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Chapter 1

Introduction

K-theory began with Alexander Grothendieck’s work in the 1950’s on a generalized version

of the Riemann-Roch theorem in algebraic geometry (See [14] for Grothendieck’s original paper

and [5] for the paper published by Borel and Serre). He first defined the group K0(X) of an alge-

braic variety in order to work with isomorphism classes of locally free sheaves on X with a group

structure rather than the sheaves themselves. Grothendieck’s K-groups are now a basic tool in

algebraic geometry.

Atiyah and Hirzebruch applied this construction to topological spaces in order to formulate

an alternate proof of the Atiyah-Singer index theorem [2]. Since then, the theory has split into

algebraic and topological branches, with both theories proving to have wide applications to other

fields of mathematics. In number theory, Vandiver’s conjecture that a prime p will not divide the

class number of a real subfield of Q(ζp) is equivalent to the algebraic K-theory groups, K4n(Z), be-

ing trivial [33]. In geometric topology, the Wall finiteness obstruction to a finitely dominated space

X being homotopy equivalent to a finite CW-complex is contained in the group K0(Z[π1(X)]). See

[30] for a discussion of this application.

Since the splitting of K-theory into the algebraic and topological branches, a problem of

importance has been to determine which topological algebras have isomorphic topological and

algebraicK-theory groups. It was conjectured by Karoubi in [17] and proven by Suslin and Wodzicki
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in [34] that this is the case for stable C∗-algebras.

Regardless of whether the groups are isomorphic, there is always a map τn : Kalg
n (A) →

Ktop
n (A) for every n ≥ 0. In [18], Karoubi defined the relative K-theory groups as a way of

measuring the obstruction to the maps τn being isomorphisms.

The goal of this paper is to provide a definition for the relative groupsKrel
n (A; I) which extends

the theory and fits in with the already existing algebraic, topological, and relative K-theory groups.

In order to define the relative K-theory groups, much of the paper will be spent developing

the machinery needed. Many of the results are well known but are included for completeness.

To begin, some preliminary definitions and properties will be recalled in chapter 2 that will

be of use later in the paper. The results of Karoubi rely on the ability to define the groups of

topological and algebraic K-theory by starting with the infinite general linear group, GL(A).

When A has a unit, the definition of algebraic K-theory, due to Quillen, is

Kalg
n (A) := πn

(
B(GL(A))+

)
for n ≥ 1. A description of the classifying space B(G) of a groupG as well as of the plus-construction

is included in chapter 3. A more thorough development can be found in [29] or [23]. The topological

K-theory of a unital Banach algebra is defined as

Ktop
n (A) := πn−1 (GL(A))

for n ≥ 1. Here GL(A) is viewed as a topological group with topology induced by the topolog-

ical structure on A. In order for this to look more like the algebraic K-theory, it is noted that

πn (GL(A)) = πn+1 (BGL(A)), which leads to

Ktop
n (A) := πn (BGL(A))

Since the plus-construction leaves a space invariant when its fundamental group is abelian, and

by Bott periodicity π1 (BGL(A)) = π0 (GL(A)) = π2 (GL(A)) is abelian, the desired definition of
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topological K-theory follows. That is,

Ktop
n (A) := πn

(
BGL(A)+

)
Again, it is important to remember that at every step, A has been considered with the Banach

algebra topology, whereas for algebraic K-theory, the constructions are all done viewing A as only

a ring.

In [18], Karoubi formed the homotopy fiber sequence

F → B(GL(A)δ)+ → BGL(A)+ = BGL(A)

and defined the nth relative K-theory groups of A by Krel
n (A) = πn(F ). Here, the second map

is induced by the change of topology map and GL(A)δ denotes GL(A) with the discrete topology.

As outlined above, there is a long exact sequence for n ≥ 1

. . .→ Ktop
n+1(A)→ Krel

n (A)→ Kalg
n (A)→ Ktop

n (A)→ . . .

so that the relative K-groups give a measure of the obstruction to the maps Kalg
n (A) → Ktop

n (A)

being isomorphisms.

There is then, for a unital Banach algebra A with closed two-sided ideal I, a homotopy

commutative square

B(GL(A)δ)+ τA∗ //

pδ∗
��

BGL(A)

p∗

��
B(GL(A/I)δ)+ τ

A/I
∗ // BGL(A/I)

where the maps p∗ and pδ∗ are induced by the projection map p : A → A/I and τA∗ and τ
A/I
∗ are

induced by the change of topology maps. Expanding to include the homotopy fibers yields

Fpδ∗

��

τ̃∗ // Fp∗

��
FτA∗

p̃∗

��

// B(GL(A)δ)+ τA∗ //

pδ∗
��

BGL(A)

p∗

��
F
τ
A/I
∗

// B(GL(A/I)δ)+ τ
A/I
∗ // BGL(A/I)
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The above diagram commutes up to homotopy as a result of the universal property of homotopy

fibers.

In this paper, relative K-theory is extended by defining the relative K-groups of an algebraic

pair (A, I) where I is a closed two sided ideal of A and proving the following theorem

Theorem 1. Let A be a unital Banach algebra with a two-sided ideal I. There is a commutative

diagram

Kalg
n+2(A)

��

// Ktop
n+2(A)

��

// Krel
n+1(A)

��

// Kalg
n+1(A)

��

// Ktop
n+1(A)

��
Kalg
n+2(A/I)

��

// Ktop
n+2(A/I)

��

// Krel
n+1(A/I)

��

// Kalg
n+1(A/I)

��

// Ktop
n+1(A/I)

��
Kalg
n+1(A; I)

��

// Ktop
n+1(I)

��

// Krel
n (A; I)

��

// Kalg
n (A; I)

��

// Ktop
n (I)

��
Kalg
n+1(A)

��

// Ktop
n+1(A)

��

// Krel
n (A)

��

// Kalg
n (A)

��

// Ktop
n (A)

��
Kalg
n+1(A/I) // Ktop

n+1(A/I) // Krel
n (A/I) // Kalg

n (A/I) // Ktop
n (A/I)

with exact rows and columns for all n ≥ 1.

Many interesting examples of Banach algebras (and C∗-algebras in particular) do not have a

unit element. One way of dealing with this is to form the unitalization, Ã, of an algebra viewed as

a ring, form the groups Kn(Ã) and then define

Kalg
n (A) := ker

(
Kalg
n (Ã)→ Kalg

n (Z)
)

Ktop
n (A) := ker

(
Ktop
n (Ã)→ Ktop

n (C)
)

Karoubi’s definition of relative K-theory may be extended to Banach algebras without unit

by using the extension of the definition of the general linear group to nonunital algebras. With

these definitions, the above theorem holds for nonunital algebras.

It is always true that Ktop
n (I) = Ktop

n (A; I) and Suslin and Wodzicki [34] have shown that

Kalg
n (I) = Kalg

n (A; I) when I is a C∗-algebra, so Karoubi’s discussion and definition give the long
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exact sequence

. . .→ Ktop
n+1(I)→ Krel

n (I)→ Kalg
n (I)→ Ktop

n (I)→ . . .

which can be substituted in to the large diagram of the theorem. It then follows that, in the case

of C∗-algebras, Krel
n (A; I) = Krel

n (I).



Chapter 2

Preliminaries

2.1 Preliminaries

Definition 2. A Banach algebra is an associative algebra A, equipped with a submultiplicative

norm ‖ · ‖A which induces a complete topology on A.

2.1.1 Algebras of Functions

For this paper, it will be assumed unless otherwise stated that all Banach algebras are over

the field of complex numbers. For any topological spaces X and Y , the set of continutous functions

from X to Y will be denoted by C(X,Y ). When Y = C this notation will be simplified to C(X).

The

If A is a Banach algebra and X is a compact Hausdorff space, the set of continuous functions

f : X → A will be denoted by A(X). If X is locally compact, A(X) will be defined to be the

continuous functions on the one-point compactification X+ which vanish at ∞. That is, A(X) =

ker {A(X+)→ A(∞)}. A(X) is itself an algebra with addition and multiplication defined pointwise.

With the supremum norm ‖f‖ = sup {‖f(x)‖A|x ∈ X}, A(X) is a Banach algebra.

If X is a compact space, then A(X) is the algebra C(X,A)

Example 2.1.1. If A is a Banach algebra, the set A[0, 1] is the set of all paths in A while A(0, 1]

us the set of all paths beginning at 0.

Definition 3. Let A be a Banach algebra. The suspension of A is defined to be the Banach
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algebra S(A) := A(0, 1). We can then define the nth suspension of a Banach algebra recursively by

setting SnA = S(Sn−1A).

Note that the unit element in an algebra of functions would be the constant function t 7→ 1.

This means that the suspension of a Banach algebra will not be unital in general. This makes the

business of defining the K-theory of an algebra somewhat problematic as the classic constructions

involve the general linear group of A. In order to have a theory which includes such basic algebras as

algebras of continuous operators, it is necessary to have the notion of a unitalization of an algebra.

Definition 4. For a given algebra A over a unital ring R, we define the algebra ÃR to be the set

A⊕R with multiplication given by (a,m)(b, n) = (ab+na+mb,mn). A quick check shows that the

element (0, 1) is the identity in this algebra.

An algebra A may be endowed with the structure of a topological algebra by giving it the

discrete topology. In such a case the algebra will be denoted by Aδ. Since every subset of Aδ is

open, the addition and multiplication maps are clearly continuous. Furthermore, the identity map

τ : Aδ ↪→ A is continuous. This map will be called the change of topology map.

