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ABSTRACT	

Piedrahita,	Ricardo	Antonio	(Ph.D.,	Mechanical	Engineering)	

On	the	assessment	of	air	pollution	and	behavior	within	a	cookstove	intervention	study	in	
Northern	Ghana	and	development	of	improved	measurement	techniques		

Thesis	directed	by	Associate	Professor	Michael	P.	Hannigan	
	
	 2.8	billion	people	burn	solid	fuels	for	cooking	(Bonjour	et	al.,	2013)	and	the	resulting	air	

pollution	is	the	third	leading	risk	factor	for	the	global	burden	of	disease,	contributing	to	4	

million	premature	deaths	per	year	(Lim	et	al.,	2012).		There	are	also	impacts	on	global	and	

regional	climate	systems,	and	ecological	health.		This	dissertation	investigates	aspects	of	these	

issues	as	part	of	REACCTING	(Research	on	Emissions,	Air	quality,	Climate,	and	Cooking	

Technologies	in	Northern	Ghana),	a	200-home	cookstove	intervention	study	in	the	Kassena-

Nankana	(K-N)	Districts	of	Northern	Ghana	that	took	place	from	2013-2016.		It	contributes	

quantitative	results	from	the	REACCTING	study,	and	novel	exposure	estimation	techniques	to	

improve	intervention	assessment,	in	five	chapters.		First,	traditional	and	intervention	stove	use	

results	are	presented	from	both	electronic	stove	usage	monitors	and	surveys.		Stove	use	

patterns	are	explained,	and	improvements	to	stoves	and	measurement	techniques	are	

proposed.		Second,	origins	and	exposure	of	PM2.5	are	assessed.		Personal,	kitchen	area	

microenvironment,	and	ambient	organic	PM2.5	data	were	analyzed	using	positive	matrix	

factorization,	to	better	understand	source	types	and	relative	importance	at	the	different	scales.		

Third,	personal	carbon	monoxide	exposure	results	are	presented	for	intervention	participants.		

Fourth,	methods	and	results	are	presented	for	a	proximity	assessment	system	used	to	enrich	

personal	exposure	measurement	data.		Fifth,	a	laboratory	assessment	is	presented	for	a	widely	

used	electrochemical	carbon	monoxide	(CO)	exposure	monitor	to	better	understand	its	

strengths	and	limitations	as	relevant	to	this	study.		
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 	Background	and	Motivation.	

Globally,	2.8	billion	people	cook	with	biomass	(Bonjour	et	al.,	2013),	and	pollution	from	

household	biomass	combustion	is	the	third	highest	risk	factor	for	the	global	burden	of	disease	

(Lim	et	al.,	2012).		Cookstoves	present	a	compelling	avenue	towards	providing	benefits	on	three	

fronts:	1)	improving	human	health,	2)	preserving	local	ecosystems,	and	3)	reducing	greenhouse	

gas	emissions.		Introduction	of	‘improved’	cookstoves	(ICS)	targeting	these	goals	also	addresses	

multiple	focus	areas	of	the	millennium	development	goals	and	the	sustainable	development	

goals	(UN,	2016).		Here,	the	term	‘improved’	cookstoves	is	written	in	the	sense	suggested	by	

Smith	and	Dutta	(2011),	noting	that	cookstoves	are	more	likely	to	improve	health	and	quality	of	

life	the	more	similar	they	are	to	the	gold	standard	of	cooking	with	natural	gas.		Among	many	

regions	that	have	been	heavily	impacted	by	inefficient	household	energy	use	practices	with	

high	costs	on	human	and	environmental	health,	we	chose	to	undertake	a	cookstove	

intervention	research	project	in	the	Kassena-Nankana	(K-N)	Districts	in	Upper	East	Ghana.		

	 Ghana	as	a	whole	is	experiencing	alarming	deforestation	rates,	with	33.7%	of	forest	area	

(2.5E6	hectares)	lost	since	1990,	and	a	2.19%	annual	deforestation	rate	from	2005-2010	(FAO,	

2010),	due	in	part	to	the	84%	of	the	rural	population	that	uses	wood	for	cooking	(Ghana	

Millenium	Development	Goals	Report,	2015).		The	K-N	Districts,	with	a	population	of	156,000	

(80%	of	households	are	considered	rural)	(Oduro	et	al.,	2012),	is	almost	entirely	categorized	as	

a	high-risk	region	for	desertification	(Adanu	et	al.,	2013).		The	Sahel,	which	encompasses	the	K-

N	Districts,	was	devastated	by	a	severe	drought	in	the	1970’s-1980’s	(Dai	et	al.,	2004).		Future	

climatic	conditions	show	mixed	results,	with	some	projecting	increased	rainfall	as	the	oceans	

warm,	and	others	projecting	reductions	(Dai	et	al.,	2014).		Multi-model	aggregations	by	Aloysius	

et	al.	(2016)	report	average	precipitation	increases	in	Equatorial	West	Africa	in	the	range	of	1.7-

4.3%	in	the	near	term	(2021-2050),	and	2.6-8.4%	in	the	long	term	(2070-2099),	while	average	

surface	temperature	increases	are	from	1.4-1.5	oC	in	the	short	term,	and	2.1-4.3	oC	in	the	long	

term.		Temperature	increases	alone	will	be	challenging	for	the	population	to	adapt	to,	and	

deforestation	of	the	region	will	render	the	area	increasingly	inhospitable	and	may	increase	the	

rate	of	migration	(Warner	et	al.,	2009;	Antwi-Agyei,	et	al.,	2012).			
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The	Ghanaian	government	recognized	the	health	and	environmental	risk	early	on,	and	

implemented	various	programs	to	reduce	biofuel	consumption,	though	most	have	emphasized	

fossil	fuel	use	as	a	means	to	reduce	consumption.		One	effort	to	reduce	biofuel	consumption	

came	in	1990,	when	the	Ahibenso	charcoal	stove	program	was	introduced	to	develop	and	

deploy	a	fuel-efficient	charcoal	stove.	40,000	stoves	were	sold	by	1993,	but	then	government	

funding	ran	out	and	the	venture	ceased	(Kemausuor	et	al.,	2012).		Despite	some	success	with	

improved	cookstoves,	the	focus	of	government	energy	programs	for	home	energy	use	was	

liquefied	petroleum	gas	(LPG),	which	was	better	aligned	with	economic	aspirations	of	reaching	

middle-income	status	as	a	country	by	2015,	and	seemed	likely	due	to	the	completion	of	the	

West	African	Pipeline,	providing	Nigerian	gas	to	West	African	countries.	Despite	a	lack	of	

government	emphasis,	the	ICS	market	grew	substantially	in	the	2000’s,	due	to	a	combination	of	

economic	conditions	described	in	the	insightful	Ghanaian	cookstove	market	analysis	by	

Agbemabiese	et	al.	(2012).		In	2002,	Enterprise	Works	introduced	the	Gyapa	coalpot,	an	

improved	coal	burning	stove	like	the	Ahibenso,	and	sold	200,000	in	the	next	four	years.		In	

2006,	a	company	called	Toyola	brought	a	similar	charcoal	stove	to	market,	and	have	continued	

growing,	but	their	experience	is	indicative	of	the	difficulties	faced	by	the	sector,	with	numerous	

near-collapses	due	to	issues	like	the	inability	to	secure	financing,	and	power	shortages	slowing	

production	(Agbemabiese	et	al.,	2012).		Both	Toyola,	and	Enterprise	Works,	with	whom	we	

partnered	to	produce	the	Gyapa	woodstove	used	in	our	intervention,	continue	to	operate	in	

Ghana.		The	majority	of	current	Ghanaian	government	efforts	to	reduce	biofuel	from	cooking,	

however,	are	centered	on	LPG	once	again	(Ghana	Country	Action	Plan	for	Clean	Cooking,	N.D.)	

with	23.1%	of	Ghanaian	households	currently	using	that	fuel	as	their	main	cooking	fuel	(Karimu	

et	al.,	2016).	

Ghana	has	also	attempted	to	improve	environmental	conditions	with	forest	

management	plans,	including	efforts	to	reforest	the	North	of	the	country	(Makain	et	al.,	2005).		

In	2007,	a	coalition	of	20	countries	led	by	the	African	Union	began	the	‘great	green	wall	project’	

with	the	intention	of	slowing	desertification	by	planting	millions	of	trees	to	improve	land	

health.		Ghana	is	expected	to	formally	join	the	program	in	2016,	possibly	due	to	the	success	

observed	in	Niger	and	Burkina	Faso	(Reij	and	Winterbottom,	2015).		To	succeed,	there	must	be	
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buy-in	from	local	communities	to	nurse	the	trees	into	adulthood	and	to	reduce	pressure	from	

biomass	fuel	harvesting,	and	ICS	could	be	a	major	part	of	the	solution.	

Technologically,	the	problem	of	open	fire	cooking	using	solid	fuels	seems	relatively	

straightforward	to	address:	a	wide	variety	of	improved	cookstoves	and	cleaner	fuel	sources	

exist	that	are	more	efficient	and	can	reduce	air	pollutant	emissions.	Yet	efforts	to	make	these	

technologies	available	in	areas	of	need	throughout	the	world	have	often	failed	to	achieve	their	

intended	results	(Smith	et	al.,	2014;	Hanna	et	al.,	2012).	Human	behaviors	–	specifically,	

acceptance	and	use	of	improved	stoves	–	are	key	to	the	success	of	any	cookstove	intervention	

(Smith	et	al.,	2014;	Hanna	et	al.,	2012;	Gupta	et	al.,	2006;	Taylor	et	al.,	2012;	Lewis	and	

Pattanyak	et	al.,	2012;	Mensah	and	Adu,	2015).		

Two	key	and	related	challenges	are	locally	appropriate	stove	selection	and	promotion	by	

those	introducing	new	technologies,	and	sustained	stove	adoption	and	use	among	target	

populations.	By	stove	selection,	we	are	referring	to	the	processes	of	selecting	the	“right”	

technology	(or	mix	of	technologies)	that	is	most	likely	to	meet	the	needs	of	the	target	

population	while	achieving	meaningful	reductions	in	negative	health	and	environmental	

impacts.	Some	argue	that	only	the	cleanest,	most	advanced,	and	usually	imported	cooking	

technologies	should	be	promoted,	since	these	have	the	highest	probability	of	having	

meaningful	impacts	on	health	and	environmental	outcomes.	Others	contend	that	introducing	

affordable,	feasible,	locally-produced	cookstoves	that	are	more	efficient	than	open	fires	and	

more	aligned	with	the	unique	cooking	practices	and	needs	of	a	given	context	can	be	an	

effective	first	step	toward	moving	households	up	the	“technology	ladder”	in	the	long	run	

(Hiemstra-van	der	Horst	and	Hovorka,	2008;	Simon	et	al.,	2014).		Conceptually,	the	stove	or	

energy	“ladder”	model	is	rooted	in	a	neo-classical	understanding	of	energy	use	that	implies	

cleaner	fuel	usage	with	rising	socioeconomic	status	(Van	der	Kroon	et	al.,	2013).	Typically,	this	

model	also	implicitly	assumes	that	households	rely	on	a	single	source	of	cooking	energy	at	any	

given	time.		

Empirically,	however,	studies	have	found	that	rather	than	moving	linearly	up	this	energy	

ladder	in	a	step-by-step	fashion,	households	often	rely	simultaneously	on	multiple	types	of	fuel	
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and	cooking	technologies	to	meet	their	cooking	needs	(Davis,	1998;	Taylor	et	al.,	2011;	Van	der	

Kroon	et	al.,	2013;	Campbell	et	al.,	2003;	Ruiz-Mercado	et	al.,	2011).	This	energy	or	technology	

“stacking”	allows	households	greater	flexibility:	they	can	use	different	types	of	stoves	for	

different	purposes,	or	alternate	among	different	fuels	(essentially	moving	both	up	and	down	

the	ladder)	depending	on	availability	and	cost	(Masera	et	al.,	2000;	Van	der	Kroon	et	al.,	2013;	

Campbell	et	al.,	2003,	Simon	et	al.,	2014;	Elias	and	Victor,	2005;	Ruiz-Mercado	et	al.,	2011).	Of	

course,	these	two	models	may	both	be	correct	in	some	respects;	while	households	may	

continue	to	use	a	mix	of	technologies,	it	is	possible	that	the	technologies	that	comprise	the	

cooking	“stack”	may	become	cleaner	over	time.		

The	extent	to	which	new	stoves	are	folded	into	the	technology	stack	and	can	ultimately	

displace	traditional	cooking	methods	(leading	to	cleaner	kitchens	overall)	depends	heavily	on	

how	well	suited	these	new	technologies	are	to	local	culture	and	cooking	practices.	For	example,	

a	study	of	cooking	practices	in	Guatemala	showed	that	more	affluent	households	(receiving	

remittances	from	migrant	family	members)	had	liquid	petroleum	gas	(LPG)	stoves	but	

continued	to	rely	on	wood-burning	stoves	for	most	of	their	cooking	needs	because	these	stoves	

were	better	suited	to	the	preparation	of	staple	food	items	(beans,	corn,	and	tortillas)	(Taylor	et	

al.,	2011).	Ultimately,	without	incorporating	traditional	cooking	practices	into	the	design	

process,	even	low-cost	stoves	are	unlikely	to	be	used	(Heltberg,	2005).			

Considering	such	evidence	of	stove	and	fuel	stacking	throughout	the	world,	and	

practical	questions	of	market	access,	successful	introduction	of	gold	standard	LPG	systems	to	

new	populations	will	require	substantial	time	and	effort,	even	on	the	scale	of	generations.		

Some	argue	that	the	majority	of	effort	put	into	the	field	should	be	put	towards	transitioning	

directly	to	LPG	(Smith	and	Dutta,	2011;	Simon	et	al.,	2014),	because	indeed,	LPG	has	a	much	

better	chance	than	any	biomass	cookstove	of	achieving	the	reductions	in	HAP	exposure	that	

can	yield	life-changing	health	benefits	(Burnett	et	al.,	2013).		This	work,	among	a	growing	body	

of	literature,	provides	further	understanding	of	how	Northern	Ghana	is	impacted	by	traditional	

and	‘improved’	cooking	practices,	and	how	it	may	transition	in	the	future.		Will	the	population	

consistently	and	exclusively	use	an	improved	cooking	technology	if	given	the	opportunity?		Will	
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real-world	use	of	improved	cookstoves	result	in	exposure	reductions	of	components	of	

woodsmoke?		Is	woodsmoke	from	cooking	in	fact	the	most	significant	source	of	pollution	

impacting	personal	exposure,	or	are	there	other	important	sources	and	behaviors	associated	

with	exposure?		And	are	personal	exposure	measurements	reliable	and	unbiased?			

 Our	Approach	to	filling	the	knowledge	gaps	

In	this	study,	we	considered	the	causal	chain	between	cooking	behaviors	and	

health/environmental	outcomes,	as	visualized	in	Figure	1-1.		

	
Figure	1-1.		Causal	chain	of	the	REACCTING	study.		Our	cooking	technology	intervention	affects	
cooking	behavior,	which	both	affect	emissions,	which	affect	regional,	household,	and	personal	
air	quality,	which	affect	health	and	the	environment.			

	

	 The	first	step	in	the	causal	chain	involves	cooking	behavior,	specifically	stove	adoption	

and	use	among	households.		Chapter	one	presents	our	current	understanding	of	cookstove	use	

and	adoption	from	the	REACCTING	intervention.		The	first	year	of	cookstove	use	data	derived	

from	stove	usage	monitors	(SUMs)	is	analyzed	in	conjunction	with	quantitative	survey	results.		

Prior	works	have	developed	methods	to	assess	stove	use	of	both	traditional	and	intervention	

stoves	using	stove	use	monitors	(SUMs)	(Ruiz-Mercado	et	al.,	2009,	2011),	and	surveying	
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(Simons	et	al.,	2014;	Thomas	et	al.,	2013).		Each	of	these	measurement	approaches	has	its	

strengths	and	weaknesses.	Surveys	are	subject	to	recall	and	social	desirability	bias	(i.e.,	

respondents	may	be	reluctant	to	admit	that	they	have	not	used	new	stoves	provided	by	

researchers),	but	allow	collection	of	detailed,	qualitative	information	on	why	stoves	may	or	may	

not	be	used	(Mobarak	et	al.,	2012).	Meanwhile,	SUMs	allow	cooking	events	to	be	estimated	

from	a	time	series	of	stove	temperature	measurements,	but	require	substantial	investment	in	

temperature	monitors	and	their	maintenance,	and	effort	in	characterization	of	the	temperature	

monitor/stove	system.	A	combination	of	methods	may	thus	be	optimal	to	fully	characterize	

stove	use.		Mixed	methods	in	general	have	gained	attention	(Stanistreet	et	al.,	2015)	as	

researchers	and	projects	come	to	understand	the	interconnectedness	of	home	energy	use	

practices	seen	through	practices	like	stove	stacking,	the	use	of	multiple	cooking	technologies	to	

meet	their	household	energy	needs.			

Prior	study	of	cookstove	adoption	in	the	region	was	limited	to	a	study	by	Burwen	and	

Levine	(2012)	in	the	Sissala	district	of	Upper	West	Ghana,	that	assessed	the	use	of	a	locally	

designed	built-in	brick	and	mortar	stove.		They	found	substantial	continued	use	of	traditional	

stoves	(stove	stacking),	especially	as	stoves	fell	into	disrepair	over	time.		It	is	in	the	interest	of	

the	region	to	further	explore	cooking	technologies	and	behaviors	there,	with	the	goal	of	a	

thriving	market	for	clean	household	energy	systems.	

	

The	next	step	in	the	chain	involves	the	quantification	of	cooking	emissions	from	the	

improved	and	traditional	cooking	methods.	Many	studies	have	measured	real-time	biofuel	

cooking	emissions	in	laboratory	settings	using	standardized	testing	procedures	(e.g.,	Carter	et	

al.,	2014;	Jetter	et	al.,	2012),	but	fewer	have	done	field-based	measurements	(Johnson	et	al.,	

2008,	2011;	Roden	et	al.,	2006,	2009).	Emission	measurements	in	the	field	are	essential	since	

many	key	factors	may	vary	between	the	lab	and	field	setting.		These	results	are	presented	in	

forthcoming	work	by	other	members	of	the	REACCTING	team.		

