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 The addition of a small amount of liquid to a granular system can dramatically 

change the flow dynamics including the flowability, tensile strength, and segregation.  

Such liquid-coated particles coated are common in nature (e.g. avalanches, pollen 

capture) and in industry (e.g. granulation, particle filtration).  Despite their ubiquity, 

predicting macro-scale (bulk) flows of liquid-coated particles is still elusive.  A micro-

scale (particle-level) investigation of the interactions of few wetted particles will lead to 

the identification of the dominant physical mechanisms which feeds into the 

understanding and modeling of bulk flows of wetted systems. 

 Previous micro-scale studies of wetted particles have included experimental and 

theoretical efforts to study particle-wall collisions (both oblique and head-on) and 

particle-particle collisions (head-on only).  Before using such micro-scale models to 

describe macro-scale flows, more general cases need to be first considered such as 

collisions between more than two particles and the rotational motion of agglomerates.  

The goal of this work is to address these two issues through a combination of 

experiments using a pendulum apparatus and theory.   

 To investigate collisions between more than two particles, this work focuses on 

the normal (head-on) collision of three spheres.  The foundation for such work is 

provided by first investigating analogous dry (non-wetted) systems.  Experimental results 

are compared to soft-sphere models, which simultaneously account for all collisions, and 

a hard-sphere model, which treats the three-body collision as a series of two-body 
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collisions.  While the soft-sphere models generally predicts the post-collisional velocities 

better, the hard-sphere model exhibits a good comparison overall.   

 In the wetted three-particle collisions, the pendulum apparatus is coined Stokes’s 

cradle for the Stokes flow in the liquid gap between the particles.  In two-body collisions, 

only two outcomes exist, namely stick and bounce.  But in three-particle collisions, four 

possible geometrical outcomes exist and using the model as a guide, all four outcomes 

are experimentally observed.  Furthermore, this combination of experiments and theory 

led to the identification of the dominant physical mechanisms.  First, due to the large 

pressures in the liquid gap, the fluid may undergo a glass transition at which point the 

particles reverse direction.  Additionally, previous theories neglect the viscous resistance 

of the fluid as the particles move away from one another, since cavitation was assumed to 

occur.  However, three-body experiments show definitively that the outbound resistance 

cannot be neglected.   

 To investigate how rotational motion influences agglomeration, oblique collisions 

between two particles are performed.  Whereas in normal collisions particles rebound 

only due to solid deformation, so-called centrifugal forces in oblique collisions produce a 

new outcome in which the particles initially form a rotating agglomerate, and then de-

agglomerate at a later time.  Furthermore, capillary forces play an essential role in 

oblique collisions even when the capillary number (viscous over capillary forces) is high.  

This recognition leads to the introduction of a dimensionless number, the centrifugal 

number (centrifugal over capillary forces), which together with the previously established 

Stokes number characterizes the regime map of outcomes for two-particle collisions. 
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1. INTRODUCTION   

 

1.1. Motivation 

 In our daily lives, we come into contact with granular materials frequently.  Beans 

for the morning cup of coffee, snow, and even pollutants in the air are granular in form.  

Furthermore, particulates are widespread throughout industry including foodstuffs [1], 

pharmaceuticals [2], mining [3], and construction [4].  They make up approximately one-

half of all products and nearly three-quarters of the raw materials in the U.S. [5].  In 

nature, granular materials are found in many sizes (10-6 m – 105 m) and many locations 

(e.g., beach, mountaintops, space), and are composed of a variety of materials (e.g., ice, 

soil). 

 Although granular materials are common, a poor predictive understanding has led 

to significant practical challenges.  Landslides and other forms of ground failure (e.g. 

liquefaction) are the most expensive natural hazard [6].  In industry, uniform mixing is 

difficult to achieve, since particulates segregate based on parameters such as size and 

density, and the current theoretical understanding of the mixing process is not sufficient 

for equipment design [7, 8].  Scaling-up processes continues to be an ongoing challenge, 

and consequently many factories operate significantly under desired efficiency levels [9].  

In the pharmaceutical industry, the lack of fundamental understanding of granular 

materials leads to empirical designs of equipment and product as well as an incentive not 
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to change, which leads to further delays of patient treatment [10].  Furthermore, the 

inability to model granular materials leads to challenges when designing equipment for 

use on the moon, where an empirical approach is not sufficient [11].  Granular materials 

remain difficult to describe using a fundamental, continuum approach because the 

interactions between particles are dissipative in nature (unlike the molecular counterparts), 

and there exists a lack of separation of scales between grain sizes and flow size [12].   

 To add to the already complex nature of granular materials (e.g., friction, 

inelasticity, polydispersity), particles experience cohesion when an attractive force exists 

between the particles.  Cohesion may arise due to a variety of sources including 

electrostatic forces, van der Waals forces, magnetic forces, and liquid bridges.  Even a 

small amount of cohesion between particles can cause large changes on the properties of 

the bulk material.  Cohesion can affect flowability [13, 14], angle of repose of a granular 

heap [15-17], and the tensile strength [18, 19].  Under the right circumstances, adding 

cohesion during mixing can enhance or mitigate species segregation [20, 21].  

Furthermore, the packing fraction of cohesive grains decreases with the magnitude of the 

cohesive force [22, 23].   

 Of the sources of cohesion listed above, the focus of this work is on liquid bridges.  

Particles are referred to as ‘wetted’ when a thin layer of liquid covers the particles either 

completely or partially, as opposed to immersed (or suspended) particles, so that a liquid 

bridge between two particles may form.  Figure 1.1 shows a schematic of an immersed 

particle, a fully-coated wetted particle, and two particles partially covered with liquid 

connected by a liquid bridge.  Such wetted particles are found throughout nature in sand 

castles, pollen, landslides, avalanches, and interstellar dust among others.  In industry, 
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wetted particles are relevant to particle filtration, coagulation, agglomeration, slurry 

transport, spray coating, drying, and pneumatic transport.  Wet granulation, a process of 

creating agglomerates, is widely used in chemical and pharmaceutical industries for more 

control over uniformity, density, compatibility as well as increased flowability [24].   

 

Figure 1.1  Schematic of (a) an immersed particle, (b) a wetted particle, and (c) two 
particles connected by a liquid bridge. 

 

1.2. Forces Relevant to the Interaction of Wetted Particulates 

 When two wetted particles interact, the forces acting on each particle can be 

characterized as either static or dynamic.  The static forces include capillary forces, while 

the dynamic forces include lubrication and solid mechanical forces.  The determine the 

relative influence of viscous to capillary forces, the capillary number for wetted particles 

is 

 Ca = 3aµvn/σx0 .        (1.1) 

Here, a = R1R2/(R1+R2) is the reduced radius where R is the radius of two spherical 

particles, µ is the liquid viscosity, vn is the normal component of the relative velocity 

between the spheres, x0 is the oil thickness, and σ is the surface tension.  For small 
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capillary numbers (Ca < 0.01) capillary forces dominate, whereas at large capillary 

numbers (Ca > 100) viscous forces dominate [25]. 

 

1.2.1. Static Forces arising from Liquid Bridge 

 The (static) capillary force is composed of three contributions: (i) the buoyancy 

force due to the partial immersion of each particle, (ii) the force due to the reduced 

hydrostatic pressure in the bridge, and (iii) the axial component of the surface tension at 

the liquid-gas interface.  However, for particles less than 1 mm, buoyancy can be 

neglected as well as the influence gravity has on the shape of the liquid bridge [26, 27].  

The surface tension force acts on the interface between the liquid and gas phases and 

depends on the wetting angle, ϕ, the angle between the surface of the liquid and the solid 

at the contact point (Figure 1.1c).  The contribution to the capillary force due to the 

surface tension pulls the particles together and is given by 

   Fst = 2πr1σ         (1.2) 

where r1 is the radius of the circular neck cross-section (Figure 1.1c).  Typically, the 

force is calculated at the solid-liquid-gas contact line; however, it can also be calculated 

at any plane away from this line.  For the case of perfectly wetted spheres, ϕ = 0, the 

curvature of the bridge is not sensitive to the solid-liquid-gas contact line [28].  Therefore, 

the surface tension between two particles connected only by a liquid bridge with ϕ = 0, 

(Figure 1.1c) is approximately the same as for two fully coated spheres in contact.  The 

hydrostatic pressure forces that arise from the pressure deficiency in the liquid bridge can 

pull together or push apart the particles depending on the values of the principle radii, r1 

and r2, and is given by  
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 Fhp = -π r1
2ΔP         (1.3) 

where ΔP is the reduced hydrostatic pressure.  This equation requires the solution of 

Laplace-Young equation  

 ΔP = σ (1/r1 +1/r2)        (1.4)  

where r2 is the principle radius of curvature (Figure 1.1c).  Neglecting buoyancy, Fisher 

[29] and Adams and Perchard [30] have solved analytically for the capillary force (Fst + 

Fhp) between two spheres assuming that the principle radii of curvature are constant.  

Such derivations have been shown to agree well with experimental measurements within 

10% [29-31].  Additionally, the Laplace-Young equation has also been solved 

numerically to express the capillary force (Fst + Fhp) as a function of the bridge volume 

and separation distance instead of the principle radii [32].   

 As the particles separate, when they reach a critical distance the liquid bridge 

connecting the particles ruptures.  Lian et al. [31] proposed the following empirical 

relationship for the rupture distance between two spheres  

 xrd = (1+0.5ϕ)V1/3        (1.5) 

Previous experimental results of Mason and Clark [33] agree well with this equation.  

More recent experiments of the rupture distance by Fairbrother and Simons [34] who 

used 50 µm-diameter spheres were within 10% of the distances predicted from this 

equation.   
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1.2.2. Dynamic Forces arising from Liquid Bridge 

 Whereas capillary forces cause cohesion by pulling the two particles together, 

(dynamic) viscous forces cause ‘cohesion’ by a loss of the energy associated with particle 

motion to the fluid (i.e. viscous losses).  To determine if the fluid in the gap between the 

particles is laminar, the Reynolds number (ratio of fluid inertia to the viscous force), Re, 

is evaluated.  For two wetted particles  

 Re = ρvnx0/µ         (1.6)  

where ρ is the liquid density.  In this work, viscous forces dominate, so the focus is on 

low Re (Stokes) flow. 

 Before considering the viscous forces on wetted particles (which will be discussed 

in later chapters), it is helpful to first introduce the low-Re solution for an immersed 

particle.  Specifically, the viscous force on a sphere immersed in a liquid and approaching 

a wall or approaching another sphere is   

 FL,n = − 6πµa
2vn

x ,        (1.7) 

where x is the separation distance of the surfaces [35, 36].  This expression is only valid 

for x << a.  As the gap closes and x approaches zero, the lubrication force diverges for 

nonzero relative velocity.  If the particles are assumed to be smooth and rigid, and 

moving due to inertial and not an applied force, they stop at a finite distance away and do 

not rebound.  Therefore, another physical mechanism, namely the deformation of the 

solid (as described in Section 1.2.3), needs to be considered for two particles to rebound.   

 In addition to the normal force experienced by a particle, as a particle moves 

tangentially to a wall or another particle, the shear stress of the fluid produces a tangential 

force on the particle.  An expression for the tangential force of such an immersed particle 
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sliding without rotating in close proximity (x << a) to another particle of the same radius 

was derived by O’Neill and Majumdar [37] using an asymptotic solution to the equations 

governing Stokes flow : 

 FL,t = −6πµa2vt
1
3
ln 2a

x
+1.2720⎛

⎝⎜
⎞
⎠⎟ ,      (1.8) 

where vt is the relative tangential velocity of the centers of the two spheres.  For two 

equal-sized particles without translational motion, but rotating in close contact with the 

same angular velocity about their centers relative to the fluid, Ω, O’Neill and Majumdar 

[37] found the tangential force to be 

 FL,t = 6πµa
2Ω 1

3
ln 2a

x
− 0.1583⎛

⎝⎜
⎞
⎠⎟ .      (1.9) 

 

1.2.3. Solid Deformation 

 As two bodies separated by a liquid gap approach each other, the pressure builds 

to squeeze the fluid out from between them, which may cause the solid body to deform.  

Including the effects of this deformation of the particles is important, since otherwise, the 

two (smooth) particles in Stokes flow would stop at a finite distance and not rebound.  A 

coupling of solid mechanical (elastic) forces and hydrodynamic forces (i.e., 

elastohydrodynamics) predicts that, for large enough pressures, the energy of deformation 

is great enough to cause velocity reversal upon its release and transformation to kinetic 

energy of the particle.  Among the earliest research efforts into solid mechanics of dry 

materials was that of Hertz [38], over a century ago, whose objective was to understand 

the optical properties of stacked lenses.  The theory included non-rigid (deformable) 
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particles that were both frictionless and perfect elasticity.  For perfectly elastic particles 

engaged in a head-on collision, the coefficient of restitution, namely the ratio of the 

magnitudes of relative post-collision velocity to the pre-collision velocity, is unity.  

Following Hertz’s work, advances have been made to describe additional complexities of 

such dry collisions between particles, including their inelasticity.  While the coefficient of 

restitution is often assumed constant for a given material, experimental studies have 

shown it also to decrease with increasing impact velocity [39].  Recently though, careful 

measurements have found a non-monotonic behavior of the coefficient of restitution [40], 

which is attributed to the timescales of the vibrations of the solids being comparable to 

the collision time.   

 

1.2.4. Pressure-Dependent Viscosity 

 Oftentimes the viscosity of the liquid is assumed constant, but viscosity depends 

on the particular conditions.  Stokes was the first to consider that the viscosity of a fluid 

not only depends on temperature, but also on pressure [41].  While the effect of 

temperature on viscosity is relatively well understood, pressure dependence of viscosity 

is not, particularly at high pressures.  For fixed ambient temperature, the dependence of 

pressure and viscosity on pressure is given by the Barus law [42] 

 µ = µ0 exp (Cp),        (1.10) 

where p is the pressure, µ0 is the viscosity at atmospheric pressure, and C is the pressure-

viscosity coefficient, a constant that depends on the liquid.  However, this equation 

underpredicts the viscosity above pressures of 0.5 GPa and additionally it does not 

predict well the shear stress.  A variety of other models have been proposed and are more 
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appropriate under particular conditions (e.g., high or low pressure, thin or thick film) [42-

44].  A short review of the effect of pressure on viscosity and a list of values of C for 

various lubricants can be found in Gohar [45]. 

 If the pressure is large enough, the liquid may undergo a glass transition, so that it 

exhibits rigidity similar to an amorphous or glassy solid.  While the glass transition 

depends both on temperature and pressure, Alsaad et al. [46] found that under certain 

conditions at high pressures, the glass transition could be achieved at rather normal 

temperatures.  Furthermore, at the glass transition, the viscous properties of the liquid 

become elastic so that it behaves in a viscoelastic manner [45].    

 For the experimental systems under consideration in this work, a consideration of 

pressure-dependent viscosity is appropriate since the pressure in the liquid gap between 

particles increases considerably during approach.  Indeed, a glass transition may occur, so 

that the particles rebound.   

 

1.2.5. Cavitation 

 Just as the large pressures affect the fluid upon approach, as the particles move 

away from each other, the pressure drops significantly, and becomes smaller than the 

ambient pressure so that fluid is sucked into the gap between the receding surfaces, which 

may lead to the formation of cavitation bubbles.  Cavitation is typically assumed to occur 

when the pressure of the fluid drops below a threshold pressure, often the vapor pressure 

[47, 48].  However, this criterion poses two issues.  First, vapor pressure is defined as the 

equilibrium pressure of the vapor of the liquid at a given temperature in contact with an 

existing free surface, whereas a cavitation bubble is formed by the rupture of a 
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homogenous liquid.  The stress required for liquid to rupture is measured by the tensile 

strength of the liquid, not vapor pressure [49].  Second, for the onset of cavitation based 

on tensile strength rather than vapor pressure, the liquid will cavitate when any one of the 

three principal stresses exceeds the tensile strength of the liquid, whereas pressure is a 

measure of the average of the principal stresses.  Recently, Joseph [50] developed a 

rigorous criterion for the inception of cavitation using the tensile strength.  Experimental 

studies of cavitation in the fluid between a particle approaching a wall have confirmed 

the relationship between the maximum stress in the liquid and the size of the cavitation 

structures formed [51]. 

 

1.3.  Previous Work on Wetted Particle Systems 

1.3.1. Two-Body Studies (Micro-level)  

 The foundation of the description for wetted-particle collisions traces to earlier 

work on immersed collisions between two particles.  The Stokes number, 

 St = mv0
6πµa2

,                                                                                       (1.11) 

which is a measure of the inertia of colliding particles relative to the viscous force of the 

surrounding liquid, is the relevant dimensionless number.  Here, m = m1m2/(m1 + m2) is 

the reduced mass, and v0 is the impact speed.  As mentioned above, low-Reynolds-

number (lubrication) theory has established that two smooth, rigid particles approaching 

one another will never touch or rebound, but instead stop at a finite distance as they 

approach (Equation 1.7).  The deformation associated with non-rigid particles 

approaching each other in an immersed in a fluid was first considered by Davis et al. 
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[52].  In their work, a theory was developed which couples the fluid hydrodynamics and 

the particle (elastic) deformation during the collision; this theory is known as 

elastohydrodynamics.  By allowing for a non-rigid particle, kinetic energy is stored in the 

deformation and, when it is released, rebound of the particle may be achieved if the 

stored energy is great enough to overcome the viscous resistance (i.e., if St is large 

enough).  Additionally, the theory indicates that as the viscosity of the fluid increases, the 

critical Stokes number, St*, decreases, where St* is the Stokes number at which there is a 

transition from no rebound to rebound.  Experimental collisions performed by measuring 

the velocity of a particle immersed in liquid as it bounced off a wall confirm the 

described theoretical trends [41].  Later work by Barnocky and Davis [53] includes a 

pressure-dependent viscosity proposed by Chu and Cameron [42] for immersed particles.  

Barnocky and Davis [53] conclude that, while the inclusion of pressure-dependent 

viscosity lowers the St*, it plays a weak role in the outcomes of the collision in their 

parameter space.   

 Numerous investigations have also been performed for wetted two-body collisions, 

expanding on the aforementioned works on immersed collisions.  Some of the earlier 

experimental works that consider wetted-particle collisions include Barnocky and Davis 

[54] and Lundberg and Shen [55], who performed two-body collisions by dropping a dry 

particle onto a liquid-coated surface.  Both works confirm the trend predicted by 

elastohydrodynamics for immersed collisions, namely a decreasing St* with increasing 

viscosity.  Using a different approach, Pitois et al. [56] measured total force due to 

lubrication and capillary forces between two spheres as a function of separation distance 

and relative velocity.  Additionally, a number of theories have been developed to predict 



 

12 

 

agglomeration/de-agglomeration behavior.  Ennis et al. [57] modeled a two-particle 

wetted collision without employing elastohydrodynamics but instead by assuming 

rebound occurred when the two particles reached a finite separation distance.  Lian et 

al. [58] presented a slightly simplified model of wetted collisions between two particles 

based on elastohydrodynamics that agrees well with the theory of Davis et al. [52].  In the 

effort by Davis, Rager, and Good [59], a scaling argument was used to apply the 

elastohydrodynamic theory developed by Davis et al. [52] to two-particle wetted 

collisions, and they found good agreement with their experiments.  Further work by 

Kantak and Davis [60] presented a complete elastohydrodynamic coupling to describe 

wetted collisions between two particles; while experiments agreed well with theoretical 

predictions, the model assumed perfectly elastic spheres even though the nylon particles 

used in the experiments had a coefficient of restitution approximately equal to 0.7.  

 

1.3.2. Many-Particle Studies (Macro-level) 

 The bulk behavior of systems containing many wetted particles has been the focus 

of a number of experimental investigations [15, 61, 62].  A rotating drum has proven to 

be particularly useful in wetted flow since it can generate continuous grain flow [63-65].  

Under the correct circumstances, Li and McCarthy [66] found adding liquid to a granular 

system increased species segregation in a rotating drum.  On the other hand, a small 

amount of liquid has been found to mitigate segregation between unlike particles poured 

from a silo [67].  Experimental studies of wetted particles in fluidized beds have 

attempted to determine the dependence of granule growth rate on material properties such 

as particle size [68, 69]. 
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 To investigate many-particle flows, many researchers have employed discrete 

element models (DEM), which incorporates microscopic (particle-level) descriptions of 

the inter-particle forces.  A square-well potential used to model general cohesion has 

proven to be an effective tool in hard-sphere simulations [70].  Since most DEM 

simulations have focused on fairly dense systems, however, soft-sphere models are 

routinely used, which contain simplified force laws to model the enduring collisions 

between particles.  In the soft-sphere model treatment, collisions between more than two 

particles are accounted for simultaneously; however, the computational costs of such 

modeling is relatively high, which significantly limits the total number of particles that 

can be simulated.  Such soft-sphere models include cohesion due to liquid bridges by 

using simplified capillary and viscous forces, which typically account only for the normal 

forces between two particles.  The soft-sphere modes have been used to study the 

collisions of large agglomerates of wetted particles (> 100 particles) [71-73].  Soft-sphere 

models have also been useful to simulate specific systems such as rotating drums, 

fluidized beds, and cohesive soil [20, 74, 75].  While many simulations have assumed 

that each particle is evenly coated, some work has been done on the liquid transfer 

between colliding particles [76].  On the other hand, in dilute flows collisions have been 

assumed to be primarily binary, so hard-sphere models have been used, which treat 

collisions as instantaneous and binary.  Such treatment is limited to only the initial phase 

of agglomeration since hard-sphere models do not describe collisions between more than 

two particles [77].   

 While modeling individual grains via DEM is a useful tool for studying bulk 

behavior of wetted particles, the large computational costs limit the total number of 
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particles that can be simulated.  Even in a laboratory-scale fluidized bed, the number of 

particles easily exceeds a billion.  Therefore, developing a continuum framework is 

particularly appealing for modeling the large number of particles in industrial and natural 

settings.  Such a continuum framework for describing wetted-particle agglomeration and 

de-agglomeration takes the form of population balance, which is a rate equation that 

tracks the change in number of agglomerates of a given size.  Hulbert and Katz [78] and 

Randolph and Larsen [79] introduced the population balance for general particulate 

systems.  Within the population balance description is the coalescence kernel.  The 

coalescence kernel describes the collision frequency and probability of success of 

agglomeration.  Most coalescence kernels that describe wetted-particulate systems have 

fitted parameters with little physical foundation.  Therefore, these kernels are unable to 

make predictions of the effect of scale-up or changes in the formulation properties [80].  

While a number of physical models exist that predict agglomeration versus de-

agglomeration of wetted-particle collisions, few have been used to develop a coalescence 

kernel.  One exception to the empirical kernels mentioned above is a physically-based 

kernel proposed by Liu and Litster [81], which predicts particle coalescence based upon 

the Stokes number.  In addition to the already challenging task of developing a 

coalescence kernel based on physical agglomeration models, current agglomeration 

models are based upon two-body collisions, whereas in bulk flows, collisions of more 

than two bodies regularly occur [82].   
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1.4. Dissertation Objectives 

 The focus of this work is to broaden the particle-level research, which provides 

more insight into the physical mechanisms dictating the dynamics of wetted particles and 

provides a foundation for simulations wetted particles.  While significant research has 

been performed to study of collisions between two wetted particles, a majority of the 

experimental and theoretical focus has been between collisions of a particle and a wall. 

 

1.4.1. Normal Collisions between Three Dry Spheres (Chapter 2) 

 While the focus of this work is on wetted particles, a complete understanding of 

the corresponding dry collisions is first necessary.  Though soft-sphere models are 

routinely used in DEM simulations of dry granular material, no previous comparison 

exists between soft-sphere models and collisions between more than two particles.  The 

lack of comparison of soft-sphere models is particularly surprising given that a major 

advantage of such models is their applicability to collisions involving more than two 

particles.  Therefore, in this chapter the objectives are to 

(a) observe what geometrical outcomes (e.g. fully separated, fully agglomerated) 

exist in three-particle collisions; 

(b) evaluate various soft-sphere models to determine their applicability in predicting 

such collisions; and 

(c) evaluate the ability of a hard-sphere model to predict geometrical outcomes and 

post-collisional velocities of three-particle collisions by modeling the collision as 

a series of two-body collisions. 
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1.4.2. Normal (Head-on) Collisions Between Three Wetted Spheres 

(Chapters 3 – 4) 

 In wet collisions between two particles, only two outcomes are observed, namely 

stick and de-agglomerate.  However, in a three-particle collision, four geometrical 

outcomes are possible.  The objectives of the work in Chapter 3 are to: 

(a) experimentally determine via a ‘Stokes cradle’ pendulum apparatus whether 

all four geometrical outcomes are possible in a three-body wetted collision 

over a considerable parameter space;  

(b) identify how changes of experimental parameters influence the observed 

outcomes; and 

(c) identify the predominant physical mechanisms in a three-particle collision. 

 

1.4.3. Oblique Collisions between Two Wetted Particles (Chapters 5 – 6) 

 Previous experiments of oblique collisions are limited to collisions between a 

particle and a wall and so, there was no rotation of the agglomerate.  The pendulum 

apparatus described in Chapters 2 – 4 is modified to conduct oblique collisions between 

two particles.  Accordingly, the objectives of these Chapters are to:  

(a) identify the predominant physical mechanism in a two-particle oblique collision, 

particularly how rotation of the agglomerate affects the agglomeration/de-

agglomeration of a doublet. 

(b) identify how changes of the experimental parameters influence the wet coefficient 

of restitution and the angle of doublet rotation.  
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2. NEWTON’S CRADLE: NORMAL COLLISIONS BETWEEN THREE DRY 

SPHERES1 

 

2.1. Abstract 

 Using an apparatus inspired by Newton’s cradle, the simultaneous, normal 

collision between three solid spheres is examined.  Namely, an initially touching, 

motionless pair of ‘target’ particles (doublet) is impacted on one end by a third ‘striker’ 

particle.  Measurements of post-collisional velocities and collision durations are obtained 

via high-speed photography and an electrical circuit, respectively.  Contrary to intuition, 

the expected Newton's cradle outcome of a motionless, touching particle pair at the 

bottom of the pendulum arc is not observed in either case.  Instead, the striker particle 

reverses its direction and separates from the middle particle after collision.  This reversal 

is not observed, however, if the target particles are separated by a small distance (not in 

contact) initially, although a separation still occurs between the striker and middle 

particle after the collision, with both particles traveling in the same direction.  For the 

case of initially touching target particles, contact duration measurements indicate that the 

striker separates from the three particles before the two target particles separate.  

                                                

1 Donahue, C.M., C.M. Hrenya, A.P. Zelinskaya, and K.J. Nakagawa. Newton's cradle 
undone: Experiments and collision models for the normal collision of three solid spheres. 
Physics of Fluids 20, (2008). 
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However, when the targets are slightly separated, a three-particle collision is never 

observed, and the collision is, in fact, a series of two-body collisions.  A subsequent 

implementation of a variety of hard-sphere and soft-sphere collision models indicates that 

a three-body (soft-sphere) treatment is essential for predicting the velocity reversal, 

consistent with the experimental findings.  Finally, a direct comparison between model 

predictions and measurements of post-collisional velocities and contact durations 

provides a gauge of the relative merits of existing collision models for three-body 

interactions. 