2.2 GL(A)

Given a unital algebra, A, the infinite general linear group GL(A) is defined as the direct limit,

lim−→GLn(A) taken over the inclusion maps in : GLn → GLn+1, M 7→

 M 0

0 1

. More concretely,

this is the space
⋃
n GLn(A)/ ∼ where ∼ is the equivalence relation generated by setting M ∼ in(M)

if M ∈ GLn(A).

Definition 5. A topological group is a group equipped with a topology such that multiplication

and inversion are continuous maps. A topological group is naturally a pointed space with the identity

element as the base point.

Example 2.2.1. For any group G, it is clear that Gδ (G equipped with the discrete topology) is

topological group as any map between spaces with discrete topologies is continuous.
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A Banach space structure of A induces the structure of a topological group on GLn(A) for

every n ≥ 1. GL(A) will then carry the colimit topology and this will be the structure that is

assumed. GL(A) may also be endowed with the discrete topology, that is the topology induced by

Aδ. This will be denoted by GL(A)δ. The change of topology map τ : Aδ → A then induces the

change of topology map on the general linear group as well.

Definition 6. Let A be a unital Banach algebra. The subspace GL(A)0 ⊂ GL(A) is the path

component of the identity element. En(A) is the subgroup of GLn(A) generated by the elementary

matrices. Taking colimit of these subgroups results in the subgroup E(A) ⊂ GL(A).

Lemma 7. E(A) ⊂ GL(A)0.

Proof. Consider the map h(t) := 1 + taEij . Since h(0) = 1 and h(1) = 1 + aEij the claim is

proven.

2.2.1 GL(A) for Nonunital Algebras

It is useful to use the previously defined topological groups to define the K-theory groups

of an algebra. The immediate problem arises that a large number of Banach algebras of interest,

including as an important example C∗-algebras, do not generally have identity elements. This

motivates the following definition:

Definition 8. Let A be an algebra, possibly without unit. The group GL(A) is defined to be the

kernel of the map

GL(ÃZ)→ GL(Z) (2.1)

Since A = ker(ÃZ → Z) the definition ensures that

GL(ker(ÃZ → Z)) = ker(GL(ÃZ)→ GL(Z))

In fact, GL is a left exact functor (see [24] p.201). Hence if I �A is an ideal embedding, GL(I) is

the kernel of the map GL(A) → GL(A/I) as well. In particular, if A is an algebra over a unital
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ring R, the ideal embedding of A� ÃR results in

GL(A) = ker
(

GL(ÃR)→ GL(R)
)

From [29]: When R is a unital algebra with a two-sided ideal I�R, the relative general linear

group is

GL(R; I) = ker (GL(R)→ GL(R/I))

Due to left exactness, GL(R; I) = GL(I), so for all algebras GL(A) = GL(Ã;A). When A is a

complex Banach algebra, the definition of GL(A) = GL(ÃC;A) will be assumed. The smallest

normal subgroup of E(R) which contains the set of elementary matrices aeij with a ∈ I will be

denoted E(R; I). For any complex algebra, A, the notation E(A) := E(ÃC;A) will be used.



Chapter 3

Homotopy Theory

3.1 Introduction

Taking the point of view that K-theory is the homotopy theory of an appropriate space, it

will be necessary to recall some key constructions of homotopy theory. The focus will be on the

homotopy theory of pointed spaces, but thanks to Quillen [28], one can speak of homotopy in any

category that has a model category structure (for descriptions, see [12] and [10]). As noted in [18],

there is a construction of the algebraic and topological K-theory groups as simplicial homotopy

groups built from the simplicial algebra A• = C(∆•)⊗̂A. The benefit to this approach is that

it provides an explicit definition of the relative K-theory groups, and that this definition holds

for algebras which are Fréchet, not just Banach. It will thus be useful to make use of simplicial

homotopy theory as well.

In order to construct the functors desired, it is useful to have diagrammatic definitions with

which to work. The first such example of this will be the most basic as well.

The standard definition of two maps f, g : X → Y being homotopic is that f ' g if there is

a continuous map H : X × [0, 1]→ Y such that H|X×{0} = f and H|X×{1} = g.

Using the exponential law, this is equivalent to the following diagram commuting:

C([0, 1], Y )

(ev0,ev1)

��
X ′

H
99

(f,g)
// Y × Y
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where H ′(x)(t) = H(x, t). One can speak of the notion of homotopic morphisms in more general

categories where the objects have set structure as long as the direct product of two objects and

an appropriately defined path object of an object are in the category as well. in such a case the

definition is the same as above with the path space C([0, 1], Y ) being replaced by P (Y ), the path

object of Y .

Example 3.1.1. In the category of rings, one can use the polynomial ring B[t] as the path object to

obtain a relation between two ring homorphisms. Polynomial homotopy is then the equivalence

relation generated setting f '[t] g for f, g : A → B if there is a ring morphism H making the

following diagram commute:

B[t]

(ev1,ev2)

��
A

H
<<

(f,g)
// B ×B

.

This means that f ' g if there is a finite sequence of maps f = f0, f1, . . . , fn = g such that

fi '[t] fi+1 for i = 0, . . . , n− 1.

If one were to mimic the development of topological K-theory of a ring A and polynomial ho-

motopy in the place of the usual homotopy of spaces, the resulting theory is the Karoubi-Villamoyer

K-theory, of which a further development can be found in [20]

The set of homotopy classes of maps between topological spaces X and Y will be denoted by

[X;Y ]. Let U ⊂ X and V ⊂ Y . The set of relative homotopy classes [X,U ;Y, V ] is the set of homo-

topy classes of maps f : X → Y such that f(U) ⊂ V . An important example of this is when (X, ∗X)

and (Y, ∗Y ) are pointed spaces, the set of homotopy classes of maps in HomTop∗ ((X, ∗X), (Y, ∗Y ))

is [X, ∗X ;Y, ∗Y ].

Definition 9. For a space X, two points a and b are path connected, written a ' b, if there is a

map h ∈ A[0, 1] such that h(0) = a and h(1) = b. The map h is called a homotopy from a to b.

The set of equivalence classes under this relation is π0(X).
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If ∗ ' ∗′ in X it follows that [X, ∗;Y, ∗Y ] = [X, ∗′;Y, ∗Y ] and [Y, ∗Y ;X, ∗] = [Y, ∗Y , X, ∗′] for

all pointed spaces (Y, ∗Y ). For many spaces, there is either a natural choice for base point or at

least there is a canonical choice of which path component to choose the base point to be in. In

such a case the homotopy classes of pointed maps will be denoted simply by [X;Y ].

If G is a topological group, the path component of the identity element, G0, is a normal

subgroup since continuity of multiplication and inversion imply that for any g ∈ G0, the set{
gh−1 : h ∈ G0

}
is itself connected and G0 contains the identity so

{
gh−1 : h ∈ G0

}
⊂ G0 so G0

is indeed a subgroup. That G0 is normal in G follows since the continuity of the group operations

ensures that g−1G0g ⊂ G0 for all g ∈ G. As sets, π0(G) = G/G0 so that π0(G) may be endowed

with the group structure of G/G0.

Example 3.1.2. Recall that lemma 7 states that if A is a unital Banach algebra, then E(A) ⊂

GL(A)0. By Whitehead’s lemma, E(A) is equal to the commutator subgroup of GL(A) so that

π0(GL(A)) is abelian.

For n ≥ 0 the unit sphere of dimension n will be denoted by Sn and we choose as basepoint

(1, 0, . . . , 0) so that Sn is a pointed space.

Definition 10. The fundamental group of a pointed space X is defined to be

π1(X) = [S1;X]

More generally, the nth homotopy groups are defined for n ≥ 0 by

πn(X) = [Sn;X]

Definition 11. The path space of a pointed space (X, ∗x) is the space PX = C0((0, 1], X) of

continuous maps [0, 1] → X for which 0 7→ ∗X . The loop space of (X, ∗x) is the space ΩX =

C0((0, 1), X) of continuous maps [0, 1]→ X for which 0, 1 7→ ∗X .

Note that when A is a Banach algebra, ΩA = SA

Dual to the loop space construction is the reduced suspension.
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Definition 12. The reduced suspension of a pointed space (X, ∗X) is the space

ΣX = (X × [0, 1])/(X × {0, 1}) ∪ (∗X × [0, 1])

The loop space construction gives a way to describe higher homotopy groups in terms of

lower ones.

Proposition 13. For a pointed space X and n ≥ 1, πn(X) = πn−1(ΩX).

Proof. See proposition 2.10.5 in [1] where a more general claim is proven; namely that [ΣX;Y ] =

[X; ΩY ] for any pointed spaces X and Y via the map ν which sends g ∈ C(ΣX,Y ) to g′ ∈ C(X,ΩY )

defined by g′(x)(t) = g(x, t). The result on homotopy groups is then obtained since ΣSn ≈ Sn+1

for n ≥ 0.

3.2 Homotopy Fibers

Definition 14. For pointed spaces X and Y , the mapping path space of a pointed map φ : X → Y

is the space

Eφ = {(x, α) ∈ X × C([0, 1], Y ) : α(1) = φ(x)}

The homotopy fiber of φ is the space

Fφ = {(x, α) ∈ X × PY : α(1) = φ(x)}

The homotopy fiber Ff is defined by the the pullback diagram

Ff
q1 //

��

X

f
��

PY
ev1 // Y

(3.1)

and is the fiber of the map Ef → Y over ∗Y defined by (x, α) 7→ α(0).