	

Chapter	two	fills	gaps	in	the	next	step	of	the	chain,	the	impact	of	changes	in	cooking	

emissions	on	personal	and	household	pollutant	levels.	To	measure	these	impacts,	studies	have	
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most	commonly	monitored	household	and	personal	exposures	to	carbon	monoxide	(CO)	and	

particulate	matter	with	aerodynamic	diameter	less	than	2.5	micrometers	in	diameter	(PM2.5).		

PM2.5	has	been	strongly	linked	to	negative	health	outcomes	in	epidemiologic	and	biological	

studies	(Pope	et	al.,	2009;	Naeher	et	al.,	2007;	Smith	et	al.,	2009;	Janssen	et	al.,	2011),	and	can	

have	positive	and	negative	climate	forcing	effects,	depending	on	optical	characteristics	

(Ramanathan	and	Carmichael,	2008;	Bond	et	al.,	2013).		Indeed,	residential	solid	fuel	

combustion	is	the	largest	single	contributor	of	global	anthropogenic	black	carbon	PM2.5	

emissions,	at	45.6%	(Klimont	et	al.,	2016).		

In	contexts	where	cooking-related	emissions	are	a	dominant	source	of	PM2.5	exposures,	

reducing	use	of	traditional	biomass	stoves	in	favor	of	ICS	may	be	an	effective	solution	for	

reducing	exposures.		Of	course,	understanding	the	sources	of	PM2.5	helps	determine	if	that	is	

the	case.		Chapter	two	investigates	the	effect	of	the	intervention	on	carbonaceous	PM2.5	at	the	

ambient,	home,	and	personal	scale	using	chemical	and	statistical	analyses.	

At	the	regional	scale,	there	has	been	limited	study	of	the	sources	of	PM2.5
	in	Africa,	

though	it	is	increasing	with	population	and	economic	growth,	which	has	lead	countries	to	

pursue	air	quality	management	plans	(Ndamitso	et	al.,	2016).		One	of	those	few	studies	took	

place	in	the	city	of	our	study	site,	Navrongo,	Ghana,	where	PM2.5	filter	samples	were	collected	

from	2009–2010	(Ofosu	et	al.,	2013).		Using	source	apportionment	techniques,	observed	

particulate	elemental	carbon	(EC)	and	organic	carbon	(OC)	and	speciated	elements	were	used	

to	identify	six	sources	of	PM2.5,	namely	two-stroke	engine	combustion,	diesel	combustion,	

gasoline	combustion,	soil,	biomass	combustion,	and	road	dust.	After	dust,	biomass	combustion	

was	found	to	be	the	second	largest	contributor	to	ambient	PM	concentrations	in	Navrongo.		

Regional	PM2.5	monitoring	has	also	been	performed	in	the	capital	of	Ghana,	Accra	(Ofosu	et	al.,	

2012;	Zhou	et	al.,	2013;	Aboh	et	al.,	2009),	Nigeria	(Obioh	et	al.,	2013),	Ouagadougou,	Burkina-

Faso	(Boman	et	al.,	2009),	Kenya	(Gatari	and	Boman,	2003),	and	Cairo	(Abu-Allaban	et	al.,	

2007).	

	 Many	studies	investigating	exposures	to	PM	from	residential	biomass	combustion	

assume	that	differences	in	observed	exposures	are	purely	from	cooking	activities,	after	
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controlling	for	covariates.		This	study	is	one	of	only	a	handful	to	have	separated	the	

contributions	from	sources	related	to	biomass	combustion	from	other	sources	unrelated	to	the	

intervention.		Although	the	chemical	analysis	is	challenging	relative	to	other	measurement	

approaches,	the	results	can	provide	very	strong	conclusions	relative	to	other	methods.		By	using	

the	chemical	analysis	results,	we	calculate	contributions	of	specific	pollution	sources	to	

exposures,	and	use	mixed	effects	modeling	to	determine	whether	changes	in	stove	

technologies	impact	those	exposures.		In-field	observations	are	essential	for	this	purpose,	as	

various	works	have	shown	that	improved	cookstoves	perform	much	differently,	and	typically	

better,	in	controlled	laboratory	settings	than	in	the	field	(Johnson	et	al.,	2008;	Roden	et	al.,	

2009),	due	to	factors	such	as	stove	maintenance,	training	on	stove	use,	and	fuel	type	and	

preparation.		

Substantial	reductions	in	traditional	stove	use	are	required	to	achieve	significant	health	

improvements	(Burnett	et	al.,	2013;	Johnson	and	Chang,	2015),	and	quantifying	the	extent	to	

which	exposures	are	reduced	when	cooking	practices	change,	and	understanding	how	much	

cooking-related	sources	drive	PM2.5	exposure	in	different	contexts,	are	key	challenges	for	this	

field.	

	

Chapter	three	presents	the	intervention	effects	on	personal	exposure	to	carbon	

monoxide	(CO),	another	component	of	biomass	woodsmoke	associated	with	negative	health	

and	climate	effects.		Carbon	monoxide	(CO)	is	commonly	measured	in	cookstove	and	air	

pollution	exposure	studies	due	to	its	association	with	adverse	health	effects	(Smith	et	al.,	2000;	

Longo	et	al.,	1977;	Astrup,	1972),	the	low	cost	of	real-time	wearable	monitors,	logistical	

challenges	of	measuring	other	pollutants,	and	correlation	with	other	co-emitted	pollutants.		

Short-term	CO	exposure	is	associated	with	respiratory	and	cardio-vascular	morbidity,	as	well	as	

mortality,	while	long-term	CO	exposure	has	been	associated	with	negative	birth	outcomes,	

developmental	effects,	and	central	nervous	system	effects,	among	others	(Saldiva	et	al.,	2004;	

Naeher	et	al.,	2007;	Smith	et	al.,	2009;	Longo	et	al.,	1977).			

Simplicity	and	cost	of	measurement,	along	with	the	well-established	health	effects	

associated	with	PM2.5	(e.g.,	Naeher	et	al.,	2007),	have	led	to	the	study	and	use	of	CO	as	a	
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surrogate	for	PM2.5.		Previous	works	have	found	varied	results	for	this	relationship,	with	

differences	ascribed	to	variability	in	source	types	like	fuels	and	stoves,	behaviors,	and	home	

designs,	among	other	characteristics	(Naeher	et	al.,	2001;	Northcross	et	al.,	2010;	McCracken	et	

al.,	2013;	Dionisio	et	al.,	2012a;	Carter	et	al.,	2016	in	press).		In	a	meta-study	on	the	61	studies	

in	27	countries	that	have	collected	personal	or	cooking	area	measurements	of	both	CO	and	

PM2.5,	Carter	et	al.	(2016	in	press)	found	correlation	coefficients	(r)	for	personal	exposure	

ranging	from	0.22	to	0.97	(median=0.53),	and	from	0.10	to	0.96	(median=0.71)	for	cooking	

areas.		Here,	we	add	to	the	literature	on	this	topic	to	further	the	understanding	of	source	types	

for	rural	communities	in	Northern	Ghana.	 	

	

Chapter	four	describes	methods	and	results	for	a	novel	Bluetooth	Low	Energy	(BLE)	

Beacon-based	time-activity	measurement	system	designed	to	improve	personal	exposure	

assessment.		Time-activity	information	is	valuable	in	many	fields	of	study,	including	personal	

exposure	assessment,	but	traditional	time-activity	measurement	approaches	(Freeman	and	

Tejada,	2002)	are	resource	intensive	and	can	result	in	misclassifications	(Clark	et	al.,	2013).		Past	

cookstove	studies	have	used	self-reported	or	manually	collected	time-activity	data	(Brauer	et	

al.,	1996;	Albalak	et	al.,	1999;	Zuk	et	al.,	2007;	Cynthia	et	al.,	2008;	Dionisio	et	al.,	2012a),	but	

an	automated	system	would	simplify	measurements	and	improve	accuracy.		Improved	data	

could	then	lead	to	improved	modeling	of	personal	exposure	from	microenvironment	

measurements.		Such	a	system	could	also	allow	for	separate	analysis	of	exposure	from	sources	

at	home	vs.	away	from	home,	and	other	such	categories.		The	BLE	Beacon	proximity	monitoring	

system	we	have	developed	and	tested	fills	these	gaps	in	the	exposure	assessment	toolbox.			

Previously,	there	was	no	viable	system	available	for	our	application.		Wireless	

technologies	such	as	Wi-Fi	allow	precise	indoor	location	estimates,	but	resources	are	required	

to	train	the	identification	system	and	the	presence	of	Wi-Fi	access	points	is	required	(Jiang	et	

al.,	2011).		Global	Positioning	System	(GPS)	devices	can	be	used	to	assess	location	(Elgethun	et	

al.,	2003;	Rooney	et	al.,	2012),	but	these	tools	tend	to	have	a	relatively	high	power	

consumption	and	accuracy	can	suffer	in	regions	with	certain	geographic	characteristics	and,	

perhaps	more	crucially,	indoors.		‘Passive’	Radio	Frequency	Identification	(RFID)	tags	can	be	
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uses	as	binary	room-location	indicators,	but	users	must	place	their	small	‘passive’	type	badges	

close	to	the	RFID	receiver,	making	compliance	a	concern.		Larger	‘active’	RFID	badges	that	use	a	

battery	to	increase	transmission	power	have	been	shown	to	perform	well	in	indoor	location	

testing	(Ni	et	al.,	2004),	and	could	be	a	viable	technology	for	this	application	if	the	additional	

logging	capabilities	conferred	by	the	phones	are	not	needed.		Costs	are	also	generally	higher	

than	Beacon	systems.		Allen-Piccolo	et	al.	(2009)	introduced	an	ultrasound-based	time-activity	

monitoring	platform	(UCB-TAMS)	for	cookstove	applications	that	displayed	promising	results.		

Ultrasound	has	lower	attenuation	than	Bluetooth,	improving	signal	consistency	in	difficult	

geometries	or	crowded	spaces,	but	such	systems	have	not	come	into	widespread	use.		System	

cost	is	similar	to	our	BLE	Beacon	system,	but	we	were	unable	to	perform	a	direct	comparison	

between	the	systems	due	to	UCB-TAMS	availability.			

	 In	this	work,	our	BLE	Beacon	proximity	detection	technology	was	first	demonstrated	in	a	

calibration	and	validation	study,	along	with	relevant	data	processing	methods.		The	system	was	

then	used	in	Ghana,	in	conjunction	with	personal	CO	exposure	monitoring	and	cooking	area	CO	

monitoring.		This	deployment	demonstrated	the	benefits	of	such	a	system	by	analyzing	these	

relationships	and	interactions	in	greater	resolution	than	previously	possible	with	a	low-cost	

system.	

	

	 Chapter	five	delves	into	the	workings	of	an	electrochemical	CO	sensor	that	was	used	

throughout	our	study	(Lascar	USB-CO,	using	the	Nemoto	NAP-505	sensor).		Electrochemical	gas	

sensors	have	enabled	gas	sensing	reliable	and	accurate	enough	to	improve	scientific	and	

engineering	understanding	in	a	variety	of	fields,	from	combustion	processes,	to	ambient	

pollution	monitoring.		CO	sensors	used	throughout	the	REACCTING	study	were	of	the	

electrochemical	type,	specifically	Alphasense	CO-B4	and	CO-BX	units	in	cooking	area	

microenvironment	measurements,	and	Nemoto	NAP-505	sensors	(used	in	Lascar	USB-300	and	

USB-1000	monitors)	for	personal	exposure	measurements.		Prior	works	have	proposed	

calibration	methods	for	such	sensors	for	personal	exposure	monitoring	(Smith	et	al.,	2009).		

Young	and	Jones	(2014)	investigated	response	times	of	the	Lascar	CO	monitor	used	in	our	
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study,	applying	a	model	developed	by	Cheng	et	al.	(2010)	for	a	different	model	of	personal	CO	

monitor,	to	correct	for	slow	response	times	that	can	affect	exposure	estimates.		

Electrochemical	sensors	have	been	characterized	extensively	by	the	manufacturers	and	

independent	researchers	(Masson	et	al.,	2014;	Mead	et	al.,	2013;	Borrego	et	al.,	2016;	Spinelle	

et	al.,	2016;	Buck	et	al.	2013)	but	important	questions	remain	about	properties	and	behaviors,	

especially	as	related	to	long-term	use.		Specifically,	how	sensor	aging	impacts	sensitivity	and	

time-response	have	not	been	reported	in	past	works.	Additionally,	we	are	not	aware	of	uniform	

guidelines	on	calibration	for	exposure	studies.		Providing	recommendations	based	on	our	

experience	and	laboratory	observations	should	be	of	help	to	the	field.	

In	our	study,	a	group	of	ten	sensors	was	tested	intensively	in	a	laboratory	setting	to	

characterize	performance	stability	over	time,	rise	and	decay	times,	temperature	effects,	and	

how	the	sensor	history	and	changes	in	physical	sensor	properties	could	affect	these	

characteristics.		Our	work	focused	on	the	stability	of	sensor	properties	during	and	throughout	

intense	usage	periods,	similar	to	measurements	encountered	in	high-exposure	cookstove	

studies.		There	is	wide	variability	in	the	level	of	expertise	and	resources	available	for	groups	

trying	to	make	personal	exposure	measurements	in	the	developing	world.		We	sought	to	

characterize	various	performance	parameters	of	a	commonly	used	CO	measurement	

instrument	to	provide	practical	guidance	on	use,	and	pitfalls	to	avoid.	

The	final	step	in	the	causal	chain	from	the	intervention	to	health	and	environmental	

outcomes	remains	to	be	analyzed	and	are	not	presented	as	part	of	this	dissertation.		The	

REACCTING	study	directly	assessed	health	indicators	as	a	measure	of	the	intervention	impacts,	

namely,	self-reported	symptoms	such	as	eye	irritation	and	headaches	(Diaz	et	al.,	2007),	and	

biomarkers	of	systemic	inflammation	linked	to	smoke	exposure	from	blood	samples	(Banerjee	

et	al.,	2012).		Environmental	outcomes	on	biomass	fuel	consumption	will	be	presented	along	

with	cooking	emissions	results	from	tests	performed	in	the	field.	
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Assessment	of	cookstove	stacking	in	Northern	Ghana	using	surveys	and	stove	use	monitors	

	

Ricardo	Piedrahita,	Katherine	L.	Dickinson,	Ernest	Kanyomse,	Evan	Coffey,	Rex	Alirigia,	Yolanda	

Cecile-Hagar,	Isaac	Rivera,	Abraham	Oduro,	Vanja	Dukic,	Christine	Wiedinmyer,	Michael	

Hannigan	

	

Abstract	

Biomass	burning	for	home	energy	use	is	a	major	health	and	environmental	concern.		

While	transitioning	to	cleaner	cooking	technologies	has	the	potential	to	generate	significant	

health	and	environmental	benefits,	prior	efforts	to	introduce	improved	cookstoves	have	

encountered	many	hurdles.		Here,	we	focus	on	the	increased	stove	use	hurdle;	households	tend	

to	use	improved	stoves	alongside	their	traditional	stoves	rather	than	replacing	them	entirely,	a	

phenomenon	called	cookstove	“stacking.”		This	work	provides	a	systematic,	multi-method	

assessment	of	households’	cooking	behaviors	and	cookstove	stacking	in	the	context	of	a	200-

home	randomized	cookstove	intervention	study	in	Northern	Ghana.		Two	stoves	were	selected	

for	the	intervention,	a	locally	made	rocket	stove	(Gyapa)	and	the	Philips	HD4012	LS	gasifier	

stove.		There	were	four	intervention	groups:	a	control	group,	a	group	given	two	Gyapa	stoves,	a	

group	given	two	Philips	stoves,	and	a	group	given	one	of	each.		Two	stoves	were	distributed	to	

each	home	in	an	attempt	to	induce	more	substitution	away	from	traditional	stoves.		Adoption	

and	usage	patterns	were	quantified	using	temperature	loggers	at	a	subset	of	homes,	as	well	as	

quarterly	surveying	in	all	households.		We	find	that	using	multiple	stoves	each	day	is	common	

practice	within	each	intervention	group,	and	that	the	two	groups	given	at	least	one	Gyapa	had	

the	largest	reductions	in	traditional	stove	use	relative	to	the	control	group,	though	use	of	

traditional	stoves	remained	high	in	all	groups.	

 	Background	and	motivation	

	 2.8	billion	people	burn	solid	fuels	for	cooking	(Bonjour	et	al.,	2013)	and	the	resulting	air	

pollution	is	the	third	leading	risk	factor	for	the	global	burden	of	disease,	contributing	to	4	

million	premature	deaths	per	year	(Lim	et	al.,	2012).		The	environmental	impacts	from	this	
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activity	are	substantial.		In	addition	to	contributing	to	regional	deforestation	and	forest	

degradation	(Chidumayo	et	al.,	2013),	residential	combustion	(including	wood,	agricultural	

waste,	animal	waste,	and	coal)	contributes	an	estimated	32%	of	particulate	black	carbon,	and	

64%	of	particulate	organic	carbon	to	global	non-open	burning	emissions	(Bond	et	al.,	2013).	

	 To	address	these	issues,	cookstove	distribution	programs	and	studies	to	replace	

traditional	cooking	methods	with	cleaner,	more	efficient	ones	continue	to	grow	in	scope	and	

magnitude.		Measurement	of	cookstove	adoption	is	critical	in	determining	the	feasibility	and	

likelihood	of	success	of	these	programs.	There	are	many	factors	involved	in	the	decision	to	

adopt	a	new	stove,	among	them	income,	education,	availability	of	viable	clean	cookstoves,	fuel	

availability,	financing,	location,	and	cultural	norms	(Barnes	et	al.,	1993;	Pine	et	al.,	2011;	Jan	et	

al.,	2012;	Jeuland	et	al.,	2012;	Lewis	and	Pattanayak,	2012;	Malla	et	al.,	2014).			Previous	studies	

have	found	evidence	that	even	when	intervention	cookstoves	are	used	regularly,	households	

often	maintain	regular	use	of	their	traditional	stoves,	a	practice	known	as	stove	stacking	

(Pillarisetti	et	al.,	2014;	Stanistreet	et	al.,	2015).		