 

2.2. Introduction 

 The description of granular materials via a discrete-particle approach has become 

an increasingly popular tool in the field since the pioneering work of Cundall and Strack 

[1].  Although a more detailed description of particle contacts is possible via theoretical 

contact mechanics [2], the computational overhead associated with the resulting partial 

differential equations is prohibitive for many-particle systems.  As a result, a variety of 

simplified collision models, or force laws, have been proposed.  These force laws can be 

incorporated into Newton’s second law of motion, and thus only require integration in 

time, thereby considerably lowering the computational overhead.  Generally speaking, 

two types of collision models are available.  Hard-sphere models treat collisions as binary 

and instantaneous, whereas soft-sphere models allow for enduring collisions between two 

or more particles.  The advantage of the hard-sphere treatments is their relatively low 

computational requirement (resolving transients of the collisional process is not required 

so a larger time step is allowed), whereas the advantage of soft-sphere models is their 
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applicability to dense systems in which multi-particle contacts occur.  In the current effort, 

the focus is on collision models for normal (head-on) contacts; a recent review of 

tangential force laws is given by Kruggel-Emden et al. [3]. 

 A plethora of soft-sphere models have appeared in the literature [4-13].  These 

models, which take the form of force laws, can generally be broken down into two 

categories:  spring-dashpot treatments and two-spring treatments.  The spring-dashpot 

treatment is used for viscoelastic losses, in which no permanent deformation occurs.  The 

two-spring treatment, on the other hand, utilizes a different spring for the loading and 

unloading phases of the collision to mimic permanent, plastic deformation.  One 

challenge associated with the use of such soft-sphere models is the specification of model 

parameters, typically a spring constant(s) and/or dashpot coefficient.  Unlike the 

parameters associated with a hard-sphere model, which are measurable, physical 

quantities like the restitution coefficient, the spring constant and dashpot coefficient 

cannot be directly measured.  Instead, their values can be chosen to match measurable, 

integrated collision quantities, like the restitution coefficient and collision duration [14-

19]. 

 To date, the predictive ability of soft-sphere collision models has only been 

evaluated via comparisons with experiments for two-body collisions [13, 19, 20], which 

is somewhat surprising given that a major advantage of such models is their applicability 

to collisions involving more than two particles.  Nonetheless, these studies have revealed 

interesting differences between the various force laws.  In particular, two unrealistic 

behaviors are observed for several of the models:  (i) the restitution coefficient may 
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increase with impact velocity, contrary to experimental data, and (ii) an unrealistic 

attractive force may be present at the end of the rebound phase.   

 Unlike previous efforts, the focus of the current work is on three-body collisions.  

A combination of experiments and modeling is used.  Namely, in the first phase of the 

work, experiments are carried out using an apparatus inspired by Newton’s cradle  – the 

desktop toy made up of solid spheres suspended from V-shaped line in which a multi-

body collision is prompted via the pulling up and subsequent release of one of the ‘end’ 

spheres.  High-speed photography is used to capture the pre- and post-collisional 

velocities of each sphere and a circuit connected to the spheres is used to measure the 

contact duration.  Unlike the typically expected outcome in which the striker (released) 

and middle particle remain motionless and touching at the bottom of the arc, the 

measurements reveal a separation of these two particles in which the striker particle 

actually reverses its direction after collision.  Moreover, contact duration measurements 

reveal that the striker and the middle particles separate before the middle and end 

particles.  However, if the two particles, which are initially motionless at the beginning of 

the experiment, are separated slightly prior to release of the impacting particle, the 

velocity reversal is not observed, though the two particles do exhibit a separation while 

traveling in the same direction.  In this instance, it is confirmed through contact duration 

measurements that a series of two-body collisions occurs. 

 Previous efforts have been made to study the outcomes of the ‘Newton’s Cradle’.  

Herrmann and Seitz [7] observed the separation of the particles through only a Hertz 

contact law and computer simulations.  In the work by Hinch and Saint-Jean [21], a 

theoretical investigation found that there was a velocity reversal for at least the striker 
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and possibly more of the particles depending on the number of particles.  However, no 

experimental evidence was presented and only purely elastic particles where chosen.  

Ceanga and Hurmuzlu [22] introduced the Impulse Transmission Ratio as a way to 

resolve non-uniqueness when using momentum conservation.  While they did conduct 

experiments, they never provided data on a collision between particles of the same mass 

and material.  In this work, the focus is on the three-body nature of the problem.   

In the second phase of this work, the experimental data is used to gauge the 

predictive ability of the various soft-sphere models.  Moreover, a simplified description 

of the collisional process, which is often used to explain the Newton’s cradle outcome, is 

considered.  Specifically, a hard-sphere model is utilized in which the three-body 

collision is approximated as a series of instantaneous, two-body collisions.  Overall, the 

model results are qualitatively consistent with the experimental findings, namely that a 

three-body (soft-sphere) treatment leads to velocity reversal, whereas a two-body (hard-

sphere) treatment does not.  Furthermore, both treatments predict the observed separation 

of all particles after the collisions.  With regard to contact duration, the soft-sphere 

models correctly predict that the striker particle separates from the three-body contact 

prior to the separation of the two initially motionless particles.  Quantitative model-data 

comparisons are also made, though the emphasis of this work is targeted at the 

differences between three-body collisions and two-body collisions, rather than providing 

a critical analysis between existing soft-sphere models. 
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2.3. Experimental Method 

To investigate the post-collisional behavior of a normal (head-on) collision 

between three solid spheres, a pendulum-based apparatus inspired by Newton’s cradle is 

used.  As illustrated in Figure 2.1, each particle is hung from two lines to make a V-shape.  

The pivot points in each V-shaped pendulum are approximately 33 cm apart and the 

length of each line is 1 m.  The three pendulums are spaced one particle diameter (2.54 

cm) apart, so that when not in motion, the particles are touching, but no force occurs 

between them.   

 

Figure 2.1  Schematic of Newton’s cradle experiments 

 

The pendulum line is made of ice fishing line manufactured by Berkley with a 

spring constant of 1.2 kN/m.  The stiff line balances the centripetal force experienced by 

the striker particle as it travels down the arc, effectively eliminating any vertical motion 

upon collision with the stationary particles at the bottom of the arc.  The line is strung to 

the particles via a small, metal tube welded on the top of the particles, and all-purpose 
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glue holds the line and tube together.  For a given experiment, all three particles are 

fabricated from one of two types of materials, chrome steel (AISI 52100) or stainless 

steel (316 grade).  The properties of the chrome steel particles are: Young’s modulus E = 

2.03×1011 N/m2; Poisson’s Ratio ν = 0.28; yield strength Y = 2.03×109 N/m2; density ρ = 

7830 kg/m3; radius R = 1.27 cm.  The properties of the stainless steel particles are: 

Young’s Modulus E = 1.93×1011 N/m2; Poisson’s ratio ν = 0.35; yield strength Y = 

3.10×108 N/m2; density ρ = 8030 kg/m3; radius R = 1.27 cm. 

The normal, three-body collision is achieved by pulling back along the arc the 

striker particle, which is then released and allowed to collide with the two motionless, 

touching particles at the bottom of the arc.  As labeled in Figure 2.1, particle 1 refers to 

the striker particle, particle 2 refers to the middle particle, and particle 3 is the end 

particle opposite to the striker particle.  The striker particle is held by a door attached to a 

track along the arc.  The position of the door can be moved along the track in order to 

achieve different impacting velocities when released.  The door is spring-loaded and is 

released by a solenoid.  Once released, particle 1 collides with particle 2, and particles 2 

and 3 travel up the arc.  Due to gravity, g, the particles will eventually come back down 

the arc and collide a second time; however, data is only taken before and after the first 

three-body collision.   

The velocities of each particle before and after collision are measured using a 

high-speed camera.  The camera is manufactured by DVC (model 340M) with a 640×480 

pixel resolution.  To increase the rate of image collection, unnecessary border pixels are 

cropped out.  Depending on the exact distance of the camera and velocity of the incident 
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particle, the resulting resolution is approximately 400×50 to 600×150 pixels.  To 

minimize the effect of wide-angle distortion, a Navitar 7000 zoom lens is used so that the 

camera can be placed approximately 1.5 m away from the pendulum apparatus.  It is run 

at 40MHz and produces a snapshot every 3.1 ms.  The series of snapshots are imported 

into Matlab in order to find the position of each particle center in each frame.  The 

grayscale frames are converted into black-and-white images, with white particles 

appearing on a black background.  The particle edges are then eroded using a pre-existing 

function in Matlab, namely imerode, in order to separate touching particles so they do not 

appear to be one object in Matlab.  The function regionprops calculates the centroid of 

each particle.  Five images before and after the collision are used to calculate the pre- and 

post-collisional velocities, respectively.  The frames during collision, however, are not 

used due to noise resulting from the collision.  The velocities are determined by finding 

the slope of a linear fit of the centroids of the particles versus time for a given set of five 

images.  Based on these velocities, momentum before and after a collision was found to 

be conserved within ~1%.   

In addition to velocity measurements, contact durations associated with the 

collision are obtained by connecting a circuit to the steel particles such that the circuit is 

closed when particles are in contact.  Figure 2.2 shows the circuit diagram.  The circuit 

utilizes three different resistances such that different voltage obtained from the data 

acquisition card (DAQ) represents different contacts (i.e., between particles 1 and 2; 2 

and 3; 1,2 and 3). 
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Figure 2.2  Circuit diagram for measuring contact duration 

 

2.4. Collisional Models 

2.4.1. Soft-sphere models   

The first approach used to simulate the Newton’s cradle experiments is the soft-

sphere collision model, which accounts for the simultaneous, enduring nature of the 

collision between the three particles.  A variety of models have been proposed in the 

literature, and those examined here are identical to those investigated by Stevens and 

Hrenya [19] for the case of two-particle collisions.  Namely, the soft-sphere models 

considered here, along with their abbreviations, are:  Hertz, linear spring and dashpot – 

LSD, Kuwabara and Kono [5] – KK, Lee and Hermann [7] – LH, Walton and Braun [4] 

with constant restitution coefficient – WBCE, Walton and Braun [4] with variable 

restitution coefficient – WBVE, and Thornton [10] – T.  Note that the Hertz model is 

DAQ R2 R1 R3 
1 3 2 

DAQ 
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targeted at the idealized case of perfectly elastic particles, and included here for purposes 

of comparison, as all other models account for inelasticity.  Furthermore, the soft-sphere 

models proposed by Hertzsch et al. [9] and Brilliantov et al. [11] take the same form as 

that of Kuwabara and Kono [5], and thus are not listed separately.  (Note that all of these 

models are quasi-static in nature.  For the particles examined here, collision durations are 

larger than estimates of the wave propagation time [21], thereby lending support to the 

quasistatic treatment.) 

 Table 2.1 contains the force law for each of soft-sphere collisions models and the 

associated input parameters.  The notation introduced in the table includes:  subscripts a 

and b refer to properties associated with particle a and b, respectively (Figure 2.1); m 

refers to particle mass (if no subscript is included, equation is valid only for identical 

spheres with mass m); Fn refers to the (repulsive) normal force experienced by a particle 

during contact; and ξ refers to particle ‘‘overlap’’.  The particle overlap is defined as 

( )max 0, a b b aR R r rξ = + − −         (2.1) 

where r refers to the position of a given particle center.  Also listed in Table 2.1 is the 

regime for which each of the force laws was developed.  For further details, the reader is 

referred to Stevens and Hrenya [19]. 

 A review of the qualitative differences between the various models is presented in 

Table 2.2.  Although the majority of models predict a strictly repulsive interaction, the 

models of LSD, KK, and LH exhibit an attractive force upon rebound at small x.  

Although the magnitude of this force is fairly small, its presence is clearly unphysical for 

the non-cohesive particles under consideration.  Another distinguishing feature among 
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the models is the presence of a force discontinuity at small x for the LSD and LH models.  

In addition to force predictions, the models also exhibit differences in the qualitative 

nature of the predicted restitution coefficient and collision duration.  Contrary to 

experimental evidence that the restitution coefficient decreases with an increase in impact 

velocity, LSD and WBCE predict constant values while LH predicts an increasing value 

of the restitution coefficient with impact velocity.  With regard to collision duration, LSD 

and WBCE predict constant values as the impact velocity is changed, while the remaining 

models correctly predict a decrease in collision duration with an increase in impact 

velocity.  Model predictions exemplifying each of the behaviors listed in Table 2.2 are 

given by Stevens and Hrenya [19]. 
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Table 2.1  Soft-sphere collision models 

 
name abbre-

viation 
regime Inputs force law 

Hertz -- elastic 4
3n eff effk R E=  

where 
( )/eff a b a bR R R R R= +  

( ) ( )2 21 11 a b

eff a bE E E
ν ν− −

= +  

3/ 2   nnF k ξ=   
 

linear-
spring/dashpot 

LSD visco-
elastic 

,  n nk β  
 
 

,    n nn n critF k
d
dt
ξ

ξ β γ= +  

where ,  crit 2n eff nm kγ =
 

( )/eff a b a bm m m m m= +  

Kuwabara and 
Kono[5] 

KK visco-
elastic 2,  n nk γ  

2
3/ 2 1/ 2      nn nF k

d
dt
ξ

ξ ξγ= +  

Lee and 
Hermann [7] 

LH visco-
elastic 3,  n nk γ  

 

3 / 2

3     n n n eff nF k m Vξ γ= +
 

where Vn = normal component of the 
relative velocity 

Walton and 
Braun/ 
constant-e [4] 

WBCE plastic ,  L Uk k  ,  =  n loading LF k ξ  

( ), 0 = n unloading UF k ξ ξ− −  

where ξ0 = value of ξ  at which 
unloading force equals zero 

Walton and 
Braun/ 
variable-e [4] 

WBVE plastic ,  Lk S  ,  =  n loading LF k ξ  

( )( ), 0max =  n unloading LF k S F ξ ξ−+  
where Fmax = maximum force achieved 
prior to unloading 

Thornton [10] T plastic ,  n yk p  
where py = “cutoff 
pressure” 

3/ 2
,   =  n elastic loading nF k ξ  

( ),    = n plastic loading y y eff yF F p Rπ ξ ξ+ −  

( )3/ 2

,   =  n elastic unloading n pF k ξ ξ−  

where Fy = Fn, elastic loading  at ξ = ξy 
2

2
y

y eff
eff

p
R

E
π

ξ =
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

 

ξp = value of ξ  at which unloading 
force equals zero 
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Table 2.2  Qualitative comparison of soft-sphere models  

 

name abbre- 
viation 

rebound 
force at 
small ξ  
(F vs. ξ  ) 

value 
of force as   
ξ  →  0 

(F vs. ξ  ) 

as Vimp 
increases, 
e… 
(e vs. Vimp ) 

as Vimp 
increases, 
τ… 
(e vs. τ  ) 

expected behavior -- repulsive zero decreases decreases 

Hertz -- repulsive zero constant (e=1) decreases 

linear-spring/dashpot LSD attractive nonzero constant constant 

Kuwabara and Kono 
[5] 

KK attractive zero decreases decreases 

Lee and Hermann [7] LH attractive nonzero increases decreases 

Walton and Braun/ 
constant-e [4] 

WBCE repulsive zero constant constant 

Walton and Braun/ 
variable-e [4] 

WBVE repulsive zero decreases decreases 

Thornton [10] T repulsive zero decreases =1 for 
     Vimp < Vy,T 
decreases for 
     Vimp > Vy,T 

 

Generally speaking, the soft-sphere models each require two input parameters that 

do not represent physical, measurable quantities (e.g., spring constant and dashpot 

coefficient).  Based on their experiments involving the collision of two particles, Stevens 

and Hrenya [19] fitted the input parameters to match the experimental values for 

restitution coefficient and collision duration at the mid-range of impact velocities 

examined.  Since the three-particle collisions examined here utilize the same solid 

materials and a similar range of impact velocities as used in the two-particle collisions of 

Stevens and Hrenya [19], identical values are used for the soft-sphere inputs; see Table 

2.3 for specific values.  It is worthwhile to note that the force models of Kuwabara and 

Kono [5] and Lee and Herrmann [7] are defined in terms of the Hertzian spring constant 
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nk , which depends on the particle properties R, E, and n (Table 2.1).  Although nk  is used 

as a fitting parameter in the KK and LH models as described above, its fitted value is 

nearly identical to the Hertzian value, as evidenced in Table 2.3.  Similarly, the inputs to 

the Thornton model [10] are based on material properties, though Thornton and 

coworkers have recognized the sensitivity of the predictions to the value used for the 

‘‘cutoff pressure’’ (py) input [23, 24], and have fitted this value to match measurements 

of other quantities [25, 26].  Accordingly, the fitted value of py obtained by Stevens and 

Hrenya [19] is used in the current effort. 

To obtain model predictions for the post-collisional velocities of all particles 

using the various soft-sphere models, three identical particles are initially positioned in a 

line and touching but not overlapping (separated by two particle radii).  In order to mimic 

the Newton’s cradle setup (Figure 2.1), particles 2 and 3 are initially motionless, while 

particle 1 is given a nonzero, impact velocity, Vimp, in the direction of particle 2.  The 

position and velocity of each particle is then tracked throughout the collisional process 

using the force laws given in Table 2.1.  Specifically, the repulsive force Fn is determined 

at any point in time as a function of overlap x, and this force is used in conjunction with 

Newton’s law of motion (no other forces are considered) to move forward in time.  An 

explicit integration scheme is used to solve the initial-value problem.  The corresponding 

time step, which is typically 3x10-8 s, is small enough to ensure negligible numerical 

errors.  Once none of the particles remain in contact, the post-collisional velocities of 

particles 1, 2, and 3, namely V1, V2, and V3, respectively, are recorded. 
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Table 2.3  Input values for soft-sphere collision models.  The units are as follows:  
3/ 2/nk N m= , /nk N m= , /Lk N m= , ( )2 2/n kg m sβ = , ( )1/ 2

2 /n kg m sγ = , 3 1/n sγ = , 

/Uk N m= , 1/S m= , and 2/yp N m= . 

name abbre- 
viation 

stainless 
steel: 
input 1 

stainless 
steel: 
input 2 

chrome 
steel: 
input 1 

chrome 
steel: 
input 2 

Hertz -- 101.17 10nk = ⋅
 

-- 101.17 10nk = ⋅
 

-- 

linear-spring/dashpot LSD 75.16 10nk = ⋅  24.10 10nβ
−= ⋅  76.25 10nk = ⋅  34.50 10nβ

−= ⋅  

Kuwabara and Kono 
[5] 

KK 101.21 10nk = ⋅  4
2 3.41 10nγ = ⋅  101.28 10nk = ⋅  3

2 3.50 10nγ = ⋅  

Lee and Hermann [7] LH 101.21 10nk = ⋅  3
3 2.85 10nγ ⋅=

 

101.28 10nk = ⋅  2
3 3.50 10nγ ⋅=

 

Walton and Braun/ 
constant-e [4] 

WBCE 74.54 10Lk = ⋅  75.88 10Uk = ⋅  76.16 10Lk = ⋅  76.33 10Uk = ⋅  

Walton and Braun/ 
variable-e [4] 

WBVE 74.54 10Lk = ⋅  41.27 10S = ⋅  76.16 10Lk = ⋅  31.05 10S = ⋅  

Thornton  [10] T  9.14yp Y=
 

-- 2.13yp Y=
 

-- 

2.4.2. Hard-sphere models 

As an alternative to the soft-sphere collision described in the previous section, the 

hard-sphere model can also be used to approximate the three-body interaction.  In 

particular, although the hard-sphere model is limited to binary interactions, the three-

body collision can be approximated as a series of two-body collisions as detailed below.  

The motivation for examining this simplification is its ability to predict the expected 

Newton’s cradle outcome (V1 = V2 = 0 and V3 = Vimp) for perfectly elastic spheres.  More 

specifically, since the hard-sphere treatment is less computationally extensive than its 

soft-sphere counterpart, the application of hard-sphere models to collisions involving 

more than two particles is attractive if model accuracy is not sacrificed. 
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 In mathematical terms, the hard-sphere model for an instantaneous collision 

between two particles derives from the conservation of momentum and a kinetic energy 

balance.  For the simplified case considered here in which particles are identical and the 

only nonzero component of velocity is the normal component, the collision model takes 

the form 

( )( )1
2a ao ao bo
m

V V e V V= − + −        (2.2) 

( )( )1
2b bo ao bo
m

V V e V V= + + −        (2.3)  

where Vao and Vbo are the pre-collisional velocities of particles a and b, respectively; Va 

and Vb are the corresponding post-collisional velocities; and e is restitution coefficient 

defined as 

 a b

ao bo

V V
e

V V
−= −
−

 .        (2.4) 

The restitution coefficient is a measure of particle inelasticity, varying between 1 for 

perfectly elastic particles and 0 for perfectly soft particles.  Although e is a function of 

impact velocity, the values used in the hard-sphere model are assumed constant for 

purposes of simplicity, as this assumption does not impact the conclusions.  In particular, 

e = 0.88 and 0.99 are used for the stainless and chrome steel systems, respectively, based 

on the measurements of Stevens and Hrenya [19] in the mid-range of the velocities 

examined. 
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To apply the two-particle (hard-sphere) collision model to the three-body collision, 

a series of two-body collisions is carried out by assuming an infinitesimal spacing 

between the initially motionless particles (particles 2 and 3 in Figure 2.1).  Accordingly, 

the post-collisional velocities particles 1 and 2 (V1 and V2) are first found using Equations 

2.2 and 2.3 where V1o = Vimp and V2o = 0.  The post-collisional velocity of particle 2 (V2) 

is then used as the pre-collisional velocity when resolving the subsequent collision 

between particles 2 and 3 (V2o = V2 and V3o = 0).  Once the outcomes of this first series of 

collisions is performed, a check is then made as to whether V1 < V2 and V2 < V3.  

Otherwise, a faster particle will catch up to the slower particle and a secondary collision 

will occur.  In all of the (inelastic) cases examined here, V1 > V2 and V2 < V3 after the first 

series collisions, so a secondary collision between particles 1 and 2 is resolved.  The 

outcome of this secondary collision leads to V1 < V2 < V3, so no further ‘looping’ is 

required. 

 As alluded to above, it is worthwhile to note that this hard-sphere treatment leads 

to the expected Newton’s cradle outcome in the limiting case of e = 1.  Namely, the first 

collision between particles 1 and 2 leads to a perfect exchange of velocity, as does the 

second collision between particles 2 and 3.  Correspondingly, V3 = Vimp while particles 1 

and 2 remain motionless at the bottom of the pendulum arc (V1 = V2 = 0).  

 

2.5. Results and Discussion 

In the first phase of the work, experiments are performed to characterize the 

outcome of the normal, three-body collision.  Based on experience with the Newton’s 
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cradle desktop toy (i.e., without the aid of a high-speed camera), the pulling away and 

subsequent release of the impacting particle (particle 1 in Figure 2.1) is expected to lead 

to a velocity exchange with the other end particle (particle 3), while particles 1 and 2 

remain touching at the bottom of the arc.  The experimental results obtained via high-

speed imaging, however, indicate that the expected Newton’s cradle outcome is not 

observed.  Instead, particles 1 and 2 separate slowly after colliding, as shown in the 

snapshots and corresponding velocity data of Figure 2.3.  The velocities and separation of 

particles 1 and 2 are quite small relative to that of particle 3, which explains why the 

desktop toy gives the appearance of the traditional Newton’s cradle outcome.  In fact, 

high-speed images were also taken of a commercially available Newton’s cradle toy 

composed of five spheres, and the four spheres remaining at the bottom of the arc after 

collision were also observed to separate slightly.  For purposes of notation, the Newton’s 

cradle outcome (particles 1 and 2 in contact after collision) will hereafter be referred to as 

NC, while the fully separated outcome (no particles in contact after collision) will be 

referred to as FS.   
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impact

after
impact

        

 

Figure 2.3 Example data from the Newton’s cradle: (a) series of snapshots and (b) 
particle velocities versus time for stainless spheres and Vimp = 0.88 m/s. 

 

Perhaps even more surprising than the FS outcome, though, the striker particle 

(particle 1) reverses its direction (negative velocity) after the collision (Figure 2.1).  This 

behavior is representative of the entire parameter space investigated, as displayed in 

Figure 2.4.  Specifically, Figure 2.4 contains plots of post-collisional velocities of each 

sphere (V1, V2, and V3) over a range of impact velocities (Vimp) for the case of chrome 

steel (subplot a) and stainless steel (subplot b) particles.  For each system, particles 1 and 

2 display a slow separation after the collision (FS), with particle 1 reversing its direction 

and particle 2 continuing in the same direction as the impacting particle.  Not surprisingly, 
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as the impact velocity increases, the post-collisional velocity of each particle also 

increases in magnitude. 

    

 

Figure 2.4  Experimental post-collisional velocities (V1, V2, V3) for all particles at various 
impact velocities (Vimp) using (a) touching, chrome steel spheres, (b) touching, stainless 

steel spheres, and (c) non-touching, stainless steel spheres. 

 

Figure 2.4c is analogous to Figure 2.4b, except that the initial state is different.  

Specifically, particles 2 and 3 are separated slightly prior to the release of particle 1 

instead of being in contact.  Hence, the first collision between particles 1 and 2 is a two-
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body collision rather than a three-body collision.  Furthermore, the contact duration 

measurements confirm that the subsequent collision is between particles 2 and 3 and does 

not involve particle 1 (i.e., a three-particle collision does not occur in this sequence).  

This small change in the initial conditions has a dramatic impact on the outcome, namely 

the velocity reversal of particle 1 is no longer observed.  Although not evident from the 

resolution of data displayed in Figure 2.4c, a review of the snapshots (not shown) 

indicates that particles 1 and 2 do separate slightly (FS outcome) despite the absence of a 

velocity reversal.  Thus, the experiments indicate that a three-body collision is associated 

with the reversal of particle 1, whereas a series of two-body collisions does not lead to 

such reversal.   

In addition to the velocity measurements discussed above, contact duration 

measurements are also taken for the stainless steel particles.  Results obtained when 

particles 2 and 3 are initially touching are shown in Figure 2.5a.  At the time of impact, 

particles 1, 2 and 3 are in simultaneous contact, whereas in the last part of the collision 

only particles 2 and 3 are in contact (i.e., particle 1 separates first).  Finally, after the 

collision, no particles are in contact as they all separate.  Therefore, the contact duration 

between particles 1 and 2 (t12) is equal to the duration of 1, 2 and 3 (t123).  The total 

contact duration of particles 2 and 3 (t23) is equal to t123 plus the duration of 2 and 3 in the 

second part of the collision.  In the scenario where the target particles are not initially 

touching as shown in 5b, particles 1 and 2 come in contact and separate, and then 

particles 2 and 3 come in contact and separate.  The contact duration measurement 

between particles 1, 2 and 3 is zero and so does not appear in Figure 2.5b.  Therefore, 

when the target particles are not touching initially, the collisional sequence is indeed a 
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series of two-body collisions, and a three-body collision never occurs.  Additionally, t12 

and t23 are statistically indistinguishable, which is not surprising since each is a two-body 

collision with similar impact velocities due to the high coefficient of restitution.   

 

 

Figure 2.5  Contact duration measurements between particles 1 and 2 (t12), and 2 and 3 
(t23) using stainless steel with (a) target particles touching and (b) target particles 

separated. 

 

In the second phase of the work, predictions from the various collision models are 

compared to the experimental data.  As described in Section 2.3, two approaches are 

used:  (i) treating the interaction as a series of two-body collisions using hard-sphere 

collision models (Equation 2.2-2.3) and (ii) treating the interaction as a three-body 

collision using soft-sphere models (Table 2.1).  For both approaches, in addition to using 

model inputs based measured values of e, the ideal case of e = 1 is also examined in order 

to assess the role of inelasticity on the collisional outcome.  Figures 2.6-2.8 display the 

post-collisional velocities V1, V2, and V3, respectively, for both the chrome steel (subplots 

a) and stainless steel (subplots b) spheres as a function of the impact velocity Vimp.  The 
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various model predictions are displayed as lines and the experimental data are shown 

using data points.  Note that circles are used for data collected when particles 2 and 3 are 

initially in contact, whereas squares are used for data obtained when particles 2 and 3 are 

initially separated.  Recall that for all inelastic cases, the two-body treatment results in a 

secondary collision between particles 1 and 2 since particle 1 ‘catches up’ to particle 2.  It 

is the velocity resulting from this secondary collision that is reported in the plots for 

particles 1 (Figure 2.6) and 2 (Figure 2.7) since these final velocities are such that V3 > V2 

> V1 (i.e., no more ‘catching up’ will occur). 