Further discussions of homotopy fibers can be found in [1], [15], and [35].

The homotopy fiber and the loop space functors enable the construction of a long exact

homotopy sequence of a map f : X → Y by constructing the sequence

· · · q3−→ Fq1
q2−→ Ff

q1−→ X
f−→ Y (3.2)
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of homotopy fibrations and projections qi : (a, γ) 7→ a.

In the situation of the sequence 3.2, there are homotopy equivalences ΩX ' Fq2 and ΩY '

Fq1 (proposition 3.3.20 in [1]) so the sequence

ΩX
Ωf−→ ΩY

q−→ Ff
q1−→ X

f−→ Y (3.3)

is homotopy exact. That is, the sequence

[W,ΩX]
(Ωf)∗−→ [W,ΩY ]

q∗−→ [W,Ff ]
(q1)∗−→ [W,X]

f∗−→ [W,Y ] (3.4)

is exact for any pointed space W . Choosing W to be Sn for n ≥ 1 results in the exact sequence

πn(ΩX)
(Ωf)∗−→ πn(ΩY )

q∗−→ πn(Ff )
(q1)∗−→ πn(X)

fn−→ πn(Y )

so if fi denotes the map induced by f on the ith homotopy groups and ∂ = q∗ν∗ where ν∗ :

πn+1(Y )→ πn(ΩY ) is induced by the map ν in proposition 13 there is an exact sequence

πn+1(X)
fn+1−→ πn+1(Y )

∂−→ πn(Ff )
(q1)∗−→ πn(X)

fn−→ πn(Y )

3.2.1 Fibers Upon Fibers

Consider a commutative square of topological spaces and continuous maps

W
f //

h
��

X

k
��

Y
g // Z

(3.5)

Applying the results above, the square can be extended to a diagram which includes the

homotopy fibers:

Ff
pW //W

f //

h
��

X

k
��

Fg
pY // Y

g // Z

(3.6)
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Recalling the definition of the homotopy fiber as pullback yields the incomplete cube

Ff
pW //

pX(0,1]

��

W

h

��
Fg

pY //

��

f

��

Y

g

��

X(0, 1]

k∗

$$

evX1

// X

k

��
Z(0, 1]

evZ1

// Z

(3.7)

in which front, back, right, and bottom faces are commutative squares. Therefore it follows that

evX1
(
k∗pX(0,1]

)
= kevX1 pX(0,1]

= kfpW

= g (hpW )

and by the universal property of Fg there must be a map Ff
p→ Fg making the whole cube commute.

In particular, The commutative square has been extended to the commutative diagram

Ff
p

��

pW //W
f //

h
��

X

k
��

Fg
pY // Y

g // Z

(3.8)

Furthermore, there is an explicit definition of this map

p(w, δ) = (h(w), kδ)

Since if (w, δ) ∈ Ff it follows that (α(w), kδ) ∈ Fg because gh(w) = kf(w) = k (δ(1)). Now,

since pY (h(w), kδ) = h(w) = h (pW (w, δ)) and pZ(0,1](h(w), kδ) = kδ = k∗
(
pX(0,1] (w, δ)

)
, the map
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does indeed make the diagram

Ff
p

##

k∗◦pX(0,1]

��

h◦pW

%%
Fg //

��

Y

��
Z(0, 1] // Z

commute and is continuous.

Iterating the above construction gives rise to a commutative diagram:

. . .
q4 // Fq2

q3 //

p3

��

Fq1
q2 //

p2

��

Ff
q1 //

p1

��

W
f //

h

��

X

k

��
. . .

q′4

// Fq′2 q′3

// Fq′1 q′2

// Fg
q′1

// Y g
// Z

(3.9)

This process can be repeated with the homotopy fibers of the vertical maps to yield a large

commutative diagram. The following result ensures that the order in which the diagram is built

does not matter.

Proposition 15. For a diagram with homotopy fibers

Fh

��

τ // Fk

��
Ff
p

��

//W
f //

h
��

X

k
��

Fg // Y
g // Z

(3.10)

in which the square

W
f //

h
��

X

k
��

Y
g // Z

commutes, the homotopy fibers Fp and Fτ are homeomorphic.
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Proof. The homotopy fibers are the spaces

Fτ = {((w, β), ω) ∈ Fh × PFk : ω(1) = τ(w, β)}

= {((w, β), (α, γ)) ∈ Fh × PFk : (α(1), γ(1)) = τ(w, β) = (f(w), gβ)}

= {(w, β, α, γ) ∈W × PY × PX × P (PZ) : β(1) = h(w), γ(t)(1) = k(α(t)), α(1) = f(w),

γ(1)(t) = g(β(t))∀t ∈ (0, 1]}

and

Fp = {((w,α), θ) ∈ Ff × PFg : θ(1) = p(w,α)}

= {((w,α), (β, γ)) ∈ Ff × PFg : (β(1), γ(1)) = p(w,α) = (h(w), kα)}

= {(w,α, β, γ) ∈W × PX × PY × P (PZ) : β(1) = h(w), γ(1)(t) = k(α(t)), α(1) = f(w),

γ(t)(1) = g(β(t))∀t ∈ (0, 1]}

For γ ∈ P (PZ), let γ′ be defined by γ′(s)(t) = γ(t)(s). Then the map Fτ → Fp defined by

(w, β, α, γ) 7→ (w,α, β, γ′) is a homeomorphism.

Proposition 16. Let φ : W → P = {(x, y) ∈ X × Y : k(x) = g(y)} be the map from W to the

pullback of the diagram

X

k
��

Y
g // Z

given by the universal property of P with homotopy fiber Fφ. For spaces and maps as in diagram

3.10, there is a homotopy equivalence between Fφ and Fτ .

Proof. This is a specific case of theorem 7.6.2 in [32] starting with the commutative square

W
f //

h
��

X

k
��

Y
g // Z

(3.11)

where k and g can be assumed to be fibrations by replacing X and Y by the mapping path

spaces of k and g respectively and the diagram can be written including the fibers Fh = h−1(∗Y )
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and Fk = k−1(∗Z)

Fh

iW
��

τ // Fk

iX
��

W
f //

h
��

X

k
��

Y
g // Z

The map φ can be taken to be a fibration by replacing W with the mapping path space of φ.

Once the following lemma is proven it will follow that the fibers Fφ = φ−1(∗P) and Fτ = τ−1(∗Fk)

are homotopy equivalent and the claim will be proven since in replacing spaces by the mapping

path spaces, the fibers are actually the homotopy fibers of the original maps and by symmetry of

the diagram, it will follow that Fφ is homotopy equivalent to Fp as well.

Lemma 17. The square

Fh
τ //

iA
��

Fk

ψ
��

W
φ // P

(3.12)

is a pullback square where the map ψ : Fk → P is defined by x 7→ (∗Y , x).

Proof. Combining the diagrams given previously, one has the following commutative diagram:

Fh
τ //

iW
��

Fk

iX

��

W

φ   

h

%%

f

##
P pX

//

pY
��

X

k
��

Y g
// Z

Note that iW and iX are inclusion maps and τ = f |Fh . That φ is well defined follows because

k(x) = ∗Z = g(∗Y ) when x ∈ Fk = k−1(∗Z) so (∗W , x) ∈ P. Diagram 3.12 commutes since if

w ∈ Fh, then φ(iW (w)) = (h(w), iW ◦ f(w)) = (∗Y , iX ◦ τ) = (∗Y , τ(x)) = ψ(τ(w)).
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Now suppose there is a space V with maps γ and δ making

V
δ //

γ

��

Fk

ψ
��

W
φ // P

commute. Then for v ∈ V , ψ(δ(v)) = (∗Y , δ(v)) = φ(γ(v)) so that h(γ(v)) = ∗Y and thus γ(v) ∈ Fh.

A map V → Fh can therefore be defined by v → γ(v) which makes the diagram

V

γ

��

δ

##

γ

  
Fh //

��

Fk

ψ
��

W
φ // P

commute. That this map is unique is clear and so Fα must be the pullback as claimed.

Repeated application of propositions 13 and 15 yields the following corollary:

Corollary 18. For the commutative square (3.5) there commutative diagram

Ω2A

��

// Ω2B

��

// ΩFf

��

// ΩA

��

// ΩB

��
Ω2X

��

// Ω2Y

��

// ΩFg //

��

ΩX

��

// ΩY

��
ΩFα

��

// ΩFβ

��

// Fp

��

// Fα

��

// Fβ

��
ΩA

��

// ΩB

��

// Ff

��

// A

��

// B

��
ΩX // ΩY // Fg // X // Y

(3.13)

which commutes and has homotopy exact rows and columns.

3.3 The Plus-Construction

Proposition 19 ([29] p. 268). Consider a connected CW-complex X with π1 = π1(X) and π =

[π1, π1] the commutator subgroup of π1. If π is perfect, then there is a CW-complex X+ obtained

by attaching 2-cells and 3-cells to X which has the following properties:
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(1) π1(X+) = π1(X)ab = π1/π

(2) The map π1(X)→ π1(X+) induced by the inclusion map is the quotient map π1/π

(3) If M is a π1/π-module, then Hn(X+, X;M) = 0 for all n ≥ 0.

(4) If Y is a CW-complex which contains X as a subcomplex and satisfies the above conditions,

then there is a homotopy equivalence X+ → Y which is homotopic to the identity on X.

