0 i

:ARG1 (d / disease :wiki "

Asperger_syndrome" :name (n2 /

name :op1 "Asperger ’s")

:mod (m2 / mild))

:ARG0 -of (c3 / cause -01

:ARG1 (a5 / and

:op1 (h / have -03

:ARG0 i

:ARG1 (p2 / problem

:topic (c4 / communicate -01)))

:op2 (p3 / pick -up -11 :polarity -

:ARG0 i

:ARG1 (s4 / slash

:op1 (r / react -01

:mod (s3 / society))

:op2 (l / language

:mod (b3 / body))))))))))

(c / contrast -01

:ARG2 (c2 / cause -01

:ARG2 (b / broad -02

:degree (s / so)

:mod (a / and)

:op -of (s2 / spectrum)))

:ARG2 (c3 / contrast -01

:ARG1 (p / person)

:ARG2 (a2 / autistic)

:condition (h / have -03

:ARG0 (a3 / and

:op1 (d / disease

:mod (m / mild)

:name (n / name :op1 "Asperger ’s"))

:op2 (p2 / pick -up -11

:polarity -

:ARG1 (s3 / slash

:mod (s4 / society)

:mod (l / language

:mod (b2 / body))))

:op3 (h2 / have -03

:ARG1 (p3 / problem

:mod (c4 / communicate -01)))

:op4 (r / react -01))))

:time (h3 / have -rel -role -91

:ARG2 (i / i)

:ARG2 (b3 / brother))

:condition -of (n2 / notice -01

:polarity -

:mod (e / either)))

::id DF -200 -192400 -625 _7557.5

::snt they healed , then i cut myself with

staples i robbed from school and a razor.

:: smatch 0.7727

(a / and

:op1 (h / heal -01

:ARG1 (t / they))

:op2 (c / cut -01

:ARG0 (i / i)

:ARG1 i

:ARG3 (a2 / and

:op1 (s / staple

:ARG2 -of (r / rob -01

:ARG0 i

:ARG1 (s2 / school)))

:op2 (r2 / razor))

:mod (t2 / then)))

(a / and

:op1 (h / heal -01

:ARG1 (t / they))

:op2 (c / cut -01

:ARG0 (i / i)

:ARG1 (a2 / and

:op1 (r / rob -01

:ARG1 (s / school))

:op2 (r2 / razor)

:op3 (s2 / staple))))
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::id DF -200 -192400 -625 _7557 .24

::snt It might be an idea to talk to your

school nurse or your GP and tell them what

’s going on.

:: smatch 0.6875

(r / recommend -01

:ARG1 (a / and

:op1 (t / talk -01

:ARG0 (y / you)

:ARG2 (o / or

:op1 (p / person

:ARG0 -of (h2 / have -org -role -91

:ARG1 (s / school

:poss y)

:ARG2 (n / nurse)))

:op2 (p2 / person

:ARG0 -of (h / have -rel -role -91

:ARG1 y

:ARG2 (p3 / practitioner

:mod (g / general))))))

:op2 (t2 / tell -01

:ARG1 (t3 / thing

:ARG1 -of (g2 / go -on -15))

:ARG2 o)))

(r / recommend -01

:ARG1 (a / and

:op1 (g / go -02

:ARG0 (t / thing))

:op2 (t2 / tell -01

:ARG1 -of o)

:op3 (t3 / talk -01

:ARG0 (y / you

:ARG1 -of (h / have -org -role -91

:ARG1 (s / school)

:time (n / nurse)

:ARG0 (p / person))))

:op4 (h2 / have -rel -role -91

:ARG2 (p2 / practitioner

:mod (g2 / general))

:ARG1 (p3 / person))))

::id DF -200 -192400 -625 _7557 .27

::snt if you keep it bottled up inside it’s

likely to only get worse.