 

Figure 2.6  Predictions of post-collisional velocity of particle 1 (V1) at various impact 
velocities (Vimp) using (a) chrome steel and (b) stainless steel spheres. 
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Figure 2.7  Predictions of post-collisional velocity of particle 2 (V2) at various impact 
velocities (Vimp) using (a) chrome steel and (b) stainless steel spheres. 

     

Figure 2.8  Predictions of post-collisional velocity of particle 3 (V3) at various impact 
velocities (Vimp) using (a) chrome steel and (b) stainless steel spheres. 

 

A cursory glance at Figures 2.6-2.8 indicates that the predictions for V1 and V2 

(Figures 2.6 and 2.7) vary significantly between the various models, whereas predictions 

for V3 (Figure 2.8) do not serve as a differentiator between models.  In particular, for the 
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nearly elastic, chrome particles (Figure 2.8a), differences between all model predictions 

shown are essentially indistinguishable.  More distinction arises for stainless particles 

(Figure 2.8b), which are slightly more dissipative, though differences are generally fairly 

small relative to those observed in Figures 2.6 and 2.7.  For this reason, the remaining 

focus is on the data-model comparison for V1 and V2. 

Perhaps the most interesting observations arising from Figures 2.6-2.7, is a 

comparison between the two-body and three-body predictions for (i) the collisional 

outcome (NC or FS) and (ii) the direction of the impacting particle after impact (reversal 

or otherwise).  As evident from the plots, the only treatment that leads to a traditional 

Newton’s cradle (NC) outcome is a two-body approximation for perfectly elastic 

particles (e = 1).  In other words, since both V1 and V2 are predicted equal to zero for this 

case (Figures 2.6 and 2.7, respectively), particles 1 and 2 remain motionless and touching 

at the bottom of the arc while particle 3 bounces off with velocity Vimp since overall 

momentum is conserved.  When e is lowered to realistic values for each of the materials 

(e = 0.99 for chrome steel and e = 0.88 for stainless steel), however, the fully separated 

(FS) outcome is observed using the two-body approximation, which is consistent with the 

experimental data.  However, when considering the reversal of particle 1 after collision, 

the inelastic, two-body approximation is inconsistent with the data for systems in which 

particles 1 and 2 are initially in contact.  Namely, for both chrome and stainless steel 

particles (Figures 2.6a and 2.6b, respectively), V1 is predicted to be positive (moving 

right to left; no velocity reversal occurs) whereas the data indicates that V1 is negative 

(moving left to right; a velocity reversal does occur).  On the contrary, predictions 

obtained from models that account for three-body interactions do predict a velocity 
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reversal, including the Hertz model for perfectly elastic (e = 1) particles.  (Note that the T 

and WBVE models only predict this reversal for a limited range of Vimp, whereas other 

soft-sphere models predict the reversal for all Vimp.)  However, it is interesting to note that 

the non-reversal of particle 1 predicted by the two-body approximation is qualitatively 

consistent with the experimental observations obtained when particles 1 and 2 are not in 

contact initially.  Recall that the contact duration measurements indicate that a series of 

two-body collisions takes place for this case (i.e., a three-body collision does not occur), 

and thus the sequence of events in the experiments with separation and the two-body 

approximation are consistent.  Collectively, these comparisons indicate that a two-body 

approximation (hard-sphere model) is not capable of predicting the velocity reversal 

observed experimentally for a three-body collision, whereas the three-body treatments 

(soft-sphere models) do predict the reversal for all models examined. 

In addition to the qualitative nature of the predictions discussed above, it is also 

worthwhile to consider the quantitative ability of the various three-body treatments.  As 

mentioned above, such soft-sphere collision models have previously been evaluated using 

experimental data obtained from two-body collisions [13, 19, 20], so a direct comparison 

with data from a three-body collision is warranted.  For these purposes, the data in which 

particles 2 and 3 are initially in contact is the relevant case.  For the nearly-elastic chrome 

steel, the predictions obtained from the Hertz, KK, LH, and T models are in excellent 

agreement with the experimental data for V1 and V2 (Figures 2.6a and 2.7a, respectively), 

whereas the models of LSD, WBCE and WBVE over-predict the magnitudes of V1 and 

V2.  For the more dissipative stainless steel, the comparisons are not as clear-cut due to 

noise in the data.  The V1 data generally falls between predictions obtained from the KK, 
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WBCE, and LH models (Figure 2.7b), whereas the V2 data is typically located between 

predictions obtained from the KK, LH, and Hertz models (Figure 2.7c).   

 

Figure 2.9 Contact durations  (a) t12 and (b) t23 of stainless steel particles for target 
particles initially touching at various impact velocities (Vimp). 

 

In addition to model-data comparison for post-collisional velocity, comparisons 

are also carried out for collision durations.  Because the hard-sphere models contain an 

assumption of instantaneous collisions, the comparisons are restricted to soft-sphere 

models.  In particular, for the case in which particles 2 and 3 are initially in contact, the 

durations associated with contacts between the 1-2 and 2-3 particles are displayed in 

Figures 2.9a and 2.9b, respectively, as a function of impact velocity.  Consistent with the 

experimental trends, all models indicate that particle 1 separates from the three-particle 

contact prior to the separation of particles 2 and 3 (i.e., t12 = t123 < t23).  Also, the 

predictions of Hertz, KK, LH, WBVE, and T qualitatively agree with the experimental 

data for both t12 and t23 , namely a decrease in contact duration occurs with increasing 
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impact velocity.  The models of LSD and WBCE, however, predict contact durations that 

are not dependent on impact velocity, contrary to the data.  These trends of contact 

duration versus impact velocity are consistent with those observed by Stevens and 

Hrenya [19] for two-particle collisions.  Finally, from a quantitative perspective, the 

predictions of Hertz, KK, LH, WBVE, and T generally over predict the experimental data 

for both t12 and t23. 

Finally, a sensitivity analysis of model predictions is carried with an eye toward 

the common practice of making spring constants artificially soft.  More specifically, 

relatively hard particles, such as those investigated here, are characterized by short 

collision durations, which require the use of short time steps for the numerical integration 

of Newton’s law of motion.  To speed up the integration and thus allow for the simulation 

of more particles for the same CPU cost, spring constants are often made artificially 

small.  The impact of such a treatment on predictions for the normal, three-body collision 

are carried out here using the KK model, which is chosen due to its relatively accurate 

performance.  For the case of chrome steel, the spring constant is made four orders of 

magnitude smaller ( 61.28 10nk = ⋅  N/m3/2) and the dashpot coefficient is adjusted 

( 2 14.0nγ =  kg m-1/2 s-1) to match the experimental value of e obtained for two-body 

collisions [19].  This choice results in a two-body collision time which is 40 times greater 

than determined experimentally, as expected since the spring constant is artificially soft.  

When these inputs are used to model the three-body system, the post-collisional 

velocities of all particles are the same as those obtained with the original input values, 

though the duration of the impact is larger as expected. 
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2.6. Concluding Remarks 

In this work, a Newton’s cradle setup is used to investigate the simultaneous, 

normal collision between three solid spheres.  Experiments are carried out with the aid of 

high-speed photography and an electrical circuit.  Corresponding predictions of post-

collisional velocities and contact durations are obtained from a variety of collision 

models, including soft-sphere models, which account for three-body interactions and 

hard-sphere models in which the three-body interaction is approximated as a series of 

two-body interactions. 

According to the typical treatment of this system in introductory physics courses, 

perfectly elastic particles (e = 1) will lead to a complete velocity exchange between 

particles 1 and 3 (V3 = Vimp), thereby illustrating the conservation of momentum.  

However, the experiments reveal a different outcome, which also satisfies the 

conservation of momentum.  Namely, particles 1 and 2 separate slowly (relative to 

particle 3) at the bottom of the arc, with particle 1 exhibiting a reversal in its direction 

after impact.  The reversal does not stem from the inelasticity of particles used.  Instead, 

it is traced to three-body nature of the interaction, as all soft-sphere predictions, including 

the Hertz model for perfectly elastic particles, predict reversal, whereas all hard-sphere 

treatments do not.  This statement is further corroborated by a modification to the 

experiments in which the particles at the bottom of the arc are separated by a small 

distance prior to impact instead of being in contact, which leads to a series of two-body 

collisions rather than a simultaneous three-body collision.  For this case, no reversal is 

observed.   
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The contact duration measurements also reveal that, for the case of initially 

touching target particles, the impact is characterized by a simultaneous three-body 

contact immediately followed by a two-body contact involving the target particles.  In 

other words, the striker particle is the first to separate from the three-body collision, 

followed by a separation between the target particles, leading to a fully separated final 

state.  The contact-duration predictions obtained by all soft-sphere models under 

consideration are consistent with this experimental trend. 

Also notable is the observation that the conventional Newton’s cradle (NC) 

outcome is only predicted by hard-sphere (two-body) approximation for perfectly elastic 

spheres.  All other model predictions, namely the hard-sphere approximation for inelastic 

particles and the soft-sphere predictions for both elastic and inelastic particles, result in a 

fully separated (FS) outcome.  The FS outcome is consistent with the data but contrary to 

conventional wisdom that particles 1 and 2 remain motionless and touching at the bottom 

of the arc after impact. 

From a quantitative perspective, the current results for three-body collisions share 

some similarities and differences with those obtained previously by Stevens and Hrenya 

[19] for collisions between 2 particles of the same materials.  Namely, for the two-body 

collisions, the experimental restitution coefficient, which is a function of post-collisional 

velocities, generally falls between the predictions obtained by the soft-sphere models 

Kuwabara and Kono [5] and Walton and Braun (variable e) [4].  For the three-body 

collisions examined here, the Kuwabara and Kono [5] model displays the best overall 

performance in predicting the post-collisional velocities.  However, even though the 

Kuwabara and Kono [5] model closely predicts the contact durations, Lee and Herman 
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[7] shows the best performance for stainless steel.  Hence, some care should be taken 

when choosing the appropriate soft-sphere model for relatively dense systems 

characterized by a significant number of multi-body (>2) contacts; a choice based on the 

predictive ability for two-body contacts may not be appropriate. 

It is worthwhile to point out that the materials examined here – stainless steel and 

chrome steel – are relatively hard.  As noted by Stevens and Hrenya [19], the chrome 

steel may or may not exhibit slight plastic deformation (Vy ~ Vimp < Vfp; Vy is the yield 

velocity and Vfp is the velocity cutoff for the fully plastic indentation regime) and the 

stainless steel is likely to exhibit some plastic deformation (Vy < Vimp < Vfp).  The good 

model-data match obtained using the Kuwabara and Kono [5] model for both post-

collisional velocities and contact durations suggests that both materials are dominated by 

viscoelastic, rather than plastic, losses.  Hence, further experiments are warranted for 

softer materials in order to assess the predictive ability of soft-sphere models targeted at 

plastic deformation. 

Since the hard-sphere treatment is less computationally expensive than its soft-

sphere counterpart, the application of hard-sphere models to collisions involving more 

than two particles is attractive if model accuracy is not sacrificed.  In this work, the hard-

sphere models are most notably inaccurate in their predictions of V1 and V2, and 

particularly the velocity reversal observed for particle 1.  However, it is interesting to 

note that the magnitude of V1 and V2 are quite small relative to V3, which is fairly well 

predicted by both hard-sphere and soft-sphere approaches.  Hence, the implication of 

such inaccuracies on the prediction of macroscopic variables in many-body systems 

remains unknown and warrants further attention. 
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Finally, the sensitivity analysis of the Kuwabara and Kono [5] model performed 

here indicates that an artificial decrease in the spring constant has no negative impact on 

the prediction of the post-collisional velocities, as long as the dashpot coefficient is 

adjusted accordingly to match experimental values of the restitution coefficient.  Note 

that this result is not intended to imply that the chosen value of the spring constant is 

inconsequential.  On the contrary, an artificial decrease in the spring constant corresponds 

to an unrealistic increase in the contact duration [19], which may compromise model 

accuracy when applied to certain granular [27, 28] and gas-solid systems [29, 30]. 
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3. STOKES’S CRADLE: NORMAL COLLISIONS BETWEEN THREE 

WETTED PARTICLES2 

 

3.1. Abstract 

 In this work, a combination of experiments and theory is used to investigate three-

body normal collisions between solid particles with a liquid coating.  Experiments are 

carried out using a Stokes’s cradle, an apparatus inspired by the Newton’s cradle desktop 

toy except with wetted particles.  Unlike previous work on two-body systems, which may 

either agglomerate or rebound upon collision, four outcomes are possible in three-body 

systems: fully agglomerated, Newton’s cradle (striker and target particle it strikes 

agglomerate), reverse Newton’s cradle (targets agglomerate while striker separates) and 

fully separated.  Post-collisional velocities are measured over a range of parameters.  For 

all experiments, as the impact velocity increases, the progression of outcomes observed is 

fully agglomerated, reverse Newton’s cradle and fully separated.  Notably, as the 

viscosity of the oil increases, experiments reveal a decrease in the critical Stokes number 

(the Stokes number that demarcates a transition from agglomeration to separation) for 

both sets of adjacent particles.  A scaling theory is developed based on lubrication forces 

and particle deformation and elasticity.  Unlike previous work for two-particle systems, 

two pieces of physics are found to be critical in the prediction of a regime map that is 

                                                

2 Donahue, C.M., C.M. Hrenya, R.H. Davis, K.J. Nakagawa, A.P. Zelinskaya, and G.G. 
Joseph. Stokes' cradle: normal three-body collisions between wetted particles. Journal of 
Fluid Mechanics 650, 479-504, (2010). 
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consistent with experiments: (i) an additional resistance upon rebound of the target 

particles due to the pre-existing liquid bridge between them (which has no counterpart in 

two-particle collisions), and (ii) the addition of a rebound criterion due to glass transition 

of the liquid layer at high pressure between colliding particles. 

 

3.2. Introduction 

Prior studies of wetted collisions have focused on two-body systems, either 

between a particle and a wetted wall or between two particles.  However, in many-

particle flows simultaneous collisions between three or more spheres are common, even 

for relatively dilute flows.  For dilute flows of non-wetted (dry) elastic particles, the 

probability of a collision involving three or more particles is low since the collisional 

time is small compared to the time between collisions.  In wet flows, however, a contact 

involving three or more particles occurs whenever a pre-existing agglomerate collides 

with a particle or another agglomerate.   

A key difference between a two-particle collision and a collision of a single 

particle with a pre-existing agglomerate is the number of possible outcomes.  In two-body 

collisions, only two outcomes are possible, agglomeration or de-agglomeration.  In this 

effort, the focus is on three-body collisions between an incoming striker particle and two 

initially touching, motionless, target particles (i.e., these particles are initially 

agglomerated), with all particles arranged in a line to ensure normal collisions.  With the 

addition of this third particle, now four outcomes are possible for wetted systems: fully 

agglomerated (FA); ‘Newton’s cradle’ (NC), in which the striker and the target particle it 
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strikes agglomerate while the last target particle is separated, named after the outcome 

commonly associated with the (dry) desktop toy; ‘reverse Newton’s cradle’ (RNC), in 

which the striker is separated and the two targets are agglomerated; and fully separated 

(FS).   

To build on previous efforts, the focus of the current effort is on normal (head-on), 

three-body, wetted collisions, which are investigated using a combination of experiments 

and theory.  The experiments are conducted using an apparatus inspired by the Newton’s 

cradle desktop toy.  In this ‘wetted’ operation, the apparatus is referred to as the ‘Stokes’s 

cradle’ since the fluid motion in the liquid layer between colliding particles is described 

by Stokes (low-Re) flow.  A series of experiments is conducted with variations in fluid 

viscosity, thickness of the liquid layer, particle material, and impact velocity of the striker 

particle.  Comparisons of observed outcomes to predictions reveal new and interesting 

physical processes not present in two-body systems.  First, for a three-particle collision, 

excess liquid exists in the bridge connecting the two initially-agglomerated target 

particles (whereas two-particle collisions do not have a liquid bridge prior to 

contact).  Because the thickness of this bridge is orders of magnitude larger during the 

rebound phase compared to the initial liquid thickness between target particles, the 

additional resistance provided by this ‘excess’ liquid is key to capturing the outcomes 

observed experimentally.  Second, the glass transition of the liquid layer between 

colliding particles adds more ‘bounce’, which proves to be essential in predicting the 

correct outcomes.  
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3.3. Experimental Setup, Materials and Methods 

 The apparatus used in this Chapter is the same as in Chapter 2, but with 

modifications to wet the particles (Figure 3.1).  A coating bath directly underneath the 

target particles is lifted to coat the particles.  Two silicon oils with different viscosities 

are used to coat the particles, namely 12 Pa⋅s and 5.1 Pa⋅s at 25 °C, the nominal 

temperature of the experiments.  The oil densities are both 0.97 g/cm3.  Unlike the 

Newton’s cradle, the three pendulums are spaced 2.9 cm apart, which is slightly larger 

than one particle diameter (2.54 cm).  This extra spacing ensures that sufficient space 

exists for a liquid layer of non-zero thickness (i.e., liquid bridge) between the two 

motionless target particles at the bottom of the arc; if the pendulums were placed one 

diameter apart, the surfaces of the two particles would touch.   

 

Figure 3.1  (a) Schematic and (b) photograph of Stokes’s cradle experimental setup. 

 

(a) (b) 
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 Example snapshots taken during the collision process are shown in Figure 3.2.  

Particle 1 refers to the striker particle, particle 2 refers to the first target particle, and 

particle 3 is the end target particle opposite the striker particle.  Two types of 

measurements are taken to characterize each series of collisions:  (i) the initial thickness 

of the liquid layers between the two target particles, x0,2-3, and between the striker/target 

particles, x0,1-2 (Figure 3.3 (b)), and (ii) the pre- and post-collisional velocities of each 

particle after the first series (right-to-left) of collisions.  As detailed below, the former is 

performed off-line with a high-resolution camera, while the latter is performed with a 

separate high-speed camera. 

 

Figure 3.2  Snapshots of a three-particle wetted collision (a) just prior to collision and (b) 
after the collision using 12 Pa⋅s oil viscosity and stainless-steel particles (case lµ_ss_tn in 

Table 3.2). 

 

  At the beginning of the liquid-layer measurements, the two target particles are 

wetted using a coating bath placed underneath the particles, as shown in Figure 3.3a.  The 

coating bath is raised to immerse the particles in silicon oil and is then slowly 

lowered.  The thickness of the layer will vary with time as the silicon oil drips from the 

particle.  Accordingly, the oil thickness is measured over a range of time.  Measurements 

(a) 

(b) 
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of the oil thicknesses are made via a high-resolution camera, a Pentax SLR K110D with 

6.1 megapixels.  To minimize the effect of wide-angle distortion, a zoom lens is used so 

that the camera can be placed approximately 1.5 m away from the pendulum 

apparatus.  Photographs of the wet particles are taken every 3 seconds during the dripping 

process.  Figure 3.3b is a representative photograph used to calculate the liquid thickness.  

The lighting, aperture, and shutter speed are set at levels to make the particle, and 

particularly the edge of the particle, well defined and dark with respect to the background.  

The particles are almost entirely darker than the background (except for where the flash is 

reflected), and at the top of each particle the green dots contrast against the red 

background (though not apparent from the black and white photograph).  The dots serve 

as a reference point for image processing using built-in Matlab functions.  Matlab 

analysis also locates the position of the outermost edge of the particles, which is the 

initial point of contact during the collision.  Furthermore, photographs of the dry particles 

are also taken prior to their wetting.  From these positions in the dry and wet photographs 

the geometry of the particle positions is sufficiently defined and the thickness of the outer 

layer, x0,1-2,  and the thickness of the inner layer between the particles, x0,2-3, can be 

calculated (Figure 3.3b).  An example of the dependence of the layer thicknesses with 

time is shown in Figure 3.3c.  
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Figure 3.3  (a) Photograph of the target particles during the dripping process and (b) 
high-contrast snapshot taken with the Pentax high-resolution camera.  (c) Plot of the 

thickness versus time for 5.1 Pa⋅s oil viscosity and stainless-steel particles. 

 

  It is important to note that, when the particles are wetted, the surface tension 

associated with the liquid bridge pulls the particles together.  Therefore, the pendulum 

arms move a small angle toward one another.  Even though this angle is quite small 

(~0.1°), its influence on the measurement of the oil-layer thicknesses x0,1-2 and x0,2-3 is 

non-negligible and thus is taken into account when calculating the thicknesses.  The error 

of x0,2-3 measurements is relatively large, considering that a few negative thicknesses are 

calculated.  To verify the measurements of x0,2-3, a small spacer with a known thickness 

(100 – 315 µm) is placed between the two target particles while they are dry.  The 

thickness of the spacer is calculated using the methods described above and compared to 

(c) 

(b) (a) 
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the known thickness, resulting in an error on the order of 10 µm.  Although the error is 

comparable to the size of x0,2-3, predictions from the model presented later do not 

qualitatively change when x0,2-3 is set equal to the size of the surface roughness (lower 

bound of x0,2-3) and when the error of 10 µm has been added to the averaged x0,2-3 (upper 

bound).  Therefore, the error associated with the measurement of x0,2-3 does not change 

the conclusions of this work.   

    Once the oil-layer thicknesses are established as described above, the collisional 

measurements are carried out.  Again, the two dry target particles are dipped in the 

coating bath, and the time at which the collision is carried out is based on the desired oil 

thickness for that measurement as established previously (for example, using linear fit of 

the data in Figure 3.3, five seconds before and after the collision time).  The striker 

particle is not coated, but since it is impacting a wet target (particle 2), the collision 

between the two is wetted – i.e., there is a liquid layer between the particles.  The normal, 

three-body collision is achieved by pulling back along the arc the (dry) striker particle, 

which is then released and allowed to collide with the two motionless, wetted particles at 

the bottom of the arc.  The striker particle is held by a door attached to a track along the 

arc.  The position of the door can be moved along the track in order to achieve different 

impacting velocities when released.  The door is spring-loaded and is released by a 

solenoid.  Once released, particle 1 collides with particle 2, and particles 2 and 3 travel up 

the arc.  Due to gravity, g, the particles will eventually come back down the arc and 

collide a second time, etc.; however, data are only taken before and after the first three-

body collision, since the liquid-layer thickness for subsequent collisions cannot be 

determined as accurately as for this first series.  Figure 3.4 contains a single snapshot 
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taken shortly after the collision for two different cases: (a) a smaller impact velocity that 

leads to a RNC outcome, and (b) a larger impact velocity that leads to a FS state.  The 

corresponding pre- and post-impact velocities are also plotted as functions of time; the 

details of these measurements are described below. 

 

 

Figure 3.4  Snapshots after collision and corresponding velocity versus time plots for 
outcomes of (a) RNC and (b) FS using 12 Pa⋅s oil viscosity and stainless-steel particle  

material (case lµ_ss_tn in Table 3.2).  The initial velocity of particle 1 is from right to left. 

   

 The particle positions versus time and, hence, velocities of each particle before 

and after collision are measured using a high-speed camera.  The camera is manufactured 

by DVC (model 340M) with a 640×480 pixel resolution.  To increase the rate of image 

collection unnecessary border pixels are cropped out.  Depending on the exact distance of 

the camera and velocity of the striker particle, the resulting resolution is approximately 

(a) (b) 
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400×50 to 600×150 pixels.  Similar to the high-resolution camera, a Navitar 7000 zoom 

lens is used so that the camera can be placed approximately 1.5 m away from the 

pendulum apparatus and wide-angle effects are essentially eliminated.  The high-speed 

camera operates at 40MHz and produces a snapshot every 3.1 ms.  The series of 

snapshots is imported into Matlab to find the position of each particle center in each 

frame.  The grayscale frames are converted into black-and-white images, with white 

particles appearing on a black background.  The particle edges are then eroded using a 

pre-existing function in Matlab, imerode, to separate touching particles so they do not 

appear to be one object in Matlab.  The function regionprops calculates the centroid of 

each particle.  Five images before and after the collision are used to calculate the pre- and 

post-collisional velocities, respectively.  The frames immediately before and after the 

collision, however, are not used due to noise resulting from the collision.  The velocities 

are determined by finding the slope of a linear fit of the centroids of the particles versus 

time for a given set of five images.  The error of the velocity measurement is 

approximately 0.005 m/s.  To verify these measurements, collisions between two dry 

particles were performed and compared to those performed by Stevens and Hrenya [1], in 

which a different measurement technique was used (light-based gates) to measure pre- 

and post-collisional velocities.  The two methods show excellent agreement. 

 

3.4. Theoretical Development 

The ultimate objective for a theory describing three-particle, wetted collisions is 

twofold:  to predict the correct outcomes (FA, RNC, NC, and/or FS) over a range of 

experimental parameters, and to accurately predict the post-collisional velocity of each 
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particle.  The first objective, which takes the form of a regime map, serves as a good first 

gauge of the physics incorporated into the theory, while the second objective involves 

refinement of the important physics identified in the first step.  The focus of this work has 

been on the first objective, since the findings presented below indicate that the physics 

necessary to predict the outcomes of three-body collisions go beyond that previously 

reported for two-body collisions.  In particular, two physical mechanisms are found to be 

essential:  (i) consideration of the ‘excess liquid’ from the liquid bridge between the 

initially-agglomerated, target particles (particles 2 and 3); this excess liquid provides 

additional resistance as the particles separate after collision, and (ii) consideration of the 

glass transition (of the oil layer) as a point of rebound due to large lubrication pressures 

that develop for approaching particles. 

To achieve the goal of predicting the correct outcomes, an approximate model is 

used where a three-body collision is modeled as a series of two-body collisions.  First, the 

striker particle (particle 1 in Figure 3.2) collides with the first target particle (particle 

2).  Then, the first target collides with the last target particle (particle 3).  At this point, 

particle 1 may ‘catch up’ with particle 2 and then 2 may strike 3 again, and so on; 

correspondingly, any subsequent collisions are considered.  In each two-particle collision, 

the collision is assumed to have an initial separation of x0 and the collision continues until 

a final separation of xf is reached or until the relative velocity becomes zero.  If the same 

particles experience any additional collisions, the same initial and final separations are 

assumed.  The justification for using this two-body approximation for purposes of 

identifying the important underlying physics is twofold: (i) the results of Chapter 2 

showed that an analogous approximation predicts well the outcome of three-body 
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collisions between dry particles, though some quantitative improvement in the prediction 

of post-collisional velocities is obtained using a three-body treatment, and (ii) in-house, 

preliminary results for a three-body treatment of wet systems indicate that the more 

complex treatment leads to modest quantitative changes though does not appreciably 

change the predicted outcomes (i.e., regime map).   