Construction. The space X+ is constructed as follows. Choose representatives {gi} for a generating

set of π. The Hurewicz theorem guarantees that the homology class of each gi is trivial. Form the

space X ′ by attaching one 2-cell e2
i for each generator gi by using gi as the attaching map. Let

X̃ be the covering space of X and let X̃ ′ be covering space of X ′ with covering group π1/π, X̃ ′ is

the universal covering of X ′ and π1(X̃) = π so that H1(X̃;Z) = 0. The relative homology groups

Hn(X ′, X;Z) and Hn(X̃ ′, X̃;Z) are zero for all n ≥ 2 and when n = 2 they are, respectively, the free

abelian group on
{

[e2
i ]
}

and the free Z(π1/π)-module on
{

[e2
i ]
}

. Forming the long exact sequence

of homology groups associated to the pair (X̃ ′, X̃), it follows that H2(X̃ ′) ∼= H2(X̃)
⊕

i Z(π1/π)[e2
i ].

Since X̃ ′ is simply connected, each class [e2
i ] is in the image of the Hurewicz map, φX′ for X ′. It is

therefore possible to choose a map hi : S2 → X ′ in φX′([e
2
i ]) for each i. X+ is then obtained from

X ′ by attaching 3-cells using the hi as attaching maps.

The plus construction given above is functorial up to homotopy by and f+ : X+ → Y + will

denote a choice of map induced by f : X → Y .

3.4 Classifying Spaces

The notion of the classifying space of a group is a key piece of the construction of algebraic

K-theory and while not essential to defining topological K-theory, gives a useful description for the

purpose of defining relative K-theory.

The classifying space of a discrete group G is obtained by first constructing a contractible

CW-complex, EG on which G acts freely and cellularly and then forming the classifying space as



21

BG = EG/G. That such a space can always be found was famously proven by Eilenberg and

Maclane (see [11]). The classifying space of a topological group is defined similarly by Milnor in

[26] as follows.

Definition 20. The n-fold join of a topological group G is the set

G∗n =

{
((t1, g1), . . . , (tn, gn)) ∈

n∐
i=1

([0,∞)×G/ ∼) :

n∑
i=1

ti = 1

}

Where the equivalence ∼ on [0,∞)×G is defined by (0, g) ∼ (0, h) for all g, h ∈ G.

the space EG is the colimit of the diagram G∗1 ↪→ G∗2 ↪→ . . . where the maps are the

inclusions G∗n ↪→ G∗n+1, ((t1, g1), . . . , (tn, gn)) 7→ ((t1, g1), . . . , (tn, gn), (0, 1)).

The classifying space BG is then defined to be the quotient of EG by the action of G

given by ((t1, g1), (t2, g2), (t3, g3), . . .) · g = ((t1, g1g), (t2, g2g), (t3, g3g), . . .). A continuous group

homomorphism f : G → H induces a map on the n-fold joins G∗n → H∗n This map will respect

the group action so there is an induced map fn : G∗n/G→ H∗n/H. The map on classifying spaces

is then obtained by taking the colimit as n→∞ results in a map f∗ : BG→ BH. This construction

makes it clear that (idG)∗ = idBG and (f ◦ h)∗ = f∗ ◦ h∗ and is therefore functorial.

For any group, forming the long exact sequence of the fiber sequence

G→ EG→ EG/G = BG (3.14)

yields exact sequences

0 = πn+1(EG)→ πn+1(BG)→ πn(G)→ πn(EG) = 0 (3.15)

so πn+1(BG) = πn(G).

3.5 Homotopy Invariance

Definition 21. Let C be a category in which the objects have an underlying topological space

structure. A functor F : C→ Ab is said to be homotopy invariant if f ' g implies F(f) = F(g).
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Proposition 22. A functor F : BAlg→ Ab is homotopy invariant if and only if for every Banach

algebra A, F(A) is isomorphic to F(A[0, 1]) under the map induced by the inclusion i : A ↪→ A[0, 1]

defined by sending an element a ∈ A to the constant function ca : t 7→ a.

Proof. Let C be an arbitrary category and F : BAlg → C be a homotopy invariant functor. If

f ∈ A[0, 1] is a map such that f(0) = a, then f ' ca via the homotopy H : A[0, 1]× [0, 1]→ A[0, 1]

defined by H(s, t) := f(st). Since f is continuous, H is as well and H(s, 0) = f(0) = ca(s) and

H(s, 1) = f(s) for every s ∈ [0, 1].

j : A[0, 1]→ A be defined by j(f) = f(0) induces a map F (A[0, 1])→ F (A) which is inverse

to i∗ and hence i∗ is an isomorphism.

Conversely, suppose that i∗ is an isomorphism. If f ' g, then there is a continuous map

H : A → B[0, 1] such that f = e0H and g = e1H. Then F (g) = F (e1H) = F (e1ijH) =

F (e1iH0) = F (e1H0) = F (e0H0) = F (e0H) = F (f) where Ht sends the element a ∈ A to the

function with constant value H(a)(t). This proves that F is homotopy invariant.

Example 3.5.1. The classifying space is homotopy invariant as a functor from the category of

topological groups to the homotopy category of topological spaces. Given two homotopic maps

f, g : G → G′ with homotopy H, let Ht : G → G′ be defined by Ht(g) = H(g, t) for all t ∈ [0, 1].

Then the map H∗ : BG × [0, 1] → BG′ defined by H∗(x, t) = (Ht)∗(x) is a homotopy between f∗

and g∗ and so f∗ = g∗ in the homotopy category of topological spaces.
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K-theory

4.1 Topological K-theory

K0 was originally defined by Grothendieck for algebraic varieties [14]. The definition of

topological K-theory was then made for compact Hausdorff spaces by Atiyah and Hirzebruch

[2]. The original definition for the group K0(X) was the the Grothendieck group of Vect(X),

the monoid of isomorphism classes of (complex) vector bundles of X. The Serre-Swan theorem

gives a monoid isomorphism between Vect(X) and Proj(C(X)), the monoid of isomorphism classes

of finitely projective C(X)-modules where C(X) is the ring of continuous functions from X to

C. The monoid Proj(C(X)) is isomorphic to Idem(C(X)), the similarity classes of idempotent

matrices inM∞(C(X)) = lim−→Mn(C(X)). Here the colimit is taken over the inclusionsMn(C(X))→

Mn+1(C(X)) a 7→

 a 0

0 0

. This enables elements of K0(X) to be viewed as formal differences of

similarity classes of idempotent matrices.

The development of K-theory continues with the defining of

K−1(X) := GL(C(X))/GL(C(X))0 (4.1)

with GL(C(X))0 denoting the connected component of the identity in GL(C(X)). It turned out

that this was equivalent to setting K−1(X) = K0(ΣX) where Σ is the suspension of the space

X. This lead to defining K−n(X) := K0(ΣnX) and the construction of the long exact sequence.

The final piece of the puzzle was Bott periodicity [6], which states that Ω2GL(X) and GL(X) are
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homotopy equivalent. Bott’s result showed that all of the groups of the topological K-theory of a

space are either K0(X) or K−1(X)

Using these results as motivation, it is possible to define the topological K-theory of a unital

Banach algebra by replacing C(X) in the above definitions with a general Banach algebra A. See

[9], [19], and [23] for more details of these constructions.

Definition 23. Let A be a unital Banach algebra. K0(A) is the Grothendieck group of the monoid

of similarity classes idempotent matrices in M∞(A) and

Ktop
1 (A) := GL(A)/GL(A)0

Since GL(A)/GL(A)0 = π0(GL(A)), higher topological K-theory is defined as follows

Definition 24. Let A be a unital Banach algebra. For n ≥ 1, The nth topological K-theory group

is

Ktop
n (A) = πn−1(GL(A))

The definition is extended to nonunital Banach algebras by setting Ktop
n (A) := ker(Ktop

n (ÃC)→

Ktop
n (C)).

Since GLn(C) is path connected for every n, it follows that Ktop
1 (A) = Ktop

1 (ÃC) since

Ktop
n (C) = 0. Furthermore, since GL(A)→ GL(C) is a fibration,

Ktop
1 (A) = π0(GL(A)) = GL(A)/GL(A)0

for all Banach algebras

If I is a closed two-sided ideal in A, starting with the Barrett-Puppe sequence of the map

p : GL(A) → GL(A/I) induced by the projection A → A/I results in the long exact sequence of

topological K-theory,

. . .→ Ktop
2 (A)→ Ktop

2 (A/I)→ Ktop
1 (I)→ Ktop

1 (A)→ Ktop
1 (A/I)



25

Bott periodicity gives that Ktop
2n (A) = K0(A) and Ktop

2n+1(A) = Ktop
1 (A) for all n ≥ 0 so the sequence

becomes

Ktop
1 (I) // Ktop

1 (A) // Ktop
1 (A/I)

��
K0(A/I)

OO

K0(A)oo K0(I)oo

(4.2)

This is precisely the long exact homotopy sequence of this projection map. For more details on

this, see [9].

4.2 Algebraic K-theory

Algebraic K-theory starts with the same group, K0, as topological K-theory. Since Idem(A)

depends only on the ring structure of A the algebraic K-theory is taken to be the same as topological

K-theory in degree 0. The higher algebraic K-theory groups are defined as follows:

Definition 25. For a unital algebra A, the group Kalg
1 (A) is defined to be GL(A)/E(A).

It was the insight of Quillen [28] that this theory could be extended by use of classifying

spaces and his plus-construction.

Definition 26. Let A be a unital Banach algebra. For n ≥ 0, define the group

Kalg
n (A) := πn(B(GL(A)δ)+ ×K0(A))

where K0(A) carries the discrete topology.