Research	on	Emissions,	Air	quality,	Climate,	and	Cooking	Technologies	in	Northern	

Ghana	(REACCTING)	(Dickinson	et	al.,	2015)	is	a	200-home	cookstove	intervention	study	in	the	

Kassena-Nankana	(K-N)	Districts	of	Northern	Ghana,	designed	to	learn	about	cooking	behaviors	

and	their	impacts	in	this	region.		Past	personal	air	pollution	exposure	studies	in	Ghana	have	

measured	worryingly	high	levels	of	CO	(Burwen	and	Levine.	2012)	and	PM	(Arku	et	al.,	2008;	

Rooney	et	al.,	2012;	Van	Vliet	et	al.,	2013)	due	to	cooking	and	other	combustion	sources.		The	

ecological	motivation	is	also	strong,	as	the	study	is	located	within	a	climatically	sensitive	region	

at	high	risk	of	drought	and	forced	migration	(Warner	et	al.,	2009;	Antwi-Agyei,	et	al.,	2012).		

Ghana	as	a	whole	is	experiencing	alarming	deforestation	rates,	with	33.7%	of	forest	area	(2.5E6	

ha)	lost	since	1990,	and	a	2.19%	annual	deforestation	rate	from	2005-2010	(FAO,	2010).		The	

Upper	East	region,	encompassing	our	study	area,	is	almost	entirely	categorized	as	a	high-risk	

region	for	desertification	(Adanu	et	al.,	2013).		Assessment	of	adoption	and	stacking	has	not	

been	undertaken	in	this	region	of	Africa,	where	the	mix	of	remoteness	and	indoor/outdoor	

cooking	offers	new	challenges.	

 Measuring	Stove	Use			
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	 In	REACCTING,	we	determine	the	extent	of	stove	use	and	stove	stacking	using	two	

methods,	stove	usage	monitoring	with	temperature	data	loggers	(here	referred	to	as	stove	

usage	monitors,	or	SUMs),	and	quantitative	surveying.		Both	types	of	data	have	strengths	and	

limitations.		Stove	usage	monitoring	allows	identification	of	cooking	events	from	extended	time	

series	of	stove	temperature	(Ruiz-Mercado	et	al.	2012;	Mukhopadhyay	et	al.,	2012;	Graham	et	

al.,	2014),	with	lower	potential	for	the	reporting	biases	encountered	with	surveying	(Thomas	et	

al.,	2013;	Wilson	et	al.,	2015).		SUMs	have	the	advantage	of	eliminating	the	biases	associated	

with	self-reporting	that	have	been	observed	in	some	studies	(Thomas	et	al.,	2013;	Wilson	et	al.,	

2015).		However,	other	sources	of	bias	and	measurement	error	are	still	possible	with	SUMs,	

including	reactivity	effects	(higher	use	due	to	the	knowledge	of	being	monitored	–	see	Thomas	

et	al.	2016).		Considerable	uncertainty	also	remains	in	detecting	cooking	events	using	SUMs	

data,	particularly	for	the	traditional	3-stone	fires	(TSFs).		In	addition,	SUMs	data	collection	is	

costly.		As	a	result,	we	were	only	able	to	collect	SUMs	data	for	a	subset	of	study	households	

rather	than	the	entire	sample.		Meanwhile,	surveys	were	conducted	in	all	households	at	

multiple	discrete	time	points	(quarterly),	and	provide	us	with	detailed	contextual	information	

along	with	(potentially	mis-reported)	stove	use	information.		Survey	information	such	as	foods	

cooked	and	fuel	types	used	with	each	stove	shed	light	on	how	and	why	certain	stoves	are	being	

used	by	different	households.		Used	in	combination,	survey	and	SUMs	data	can	more	effectively	

inform	future	cookstove	and	fuel	improvement	efforts	in	the	region.		

	 Our	study	makes	an	important	contribution	to	the	literature	by	examining	cooking	

behaviors	in	a	region	that	has	received	relatively	little	attention:	Northern	Ghana.		In	addition,	

this	work	is	among	the	first	to	publish	results	on	the	use	of	multiple	intervention	stoves	

alongside	traditional	stoves.			Previously,	Loo	et	al.	(2016)	performed	a	study	in	Kenya	assessing	

user	perspectives	on	six	different	improved	combustion	stoves	(ICSs)	rotated	through	homes	

for	two-week	periods.		

 Methods	 	

 Study	population	and	design	

	 The	REACCTING	study	ran	from	November	2013	to	January	2016.		The	study	population	

consisted	of	households	in	the	K-N	Districts	that	1)	were	classified	as	rural,	2)	used	biofuels	as	
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their	main	cooking	fuel	source,	3)	had	at	least	one	woman	of	childbearing	age	(18-55)	and	one	

child	under	five,	4)	used	a	borehole	as	their	primary	water	source,	and	5)	did	not	have	

electricity	in	the	home.		Using	data	from	the	district-wide	Health	and	Demographic	Surveillance	

Survey	(HDSS)	(Oduro	et	al.	2012),	we	identified	the	sample	frame	of	households	that	met	

these	eligibility	criteria,	and	then	used	a	cluster	random	sampling	method	to	select	200	

households	for	inclusion	in	the	study.	Detailed	information	on	study	design	and	sample	

selection	is	presented	in	Dickinson	et	al.	(2015).			

	 A	baseline	survey	conducted	in	all	200	households	prior	to	the	stove	intervention	

provided	detailed	information	about	local	cooking	practices	that	confirmed	observations	the	

study	team	made	during	the	two	years	prior	to	the	start	of	the	study,	and	which	informed	the	

design	of	the	REACCTING	intervention.		Even	before	the	introduction	of	any	new	stoves,	

households	in	this	area	were	cooking	with	multiple	stoves,	and	with	a	mix	of	cooking	

technologies	(Figure	2-1	Baseline	(pre-intervention)	cookstove	technology	mix	among	study	

householdsFigure	2-1).		The	most	common	cooking	technology	in	this	area	is	a	traditional	

wood-fired	3-stone	stove,	but	the	majority	of	households	(70%)	owned	at	least	one	charcoal	

stove,	locally	known	as	a	“coal	pot,”	as	well.		Only	10%	of	households	relied	on	a	single	stove	to	

meet	their	cooking	needs;	38%	of	households	had	two	stoves	at	baseline,	and	the	remaining	

53%	had	three	or	more	stoves.					
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Figure	2-1	Baseline	(pre-intervention)	cookstove	technology	mix	among	study	households	

	 Further,	we	observed	that	local	cooking	practices	link	stove	and	fuel	types	to	specific	

foods.		The	dishes	that	are	commonly	prepared	and	eaten	in	this	area	determine	households’	

stove	needs;	these	staple	dishes	and	associated	cooking	methods	are	listed	in	Table	1.		The	

items	on	this	list	can	be	broken	into	two	groups	according	to	their	cooking	method	or	

requirements.		Dishes	that	require	rapid	boiling	(such	as	soup	or	rice)	fill	one	category,	while	

dishes	requiring	more	intensive	effort	such	as	vigorous	stirring	(Tuo	Zaafi,	or	TZ	for	short)	are	in	

a	second.	The	baseline	survey,	conducted	from	November-December	2013,	indicated	that	by	

far	the	most	common	dishes	in	this	area	are	TZ	and	vegetable	soup,	which	are	often	consumed	

together,	and	the	next	most	common	dish	is	rice.		We	also	observed	fairly	consistent	patterns	in	

the	types	of	stoves	used	to	cook	each	dish.		The	TSF	is	the	most	commonly	used	stove	for	all	

types	of	dishes.		However,	a	sizeable	portion	of	vegetable	soup	meals	are	cooked	over	charcoal	

stoves,	and	these	stoves	are	also	used	to	cook	rice	on	some	occasions.		Meanwhile,	TZ	is	

cooked	almost	exclusively	on	TSFs.				
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Table	2-1:	Dishes	cooked	in	the	K-N	Districts	study	homes	

Dish	 Description	 Cooking	Method	 %	Of	Households	Cooking	Dish	
Total	 On	3-Stone	

Stove	(TSF)	
On	Charcoal	
Stove	

Tuo	Zaafi	
(TZ)	

Thick	porridge	made	with	
millet	or	maize	flour,	
often	served	with	
vegetable	soup	

A	mixture	of	water	and	millet	
flour	is	added	to	boiling	
water.	Cold	water	is	then	
added,	and	after	the	mixture	
is	heated,	half	is	moved	to	
another	bowl.		More	millet	
flour	is	then	added,	all	the	
while	stirring	vigorously.	The	
separated	portion	is	added	
back	in,	and	it	is	served	hot.	

57.0%	 55.5%	 1.5%	

Vegetable	
soup	

Soup	made	with	keneff-
kanzaga,	vio,	alefu,	
yambola,	okro,	all	local	
vegetables.		Fish	or	meat	
is	sometimes	added	
depending	on	availability.	

Cut	vegetables	are	boiled	10-
15	minutes.	Groundnut	paste	
or	bean	flour	is	added,	
sometimes	with	fish	or	meat.	
Cooked	until	it	boils	again.	

56.5%	 43.0%	 19.0%	

Rice	 Multiple	varieties	are	
available	and	are	used	to	
make	jollof	rice,	rice	balls,	
or	plain	rice,	often	with	a	
sauce.	

Cooked	in	metal	or	
earthenware	pots	

39.0%	 33.0%	 6.5%	

Beans	 Many	varieties	are	
commonly	eaten	in	the	K-
N	districts,	in	various	
dishes	

Varies	 6.0%	 6.0%	 0.0%	

Other	
dishes	

Pompuka	(3.0%),	
Bombara	beans	(1.5%),	
Tubani	(1.5%),	Tubers	
(1.5%),	Corn	(1.5%),	
Porridge	(1.5%),	Banku	
(0.5%)	

Varies	 10.5%	 7.5%	 3.5%	

	

	 Data	on	%	of	households	cooking	each	dish	are	from	REACCTING	baseline	survey	

questions	that	asked	about	use	of	each	stove	in	the	household	on	the	day	prior	to	the	survey.		

Households	may	have	cooked	a	dish	multiple	times	on	that	day	using	different	types	of	stoves,	

so	that	the	3-stone	(TSF)	and	charcoal	columns	do	not	necessarily	equal	the	“total”	column.	

Given	local	cooking	practices	and	previous	observations	of	stove	stacking	behavior	in	other	

contexts,	the	REACCTING	study	intervention	was	designed	to	distribute	two	stoves	to	each	

household	randomized	into	an	intervention	group	in	order	to	create	greater	potential	for	

households	to	substitute	away	from	their	traditional	stoves	while	continuing	to	meet	their	

cooking	needs.		Furthermore,	we	selected	two	different	stove	technologies	for	our	intervention	

based	on	two	key	considerations.		First,	as	discussed	in	Dickinson	et	al.	(2015),	we	hoped	to	
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contribute	to	an	ongoing	debate	among	cookstove	researchers	and	policymakers	over	whether	

movements	up	the	stove	technology	ladder	should	be	made	incrementally	(i.e.,	starting	with	

locally	made,	affordable,	low-tech	stoves)	or	transformationally	(moving	directly	to	the	cleanest	

technologies	available).		Thus,	we	decided	to	compare	adoption	and	performance	of	a	locally	

made	ceramic	and	metal	rocket	stove	(Gyapa)	alongside	the	theoretically	cleaner	Philips	stove.		

The	imported	Philips	is	more	expensive,	and	of	the	forced	draft	design,	requiring	battery	

charging	with	the	provided	solar	panel	every	few	days.		Second,	we	suspected	that	households	

might	use	these	two	technologies	differently,	with	each	being	suited	to	meeting	different	

cooking	needs.		In	particular,	in	piloting	several	types	of	cookstoves	in	the	study	area,	

households	expressed	doubts	about	being	able	to	cook	TZ	on	some	of	the	stove	models	given	

the	need	for	vigorous	stirring.		These	concerns	informed	the	design	of	the	Gyapa	stove,	which	

was	developed	specifically	for	this	project	(though	it	bears	resemblance	to	the	one	used	in	a	

study	from	Accra	by	Pennise	et	al.	(2009)),	as	well	as	the	design	of	a	rebar	stand	to	increase	the	

stability	of	the	Philips	stove	(Figure	2-2).	

	
Figure	2-2.		Digit-TL	SUM	placements	on	the	Gyapa,	Philips,	and	3-stone	fires,	from	left	to	right.		
The	Philips	stove	is	shown	with	the	specially	designed	rebar	pot	stand.		The	3-stone	fire	at	right	
is	shown	with	wood	and	millet	stalks	for	fuel.	

	 In	November	of	2013,	the	households	were	randomly	placed	into	one	of	four	

intervention	groups:	one	with	two	Gyapa	stoves,	one	with	two	Philips	stoves,	one	with	each	of	

those	stoves,	and	a	control	group	(no	new	stoves	until	the	conclusion	of	the	two-year	study).	

During	stove	distribution	assemblies,	retired	nurses	working	with	the	project	team	educated	

participants	on	the	health,	timesaving,	and	financial	and	environmental	benefits	of	using	the	
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improved	stoves,	and	those	receiving	new	stoves	were	encouraged	to	stop	using	their	

traditional	stoves.			

 	SUM	methods		

	 SUMs	were	initially	deployed	in	January/February	of	2013,	on	103	stoves	distributed	

over	45	households.		They	were	placed	on	the	improved	cookstoves	and	the	most-used	

traditional	cookstove	at	10-12	households	from	each	study	group.		More	SUMs	were	added	in	

late	2014	and	early	2015	to	replace	broken	ones	and	to	monitor	more	stoves	in	each	home,	as	

most	homes	had	3	or	more	stoves	at	baseline	(Figure	2-1).		This	paper	presents	the	first	year	of	

SUM	and	survey	data,	ranging	from	January	2014	–	January	2015.		The	SUMs	deployment	time	

series	is	shown	Figure	2-3,	organized	by	the	number	of	households	monitored	in	each	

intervention	group	on	the	left	panels,	and	the	number	of	each	type	of	stove	monitored	in	each	

intervention	group	in	the	right	panels.		A	one-month	ramp-up	time	is	apparent	as	SUMs	were	

deployed,	with	a	reduction	in	data	coverage	in	the	second	half	of	the	year	in	most	groups,	due	

to	lost	or	damaged	SUMs,	or	mistakes	in	SUM	data	management.	
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Figure	2-3.		Digit-TL	SUM	deployment	time	series	for	each	stove	intervention	group.		The	left	
panels	show	the	number	of	households	monitored	for	each	stove	type,	while	the	right	panels	
show	the	number	of	stoves	monitored	for	each	stove	type.		Note	the	difference	in	y-axis	scales	
from	left	to	right	panels,	as	households	often	have	multiple	stoves	monitored	of	the	same	type.	

	 LabJack	Digit-TLs	temperature,	light,	and	humidity	monitors	(LabJack,	Lakewood	CO)	

were	used	as	SUMs.		Humidity	logging	was	disabled	in	favor	of	using	a	waterproof	enclosure	for	

the	SUMs,	while	light	logging	was	enabled	on	a	subset	of	SUMs.		The	US$35	Digit-TLs	measure	

temperature	from	-40	to	85	oC,	with	0.5	oC	resolution	and	reported	uncertainty	of	1.0	oC.	

Battery	life	is	specified	at	over	3	years,	with	onboard	memory	capacity	of	500,000	records.		This	

allowed	field	workers	to	visit	the	homes	every	4-6	months,	at	the	selected	1-minute	sampling	

rate.		However,	these	SUM	features	also	resulted	in	lost	data	because	deployment	errors	or	

broken	SUMs	were	not	identified	until	the	next	scheduled	visit,	often	months	away.		

	 The	SUMs	were	placed	strategically	on	the	stoves	to	avoid	surpassing	the	SUM	

temperature	limit	of	85	oC.		SUMs	placement	on	each	stove	type	was	tested	prior	to	
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deployment	for	the	Philips	and	Gyapa	stoves,	but	were	placed	conservatively	to	ensure	they	

were	not	in	danger	of	over-heating.		This	resulted	in	more	challenging	data	analysis,	as	the	

peaks	were	less	pronounced	than	in	some	other	studies.		On	the	Gyapa	stove,	SUMs	were	

affixed	with	a	metal	strap	near	the	center	of	the	stove,	while	on	the	Philips	they	were	attached	

with	a	hose	clamp,	which	was	screwed	into	one	of	the	existing	screw	holes	near	the	top	of	the	

stove.		On	the	TSFs,	the	SUMs	were	wedged	behind	the	largest	stone	in	the	fire	with	metal	

stakes.		We	were	not	able	to	put	them	underneath	a	stone	as	done	in	other	studies,	because	

the	residents	use	plaster	finishes	in	cooking	areas	that	would	have	been	damaged	in	the	

process	of	installing	our	relatively	large	SUMs.		Typical	placements	are	shown	in	Figure	2-2.			

	 Cooking	events	were	identified	using	a	modified	version	of	the	algorithm	described	in	

Ruiz-Mercado	et	al.	(2012),	here	referred	to	as	the	RMM	algorithm.		The	1-minute	data	from	

the	SUMs	were	first	smoothed	using	a	2nd	order	polynomial	with	a	10-minute	window.		High	

variability	remained	from	sample	to	sample	even	after	this	step,	so	the	algorithm	was	modified	

to	identify	the	start	and	end	of	a	cooking	event	within	90	minutes	of	its	peak	to	ensure	cooking	

events	were	not	mistakenly	prolonged.		This	value	was	selected	based	on	controlled	cooking	

tests	(CCTs;	Bailis,	2004)	performed	concurrently	during	the	study,	which	had	a	mean	cooking	

time	of	92.5	minutes,	and	maximum	cooking	time	of	160	minutes	(60	tests	total).	The	

thresholds	required	in	the	RMM	algorithm	were	selected	based	on	visual	analysis	of	

performance.		The	slope	thresholds	selected	were	based	on	the	0.1st	and	99.9th	percentile	of	

the	differences	in	consecutive	slopes	of	the	ambient	temperature,	or	0.09Co/min	and	-0.12	

Co/min	for	rise	and	decay,	respectively.		This	was	higher	than	the	thresholds	selected	using	the	

99th	percentile	of	non-cooking	days	by	Ruiz	et	al.	(2012).	Our	study	experienced	hotter	and	

more	dynamic	ambient	conditions,	so	we	adjusted	to	capture	events	more	effectively.		Peaks	

within	1	hour	of	each	other	were	grouped	into	single	cooking	events.			