 

3.4.1. Dimensionless Arguments and Dominant Mechanisms 

 The first task in the theoretical development is to identify the predominant 

mechanisms that govern the behavior.  Accordingly, the appropriate dimensionless 

quantities are assessed.  The Reynolds number, Re, the capillary number, Ca, and the 

particle Stokes number, Stpart, are calculated for the collisions over the range in the 

experimental parameter space.  As stated in Chapter 1, the relevant dimensionless number 

for wetted-particle collisions is the Stokes number, St = mv0/6πµa2, where                         

m = m1m2/(m1+m2) is the reduced mass, v0 is the initial relative velocity, µ is the viscosity, 

and a = R1R2/(R1+R2) is the reduced radius where R is the radius of a particle.  Here, Stpart 

characterizes the particle inertia as it moves through the surrounding air so that the 

viscosity in St is that of the interstitial air.  The largest Re encountered experimentally is 

� 

Re = ρ v x /µ < 0.06 , where ρ is the liquid density, v is the relative velocity of the center 

of particle masses (i.e. v1-v2 or v2-v3), and x is the minimum separation distance between 

the particles.  Since the collisions occur with a low Re, Stokes flow prevails in the liquid 

gap.  Additionally, the smallest experimental Ca (ratio of the viscous force to the 

capillary force) is Ca = 3µav/σx > 3400, where σ is the surface tension of the silicon oil 
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measured to be 2.4 N/m2.  Since the viscous forces dominate, the capillary forces may be 

neglected.  The calculation of Ca is based upon the initial relative velocity of the particles.  

Finally, Stpart is always much greater than unity; therefore, the surrounding air medium 

has negligible effect on the collision dynamics.   

 

3.4.2. Dynamics of Two-body Wet Collisions 

To describe the Stokes (low-Re) flow between spheres dominated by viscous 

forces, a scaling approach is utilized instead of a formal coupling as carried out by 

Kantak and Davis [2].  Namely, the hydrodynamic equations for undeformed spheres are 

solved until a rebound criterion is met, which is based upon a scaling argument.  This 

approximation is used, since the goal here is to obtain qualitative agreement with the 

regime map rather than refining to achieve quantitative agreement, and a formal coupling 

between the three bodies introduces considerable complexities (i.e., system of coupled, 

nonlinear, partial differential equations).  The kinematic equations describing the 

hydrodynamic motion of the two particles during a two-body, wet collision are 

          

� 

dx
dt

= −v(t)                                                                 (3.1) 

and 

m dv
dt

= −FL (t) ,                                                        (3.2) 
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where FL(t) is the viscous (lubrication) force resisting the relative motion of the particles 

in the normal direction.  For small deformations and for x << a, this force is derived by 

Kantak and Davis [2] as 

FL (t) =
6πµa2v

x
1− x

xmax

⎡

⎣
⎢

⎤

⎦
⎥
2

,                                            (3.3) 

where xmax is the maximum thickness of the liquid layer.  The expression for the force 

above is found by integrating the pressure in the gap given by the lubrication equation 

over only the wetted area of the particle.  In previous two-body theories, xmax is assumed 

equal to the initial separation distance for both the approach and rebound stage, but this is 

not a good assumption for the three-body collisions considered here, as described 

below.  As the particle significantly penetrates far into the liquid layer  (x << xmax), the 

term in the brackets quickly approaches unity and the result for the motion of two 

immersed spheres moving towards each other is recovered.  Using the same assumptions, 

the absolute pressure in the gap, also derived by Kantak and Davis [2], is 

 p(r, t) = 3µav
(x + r2 / 2a)2

1− x + r2 / 2a
xmax

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ patm

 ,
       (3.4) 

where r is the distance from the axis connecting the two spheres and patm is the 

atmospheric pressure.  In this work, the pressure is only tracked in t (of which x is a 

function); therefore, only the maximum pressure between the particles is considered.  

Here the maximum pressure occurs at the axis of symmetry (r = 0).  To solve for the 

relative velocity and separation distance as functions of time, Equations 3.2 and 3.3 are 

solved simultaneously using ode23s in Matlab, a solver for stiff differential 
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equations.  Note that these equations are used to describe particle motion during the 

approach phase and rebound phase, if encountered (i.e., if an agglomerate is not formed 

prior to rebound; agglomeration is detected when the relative velocity is equal to zero 

during the approach or rebound phase).  If the rebound criterion is met upon approach, 

the particles rebound with the relative velocity reversed and multiplied by the dry 

restitution coefficient, ed, to account for the (kinetic) energy dissipation experienced by 

the particle during deformation.  Specifics on the initial conditions and conditions for 

reversal of relative velocity (i.e., transition from approach to rebound phase) – the 

rebound criteria – are detailed below.   

 

3.4.3. Effect of Excess Fluid in Liquid Bridge 

 Upon approach of a given particle pair, the initial separation distance is given by 

the initial liquid thickness measured using the high-resolution camera described 

above.  The equations above (Equations 3.2 and 3.3) are solved from this point until 

conditions meet a rebound criterion that will later be described.  If the criterion is met, 

then the particles begin to rebound until they are separated by a final thickness (unless 

agglomeration occurs beforehand).  In previous two-body work [3, 4], the final liquid 

thickness that the particles encounter upon rebound was assumed equal to the initial 

(measured) thickness.  However, in a three-body collision, the initial target particles 

(particles 2 and 3 in Figure 3.2) are already in an agglomerated state before the 

collision.  The measured separation distance between particles 2 and 3, x0,2-3 (see Figure 

3.3b), characterizes well the ‘initial’ thickness as the particles are approaching each other, 

but it does not describe well the final liquid thickness experienced by the particles as they 



 

 70 

rebound until they separate.  Since particles 2 and 3 are initially agglomerated (i.e., in 

contact via their common liquid bridge), ‘excess’ liquid is contained in the bridge (as 

seen in Figure 3.2a) and serves to fill the widening gap beyond a thickness of x0,2-3 as the 

particles separate.  More specifically, as the particles separate, the excess liquid will flow 

in the direction of lowest pressure, which occurs along the centerline (r = 0).  As a result, 

the excess liquid in the bridge fills the gap between the separating particles, as illustrated 

by Figure 3.2b.  Consequently, the final outbound thickness, xf,2-3, is greater than  x0,2-3 

and is related to the amount of excess liquid in the bridge. 

Since the measurements of the initial thickness between the target particles 

(particles 2 and 3) are not adequate to describe the rebound phase of the collision, 

additional steps must be taken to estimate the ‘effective’ thickness stemming from the 

excess liquid in the bridge as the particles rebound.  The ‘effective’ thickness is intended 

to be the separation distance at which the particles escape the resistance of the liquid, and 

not the rupture distance of the liquid bridge [5-7].  Although a small bridge connecting 

the particles may be present at distances greater than xf,2-3, a comparison of the liquid 

bridge in the high-speed video of the collision and the plots of velocity versus time (such 

as shown in Figure 3.4) indicates that this bridge provides negligible resistance in the 

final stages prior to rupture since the velocity remains constant while the bridge is still 

intact.  To calculate xf,2-3, the volume of the liquid bridge is divided by the relevant 

surface area of the particles.  In particular, the liquid bridge is approximated as symmetric 

about the centerline.  The shape of the bridge is also approximated to be that of a cylinder 

(Vcyl), minus the volume indented by the spherical shape of the particles (Vcap) at the caps 

of the cylinder.  In this way, xexcess,2-3 is found by an additional measurement of the height 
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of the liquid bridge (h in Figure 3.2).  The volume of the indented cylinder is then 

calculated as 

Vcyl,ind =Vcyl − 2Vcap

= h
2

4
π 2 R − R2 − h2 / 4( )+ x0,2−3⎡
⎣⎢

⎤
⎦⎥

−2 1
3
π 3R − R − R2 − h2 / 4( )⎡
⎣⎢

⎤
⎦⎥ R − R2 − h2 / 4( )⎡
⎣⎢

⎤
⎦⎥
2⎧

⎨
⎩

⎫
⎬
⎭

 .  (3.5) 

Assuming that the liquid will be evenly dispersed over the caps as the particles separate, 

the thickness of the (final) liquid layer between the rebounding particles is the volume of 

the indented cylinder divided by the area of one cap (dividing by the area of both caps, 

would only give one-half of the thickness), where the area of one cap is given as 

             Acap = 2πR R − R2 − h2 / 4( )                                      (3.6) 

Accordingly, the liquid-layer thickness upon rebound, when accounting for excess liquid 

in the bridge, is 

xexcess,2−3 =
vcyl,ind
Acap

= 1
6R

h2 − 2R R − R2 − h2 / 4( ) = 3x0,2−3 R − R2 − h2 / 4( )⎡
⎣⎢

⎤
⎦⎥ .  

            (3.7) 

The xexcess,2-3 value calculated in this manner for the experiments is found to be ~1-2 

orders of magnitude larger than x0,2-3.  A similar treatment for the final thickness between 

particles 1 and 2 is not necessary since the particles are not agglomerated prior to 

collisions (i.e., no pre-existing liquid bridge is present to provide excess liquid upon 

rebound).  Hence, xf,1-2 = x0,1-2 for purposes of model calculation. 
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The calculation of xexcess,2-3 is a critical component of the model, as can be seen 

from a comparison of the current model (using xf,2-3 = xexcess,2-3) with predictions from the 

same model except without considering the bridge using xf,2-3 = x0,2-3.  This treatment of 

xf,2-3 enters the model in two areas: (i) xmax in Equations 3.4 and 3.5 is equal to the largest 

liquid separation between two particles, so, when considering xf,2-3 = xexcess,2-3,  xmax is also 

equal to xexcess,2-3; and (ii) upon rebound of particles 2 and 3, the differential Equations 3.2 

and 3.3 are solved until the separation of the particles reaches xf,2-3.  Therefore, if xf,2-3 = 

x0,2-3, the equations are solved until a much smaller separation distance is achieved than 

when xf,2-3 = xexcess,2-3.  To illustrate these concepts, Figure 3.5 is a representative plot of 

the wet restitution coefficient for each particle pair versus St.  Here, increasing the impact 

velocity of the striker particle increases St, while all other parameters remain 

unchanged.  The wet restitution coefficient between particles 1 and 2 is a ratio of the final 

velocities over the initial velocities and is defined as 

� 

ew,1−2 =
v f ,2 − v f ,1
v0,1

,        (3.8)     

where the subscripts 1 and 2 indicate particles.  Similarly, the wet restitution coefficient 

between particles 2 and 3 is 

      

� 

ew,2−3 =
v f ,3 − v f ,2

v0,1
,                                                                      (3.9) 

where it is normalized by the initial velocity of particle 1 since the initial velocities of 

particles 2 and 3 are zero.  When ew,1-2 is zero and ew,2-3 is zero, the outcome is FA; for 

ew,1-2 zero and ew,2-3 non-zero, the outcome is NC; for ew,1-2 non-zero and ew,2-3 zero, the 

outcome is RNC; finally, when both are non-zero, the outcome is FS.  For collisions 
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between particles that agglomerate, the wet restitution coefficient is zero by definition, 

and thus the unphysical negative experimental values stem from the error in velocity 

measurements.  In particular, the error in the measurement of the particle velocity 

propagates to give an error in ew of approximately 0.02 for low velocities and 0.002 for 

high velocities.  In Figure 3.5a, the thin lines represent the theoretical predictions for xf,2-3 

= x0,2-3, and the thick lines represent the predictions for xf,2-3 = xexcess,2-3.  The vertical 

arrows pointing to St1-2* and/or St2-3* are also shown, and the associated outcomes on 

each side of these values are indicated.  The theory without the bridge using xf,2-3 = x0,2-3 

predicts only two outcomes: FA at lower St and NC at higher St.  In contrast, the current 

model accounting for the excess bridge fluid predicts three outcomes: FA at low St, RNC 

at intermediate St, and FS at high St.  To test the model, Figure 3.5b shows the 

corresponding experimental data.  Then, the data reveal outcomes of FA, RNC, and FS as 

St increases, in qualitative agreement with the current model and not with the one 

neglecting the excess bridge fluid.  Furthermore, for the model without the bridge using 

xf,2-3 = x0,2-3, as the velocity of the striker particle increases, the predicted value of ew,2-3 

rises rapidly, levels off, and then increases further.  The experimental data, on the other 

hand, indicate that ew,1-2 rises rapidly and then decreases before it levels off, and ew,2-3 

increases smoothly past St2-3*.  The same behavior in the experimental data is observed 

for all of the parameters.  In contrast, the current model that utilizes xf,2-3 = xexcess,2-3 

qualitatively predicts the correct outcomes (FA, RNC, FS as St increases).  Moreover, its 

features are similar to the experimental results, and the same is true for all of the 

parameters presented here. 
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Figure 3.5  Comparisons of (a) theoretical predictions for ew using the model without the 
bridge, xf,2-3 = x0,2-3, (thin) and the current model with xf,2-3 = xexcess,2-3 (thick), and (b) 

experimental data using parameters for three-body collisions with 12 Pa⋅s viscosity oil, 
chrome-steel particles and thick oil layer (case hµ_cs_tk in Table 3.2).  Both models 
assume that the oil undergoes a glass transition at 5.5×108 Pa as a rebound criterion, 

which is the middle of the range of reported values for silicon oil.  Further details about 
the glass transition are discussed in section 3.4.   

 

  It is important to note that the finding demonstrated in Figures 3.5a and 3.5b, 

namely that accounting for the effect of the excess liquid in the bridge is crucial in 

obtaining the correct outcomes, does not stem from an (undue) sensitivity to the input 

(a) 

(b) 
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parameters.  This concept is illustrated in the regime map of Figure 3.6, which contains a 

semi-log plot of xf,2-3 versus St.  In Figure 3.6, the outcomes (FA, NC, RNC, and/or FS) 

of the collisions have been calculated according to the current model presented above and 

all parameters are held constant except the final thickness xf,2-3 and impact velocity 

(which is proportional to St).  The solid lines indicate the border between regions with 

different outcomes.  The calculated points along the lines are indicated by dots.  These 

lines are slightly jagged due to the discrete nature of the calculated outcomes.  This 

feature could be minimized by greater resolution; however, great computational power 

would be required.  The current computational requirements to create a regime map are 

significant for two reasons:  1) each three-body collision could contain many two-body 

collisions (some parts of the parameter space require a large number of collisions, for 

instance, when particles become FA), and 2) the equations are stiff.  The dashed lines 

indicate experimental values of x0,2-3 and xexcess,2-3.  Consistent with Figure 3.5, more 

calculations obtained using xf,2-3 = xexcess,2-3 predict the ordering of regimes observed 

experimentally (FA, RNC, FS) whereas predictions obtained using xf,2-3 = x0,2-3 are 

different (FA, NC).  Moreover, it is clear in Figure 3.6 that the erroneous outcomes 

predicted using xf,2-3 = x0,2-3 do not stem from experimental error, as this value of xf,2-3 is 

two orders of magnitude smaller than that associated with the correct regimes.  Similar to 

the results depicted in Figures 3.5a and 3.6, results from the rest of the parameter space 

also point to the need of accounting for the excess liquid in the bridge between the target 

particles (i.e., xf,2-3 = xexcess,2-3).  
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Figure 3.6  Predicted regime map as a function of xf,2-3 and St using parameters for 12 
Pa⋅s oil and chrome-steel particles and thicker initial thickness (corresponding to case 

hµ_cs_tk in Table 3.2).  Dashed horizontal lines represent xf,2-3 = xexcess,2-3 and               
xf,2-3 = x0,2-3.  The model assumes that the oil undergoes a glass transition at 5.5×108 Pa.   

 

3.4.4. Pressure-dependent Glass Transition 

 In addition to the excess liquid in the existing bridge between particles 2 and 3, 

the effect of the pressure on the properties of the oil in the gap is found to be a critical 

physical process during the three-body collisions.  Note that Barnocky and Davis [8] 

included pressure dependence in the viscosity of the oil for their work on two-body 

immersed collisions, though they concluded that its effect was weak for their parameter 

space.  In this work, only the point of glass transition is considered.  The glass transition 

can be viewed as a simplified way to treat a pressure-dependent viscosity, where the 

viscosity of the oil is equal to the ambient viscosity at pressures lower than the glass-
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transition pressure (the pressure at which the silicon oil behaves as a solid), and the 

viscosity of the oil is infinite at pressures above the glass-transition pressure.  For this 

treatment, the viscosity remains constant throughout the collision process, and rebound 

will occur if the pressure in the gap reaches the glass-transition pressure.  An associated 

length scale, xgt, can be found by letting r = 0 and rearranging Equation 3.5 so that x = xgt 

when p = pgt; therefore, 

xgt =
3µavxmax

2

pgt − patm( )xmax2 + 3µav .      (3.10) 

This criterion for rebound is used in addition to those previously used by Davis et al. [3], 

as described in the next paragraph.  In the literature, the glass-transition pressure for 

silicon oil is reported over a range from 4×108 Pa [9] to 7×108 Pa [10]. 

In previous work by Davis et al. [3],  rebound occurs if one of two conditions is 

met; namely, the particles have sufficient inertia during the collision to penetrate the 

liquid layer until their separation decreases to an elastohydrodynamic length scale or to 

the characteristic roughness of the particles.  The elastohydrodynamic length scale for 

rebound is defined as 

      xr = 3πθµa3/2v0 / 2( )2/5  ,                                                              (3.11) 

where v0 is the initial relative velocity of a given particle-pair collision.  Here, θ is 

calculated from the material properties of the dry particles and is 

� 

θ = 2(1−ν
2)

πE 2 .                                                                                (3.12) 
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The length scale xr was derived by Davis et al. [3] via a scaling argument, which 

incorporated the effects of lubrication and elastic theories (i.e., elastohydrodynamics).  A 

more formal treatment of elastohydrodynamics (coupling of equations governing 

lubrication and particle deformation) was utilized by Kantak and Davis [2].  However, 

since they assume that cavitation occurs upon rebound, no resistance upon rebound is 

included in their model.  As described above in the context of three-particle collisions, it 

is necessary to have resistance upon the rebound, or else the excess liquid from the pre-

existing liquid bridge between the target particles would not affect the 

dynamics.  Without rebound resistance, NC would be predicted as one of the outcomes 

for the experimental parameters (whereas NC never occurred in the experimental 

parameter space employed) because the rebound resistance between particles 1 and 2 

would be much greater than that between 2 and 3 since x0,1-2 >> x0,2-3 in our 

experiment.  Hence, the approximate model of Davis et al. [3] is modified in this effort to 

include outbound resistance and rebound upon the glass transition.  Including the glass 

transition in the model is an improvement upon Davis et al. [3], since it is unphysical for 

the particles to continue their approach once the glass-transition pressure has been 

achieved and even higher pressures would be achieved if particles were allowed to 

continue their approach.  

            In the model presented here, the differential Equations 3.2 and 3.3 are solved from 

the initial separation until the particle separation decreases to one of three length scales: 

(i) xgt, given in Equation 3.11 (ii), xr, given in Equation 3.12, or  (iii) the roughness 

(bump) size of the particles, xb.  In this work, xb is assumed to be 1 µm based on previous 

measurements of similar materials [11].  For the parameter space examined here 



 

 79 

(corresponding to the experimental conditions), however, xgt is always encountered 

before xr or xb, and so the glass-transition pressure serves as the criterion for rebound.   

Given that the glass-transition criterion is not specific to three-body collisions, it 

is instructive to first compare the various theories for two-particle collisions, since 

previous theories have shown reasonable agreement with experimental data.  In order to 

clarify the difference among the theories, Table 3.1 is a summary of the wetted two-body 

models compared here.  The heading ‘coupling’ refers to the coupling of the 

hydrodynamics and deformation (i.e., how elastohydrodynamics is accounted for); 

‘scaling’ refers to an approximate coupling through the use of xr as a rebound criterion 

(as xb and xgt do not depend on particle material properties), whereas ‘formal’ refers to 

the fully-coupled solution of the lubrication equations and deformation equations.  In the 

current model and the modified model of Davis et al. [3], the relative velocity and 

separation gap are determined using lubrication resistance for undeformed spheres until 

the gap decreases to the largest of xr, or xb [3] or xgt, xr, or xb (current model), at which 

point rebound occurs.  In Kantak and Davis [2] the fully-coupled lubrication and elastic 

deformation equations are solved.   
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Table 3.1  Two-body wetted model comparisons. 

 

To investigate how well the theories in Table 3.1 perform, Figure 3.7 is two plots 

of ew versus St for two-particle collisions with two different viscosities.  The wet 

restitution coefficient for a two-particle collision is defined as 

� 

ew =
v f ,2 − v f ,1
v0,1

,                                                                              (3.13) 

where the subscripts 1 and 2 refer to the striker and target particles, respectively.  When 

ew is zero, the two particles agglomerate, and when ew is non-zero, the two particles 

bounce or separate.  Here, experimental data obtained from the Stokes’s cradle for two-

particle collisions (points) are compared to the three theories described above.  (In the 

two-particle implementation of the Stokes’s cradle, the striker particle is dry and the 

single target particle is wetted via the coating bath.) The modified Davis et al. [3] model 

(thin-dashed-dotted) predicts a larger critical Stokes number, St*, than observed 

                                                

3 For a more direct comparison with the current theory, the Davis et al. (2002) theory has 
been modified in three ways: (i) equations 4 and 5 are solved upon approach and 
rebound, instead of solving the equations of an immersed sphere where the initial 
separation in multiplied by 2/3 to account for wetting by the finite larger thickness, (ii) xr 
directly depends on the relative velocity as a function of time 
(therefore xr = 6πθµa3/2v / 2( )2/5 ), and (iii) outbound resistance is included in the model.  

Model Coupling Outbound 
Resistance 

Gap at Which 
Rebound Occurs 

Modified Davis et al. (2002)3 scaling yes largest of xr, xb 

Kantak and Davis (2006) formal no variable 

Current Model scaling yes largest of xgt, xr, xb 
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experimentally and underpredicts ew (for non-agglomerated particles) compared to the 

experimental results.  While Kantak and Davis [2] (thick-dashed) does a good job of 

predicting St*, it too consistently underpredicts ew.  Kantak and Davis [2] also assumes 

no resistance on rebound; the inclusion of such resistance would shift their predictions to 

the right on the plot, resulting in a greater mismatch of St*.  As mentioned previously, 

outbound resistance is necessary in order to capture the correct outcomes via 

incorporation of xexcess,2-3.  Furthermore, the same underpredictions of ew may be seen 

when compared to their own experimental data (see Figure 3.7 in original article), since 

the only experimental data presented used particles with edry = 0.7 and yet the theory 

assumes perfectly elastic particles.  The current model (solid) includes an assumed glass-

transition pressure of 5.5×108 Pa, in the middle of the range of the pressures reported in 

the literature4.  The current model makes improvements over its modified predecessor [3] 

in that it predicts a lower St* and a higher slope of ew more consistent with the 

experimental data.  Additionally, the current model also offers some quantitative 

improvements over Kantak and Davis [2] in regions of higher St when the current model 

exhibits a larger ew.  Nevertheless, the current model is shifted toward higher St than 

observed experimentally.  Thus, quantitative difference may be due to the approximate 

nature of the model and the possibility that there is only partial resistance during the 

rebound stage of the experiments (such as would be the case if cavitation occurred but 

only over a portion of the domain or with a dynamic delay).   

                                                

4 The overprediction of St* in two-body collisions by the current model is due to the 
approximate scaling model employed and the treatment of the glass transition, both of 
which also lead to an overprediction of St1-2* and St2-3* in three-body collisions.  
Therefore, a discussion of the overpredictions can be found below in section 5 with 
respect to three-body collisions.   
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Figure 3.7  Wet restitution coefficient versus Stokes number for wet collisions between 
two particles with properties of (a) stainless-steel particles, 12 Pa⋅s viscosity oil, and 294 

µm oil thickness and (b) chrome-steel particles, 5.1 Pa⋅s viscosity oil, and 180 µm oil 
thickness.  Comparisons are presented between experimental results and theories 

proposed by a modified form of Davis et al. [DRG (2002)], Kantak and Davis [KD 
(2006)], and the current model using a glass-transition pressure of 5.5×108 Pa. 

 

  The improvement that the inclusion of the glass-transition criterion for rebound 

makes relative to Davis et al. [3] for two-particle collisions is found to be crucial in 

predicting the correct outcomes of three-body collisions.  In Figure 3.8, the three-body 

collisions are modeled as a series of two-body collisions.  The thin lines represent the 

modified theory of Davis et al. [3] without considering the glass transition.  The thick 

lines represent the current theory that includes the condition of rebound at the glass-

transition pressure of 5.5×108 Pa.  The vertical arrows demarcate the outcomes for an 

easy comparison.  As seen in both Figure 3.8a and Figure 3.8b for the two viscosities, the 

(a) 

(b) 
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experimental outcomes observed as St increases (for the range of St examined) are FA, 

RNC, and FS, respectively.  The predictions using the model of Davis et al. [3] produces 

outcomes of FA and NC for 12 Pa⋅s, and FA, RNC, NC for 5.1 Pa⋅s.  For the current 

theory, which has the glass-transition pressure as a rebound condition, the outcomes for 

12 Pa⋅s are in qualitative agreement with experiment.  However, the outcomes predicted 

for 5.1 Pa⋅s viscosity are FA, RNC, NC and FS, which differ from experimental 

outcomes since NC was not observed.  For the plots using 5.1 Pa⋅s viscosity, within the 

region of RNC, ew,1-2 is relatively small, as it is for all 5.1 Pa⋅s plots presented in this 

work.  Similar to the two-particle collisions (Figure 3.8), the approximate theories 

overpredict the observed critical Stokes numbers.  As mentioned previously, the Ca is 

based upon the initial relative velocity of the particles.  Because the collisions of particles 

with 5.1 Pa⋅s oil have small final relative velocities between particles 1 and 2, it is 

worthwhile to revisit the assumption of neglected capillary forces to determine whether 

or not the RNC region, which occurs over a very small range of St, is still predicted.  

More specifically, if capillary forces are considered in this region, RNC may not be 

predicted since particles 1 and 2 would be more likely to agglomerate due to the 

additional cohesion associated with capillary forces.  However, Ca is found to still be 

substantially greater than unity between particles 1 and 2 for St within the region where 

RNC is predicted, when using the final relative velocities of the particles (rather than 

initial).  Therefore, even if capillary forces were considered here, RNC would still be 

predicted and the predicted progression of outcomes for all parameters explored would 

remain the same. 
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Figure 3.8  Wet restitution coefficient versus Stokes number for normal three-particle 
collisions with (a) 12 Pa⋅s oil viscosity and stainless-steel particles (case hµ_cs_tk in 
Table 3.2), and (b) 5.1 Pa⋅s oil viscosity and chrome-steel particles (case lµ_ss_tn in 

Table 3.2).  The experimental results are compared against the modified theory of Davis 
et al. [DRG (2002)], represented by the thin lines, and the current model that uses the 

glass-transition pressure equal to 5.5×108 Pa as a rebound point, represented by the thick 
lines.  

 

To gain insight into the source of the additional predicted outcome (NC) relative 

to that observed experimentally for 5.1 Pa⋅s viscosity (Figure 3.8b), a regime map of the 

predicted outcomes as a function of the glass-transition pressure and St is plotted in 

Figure 3.9.  The dashed lines represent the reported glass-transition pressures.  In this 

work, 5.5×108 Pa has been used for model predictions, since it is the midpoint of the 

reported values.  However, the regime map (Figure 3.9) clearly indicates that the 

(b) 

(a) 
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predicted outcomes, over this range of glass-transition pressures, are near a transitional 

point on the regime map.  For instance, a glass-transition pressure of 3×108 Pa predicts 

the correct outcomes, which is fairly close to the reported range, especially considering 

the width of the reported range.  Consequently, the experimental/model mismatch does 

not provide enough evidence of the need for an improvement of the overall physics, only 

a refinement of the approximations. 