The K0 term in this definition is there to make the definition agree with Kalg
n (A) when n = 0.

Since this paper is concerned with the case of n ≥ 1, this can be omitted from the definition so that

Kalg
n (A) = πn(BGL(A)δ)+) for n ≥ 1.

Definition 27. Let A be a unital Banach algebra and I ⊂ A a closed two-sided ideal. Just as

with topological K-theory, consider the map pδ∗ : (BGL(A)δ)+ → (BGL(A/I)δ)+ induced by the

projection with homotopy fiber Fpδ∗. For n ≥ 1, the relative algebraic K-groups of the pair (A; I)

are defined to be

Kalg
n (A; I) := πn(Fpδ∗)
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Recall that E(R; I) is the smallest normal subgroup of E(R) which contains the set of ele-

mentary matrices aeij with a ∈ I.

Theorem 28 (Relative Whitehead Lemma). Let R be a unital ring with two-sided ideal I � R.

Then

(1) E(A; I) � GL(A; I)

(2) E(A; I) � GL(A)

(3) GL(A; I)/E(A; I) is the center of GL(A)/E(A; I)

(4) E(A; I) is equal to the commutator subgroups [E(A), E(A; I)] and [GL(A), E(A; I)]

(5) Kalg
1 (A; I) = GL(A; I)/E(A; I)

Proof. See [29] Thm 2.5.3

Again, the definition is extended to nonunital algebras

Definition 29. Let A be a complex algebra, possibly without unit.

Kalg
n (A) := Kalg

n (ÃZ;A)

With these definitions, there is a long exact sequence

. . .→ Kalg
n+1(A/I)→ Kalg

n (A, I)→ Kalg
n (A)→ Kalg

n (A/I)→ . . .

for n ≥ 1

Unfortunately, algebraic K-theory is not as well behaved as topological K-theory. For

a general algebra, Kalg
n (A, I) and Kalg

n (I) are not isomorphic. Suslin and Wodzicki classified

the algebras for which Kalg
n (I) ∼= πn(B(GL(I)δ)+) in [34]. An important subclass of algebras

found to satisfy excision is the class of C∗-algebras. So for any C∗-algebra with ideal I ⊂ A,

πn(B(GL(I)δ)+) = πn(Fpδ∗) for all n ≥ 0.

In addition to lacking excision, algebraic algebraic K-theory does not have periodicity in

general. In [16], Karoubi investigates periodicity in algebraic K-theory.
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Relative K-theory

While algebraic and topological K-theory differ for most Banach algebras after K0, the

ability to define both as homotopy groups of a space built from GL(A) suggests that they should

be comparable in some way that is not too complicated. Such a comparison would enable the study

of the more difficult algebraic K-theory by comparing it with the better understood topological

K-theory. Karoubi’s work in [18] explored this comparison by defining relative K-theory. Later

work by Connes, Karoubi [8] and Weibel [36] put this theory into a larger context involving cyclic

and Hochschild homology of Fréchet algebras.

5.1 Krel
n (A)

Let A be a Banach algebra. Following the presentation in [18] and [8], the first step is to use

the weak equivalence of X and ΩBX to obtain the new definition of

Ktop
n (A) = πn−1(GL(A)) = πn−1(ΩBGL(A)) = πn(BGL(A)) (5.1)

for GL(A) viewed as a topological group, which implies that πn(BGL(A)) is abelian for all n ≥ 1

since π1(G) is abelian for any topological group G and π0(GL(A)) is abelian by example 3.1.2.

This is true in the case of nonunital Banach algebras as well because Ktop
1 (A) = Ktop

1 (ÃC). It then

follows that BGL(A) = BGL(A)+ so that

Ktop
n (A) = πn(BGL(A)+) (5.2)
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From this it is clear that for n ≥ 1, Kalg
n (A) = πn((BGL(A)δ)+) and Ktop

n (A) are both the result

of the same construction applied to the same starting set. The key difference between the two

theories is the topology that the set GL(A) has to begin with. The comparison map is then the

map induced by the change of topology τA : GL(A)δ → GL(A).

Definition 30. Let A be a unital Banach algebra. For n ≥ 1, the relative K-theory of A is defined

by

Krel
n (A) := πn(FτA∗ ) (5.3)

Where FτA∗ is the homotopy fiber of τA∗ : B(GL(A)δ)+ → BGL(A)+, the map induced by τA.

Forming the long exact homotopy sequence of the homotopy fiber sequence

FτA∗ → B(GL(A)δ)+ → BGL(A)+ = BGL(A) (5.4)

yields the long exact sequence

Kalg
n+1(A)→ Ktop

n+1(A)→ Krel
n (A)→ Kalg

n (A)→ Ktop
n (A) (5.5)

for n ≥ 1. Relative K-theory is then a measure of the obstruction to the map τA induc-

ing isomorphisms on K-theory since if Krel
n (A) = 0 then Kalg

n (A) → Ktop
n (A) is injective and

Kalg
n+1(A)→ Ktop

n+1(A) is surjective.

5.2 The Relative K-theory of (A, I)

Let A be a Banach algebra with closed two sided ideal I �A. With the canonical projection

maps pδ : GL(A)δ → GL(A/I)δ and p : GL(A) → GL(A/I) and the change of topology maps

τA : GL(A)δ → GL(A) and τA/I : GL(A/I)δ → GL(A/I) there is a commutative diagram

GL(A)δ
τA //

pδ

��

GL(A)

p

��
GL(A/I)δ

τA/I // GL(A/I)

(5.6)
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Applying the classifying space functor followed by the plus construction yields a commutative

diagram

(BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

BGL(A)

(p∗)+

��
(BGL(A/I)δ)+(τ

A/I
∗ )+ // BGL(A/I)

(5.7)

This diagram can be extended to a commutative diagram involving homotopy fibers

F(τA∗ )+

p̃∗

��

// (BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

BGL(A)

p∗

��
F

(τ
A/I
∗ )+

// (BGL(A/I)δ)+(τ
A/I
∗ )+ // BGL(A/I)

Definition 31. Let A be a unital complex Banach algebra with closed two-sided ideal I � A. For

n ≥ 1, The nth relative K-theory group of the Banach algebra pair (A, I) is defined to be

Krel
n (A; I) := πn(Fp̃∗) (5.8)

The following theorem, which is the main result of this paper, shows that the groupsKrel
n (A; I)

as defined serve to fill a hole in the theories of algebraic, topological, and relativeK-theory of Banach

algebras.

Theorem 32. With the relative groups of relative K-theory, Krel
n (A; I), defined as above, there is

a commutative diagram

Kalg
n+2(A)

��

// Ktop
n+2(A)

��

// Krel
n+1(A)

��

// Kalg
n+1(A)

��

// Ktop
n+1(A)

��
Kalg
n+2(A/I)

��

// Ktop
n+2(A/I)

��

// Krel
n+1(A/I)

��

// Kalg
n+1(A/I)

��

// Ktop
n+1(A/I)

��
Kalg
n+1(A; I)

��

// Ktop
n+1(I)

��

// Krel
n (A; I)

��

// Kalg
n (A; I)

��

// Ktop
n (I)

��
Kalg
n+1(A)

��

// Ktop
n+1(A)

��

// Krel
n (A)

��

// Kalg
n (A)

��

// Ktop
n (A)

��
Kalg
n+1(A/I) // Ktop

n+1(A/I) // Krel
n (A/I) // Kalg

n (A/I) // Ktop
n (A/I)

with exact rows and columns for all n ≥ 1.
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The proof of theorem will employ the use of proposition 15. In order to do so, it is necessary

that diagram 5.7 commutes strictly, not just up to homotopy.

Lemma 33. Let A be a Banach algebra with closed two-sided ideal I �A. The diagram

BGL(A)δ
τA∗ //

pδ∗
��

BGL(A)

p∗

��
BGL(A/I)δ

τ
A/I
∗ // BGL(A/I)

(5.9)

commutes in the category of topological spaces.

Proof. As sets, GL(A)δ = GL(A) and GL(A/I)δ = GL(A/I) so as set maps, τA and τA/I are

identity maps and pδ = p. Milnor’s construction of the classifying space relies only on the group

structure of a topological group. The different topologies on GL(A) will change the topology

of the resulting classifying spaces but both spaces have the same underlying sets. Therefore,

BGL(A)δ = BGL(A) and BGL(A/I)δ = BGL(A/I) as sets so as set maps, τA∗ and τ
A/I
∗ are

identity maps and pδ = p. Thus the diagram commutes.

Applying the plus construction to the commutative diagram 5.9 results in a homotopy com-

mutative diagram

(BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

(BGL(A))+

(p∗)+

��
(BGL(A/I)δ)+(τ

A/I
∗ )+// (BGL(A/I))+

(5.10)

What is needed is for this diagram to commute, not just commute up to homotopy. The issue is that

when performing the plus construction as outlined in proposition (19) on each space individually,

many choices are made which cannot generally be made to be consistent among the spaces in

the diagram. This problem may be fixed in a number of ways as outlined by Loday in [23]. For

complex unital topological algebras, one can take advantage of the natural map C→ A. By fixing

the choices in construction of the space BE(C)+ the space BGL(A)+ may then be defined by the
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pushout diagram

BE(C) //

��

BE(C)+

��
BGL(A) // BGL(A)+

so that the plus construction is functorial. Segal gives another functorial definition in [31] by

proving that there is a canonical homotopy equivalence

ΩB

∐
n≥0

BGLn(A)

 ' Z×BGL(A)+

where
∐
n≥0BGLn(A) carries a topological monoid structure with addition given by the direct sum

of matrices.