:: smatch 0.6667

(l / likely -01

:ARG1 (w / worsen -01

:ARG1 (i / it)

:mod (o / only))

:condition (k / keep -01

:ARG0 (y / you)

:ARG1 (i4 / it

:ARG1 -of (b / bottle -up -02)

:location (i3 / inside))))

(b / bottle -up -02

:mod (i / inside)

:ARG1 (k / keep -01

:ARG0 (y / you)

:ARG1 (i2 / it)

:condition (w / worsen -01

:mod (o / only))

:ARG1 (i3 / it)))
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::id DF -200 -192400 -625 _7557 .30

::snt I’m 17 I started self harming last year ,

mainly cutting my arms , but I have

stopped since the last few months ,

:: smatch 0.7579

(c / contrast -01

:ARG1 (a / and

:op1 (a2 / age -01

:ARG1 (i / i)

:ARG2 (t2 / temporal -quantity :quant 17

:unit (y / year)))

:op2 (s / start -01

:ARG0 i

:ARG1 (h / harm -01

:ARG1 (s2 / self)

:ARG1 -of (m / mean -01

:ARG2 (c2 / cut -01

:ARG1 (a3 / arm

:part -of i)

:mod (m3 / main))))

:time (y2 / year

:mod (l / last))))

:ARG2 (s3 / stop -01

:ARG0 i

:ARG1 h

:time (b / before

:op1 (n / now)

:quant (f / few

:op1 (t3 / temporal -quantity :quant 1

:unit (m4 / month))))))

c / contrast -01

:ARG1 (a / and

:op1 (a2 / age -01

:ARG1 (i / i)

:ARG2 (t / temporal -quantity

:unit (y / year)

:quant 17))

:op2 (s / stop -01

:ARG2 (f / few

:op1 (t2 / temporal -quantity

:unit (m / month)

:quant 1))

:time (n / now)

:ARG1 (b / before)

:ARG0 i)

:op3 (m2 / mean -01

:ARG2 (c2 / cut -01

:mod (m3 / main)

:ARG1 (a3 / arm

:poss i))

:condition (s2 / start -01

:ARG1 (y2 / year)

:time (h / harm -01

:ARG1 (s3 / self)

:mod (l / last)))

:ARG1 i)))
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::id DF -200 -192400 -625 _7557 .32

::snt I feel so much happier , but seeing the

scars is both a painful reminder of how I

felt at that time , how strong my feelings

were that I would want to do such a thing

to myself!

:: smatch 0.6538

(c / contrast -01

:ARG1 (f / feel -01

:ARG0 (i / i)

:ARG1 (h / happy -01

:ARG1 i

:degree (m / more

:quant (m2 / much

:degree (s / so)))))

:ARG2 (r / remind -01

:ARG0 (s4 / see -01

:ARG0 i

:ARG1 (s5 / scar))

:ARG1 (a / and

:op1 (t4 / thing

:ARG1 -of (f2 / feel -01

:ARG0 i

:time (t / time

:mod (t2 / that))))

:op2 (s2 / strong -02

:ARG1 f2

:degree (s6 / so)

:ARG0 -of (c2 / cause -01

:ARG1 (w / want -01

:ARG0 i

:ARG1 (d / do -02

:ARG1 (t3 / thing

:mod (s3 / such))

:ARG2 i)))))

:ARG2 i

:ARG0 -of (p / pain -01

:ARG1 i)))

(f / feel -01

:ARG1 (h / happy

:domain (i / i)

:degree (m / more

:degree (m2 / much

:degree (s / so))))

:ARG2 (c / contrast -01

:ARG1 (s2 / see -01

:ARG1 (s3 / scar))

:time (c2 / cause -01

:ARG0 (a / and

:op1 (f2 / feel -01

:time (t / time

:mod (t2 / that))

:ARG0 i)

:op2 (t3 / thing)

:op3 (s4 / strong -02

:degree (s5 / so))

:op4 (w / want -01

:ARG1 (d / do -02

:ARG1 (t4 / thing

:mod (s6 / such))

:ARG0 i)

:ARG0 i)

:poss i)

:ARG1 (r / remind -01

:ARG1 (p / pain -01)))))

::id DF -200 -192400 -625 _7744.4

::snt Am I going crazy or something?

:: smatch 0.5882

(o / or :mode interrogative

:op1 (c / craze -01

:ARG1 (i / i))

:op2 (s / something))

(o / or

:domain (i / i)

:op1 (s / something)

:op2 (c / craze -01))
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::id DF -200 -192400 -625 _7744.5

::snt It happens most often when I’m carrying

many things , but that is rarely and even

still daily I’m checking many times. And

is this OCD to any extent?