 

 

Figure 3.9  Regime map of glass-transition pressure versus St for 5.1 Pa⋅s viscosity oil, 
chrome-steel particles, and thinner (case lµ_cs_tn in Table 3.2).  The dashed lines 

demarcate the range of the glass-transition pressure for silicon oil that has been reported.   
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3.4.5. Model Summary 

            To recap, the theory for three-body collisions that has been developed in this 

section expands upon the two-body, scaling theory derived by Davis et al. [3].  In 

particular, the position and velocities of the particles are found by considering the three-

body collision as a series of two-body collisions and solving the kinematic equations 

above (Equations 3.2 and 3.3) for each collision.  In contrast to previous works, here the 

value of the maximum liquid-layer thickness, xmax, for the collision between the initial 

agglomerated targets in Equations 3.4 and 3.5 is changed to equal xexcess,2-3 due to a pre-

existing liquid bridge (not present in two-particle systems).  Equations 3.2 and 3.3 are 

solved with an initial separation equal to the initial (measured) thickness.  They are 

solved for decreasing separation of the sphere noses during the approach stage until one 

of three rebound criteria is met, two of which were previously explored in Davis et al. [3], 

namely, the separation distance decreases to xb, xr or xgt, where surface roughness, elastic 

deformation, or the glass transition, respectively, becomes important.  The additional 

(third) rebound condition used here is the length scale that incorporates the effects of the 

glass transition, which for the parameter space explored here, is always encountered 

before the other two conditions.  At the beginning of the rebound stage, the relative 

velocity is equal to the negative velocity at the time at which the rebound condition was 

achieved multiplied by edry.  The kinematic equations are again solved until the gap 

between the particles increases to xf, at which point separation occurs.  For the collision 

between particles 1 and 2, xf,1-2  remains equal to x0,1-2; between particles 2 and 3, xf,2-3 is 

now equal to xexcess,2-3, since these particles are agglomerated before the collision and 

their liquid bridge contributes excess liquid to the gap as the spheres separate.  If at any 
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time during this process the relative velocity equals zero, agglomeration occurs and any 

further integration in time is not required. 

 

3.5. Additional Results and Discussion 

 Now that the important physics of three-particle collisions have been identified, 

the objective of the current section is twofold: (i) to further assess the ability of the model 

to predict the correct progression of outcomes over a wider range of experimental 

parameters, and (ii) to determine the ability of the model to predict trends in the plot of ew 

versus St as experimental parameters are varied.  For all cases, model predictions are 

obtained using the theory described above, namely via an approximation of the three-

body collision as a series of two-body collisions, using an effective thickness based upon 

the excess liquid in the bridge as a final thickness between the target particles, and adding 

glass-transition effects as a condition of rebound. 

With regard to the first objective, a listing of the varied experimental parameters 

is found in Table 3.2 along with the corresponding outcomes, both experimental and 

predicted, in order of increasing impact velocity (or, equivalently, increasing St).  

Parameters that are varied include: oil viscosity, particle material, oil thicknesses 

(including x0,1-2, x0,2-3 and xexcess,2-3), and impact velocity.  The notation used to describe 

each case refers to viscosity, high (hµ) or low (lµ); particle material, chrome steel (cs) or 

stainless steel (ss); and liquid thickness, thick (tk) or thin (tn).  Various oil thicknesses are 

achieved by varying the drip time (i.e., time to collision after immersion in the coating 

bath) as illustrated in Figure 3.3c.  The particles drip for either 60 (thick) or 120 (thin) 
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seconds before a collision.  The experimental outcomes in all cases are FA, RNC and FS 

as the impact velocity is increased.  For all three-particle collisions involving the higher-

viscosity 12 Pa⋅s silicon oil (cases hµ_cs_tk – hµ_ss_tn), the outcomes predicted are the 

same as the outcomes observed experimentally.  In the collisions involving the lower-

viscosity 5.1 Pa⋅s silicon oil (cases lµ_cs_tk – lµ_ss_tn), the predicted outcomes contain 

all of the observed outcomes in the correct order, the only difference being that an 

additional outcome of NC is predicted.  However, as described in the section above and 

illustrated in Figure 3.7, this discrepancy can be explained via the proximity of the 

predictions to a transitional point on the regime map and uncertainty in previous 

measurements of the glass-transition pressure, as well as the approximate nature of the 

scaling theory. 
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lµ_ss_tn 

lµ_ss_tk 

lµ_cs_tn 

lµ_cs_tk 

hµ_ss_tn 

hµ_ss_tk 

hµ_cs_tn 

hµ_cs_tk 

case 

Table 3.2  Experim
ental param

eters for norm
al, w

etted, three-particle collisions.  Experim
ental and predicted outcom
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in order of increasing velocity of the striker particle.  The possible outcom

es are fully agglom
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), N
ew

ton’s cradle (N
C

), 
reverse N
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ton’s cradle (R

N
C

), and fully separated (FS).  A
 glass-transition pressure of 5.5×10

8 Pa is used for all predictions. 
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Related to the second objective mentioned above, the theory is able to predict the 

same trends in St1-2* and St2-3* as the experimental parameters are varied.  First, the 

viscosity of the oil is investigated.  To show robustness, Figure 3.10 is a plot of ew versus 

St for both (a) chrome steel and (b) stainless steel.  The experimental results are shown 

here as points, but only demarcations of St1-2* for the current model are shown for a 

qualitative comparison.  As the viscosity is increased, the experimental results for both 

St1-2* and St2-3* decrease (i.e., the particles have a larger tendency to rebound for a given 

St).  As shown, the model is in qualitative agreement with these trends.  Observing 

smaller St1-2* and St2-3* with larger viscosity may at first seem counterintuitive, since a 

high viscosity implies a ‘stickier’ collision.  In particular, if ew is plotted against the 

dimensional impact velocity instead of the dimensionless St, the lower-viscosity oil 

would experience a transition from FA to RNC at a smaller impact velocity; therefore, in 

practice, as viscosity is increased the collision is indeed ‘stickier’ and separation occurs at 

higher impact velocities.  The predicted trend can be traced to the rebound criteria 

contained in the model.  In previous modeling of two-body collisions by Ennis et al. [4], 

the only rebound criterion used was surface roughness (xb), and ew was related to the 

parameters by 

� 

ew =
0 , St < Stc

ed (1− Stc /St), St > Stc

⎧ 
⎨ 
⎩ 

       (3.14) 

and 

� 

Stc = 1
ed
ln xb

x0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .        (3.15) 
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Notice that St* has no dependence on the viscosity, which is contrary to the data 

contained in Figure 3.10.  In contrast, for the work by Kantak and Davis [2], 

elastohydrodynamics correctly predicts the decrease in St* for two particles with 

increasing viscosity.  In their work, the trend stems from the fact that as the pressure 

increases the particles deform more, leading to a greater storage of energy to be released.  

Therefore, since the pressure increases more with a larger oil viscosity, there is more 

deformation of the particles, and the collision has a smaller St* with larger viscosity.  

Similarly, this physical process is accounted for in the scaling analysis by Davis et al. [3] 

since, in Equation 3.11 and 3.12, xr depends on the solid-particle properties, namely E 

and ν.  In the current model, the correct trends are predicted even though the xr does not 

serve as the rebound length scale.  Instead, the glass-transition length scale, xgt, prevails.  

Accordingly, the point of rebound is only dependent upon the pressure between the 

particles, not the solid-particle properties.  Therefore, in this work the mechanism for the 

observed trend with viscosity does not arise from elastohydrodynamic theory, but rather 

from the relation between pressure and viscosity.  As seen in Equation 3.4, the pressure is 

proportional to viscosity, and so a higher pressure is achieved with a higher viscosity.  

Therefore, rebound at the glass-transition pressure can be achieved at a larger separation 

distance with a high viscosity.  This result can be also seen in Equation 3.10, where xgt 

increases as the viscosity increases.    
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Figure 3.10  Effect of oil viscosity on the wet restitution coefficient for (a) chrome steel 
and thicker liquid layer (cases hµ_cs_tk and lµ_cs_tk), and (b) stainless steel and thinner 
liquid layer (cases hµ_ss_tn and lµ_ss_tn).  The vertical solid lines demarcate St1-2* and 

show that this critical value for rebound shifts to higher values for both theory and 
experiment as the viscosity is decreased.   

 

Although the glass transition is not dependent upon the solid-particle properties, 

these properties do have an impact on the dynamics of the collision upon velocity 

reversal (via particle deformation).  In particular, the influence of the dry restitution 

coefficient is demonstrated in Figure 3.11, where viscosity and all thicknesses are held 

(a) 

(b) 
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constant while varying the two different types of particle material, chrome steel (ed = 

0.99) and stainless steel (ed = 0.90).  Both the experiment and theory agree that, as the dry 

restitution coefficient increases, St1-2* and St2-3* decrease and ew,1-2 and ew,2-3 increase.  As 

expected, the softer particles will experience a greater energy loss during collisions, and 

thus are more likely to agglomerate.  In the theory, upon rebound, the particles have a 

relative velocity equal to the negative of the relative velocity when the rebound criterion 

is met, multiplied by edry.  Therefore, after a collision between two particles, a smaller edry 

results in a smaller relative velocity and thus a smaller ew.  Nonetheless, since the 

difference in the dry restitution coefficients between the two particle materials is small, 

the shift seen is also small.  Here, edry refers to the dry restitution coefficient between two 

steel particles, since measurements are not available between steel and solid silicon oil.  

As seen from Figure 3.11, this approximation is able to capture the appropriate trends 

between harder and softer particles. 
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Figure 3.11  Effect of particle material on the wet restitution coefficient with (a) 12 Pa⋅s 
and thicker liquid layer (cases hµ_cs_tk and hµ_ss_tk), and (b) 5.1 Pa⋅s and thinner liquid 

layer (cases lµ_cs_tn and lµ_ss_tn).  The vertical solid lines demarcate St1-2* and show 
this critical value for rebound shifts to higher values for both theory and experiment as 

the dry restitution coefficient is decreased.   

 

Finally, in Figure 3.12, the effect of the liquid-layer thickness on ew is illustrated.  

Different liquid-layer thicknesses are achieved by allowing the target particles to drip for 

a longer period of time.  Consequently, all three liquid thicknesses are smaller when the 

particles are allowed to drip for a longer time.  In both Figure 3.12a and Figure 3.12b, a 

(a) 

(b) 
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qualitative agreement exists between experiment and theory, and a thinner oil layer has a 

lower St1-2* and St2-3* , and a higher ew,1-2 and ew,2-3.  With a thinner oil layer, the particles 

have a smaller distance to travel during approach to meet a rebound criterion (since none 

of the rebound criteria depend on oil thickness), and they have a smaller final distance to 

travel during rebound to become separated.  In other words, the resistance to particle 

motion is decreased, and agglomeration is less likely. 
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Figure 3.12  Effect of oil thickness on the wet restitution coefficient for (a) 12 Pa⋅s oil 
viscosity, chrome steel (cases hµ_cs_tk and hµ_cs_tn), and (b) 5.1 Pa⋅s, stainless steel 

(cases lµ_ss_tk and lµ_ss_tn).  The vertical solid lines demarcate St1-2* and show that this 
critical value for rebound shifts to lower values for both theory and experiment as liquid-

layer thickness is decreased.   

3.6. Summary 

Unlike previous efforts on collisions between wetted particles (particles with a 

thin coating of viscous liquid), which focused on two-body systems, the focus of this 

work is on the dynamics of three-body, wetted collisions.  Here, normal or head-on 

collisions are considered, in which four outcomes are geometrically possible, unlike two-

particle collisions in which only two outcomes are possible.  To better understand the 

(a) 

(b) 
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underlying physics of this three-body system, a combination of experiments and 

lubrication (low-Reynolds number) theory is used. 

The experiments are carried out with a Stokes’s cradle, which is an apparatus 

inspired by the desktop toy known as the Newton’s cradle.  Unlike the Newton’s cradle, 

however, the particles in the Stokes’s cradle are wetted prior to collision.  Measurements 

of the liquid-coating thickness and pre- and post-collisional velocities were made using a 

high-resolution camera and a high-speed camera, respectively.  Parameters varied include 

the oil viscosity, particle material, thicknesses of the oil layer, and the impact velocity.  In 

this work, only outcomes of FA (fully agglomerated), RNC (reverse Newton’s cradle) 

and FS (fully separated) were observed.  Surprisingly, the outcome most commonly 

associated with the desktop toy, NC, proved to be elusive for the conditions investigated.  

More detail on how investigation of the regime maps lead to experimental realization of 

NC can be found in Chapter 3. 

Comparisons of the experimental results are made against theory that 

approximates the three-particle collision as a series of two-particle collisions.  The 

objective of the modeling is to achieve qualitative agreement with experimental data in 

order to identify the dominant physical mechanisms at play during the collision.  One 

evaluation of the qualitative results is made by comparing the experimental outcomes 

with the predicted outcomes.  Previous models for wetted, two-body collisions, which 

assume Stokes flow (low-Re) and particle deformation, do not result in the correct 

outcomes for three-body systems, and a regime map of the parameters reveals that the 

mismatch does not result from a (realistic) sensitivity to the input parameters.  

Accordingly, a scaling model has been developed here that has two key differences from 
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previous two-body models.  First, in a three-particle collision, since the initially 

agglomerated target particles have a liquid bridge that contains a large amount of ‘excess’ 

liquid (not found in a two-particle collision), an effective thickness based upon the excess 

liquid that fills in the gap between the particles as they separate must be incorporated.  

Second, unlike most previous two-body theories [2-4, 12], a rebound criterion has been 

developed which ensures rebound as the pressure between the particles reaches the glass-

transition pressure (pressure at which the oil behaves as a solid).  A good 

model/experimental qualitative agreement for the outcomes (i.e. FA, RNC, FS) is found 

when the above physics are taken into consideration.  

 In addition to predicting the outcomes, the proposed theory also predicts the 

qualitative trends in St1-2* and St2-3* as experimental parameters are varied.  Most notably, 

as the viscosity of the oil is increased, St1-2* and St2-3* decrease.  Unlike in previous two-

body theories, where the same trend arose from elastohydrodynamics, here the glass 

transition is the source of this behavior.  Namely, since the pressure between the particles 

increases with viscosity (Equation 3.4), higher pressure is obtained with higher viscosity 

oil.  Therefore, the glass-transition pressure is reached at larger separation distances with 

higher-viscosity oil.   

 Due to the predicted outcomes and trends showing qualitative agreement with the 

experiments, the important physical processes have been identified.  The scaling analysis 

used is ideal for this process because it helps to quickly identify any gross mismatches 

without a comprehensive computational effort.  An improved model is required for a 

more accurate quantitative match, and this can be achieved by refinement upon two 

approximations: (i) simultaneous treatment of the three-body collision rather than the 
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series of two-particle collisions, which is expected to be particularly important for wet 

collisions since lubrication forces act simultaneously on both sides of the middle particle; 

and (ii) a strict comprehensive coupling of the hydrodynamic (which includes a pressure-

dependent viscosity, stiff in nature) and the elastic theories.  For a complete model of 

collisions occurring in practice, oblique collisions will also need to be considered.   
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4. STOKES’S CRADLE: INFLUENCE OF LIQUID BRIDGE VOLUME ON THE 

NORMAL COLLISIONS OF THREE WETTED PARTICLES5 

 

4.1. Abstract 

 In this work, three-body collisions between liquid-coated spheres are investigated 

experimentally using a ‘Stokes's cradle’, which resembles the popular desktop toy known 

as the Newton's cradle.  Surprisingly, previous work indicates that every possible 

outcome was observed in the wetted system except the traditional Newton's cradle (NC) 

outcome.  Here, NC is achieved experimentally via guidance from a first-principles 

model, which revealed that controlling the volume of the liquid bridge connecting the two 

target particles is the key parameter in attaining the NC outcome.  By independently 

decreasing the volume of the liquid bridge, not only NC is achieved, but also several new 

findings are uncovered.  For example, in contrast to previous work on two-body 

collisions, three-body experiments provide direct evidence that the fluid resistance upon 

rebound cannot be completely neglected due to presumed cavitation; this resistance also 

plays a role in two-body systems yet cannot be isolated experimentally in such systems.  

The herein micro-level description provides an essential foundation for macro-level 

descriptions of wetted granular flows. 

                                                

5 Donahue, C.M., C.M. Hrenya, and R.H. Davis, Stokes's Cradle: Newton's Cradle with 
Liquid Coating. Physical Review Letters, 2010. 105(3): p. 34501. 
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4.2. Introduction 

 Newton’s cradle has long been a popular desktop toy.  The outcome is well-

known: when a solid sphere at the end of a line of dry, suspended spheres is pulled up the 

arc and released, it falls and strikes the adjacent sphere, causing the sphere on the 

opposite end to be ejected from the group.  In the previous Chapter, it was noted that 

every possible outcome was observed experimentally in Stokes’s cradle (i.e., the wetted 

version of Newton’s cradle) except the traditional Newton’s cradle (NC) outcome.  Here, 

the NC outcome is experimentally achieved via guidance from theory, which reveals that 

controlling the liquid bridge volume connecting the two target particles is key in attaining 

the NC outcome. 

 Additionally, by controlling the liquid bridge volume, the effect of the outbound 

resistance can be isolated from the inbound resistance.  Previous works indicate that the 

pressure upon rebound is significantly below the vapor pressure, leading to a presumption 

of the onset of cavitation, and thus an assumption of negligible resistance upon rebound 

[1, 2].  However, it is difficult to experimentally isolate the role of cavitation in two-body 

systems, since a change in the resistance upon rebound (e.g., via a change in viscosity or 

thickness of the liquid layer) will also result in a change in the resistance upon approach.  

The three-body experiments described in this Chapter provide direct evidence that the 

fluid resistance upon rebound cannot be completely neglected due to presumed cavitation. 
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4.3. Experimental Methods 

       Unlike the Newton’s cradle toy, which typically has five dry spheres in a row, our 

focus is on a wetted, three-sphere system as illustrated in Figure 4.1.  Consequently, 

compared to two-body collisions, where the possible outcomes only include stick or 

bounce, four outcomes are possible in a three-sphere collision.  In addition to the 

Newton’s cradle (NC) outcome (where the sphere opposite the striker sphere separates 

from the remaining agglomerate), the other possibilities include fully agglomerated (FA, 

where all spheres stick together), ‘reverse Newton’s cradle’ (RNC, where the striker 

sphere separates but the other spheres stay agglomerated), and fully separated (FS).  Thus, 

both agglomeration and de-agglomeration may be studied.  Figure 4.2 shows 

representative experimental snapshots of the spheres after the collision for 12.0 Pa·s oil, 

chrome-steel spheres, and dripping for 60 s before collisions  (‘thick’ liquid layer).  Here, 

all parameters are kept constant between the subfigures, except for impact velocity, in 

which the arrow size represents the relative magnitude.  The outcomes as velocity is 

increased are FA, RNC, and FS, and do not include the NC outcome, which is counter-

intuitive given our experience with the toy.  In our companion work [3], a new first-

principles model is presented that is able to predict the correct progression of outcomes 

shown in Figure 4.2, including the consistent absence of NC.  To date, no other group has 

published findings on the collisional dynamics between more than two wetted bodies. 
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Figure 4.1  Experimental set-up (a) schematic and (b) photograph.  For more details, see 
Chapter 3. 

 

 In the current effort, the previously elusive NC outcome is attained by using the 

aforementioned model to generate an array of regime maps that identify where in the 

parameter space the NC outcome is expected.  Furthermore, this work has shown that the 

outbound resistance plays a critical role in the collisional outcome.  A modified 

experimental method employed here has allowed us to independently change xf,2-3 by 

adjusting the liquid-bridge volume while leaving x0,1-2 and x0,2-3 fixed (note that xf,1-2 = 

x0,1-2, since there is no liquid bridge for the 1-2 pair).  This isolation of outbound-

resistance effects, which cannot be accomplished in two-body experiments, is detailed 

below.  Moreover, new, counter-intuitive experimental results emerge in this effort, such 

as producing ‘stickier’ collisions with a thinner liquid layer.  The model again provides 

the physical insight to explain these behaviors.  Hence, the following offers a model 

overview, followed by experimental results that have led to several findings that did not 

manifest in previous two- or three-body collisions. 
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Figure 4.2  Snapshots after a collision using 12.0 Pa·s oil, chrome-steel spheres, and 60 s 
drip time (x0,1-2= 410 µm, x0,2-3= 14 µm).  (a) FA is observed at low velocities, (b) RNC at 

moderate velocities, and (c) FS at high velocities.  Unexpectedly, NC was not initially 
observed over the wide range of parameters varied. 

 

4.4.     Model Description 

 To better understand the absence of the NC outcome in our initial experiments, a 

first-principles model is utilized.  The three-sphere collision present in the experiments is 

approximated as a series of two-sphere collisions in the model.  The striker sphere 

(sphere 1 in Figure 4.2) collides with the first target sphere (sphere 2), which 

subsequently collides with the last target sphere (sphere 3).  At this point, the striker 

sphere may ‘catch up’ and collide again with the first target sphere, which may then 

collide again with the second target sphere, etc.; if so, the subsequent collisions are also 

included in the analysis.  However, the current work does not include later collisions after 

the target spheres reach the end of their arcs and reverse direction due to gravity. This 

two-body interaction sequence is pursued because our work is focused on identifying the 

dominating physical mechanisms, and preliminary results show only small quantitative 
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differences when a three-body model is employed.  Furthermore, future work will 

consider dynamic simulations of many-sphere systems. Hard-sphere models, which 

account for only two spheres colliding at a time, require far less computational power 

than their soft-sphere (multi-contact) counterparts and have been shown to successfully 

simulate cohesive-particle flows that involve contacts and agglomerates of more than two 

spheres [4, 5].   

 The model used in this Chapter and in Chapter 3 extends previous models [1, 6] 

of wetted collisions between only two spheres, with two important distinctions detailed 

later.  An analysis of the appropriate dimensionless numbers indicates that Stokes flow 

prevails (low-Reynolds number, Re = ρ|v|x/µ < 0.06) and that capillary forces may be 

neglected (high capillary number, Ca = 3µa|v|/σx > 3400) in the experiments.  Here, ρ is 

fluid density, v is relative velocity of the two spheres, x is separation distance between the 

surfaces of the two spheres, µ is fluid viscosity, a = R1R2/(R1 + R2) is reduced radius of 

the spheres where R is the radius, and σ is surface tension.  Air resistance is neglected.  

The relevant equations of motion for two wetted spheres are provided in our previous 

work [3] and contain no fitting parameters.  As two spheres approach, they (i) experience 

resistance starting at the separation x0 due to lubrication during approach, (ii) may reach a 

minimum separation and reverse direction due to one of three criteria, and (iii) experience 

resistance upon rebound until the separation reaches xf.  Agglomeration occurs if the 

initial momentum is not great enough to overcome the total resistance from lubrication.  

Alternatively, rebound past xf may occur if the initial momentum is large enough that a 

portion of the kinetic energy becomes stored as elastic deformation rather than lost to 

viscous dissipation.  However, rebound of sphere 1 from 2 occurs more easily than 2 



 

 106 

from 3, because of the additional resistance from the excess fluid associated with the 

liquid bridge (see Figure 4.1b) between 2 and 3, leading to a bias for the RNC versus NC 

outcome.  The rebound criteria include surface roughness (a measurable quantity of dry 

sphere) and the elasticity length scale (derived previously from elastohydrodynamic 

theory [1, 6]).  Unlike existing two-sphere models [1, 6], included are (i) the glass-

transition length scale as an additional rebound criteria, and (ii) outbound resistance, 

which was previously neglected due to assumed cavitation.  Specifically, the glass-

transition length scale is derived by assuming the oil viscosity remains at atmospheric-

pressure viscosity until the glass-transition pressure of the oil is achieved.  Moreover, the 

increased resistance will cause the collisions to become stickier, particularly between the 

target spheres (2 and 3), where the outbound resistance is large due to the relatively large 

liquid-bridge volume.  The model is able to successfully reproduce the same progression 

of outcomes as observed in the experiments, as shown in Figure 4.2, as well as other 

observed experimental trends. 

 

4.5. Newton’s Cradle Outcome 

 Encouraged by the robust model prediction of experimental trends, the parameter 

space of the model is extended even further to explore the possibility of achieving the NC 

outcome.  A model-based map of xf,2-3 versus St is shown in Figure 4.3.  When the target 

spheres (2 and 3) separate after collision, the fluid in the connecting bridge fills the gap 

between the separating spheres as suction pressure draws in fluid.  As described 

previously [3], xf,2-3 is the final liquid thickness between these spheres, after which 

rebound is assumed to occur with no further resistance; xf,2-3 is calculated based on the 
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liquid-bridge volume.  St is defined as mv0/6πµa2, where v0 is the initial impact velocity 

of the striker.  Figure 4.3 shows the desired NC outcome in the lower-right corner.  The 

top dotted line represents the original value of xf,2-3 used in the prior experiments (Figure 

4.2) and does not include NC.  The absence of NC is consistent with experimental 

observations (FA, RNC, and then FS as impact velocity is increased while holding other 

parameters constant).  This map suggests reducing the value of xf,2-3 amply leads to a NC 

outcome, perhaps due to reduced viscous resistance (more discussion below).  

 

Figure 4.3  Model-based regime map of xf,2-3 versus St for 12.0 Pa·s oil, chrome-steel 
spheres, and a 60 s drip time (x0,1-2 = 410 µm, x0,2-3 = 14 µm).  The dotted line (top) 

represents the spheres dripped as an agglomerate, while for the dashed line (bottom) the 
spheres dripped separately.  Note that x0,2-3 << xf,2-3 since the two target spheres are pulled 

together by capillary forces prior to the collision.   

 

 In an attempt to experimentally achieve the NC outcome, the final thickness of the 

liquid layer between the initially motionless spheres (xf,2-3) was decreased while all other 

parameters were kept constant.  A smaller final thickness was achieved by modifying the 

dripping process to yield a smaller volume of the liquid bridge.  For results presented thus 
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far and contained in our previous work [3], the two target spheres were dipped in the 

same coating bath and allowed to drip as an agglomerated pair with a liquid bridge 

connecting them.  To reduce the bridge volume and consequently xf,2-3, the target spheres 

in the current work are separated while undergoing the dripping process and are brought 

together just prior to the collision.  In this way, fluid more easily drains from the pair, 

decreasing the excess fluid in the bridge (xf,2-3 reduced) while maintaining the initial 

liquid-layer thicknesses (x0,1-2 and x0,2-3).  

 When using this modified dripping method and thus achieving a smaller liquid-

layer thickness between spheres 2 and 3 upon rebound (dashed line in Figure 4.3), the 

previously missing NC outcome is indeed obtained at intermediate impact velocities, as 

suggested by the model-based regime map.  In particular, outcomes of FA and NC are 

obtained as St is increased (i.e., going left to right in Figure 4.3); FS was not observed 

due to experimental limitations on the maximum velocity (i.e., St) that could be achieved.  

Figure 4.4 shows snapshots after the collision for a case where NC was achieved.   

 

     

Figure 4.4  Snapshot after a collision with a NC outcome using 12.0 Pa·s oil, chrome-
steel spheres and 60 s drip time (x0,1-2= 410 µm, x0,2-3= 18 µm, xf,2-3= 1150 µm).   

 

 The experiments with the reduced value of xf,2-3 (modified dripping method) show 

different outcomes that are consistent with model predictions over the parameter space 

explored (impact velocity, oil viscosity, oil thickness, and particle material).  Notably, the 
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collisions between stainless-steel spheres, using 12.0 Pa·s oil and a 2 min modified 

dripping method, exhibited outcomes of FA at low St, RNC and FS at middle St, and NC 

at high St, as shown in Figure 4.5.  On the other hand, NC was never observed for the 

collisions between spheres using 5.12 Pa·s oil, even when using the modified dripping 

method and even though this fluid has less viscous resistance, which is also consistent 

with the model within experimental uncertainty.   