	 Individual	SUMs	cooking	event	identification	was	somewhat	sensitive	to	parameter	

selection	in	the	RMM	algorithm,	but	overall	usage	trends	did	not	change	substantially	when	

varying	the	parameters.		Results	were	most	sensitive	to	the	threshold	slopes	for	entering	and	

departing	a	peak.		In	a	subset	of	SUM	time	series,	it	was	also	difficult	to	identify	cooking	events	

with	a	high	degree	of	confidence,	mostly	due	to	indoor-outdoor	movement	of	stoves	and	a	
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preference	for	cooking	outdoors	during	the	non-rainy	season.		We	may	have	falsely	identified	

cooking	events	due	to	fast	radiative	heating	from	sunlight,	predominantly	during	the	midday	

hours.		SUMs	in	direct	sunlight	were	found	to	reach	temperatures	of	up	to	60	0C,	whereas	

cooking	events	could	reach	peaks	between	30	0C	and	130	0C.			

	 We	assessed	the	uncertainty	of	the	SUMs	results	by	validating	the	SUMs	cooking	event	

identification	algorithms	using	calibration	data	sets,	in	which	thermocouples	were	collocated	

with	SUMs	on	multiple	stoves	in	the	field.		The	training	sets	show	that	quick	cooking	events	can	

be	missed	by	the	SUM	if	the	peak	identification	threshold	temperature	is	set	too	high,	as	such	

we	set	it	at	30	0C	for	this	analysis.		On	the	longest	training	data	set	with	a	Gyapa	stove,	39	

cooking	events	were	identified	with	the	thermocouple,	and	the	RMM	algorithm	identified	22	of	

those,	with	11	false	positives.		This	stove	was	left	outdoors	most	days,	making	it	one	of	the	

most	challenging	cases,	so	we	expect	this	to	be	the	upper	limit	of	misclassification	

performance.			

	 The	performance	for	TSFs	is	likely	similar	to	this	in	the	worst	cases,	as	TSFs	are	

challenging	to	monitor	(Burwen	and	Levine,	2012).	However,	even	with	a	bias	in	the	cooking	

period	estimates	from	the	stove	types,	the	biases	are	expected	to	be	comparable	within	stove	

types,	so	for	example,	comparisons	and	usage	patterns	over	time	for	all	Gyapa	stoves	can	be	

considered	valid.		

	 Resource	limitations	prevented	us	from	monitoring	every	stove	in	every	home	

monitored,	so	cooking	events	with	charcoal	stoves	and	secondary	TSFs	were	rarely	measured.		

Some	categories,	such	as	the	TSFs	in	the	Philips/Philips	group,	had	limited	data	due	to	damage	

to	the	SUM,	theft	of	the	SUM,	or	insufficient	temperature	variability	during	cooking	events	

from	poor	SUM	placement.		The	complete	picture	of	cooking	in	some	of	these	households	may	

thus	be	obscured.		To	assess	the	impact	of	the	low	sample	size	in	some	of	these	categories,	we	

randomly	removed	all	cooking	events	from	1	household	(jackknifing),	to	test	the	reliability	of	

the	use	predictions	on	that	particular	dataset	(Figure	2-4).		The	error	bars	on	each	stove-use	

category	are	the	5th	and	95th	percentiles	of	the	100	jackknifed	data	sets.		The	uncertainties	

associated	with	each	group	do	not	change	our	conclusions	about	use	of	the	intervention	stoves,	
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but	low	sample	size	and	high	uncertainty	of	the	traditional	stove	use	make	our	stacking	and	

replacement	results	more	tentative,	as	discussed	later.	

 		Survey	methods	

	 All	200	households	participating	in	the	study	were	surveyed	at	multiple	time	points	

throughout	the	study	to	measure	stove	use	and	preferences,	among	other	topics.	The	first	

survey	round	was	conducted	in	November/December	of	2013,	prior	to	the	stove	distribution,	

called	baseline	herein.		Subsequent	survey	rounds	were	conducted	in	March,	May/June,	and	

August	of	2014,	and	December	2014/January	2015.		These	survey	rounds	(rounds	2-5)	were	

then	used	for	comparison	with	SUM	data	(December	2013-January	2015).		As	part	of	each	

survey	visit,	interviewers	completed	a	stove	use	questionnaire	for	all	stoves	in	the	household	

(Supplementary	Information).	That	is,	questionnaires	were	completed	for	each	“old”	stove	used	

by	the	household	prior	to	the	study	(charcoal	stove	and/or	TSF),	as	well	as	each	new	stove	

(Philips	and/or	Gyapa).	For	each	stove,	respondents	were	asked	to	estimate	a	category	of	how	

many	times	the	stove	was	used	in	the	last	week	(0,	1-3,	4-6,	7	times).		If	the	respondent	

reported	that	the	stove	was	not	used	at	all	in	the	past	week,	the	remaining	questions	for	that	

stove	were	skipped	and	the	interviewer	moved	to	the	next	stove	in	the	household.		For	stoves	

that	were	reportedly	used	at	least	once,	the	interviewer	recorded	whether	the	stove	was	in	use	

“now”	(i.e.,	at	the	time	of	the	survey),	and	whether	the	stove	had	been	used	“yesterday.”	For	

current	cooking	and	the	prior	day’s	cooking,	additional	questions	asked	what	dishes	were	

cooked	and	what	fuels	were	used,	as	well	as	who	did	the	cooking	and	how	many	people	were	

fed	by	the	meals	cooked	on	the	stove	in	question.		Since	cooking	is	a	daily	activity	for	most	

households,	the	“yesterday”	question	was	designed	to	provide	a	good	snapshot	of	cooking	

practices	across	the	sample.	

	 Self-reported	behavioral	data	always	raise	concerns	about	possible	mis-reporting.	For	

example,	in	a	study	similar	to	ours	in	certain	ways,	Thomas	et	al.	(2013)	measured	cookstove	

and	water	filter	adoption	in	Rwanda	using	both	surveying	and	quantitative	monitoring,	and	

found	that	respondents	overreported	use	of	both	new	technologies	relative	to	monitor	data.		In	

the	case	of	cookstoves,	reported	improved	stove	uses	in	the	last	week	were	40%	higher	than	

measured	with	SUMs.	In	our	study,	we	chose	short	recall	periods	(i.e.,	past	week,	yesterday)	to	
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minimize	recall	bias	and	make	it	easier	for	respondents	to	provide	specific	answers	about	their	

cooking	practices.	In	an	effort	to	limit	reporting	bias	and	reactivity	effects,	project	staff	

employed	as	part	of	the	measurement	and	survey	teams	were	trained	to	maintain	a	neutral	

attitude	and	encourage	truthful	reporting	of	stove	use	by	participants,	emphasizing	the	

importance	of	collecting	accurate	information	about	users’	experiences	in	order	to	improve	the	

stoves	and	their	usefulness	in	the	future.		Thus,	during	these	visits	participants	were	not	

explicitly	encouraged	to	use	their	improved	stoves,	or	use	them	exclusively,	and	there	was	no	

required	cooking	demonstration	or	instruction	on	the	use	of	the	stoves.		However,	it	is	of	

course	possible	that	reporting	biases	remain	in	our	data	despite	these	efforts.		In	particular,	we	

hypothesize	that	households	in	the	intervention	groups	given	stoves	would	tend	to	overreport	

their	use	of	new	(Gyapa	and	Philips)	stoves,	and	underreport	use	of	their	traditional	stoves.		

Potential	for	misreporting	of	stove	use	seems	lower	in	the	control	group.	

 Results	

 Stove	use	across	intervention	groups	

	 Figure	2-4	shows	usage	rates	for	the	Gyapa,	Philips,	TSF,	and	charcoal	stoves	(charcoal	

SUM	results	are	excluded	here	due	to	low	SUM	coverage,	but	survey	results	are	presented).		

For	these	four	stove	types,	the	plot	shows	the	rate	at	which	households	use	any	stoves	of	this	

type,	as	measured	by	SUMs	and	reported	in	surveys.		For	Gyapa	and	Philips	stoves,	survey-

based	estimates	of	stove	usage	rates	are	consistently	higher	than	SUMs-based	measurements.		

This	largest	discrepancy	was	6.8%,	for	use	of	Philips	stoves	in	the	Philips/Philips	group,	where	

61.5%	of	survey	respondents	said	they	used	the	stove	yesterday,	while	SUMs	showed	that	they	

were	used	on	54.7%	of	days.		The	smallest	difference,	2.4%,	was	for	Philips	use	in	the	

Philips/Gyapa	group,	where	surveys	showed	51.1%	of	users	used	the	stove	‘yesterday’,	and	

SUMs	showed	use	on	48.7%	of	days.		Despite	these	discrepancies,	the	surveys	and	SUMs	tell	a	

consistent	overall	story	regarding	the	relative	patterns	of	use	of	these	two	stove	types	across	

intervention	groups.		Specifically,	Gyapa	stoves	are	used	at	substantially	higher	rates	than	

Philips	stoves.		Gyapa/Gyapa	households	used	a	Gyapa	stove	on	82.6%	of	days	according	to	

surveys,	or	77.9%	according	to	SUMs.		The	Gyapa	use	rate	in	the	Gyapa/Philips	group	was	

lower,	at	61.5%	and	54.7%	of	days	per	the	surveys	and	SUMs,	respectively.		In	contrast,	the	



 

 

26 

Philips	stoves	from	the	Gyapa/Philips	group	were	used	on	25.8%	and	23.8%	percent	of	days	

(surveys,	SUMs).		The	Philips/Philips	group	used	a	Philips	stove	on	48.7%	and	51.1%	of	days	

(surveys,	SUMs).		This	was	close	to	twice	the	rate	of	Philips	use	from	the	Gyapa/Philips	groups,	

and	substantially	less	than	the	Gyapa	use	from	the	Gyapa/Gyapa	group.	

	

	
Figure	2-4.		Use	of	different	stove	types	among	households	in	different	intervention	groups,	as	
measured	by	SUMs	and	surveys.		Figure	shows	aggregate	results	using	all	data	available	after	
stove	deployment	(Nov	'13-Jan	’15).	

 Traditional	stove	replacement	

	 A	primary	objective	of	this	and	other	cookstove	interventions	is	to	produce	a	reduction	

in	use	of	traditional	stoves.		Thus,	comparing	use	of	TSFs	across	groups	is	a	key	outcome	
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measure.		Unfortunately,	the	combination	of	SUMs	event	detection	uncertainty	and	possible	

reporting	biases	leads	to	difficulty	making	strong	conclusions	when	it	comes	to	TSF	and	

charcoal	stove	use.		Most	puzzling	is	that	while	the	control	group	households	reported	using	

their	TSFs	on	98.9%	of	days	measured,	SUMs	detected	TSF	cooking	events	in	these	households	

on	just	81.3%	of	days.		In	this	case,	the	SUMs	estimate	seems	implausibly	low	for	three	reasons:	

1)	these	households	rely	on	traditional	stoves	for	all	their	cooking	needs,	2)	the	control	group	is	

expected	to	have	little	motivation	for	overreporting	their	stove	use,	and	3)	additional	TSFs	may	

be	in	use	while	not	being	monitored.		Thus,	it	is	likely	that	the	discrepancy	between	the	SUMs	

and	survey	results	is	due	to	the	challenges	of	measuring	TSFs	with	SUMs.			

	 To	add	complexity,	reporting	biases	(specifically,	underreporting)	are	expected	to	be	a	

factor	in	survey-based	measurements	of	traditional	stove	use	for	the	other	three	groups,	such	

that	in	these	groups	it	is	likely	that	both	types	of	measurement	are	low.		The	direction	of	the	

survey-SUMs	discrepancies	is	consistent	with	under-reporting	TSF	use,	though	the	magnitude	of	

the	difference	between	surveys	and	SUMs	varies	from	1.1-15.8%.		Surveys	and	SUMs	were	in	

the	closest	agreement	for	the	Gyapa/Philips	group,	with	57.7%	of	days	used	for	the	SUMs,	and	

56.6%	of	days	used	according	to	surveys.		The	Philips/Philips	group	had	the	second	best	

agreement	between	methods,	with	81.5%	of	days	(SUMs)	and	73.0%	(surveys),	while	the	

Gyapa/Gyapa	daily	use	rates	were	64.5%	(SUMs)	and	48.7%	(surveys).			

	 Use	of	TSFs	remained	high	among	all	three	of	our	stove	intervention	groups,	and	was	

consistently	higher	in	the	Philips/Philips	group	compared	with	the	two	groups	that	received	at	

least	one	Gyapa	stove.		Regarding	the	question	of	which	of	the	Gyapa	groups	had	the	lowest	

rate	of	TSF	use,	surveys	and	SUMs	disagree:	reported	use	is	lowest	in	the	Gyapa/Gyapa	group,	

but	SUMs-measured	use	is	lowest	for	the	Gyapa/Philips	group.		Unfortunately,	without	further	

assumptions,	it	is	unclear	which	of	these	conclusions	is	correct.		

	 SUM	data	are	extremely	limited	for	the	charcoal	stove	category,	so	we	must	rely	entirely	

on	survey	data.		These	data	showed	a	strong	reduction	in	charcoal	stove	use	in	the	intervention	

groups	relative	to	the	control	group,	with	29.6%	of	control	group	homes	reporting	use	

‘yesterday’	compared	to	16.3%	of	intervention	group	households’.		
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	 For	a	subset	of	cases,	we	have	both	SUMs	and	survey	measurements	for	the	same	

households	on	the	same	days,	allowing	us	to	directly	observe	the	method	agreement	rate	for	

measured	vs.	reported	stove	use	in	each	stove	group	and	stove	type.		Specifically,	we	compared	

stove	use	measured	by	SUMs	‘yesterday’,	the	day	before	the	survey,	with	survey	responses	on	

stove	use	‘yesterday’.		We	found	moderate	agreement	on	stove	use	‘yesterday’,	with	error	

likely	due	to	both	misreporting	and	SUM	uncertainty.		Method	percent	agreement	was	highest	

for	detection	of	TSF	stove	use	(81.4%,	n	=	43),	and	Gyapa	stove	use	(62.1%,	n	=	58).		Method	

percent	agreement	here	is	relative	to	survey	results;	in	other	words,	the	percent	of	SUM	results	

in	agreement	with	the	survey	results.		The	lowest	agreement	was	when	the	survey	indicated	

that	the	TSF	was	not	used	on	the	survey	day	(25.0%,	n	=	44).		Agreement	between	all	SUMs	and	

surveys	declined	slightly	over	the	three	survey	periods,	possibly	indicative	of	SUM	attrition.		

There	was	a	higher	rate	of	SUM	agreement	with	survey	data	for	cooking-events	than	non-

events	–	i.e.,	when	the	respondent	reported	that	they	used	a	particular	stove	yesterday	(Figure	

shown	in	SI).		The	fact	that	we	see	lower	agreement	on	a	case-by-case	basis	compared	to	the	

relatively	high	agreement	between	the	aggregate	measures	of	use	presented	in	Figure	2-4	is	

likely	due	to	the	low	sample	sizes	for	these	case-by-case	comparisons	and	the	fact	that	there	is	

measurement	error	in	both	data	sources	(reporting	bias	on	the	part	of	the	respondents,	and	a	

systematic	underestimation	of	cooking	events	by	the	SUMs).			 	

	 We	also	analyzed	reactivity	to	enumerator	visits	in	terms	of	both	total	number	of	SUM-

detected	cooking	events	with	each	stove,	and	number	of	SUM-detected	days	each	stove	was	

used.		Here,	reactivity	was	measured	by	comparing	those	metrics	in	a	three-day	window	before	

the	visit	was	scheduled,	with	a	three-day	window	lagged	at	various	intervals	post-visit	(the	3-

day	windows	of	post-visit	analysis	started	1,	4,	7,	and	10	days	after	the	visit).		We	found	subtle	

increases	in	intervention	stove	use	for	both	metrics,	with	concomitant	decreases	in	TSF	use	in	

the	windows	after	the	visits,	appearing	to	stabilize	in	the	7-10	day	windows	after	the	visit	

(Figure	shown	in	the	Supplementary	Information),	indicating	that	there	may	have	been	a	subtle	

enumerator	reactivity	effect	in	our	study.		Further	analysis	enumerator	reactivity,	and	reactivity	

due	to	the	knowledge	of	being	monitored	by	SUMs	will	be	assessed	in	future	work.	

 Stove	stacking	
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	 Figure	2-5	shows	the	percent	of	days	(as	measured	by	both	surveys	and	SUMs)	on	which	

households	in	different	intervention	groups	used	any	of	the	10	possible	combinations	of	two	

types	of	stoves	among	the	Gyapa,	Philips,	TSF,	and	charcoal	stoves.		Use	of	two	Gyapas	in	the	

Gyapa/Gyapa	group	occurred	more	frequently	(28.8%	and	25.0%	for	SUMs	and	surveys)	than	

use	of	a	Gyapa	and	Philips	in	the	Philips/Gyapa	group	(20.2%	and	14.3%	for	SUMs	and	surveys)	

or	use	of	two	Philips	in	the	Philips/Philips	group	(14.4%	and	8.4%	for	SUMs	and	surveys).		

	

Figure	2-5		Use	of	different	stove	combinations	among	households	in	different	intervention	
groups,	as	measured	by	SUMs	and	surveys.			