It will therefore be assumed for the remainder of the paper that the plus construction is

performed functorially so that diagram (5.10) commutes and the theorem can be proven.

Proof of theorem 32: Fixing a functorial model for the plus construction such that BGL(A) is a

model for (BGL(A))+ when GL(A) carries the topology induced by the Banach space structure of

A and including homotopy fibers results in the diagram

F(pδ∗)
+

��

τ̃∗ // F(p∗)+

��
F(τA∗ )+

p̃∗

��

// (BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

BGL(A)

p∗

��
F

(τ
A/I
∗ )+

// (BGL(A/I)δ)+(τ
A/I
∗ )+ // BGL(A/I)

The maps τ̃∗ and p̃∗ are the maps obtained by forming the incomplete cube given by diagram (3.7)

of the pullback diagrams associated to the homotopy fibers and using the universal property of ho-

motopy fibers. This means that the squares in the diagram involving the homotopy fibers commute

and the lower right square commutes so this diagram is now of the type to which proposition 15

may be applied and so Fτ̃∗ is homeomorphic to Fp̃∗ .
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Additionally, as in proposition 16 one obtains the following pullback square:

P(A;I)
//

��

Ep∗

��
E

(τ
A/I
∗ )+

// BGL(A/I)

where Ef denotes the mapping path the mapping path space of a map f . There is a unique map

φ : B(GL(A)δ)+ → P(A;I). Replacing B(GL(A)δ)+ by Eφ gives the following diagram

Fp̃∗

��

Fφ

��
F(τA∗ )+

p̃∗

��

// Eφ

!!

!!

��
P(A;I)

//

��

Ep∗

��
F

(τ
A/I
∗ )+

// E
(τ
A/I
∗ )+

// BGL(A/I)

By lemma 17,

F(τA∗ )+

p̃∗

��

// Eφ

��
F

(τ
A/I
∗ )+

// P(A;I)

is a pullback square, hence Fp̃∗ is homotopy equivalent to Fφ. By symmetry, Fφ is homotopy

equivalent to Fτ̃∗ as well. There is therefore a diagram

Fp̃∗

��

// F(pδ∗)
+

��

τ̃∗ // F(p∗)+

��
F(τA∗ )+

p̃∗

��

// (BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

BGL(A)

p∗

��
F

(τ
A/I
∗ )+

// (BGL(A/I)δ)+(τ
A/I
∗ )+ // BGL(A/I)

in which all of the rows and columns are homotopy fiber sequences and which commutes.
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Corollary 5.11 then yields the homotopy commutative diagram

Ω2(BGL(A)δ)+

��

// ΩGL(A)

��

// ΩF(τA∗ )+

��

// Ω(BGL(A)δ)+

��

// GL(A)

��
Ω2(BGL(A/I)δ)+

��

// ΩGL(A/I)

��

// ΩF
(τ
A/I
∗ )+

��

// Ω(BGL(A/I)δ)+

��

// GL(A/I)

��
ΩF(pδ∗)

+

��

// ΩFp∗

��

// Fp̃∗

��

// F(pδ∗)
+

��

// Fp∗

��
Ω(BGL(A)δ)+

��

// GL(A)

��

// F(τA∗ )+

��

// (BGL(A)δ)+

��

// BGL(A)

��
Ω(BGL(A/I)δ)+ // GL(A/I) // F

(τ
A/I
∗ )+

// (BGL(A/I)δ)+ // BGL(A/I)

(5.11)

with homotopy exact rows and columns The K-theory groups have the following characterizations

• Kalg
n (A) = πn(B(GL(A)δ)+)

• Ktop
n (A) = πn(BGL(A))

• Kalg
n (A; I) = πn(Fpδ∗)

• Ktop
n (I) = πn(Fp∗)

• Krel
n (A) = πn(FτA∗ )

• Krel
n (B) = πn(FτB∗ )

• Krel
n (A) = πn(Fφ)

Thus taking the nth homotopy group results in the desired diagram.

Relative K-theory fits in with the larger theory of algebraic topology and functional analysis

through the following commutative diagram which has exact horizontal sequences [8]

Krel
n (A)

��

// Kalg
n (A)

��

// Ktop
n (A)

��

// Krel
n−1(A)

��
HCn−1(A) // HHn(A) // HCn(A) // HCn−2(A)

(5.12)
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Here the mapKrel
n (A)→ HCn−1(A) is the relative Chern character as in [18], Kalg

n (A)→ HHn(A) is

the Dennis trace andKtop
n (A)→ HCn(A) is the Chern character. This gives rise to the commutative

diagram

Krel
n (A)

��

// Kalg
n (A)

��

// Ktop
n (A)

��

// Krel
n−1(A)

��
HCn−1(A) // HC−n (A) // HCper

n (A) // HCn−2(A)

(5.13)

which again has exact rows in which all of the vertical maps are given by different versions of the

Chern character. Properties and definitions of the functors and sequence in the diagram can be

found in [7], [8], [18], and [23].

The Chern character Kalg
n (A) → HC−n (A) to the negative cyclic homology as in the above

diagram and which is described in [23] and the relative Chern character have relative versions

Kalg
n (A; I)→ HC−n (A; I) and Krel

n (A; I)→ HCn−1(A; I).

When A is an algebra with a closed ideal I and I has trivial topological K-theory groups,

the sequence

0 = Ktop
n+1(I)→ Krel

n (A; I)→ Kalg
n (A; I)→ Ktop

n (I) = 0

gives an isomorphism Krel
n (A; I) ∼= Kalg

n (A; I) and so the relative Chern character gives a map

Kalg
n (A; I)→ HCn−1(A; I).

If A and B are Banach algebras with a map A → B and I � A a closed ideal which maps

isomorphically to a closed ideal J �B then I can be identified with J . Using the notation

F rel(A; I) = hfiber
(
F(τA∗ )+ → F(τ

A/I
∗ )+

)
Falg(A; I) = hfiber

(
(BGL(A)δ)+ → (BGL(A/I)δ)+

)
F top(A; I) = hfiber (BGL(A)→ BGL(A/I))

define Krel
n (A,B; I), Kalg

n (A,B; I) and Ktop
n (A,B; I) as the nth homotopy groups of the homotopy

fibers of the maps

F rel(A; I)→ F rel(B; J)
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Falg(A; I)→ Falg(B; J)

F top(A; I)→ F top(B; J)

respectively. Since topological K-theory satisfies excision, the map on topological K-theory is an

isomorphism so that there is a commutative diagram with exact columns given by

0

��

// Ktop
n+1(A; I)

��

// Ktop
n+1(B; I)

��
Krel
n (A,B; I)

��

// Krel
n (A; I)

��

// Krel
n (B; I)

��

Kalg
n (A,B; I)

��

// Kalg
n (A; I)

��

// Kalg
n (B; I)

��
0 // Ktop

n (A; I) // Ktop
n (B; I)

which implies that Krel
n (A,B; I) ∼= Kalg

n (A,B; I) for n ≥ 1. Thus using the connection between

relative K-theory and cyclic homology to extend the relative Chern character via the diagram

Krel
n (A,B; I)

��

// Krel
n (A; I)

��

// Krel
n (B; I)

��
HCn(A,B; I) // HCn(A; I) // HCn(B; I)

gives a map Kalg
n (A,B; I)→ HCn(A,B; I).

These connections between relative and algebraic K-theory and cyclic homology is worth ex-

ploring. In [21] and [22] Lesch, Moscovici, and Pflaum present constructions of K-theory invariants

which they use in the study of pseudodifferential operators. providing further connections between

K-theory and other homology theories through the relative K-theory groups should enable more

results in this area.



Chapter 6

Outlook

6.1 Simplicial Methods

Using simplicial methods as discussed in the appendix, the weak equivalence between |S•(X)|

and X enables a more explicit description of the relative K-theory groups. The following methods

work for more general Fréchet algebras, but for this paper, the focus will remain on Banach algebras.

Beginning with a Banach algebra, A, one can form the simplicial Banach algebras A, which

is simply the Banach algebra A in each degree, and the singular simplicial algebra, S•A. Applying

the general linear functor to each of these results in simplicial groups GL(A) and GL(S•A).

Since ΩBGL(A) = GL(A) and ΩBGL(A•) = GL(A•), it follows that there is a homotopy

fiber sequence

GL(A)→ GL(S•A)→ F• → BGL(A)→ BGL(S•A)

so that F• is weakly equivalent to GL(S•A)/GL(A). [3] and [4] contain nice descriptions of the

interactions between the plus construction and homotopy fibers. In particular [4] characterizes

homotopy fiber sequences which are still homotopy fiber sequences after the plus construction is

applied. The condition that is necessary and sufficient for such a sequence F → E → B is that the

maximal perfect subgroup of π1(B) acts on F+ by maps freely homotopic to the identity. Since

π1(BGL(S•A)) is abelian, this condition is satisfied so that applying the plus-construction results

in the homotopy fiber sequence

(GL(S•A)/GL(A))+ → BGL(A)+ → BGL(S•A) (6.1)
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. It then follows that Krel
n (A) = πn

(
(GL(S•A)/GL(A))+) for n ≥ 1.

For a Banach algebra pair (A, I), the groups Krel
n (A; I) are therefore the homotopy groups

of the homotopy fiber of the map (GL(S•A)/GL(A))+ → (GL(S•(A/I))/GL(A/I))+

When (A,B) is a C∗-algebra pair, it follows that this homotopy fiber is (GL(S•I)/GL(I))+.