 

 

Figure 4.5  Experimental results of collisions that exhibit all four outcomes.  Collisions 
used 12.0 Pa·s oil, stainless-steel spheres, and a drip time of 120 s (x0,1-2 = 323 µm, x0,2-3 
= 11 µm, xf,2-3 = 800 µm).  (a) FA is observed at low velocities, (b) RNC and (c) FS at 

moderate velocities, and (d) NC at high velocities, consistent with the model-based 
regime map (not shown).   

 

4.6. Discussion     

 Perhaps even more curious than the initial absence of the NC outcome itself is the 

physical reasoning that eventually leads to its discovery.  Consider first the wetted 

spheres that once displayed FA, RNC and FS as St is increased (Figure 4.2).  By 

decreasing the liquid bridge volume and thus xf,2-3 (i.e., going ‘downward’ in the regime 

map of Figure 4.3), the resistance between target spheres (2 and 3) decreases.  

Consequently, it may seem natural that regions of low St that were once FA (2-3 and 1-2 

agglomerated) would now separate and exhibit the NC outcome  (2-3 separated and 1-2 

agglomerated), since no change was made to the liquid layer between the striker and the 
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first target (1-2).  However, both experiments and model predictions show that, as the 2-3 

bridge thickness decreases, regions of the regime map (Figure 4.3) that were FA remain 

so (left-hand side), and regions of the regime map that exhibited FS (2-3 separated and 1-

2 separated) now exhibit the NC configuration (Figure 4.4) for the same St (right-hand 

side).  In other words, a change in the resistance between the 2-3 target spheres does 

nothing to the 2-3 outcome, but rather influences the 1-2 outcome.  The ability of the 

hard-sphere model to successfully predict the outcome can be traced to the resolution of 

subsequent binary collisions (when one sphere ‘catches up’ to another after the first series 

of collisions), and is another testament to the robustness of the model.  For example, one 

way of achieving FS in the model is if sphere 2 rebounds off 1, and 3 rebounds off 2.  

However, if after this first set of binary collisions, 2 transferred enough momentum to 3 

so that 1 has a greater velocity than 2, they will collide again.  If they stick together and 

their velocity is less than 3, a NC outcome will result.  Physically, as the striker impacts 

the targets, the 2-3 liquid bridge dampens the momentum transfer to 3.  Thus, 2 retains a 

larger portion of the momentum and does not become agglomerated with 1, which has 

lost most of its momentum.  As the 2-3 bridge volume decreases, more momentum is 

transferred to 3, and 2 ends up with less momentum, so 1 and 2 agglomerate.  This 

transition of the FS outcome to NC with decreasing xf,2-3 at the same impact velocity is 

also counter-intuitive for another reason.  Specifically, in two-sphere collisions, a 

decrease in the thickness of the liquid layer is associated with more ‘bounciness’ (i.e., a 

transition from agglomeration to rebound at a smaller St).  A naïve translation to three-

sphere collisions may imply that a thinner liquid layer would result in more separated 

spheres.  However, the smaller xf,2-3 results in two agglomerated spheres  (NC), while a 
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thicker layer results in all three spheres separated (FS) for the same St.  So, a thinner 

liquid layer does not always result in more spheres rebounding, as confirmed by 

experiments and predictions alike. 

 Beyond the surprising experimental results and physical explanation described 

above, the three-sphere collisions examined here provide a rare example of when a more 

complicated system reveals a physical process that is important to, but not revealed by, a 

simpler system.  Previous two-body models predict that the pressure in the liquid gap 

during rebound drops below the vapor pressure of the oil and thus cavitation was 

assumed to occur [1, 6].  Thus, no lubrication resistance upon rebound was included in 

the previous models and the concept of a final rebound thickness (xf) is thus irrelevant.  In 

two-sphere collisions, the role of resistance during rebound is difficult to test, since the 

final thickness cannot be independently changed without also changing the initial 

thickness (i.e., no liquid bridge as a source of excess fluid exists prior to collision).  

However, in the more complex three-sphere system, the final thickness between the target 

spheres can be independently changed, since it is controlled via the bridge volume while 

the initial thickness is controlled by the surface tension that pulls the spheres together. As 

described above when holding all other parameters constant, a decrease in bridge 

thickness qualitatively changes the results.  Thus, investigating three spheres instead of 

two spheres leads to an important physical finding: outbound resistance plays a major 

role in the collisional process, even under conditions in which it appears that cavitation 

may be present.  Probing the physics of systems with more than two spheres is necessary 

to understand de-agglomeration since it involves an existing agglomerate colliding with 

another body.  The plethora of unexpected results described above, such as the initial 
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absence of the NC outcome or more de-agglomeration with a larger liquid bridge, is not 

possible from two-body studies.  Accordingly, this three-body work is an important step 

toward the macro-behavior of practical, many-body systems. 

Literature Cited 

1. Kantak, A.A. and R.H. Davis. Elastohydrodynamic theory for wet oblique 
collisions. Powder Technology 168, 42-52, (2006). 

2. Davis, R.H., D.A. Rager, and B.T. Good. Elastohydrodynamic rebound of spheres 
from coated surfaces. Journal of Fluid Mechanics 468, 107-119, (2002). 

3. Donahue, C.M., C.M. Hrenya, R.H. Davis, K.J. Nakagawa, A.P. Zelinskaya, and 
G.G. Joseph. Stokes' cradle: normal three-body collisions between wetted 
particles. Journal of Fluid Mechanics 650, 479-504, (2010). 

4. Weber, M.W. and C.M. Hrenya. Square-well model for cohesion in fluidized beds. 
Chemical Engineering Science 61, 4511-4527, (2006). 

5. Weber, M.W. and C.M. Hrenya. Computational study of pressure-drop hysteresis 
in fluidized beds. Powder Technology 177, 170-184, (2007). 

6. Davis, R.H., J.M. Serayssol, and E.J. Hinch. The Elastohydrodynamic Collision 
of 2 Spheres. Journal of Fluid Mechanics 163, 479-497, (1986). 

 

 



 

 113 

 

5. OBLIQUE COLLISIONS OF TWO WETTED PARTICLES USING A 

PENDULUM APPARATUS6 

 

5.1. Abstract 

 Experiments using a pendulum apparatus are conducted for two particles engaged 

in oblique wetted collisions over a range of impact angles, impact velocities, coating 

thicknesses, liquid viscosities, particle materials, and particle radii.  As established in 

previous studies, in normal (head-on) collisions, particles de-agglomerate if the Stokes 

number is greater than the critical Stokes number.  However, in oblique collisions, so-

called centrifugal forces can cause particles to de-agglomerate for a Stokes number less 

than the critical Stokes number.  Surprisingly, the resulting trends of the normal (wet) 

restitution coefficient and the angle the doublet rotates during the collision are different 

depending on whether the Stokes number is less than or greater than the critical Stokes 

number.  An accompanying theory based on lubrication, solid deformation, and the glass 

transition of the liquid layer agrees well with experimental results and gives insight into 

the observed trends.   

 

                                                

6 Donahue, C.M., W.M. Brewer, R.H. Davis, and C.M. Hrenya, Agglomeration and De-
agglomeration of Rotating Wet Doublets. Submitted, (2011). 
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5.2.  Introduction 

  Previous experimental and theoretical studies have focused on head-on collisions 

between two particles and head-on or oblique collisions between a particle and a wall [1-

5].  However, in many-particle flows, collisions between two particles are more often 

than not oblique.  Unlike particle-wall collisions, the particles in an oblique particle-

particle collision can form a doublet and rotate.  Such rotation may cause particles to de-

agglomerate solely due to centrifugal forces. 

 In this chapter, a microscopic approach is taken to investigate collisions between 

two wetted particles in which viscous (dynamic) forces dominate over capillary (static) 

forces, and the liquid flow is in the low-Reynolds-number regime. Consequently, Stokes 

flow prevails and the normal Stokes number, 

  Stn = mv0,n/6πμa2,       (5.1) 

has been found to be a key dimensionless parameter [3, 6].  Here, m = m1m2/(m1+m2) is 

the reduced mass, v0,n is the normal component of the relative impact velocity, µ is the 

liquid viscosity, and a = a1a2/(a1+a2) is the reduced radius.  For normal collisions, de-

agglomeration of particles occurs for values of Stn greater than a critical Stokes number, 

namely Stn*. The value of Stn* can be determined either empirically via experiments or 

theoretically by considering both the properties of the fluid and the solid particles [2, 7, 

8].  In immersed collisions dominated by Stokes flow, velocity reversal of a particle 

impacting a wall occurs when Stn is greater than a critical value of Stokes number, Stn*, 

approximately equal to 10 [9, 10] for both normal and oblique collisions.  Experiments of 

wetted particle-wall oblique collisions have shown that, for a range of Stn greater than 
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Stn*, the normal and tangential motions are approximately decoupled, which suggests that 

the value of Stn* found in head-on collisions might also demarcate agglomeration versus 

de-agglomeration in oblique collisions [4].  However, the ability of Stn* to predict 

agglomeration versus de-agglomeration in oblique collisions was not verified due to 

experimental limitations. 

 Unlike previous efforts, here we investigate oblique collisions between two 

wetted particles.  Experiments are performed using a pendulum apparatus and are 

compared to theoretical predictions.  In contrast to oblique, particle-wall collisions, the 

target is now mobile, such that an agglomerated doublet (connected by a liquid bridge) 

can form and rotate.  We observe a new outcome for oblique, particle-particle collisions 

in which two colliding particles initially form an agglomerate and then later de-

agglomerate due to centrifugal forces.  A corresponding theory is also developed that 

agrees well with the regime map of outcomes for impact angle versus Stn, and both 

experiments and predictions show that the new outcome occurs at large impact angles for 

Stn < Stn*.  Finally, we investigate a range of parameters for different liquid viscosities, 

coating thicknesses, particle materials and particle radii and analyze the corresponding 

trends of the (wet) normal restitution coefficient and rotation angle. Surprisingly, the 

trends depend on whether a de-agglomerating collision occurs for Stn > Stn* or Stn < Stn*.  

Furthermore, the theory is able to predict the trends and provides further insight into the 

physical mechanisms responsible for particle reversal and de-agglomeration.  

 



 

 116 

5.3. Experimental Setup 

 The experimental setup is composed of two solid spheres suspended with 

pendulum strings of 1 m length, as shown in Figure 5.1.  The pendulums strings are 

attached from above to a rotating glass plate.  The string holding the striker is attached to 

the center of the plate, so that when the plate is rotated its position does not change 

(Figure 5.1b).  The string holding the target particle is attached one particle diameter 

away from the striker string.  As the plate is rotated, the position of the target particle 

moves relative to the striker such that a range of impact angles is possible (Figure 5.1c).  

Prior to the collision, the striker particle is held in place by a gate that employs a solenoid 

as the release mechanism.  The position of the gate can be moved along the track to 

achieve different impact velocities.  The target particle is coated with silicon oil, which is 

contained in a bath positioned underneath the target particle.  The bath lifts to coat the 

particle, and the time that the liquid is allowed to drip from the particle prior to collision 

determines the thickness of the liquid coating at collision. 
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Figure 5.1  Experimental setup:  (a) photograph from the side view, and schematic from 
the (b) side view and (c) top view of the pendulum apparatus.   

 

5.3.1.  Materials 

 The pendulum string is attached to the particles via a small tube welded on the top 

of the particle.  The string is ice fishing line manufactured by Berkley, chosen for its high 

spring constant (stiff) of 1.2 kN m-1, which balances the centrifugal acceleration of the 

striker particle as it swings through an arc before it collides with the stationary target 

particle.  The particles are either chrome steel (AISI 52100) or stainless steel (316 grade).  

The properties of the chrome-steel particles are: dry restitution coefficient edry = 0.99; 

Young’s modulus E = 2.03 × 1011 N/m2; Poisson’s ratio ν = 0.28; density ρ = 7830 kg/m3; 

reduced radius a = 6.4 mm or 4.0 mm.  The properties of the stainless-steel particles are: 

dry restitution coefficient edry = 0.90; Young’s modulus E = 1.93 × 1011 N/m2; Poisson’s 

ratio ν = 0.35; density ρ = 8030 kg/m3; reduced radius a = 6.4 mm. The particles are 

coated with silicon oil of viscosities 5.1, 12, or 99 Pa⋅s at 25 °C, which is the nominal 
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temperature of the experiments, and all three oils have densities of 0.97 g/cm3.  To 

summarize the properties, a list of the collisional parameters can be found in Table 5.1.  

The notation used to describe each case refers to viscosity, namely low (μlow), medium 

(μmed), or high (μhigh); coating thickness, namely small layer (x0,small), medium layer (x0,med), 

large layer (x0,large), or extra-large layer (x0,xlarge); particle material, namely chrome steel 

(cs) or stainless steel (ss); and particle radius, namely large (alarge) or small (asmall).   

 

Table 5.1  Experimental parameters. 

Case Liquid 
Viscosity 
(Pa⋅s) 

Coating 
Thickness 
(μm) 

Steel Particle 
Material 

Particle 
Radius (mm) 

μlow_x0,med_ss_alarge 5.12 270 Stainless 12.7 

μlow_x0,small_ss_alarge 5.12 180 Stainless 12.7 

μmed_x0,med_cs_asmall 12.0 263 Chrome 7.9 

μmed_x0,large_cs_alarge 12.0 418 Chrome 12.7 

μmed_x0,large_ss_alarge 12.0 420 Stainless 12.7 

μmed_x0,med_cs_alarge 12.0 270 Chrome 12.7 

μmed_x0,med_ss_alarge 12.0 270 Stainless 12.7 

μhigh_x0,xlarge_ss_alarge 99.0 850 Stainless 12.7 

 

5.3.2. Methods 

 To characterize the collisions, two sets of measurements are performed: (i) off-

line measurements of the thickness of the liquid layer coating the target particle and (ii) 

on-line measurement of pre- and post-collisional velocities (linear and rotational) and 

impact angle.  First, measurements of the coating thickness are made independently from 
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the collisions with a high-resolution Pentax SLR K110D with 6.1 megapixels.  Wide-

angle distortion is minimized using a zoom lens that allows the camera to be placed 

approximately 1.5 m away from the coated particle.  Photographs are taken every 3 s 

during the dripping process, and the process is repeated 5 times.  The lighting, aperture, 

and shutter speed are set at levels to make the particle, and particularly the edge of the 

particle, well defined and dark with respect to the background.  The photographs are 

analyzed in Matlab, and the coating thickness is found from a given photograph by 

subtracting the edge-to-edge distance of the dry particle photograph from the wet particle, 

and then dividing the resulting quantity in half.  The coating thickness is then found for a 

particular drip time from a linear fit of these off-line data five seconds before and after 

the drip time.  The error in the measurements of the coating thickness is approximately ± 

5 µm. 

 Second, the particle positions, and hence the relevant velocities and geometries, 

are tracked in time throughout the collisional process using a high-speed camera that is 

placed above the rotating glass plate.  The camera is manufactured by DVC (model 340 

M) with a 640 × 480 pixel resolution.  However, depending on the impact velocity and 

angle, the effective resolution ranges between approximately 200 × 75 and 400 × 175 

pixels.  Similar to the high-resolution camera, a Navitar 7000 zoom lens allows for the 

camera to be placed approximately 1 m from the particles, so that wide-angle effects are 

essentially eliminated.  The camera operates at 40MHz with a frame rate of 320 ms.  Two 

fluorescent dots are painted on the top of each particle, and the apparatus is lit using 

fluorescent lights only.  In this way, the camera tracks only the dots, so that linear and 

angular velocities and the impact angle can be extracted using image tools in Matlab.   
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Depending on the impact angle and the impact velocity, the translational-velocity error 

ranges between 0.010 and 0.023 m/s, the rotational-velocity error ranges between 0.006 

and 0.015 rad/s, and the impact-angle error ranges between 0.9° and 6.2°.  

 

5.4. Theory Description 

 To illuminate the dominant physical mechanisms, the theory for two-particle, 

wetted, oblique collisions is developed.  In addition to the typical fluid forces, tension 

from the pendulum strings is included.  As the doublet rotates from its impacting position, 

tension from strings arises that resist normal and rotational motion.  The relevant 

dimensionless numbers are the Reynolds number Re, and the capillary number Ca.  The 

largest Reynolds number (ratio of fluid inertia to fluid viscous forces in the liquid gap 

between colliding particles) encountered experimentally is  

 Remax = ρv0,nx0 / µ = 0.04 ,        (5.2)  

where ρ is the liquid density, v0,n = v0 cos θ0 is the initial normal component of relative 

velocity between particles, θ is the angle between the relative velocity and the line 

connecting the centers of the particles at initial contact and the subscript 0 indicates the 

initial impact value, x0 is the initial coating thickness, and µ is the liquid viscosity (figure 

5.2).  Therefore, the collisions occur at low Re, and the dynamics of the liquid between 

the particles is governed by Stokes flow (lubrication). The smallest capillary number 

(ratio of viscous forces in the liquid gap between the particles to capillary forces between 

the particles) encountered is    

 Camin = 3µav0,n σ x0 =1500 ,      (5.3) 
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where σ is the surface tension of the silicon oil. Since Ca >> 1, capillary forces are 

negligible, as was confirmed by Salcudean et al. [12].  Finally, an evaluation of the 

Stokes number for a particle suspended in air shows resistance from the interstitial air is 

negligible.   

   

 

Figure 5.2  Impact geometry. 

 

5.4.1. Lubrication 

 The viscous (lubrication) force that resists the relative motion of the particles acts 

in both the normal and the tangential directions.  For small deformations and for x << a, 

the normal component of the lubrication force has been derived by Kantak & Davis 

(2006) for liquid-coated spheres as 

  
FL,n =

6πµa2vn
x

1− x
x0

"

#
$

%

&
'

2

,       (5.4)  

where the subscript n indicates the normal direction.  The normal vector, 
n , is a unit 

vector that points from the center of the target to the center of the striker (figure 2).  In 
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the tangential direction, the force between two immersed particles was solved 

numerically by Kantak and Davis [13] such that  

  
FL,t = −24πµa2 1

3
ln 2a
x0
(ω −ξ )+1.2720ω + 0.1583ξ

⎛
⎝⎜

⎞
⎠⎟ .    (5.5) 

Here, ω = (v/4a) sin θ is the angular velocity of the doublet about the center of mass of 

the doublet, ξ is the angular velocity of each single particle about its center of mass (i.e., 

rotational velocity of particle), and the subscript t indicates the tangential direction 

(figure 2).  In this work, the particles are wetted rather than immersed; therefore, the 

second and third terms on the right hand side of Equation 5 are omitted since they are due 

to the viscous resistance from the liquid in the outer region (absent for wetted particles) 

away from the liquid gap between the particles.  Since both particles initially do not 

rotate about their centers (ξstriker = ξtarget = 0) and the fluid exerts an equal-magnitude force 

on each particle, the corresponding angular accelerations of the two identical particles are 

also equal; therefore, throughout the collision the particles have equal angular velocities 

(ξstriker = ξtarget = ξ).  Finally, when ω = ξ, the surfaces of the particles do not move relative 

to each other and thus there is no shearing of the fluid between the particles (i.e., FL,t = 0).  

 

 

5.4.2. String Tension 

 To accurately model the experiments, the force of tension from the pendulum 

strings must be accounted for.  In particular, at the moment the striker particle collides 

with the target particle, tension only acts in the vertical direction parallel to gravity; 

therefore, string tension does not influence the collision at the moment of impact (i.e., 
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tension is balanced by gravitational force).  However, as the particles begin to rotate 

about the center of mass of the doublet, the pendulum strings are no longer aligned with 

gravity.  Consequently, tension from the pendulum strings emerges in both the normal 

and tangential directions.  In the normal direction, this tension is 

  
FS,n =

8mga
l
sin2 β

2
⎛
⎝⎜

⎞
⎠⎟ 1− 16a

2

l2
sin2 β

2
⎛
⎝⎜

⎞
⎠⎟ ,      (5.6) 

where g is the acceleration of gravity, l is the length of the pendulum string, and β is the 

angle the doublet has rotated from the time of the initial impact.  In the tangential 

direction, the tension from the strings is 

  
FS,t = − 4mga

l
sin β( ) 1− 16a

2

l2
sin2 β

2
⎛
⎝⎜

⎞
⎠⎟ .      (5.7) 

 

5.4.3. Kinematic Equations 

 The kinematic equations corresponding to the experimental setup are 

  
dx
dt

= −vn ,        (5.8)  

  
m dvn
dt

= FL,n + FS,n − 4maω
2

,      (5.9) 

  
dβ
dt

=ω
 ,        (5.10) 

  
4ma dω

dt
= FL,t + FS,t + 2mvnω ,      (5.11) 

  
8
5
ma dξ

dt
= −FL,t

 .       (5.12) 
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Equations 8-12, together with expressions given for the lubrication and tension forces 

above (Equations 4-7), are solved in time for x, β, vn, ω, and ξ.  The particles approach 

each other with an initial separation equal to the initial (measured) coating thickness x0 

(Equation 4), normal impact velocity vn,0 = v0 cos θ0, initial angular velocity of the 

agglomerate ω0 = v0 sin θ0/(4a), and initial angular velocity of each particle ξ0 = 0.  Upon 

approach, the particles may stick (agglomerate) if their normal relative acceleration and 

velocity drop to zero.  During the collisional process, the particles may reverse direction 

due to (i) centrifugal forces, or by (ii) encountering a reversal criterion also present in 

normal collisions (i.e., glass transition of liquid layer, elastohydrodynamics, or surface 

roughness), which is discussed in more detail below (Section 5.4.4).  As the particles 

move away from each other, they may stick (agglomerate) if their normal acceleration 

and velocity drops to zero due to viscous resistance.  Otherwise, de-agglomeration is said 

to occur when their separation distance reaches x0.  Additionally, the simulations are 

stopped and are considered to stick (agglomerate) if the doublet rotates 180° from its 

initial position (at which point the strings cross) or if the angular velocity of the doublet 

reverses before a separation distance equal to x0 is achieved.  

 To assess the accuracy of the theory, predictions of the angular velocity of the 

doublet (ω) and the angular velocity of the particles (ξ) over time are compared to 

experimental results in Figure 5.3.  The error in ω is generally smaller than the error in ξ, 

since two sets of two dots painted on the top of each particle spaced further apart are used 

to determine ω, whereas only one set of dots is used to find ξ.  As mentioned previously, 

when ω = ξ (time ~ 0.01 s), the surfaces of the particles no longer rotate relative to each 

other, and the doublet has formed an approximately rigid dumbbell.  The initial rapid 
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decline in ω and the corresponding rapid incline in ξ over this short time is due to the 

tangential lubrication as the doublet quickly forms a dumbbell.  At longer times, the 

relatively slow decline in ω and ξ results from string tension.  As mentioned previously, 

the tangential lubrication theory used here is a modified version of that for two immersed 

spheres; since the results for the conditions in Figure 5.3 are representative of the rest of 

the parameter space, the modified immersed theory serves as a good approximation for 

wetted particles.   

 

Figure 5.3  Experimental results and theoretical predictions of the angular velocity of (a) 
doublet (ω) and (b) angular velocity of the particles (ξ) over time for a collision of case 

µmed_x0,thick_cs_alarge for Stn equal to 1.1 and θ0 = 46º.  The initial rapid decline of the 
doublet angular velocity is due to the tangential lubrication force (time ~< 0.02 s), while 

the slower decline at longer times is due to the string tension (time ~> 0.02 s).   

 

5.4.4. Reversal Criteria 

 As stated previously, when the particles approach each other for normal (head-on) 

collisions, three mechanisms have been identified that cause the particles to deform and 

then reverse their relative motion: (i) glass-transition of the liquid, (ii) 

elastohydrodynamic forces, and (iii) particle roughness.  First, the pressure in the liquid 
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gap rapidly increases during approach; if the pressure exceeds the glass-transition 

pressure, pgt, then the liquid behaves as a solid and the particles reverse direction.  The 

glass-transition rebound separation is  

 
xgt =

3µavnx0
2

pgt − patm( )x02 + 3µavn ≈ 3µavn
(pgt − patm )    when xgt << x0,  (5.13) 

where patm is the atmospheric pressure [8].  Second, the large lubrication pressures cause 

the solid particle to deform; the stored energy in this deformation leads to reversal in the 

relative normal motion if the following separation length scale, determined using a 

coupling of elastic and lubrication theories (i.e. elastohyrdrodynamics), is reached: 

  
xr = 6πΘµa3/2vn / 2( )2/5 ,      (5.14)  

where Θ = 2(1-ν2)/πE2 and ν is Poisson’s ratio and E is Young’s modulus [6].  Finally, 

the surface roughness, xb, is assumed to be 1 μm based on previous measurements of 

similar materials [1], and the particle surfaces will touch and the relative normal particle 

velocity will reverse if this separation is reached.  If the theory predicts that any one of 

the three reversal criteria has been met upon approach (i.e., the gap x decreases to the 

largest of xgt, xr, or xb), then the particles deform and rebound with their normal relative 

velocity reversed and multiplied by the dry restitution coefficient edry to account for the 

(kinetic) energy dissipation experienced by the particle during deformation.  

 To assess the accuracy of the new component of our theory (involving rotational 

motion of oblique collisions), it is essential to start with accurate predictions for normal 

(head-on) collisions. In previous work, the glass-transition rebound criterion dictated the 

reversal process for the conditions investigated and was critical in the prediction of the 

correct outcomes and trends for normal three-body collisions [8].  In that three-body 
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work, a pendulum apparatus was also used, and the materials and the range of parameters 

used were similar to this work.  The theory used in Donahue et al. [8] is the same in this 

work for head-on collisions with ω = ξ = 0.  Therefore, not surprisingly, the glass-

transition state is the first reversal criterion met in the theoretical predictions here.  Due to 

a lack of well-established data for the value of pgt for silicon oil, the value of pgt has been 

chosen for each different viscosity oil used based on the experimental value obtained for 

Stn*.  Figure 5.4 compares the normal wet restitution coefficient, ew,n, found in 

experiments for normal collisions against the theoretical predictions.  Since, for normal 

collisions, ew,n is a ratio of the magnitude of the relative post-collisional velocity to that of 

the pre-collisional velocity,  ew,n = 0 when the particles stick (agglomerate), and ew,n > 0 

when the particles bounce (de-agglomerate).  Here, Stn increases due to an increase in 

impact velocity, as all other parameters remain unchanged.  In Figure 5.3, Stn* = 1.5, 

representing the value of Stn at which ew,n transitions to a non-zero value.  The current 

theoretical predictions agree well quantitatively and qualitatively with experimental 

results.  Two other theories are also compared to experimental results.  The theory of 

Kantak & Davis [13] uses a complete treatment of elastohydrodynamics to model a 

wetted collision, but with constant viscosity.  The theoretical predictions of Kantak & 

Davis [13] have a somewhat fortuitous match of Stn*, since not including the glass 

transition provides for closer approach and more resistance that balances the lack of 

(known) resistance upon rebound due to presumed cavitation; however, ew,n is 

underpredicted for Stn > Stc*.  The more simplified theory by Davis et al. [14], in which 

particles only rebound due to surface roughness, has the simple form Stn = edry (1- 

Stn*/Stn) for Stn > Stn*, where Stn* = ln (x0/xb).  Here, xb is chosen such that Stn* matches 
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the experimental value.  Again, the theory underpredicts the value of ew,n for Stn > Stn*.  

Compared to the other two theories that do not include the glass transition, the current 

theory is the appropriate choice for this work. 

 

 Figure 5.4  Restitution coefficient for normal (head-on) collisions for case 
µmed_x0,large_ss_alarge compared for the current theory, Davis [14],                                   

and Kantak and Davis [15].   