:: smatch 0.6392

(m / multi -sentence

:snt1 (a / and

:op1 (i / it

:frequency (o / often

:degree (m2 / most)

:time -of (c / carry -01

:ARG0 i

:ARG1 (t / thing

:quant (m3 / many))

:ARG1 -of (c3 / contrast -01

:ARG2 (c4 / carry -01

:ARG0 i

:ARG1 t

:ARG1 -of (r / rare -02))))))

:op2 (c2 / check -01

:ARG0 i

:frequency (r2 / rate -entity -91

:ARG1 (m5 / many)

:ARG2 (t4 / temporal -quantity :quant 1

:unit (d / day))

:mod (s / still)

:mod (e / even))))

:snt2 (d2 / disease :mode interrogative :

wiki " Obsessive compulsive_disorder " :

name (n / name :op1 "OCD")

:domain (t3 / this)

:degree (e2 / extent

:mod (a2 / any))))

(m / multi -sentence

:snt1 (c / contrast -01)

:snt2 (a / and

:op1 (i / it)

:op2 (o / often

:degree (m2 / most))

:op3 (c2 / carry -01

:ARG1 (t / thing

:mod (m3 / many)))

:op4 (r / rare -02

:ARG0 (t2 / temporal -quantity

:quant 1

:unit (d / day))

:degree (e / even)

:degree (s / still))

:op5 (c3 / check -01))

:snt3 (t3 / this

:mod (m4 / many)

:manner (e2 / extent

:mod (a2 / any)

:domain (d2 / disease

:wiki " Obsessive compulsive_disorder

"

:name (n / name :op1 "OCD")))))
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::id DF -200 -192400 -625 _7744.7

::snt If I don ’t check , I get very very

anxious , which does sort of go away after

15-30 mins , but often the anxiety is so

much that I can ’t wait that long.

:: smatch 0.6019

(c / contrast -01

:ARG1 (g / get -03

:ARG1 (i / i)

:ARG2 (a / anxious

:degree (v / very)

:ARG1 -of (g2 / go -01

:direction (a2 / away)

:mod (s / sort)

:time (a3 / after

:op1 (b / between

:op1 (t / temporal -quantity :quant

15

:unit (m / minute))

:op2 (t2 / temporal -quantity :

quant 30

:unit (m2 / minute))))))

:condition (c2 / check -01 :polarity -

:ARG0 i))

:ARG2 (a4 / anxiety

:quant (m3 / much

:ARG0 -of (c3 / cause -01

:ARG1 (p / possible -01 :polarity -

:ARG1 (w / wait -01

:ARG1 i

:ARG1 -of (l / long -03

:degree (t3 / that))))))

:time (o2 / often)))

(p / possible -01

:degree (t / that)

:ARG1 o2

:ARG2 -of (a / anxiety

:mod (o / often)

:degree (m / much)

:op1 (l / long -03

:ARG1 (c / cause -01

:ARG1 (w / wait -01

:polarity -

:ARG1 i)))

:op2 (g / get -03

:ARG2 (a2 / anxious

:domain (i / i)

:degree (v / very))

:ARG1 (c2 / contrast -01

:ARG2 (c3 / check -01

:polarity -

:ARG0 i)

:ARG2 (g2 / go -01

:mod (s / sort)

:mod (a3 / away)

:time (a4 / after

:location (o2 / or

:op1 (t2 / temporal -quantity

:quant 15)

:op2 (t3 / temporal -quantity

:quant (m2 / minute

:quant (m3 / minute

:quant 30))))))))))

::id DF -200 -192400 -625 _7744 .11

::snt They ’ve probably never heard of some

compulsion like this and I just dont know

what to do

:: smatch 0.8000

(a / and

:op1 (h / hear -01 :polarity -

:ARG0 (t / they)

:ARG1 (c / compulsion

:mod (s / some)

:ARG1 -of (r / resemble -01

:ARG2 (t2 / this)))

:time (e / ever)

:mod (p / probable))

:op2 (k / know -01 :polarity -

:ARG0 (i / i)

:ARG1 (t3 / thing

:ARG1 -of (d / do -02

:ARG0 i))

:mod (j / just)))

(a / and

:op1 (k / know -01

:ARG0 (i / i)

:mod (j / just)

:polarity -

:ARG1 (t / thing)

:domain -of t2)

:op2 (h / hear -01

:ARG0 (t2 / they)

:mod (p / probable)

:polarity -

:time (e / ever)

:ARG1 (c / compulsion

:source (r / resemble -01

:ARG2 (t3 / this)

:ARG1 (s / some)))))
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::id DF -200 -192400 -625 _7806.1

::snt Usually I’m pretty calm about things and

like to take things as they come and not

to worry too much.