In fact, using the five-lemma, one can view the result of Suslin and Wodzicki [34] as characterizing

the Banach algebra pairs for which Krel
• (A; I) ∼= Krel

• (I).

6.2 Fréchet Algebra Issues

Fréchet algebras are a generalization of Banach algebras in which the topology is given by a

countable family of submultiplicative seminorms. This generalization to makes defining K-theory

more difficult. In [27], Phillips provides a definition for the topological K-theory of a locally

multiplicatively convex Fréchet algebra

Using simplicial methods as above, Karoubi’s definition of relative K-theory applies to such

Freéchet algebras as well and sequence 6.1 is still a homotopy fiber sequence (for details, see [18]).

In trying to define the groups Krel
n (A; I) for locally multiplicatively convex Fréchet algebras, a

problem that arises is that the diagram

(BGL(A)δ)+ (τA∗ )+ //

(pδ∗)
+

��

BGL(A)

(p∗)+

��
(BGL(A/I)δ)+(τ

A/I
∗ )+ // BGL(A/I)

cannot necessarily be made to commute for Fréchet algebras as it can for Banach algebras so that

theorem 32 does not hold in the case of Fréchet algebras. A possible approach is to take a step

back and apply proposition 15 to the diagram

BGL(A)δ
τA∗ //

pδ∗
��

BGL(A)

(p∗)+

��
BGL(A/I)δ

τ
A/I
∗ // BGL(A/I)
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to obtain the commutative diagram

Fp̃∗

��

// Fpδ∗

��

τ̃∗ // Fp∗

��
FτA∗

p̃∗

��

// BGL(A)δ
τA∗ //

pδ∗
��

BGL(A)

p∗

��
F
τ
A/I
∗

// BGL(A/I)δ
τ
A/I
∗ // BGL(A/I)

in which all rows and columns are homotopy fiber sequences. Since πn(Fp∗) = Ktop
n (I) is abelian,

all three rows as well as the column on the right are plus-constructive by [4]. The other two column

sequences are not necessarily so that applying the plus construction to this results in the diagram

Ω2(BGL(A)δ)+

��

// ΩGL(A)

��

// ΩF+
τA∗

��

// Ω(BGL(A)δ)+

��

// GL(A)

��
Ω2(BGL(A/I)δ)+

��

// ΩGL(A/I)

��

// ΩF+

τ
A/I
∗

��

// Ω(BGL(A/I)δ)+

��

// GL(A/I)

��
ΩF+

pδ∗

��

// ΩF+
p∗

��

// F+
p̃∗

��

// F+
pδ∗

��

// F+
p∗

��
Ω(BGL(A)δ)+

��

// GL(A)

��

// F+
τA∗

��

// (BGL(A)δ)+

��

// BGL(A)

��
Ω(BGL(A/I)δ)+ // GL(A/I) // F+

τ
A/I
∗

// (BGL(A/I)δ)+ // BGL(A/I)

which is homotopy commutative and for which the rows are homotopy exact, but the only columns

that are homotopy exact are the second and fifth columns. This means that taking the homotopy

groups of this diagram does not give a diagram involving Kalg
n (A; I) at all in general so it is unclear

how to proceed in defining Krel
n (A; I) in this situation. In light of this, it would be of interest to

characterize Fréchet algebras to which the definition of Krel
n (A; I) can be extended is such a way

that a diagram is obtained as in the case of Banach algebras.
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[9] Guillermo Cortiñas. Algebraic v. topological k-theory: a friendly match. In Topics in Algebraic
and Topological K-Theory, pages 103–165. Springer, 2011.

[10] William G Dwyer and Jan Spalinski. Homotopy theories and model categories. Handbook of
algebraic topology, pages 73–126, 1995.

[11] Samuel Eilenberg and Saunders MacLane. Relations between homology and homotopy groups
of spaces. The Annals of Mathematics, 46(3):480–509, 1945.

[12] Paul Goerss and Kristen Schemmerhorn. Model categories and simplicial methods.
Contemporary Mathematics, 436:3, 2007.

[13] Paul G Goerss and John F Jardine. Simplicial homotopy theory, volume 174. Springer, 2009.

[14] Alexandre Grothendieck. Classes de faisceaux et théoreme de Riemann-Roch. Institut des
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Appendix A

Simplicial Methods

The following is a brief treatment of simplicial objects following closely a combination the

lecture notes of Pflaum and the development in May’s Book [25] where all of these definitions and

results can be found. A modern treatment can be found in [13] as well.

A.1 Simplicial Objects

The category Simp (often denoted ∆•) has objects 〈n〉 = {0, 1, . . . , n} for n = 1, 2, 3, . . .. The

morphisms are nondecreasing maps. The following maps, called the face and degeneracy maps,

δn,i : 〈n− 1〉 → 〈n〉, l 7→


l 0 ≤ l < i

l + 1 i ≤ l < n

σn,i : 〈n+ 1〉 → 〈n〉, l 7→


l 0 ≤ l ≤ i

l − 1 i < l ≤ n+ 1

are nondecreasing and hence morphisms in Simp. We will be particularly interested in these maps.

In the category Simp, the only isomorphisms are the identity morphisms and the face and degeneracy

maps satisfy the following commutativity relations:

• δn+1,jδn,i = δn+1,iδn,j−1 for i < j

• σn−1,jσn,i = σn−1,iσn,j+1 for i < j
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• σn,jδn+1,i =



δn,iσn−1,j−1 i < j

id〈n〉 i = j, j + 1

δn,i−σn−1,j j + 1 < i

In most cases the domain and range of the face and degeneracy maps is clear and so they will be

written as δi and σj respectively. The face and degeneracy maps can be seen as generating the

morphisms in Simp because every morphism f : 〈n〉 → 〈m〉 can be written uniquely as

f = δir ◦ . . . ◦ δi1 ◦ σj1 ◦ . . . ◦ σjs

with i1 < . . . < ir and j1 < . . . < js.

Definition 34. Let C be a category. A simplicial object in C is a contravariant functor

X• : Simp→ C

If the functor is covariant, then we call it a cosimplicial object.

Because every morphism in Simp can be factored into face and degeneracy maps as described

above, a simplicial object in C is characterized by the image of the objects 〈n〉 and the face and

degeneracy maps in C. Often a simplicial object will be described by this information rather than

explicitly as a functor.

Example A.1.1. The geometric n-simplex, ∆n =
{

(t0, . . . , tn) ∈ Rn+1|ti ∈ [0, 1],
∑
ti = 1

}
with

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1) and σj(t0, . . . , tn+1) = (t0, . . . , tjtj+1, . . . , tn+1) is a

cosimplicial object.

The subscript (n) will be used to signify that a point t(n) = (t0, . . . , tn) is in Rn+1.

Definition 35. A point t(n) ∈ [0, 1]n is called an interior point if n = 0 or if t(n) ∈ ([0, 1]n+1)◦.

Note that any t(n) can be uniquely expressed as δik ◦ . . . ◦ δi1 t̃(n−k) where t̃(n−k) ∈ ∆n−k is an

interior point and 0 ≤ i1 < . . . < ik ≤ n.

Definition 36. Given a simplicial set X•, a point x(n) is called nondegenerate if there is no

y(n−1) and i for which x(n) = siy(n−1). A point which is not nondegenerate is called degenerate.
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A.2 Fibrant Complexes

Definition 37. A fibrant complex is a simplicial complex with the property that if for every

collection of n + 1 n-simplices x0, . . . , xk−1, xk+1, . . . , xn+1 such that ∂ixj = ∂j−1xi for i < j and

i, j 6= k, there exists an (n+ 1)-simplex x such that ∂ix = xi for i 6= k. This will be referred to as

the Kan extension condition Fibrant complexes are also referred to as Kan complexes.

An alternative definition of fibrant is that the map from X• to the terminal object ∆0 is a

fibration as defined below for simplicial sets.

Definition 38. A map p : X• → Y of simplicial sets is called a fibration if it satisfies the

following extension condition: If (x0, . . . , xk−1, xk+1, . . . , xn) is an n-tuple of simplices in X such

that ∂ixj = ∂j−1xi for i < j and i, j 6= k, and there is an n-simplex y of Y for which ∂iy = p(xi)

for all i 6= k, then there is an n-simplex x in X such that ∂ix = xi for all i 6= k and p(x) = y.

Example A.2.1. Let X be a topological space. The singular complex S•(X), where Sn(X) is

the set of singular n-simplices f : ∆n → X, is a fibrant complex with face and degeneracy maps

given by

(∂if)(t0, . . . , tn−1) = f(t0, . . . , ti−1, 0, ti, . . . , tn−1)

and

(sif)(t0, . . . , tn+1) = f(t0, . . . , ti−1, ti + ti+1, ti+1, . . . , tn+1).

This is because the union of a collection of n + 1 faces of ∆n+1 is a retract of ∆n+1 so that any

continuous function on their union can be extended to all of ∆n+1.

Example A.2.2. The underlying set of any simplicial group is fibrant.

A.3 Simplicial Homotopy

Definition 39. Two n-simplices, x and x′ in a complex K are said to be homotopic if

(1) ∂ix = ∂ix
′.
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(2) There is a simplex y ∈ Kn+1 such that

∂iy =



x i = n

x′ i = n+ 1

sn−1∂ix 0 ≤ i < n

In this case, the simplex y is called a homotopy from x to x′ and we write x ∼ x′.