  

5.5. Results and Discussion 

 In Figure 5.5, three sets of collision snapshots are shown, and only the impact 

velocity between the three sets was changed.  The three sets represent the three different 

outcomes observed in the wetted oblique collisions.  Two of the outcomes were also 

observed in previous experimental works involving wetted normal particle-particle and 
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oblique particle-wall systems, namely stick (S, Figure 5.5a) in which the striker particle 

forms an agglomerate with the target object, and bounce (B, Figure 5.5c) in which the 

striker collides with the target and essentially immediately separates [4, 16].  Conversely, 

an outcome only observed in oblique particle-particle collisions is shown in Figure 5.5b 

[11].  Here, the two particles collide and initially stick together, and then at a later time 

after the agglomerate has rotated through a significant angle, the two particles de-

agglomerate due to centrifugal forces.  This outcome, characterized by collisions that 

eventually separate but have collision durations greater than for head-on collisions, is 

named stick-rotate-separate (SRS). 

 

 

Figure 5.5  Top-view snapshots (using high-speed camera) of collisions with outcomes 
of (a) stick (S), (b) stick-rotate-separate (SRS), and (c) bounce (B) for parameters of case 
µmed_x0,large_cs_alarge and θ0 = 45°.  Only the normal impact velocity changes between the 
three subfigures such that the velocities are (a) 0.25 m/s (Stn = 0.95), (b) 0.29 m/s (Stn = 

1.1), and (c) 0.34 m/s (Stn = 1.3). 

 

5.5.1. Comparison of Experiment and Theoretical predictions 

  As a first validation of the theory, Figure 5.6 contains experimental data 

and theoretical predictions for case μmed_x0,thick_ss_alarge.  Figure 5.6a shows the regime 

map of outcomes over a range of impact angle and Stn.  The symbols represent outcomes 
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of individual experimental collisions (stick, stick-rotate-separate, and bounce), and the 

lines represent the boundaries between the various outcomes predicted by the theory.  

Overall, good agreement is achieved between experiment and theoretical predictions, 

except the observed impact angle that separates stick and stick-rotate-separate for a given 

Stn is higher than the predicted boundary.  For normal collisions (θ0 = 0º), the Stokes 

number at the transition between stick and bounce, Stn*, is equal to 1.4.  For oblique 

collisions, experiments and theoretical predictions show generally that, if Stn < Stn*, 

particles either stick or stick-rotate-separate, whereas if Stn > Stn*, particles bounce. For 

all parameters listed in table 1, the regime maps are qualitatively similar in that all three 

outcomes are observed in analogous regions of the parameter space.   
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Figure 5.6 (a) Regime map of outcomes, (b) normal restitution coefficient and (c) 
rotation angle for case µmed_x0,large_cs_alarge.  The inset in (c) is a close up of the 

theoretical predictions and experimental results in the vicinity of Stn*. 
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 In collisions between dry particles, the normal restitution coefficient has 

traditionally been defined as en = −(vf ⋅
n0 ) / (

v0 ⋅
n0 ) , where the subscripts 0 and f represent 

the initial and final values, respectively.  This definition is sufficient for dry collisions, 

since the collision duration is short and particles do not rotate far; in other words, n  does 

not vary significantly during the collision.  But, when the particles do rotate significantly, 

as is true for sufficiently oblique collisions between wetted particles, so does the normal 

vector.  Anomalous behavior of the restitution coefficient due to the rotation of the 

colliding particles was first observed in nanocluster collisions reported by Saitoh et al. 

[17].  Therefore, in this work, the definition of the (wetted) normal restitution coefficient 

used is  

  en = −(vf ⋅
nf ) / (

v0 ⋅
n0 )  .      (5.15) 

 Using this modified definition of the normal restitution coefficient, ew,n is plotted 

versus Stn in Figure 5.6b for a range of impact angles.  All subfigures in Figure 5.6 are 

plotted versus the same range of Stn for comparison.  For each specified impact angle, 

symbols represent experimental collisions within 5º of the given angle, and curves 

represent the theoretical predictions.  The theory agrees well with the experiment and 

correctly predicts the trend of ew,n as the impact angles changes. In particular, the curves of 

ew,n for impact angles of 15º and 30º are similar to the curve of the 0º collisions in both 

experiment and theory.  Therefore, the small change in the value of ew,n at small impact 

angles indicates that centrifugal forces associated with the rotating pair play a negligible 

role in the de-agglomeration of these (nearly head-on) collisions.  The curves of ew,n for 

larger impact angles of 45º and 65º show collisions de-agglomerate (ew,n > 0) for Stn < Stn* 
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in both experiment and theory, and this de-agglomeration is the stick-rotate-separate 

(SRS) mechanism due to centrifugal forces. The corresponding predictions for Stn > Stn* 

are instead dominated by the same bounce (B) mechanisms that cause reversal in normal 

collisions, which is why they appear to collapse on the θ0 = 0º curve.    The discontinuity 

in the slope observed at Stn* is due to the different mechanisms responsible for de-

agglomeration for Stn < Stn* versus Stn > Stn*.  The scatter in measured ew,n increases as θ0 

increases, since the uncertainty in the measured θ0 increases with θ0 and more error is 

associated with the stick-rotate-separate outcome due to the sensitivity of rotation angle to 

impact velocity (Figure 5.6c).   

 In addition to comparing the normal components of motion, the rotational motion 

of an agglomerate is also investigated by comparing the rotation angle.  The rotation 

angle, θR, is the angle through which an agglomerate rotates between initial impact and 

de-agglomeration:  

 θR = ω (t)dt
0

tc

∫  ,         (5.16) 

where tc is the collision duration (i.e., the time during which the spheres are in near-

contact with x < x0 during the collision).  Therefore, if either the collision duration or the 

doublet angular velocity ω increases, θR also increases.  Figure 5.6c is a plot of θR versus 

Stn for those collisions that de-agglomerate (SRS and B).  Near Stn*, a sharp decrease in 

θR is observed for a given θ0 in both experiment and theory as the outcome transitions 

from stick-rotate-separate to bounce.  This observation stems from the fact that the 

collision duration of a stick-rotate-separate collision (Stn < Stn*) is much longer than that 

for a bounce collision (Stn > Stn*), allowing for the particles to rotate further during the 

collision.  Moreover, for Stn > Stn*, θR increases as θ0 increases for a given Stn in both 
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experiment and theory, which is more clearly seen in the inset.  In this region, the relative 

normal velocity of the particles reverses direction due to the normal reversal criteria; 

therefore, the collision duration is primarily dependent on impact velocity (collision 

duration decreases as impact velocity increases) and not on θ0.  However, as θ0 increases, 

the angular velocity of the agglomerate increases so that the particles rotate a larger 

distance in the same amount of time.  
 On the other hand, for Stn < Stn* the opposite trend is observed in Figure 5.6c; the 

rotation angle decreases as impact angle increases at fixed Stn in both experiment and 

theory.  In this region, the centrifugal force is responsible for de-agglomeration, and the 

magnitude of the centrifugal force increases with impact angle in proportion to the square 

of the angular velocity.  Therefore, the decrease in the collision duration due to increased 

centrifugal forces dominates over the increased angular velocity, and the particles do not 

rotate as far as θ0 increases.  While the theory predicts well the qualitative features of the 

experimental observations, a quantitative mismatch still persists.  This quantitative 

mismatch may be due to the deformation of the liquid bridge as the particles move apart 

and liquid is pulled into the bridge. 

 The theory not only predicts the dynamics of the collisions, but, because it allows 

for physical mechanisms to be turned “on” and “off”, the influence of each factor can be 

ascertained.  In Figure 5.7, ew,n and θR are plotted both with string tension included and 

with string tension removed. Note that the values of ew,n and θR are largely unaffected by 

turning off the string tension in regions where collisions had de-agglomerated with string 

tension (i.e., for θ0 = 15º, Stn > 1.4; for θ0 = 30º, Stn > 1; for θ0 = 45º, Stn > 0.5; and for θ0 = 

65º, Stn > 0.2).  Therefore, as described in the next section, the trends in ew,n and θR for de-
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agglomerating collisions are also not greatly affected by the presence of the pendulum 

strings.  Except for one instance, string tension generally does not affect the observed 

trends in ew,n and θR for de-agglomerating collisions. However, for a given impact angle, 

the value of Stn that demarcates agglomeration versus de-agglomeration, St*(θ0), is 

largely influenced by string tension, since without string tension all oblique collisions are 

predicted to de-agglomerate; therefore, in this work the trends of St*(θ0) are not analyzed.  

(In Figure 5.7, with string tension, St*(θ0 = 0º) = 1.4, St*(θ0 = 15º) = 1.3, St*(θ0 = 30º) = 

0.9, St*(θ0 = 45º) = 0.4, St*(θ0 = 65º) = 0.1.) 

 

Figure 5.7  Theoretical predictions of (a) normal restitution coefficient and (b) angle 
rotated for case µmed_x0,large_cs_alarge at several impact angles with pendulum strings 

(solid curves) and without pendulum strings (dashed curves). 

 

5.5.2. Effect of Experimental Parameters 

 In this section, the effect of the various input parameters are scrutinized by 

examining the trends in ew,n and θR as those parameters are varied.   Additionally, a 

comparison of trends between experiment and theoretical predictions further serves to 

validate the theory.  For purposes of conciseness, Table 5.2 at the end of this section 

serves to summarize the trends and provides an easy visual comparison.      
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 To determine the role of the elasticity of the solid sphere in a wetted collision, the 

cases μmed_x0,large_ss_alarge and μmed_x0,large_cs_alarge are compared so that only particle 

material changes from the softer stainless steel (edry = 0.90) to the harder chrome steel 

(edry = 0.99).  Figure 5.8a is a plot of experimental values of ew,n versus Stn for a range of 

impact angles.  Open and closed symbols represent stainless steel and chrome steel, 

respectively.  The value of Stn* (the critical Stn for de-agglomeration in head-on 

collisions) is not sensitive to edry and neither are the values of ew,n for Stn < Stn*.  However, 

for Stn > Stn*, as edry is increased, the value of ew,n increases.  Figure 5.8b shows the 

corresponding theoretical predictions and is plotted on the same scale for direct 

comparison.  The theory agrees well with the experimental trends of ew,n, though there are 

quantitative differences as noted earlier.  The theory is especially useful here to provide 

insight into the cause of this trend.  In particular, the value edry only affects the theoretical 

predictions if Stn > Stn* and bouncing occurs.  Then, one of the three normal reversal 

criteria is met, and the relative velocity at that point is reversed and multiplied by edry to 

account for the dissipation of energy in the solid particle during deformation.  However, 

when Stn < Stn*, and the particles reverse direction due to centrifugal forces, they do not 

deform and the value of edry is not used.  

 To see how edry affects the rotational motion of the doublet, the experimental θR is 

plotted versus Stn in Figure 5.8c, and no difference in θR is noted between the two values 

of edry examined.  The corresponding theoretical predictions are plotted in Figure 5.8d, 

and this plot again has the same scale for direct comparison. Consistent with the 

experiments, the theory also indicates that edry does not significantly affect the rotation 

angle.  Since the values of edry vary by only a small amount (< 10%), the collision 
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duration negligibly decreases as edry increases.  Furthermore, the particle material does 

not affect the angular velocity (Equations 5.11 and 5.12).  Since collision duration and 

angular velocity are unaffected by edry, θR also does not depend on edry.  The theory is able 

to correctly predict the trends in ew,n and θR as edry increases, which is clearly seen in table 

2; however, the theory does exhibit some quantitative mismatch.     

 
Figure 5.8  Normal restitution coefficient from (a) experiment and (b) theory, and 

rotation angle from (c) experiment and (d) theory as the dry restitution coefficient is 
increased from 0.90 (open symbols, dashed curves) to 0.99 (closed symbols, solid curves) 

for cases µmed_x0,large_cs_alarge and µmed_x0,large_ss_alarge. 

 

 To investigate the effect of liquid viscosity, the cases μlow_x0,med_ss_alarge and 

μmed_x0,med_ss_alarge, in which only the viscosity changes, are compared.  Figures 5.9a and 

5.9b are plots of ew,n versus Stn for the experiments and theoretical predictions, 

respectively.  Both experiment and theoretical predictions show Stn* decreases as 
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viscosity increases (the particles more readily bounce at fixed Stn, which requires larger 

impact velocity for larger viscosity).  For the low-viscosity-oil collisions, Stn* ~ 2.0, 

whereas for medium-viscosity-oil collisions, Stn* ~ 1.0 (Figure 5.9a).  Therefore, to 

compare collisions that de-agglomerate due to centrifugal forces with different viscosities, 

only the region of Stn less than the medium-viscosity Stn* is compared.  Similarly, to 

compare the region where normal rebound criteria cause velocity reversal, only the 

region of Stn greater than the low-viscosity Stn* is compared.  

 In Figures 5.9a and 5.9b, for Stn > 2.0 (low-viscosity Stn* = 2.0), as viscosity 

increases, ew,n increases for a given value of Stn because higher lubrication pressures cause 

the glass transition to be reached with less penetration and a smaller fraction of the 

particle kinetic energy lost.   Recall that the value of pgt was chosen for each viscosity 

used in this work to agree with the experimental values of Stn* for normal collisions only.  

Therefore, it is not surprising that in this region where particles reverse direction due to 

the glass-transition criterion, experimental trends agree with theoretical predictions.  

However, for Stn < 1.0 (medium-viscosity Stn* = 1.0), where no glass transition criterion 

is met and therefore the value of pgt is irrelevant, the same trend is not observed.  Namely, 

the value of ew,n in this region is not sensitive to changes in viscosity.  Again, the theory 

allows for further insight into the mechanics of the collision.  Specifically, velocity 

reversal for Stn < Stn* is due only to centrifugal forces.  As viscosity increases, the 

collision velocity must also increase in proportion at fixed Stn, so that the penetration 

depth when the relative normal motion is arrested is unchanged.  Similarly, the fractional 

recovery of the normal velocity when the particles separate is unchanged, and so ew,n is 

left unaffected by changes in viscosity.  
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 In Figures 5.9c and 5.9d, θR is plotted against Stn using the experimental data and 

theoretical predictions, respectively, again for cases with differing viscosities.  For Stn > 

2.0 (low-viscosity Stn* = 2.0), θR decreases as viscosity increases for a given Stn because 

the glass transition is reached more quickly.  However, for Stn < 1.0 (high-viscosity Stn* = 

1.0), no glass transition is predicted to occur and θR is essentially unaffected by changes 

in viscosity at fixed Stn.  Again, higher viscosity requires higher impact velocity at fixed 

Stn.  The resulting increase in rotational velocity is off set by a proportional decrease in 

collision duration due to the increased centrifugal force.  The theory agrees well with the 

observed trends; however, a quantitative mismatch is shown for Stn < Stn*. 

 

Figure 5.9  Normal restitution coefficient from (a) experiment and (b) theory, and 
rotation angle from (c) experiment and (d) theory as viscosity is increased from 5 Pa⋅s 

(open symbols, dashed curves) to 12 Pa⋅s (closed symbols, solid curves) for cases 
µlow_x0,med_ss_alarge and µmed_x0,med_ss_alarge.   
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 Figure 5.10 shows experimental data (Figure 5.10a) and corresponding theoretical 

predictions (Figure 5.10b) for ew,n for two cases with different thicknesses of the liquid 

coating, namely μmed_x0,med_ss_alarge and μmed_x0,large_ss_alarge.  For both the experiments and 

theory, Stn* increases as coating thickness increases.   When Stn < 1.0 (thin-layer Stn* = 

1.0), no obvious difference is observed in the experimental values of ew,n as coating 

thickness is changed, and likewise only very minor differences are observed in the theory.  

Since the initial separation distance of the particle surfaces is larger for the thick-coated 

particles, so that the lubrication resistance is less, the gap decreases by a greater amount 

during approach.  However, the energy lost to viscous dissipation to bring relative normal 

motion to rest is independent of the fluid-layer thickness, and so the viscous losses as the 

particles subsequently separate due to centrifugal forces is also nearly independent of the 

layer thickness, so ew,n is nearly independent of x0 when Stn is less than the thin-layer Stn*.  

Conversely, for Stn > 1.4 (thick-layer Stn* = 1.4), more viscous dissipation occurs for the 

larger coating thickness as the separation between the surfaces decreases to the critical 

gap value specified by the dominant reversal criterion, and then increases again after 

reversal, and so ew,n decreases with increasing x0. 

 In Figures 5.10c and 5.10d, θR is plotted against Stn for experimental results and 

theoretical predictions, respectively.  Only small changes in θR are observed in 

experiment and theoretical predictions for Stn less than the thin-layer Stn*, since the 

angular velocity is not sensitive to coating thickness (Equation 5.11), and the collision 

duration is approximately the same.  In contrast, for Stn greater than the thick-layer Stn*, 

as coating thickness increases, the particles must penetrate a larger distance during 
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approach and reversal, so the collision duration increases, which results in an increase in 

θR in both experiment and theoretical predictions.  The theory continues to predict the 

experimentally-observed trends, but again, a quantitative mismatch is shown for Stn < 

Stn*.  

 

 

Figure 5.10 Normal restitution coefficient from (a) experiment and (b) theory, and 
rotation angle from (c) experiment and (d) theory as the coating thickness is increased 

from 270 μm (open symbols, dashed curves) to 420 μm (closed symbols, solid curves) for 
cases μmed_x0,med_ss_alarge and μmed_x0,large_ss_alarge. 

 

 
 Finally, Figure 5.11 shows the effect of particle radius on ew,n and θR for the cases 

μmed_x0,med_cs_asmall and μmed_x0,med_cs_alarge.  Here, particle material density is held 
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constant so that particle mass also increases with radius.  In Figures 5.11a and 5.11b, ew,n 

is plotted against Stn for the experimental results and theoretical predictions, respectively.  

The value of Stn* remains constant as particle radius increases for both experiment and 

theoretical predictions.  Furthermore, over the entire range of Stn for de-agglomerating 

collisions (Stn > 1.1), the values of ew,n remain constant as particle radius increases for 

both experiment and theoretical predictions (within experimental error).  Since Figure 

5.11a and 5.11b are plotted in terms of Stn, which takes into account the changes in 

particle inertia and fluid resistance with changes in particle radius, the curves associated 

with the different radii collapse for Stn > Stn *.  For Stn < Stn *, the theory predictions 

show a decrease in ew,n with an increase in radius.  This change is due to the balance of 

lubrication and centrifugal forces in Equation 5.9, with vn decreasing in proportion to 1/a2 

(Equation 5.4).    

 In Figures 5.11c and 5.11d, θR is plotted against Stn for experimental results and 

theoretical predictions, respectively, for systems with different particle radii.  Again, 

plotting θR versus Stn causes the curves associated with the different radii to nearly 

collapse for Stn > Stn*.  However, for Stn < Stn*, a decrease in θR as particle radius 

increases is observed in both experiment and theoretical predictions.  This decrease is due 

to string tension.  As seen in Equation 5.7, string tension increases with particle radius, so 

that the larger particles are slowed down more and do not rotate as far. 
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Figure 5.11  Normal restitution coefficient from (a) experiment and (b) theory, and 
rotation angle from (c) experiment and (d) theory as the radius is increased from 7.9 mm 

(open symbols, dashed curves) to 12.7 mm (closed symbols, solid curves) for 
casesµmed_x0,med_cs_asmall and µmed_x0,med_cs_alarge. 

 

 As previously mentioned, the trends are summarized in Table 5.2 for all of the 

parameters discussed.   The theory consistently predicts the observed trends in ew,n and θR, 

which supports the physical interpretation of the experimental results presented in this 

work.  For most parameters, different trends are observed for Stn < Stn* (stick-rotate-

separate) versus Stn > Stn* (bounce), since different mechanism are responsible for de-

agglomeration.  
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Table 5.2  Summary of trends of ew,n and θR at fixed Stn (↑  increase, ↓  decrease, ↔  no or 
small change) 
 for Stn < Stn* for Stn > Stn* Figure 

As edry↑ , ew,n ↔  (Experiment)  
↔  (Theory)  

↑  (Experiment) 
↑  (Theory) 

5.8 

As edry↑ , θR ↔  (Experiment) 
↔  (Theory)  

↔  (Experiment) 
↔  (Theory) 

5.8 

As µ ↑ , ew,n ↔  (Experiment) 
↔  (Theory) 

↑  (Experiment) 
↑  (Theory) 

5.9 

As µ ↑ , θR ↔  (Experiment) 
↔  (Theory)  

↓  (Experiment) 
↓  (Theory) 

5.9 

As x0 ↑ , ew,n ↔  (Experiment) 
↔  (Theory) 

↓  (Experiment) 
↓  (Theory) 

5.10 

As x0 ↑ , θR ↔  (Experiment) 
↔  (Theory) 

↑  (Experiment) 
↑  (Theory) 

5.10 

As a ↑ , ew,n ↓  (Experiment) 
↓  (Theory) 

↔  (Experiment) 
↔  (Theory) 

5.11 

As a ↑ , θR ↓  (Experiment) 
↓  (Theory) 

↔  (Experiment) 
↔  (Theory)  

5.11 

 

 

5.6. Conclusions 

 Unlike previous efforts on wetted collisions, which focused on normal particle-

particle collisions and normal and oblique particle-wall collisions, the focus of this work 

is on oblique collisions between two particles.   In this system, the wetted particles can 

agglomerate and rotate as a doublet, so that centrifugal forces play a role in the dynamics. 

To better understand the interplay between the underlying physical mechanisms, a theory 

is used with combination of experiments and lubrication (low Reynolds number) theory.  

In this work, the parameter space of the collisions is extended to include changes in 

viscosity, coating thickness, particle material, and particle radius.  The theory 
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consistently predicts the experimentally observed trends in the wetted restitution 

coefficient (ew,n) and the angle that the agglomerate rotates during the collision (θR) as 

parameters are changed.  Surprisingly, the trends are different depending on whether de-

agglomeration occurs for values of Stn less than Stn* or greater than Stn*, the value of the 

Stokes number at which normal (head-on) collisions transition from stick to bounce.  

Since the collision dynamics and de-agglomeration are primarily influenced by the 

particle deformation and reversal criteria associated with normal collisions when Stn > 

Stn*, the same trends are observed here as in previous normal particle-particle collisions 

[8].  However, centrifugal forces, which dominate the de-agglomeration process for Stn < 

Stn*, do not have the same dependence on the experimental parameters; accordingly, the 

values of ew,n and θR are not very sensitive to any of the parameters varied for both 

experiment and theory predictions (within experimental error).  Therefore, the resulting 

trends for ew,n and θR are different when Stn < Stn* then when Stn > Stn* (as summarized in 

table 2).  Furthermore, while the pendulum strings affect the Stn at which agglomeration 

occurs, they do not affect significantly the values of ew,n and θR for the outcomes stick-

rotate-separate and bounce; thus, strings do not affect a majority of the trends found, 

except for one – the effect of particle radius on  θR.   

 In this work, a micro-level (particle-level) approach has been taken to study the 

collisions between wetted particles.  Such work is crucial to understanding macro-level 

behavior of many-particle systems, since collisions between particles in such systems are 

typically oblique.  In descriptions of many-particle systems, normal collisions alone are 

not sufficient to describe the trends of bulk flow when input parameters are varied, since 

collisions that reverse direction due to centrifugal forces exhibit consistently different 
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trends.  Furthermore, the work here together with previous work of oblique particle-wall 

collisions and normal collisions between more than two particles provides the foundation 

for discrete element method (DEM) simulations of many-particle systems [1, 4, 8].  

Additionally, the surprising influence of centrifugal forces on de-agglomeration is 

expected to lead to the development of better population balance (continuum) models that 

more accurately take into account oblique collisions. 
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6. INFLUENCE OF CENTRIFUGAL AND CAPILLARY FORCES IN OBLIQUE 

COLLISIONS OF TWO FREE-FALLING WETTED PARTICLES7 

 

6.1. Abstract 

 Previous studies on wetted particle-particle collisions have been limited to head-

on collisions, but in bulk flows collisions are inherently oblique.  In this work, such 

oblique collisions are explored both experimentally and theoretically.  Whereas in normal 

collisions particles rebound only due to solid deformation, so-called centrifugal forces in 

oblique collisions produce an outcome in which the particles initially form a rotating 

agglomerate, and then de-agglomerate at a later time.  Surprisingly, capillary forces are 

essential in oblique collisions even when the capillary number (viscous over capillary 

forces) is high.  This recognition leads to the introduction of a dimensionless number, the 

centrifugal number (centrifugal over capillary forces), which together with the previously 

established Stokes number characterizes the regime map of outcomes.  Unexpectedly, a 

normal restitution coefficient greater than unity is observed at large impact angles, the 

mechanism for which may also be observed in other agglomerating systems.   

 
                                                

7  Donahue, C.M., R.H. Davis, A.A. Kantak, and C.M. Hrenya, Mechanisms of 
Agglomeration and De-agglomeration following Oblique Collisions of Wet Particles. 
Submitted, (2011). 
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6.2. Introduction 

 In the previous Chapter, the role of centrifugal forces in wetted two-body 

collisions was investigated. However, in those experiments, string tension from the 

pendulum played a significant role in the collision, particularly in the agglomeration 

behavior.  In this Chapter, the string tension is removed from the theory and the 

predictions are analyzed.  

 The scope of this work is targeted at low-Reynolds number, Re (ratio of inertia to 

viscous forces of the liquid in the gap between particles) such that Stokes flow prevails.  

Previous low-Re work on wetted collisions found that the primary dimensionless 

parameter that dictates agglomeration versus de-agglomeration is the Stokes number, Stn 

= mvn,0/6πμa2, which is a ratio of the particle inertia to the viscous force.  Here, 

m = m1m2 (m1 +m2 ) is the reduced mass of the particles, vn,0 is the normal component of the 

relative impact velocity, µ is the liquid viscosity, and a = R1R 2
/ R1 + R2( )  is the reduced 

radius.  Experiments showed that if Stn is below a critical value, Stn*, the two bodies 

agglomerate and if Stn > Stn*, they de-agglomerate regardless of whether it is a normal 

particle-particle or oblique particle-wall collision [1].  The value of Stn* is found 

theoretically via a coupling of hydrodynamics and solid mechanics (i.e., 

elastohydrodynamics) [2] or measured directly in experiments [3]. 

 Pendulums have proven useful for experiments of normal and oblique particle 

collisions as they allow for small impact velocities [4-6] (as needed for Stokes flow with 

large particles, for example).  In this work, the striker and target particles are held by 

pendulum strings spaced one diameter apart.  A coating bath is used to coat the target 

particle, where the thickness of the liquid coating at a given drainage time is measured 
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using a high-resolution camera.  The release position of the striker along the pendulum 

arc controls the impact velocity, and the string holding the target particle is attached to a 

rotating plate that controls the impact angle, θ0, where θ0  = 0º for normal collisions and θ0  

= 90º for perfectly tangential collisions.  The pre- and post-collisional velocities are 

measured using a high-speed camera.  Finally, data collection ceases if the doublets that 

are still agglomerated past 180°, since the two strings holding the particles cross, or if the 

angular velocity of the doublet reverses direction.  As illustrated in Figure 6.1, three 

possible outcomes are observed.  At small Stn, the particles stick (S, Figure 6.1a) due to 

viscous losses.  At large Stn, the particles bounce (B, Figure 6.1c) due to elastic 

deformation.  There are only two outcomes predicted and observed previously for normal 

collisions of two wet particles [7].  However, at intermediate Stn* for oblique collisions, 

the particles initially stick due to viscous losses, rotate for a substantial amount of time, 

and then separate due to centrifugal forces (SRS, Figure 6.1b).  Note that the ‘bounce’ de-

agglomeration mechanism is nearly instantaneous, whereas the ‘stick-rotate-separate’ 

mechanism is relatively slow. 
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Figure 6.1  Top-view snapshots of collisions with outcomes of a) stick (S), b) stick-
rotate-separate (SRS), and c) bounce (B) for parameters of 12 Pa⋅s oil, 420-µm oil 

thickness, chrome steel spheres of 25.4 mm diameter, and a 45°-impact angle.  The only 
parameter that changes between the subfigures is impact velocity, such that the Stn for 

each subfigure is a) 1, b) 1.3, and c) 1.5.  Corresponding videos can be found in the 
Supplementary Material.  The time between each frame is a) 79 ms, b) 61 ms, and c) 49 

ms. 