	 Stacking	of	the	Gyapa	or	Philips	stoves	with	TSFs	is	much	higher	from	SUM	data	than	

survey	in	the	Gyapa/Gyapa	(19.6%	higher)	and	Philips/Philips	group	(12.4%	higher).		The	

previously	mentioned	sources	of	uncertainty	may	account	for	this,	and	it	should	be	noted	that	

Gyapa
Philip

s

3-sto
ne

Charco
al

%
 d

ay
s 

us
ed

, o
r %

 o
f h

ou
se

s 
on

 s
ur

ve
y 

da
ys

0

10

20

30

40

50

60

70

80

90

100
Gyapa/Gyapa (SUMs)
Philips/Philips (SUMs)
Gyapa/Philips (SUMs)
Control (SUMs)
Gyapa/Gyapa (Surveys)
Philips/Philips (Surveys)
Gyapa/Philips (Surveys)
Control (Surveys)

Gyapa/Gyapa

Philip
s/P

hilip
s

Charco
al/C

harco
al

3-sto
ne/3-sto

ne

Gyapa/Philip
s

Gyapa/3-sto
ne

Philip
s/3

-sto
ne

Gyapa/Charco
al

Philip
s/C

harco
al

Charco
al/3-sto

ne

%
 d

ay
s 

us
ed

, o
r %

 o
f h

ou
se

s 
on

 s
ur

ve
y 

da
ys

0

10

20

30

40

50

60

70

80

90

100
Gyapa/Gyapa (SUMs)
Philips/Philips (SUMs)
Gyapa/Philips (SUMs)
Control (SUMs)
Gyapa/Gyapa (Surveys)
Philips/Philips (Surveys)
Gyapa/Philips (Surveys)
Control (Surveys)



 

 

30 

the	estimated	confidence	intervals	on	both	groups	are	large	due	to	the	low	SUM	coverage	on	

these	groups.		We	also	find	a	consistently	higher	use	rate	from	the	SUM	data	than	from	

surveys,	which	could	be	due	to	the	sources	of	our	uncertainties.		For	example,	certain	climatic	

conditions	could	produce	false	positives	in	multiple	stoves	at	a	household,	or	alternatively,	co-

heating	could	raise	the	temperature	of	multiple	SUMs	in	a	cooking	area,	when	not	all	stoves	

with	SUMs	are	actually	used.		Again,	due	to	low	coverage	or	failures	of	SUMs	on	TSF	and	

charcoal	stoves,	we	rely	on	survey	results	for	indication	of	stacking	with	charcoal	stoves.		We	

found	substantially	similar	results	for	the	three	non-control	intervention	groups,	with	lower	

stacking	rates	of	multiple	traditional	stoves	than	the	control	group.		Less	than	13%	of	homes	

from	those	three	intervention	groups	reported	stacking	multiple	TSFs	‘yesterday’,	while	24%	

did	for	the	control	group.	Stacking	of	a	charcoal	stove	and	TSF	was	reported	as	less	than	10.1%	

of	days	for	all	intervention	groups,	and	28.4%	for	the	control	group.		Stacking	of	two	charcoal	

stoves	was	very	uncommon	for	all	groups,	less	than	1.5%	of	days.		Similarly,	stacking	of	

intervention	stoves	with	charcoal	stoves	was	low,	with	all	groups	reporting	fewer	than	9.8%	of	

days	used.	

This	can	be	contrasted	with	the	work	by	Loo	et	al.	(2016),	who	found	that	users	in	Kenya	

preferred	the	Philips	stove	among	the	six	ICSs	tested,	while	Lozier	et	al.	(2016)	found	that	even	

with	the	preferred	Philips	stove,	it	was	only	used	exclusively	on	24%	days,	while	traditional	

methods	were	used	exclusively	on	25%	of	days,	and	stacking	occurred	on	45%	of	days.	

 Temporal	stove	usage	trends	

	 In	the	ideal	scenario	of	perfect	accuracy	from	the	SUMs	and	from	the	surveys,	the	key	

benefit	of	SUMs	data	is	higher	temporal	resolution.		Figure	2-6	shows	a	time	series	of	stove	use	

for	each	type	of	stove,	for	the	daily	SUM	data	(smoothed	with	a	spline	and	with	shaded	area	

95%	CIs)	and	for	the	quarterly	survey	data	(dots).		The	general	trends	are	in	good	agreement,	

except	for	the	charcoal	stoves,	where	the	SUM	data	are	extremely	sparse.		Interestingly,	the	

use	of	most	stoves	appeared	to	be	in	phases,	with	strong	continued	use	of	a	stove	for	a	period	

of	time,	followed	by	very	little	use.		There	were	no	obvious	patterns	or	periodicity	to	this,	and	

may	simply	have	followed	each	home’s	fuel	collection.		There	are	also	large	fluctuations	in	

usage	for	the	Gyapa	and	TSFs	from	October	to	December	2014,	which	partially	occur	in	
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between	survey	periods,	and	during	the	end	of	the	rainy	season	when	harvesting	typically	

occurs,	which	could	impact	fuel	use.		The	intervention	did	not	introduce	any	new	fuel	types	to	

the	homes,	and	homes	appear	to	have	continued	using	wood,	charcoal,	and	millet	stalks	

primarily.	Woods	commonly	used	for	cooking	include	Neem,	Shea,	Mango,	and	varieties	locally	

known	as	Zanka,	Sesibe,	and	others.		Millet	stalks,	shown	in	Figure	2-2,	are	usually	1-3	cm	

diameter,	often	up	to	8	feet	in	length,	collected	from	agricultural	byproducts.		They	have	high	

lignin	content,	and	a	higher	heating	value	of	18.05	MJ/kg,	similar	to	agri-wastes	like	wheat	

straw	and	bagasse	(Nhuchhen	and	Salam,	2012).		Survey	results	indicate	that	the	Philips	stoves	

were	used	with	charcoal	about	1/3	of	the	time,	with	wood	making	up	the	remaining	fraction.		

The	Gyapa	stove	has	reportedly	been	used	with	wood	80%	of	the	time,	with	millet	stalks	

making	up	the	rest.		More	detailed	analysis	of	fuels	and	fuel	stacking,	a	critical	component	of	

health	and	environmental	impacts	(Masera	et	al.,	2015),	will	be	undertaken	when	surveying	is	

completed.	
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Figure	2-6.		Survey	and	SUM	time	series	of	use	for	the	different	stove	types,	by	intervention	
group.	
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	 There	was	no	clear	initial	adjustment	period	for	the	intervention	stoves,	as	seen	in	other	

studies,	but	that	may	have	been	due	to	the	relatively	low	sample	size	for	each	group	and	the	

difficulty	of	removing	seasonal	variations	in	a	one-year	data	set.		This	will	be	analyzed	formally	

with	the	complete	two-year	data	set	later,	but	the	survey	data	do	show	a	lower	TSF	use	rate	for	

the	Gyapa/Gyapa	and	Philips/Philips	groups,	followed	by	sustained	use	on	about	50%	of	days	

on	subsequent	surveys.		We	observed	decreasing	use	of	all	Gyapa	and	Philips	stove	categories	

over	the	year,	though	we	have	not	yet	quantified	the	trend.		Charcoal	stove	use	also	appeared	

to	decrease	over	the	course	of	the	study,	except	for	the	Philips/Gyapa	group,	though	seasonal	

and	adjustment	periods	may	be	driving	their	use	as	well.	

	 There	was	no	significant	day	of	week	trend	for	cooking	with	any	of	the	stoves.		This	was	

likely	because	the	main	temporal	periodicity	for	such	rural	households	only	is	due	to	local	

markets,	which	cycle	locations	every	3	days.		Cooking	peak	distributions	(Figures	in	SI)	show	

that	the	stove	groups	use	different	stoves	at	different	times	of	day,	further	illustrating	the	

reasons	for	stacking.		The	Gyapa	stoves,	for	example,	appear	to	be	used	preferentially	later	in	

the	day	compared	to	the	others.	

 Daily	stove	use	durations	

	 Although	estimation	of	cooking	time	from	the	SUM	data	has	large	uncertainties	due	to	

our	experimental	set	up,	we	did	observe	it	to	be	lower	in	our	study	compared	with	previous	

work	undertaken	in	the	Sissala	district	in	Northwestern	Ghana	(Burwen	and	Levine,	2012).		Our	

control	group	was	found	to	cook	with	TSFs	4.6	h/day	(we	have	insufficient	data	from	charcoal	

stoves	to	measure	cooking	time),	while	in	Sissala,	the	control	group	was	found	to	cook	an	

average	of	10.7	h/day.		Burwen	and	Levine	(2012)	also	found	substantial	stacking	of	traditional	

methods	with	the	brick	and	clay	stove	their	study	introduced.		There,	the	treatment	group	

cooked	with	the	intervention	stove	26%	of	the	time,	2.5	hours/day	with	intervention	stoves	and	

7.1	hours/day	with	traditional	stoves.		Stacking	ratios	were	higher	in	our	study,	with	the	

intervention	stoves	accounting	for	61.5%	of	total	cooking	time	for	the	Gyapa/Gyapa	group,	59%	

for	the	Gyapa/Philips	group,	and	32%	for	the	Philips/Philips	group.		We	also	found	that	when	

two	identical	stoves	were	provided,	they	were	used	nearly	the	same	amount,	likely	to	prolong	
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their	lives	or	minimize	wear.		In	the	case	of	the	Philips	stove,	this	would	also	help	mitigate	

downtime	caused	by	the	need	to	charge	the	stove	with	solar	panels	during	daylight	hours.	

 Links	between	stove	type	and	type	of	food	cooked		

	 Figure	2-7	presents	survey	data	on	the	dishes	households	in	the	different	intervention	

groups	reported	cooking	with	each	stove	type	during	the	Dec	‘14/Jan	’15	survey	round,	

approximately	one	year	after	receiving	their	new	stoves.	At	baseline,	we	noted	that	TZ	was	

cooked	exclusively	over	TSFs,	while	vegetable	soup	and,	to	a	lesser	degree,	rice,	were	also	

cooked	over	charcoal	stoves	(Table	2-1).		As	Figure	2-7	shows,	this	pattern	persists	in	the	

control	group	households.	However,	there	is	variation	in	the	extent	to	which	new	stoves	

replaced	these	existing	technologies	to	cook	these	three	dishes	in	the	intervention	groups.		

Across	all	groups,	TZ	continued	to	be	cooked	over	TSFs	in	at	least	two	thirds	of	cases	in	which	

this	dish	was	cooked.	Use	of	Gyapas	to	cook	TZ	was	more	common	than	use	of	Philips	stoves	for	

this	dish.	Specifically,	in	this	survey	round	none	of	the	households	in	the	Gyapa/Philips	group	

reported	cooking	TZ	on	a	Philips	stove.	This	was	despite	our	effort	to	provide	metal	support	

stands	for	the	Philips	that	we	believed	would	help	make	them	more	stable	for	cooking	dishes	

like	TZ,	which	requires	vigorous	mixing	(Dickinson	et	al.,	2015).		

	 Meanwhile,	larger	shares	of	the	two	other	dishes	were	reportedly	cooked	over	new	

stoves.	Gyapas	were	used	to	prepare	about	65%	of	vegetable	soup	dishes	and	50%	of	rice	

dishes	in	the	Gyapa/Gyapa	group.	The	shares	of	these	dishes	cooked	over	Philips	stoves	in	the	

Philips/Philips	group	are	lower:	about	40%	for	vegetable	soup	and	30%	for	rice.	In	the	

Gyapa/Philips	group,	Gyapas	were	used	more	frequently	than	Philips	stoves	to	prepare	both	of	

these	dishes;	use	of	the	two	new	stoves	together	comprised	about	50%	of	vegetable	soup	

cooking	and	70%	of	rice	cooking	in	these	households.	Overall,	these	results	indicate	that	

households	found	both	types	of	new	stoves	better	suited	for	cooking	dishes	like	vegetable	soup	

and	rice	than	TZ,	and	even	for	these	less	involved	dishes,	a	sizeable	fraction	of	cooking	

continued	to	be	done	over	TSFs	and	charcoal	stoves.	These	usage	patterns	also	suggest	that	

cleaner	cooking	fuels	like	LPG	or	electric	stoves	could	face	similar	barriers	to	use,	and	versatile	

and	heavy-duty	designs	may	be	required	to	better	replace	traditional	stoves	and	fuels.	
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Figure	2-7.		Percent	of	households	cooking	different	dishes	with	each	stove	type,	one	year	after	
intervention	(Dec	‘14/Jan’15),	by	stove	intervention	group	and	type	of	stove.	

	

 	Conclusions	

	 SUM	and	survey	data	from	a	cookstove	intervention	study	in	Northern	Ghana	were	

combined	to	assess	stove	stacking	and	adoption	behavior.		Use	of	multiple	methods	has	

previously	been	identified	as	a	valuable	tool	for	technology	and	behavior	adoption	assessment	

(Stanistreet	et	al.,	2015).	Our	study	provides	further	evidence	of	this	value.		Each	of	the	

assessment	methods	used	here	faced	certain	challenges,	and	there	were	unexplained	

discrepancies	in	results	between	them.		Despite	the	discrepancies,	the	two	approaches	tell	a	

fairly	consistent	story	about	patterns	of	stove	use	in	our	different	intervention	groups.	We	

observed	generally	high	rates	of	use	of	the	Gyapa	stoves,	and	lower	use	rates	for	the	Philips	

stoves.		There	was	substantial	continued	use	of	traditional	TSF	and	charcoal	stoves	among	the	

three	intervention	groups,	though	their	use	was	lower	than	for	the	control	group.		This	

continued	reliance	on	TSF	fires	is	problematic,	as	Johnson	and	Chiang	(2015)	found	that	use	of	a	

TSF	for	as	little	as	10	minutes	per	day	was	enough	to	surpass	the	WHO	interim	1	24-hour	PM2.5	
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limit	of	35µg/m3	(WHO,	2006).		This	then	suggests	that	we	may	not	see	substantial	personal	

particulate	matter	exposure	reductions	with	the	stove	use	patterns	observed	in	this	study.	

To	effectively	reduce	use	of	TSFs	and	achieve	health	improvements,	a	better	understanding	of	

the	drivers	of	traditional	and	improved	stove	use	will	be	required.		A	mixed	methods	approach	

will	likely	be	needed	to	examine	these	drivers.		In	our	case,	information	from	surveys	on	the	

types	of	foods	cooked	may	help	explain	the	continued	reliance	on	TSF	stoves.		Specifically,	it	

appears	that	neither	of	the	new	stove	models	was	seen	as	an	adequate	replacement	for	TSFs	

for	the	task	of	cooking	the	staple	porridge	TZ.		This	thinking	is	brought	into	focus	by	Ruiz	and	

Masera	(2016),	who	note	that	households	rely	on	traditional	fires	to	conduct	a	wide	variety	of	

cooking	tasks	and	meet	a	diverse	set	of	needs.		Generally,	any	one	improved	stove	may	be	well	

suited	to	some	of	these	tasks,	but	less	so	for	others,	such	that	stacking	to	meet	household	

energy	needs	is	inevitable,	and	potentially	optimal	if	appropriate	and	efficient	technologies	are	

stacked.	

	 Reporting	bias	is	always	a	concern	with	survey-based	measurement	of	technology	use.	

However,	for	the	new	stove	technologies,	survey/SUM	discrepancies	in	use	rates	are	not	as	

large	in	this	study	as	in	others.		Specifically,	our	primary	metric	of	interest,	use-days,	drew	on	

households’	reported	use	of	each	stove	on	the	day	prior	to	the	survey,	minimizing	recall	bias	

relative	to	longer	measures	(e.g.,	reported	uses	in	the	past	week).		For	this	primary	metric,	we	

find	discrepancies	between	reported	and	SUMs-measured	use	of	new	stoves	that	range	from	

2.4%	to	6.8%,	suggesting	that	well-designed	survey	methods	may	be	able	to	generate	estimates	

of	stove	use	that	do	not	differ	greatly	from	objectively	measured	results.	

Finally,	we	find	that	more	method	validation	data	is	needed	to	improve	cooking	event	

identification	from	the	SUM	data.		Measurement	methods	for	temperature	monitoring	of	TSFs	

and	frequently	moved	stoves	are	needed	for	more	robust	and	reliable	stove	usage	estimation.		

Thermocouple	or	infrared	SUMs	would	provide	more	accurate	results,	and	this	option	is	

becoming	increasingly	attractive.		Thermocouple	loggers	are	available	for	$25-100	per	unit,	now	

comparable	to	iButtons	(Ruiz-Mercado	et	al.,	2008)	and	Digit-TLs	($18-35	per	unit,	respectively).			

Other	device	manufacturers	have	also	identified	and	filled	this	gap	with	custom	configured	

thermocouples	as	with	the	Nexleaf	Cookstove	Usage	Sensor	
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(http://nexleaf.org/technology/cookstove-usage-sensor),	SWEETSense	AIR	

(http://www.sweetsensors.com/applications/energy/),	and	Berkeley	Air	Monitoring	Group	K-

SUM.			
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	Exposure	to	and	origins	of	carbonaceous	PM2.5	in	a	cookstove	intervention	in	Northern	Ghana	

	

Ricardo	Piedrahita,	Ernest	Kanyomse,	Evan	Coffey,	Mingjie	Xie,	Yolanda	Hagar,	Rex	Alirigia,	Felix	

Agyei,	Christine	Wiedinmyer,	Katherine	L.	Dickinson,	Abraham	Oduro,	Michael	Hannigan	

	

Abstract	

	 	REACCTING	(Research	on	Emissions	Air	Quality,	Climate,	and	Cooking	Technologies	in	

Northern	Ghana)	was	a	200-home	cookstove	intervention	study	from	2013-2015.		Study	

households	were	divided	into	four	groups:	a	control	group,	a	group	given	two	locally	made	

rocket	stoves,	a	group	given	two	Philips	forced	draft	stoves,	and	a	group	given	a	locally	made	

rocket	stove	and	a	Philips	stove.	In	a	subset	of	study	households,	48-hour	PM2.5	exposure	

samples	were	collected	for	adults	and	children,	as	well	as	in	the	primary	cooking	area.	Further,	

weekly	ambient	background	PM2.5	samples	were	collected	for	the	first	nine	months	of	the	

study.	All	PM2.5	samples	were	analyzed	for	elemental	and	organic	carbon	(EC/OC),	and	a	subset	

was	also	analyzed	for	organics.	Mixed	effects	modeling	was	applied	to	quantify	differences	in	

PM	exposures	between	the	groups	and	to	assess	relationships	between	exposures	and	cooking	

area	measurements.	Results	showed	that	personal	OC	exposure	for	the	intervention	groups	

was	56.6%	lower	than	the	control	group	(p	<=	0.01).		Both	intervention	groups	given	Philips	

stoves	had	significantly	lower	EC	exposure	than	the	control	group	(60.6%	reduction,	p<=0.02).		