Proposition 40. If K is fibrant, then homotopy is an equivalence relation on the n-simplices of

K for n ≥ 0.

Proof. To show that ∼ is reflexive, suppose that x = x′ is an n-simplex. The element snx is a

homotopy from x to x since

(1) ∂nsnx = ∂n+1snx and

(2) ∂isnx = sn−1∂ix for 0 ≤ i < n.

To see that ∼ is symmetric and reflexive, let x, x′, x′′ ∈ Kn such that y′ and y′′ are homotopies

from x to x′ and from x to x′′ respectively. Then since the (n+ 1)-simplices

∂0snsnx
′, . . . , ∂n−1snsnx

′, y′, y′′

satisfy the compatibility condition for a fibrant complex, there must be an (n + 2)-simplex, z, for

which ∂iz = ∂isnsnx
′ for 0 ≤ i < n, ∂nz = y′ and ∂n+1z = y′′. We therefore have that

∂i∂n+2z =



x′ i = n

x′′ i = n+ 1

sn−1∂ix
′ 0 ≤ i < n

so that x′ ∼ x′′.
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Definition 41. Let K be a complex with subcomplex L. Two n-simplices, x and x′ are said to be

homotopic relative to L if

(1) ∂ix = ∂ix
′.

(2) ∂0x ∼ ∂0x
′ in L.

(3) there is a homotopy y from ∂0x to ∂0x
′ and a simplex w ∈ Kn+1 such that

∂iw =



y i = 0

x i = n

x′ i = n+ 1

sn−1∂ix 1 ≤ i < n

In this case, the simplex w is called a relative homotopy from x to x′ and we write x ∼L x′.

The proof that ∼L is an equivalence relation is analogous to the proof above.

Definition 42. Let K be a complex with subcomplex L and ∗ ∈ L0 ⊂ K0. We can form a subcomplex

∗ of L (and therefore of K) defined by ∗n = {sn−1 . . . s0∗} for all n. We will denote this complex

and every one of its simplices by ∗ when there is no possibility of confusion.

When K is fibrant, (K, ∗) with the obvious maps is a Kan pair. If, additionally, L is a

fibrant subcomplex, (K,L, ∗) with the obvious maps is called a Kan triple.

Definition 43 (Simplicial homotopy). Let (K,φ) be a Kan pair and for n ≥ 0 set

K̃n := {x ∈ Kn : ∂ix = ∗, 0 ≤ i ≤ n} .

We define

π(K, ∗) := K̃n/ ∼ .

Let (K,L, ∗) be a Kan triple and for n > 0 set

K̃(L)n := {x ∈ Kn : ∂0x ∈ Ln−1; ∂ix = ∗, 1 ≤ i ≤ n} .
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We define

π(K, ∗) := K̃(L)n/ ∼L .

The equivalence class [x] of a simplex x is called the homotopy class of x.

We define a map

∂ : π(K,L, ∗)→ π(L, ∗)

by ∂[x] = [∂0x].

It is important to note that π(K, ∗, ∗) = π(K, ∗) so that for a Kan triple (K,L, ∗) with

inclusions i : L→ K and j : ∗ → L, there is a long exact sequence

. . .→j∗ πn+1(K,L, ∗)→∂∗ πn(L, ∗)→i∗ πn(K, ∗)→j∗ πn(K,L, ∗)→∂∗ . . .

Definition 44. Let (K, ∗) be a Kan pair, let n ≥ 1 and let [x], [y] ∈ πn(K, ∗). Since the n + 1

n-simplices ∗, . . . , ∗, x, y satisfy the Kan extension condition, we can find an (n+ 1)-simplex z such

that

∂iz =



∗ 0 ≤ i < n− 1

x i = n− 1

y i = n+ 1

We can then define a product on πn(K, ∗) by [x][y] = [∂nz].

Now let (K,L, ∗) be a Kan triple and let n > 1 For [x], [y] ∈ πn(K,L, ∗). Since [∂0x] = ∂[x]

and [∂0y] = ∂[y] are elements of πn−1(L, ∗). It is possible to choose z ∈ Ln such that [∂0x][∂0y] =

[∂n−1z]. Then the n+ 1 n-simplices z, ∗, . . . , ∗, x, y satisfy the Kan extension condition so there is

an (n+ 1)-simplex w for which

∂iw =



z i = 0

∗ 0 < i < n− 1

x i = n− 1

y i = n+ 1

Hence there is a product operation on πn(K,L, ∗) defined by [x][y] = [∂nw].
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With the multiplication defined above, πn(K, ∗) and πn+1(K,L, ∗) are groups for n ≥ 1. If

n ≥ 2, the groups are abelian. Furthermore, πn is a functor from the category of Kan pairs to the

category of groups for n ≥ 1 and to the category of sets for n = 0 and πn is a functor from the

category of Kan triples to the category of groups for n ≥ 2 and to the category of sets for n = 1.

In light of this, ∂ is a natural transformation for n ≥ 1.

This makes the sequence

. . .→j∗ πn+1(K,L, ∗)→∂∗ πn(L, ∗)→i∗ πn(K, ∗)→j∗ πn(K,L, ∗)→∂∗ . . .

an exact sequence of groups for n ≥ 1.

In [?], in order to prove that pin(K•) is abelian when n ≥ 2, a simplicial loop space functor

Ω is constructed with the property that πn(ΩK•) ∼= πn+1(K•). As with topological spaces, ΩK• is

defined to be the fiber of the map from PK•, a suitable path space of K•, to K•.

Definition 45. Let f and g be simplicial maps from K to L. We say that f is homotopic to g

and write f ' g if there exist functions hi : Kq → Lq+1 with 0 ≤ i ≤ q, such that

(1) ∂0h0 = f , ∂q+1hq = g

(2) ∂j+1hj+1 = hj∂j+1

(3) ∂ihj = hj−1∂i if i < j

(4) ∂ihj = hj∂i−1 if i ≥ j

(5) sihj = hj+1si if i ≤ j

(6) sihj = hjsi−1 if i > j.

often the subscript will be dropped and the family of maps {hi} will be denoted by h. h is called a

homotopy from f to g. This is denoted by h : f ' g or simply f ' g when it is not important to

specify the maps.

If, additionally, K ′ and L′ are subcomplexes of K and L respectively with f(K ′), g(K ′), h(K ′) ⊂

L′ then h is a relative homotopy from f to g if h|K′ is a homotopy from f |K′ to g|K′.
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If the identity map of K is homotopic relative to K ′ to a map from K onto K ′ which extends

the inclusion of K ′ into K then K ′ is called a deformation retract of K.

K and L said are to be of the same homotopy type if there are maps f : K → L and

g : L→ K with gf = 1K and fg = 1L.

Definition 46. A simplicial map π : E → B is called a Kan fibration if for every collection of

n+ 1 n-simplices, x0, . . . , xk−1, xk+1, . . . , xn+1 ∈ E which satisfy the Kan extension condition and

for every simplex y ∈ Bn+1 such that ∂iy = π(xi) for i 6= k, there exists an simplex x ∈ En+1 such

that ∂x = xi for i 6= k, and π(x) = y.

In this case E and B are respectively called the total complex and base complex of the

fiber space (E, π,B).

For the subcomplex ∗ of B. The complex F = π−1(∗) ⊂ E is called the fiber over ∗ ∈ B and

there is fiber sequence sequence.

(F, ∗′) ↪→ (E, ∗′)→π (B, ∗)

Definition 47. Let X : Simp→ Top and consider the topological space

Xt =
⊔
n∈N

Xn ×∆n

A relation can be defined on Xt which is generated by the relations

(dix(n), t(n−1)) ∼ (x(n), δit(n−1))

and

(six(n), t(n+1)) ∼ (x(n), σit(n+1))

to obtain the space Xt/ ∼ which is called the geometric realization and denote by |X•|.

The geometric realization is functorial. In particular, given a continuous map f• : X• → Y•,

the induced map |f•| : |X•| → |Y•| which sends |x(n), t(n)| to |f(x(n)), t(n)| is continuous.

From a homotopic point of view, the geometric realization does indeed represent the “geom-

etry” of a simplicial object since the simplicial homotopy groups of a fibrant simplicial set X• agree
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with the topological homotopy groups of the the geometric realization |X•|. A nice consequence of

this is that for any fibrant simplicial set X•, |ΩX•| is weakly equivalent to Ω|X•|.

In addition, the geometric realization as a functor from SSet, the category of simplicial sets,

to Top is left adjoint to the singular complex functor. That is, there is an isomorphism

HomTop(|X•|, Y ) ∼= HomSSet(X•, S•Y ) (A.1)

which is natural in Top and SSet. There is then a weak equivalence between a space X and |S•X|

when X is a CW-complex.

There is a simplicial version of the classifying space which will be needed to define K-theory

simplicially.

Definition 48. Let G be a group. The nerve of G, B•G is defined by BkG := Gk. If the face and

degeneracy maps are defined by

di(g1, . . . , gn) =



(g2, g3, . . . , gn) i = 0

(g1, . . . , gi−1, gigi + 1, gi + 2, . . . , gn) 1 ≤ i < n

(g1, . . . , gn−1) i = n

and

si(g1, . . . , gn) = (g1, . . . , gi−1, 1, gi, . . . , gn)

then (B•G, di, si) is a simplicial set.

Computing the homotopy groups results in

B̃Gn =


G n = 1

0 n > 1

(A.2)

So π1(B•G) = G and πn(B•G) = 0 for n > 1 so it follows that the geometric realization of the

nerve of G is the classifying space of G.