 

6.3. Collisions with String Tension 

 For further physical insight into this mechanism for de-agglomeration, previous 

wetted-particle theories are extended to our system [3, 8, 9].  As mentioned previously, 

since Re is small ( Re = ρvn.0x0 / µ < 0.04 in the experiments, where x0 is the liquid-layer 

thickness), the viscous (dynamic) forces in the liquid bridge can be described by Stokes 

flow.  Additionally, since the capillary number, (ratio of viscous to capillary forces, 

Ca = 3µavn,0 /σ x0 > 1500, where σ is the surface tension), is large, capillary (static) 

forces are relatively small.  Previous experiments with pendulums, including oblique 

collisions of dry particles and wet particle-wall collisions, have shown that the strings 

exert negligible tension on the particles [4-6].  However, the inclusion of string tension is 

critical to predicting the correct outcomes and trends, since the particles rotate through a 
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significant angle before de-agglomerating, allowing for large string tension forces to act 

over a long period of time.  

 Newton’s equations of motion are solved (Table 6.1), including the centrifugal 

‘force’, with an initial separation equal to the liquid-layer thickness, x0.  As the two 

particles approach each other, the pressure in the gap rapidly increases to squeeze out the 

liquid causing the solid particles to deform, which can lead to velocity reversal.  If one of 

three reversal criteria is met, namely (i) the glass-transition pressure, pgt, is exceeded, (ii) 

the separation distance of the particle surfaces, x, equals the elasticity length scale, xr, 

based on previous elastohydrodynamic theory [3], or (iii) x equals the surface roughness, 

xb, then the particles reverse direction.  Specifically, the relative velocity is reversed and 

multiplied by the dry restitution coefficient, edry, to account for the energy dissipated by 

the solid particles upon deformation.  Note that these criteria are identical to those present 

in normal collisions, and are independent of potential reversal caused by centrifugal 

forces (which are not present in normal collisions).  The particles then separate (de-

agglomerate) from each other when x reaches x0.  Due to the lack of well-established data, 

pgt is estimated based on the measured value of Stn* [9]. 
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TABLE 1.  Theory Description.  
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Here, the subscripts n and t denote the normal and tangential directions, respectively, 
vn(t) is the relative normal velocity of the two spheres, x(t) is the distance between 
their surfaces, ω(t) is the angular velocity of the doublet about its center of mass, ξ(t) 
is the angular velocity of each particle about its center, β(t) is the angle through 
which the doublet has rotated from initial contact, l is the length of the pendulum 
string, g is the gravitational acceleration, V is the liquid bridge volume non-
dimensionalized by the particle radius cubed (assumed constant), and φ is the contact 
angle of the liquid with the solid sphere (assumed 0).  Note that the tangential 
lubrication force in the normal direction is the classic formula of G.I. Taylor, 
corrected for the finite thickness of the thin film [8], whereas the tangential 
component is an approximation using the asymptotic analysis for nearly-touching, 
fully-immersed spheres [11], but modified by removing the constant term so that 
there is no hydrodynamic force on the doublet when in rigid-body motion (ω = ξ).
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Figure 6.2  Regime map of collisional outcomes for pendulum apparatus.  Symbols 
represent the outcome of a given experiment, and lines represent boundaries between the 
outcomes as predicted by the model for edry = 0.99, x0 = 420 µm, xb = 1 µm, a = 0.63 cm, 

µ = 12 Pa⋅s, m = 34 g, pgt = 12 MPa.  Pendulum strings are responsible for sticking 
collisions at oblique angles (θ0 > 0).  

 

 A regime map of the outcomes is shown in Figure 6.2.  The model and 

experiments show all three outcomes and are in good agreement except that the S-SRS 

boundary occurs at higher θ0 for a given Stn in the experiment.  Furthermore, the model is 

able to well predict experimental trends in how the boundaries between outcomes change 

with a change in physical parameters (edry, x0, a, µ), the details of which are not included 

here for brevity.  In Figure 6.2, the value of Stn at which normal collisions (θ0 = 0º) 

transition from stick to bounce, namely Stn*, is equal to 1.4.  For oblique collisions, the 

value of Stn* also serves to demarcate the transition between agglomeration and de-

agglomeration for small impact angles (θ0 ~< 50º).  At large impact angles (θ0 ~> 50º), 

however, Stn* serves as a boundary between stick-rotate-separate and bounce.  This 
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inability of Stn* to be used as a predictor of agglomeration versus de-agglomeration for 

more oblique collisions can be traced to the role of centrifugal forces, which are 

responsible for the ultimate de-agglomeration for the stick-rotate-separate outcome.   

 

6.4. Collisions with Capillary Forces 

 In practical applications in both nature and industry, clearly pendulum strings are 

not connected to particles.  Thus, to more realistically model these systems, model 

without string tension (but with capillary forces) is developed.  If two particles in a 

rotating doublet are to stick together, their relative velocity, and, hence, lubrication 

suction force, must eventually go to zero.  Since the centrifugal force continues to pull 

the particles in a rotating doublet apart, another (cohesive) force is needed to balance it, if 

the particles are to remain agglomerated.  When particles stick in a free collision, the 

additional force is provided by capillary forces.  Recall that in this work, Ca is large, 

implying that capillary forces may be neglected [12].  Therefore, and somewhat 

surprisingly, even when Ca is large, capillary forces are non-negligible for oblique 

collisions and thus included (but not in the model for experiments since agglomeration 

due to strings was found to overshadow capillary forces).  

 Figure 6.3 is a regime map of possible outcomes produced by solving Newton’s 

equations for the oblique collision of two wetted particles without pendulum strings but 

with the capillary force included, for input parameters consistent with values 

representative of the granulation process and common to other industrial applications.  

De-agglomeration occurs when the liquid bridge ruptures at xf = 2aV1/3 [13].  It is 

important to point out here that while the shape of the boundary between stick and stick-
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rotate-separate appears to be similar in Figure 6.2 and 6.3a, the mechanisms for sticking 

(agglomeration) are surprisingly different.  In both cases, if Stn < Stn*, the particles 

initially agglomerate due to viscous forces and rotate as a doublet with conservation of 

angular momentum.  The corresponding centrifugal force tends to pull the doublet apart.  

In Figure 6.2, with pendulum strings, the centrifugal force is opposed to by a lubrication 

suction force (to draw fluid into the gap as the particles separate) and string tension; 

agglomeration is assumed if the particles are still together when θ0  = 180º and the strings 

cross or if the angular velocity reverses direction due to string tension.  In Figure 6.3a, for 

particles without pendulum strings, the centrifugal force is opposed by lubrication suction 

and the capillary force; without the capillary force, de-agglomeration would always occur 

once the doublet rotates far enough.  On the other hand, unlike oblique collisions, normal 

collisions are practically unaffected by the presence of capillary forces.  Normal 

collisions still agglomerate for Stn < Stn* even when capillary forces are removed (as 

indicated by the arrow pointing to θ0 = 0 in the inset of Figure 6.3a), which is consistent 

with previous models [3, 8, 9].  
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Figure 6.3  Model predictions for free collisions (no strings attached): (a) outcome 
regime map and (b) normal restitution coefficient for collisions with edry = 0.99, x0 = 8 
µm, xb = 0.2 µm, a = 50 µm, µ = 2 Pa⋅s, m = 5.2×10-6 g, σ = 0.025 N/m, pgt = 20 MPa, V 

= 0.1, and θ0 = 0º, 15º, 30º, 45º, 60º, and 75º (bottom to top).  The dimensionless numbers 
Ce* = 4.2 and  Stn* = 0.11 serve as boundaries to the stick outcome.  The inset of (a) 
shows the model without capillary forces, so that only normal collisions agglomerate. 

 

6.5. Centrifugal Number 

 The identification of the relative role of centrifugal and capillary forces in the 

agglomeration behavior of oblique collisions leads to a new dimensionless number that, 
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together with the Stokes number, is key to predicting agglomeration versus de-

agglomeration.  Since the transition between stick and stick-rotate-separate occurs when 

centrifugal forces dominate over capillary forces, a relevant dimensionless number is 

proposed, namely the centrifugal number, 

 Ce = mω0
2

σ
,         (6.1) 

where ω0 is the initial angular velocity.  In Figure 6.3a, a critical value of Ce, namely Ce* 

= 4.2, and a critical value of Stn (Stn* = 0.11) are plotted on top of the model predictions, 

and the two lines enclose the stick region (agglomeration) superbly.  (Note that when the 

first kinematic equation is non-dimensionalized by aσ, the centrifugal number falls out 

from the centrifugal force term.)    

 To investigate the dynamics of the collisions in more detail, the predicted wet 

normal restitution coefficient, ew,n is plotted against Stn in Figure 6.3b.  In this work, 

ew,n = −vf ⋅
nf / (
v0 ⋅
n0 ) , where the subscripts 0 and f denote pre- and post-collisional values, 

respectively [14].  Note that, unlike the traditional definition, this definition distinguishes 

between the initial and final direction of n , the unit vector that points from the center of 

one particle to the other.  The curve of ew,n for θ0 = 15° collisions is almost 

indistinguishable from normal collisions (θ0 = 0) and only stick (ew,n = 0) and bounce are 

observed.  At higher impact angles, the curves also exhibit a region of stick-rotate-

separate outcomes (moderate Stn), for which the curves are qualitatively different than in 

the bounce outcome (higher Stn*), and a discontinuity in the slope at Stn* = 0.11 separates 

the two outcomes.  The relevance of Ce is further illustrated by the inset of Figure 6.3b, 
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which is a plot of ew,n versus Ce for the subset of collisions at impact angles large enough 

so that only centrifugal forces facilitate rebound (no normal reversal criterion is met).  

The exact value of Ce* depends very little on impact angle.  Moreover, doubling the 

values of V, x0, µ,σ, m and a leads to a change in Ce* by a factor of 1.0, 0.79, 0.99, 1.01, 

1.01 and 1.13, respectively.  Therefore, large changes in input parameters result in 

relatively small changes in Ce*.  This lack of sensitivity of Ce* has important 

implications in practical flows where, for example, there may not be a uniform 

distribution of liquid.  Therefore, a mid-range value of Ce* should still be able to predict 

agglomeration well in this regime (Stn < Stn*). 

 A remarkable aspect of Figure 6.3b is that ew,n > 1 in some regions, indicating that 

the normal component of the post-collisional relative velocity is greater than its pre-

collisional value.  The normal coefficient of restitution typically ranges between zero and 

one, with perfectly inelastic collisions giving zero and perfectly elastic collisions giving 

unity.  One exception is oblique, dry collisions of a hard particle impacting a soft wall 

where a normal restitution coefficient greater than unity has been observed for collisions 

past a critical impact angle, which is related to the local deformation of the wall [14, 15].  

However, there is no indication that the same mechanisms would be present in (dry) 

particle-particle collisions.  In the case of wetted particles, the initial separation of the 

particles is x0, but the final rupture distance xf is larger due to stretching of the liquid 

bridge.  The moment of inertia of the doublet, I =ma2 x
a + 4( )2 + 32

5( ) , increases as x 

increases, and since angular momentum (Iω) is conserved, the angular velocity decreases.  

Therefore, since the total kinetic energy is 12 Iω 2 + 1
2mvn

2 , vn must increase as the rotational 
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kinetic energy decreases if viscous dissipation is ignored.  So, when the increase in the 

normal velocity due to this hysteresis in the initial and final separation distance is greater 

than the amount lost due to viscous dissipation, the magnitude of final normal velocity 

will be larger than the initial value, which leads to ew,n > 1.  This effect could also be 

observed in other systems of agglomerates that exhibit hysteresis in the initial and final 

separation distance, such as in nanoclusters where the object shape may deform.  

6.6. Conclusions 

 In conclusion, an experimentally validated model has been used to study 

agglomeration/de-agglomeration behavior for oblique collisions of two wet spheres.  In 

addition to the stick and bounce outcomes observed for head-on collisions, an outcome 

has been observed for oblique collisions in which particles initially agglomerate, and then 

later de-agglomerate due solely to centrifugal forces.  Furthermore, even at high Ca, 

capillary forces are surprisingly essential for the doublet to remain agglomerated in 

oblique collisions.  The relative importance of the centrifugal and capillary forces is 

characterized by a new dimensionless number, the centrifugal number, Ce.  For the case 

of oblique collisions, Ce and the previously established Stn are essential for characterizing 

agglomeration versus de-agglomeration, where as previously only the role of Stn had been 

identified in normal collisions.  In practical, many-particle systems, oblique collisions are 

the norm, so this introduction of Ce is key to an accurate prediction of agglomeration 

versus de-agglomeration.  Similar dimensionless numbers may also be useful in other 

agglomerating systems by replacing the capillary force in the denominator of Ce by a 

measure of the relevant cohesive force (for instance, in agglomeration of very small 

particles, the van der Waals force).  Not only do the dimensionless numbers Ce and Stn 
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aid in our physical understanding, but the associated computational costs of modeling 

bulk flow by solving the equations for each individual particle via discrete element model 

(DEM) simulations can be reduced, since the full equations need not be solved depending 

on the dominant physics present in a given collision.  Additionally, a normal coefficient 

of restitution greater than unity has been observed, where the normal relative velocity 

increases at the expense of angular kinetic energy.  This mechanism is not limited to 

wetted collisions, but is possible in any collision in which the initial separation distance is 

smaller than the final separation distance, such as in the collision of viscoelastic drops.  

The micro-level understanding of the physical mechanisms of wetted-particle collisions, 

as investigated here, is essential for a macro-level understanding of bulk flow of diverse 

systems from pharmaceuticals here on earth to interstellar grains in an asteroid belt.  
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7. CONCLUSIONS AND FUTURE WORK 

 

7.1. Conclusions 

 The focus of this work has been to extend the previous wetted-particle 

experiments and theory to (i) collisions between more than two particles and (ii) oblique 

collisions between two particles.  In a normal or head-on, two-body collision, only two 

possible geometrical outcomes exist, stick or bounce.  Conversely, in a three-particle 

collision four geometrically possible outcomes exist (under both wet or dry conditions).   

 Before investigating normal (head-on) three-particle wet collisions, experiments 

of the dry counterpart were performed and compared to existing soft-sphere and hard-

sphere models.  To model a three-body collision using a hard-sphere model, the collision 

was approximated as a series of two-body collisions.  In dry collisions, the only outcome 

observed was that of all particles fully separated.  Furthermore, the striker particle was 

observed to reverse direction with a relatively small velocity after impact.  While the 

hard-sphere model is unable to predict this velocity reversal (unlike the soft-sphere 

models), it predicts the correct outcome of separate spheres.  Additionally, the hard-

sphere model predicts well the velocity of the target particle opposite the striker, which 

receives a majority of the momentum.  While this work has shown that most soft-sphere 

models outperform the hard-sphere model, the shortcomings of the hard-sphere model do 
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not appear insurmountable, and it still remains an attractive choice in simulations given 

its relatively low computational costs.   

 Next, the same experimental apparatus was used to investigate wetted three-

particle collisions by coating the target particles with silicon oil.  Because the liquid layer 

is characterized by low-Reynolds number (Stokes) flow, the apparatus is coined ‘Stokes’s 

cradle’.  The initial set of experiments over a wide range of parameters revealed every 

outcome except for the one outcome associated with the Newton’s cradle in which the 

particle opposite the target is ejected from the group, and the rest are left motionless.  A 

comparison of the theory to the experimental results identified two key pieces of physics 

ignored in previous works: 1) as the pressure in the liquid gap between the particles 

increases, the liquid may reach the glass transition, at which point the particles reverse 

direction; 2) while the pressure in the liquid gap is predicted to drop below the vapor 

pressure of the liquid, implying cavitation may have occurred, outbound resistance 

cannot be neglected.  With aid from the theory developed in this work, eventually the 

Newton’s cradle outcome was experimentally attained by changing the amount of liquid 

in the bridge connecting the two target particles. 

 Finally, to investigate how rotation of an agglomerate affects de-agglomeration, 

oblique particle-particle collisions were explored experimentally and theoretically.  In 

normal (head-on) collisions between two particles, de-agglomeration only occurs when 

energy stored in the deformation of the solid particle during approach is released, causing 

the particles to reverse direction.  Furthermore, normal collisions were observed to either 

stick or bounce.  On the other hand, in oblique collisions, centrifugal forces cause the 

particles to reverse their relative motion from forward to away from one another, which 
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leads to a new outcome, namely stick-rotate-separate, in which the particles initially form 

a rotating agglomerate and then de-agglomerate at a later time.  Furthermore, even when 

the capillary number (viscous over capillary forces) is large compared to unity, capillary 

forces are essential for agglomeration of particles in oblique collisions; otherwise, all 

oblique collisions would eventually de-agglomerate due to centrifugal forces.  This 

recognition lead to the introduction of a dimensionless number, the centrifugal number 

(centrifugal over capillary forces), which together with the previously established Stokes 

number, characterizes the regime map of possible outcomes.  

 The work here has added to the understanding of wetted-particle collisions, 

particularly since a number of physical mechanisms have been identified and the effect of 

different parameters has been established.  Specifically, the mechanisms identified 

include the glass transition of the coating liquid, viscous resistance during particle 

separation, centrifugal forces, and capillary forces.  When modeling wetted particles, 

future works will need to account for these physical mechanisms.  For example, previous 

work on normal collisions has shown that the capillary forces can be neglected when the 

capillary number is large.  Conversely, this work has shown capillary forces are 

important in oblique collisions even when the capillary number is large.  Since collisions 

are more often than not oblique, in most practical systems capillary forces need to be 

considered.  Additionally, to characterize wetted flow, the properties of the liquid coating 

and the solid particle are needed.  Current measurements that are routinely taken include 

liquid viscosity, surface tension, and dry restitution coefficient.  By identifying the 

relevant physical mechanisms, this work drives what measurements are important.  

Particularly, the glass-transition pressure is not typically measured for the liquids 
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involved in wetted flows, but is an important parameter that determines agglomeration 

versus de-agglomeration. 

 In previous works, trends in the critical Stokes number and restitution coefficient 

for normal two-body collisions have been well established.  Furthermore, when the 

critical Stokes number decreases, the probability of normal collisions to de-agglomerate 

increases, causing collisions to be ‘bouncier’.  However, those same trends may not be 

directly applied to many-particle systems that include both oblique collisions and 

collisions involving more than two particles.  For example, changing parameters that 

make normal two-particle collisions bouncier does not always make normal three-particle 

collisions bouncier (i.e. a larger number of particles separated).  Normal two-particle 

collisions are always bouncier as the liquid layer thickness is decreased.  However, this 

work has shown that, for particular parameters, decreasing the amount of liquid results in 

‘stickier’ three-particle collisions.  Additionally, the trends of oblique collisions that de-

agglomerate due to centrifugal forces are different than the trends of normal collisions.  

For instance, a few ways to increase the wet coefficient of restitution in normal collisions 

for a given Stokes number are to decrease the coating thickness, increase the viscosity, or 

increase the dry restitution coefficient of the solid.  However, for an oblique collision that 

de-agglomerates with a Stokes number less than the critical Stokes number, changing any 

of these parameters will not change the value of the wet restitution coefficient. 
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7.2. Recommendations for Future Work 

7.2.1. Microscopic 

 The primary focus in this work was to identify the relevant physical mechanisms 

in normal three-body collisions and oblique two-body collisions.  Further work should be 

focused on refinement of the important physics.  Such physical mechanisms include the 

glass transition, cavitation, and the deformation of the liquid bridge.  The high-speed 

camera used in this work was primarily employed to measure pre- and post-collisional 

velocities and, due to the low frame rate, was unable to capture the dynamics during a 

normal collision.  However, since all three mechanisms above influence the post-

collisional velocity, isolating the effect of each physical mechanism is difficult.  A high-

speed camera with greater spatial and temporal resolution could be used to determine 

accelerations of each particle during the collision process and, therefore, the forces 

experienced by each particle.  In turn, the experimental force profiles could be compared 

against theoretical predictions during different stages of the collision.  For instance, in a 

normal collision, as the particles approach each other, the particles experience resistance 

from the viscous liquid.  As the pressure in the gap increases, the viscosity increases and 

so does the viscous resistance.  The effect of such pressure-dependent viscosity can be 

compared to the theoretical force profiles as the particles are approaching one another, 

since cavitation is not assumed to be relevant at this point.  Furthermore, the influence of 

temperature due to viscous heating of the liquid as the particles are approaching was not 

investigated in this work.  An approximate calculation can be made by assuming that a 

majority of the energy lost during the collision is contributed to viscous heating such that 

the change in temperature is 
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  ΔT =
1
4mpv0

2 (ew
2 −1)

mlcp
        (7.1) 

 where mp is the mass of the particle, v0 is the impact velocity, ew is the wet restitution 

coefficient, ml is the mass of the liquid heated, and cp is the specific heat of the oil.  The 

volume of the liquid heated during the collision is assumed to be equal to x0 × π(2ax0) 

where x0 is the initial thickness, 2ax0  is the characteristic radial distance over which the 

lubrication force is distributed, and a is the reduced radius of the particle.  Subsequently, 

the change in temperature is quite modest and is no more than 2 K for the parameters 

used in this work.  Additionally, the current work indicates that presumed cavitation 

conditions (predicted pressure lower than vapor pressure) do not preclude the outbound 

resistance, but the influence of such cavitation is still uncertain.  Therefore, to assess the 

effect of cavitation, experimental force profiles as the particles are moving away from 

each other could be compared to theoretical predictions.  Finally, in the current model, 

viscous resistance was assumed negligible when the particles reached a separation 

distance equal to either the initial liquid thickness or an effective thickness based on the 

volume of the liquid bridge connecting the particles.  However, during the collision, the 

liquid no longer evenly coats the particles but deforms as the bridge elongates and, 

therefore, the separation distance at which lubrication goes to zero should be refined.  

One way to determine how deformation of the bridge influences lubrication is to 

determine the distance at which the forces go to zero as the particles are separating. 

 While the dimensionless centrifugal number was identified in Chapter 6, no 

experiments were carried out to verify its ability to demarcate the transition between 
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agglomeration and de-agglomeration of wetted oblique collisions.  Previous experimental 

works have verified the prediction that the Stokes number must be above a critical Stokes 

number for de-agglomeration of normal collisions to occur.  Accordingly, the Stokes 

number has become a significant number in both research papers and textbooks.  The 

centrifugal number is expected to play a similarly important role in oblique collisions, 

since the centrifugal number is a measure of the centrifugal forces to the capillary forces, 

which are relevant in oblique collisions but not in normal collisions under conditions 

investigated.  For the experiments on oblique collisions performed as part of this work, 

recall that de-agglomeration was prevented by the presence of pendulum strings rather 

than capillary forces, the latter which would dominate in unconstrained (no pendulum) 

collisions.  As a result, the ability of the centrifugal number to predict agglomeration/de-

agglomeration behavior for two particles was not tested in this work.  A recommendation 

for future work is to experimentally validate the critical centrifugal number.  Since the 

particles could no longer be held by pendulum strings, experiments would need to be 

performed in a free-falling manner, such as a reduced-gravity aircraft or drop tower.  

While free-falling collisions of two particles have been performed in table-top 

experiments [1], such collisions have been between dry particles in which the collision 

time is considerably shorter, therefore requiring a shorter drop distance.  In wetted 

collisions, preliminary results of the model of Chapter 5 and 6 indicated for similar 

materials used in this work, the collision times could be as large as 5 seconds.  Therefore, 

the minimum drop distance for such collisions would be 125 m.   
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7.2.2. Macroscopic 

 Many tools are available to study the macroscopic flow of particles.  Discrete 

element models (DEM) of individual particles offer a direct way to implement the 

microscopic theory developed in this work to study bulk flow.  Previous work of two-

body collisions alone did not provide an adequate foundation for DEM simulations since 

neither collisions of more than two particles nor the rotational motion of an agglomerate 

had been studied.  The work here on normal three-body collisions indicates that 

approximating a collision involving more than two particles via a series of two-body 

collisions and using a hard-sphere model may be adequate for purposes of DEM 

simulations.  Such a treatment will significantly reduce the computational power required, 

since a wet coefficient of restitution can be calculated a priori and the full differential 

equations do not need to be solved for each collision.  On the other hand, a series of two-

body collisions requires that the collision time is short enough so that only the particle 

velocities significantly change during the collision and not the particle positions.  In 

normal collisions, such as in the collisions in Chapter 3 and 4, this is the case, but in 

oblique collisions the collision time is long.  During this long collision time, the colliding 

particles may change positions considerably.  For example, if one particle strikes two 

agglomerated particles at an oblique angle, the striker and the first target particle will 

rotate around the center of mass of those two particles.  Therefore, since it is assumed 

that the target particle opposite the striker is not engaged in the collision, its distance 

from the other target particle will increase as that target particle rotates away.  The lure of 

low computational costs is such that creative approximations to this problem should be 

pursued.  
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 Since computational power limits the number of particles that can be simulated in 

DEM, continuum theory is also important in describing the macroscopic flow of 

industrial systems.  Such a continuum framework for describing wetted-particle 

agglomeration and de-agglomeration exists via in the population balance, which is a rate 

equation that tracks the change in the number of particles of a given property.  However, 

many of the current agglomeration models used in population balances have been largely 

empirical.  As a result, they are not useful for predicting effects of scale-up, design 

changes, or changes in properties.  A small number of models are semi-empirical or 

physically based and depend on the critical Stokes number [2].  However, current models 

only account for the normal component of velocity and not impact angle.  In future works, 

to account for a range of impact angles, population balance models should be based on 

the centrifugal number as well as the Stokes number.   

 

7.2.3. Applications 

 In addition to identifying and refining the physical understanding of wetted-

particle collisions, making the findings of this work more accessible and useful for 

practical situations (granulation, agglomeration, etc.) is important.  In previous works, the 

critical Stokes number was identified as the key parameter for predicting agglomeration 

versus de-agglomeration.  In this work, the centrifugal number has also been identified as 

a crucial parameter in predicting agglomeration versus de-agglomeration.  Both values 

can be found theoretically but require good models and detailed measurements of specific 

parameters.  For instance, the glass-transition pressure is necessary to determine the 

critical Stokes number.  However, even for the silicon oils used in this work and 
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elsewhere well-established measurements do not yet exist.  Therefore, methods should be 

developed to empirically determine the critical Stokes number and the critical centrifugal 

number. 

 To measure the critical Stokes number, a particle could be dropped onto a wetted 

wall (or a fixed particle).  The height at which the particles transition from stick to 

rebound can then be used to find the impact velocity and thus the critical Stokes number.  

Detailed measurements of post-collisional velocities are not necessary since only the 

impact velocity factors into the Stokes number.  To measure the critical centrifugal 

number, a particle can be stuck onto a wetted wall that is oriented vertically as long as the 

capillary force is larger than gravity.  Rotating the wall introduces a centrifugal force to 

the particle.  The angular velocity at which the particle leaves the surface, along with the 

mass of the particle and surface tension of the liquid, can be used to determine the critical 

centrifugal number.  Such devices are already in use [3].  
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