:: smatch 0.5385

(a / and

:op1 (c / calm -03

:ARG1 (i / i)

:mod (p / pretty)

:topic (t / thing)

:mod (u / usual))

:op2 (l / like -01

:ARG0 i

:ARG1 (t2 / take -02

:ARG0 i

:ARG1 t

:prep -as (c2 / come -01

:ARG1 t)))

:op3 (w / worry -01 :polarity -

:ARG1 i

:quant (m / much

:degree (t3 / too))))

(a / and

:op1 (u / usual)

:op2 (c / calm -03

:degree (p / pretty)

:ARG1 (t / thing))

:op3 (c2 / come -01

:ARG0 (w / worry -01

:manner (m / much

:degree (t2 / too))))

:op4 (t3 / take -02

:ARG1 t)

:op5 (l / like -01))

::id DF -200 -192400 -625 _7806.5

::snt I’ve spoken to a few people about it

including my parents but they all think

the same: that I’m going through a random

phase and that I should hold off taking

action until it is clear that it is a

serious problem

:: smatch 0.6095

(c / contrast -01

:ARG1 (s / speak -01

:ARG0 (i / i)

:ARG1 (i2 / it)

:ARG2 (p / person

:quant (f / few)

:ARG2 -of (i3 / include -01

:ARG1 (p2 / person

:ARG0 -of (h2 / have -rel -role -91

:ARG1 i

:ARG2 (p6 / parent))))))

:ARG2 (t / think -01

:ARG0 (p3 / person

:mod (a / all))

:ARG1 (a2 / and

:op1 (g / go -02

:ARG0 i

:ARG1 (p4 / phase

:mod (r2 / random)))

:op1 (r / recommend -01

:ARG1 (h / hold -off -08

:ARG0 i

:ARG1 (a3 / act -02

:ARG0 i)

:time (u / until

:op1 (c2 / clear -06

:ARG1 (p5 / problem

:ARG1 -of (s2 / serious -02)))))

:ARG2 i))

:ARG1 -of (s3 / same -01)))

(c / contrast -01

:ARG0 p5

:ARG2 (t / think -01

:ARG0 (p / person

:mod (a / all))

:ARG1 (s / same -01

:ARG2 (a2 / and

:op1 (r / recommend -01

:ARG1 (a3 / act -02

:ARG1 (u / until

:domain (c2 / clear -06)

:domain (p2 / problem

:mod (s2 / serious)

:op -of i3))))

:op2 (g / go -02

:ARG2 (p3 / phase

:mod (r2 / random))

:time (h / hold -off -08

:ARG0 i)

:ARG1 i))))

:ARG1 (s3 / speak -01

:ARG0 (i / i)

:ARG1 (p4 / person

:mod (f / few)

:op1 (i2 / include -01

:ARG2 (p5 / person

:poss i)

:ARG2 (p6 / parent)))

:ARG3 (i3 / it)))
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::id nw.chtb_0318 .1

::snt Xinhua News Agency , Tokyo , September 1

st , by reporter Yiguo Yu

:: smatch 0.9474

(b / byline -91

:ARG0 (p2 / publication :wiki "

Xinhua_News_Agency"

:name (n / name :op1 "Xinhua" :op2 "News"

:op3 "Agency "))

:ARG1 (p / person :wiki -

:name (n2 / name :op1 "Yiguo" :op2 "Yu")

:ARG0 -of (r / report -01))

:location (c2 / city :wiki "Tokyo"

:name (n3 / name :op1 "Tokyo"))

:time (d / date -entity :month 9 :day 1))

(b / byline -91

:location (c / city

:wiki "Tokyo"

:name (n / name :op1 "Tokyo"))

:time (d / date -entity

:month 9

:day 1)

:ARG1 (p / person

:wiki -

:name (n2 / name :op1 "Yiguo" :op2 "Yu"))

:ARG0 (p2 / publication

:wiki "Xinhua_News_Agency"

:name (n3 / name :op1 "Xinhua" :op2 "News"

:op3 "Agency "))

:time (r / report -01))

::id nw.chtb_0318 .8

::snt He hoped that all the athletes would "

fully demonstrate the strength and skill

that they cultivate daily , as the

competitors representing Japan , they

should carry out competition with athletes

from various countries honestly " .