Only	weak	relationships	were	found	between	personal	and	cooking	area	EC	or	OC.		Source	

apportionment	modeling	was	performed	on	both	the	personal/microenvironment	and	the	

ambient	organic	PM2.5	data	sets	to	assess	the	sources	of	the	observed	PM.		We	identified	six	

PM	sources.	The	identified	source	factors	were	similar	among	the	data	sets,	as	well	as	with	

previous	work	in	Navrongo.		Two	sources,	one	characterized	by	the	presence	of	

methoxyphenols,	and	one	by	the	presence	of	polyaromatic	hydrocarbons	and	EC,	were	

associated	with	biomass	burning,	and	accounted	for	a	median	of	9.2%	of	OC	and	15.3%	of	EC	

personal	exposure.		Here,	we	demonstrate	the	utility	of	using	the	cooking-related	source	
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apportionment	factors	within	a	mixed	effects	model	for	more	precise	estimation	of	exposures	

due	to	cooking,	rather	than	other	combustion	sources	unrelated	to	the	intervention.	

	

 	Background	and	motivation	

	 Globally,	2.8	billion	people	cook	with	biomass	(Bonjour	et	al.,	2013),	and	pollution	from	

household	biomass	combustion	is	the	third	highest	risk	factor	for	the	global	burden	of	disease	

(Lim	et	al.,	2012).		Particulate	matter	with	aerodynamic	diameter	under	2.5µm	(PM2.5)	is	a	

major	component	of	biomass	combustion	emissions,	and	various	components,	including	

elemental	carbon	(EC)	and	organic	carbon	(OC)	have	been	linked	with	negative	health	

outcomes	(Naeher	et	al.,	2007;	Smith	et	al.,	2009;	Janssen	et	al.,	2011).	The	steep	PM2.5	

exposure-response	curve	at	low	exposures	(Burnett	et	al.,	2013)	requires	drastically	cutting	

PM2.5	exposure	in	order	to	achieve	health	benefits.		In	contexts	where	cooking-related	

emissions	are	a	dominant	source	of	PM2.5	exposures,	reducing	use	of	traditional	biomass	stoves	

in	favor	of	cleaner	alternative	technologies	may	be	an	effective	solution	for	reducing	exposures	

but	likely	requires	substantial	reductions	in	use	(Johnson	and	Chang,	2015).		Quantifying	the	

extent	to	which	exposures	are	actually	reduced	when	cooking	practices	change,	and	

understanding	how	much	cooking-related	sources	drive	PM2.5	exposure	in	different	contexts,	

are	key	challenges	for	this	field.	

	 Here,	we	add	to	the	cookstove	pollution	exposure	literature	by	assessing	various	effects	

of	a	cookstove	intervention	during	the	REACCTING	study	(Research	on	Emissions	Air	Quality,	

Climate,	and	Cooking	Technologies	in	Northern	Ghana;	Dickinson	et	al.,	2015).		Specifically,	we	

present	the	results	from	carbonaceous	PM2.5	observations	from	personal,	microenvironment,	

and	ambient	samples.		We	focus	on	EC	and	OC	because	they	tend	to	constitute	a	substantial	

portion	of	total	PM2.5,	are	strongly	linked	to	negative	health	effects,	and	also	because	of	their	

importance	for	regional	and	global	climate	(Bond	et	al.,	2013;	Ramanathan	and	Carmichael,	

2008).		We	quantified	the	carbonaceous	components	of	PM2.5	from	191	personal	exposure	

samples,	127	samples	taken	in	the	cooking	area	and	50	ambient	samples.	The	personal	

exposure	measurements	were	then	compared	to	cooking	area	microenvironment	PM2.5	and	

ambient	PM2.5	levels	in	an	attempt	to	determine	the	relationship	between	personal	and	
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microenvironment	PM2.5.	This	relationship	is	an	important	component	of	modeling	population	

level	exposures	with	microenvironment	sampling,	and	previous	studies	that	have	explored	this	

relationship	have	produced	mixed	results	depending	greatly	on	specific	environmental	and	

behavioral	factors	(Dionisio	et	al.,	2012a;	McCracken	et	al.,	2013;	Van	Vliet	et	al.,	2013).	

	 We	then	use	source	apportionment	to	determine	the	contribution	of	various	PM2.5	

sources	to	the	observations	at	each	scale,	using	a	procedure	similar	to	Larson	et	al.	(2004).	

Many	studies	investigating	exposures	to	PM	from	residential	biomass	combustion	assume	that	

differences	in	observed	exposures	are	purely	from	cooking	activities,	after	controlling	for	

covariates.	We	take	advantage	of	our	multi-scale	measurements	to	quantify	the	specific	

sources	of	the	observed	PM2.5	concentrations	and	determine	the	accuracy	of	this	assumption	

for	our	study	area.		Specifically,	we	calculate	contributions	of	specific	pollution	sources	to	

exposures,	and	use	mixed	effects	modeling	to	determine	whether	changes	in	stove	

technologies	impact	those	exposures.		In-field	observations	are	essential	for	this	purpose,	as	

various	works	have	shown	that	improved	cookstoves	perform	much	differently,	and	typically	

better,	in	controlled	laboratory	settings	than	in	the	field	(Johnson	et	al.,	2008;	Roden	et	al.,	

2009),	due	to	factors	such	as	stove	maintenance,	training	on	stove	use,	and	fuel	type	and	

preparation.			

Our	methods	allow	us	to	directly	identify	the	fraction	of	carbonaceous	PM2.5	exposure	

contributed	by	cooking-related	sources	in	the	field,	and	can	therefore	directly	assess	the	

intervention	effect.	

 Relevant	previous	works	

	 Our	approach	draws	on	prior	studies	examining	personal	PM	exposure	in	cookstove	

intervention	studies,	personal	exposure	to	PM	in	the	region,	cooking	studies	in	the	region,	

ambient	PM	measurements	in	the	region,	and	source	apportionment	studies	in	the	region.	

	 Personal	PM2.5	exposure	measurements	in	previous	studies	investigating	impacts	from	

cookstove	interventions	have	been	limited,	with	varied	associated	exposure	and	health	

outcomes	based	on	differences	in	a	multitude	of	factors	such	as	fuel	choices,	regional	cooking	

traditions,	behaviors,	home	design,	and	climate.		Clark	et	al.	(2013)	highlights	this	variability	

within	and	between	personal	exposure	and	kitchen	microenvironment	measurements	and	
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associated	health	outcomes	from	selected	cookstove	studies	around	the	world.		Cynthia	et	al.	

(2008)	found	significantly	lower	PM2.5	exposure	for	women	with	homes	supplied	with	a	Patsari	

stove	than	women	in	the	control	group,	in	Michoacán,	Mexico.		In	Guatemala,	McCracken	et	al.	

(2007)	found	significantly	lower	PM2.5	personal	exposures	and	blood	pressure	for	women	

participants	with	a	plancha	stove	compared	to	participants	with	traditional	stoves.		

	 Limited	personal	PM2.5	sampling	has	been	conducted	in	Ghana.		Van	Vliet	et	al.	(2013)	

measured	personal,	kitchen	area,	and	ambient	PM2.5	mass	and	black	carbon	(BC)	in	central	

Ghana,	where	study	participants	cook	with	traditional	methods	similar	to	those	seen	in	our	

study.		That	study	reported	average	personal	exposure	to	BC	of	8.8	µg/m3	and	average	cooking	

area	BC	of	14.5	µg/m3.		Arku	et	al.	(2015)	performed	personal	PM2.5	sampling	in	Accra,	the	

national	capital	located	along	the	coast	in	Southern	Ghana,	as	part	of	a	‘spatial	sources	and	

exposure’	study.		That	work	found	average	PM2.5	mass	concentrations	of	56	µg/m3,	with	

differences	in	exposure	based	on	gender	and	neighborhood	affluence.		Pennise	et	al.	(2009)	

reported	a	large	and	significant	reduction	in	cooking	area	PM2.5	concentrations	in	a	cookstove	

intervention	study	using	a	Gyapa	stove	similar	to	the	one	used	in	this	study.			

	 Of	the	limited	ambient	PM	studies	in	Ghana,	four	have	published	PMF	source	

apportionment	results,	all	using	metals	analyzed	with	x-ray	fluorescence	and	EC/OC.		Three	of	

those	four	studies	were	undertaken	in	or	around	Accra.		Ofosu	et	al.	(2012)	performed	a	6-

month	sampling	campaign	in	2008,	in	an	Accra	suburb.		Eight	PMF	factors	were	identified;	

industrial	activities,	aged	sea	salt,	fresh	sea	salt,	biomass	combustion,	diesel	combustion,	two-

stroke	engine	combustion,	gasoline	combustion,	and	soil	dust.		Zhou	et	al.	(2013;	2014)	

performed	ambient	and	cooking	area	PM2.5	sampling	in	four	neighborhoods	throughout	Accra,	

identifying	six	PMF	sources;	solid	waste	burning,	road	dust	and	vehicle,	aged	biomass,	fresh	

biomass,	sea	salt,	and	crustal.		Aboh	et	al.	(2009)	performed	ambient	PM2.5	and	PM10-2.5	

sampling	in	a	suburb	of	Accra,	from	February	2006	to	February	2007,	also	identifying	six	factors.		

The	fourth	work	collected	PM2.5	and	PM10-2.5	from	2009-2010	in	Navrongo,	Northern	Ghana	

(Ofosu	et	al.	2013),	at	a	site	2	km	from	the	Navrongo	Health	Research	Center,	where	our	

ambient	sampler	was	located	(Figure	3-1).		That	work	identified	six	factors,	and	provides	useful	

comparisons	with	our	work.			
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	 In	this	study,	positive	matrix	factorization	(PMF,	Paatero	et	al.,	1997)	was	used	to	

determine	sources	of	organics	PM2.5	measured	in	both	the	personal-level	and	ambient	samples,	

aiding	the	assessment	of	the	intervention	effects.		Additionally,	to	our	knowledge,	organics	

speciation	of	PM2.5	has	not	been	performed	in	West	Africa,	although	Bortey-Sam	et	al.	(2015)	

did	collect	and	speciate	a	few	organic	compounds	in	PM10	samples	in	two	sites	near	Kumasi,	the	

largest	city	in	Ghana,	about	500km	South	of	Navrongo.		The	use	of	organics	here	allows	us	to	

provide	better	context	to	past	results	by	using	different	tracer	species	specific	to	sources	(Cass,	

1998;	Schauer	et	al.,	1996).	This	work	also	provides	unique	data	for	the	less	populated	and	

developed	rural	region	of	Northern	Ghana,	and	specifically,	in	relation	to	a	cookstove	

intervention.	
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Figure	3-1.	Map	of	the	study	region	at	various	scales.		At	right,	the	town	of	Navrongo,	with	
markers	on	the	Navrongo	Health	Research	Center,	the	base	of	operations	and	where	ambient	
PM2.5	was	sampled	(Google	Maps,	2016).	

	

 	Methods	

	 This	work	was	conducted	in	the	context	of	the	REACCTING	study,	a	200-household,	

cookstove	intervention	that	took	place	from	November	2013	through	January	2016	in	the	

Kassena-Nankana	districts	of	Northern	Ghana	(Figure	3-1)	(Dickinson	et	al.	2015),	with	

fieldwork	based	out	of	the	Navrongo	Health	Research	Centre	(NHRC).		Details	on	the	study	

region	are	presented	by	Oduro	et	al.	(2012)	and	Dickinson	et	al.	(2015).	

	 The	REACCTING	study	households	were	divided	into	four	groups	of	50	households	each,	

with	one	arm	given	two	locally-made	Gyapa	rocket	stoves	(Gyapa/Gyapa),	one	arm	given	two	

Philips	HD4012	LS	stoves	(Philips/Philips),	one	arm	given	one	of	each	(Gyapa/Philips),	and	the	

last	arm	serving	as	control	until	the	end	of	the	study,	when	they	were	given	their	choices	of	two	
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stoves.		The	improved	cookstoves	tested	in	this	study	were	aimed	at	reducing	household	fuel	

use	and	cooking-related	hazardous	air	pollutant	emissions.			 		

 Personal	PM2.5	sample	collection	

	 Study	participants	at	four	households	each	week	were	asked	to	wear	a	PM2.5	filter	

sampler	over	a	48-hour	period.		Typically,	the	participants	included	the	mother	and	a	child	over	

age	four.		They	were	asked	to	wear	the	sampling	pack	at	all	possible	times,	except	during	sleep,	

or	when	they	were	stationary,	in	which	case	the	pack	was	to	be	kept	within	arms	reach.		The	

sampling	packs	were	backpacks	for	children,	and	waist	packs	for	the	adults,	as	they	found	that	

style	more	convenient	and	appropriate.		Sampling	periods	started	early	in	the	morning,	usually	

before	the	first	meal.	

	 Personal	filter	samples	were	collected	using	Teflon	URG	impactors	(#URG-2000-25F,	

Chapel	Hill,	NC,	USA)	operating	at	2	L	min-1	to	obtain	a	2.5µm	size	cut.		Samples	were	collected	

on	pre-baked	Pall	TissuQuartz	2500-QAT	25mm	filters.		These	filters	were	selected	in	order	to	

perform	carbonaceous	PM2.5	analysis,	due	to	our	interest	in	chemical	analysis	of	the	PM2.5,	and	

because	the	majority	of	PM2.5	from	wood	combustion	is	carbonaceous	(Kleeman	et	al.,	1999;	

Schauer	et	al.,	2001).		Total	PM2.5	mass	was	not	measured,	since	this	would	require	samples	on	

both	quartz	and	Teflon	filters,	which	would	have	been	logistically	challenging	and	was	not	the	

primary	objective	of	this	study.		All	filters	were	transported	in	pre-baked	sterile	glass	jars	from	

the	University	of	Colorado	to	the	NHRC,	and	during	sampling	operations	in	Ghana.		Used	and	

unused	filters	were	stored	in	a	refrigerator	onsite,	and	effort	was	made	to	keep	them	cool	

during	transport.			

	 Filter	packs	were	cleaned	biweekly	with	isopropyl	alcohol.		SKC	AirLite	pumps	powered	

by	6000	mAh	lithium	ion	battery	packs	provided	the	vacuum,	and	flow	rates	were	adjusted	

weekly	using	a	calibrated	rotometer.		Field	blanks	were	collected	every	48-hour	period,	and	

were	carried	to	the	sampling	sites.		EC,	OC,	and	organics	were	median	blank	subtracted	using	

each	filter	storage	jar’s	blanks	for	the	final	results.	

	 From	November	2013	through	August	2015,	260	personal	filter	samples	were	collected.		

66	filters	were	discarded	due	to	the	sampler	battery	running	out	by	the	time	the	field	team	

returned	to	finish	the	sampling	period.		A	summary	of	key	sample	demographics	is	shown	in	
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Table	1.		The	sampling	schedule	was	designed	to	balance	observations	across	stove	groups.	

However,	logistical	constraints	resulted	in	fewer	samples	from	the	Gyapa/Philips	group.		EC	and	

OC	were	analyzed	on	all	samples	that	passed	quality	assurance	(191),	and	speciated	organics	

were	analyzed	for	all	samples	collected	from	November	2013	to	February	2014	(53).	

Table	3-1.		Household	and	seasonal	statistics	for	the	personal	exposure	(191,	88	unique	
individuals)	and	microenvironment	samples	(127).		
	 	 Personal	Exposure	Samples	 Microenvironment	Samples	 Ambient	Samples	
	 	 All	samples:	

191	samples	from	88	unique	individuals	
Organics	subset	(in	parentheses):		
37	samples	from	37	unique	individuals	

All	samples:	
127	samples	from	37	unique	households	
Organics	subset	(in	parentheses):		
16	samples	from	16	unique	households	

All	samples:	
51	samples		
Organics	subset	(in	parentheses):		
25	samples		

In
di
vi
du

al
-le

ve
l	c
ov
ar
ia
te
s	

Age	 	 	 	 	 	 	
Minimum	 3	 (5)	 	 	 	 	
Median	 26	 (17)	 	 	 	 	
Maximum	 73	 (41)	 	 	 	 	
Gender	 	 	 	 	 	 	
Female	 148	 (30)	 	 	 	 	
Male	 46	 (7)	 	 	 	 	
Gender/Age	 	 	 	 	 	 	
F<10	years		 20	 (5)	 	 	 	 	
F>10	years	 128	 (25)	 	 	 	 	
M<10	years		 31	 (5)	 	 	 	 	
M>10	years	 15	 (2)	 	 	 	 	

Ho
us
eh

ol
d-
le
ve
l	c
ov
ar
ia
te
s	

Stove	group	 	 	 	 	 	 	
Gyapa/Gyapa	 48	 (6)	 42	 (5)	 	 	
Philips/Philips	 74	 (14)	 42	 (5)	 	 	
Gyapa/Philips	 27	 (5)	 24	 (4)	 	 	
Control	 45	 (12)	 19	 (2)	 	 	
Language	 	 	 	 	 	 	
Household	size	 	 	 	 	 	 	
Minimum	 3	 (4)	 3	 (4)	 	 	
Median	 8	 (7)	 8	 (8)	 	 	
Maximum	 18	 (17)	 18	 (17)	 	 	
Socioeconomic	status	 	 	 	 	 	 	
Least	poor	 32	 (3)	 19	 (0)	 	 	
Less	poor	 33	 (11)	 16	 (4)	 	 	
Poor	 34	 (5)	 20	 (2)	 	 	
Poorer	 73	 (13)	 48	 (6)	 	 	
Poorest	 19	 (5)	 24	 (4)	 	 	

Se
as
on

al
	

co
va
ria

te
s	

Seasons	 	 	 	 	 	 	
Harmattan	bush	burning	 58	 (35)	 33	 (14)	 12	 (10)	
Heavy	Rainy	 66	 (0)	 41	 (0)	 17	 (2)	
Hot	dry	 26	 (0)	 16	 (0)	 6	 (5)	
Light	Rainy	 24	 (0)	 20	 (0)	 5	 (4)	
Transition	 20	 (2)	 17	 (2)	 11	 (4)	

	

 Microenvironment	PM2.5	sample	collection	

	 Cooking	area	microenvironment	sampling	followed	the	same	procedures	and	used	the	

same	equipment	as	the	personal	exposure	sampling.		Cooking	area	measurements	were	

collected	concurrently	at	the	same	households	with	the	personal	sampling,	also	for	48-hour	

periods	(Table	1).		The	filter	samplers	were	housed	within	custom	battery	powered	U-pod	

monitors	that	also	collected	gas	phase	measurements	(Dickinson	et	al.,	2015).		The	U-pods	



 

 

46 

were	placed	approximately	1	meter	away	and	1	meter	above	the	most	used	cookstove	in	the	

primary	cooking	area	(Figure	3-2).		In	all,	137	microenvironment	samples	were	collected	from	

November	2013	to	August	2015,	with	10	of	those	discarded	for	sampling	time	deviating	more	

than	6	hours	from	a	full	sampling	day	of	24	or	48	hours.		The	U-pod	data	logger	provided	an	

accurate	timer	for	pump	operation.		All	samples	were	analyzed	for	EC/OC,	and	the	16	filters	

collected	from	September	2013	to	June	2014	were	also	analyzed	for	organics.			

	

Figure	3-2.		Ambient	sampling	inlet	shown	at	the	Navrongo	Health	Research	Center.		On	the	
right,	typical	cooking	areas,	shown	with	the	U-pod	air	quality	samplers.	

	

 Ambient	PM2.5	sample	collection	

	 Ambient	PM2.5	samples	were	collected	for	one-week	periods	at	the	NHRC	from	

November	2013-September	2014.		Samples	were	collected	on	90mm	TissuQuartz	filters	with	a	

2.5µm	size	cut	achieved	using	a	6	Lmin-1	cyclone	(URG-2000-30EHB).		The	sampler	was	situated	

on	a	second	story	ledge	at	the	NHRC,	6m	from	the	ground	and	0.8m	from	the	wall	(Figure	3-2).		

Average	flow	rate	was	measured	with	a	mechanical	timer	coupled	with	a	flow	totalizer.		The	

desired	5.5	Lmin-1	flow	was	periodically	disrupted	due	to	power	failures	and	pump	failures,	thus	

contributing	most	to	the	measurement	uncertainty.		Filter	changing	times	were	inconsistent	in	

some	cases,	with	one	filter	collected	for	33	days	in	December	2013,	and	two	other	samples	
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collected	over	two	weeks	each.	A	total	of	50	samples	were	collected	and	all	were	analyzed	for	

EC/OC.		25	samples	collected	between	November	2013	and	June	2014	were	analyzed	for	

organics	and	included	in	PMF	analysis.	

 Chemical	analysis		

	 Details	of	the	bulk	OC	and	EC	analysis	method	applied	in	this	study	are	provided	in	

Dutton	et	al.	(2009a).		A	1.5	cm2	punch	was	taken	from	each	quartz	fiber	filter	and	analyzed	

using	a	Sunset	Laboratory	EC/OC	analyzer	operated	under	NIOSH	5040	thermal	optical	

transmission	(TOT)	method	(Birch,	2003;	Schauer	et	al.,	2003).		The	methods	for	quartz	fiber	

filter	extraction	and	organic	speciation	are	provided	by	Dutton	et	al.	(2009b)	and	Xie	et	al.	

(2014).		Briefly,	each	quartz	fiber	filter	sample	was	pre-spiked	with	a	mixture	of	internal	

standard	containing	isotopically	labeled	standards	before	extraction.	Each	pre-spiked	sample	

was	extracted	twice	with	methylene	chloride	ultrasonically.	After	filtration	and	concentration,	

the	final	extracts	were	analyzed	by	gas	chromatograph-mass	spectrometer	(GC-MS).	The	GC-MS	

analysis	for	our	sample	extracts	were	performed	in	sequences	along	with	five	dilutions	of	

quantification	standards.	Quadratic	calibration	curves	were	generated	from	all	available	runs	of	

quantification	standards	in	each	batch	of	sequences.		The	mass	amount	of	each	target	

compound	on	quartz	fiber	filters	was	obtained	by	converting	peak	area	ratios	to	mass	ratios	

using	calibration	curves	and	known	mass	of	pre-spiked	internal	standards.	The	analytical	

uncertainties	associated	with	calibration	curves	were	estimated	within	each	batch	empirically	

(Dutton	et	al.,	2009b).		

	 The	final	airborne	concentrations	of	OC,	EC	and	each	identified	organic	compound	were	

determined	by	dividing	their	total	amount	on	each	filter	with	the	sampled	air	volume.	The	final	

uncertainties	were	calculated	using	root	sum	squares	(RSS)	method,	incorporating	the	

analytical	uncertainties,	standard	deviation	of	the	field	blanks	and	the	sample	volume	

uncertainties	(Dutton	et	al.,	2009a).	All	measurements	were	field-blank	corrected	by	

subtracting	off	the	median	blank	value.		

 Source	apportionment		

	 PMF2,	the	program	developed	by	Paatero	and	coworkers	to	implement	PMF	(Paatero	et	

al.,	1997)	was	coupled	with	a	stationary	block	bootstrap	technique	to	perform	the	source	



 

 

48 

apportionment	(Hemann	et	al.,	2009).	PMF	resolves	factor	profiles	and	contributions	from	a	

time	series	of	observations.	The	PMF2-based	tool	developed	by	Hemann	and	coworkers	assigns	

confidence	intervals	to	the	factor	contributions	as	well	as	the	factor	profiles,	providing	a	better	

understanding	of	the	solution	stability.	In	this	study,	solutions	with	3	–	7	factors	were	

considered.	The	final	factor	number	applied	in	this	study	was	determined	based	on	

interpretability	of	each	solution	as	well	as	fit	diagnostics.	

	 All	organics	species	with	greater	than	40%	of	values	below	detection	limits,	or	signal-to-

noise	ratios	below	two,	were	removed	from	the	PMF	analysis	data	set.		For	the	ambient	data	

set,	19	organics	species	were	retained	due	to	the	low	number	of	samples	available	for	analysis,	

to	reduce	rotational	ambiguity.		The	personal	and	microenvironmental	(P-M)	samples	were	

combined,	since	we	are	fundamentally	interested	in	identifying	typical	pollution	sources	

experienced	by	people	in	their	homes.	For	the	P-M	data	set,	41	observed	chemical	species	were	

retained	for	analysis.	The	species	were	selected	based	on	their	representativeness	of	

factor/sources	in	a	previous	source	apportionment	study	(Xie	et	al.,	2013).	All	missing	values	of	

individual	species	were	replaced	by	the	geometric	mean	of	the	remaining	measurements,	and	

their	corresponding	uncertainties	were	set	to	four	times	the	geometric	mean.	Similarly,	the	BDL	

values	were	set	to	half	the	detection	limit,	with	uncertainties	set	at	five-sixths	the	detection	

limit	(Polissar	et	al.,	1998;	Reff	et	al.,	2007).		Six	samples	with	high	sample	volume	uncertainty	

were	retained	for	the	PMF	solution,	yielding	a	total	of	59	samples,	but	were	removed	for	

subsequent	comparisons	and	modeling.			

 Mixed	effects	model	specification	

	 Mixed	effects	models	were	applied	to	quantify	relationships	between	observed	PM2.5	

concentrations	and	various	study	covariates,	and	allow	for	inference	about	future	

measurements	and	outcomes.		These	mixed	effects	models	allow	us	to	determine	how	certain	

covariates	(such	as	stove	group	or	gender)	impact	PM2.5	measurements.		Repeated	participant	

samples	produce	inherent	correlations	between	the	measurements,	which	can	impact	the	

estimated	effects	of	the	covariates	and	possibly	skew	the	results.		The	mixed	effects	models	

allow	us	to	account	for	this	correlation	due	to	the	repeated	samples,	so	that	we	can	accurately	

assess	the	impact	of	the	different	covariates	on	the	exposure	levels.		Additionally,	these	models	
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can	estimate	two	different	sources	of	variation	within	our	data:	the	within	person	variance	(i.e.	

the	variation	within	an	individual,	which	is	related	to	the	correlation)	and	the	between-

participant	variance	components	(i.e.,	how	the	measurements	vary	from	person	to	person)	

(Zeger	et	al.,	1988).	Estimating	these	variance	components	is	helpful	in	exposure	studies	to	

identify	exposure	reduction	strategies	(Peretz	et	al.,	2001),	and	is	also	used	for	estimation	of	

health	effects	in	exposure-response	studies	since	effect	attenuation	(biasing	the	regression	

slope	towards	zero)	increases	with	the	within-to-between	variance	ratio,	as	noted	by	Clark	et	

al.	(2013).	

	 Separately,	mixed	effects	models	were	fit	for	the	personal	exposure	EC	and	OC	data	

sets,	to	assess	the	differences	in	exposures	between	study	groups.		The	dependent	variables	

(EC	or	OC)	were	log	transformed	to	satisfy	the	required	normality	assumption	needed	for	linear	

modeling.		We	estimated	the	effects	of	the	study	arm	(i.e.	stove	group)	on	EC	or	OC	exposure	

levels,	while	also	adjusting	for	season,	a	gender/age	interaction	variable,	the	number	of	family	

members,	and	socioeconomic	status.		We	allowed	subjects	to	have	a	variable	baseline	exposure	

level	(i.e.	we	included	a	random	intercept),	but	we	assumed	that	the	degree	of	change	in	

exposure	levels	were	the	same	from	person-to-person	(i.e.,	we	did	not	include	a	random	slope),	

as	there	was	no	evidence	of	this	produced	by	the	data.	This	model	is	described	by	Equation	1:		

	

ln(Yij)	~	β0	+	β1(stovegroup)i	+	β2(#	in	family)i	+	β3(gender*age)i	+	β4(season)i	+	
β5(SES)i	+	β6(primary	cook)i	+	αj	+	eij	

Equation	
3-1	

	

where	Yij	represents	EC	or	OC	on	sample	day	i	for	individual	j.		‘Gender*age’	is	a	categorical	

variable	that	is	defined	as	male/female	and	over/under	10	years	old.		‘Season’	is	a	categorical	

variable	defined	as	‘light	rainy’	(April-June),	‘heavy	rainy’	(June-October),	‘transition’	(only	

October),	‘Harmattan’	(November	to	mid-February),	and	‘hot	dry’	(mid-February	to	April).		

Socioeconomic	status	(SES)	is	a	categorical	variable	categorized	as	‘poorest’,	‘very	poor’,	‘poor’,	

‘less	poor’,	and	‘least	poor’	(as	by	Awini	et	al,	2010),	calculated	for	each	household	using	data	

from	a	district-wide	Health	and	Demographic	Surveillance	Survey	(Oduro	et	al	2012).		‘Primary	

cook’	is	a	categorical	variable	for	whether	the	person	monitored	was	listed	as	the	household’s	

primary	cook,	as	determined	at	baseline	(Dickinson	et	al.,	2015).		αj	represents	the	random	
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intercept	that	accounts	for	the	correlation	within	subjects,	and	eij	represents	the	variation	from	

subject	to	subject.	In	addition	to	the	covariates	mentioned	above,	we	also	investigated	a	

‘cooking	area	geometry’	variable,	but	it	was	not	included	in	the	final	analysis	because	it	was	

found	to	be	collinear	with	the	SES	variable.		This	is	a	logical	finding,	as	the	poorest	households	

tended	to	have	no	indoor	cooking	areas,	and	the	wealthier	households	generally	had	more	

indoor	and	semi-enclosed	cooking	areas.		

	 Mixed	effects	models	were	also	applied	to	the	cooking	area	microenvironment	PM2.5	EC	

and	OC,	though	the	model	was	different,	with	the	random	intercept	included	at	the	household	

level	(instead	of	at	the	personal	level),	and	with	the	gender	and	age	categories	removed	

(Equation	3-2).		87	unique	household	EC	and	OC	samples	were	available	for	analysis.	

ln(Yij)	~	β0	+	β1(stovegroup)i	+	β2(#	in	family)i	+	β3(season)i	+	β4(SES)i	+	αj	+	eij					
Equation	
3-2	

	 Finally,	to	relate	personal	and	cooking	area	microenvironment	carbonaceous	PM2.5,	

mixed	effects	models	were	applied	to	the	EC	and	OC	independently.		Here,	the	model	(Equation	

3-3)	was	the	same	as	Equation	1,	but	with	the	addition	of	the	log-transformed	

microenvironment	EC	and	OC	average	mass	concentrations,	and	a	cross-term	between	the	

mass	concentrations	and	stove	groups,	to	account	for	potential	changes	in	the	relationship	due	

to	changes	in	emissions	or	cooking	behaviors	by	group.			

ln(Yij)	~	β0	+	β1ln(MicroEnv)i	*β2(stovegroup)i	+	β3(#	in	family)i	+	β4(season)i	
+β5(SES)i	+	β6(primary	cook)i	+	αj	+	eij	

Equation	3-3	

Of	the	191	personal	exposure	PM2.5	samples,	141	were	available	with	simultaneous	

microenvironment	PM2.5	measurements	for	use	in	this	model.	

 Results	and	discussion	

 Personal	carbonaceous	PM2.5		

	 Summary	statistics	for	the	EC,	OC,	and	organics	are	shown	separately	for	personal	and	

microenvironmental	samples	in	Table	3-2.		Mean	personal	OC	concentration	was	38.9	µg/m3	

(±54.3	µg/m3),	while	mean	EC	was	2.8	µg/m3	(±10.5	µg/m3).		0.8%	of	OC	and	5.4%	of	EC	

samples	were	below	the	instrument	detection	limit.	63	of	the	191	48-hour	samples	(32%)	

registered	above	the	WHO	24-hour	interim-1	maximum	average	of	35	µg/m3.		As	we	only	assess	
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the	carbonaceous	components,	it	is	an	underestimate	of	the	total	PM2.5	mass	concentration.		A	

distribution	of	the	sum	of	EC	and	OC	is	presented	in	Figure	3-3.			

	 The	observed	average	PM2.5	personal	exposures	in	REACCTING	appear	lower	than	

comparable	previous	works,	although	it	must	be	emphasized	that	here	the	sum	of	EC	and	OC	is	

reported,	while	the	following	works	used	total	gravimetric	PM2.5	mass.	In	Ghana,	personal	PM2.5	

sampling	was	performed	on	high	school	students	in	Accra,	Ghana,	(Arku	et	al.,	2015),	where	

they	found	average	24-h	concentrations	of	56	µg/m3	(±33.5	µg/m3).		In	regards	to	cookstove	

study-related	personal	exposures,	McCracken	et	al.	(2007)	reported	daily	average	PM2.5	

concentrations	from	rural	homes	in	Guatemala	of	264	µg/m3	for	the	control	group,	and	102	

µg/m3	for	homes	with	plancha	stoves.		Baumgartner	et	al.	(2011)	measured	PM2.5	exposures	in	

rural	Yunnan	China,	finding	average	concentrations	for	adult	women	of	117	µg/m3	in	winter,	

and	55	µg/m3	in	summer.		Dionisio	et	al.	(2012a)	measured	integrated	PM2.5	on	31	children	in	

The	Gambia,	reporting	average	48-h	exposures	of	65	µg/m3.	
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Figure	3-3.		Personal	exposure	distributions	for	summed	EC	and	OC,	compared	with	relevant	
WHO	standards.	

	

Table	3-2.		Summary	of	personal	carbonaceous	PM2.5	EC,	OC,	and	organics	samples.		Flagged	
samples	were	removed	from	analysis	due	to	various	possible	issues	including	sampling	duration	
and	contamination.	
All	personal	EC	and	OC	PM2.5	statistics	(n	=	191)	
		 Mean	 Median	 Std	dev	 Geo	mean	 %BDL	 Flagged	samples	
OC	(µg/m3)	 39.7	 23.1	 54.5	 24.3	 0.8	 66	
EC	(µg/m3)	 2.8	 1.1	 10.6	 1.0	 5.4	 66	
EC/OC	 2.8	 1.1	 10.5	 1.0	 5.4	 66	0.1	 0.0	 	 	 	 	

	 	 	 	 	 	 	All	cooking	area	microenvironment	PM2.5	EC	and	OC	statistics		(n	=	127)	 		
		 Mean	 Median	 Std	dev	 Geo	mean	 %BDL	 Flagged	samples	
OC	(µg/m3)	 108.0	 54.2	 117.9	 61.2	 0.0	 10	
EC	(µg/m3)	 8.3	 3.4	 12.5	 3.3	 5.1	 10	
EC/OC	 2.8	 1.1	 10.5	 1.0	 5.4	 66	0.1	 0.1	 	 	 	 	