:: smatch 0.6239

(a / and

:op1 (h / hope -01

:ARG0 (h2 / he)

:ARG1 (d / demonstrate -01

:ARG0 (a2 / athlete

:mod (a3 / all))

:ARG1 (a4 / and

:op1 (s / strong -02

:ARG1 a2)

:op2 (s2 / skill)

:ARG1 -of (c2 / cultivate -01

:ARG0 a2

:frequency (r3 / rate -entity -91

:ARG2 (t / temporal -quantity :

quant 1

:unit (d2 / day)))))

:degree (f / full)

:ARG1 -of (c / cause -01

:ARG0 (r / recommend -01

:ARG1 (c3 / compete -01

:ARG0 a2

:ARG1 (a5 / athlete

:source (c4 / country

:mod (v / various)))

:ARG1 -of (h3 / honest -01)

:prep -as (p / person

:ARG0 -of (c6 / compete -01)

:ARG0 -of (r2 / represent -01

:ARG1 (c5 / country :wiki "

Japan" :name (n / name :

op1 "Japan "))))))))))

(a / and

:op1 (h / hope -01

:ARG0 (h2 / he))

:op2 (d / demonstrate -01

:mod (s / strength)

:ARG2 (a2 / and

:op1 (a3 / athlete

:mod (a4 / all))

:op2 (s2 / skill)

:op3 (c / cultivate -01)

:op4 (r / rate -entity -91

:ARG2 (t / temporal -quantity

:quant (d2 / day)

:quant 1))))

:op3 (c2 / compete -01

:ARG1 (r2 / represent -01

:ARG1 (c3 / country

:wiki "Japan"

:name (n / name :op1 "Japan"))))

:op4 (c4 / cause -01

:ARG2 (p / person))

:op5 (c5 / compete -01

:location (a5 / athlete

:mod (c6 / country

:mod (v / various)))

:time (h3 / honest)))
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::id nw.chtb_0324 .2

::snt The 1 - meter diving board preliminaries

of the Seventh World Swimming

Championship were held here this morning .

:: smatch 0.7143

(h / hold -04

:ARG0 (p / preliminary

:subevent -of (g / game :wiki -

:name (n / name :op1 "Seventh" :op2 "

World" :op3 "Swimming" :op4 "

Championship "))

:topic (b / board

:mod (d3 / distance -quantity :quant 1

:unit (m2 / meter))

:instrument -of (d2 / dive -01)))

:location (h2 / here)

:time (d / date -entity :dayperiod (m /

morning) :mod (t / today)))

(h / hold -04

:time (m / morning

:mod (t / this))

:location (h2 / here)

:ARG0 (d / dive -01

:ARG2 (d2 / distance -quantity

:quant 1

:unit (m2 / meter))

:ARG1 (b / board)

:location (g / game

:wiki -

:name (n / name :op1 "Seventh" :op2 "

World" :op3 "Swimming" :op4 "

Championship "))))

::id nw.chtb_0324 .12

::snt He felt that , there were more new

competitors from our country participating

in this competition .

:: smatch 0.7317

(f / feel -02

:ARG0 (h / he)

:ARG1 (p / person

:quant (m / more)

:ARG0 -of (c / compete -01)

:ARG1 -of (n / new -01)

:source (c2 / country

:poss (w / we))

:ARG0 -of (p2 / participate -01

:ARG1 (c3 / compete -01

:mod (t / this)))))

(f / feel -02

:ARG0 (h / he)

:ARG1 (p / person

:ARG0 -of (p2 / participate -01

:ARG1 (c / compete -01

:mod (t / this)))

:ARG1 -of (c2 / compete -01

:degree (m / more)

:mod (n / new)

:ARG1 (c3 / country))))
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::id nw.chtb_0325 .6

::snt Her performance was 303.00 points .

:: smatch 0.7143

(p2 / point :quant 303.00

:domain (p / perform -01

:ARG0 (s / she)))

(p / perform -01

:ARG1 (s / she)

:domain -of (p2 / point

:quant 303.00))