	 	 	 	 	 	 	PMF	personal	and	microenvironment	PM2.5	dataset	statistics	(n	=	59)	 		
*units	in	ng/m3	unless	noted	 Mean	 Median	 Std	dev	 Geo	mean	 %BDL	 S/N	
OC		(µg/m3)	 59.4	 40.9	 69.0	 43.6	 0.0	 10.0	
EC		(µg/m3)	 5.4	 2.2	 10.3	 2.9	 0.0	 10.0	
docosane	(C22)	 4.3	 2.2	 9.5	 2.1	 1.7	 8.1	
tricosane	(C23)	 10.2	 4.2	 27.7	 4.4	 0.0	 8.5	
tetracosane	(C24)	 16.8	 4.7	 64.9	 4.8	 0.0	 4.7	
pentacosane	(C25)	 24.7	 8.4	 81.1	 9.3	 0.0	 7.5	
hexacosane	(C26)	 21.6	 7.9	 65.5	 8.3	 0.0	 8.5	
heptacosane	(C27)	 32.7	 14.2	 72.0	 15.1	 0.0	 9.8	
octacosane	(C28)	 24.3	 10.8	 59.0	 11.4	 0.0	 9.6	
nonacosane	(C29)	 56.4	 25.4	 146.6	 28.1	 0.0	 10.0	
triacontane	(C30)	 14.6	 9.4	 16.9	 9.3	 0.0	 9.2	
hentriacontane	(C31)	 57.2	 23.0	 149.4	 25.5	 0.0	 9.9	
dotriacontane	(C32)	 11.7	 6.7	 15.5	 7.4	 0.0	 8.8	
tritriacontane	(C33)	 19.3	 15.0	 20.3	 13.8	 0.0	 9.7	
tetratriacontane	(C34)	 6.3	 4.0	 8.4	 3.9	 0.0	 7.8	
pentatriacontane	(C35)	 11.0	 5.8	 18.6	 6.4	 0.0	 8.5	
hexatriacontane	(C36)	 7.3	 4.4	 11.1	 4.3	 0.0	 8.0	
heptatriacontane	(C37)	 4.0	 2.3	 5.9	 2.5	 6.9	 6.8	
octatriacontane	(C38)	 3.6	 2.1	 5.2	 2.4	 19.0	 4.9	
nonatriacontane	(C39)	 3.7	 2.2	 5.0	 2.5	 24.1	 4.4	
tetracontane	(C40)	 3.3	 2.0	 4.5	 2.2	 36.2	 3.5	
fluoranthene	 8.9	 1.8	 27.2	 2.0	 0.0	 9.5	
pyrene	 11.5	 2.0	 36.6	 2.2	 0.0	 9.2	
benzo[ghi]fluoranthene	 12.6	 1.5	 39.6	 1.6	 0.0	 9.4	
cyclopenta[cd]pyrene	 16.2	 1.3	 56.7	 1.6	 0.0	 7.8	
benz[a]anthracene	 16.9	 1.7	 49.9	 2.0	 0.0	 8.0	
chrysene/triphenylene	 17.6	 2.1	 46.0	 2.8	 0.0	 8.3	
benzo[b&k]fluoranthene	 31.2	 7.5	 73.2	 7.6	 0.0	 9.8	
benz[a&e]pyrene	 26.8	 5.7	 67.7	 6.2	 0.0	 9.5	
indeno[1,2,3-cd]pyrene	 9.0	 1.9	 24.1	 2.1	 0.0	 7.9	
benzo[ghi]perylene	 10.3	 2.8	 26.6	 2.9	 0.0	 7.5	
coronene	 5.2	 1.1	 14.6	 1.1	 0.0	 8.3	
2-methylfluoranthene	 20.6	 2.6	 65.2	 3.1	 0.0	 8.6	
methyl-202-PAHsum	 65.6	 7.6	 207.3	 9.7	 0.0	 8.7	
anthracene-9,10-dione	 2.5	 0.5	 6.4	 0.5	 12.1	 5.6	
benz[de]anthracene-7-one	 8.9	 1.9	 20.3	 2.3	 1.7	 8.3	
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ba-30-norhopane	 1.5	 1.3	 0.8	 1.3	 37.9	 3.3	
ab-hopane	 1.1	 0.9	 0.7	 0.9	 37.9	 4.1	
syringealdehyde	 261.0	 49.6	 679.8	 65.1	 0.0	 9.1	
coniferaldehyde	 119.8	 18.5	 321.6	 25.0	 3.4	 5.5	
acetosyringone	 63.1	 13.4	 158.3	 15.2	 0.0	 6.7	
	

 Personal	OC	PM2.5	modeling	results	

	 Results	from	Equation	3-1	showed	significant	reductions	in	personal	PM2.5	OC	exposure	

for	the	three	intervention	groups	over	the	control	group	(Table	3-3).		Full	model	output	is	

presented	in	Appendix	2-2).		Average	OC	exposures	were	57.3%	lower	for	the	Gyapa/Gyapa	

group	(27.8	µg/m3,	95%	confidence	interval	(15.2,	50.9),	p	=	0.01),	49.4%	lower	for	the	

Philips/Philips	group	(32.9	µg/m3,	(19.6,	55.2),	p	=	0.01),	and	63.2%	lower	for	the	Gyapa/Philips	

group	(23.9	µg/m3,	(12.0,	47.7),	p	<	0.01)	relative	to	the	control	groups	(65.0	µg/m3,	(28.6,	

147.8)).		Women	listed	as	‘primary	cooks’	had	a	60.4%	higher	average	exposure	than	other	

individuals	(p	=	0.09).		Analysis	of	the	SES	variable	showed	that	the	two	poorest	groups	

(‘poorer’	and	‘poorest’)	had	higher	predicted	exposures	than	the	‘poor’	group:	62.8%	higher	for	

the	‘poorer’	group	(p	=	0.05),	and	116.0%	higher	for	the	‘poorest’	group	(p	=	0.04),	possibly	

indicative	of	an	effect	on	exposure	levels	due	to	fuel	choices,	behaviors,	or	home	types.		There	

was	no	significant	effect	by	number	of	family	members.		The	random	intercept	by	individual	

was	significant	at	95%,	with	between-participant	variance	of	0.86,	while	the	within-participant	

variance	was	0.50.		

Table	3-3.			Summary	of	personal	exposure	model	results	

	 OC	(N	=	191)	 EC	(N	=	191)	 PAH	Factor	(N	=	37)	 Methoxyphenol	
Factor	(N	=	37)	

	 Coefficient	 P	value	 Coefficient	 P	value	 Coefficient	 P	value	 Coefficient	P	value	
Intercept	 4.17	 0.00	 0.91	 0.04	 6.44	 0.00	 5.88	 0.00	
Gyapa/Philips	 -1.00	 0.00	 -0.90	 0.02	 -0.27	 0.85	 -1.53	 0.26	
Philips/Philips	 -0.68	 0.01	 -0.97	 0.00	 -4.00	 0.00	 -1.57	 0.11	
Gyapa/Gyapa	 -0.85	 0.01	 -0.58	 0.07	 0.10	 0.94	 -0.50	 0.70	
Family	members	 -0.02	 0.53	 0.03	 0.33	 0.15	 0.29	 0.05	 0.69	
Primary	cook	 0.47	 0.09	 0.27	 0.34	 0.34	 0.77	 1.54	 0.16	
Over	10y	 	 	 	 	 0.18	 0.89	 0.46	 0.70	
Females	>	10y	 -0.71	 0.06	 -0.24	 0.53	 	 	 	 	
Males	<	10y	 -0.30	 0.39	 -0.23	 0.55	 	 	 	 	
Males	>	10y	 -0.25	 0.59	 0.37	 0.45	 	 	 	 	
Heavy	rainy	season	 -0.42	 0.01	 -0.71	 0.00	 	 	 	 	
Hot	dry	season	 -0.13	 0.56	 -0.79	 0.01	 	 	 	 	
Light	rainy	season	 -0.42	 0.08	 -1.96	 0.00	 	 	 	 	
Transition	season	 -0.37	 0.15	 -0.68	 0.03	 	 	 	 	
Poorer	 0.52	 0.05	 0.32	 0.23	 	 	 	 	
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Less	poor	 -0.24	 0.46	 -0.32	 0.33	 	 	 	 	
Least	poor	 0.38	 0.22	 0.20	 0.54	 	 	 	 	
Poorest	 0.79	 0.04	 0.70	 0.08	 	 	 	 	

	

	 There	were	seasonal	effects,	with	34.6%	lower	average	exposure	levels	during	the	heavy	

rainy	season	(p	=	0.01)	and	34.5%	lower	during	the	light	rainy	season	(p	=	0.08),	relative	to	the	

Harmattan	season	when	there	are	high	winds	that	generate	large	amounts	of	dust,	and	there	is	

substantial	regional	bush	burning.		Although	fuel	moisture	content	and	behavior	change	may	be	

expected	to	increase	exposures	during	rainy	seasons,	the	results	here	are	consistent	with	other	

findings.		L’Orange	et	al.	(2012)	found	inconsistent	and	insignificant	differences	in	cookstove	

PM	emission	dependence	from	4-30%	fuel	moisture	content,	suggesting	that	during	the	rainy	

periods,	a	higher	PM	emission	rate	should	not	be	assumed.		In	this	work,	fuel	wood	moisture	

was	measured	with	a	General	Tools	MMD4E	moisture	meter	at	a	subset	of	homes	that	had	fuel	

on	hand	during	personal	exposure	measurement	periods.		Three	moisture	measurements	were	

recorded	for	each	wood	size	range,	with	categories	of	small	(<1cm	diameter),	medium	(1-3cm	

diameter),	and	large	(>3cm	diameter).		Fuel	moisture	content	was	higher	during	both	rainy	

seasons	(Appendix	2,	Figure	A2-1),	but	values	were	generally	between	5-20%	and	5-30%	for	the	

most	commonly	used	small	and	medium	sized	pieces,	respectively,	in	line	with	the	range	

reported	by	L’Orange	et	al.		Therefore,	we	can	expect	no	substantial	seasonal	differences	in	PM	

emissions	due	to	fuel	moisture.			

	 In	terms	of	behavior	change,	it	is	common	for	cooking	location	to	shift	to	a	covered	area	

if	there	is	rain,	likely	increasing	the	cook’s	exposure	if	they	remain	there	for	the	duration	of	

cooking.		However,	exposure	of	others	members	in	the	household	could	decrease	since	rainy-

weather	cooking	takes	place	in	covered	or	enclosed	areas,	usually	near	the	perimeters	of	

courtyards,	away	from	where	most	people	spend	time.		Lower	rainy	season	exposures	could	

also	result	from	PM	removal	by	the	rain,	seasonal	fuel	switching,	and	shifts	in	the	relative	

importance	of	regional	PM	sources.			

 Personal	EC	PM2.5		

	 Average	exposures	for	PM2.5	EC	(Equation	3-1)	were	44.3%	lower	for	the	Gyapa/Gyapa	

group	(1.4	µg/m3	(0.7,	2.6),	p	=	0.07),	62.0%	lower	for	Philips/Philips	group	(1.0	µg/m3	(0.6,	1.6),	
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p	<	0.01),	and	59.3%	lower	for	the	Philips/Gyapa	group	(1.0	µg/m3	(0.5,	2.1),	p	=	0.02),	relative	

to	the	control	group	(2.5	µg/m3	(1.0,	6.0)).		Within-participant	variance	was	0.30	(significant	at	

95%)	and	between-participant	variance	was	1.12.		

	 The	results	of	our	model	are	reasonable,	given	that	substantially	lower	EC	is	emitted	by	

Philips	stoves	than	both	natural	draft	rocket	stoves	and	traditional	stoves,	as	previously	shown	

in	field	measurements	reported	by	Kar	et	al.	(2012).		However,	the	differences	are	somewhat	

surprising	given	the	results	from	Piedrahita	et	al.	(2016),	who	show	that	there	was	a	continued	

high	use	rate	of	traditional	stoves	for	all	intervention	groups	(between	48.7%	and	73.0%	of	

homes	surveyed	reported	using	traditional	stoves	on	the	previous	day),	substantial	stove	

stacking	of	the	intervention	stoves	and	traditional	stoves,	and	reduced	usage	of	the	Philips	

stoves	over	time.		The	lower	exposures	of	either	group	given	Philips	stoves	over	the	

Gyapa/Gyapa	group	is	also	noteworthy	because	the	Gyapa	use	rate	was	substantially	higher	

than	the	Philips	use	rate.	Reductions	in	PM2.5	EC	and	OC	exposures	must	then	be	due	to	the	

differences	in	the	emissions	from	the	various	stove	types,	changes	in	behavior	that	affected	

exposure,	and	longer	duration	cooking	on	traditional	stoves	in	the	control	homes	than	in	the	

intervention	homes.			

There	were	no	significant	differences	in	the	EC	exposures	among	participants	of	

different	ages	or	gender,	or	by	number	of	family	members.		EC	exposure	for	the	primary	cook	

was	31%	higher	than	non-cooks	(p	=	0.34).		All	seasons	had	significantly	lower	EC	than	the	

Harmattan	season,	likely	due	to	the	regional	biomass	burning	during	that	period.		The	poorest	

group	had	higher	expected	EC	exposures	than	the	poor	group	(p	=	0.08),	but	there	were	no	

significant	differences	by	SES	category	at	the	95%	level	(Table	3-3,	Appendix	2).			

Van	Vliet	et	al.	(2013)	reported	average	personal	exposure	to	black	carbon	(BC)	of	8.8	

µg/m3	(7.4,	10.3)	in	rural	Central	Ghanaian	homes	cooking	with	wood	and/or	charcoal,	much	

higher	than	the	EC	measured	here.		In	that	study,	all	participants	were	the	home’s	primary	

cooks	and	there	was	more	reported	kerosene	use	and	indoor	cooking	than	in	this	study.		

Additionally,	the	BC	measurement	in	that	work	was	made	using	an	optical	reflectance	method,	

which	has	previously	reported	higher	values	than	the	traditional	thermo-optical	EC	

measurement	method	in	side-by-side	comparisons	(Yan	et	al.,	2011).			
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 Microenvironmental	carbonaceous	PM2.5		

	 Average	cooking-area	microenvironment	PM2.5	OC	using	Equation	3-2	was	68.6%	lower	

for	the	Gyapa/Gyapa	group	(33.3	µg/m3	(16.7,	66.4),	p	<	0.01),	45.5%	lower	for	Philips/Philips	

group	(49.6	µg/m3	(25.3,	97.4),	p	=	0.04),	and	40.4%	lower	for	the	Philips/Gyapa	group	(57.3	

µg/m3	(25.2,	130.7),	p	=	0.18),	relative	to	the	control	group	(100.2	µg/m3	(41.7,	240.4),	p	<	

0.01).			There	was	no	effect	for	OC	by	number	of	family	members	in	the	home,	and	the	seasonal	

variable	results	were	not	consistent	with	the	personal	exposure	results.		Here,	only	the	

‘transition’	season	was	significantly	higher	(171.9%	higher)	relative	to	the	‘Harmattan	bush	

burning’	season,	while	the	‘heavy	rainy’	season	had	a	positive	effect	(p	=	0.06),	and	the	‘hot	and	

dry’	and	‘light	rainy’	seasons	had	negative	and	not	significant	effects	on	cooking	area	OC	PM2.5.	

	 Cooking	area	microenvironment	PM2.5	EC	results	were	generally	consistent	with	the	OC	

results,	with	negative	effects	for	the	Gyapa/Gyapa	(4.2	µg/m3	(1.9,	9.4),	p	=	0.28),	

Philips/Philips	(3.3	µg/m3	(1.5,	7.2),	p	=	0.09),	and	Gyapa/Philips	(5.1	µg/m3	(2.0,	13.0),	p	=	0.6)	

groups	relative	to	the	control	group	(6.5	µg/m3	(2.3,	19.0)).		The	seasonal	effects	had	the	same	

effect	directions	as	for	the	OC	model,	with	the	‘light	rainy’	and	‘hot	and	dry’	seasons	lower	than	

the	‘Harmattan	bush	burning’	season	by	64.2%	(p	=	0.03)	and	55.9%	(p	=	0.11),	respectively.		It	

is	important	to	note	that	participants	regularly	moved	their	intervention	stoves,	often	finding	

shaded	areas	to	cook,	contributing	to	the	variability.		Participants	were	asked	to	move	the	U-

pods	with	the	stoves	if	they	moved	them,	but	we	had	no	way	of	ensuring	compliance.		Although	

we	found	significant	reductions	in	OC	and	EC	in	homes	given	intervention	stoves,	we	have	also	

collected	in-field	stove	emissions	measurements	to	inform	these	differences	(Coffey	et	al.,	2017	

in	preparation).	

	 The	control	group	results	(6.5	µg/m3	(2.3,	19.0))	are	lower	than	the	observations	of	Van	

Vliet	et	al.	(2013),	who	reported	cooking	area	BC	concentrations	of	14.5	µg/m3	(12.0,	16.9)	

based	on	24-h	samples	at	29	rural	homes	in	Central	Ghana.	Total	PM2.5	was	measured	in	

kitchens	in	Accra	as	part	of	a	before/after	study	looking	at	the	effectiveness	of	a	Gyapa	wood	

cookstove	with	a	design	similar	to	the	one	used	in	this	study	(Pennise	et	al.,	2009).		Average	

concentrations,	measured	there	with	the	UCB-PATS	(Edwards	et	al.,	2006)	were	650	µg/m3	

before	the	introduction	of	the	Gyapa,	and	320	µg/m3	after	introduction,	but	the	kitchens	and	
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use	patterns	are	likely	to	have	very	different	characteristics	in	Accra	than	in	the	North	where	

our	study	was	conducted.		Kitchen	geometry	and	behavior	are	very	important	for	determining	

in-home	PM	concentrations	and	estimating	personal	exposure	from	cooking	area	

measurements,	as	more	open	geometries	will	increase	spatial	pollution	heterogeneity.		Also	in	

Accra,	Zhou	et	al.	(2013;	2014)	performed	PM2.5	and	PM10	sampling	in	four	neighborhoods	

throughout	the	city	simultaneously	outdoors,	and	inside	households’	kitchens.	Cooking	area	

PM2.5
	differed	substantially	by	neighborhood,	ranging	from	58-74	µg/m3	for	the	‘poorer’	

neighborhoods,	to	25-33	µg/m3	for	the	‘affluent’	neighborhoods,	similar	to	observations	

presented	here.	

 Personal	vs.	microenvironmental	carbonaceous	PM2.5	modeling	results	

	 To	reduce	the	complexity	of	cookstove	exposure	studies,	it	is	often	a	hope	that	cooking-

area	microenvironment	concentrations	can	be	used	as	a	proxy	for	personal	exposures.	

However,	we	did	not	observe	strong	relationships	between	personal	PM2.5	and	cooking	area	

microenvironment	PM2.5	(Equation	3-3).		Microenvironment	OC	was	a	significant	positive	

predictor	for	personal	OC	(p	<	0.01),	but	the	complete	model	explained	only	14.6%	of	the	

observed	variance.		Similar	seasonal	effects	were	seen	as	in	the	personal	exposure	results	

presented	in	Section	3.3.2,	with	lower	expected	exposures	in	the	light	and	heavy	rainy	seasons	

(p	=	0.32,	p	=	0.03)	(Appendix	2).	

	 Microenvironment	EC	was	not	a	significant	predictor	for	personal	EC	(p	=	0.08),	though	

the	EC	interaction	term	with	the	Gyapa/Gyapa	stove	group	was	significantly	lower	than	the	

control	group	(p	=	0.05).	Once	again,	the	light	and	heavy	rainy	seasons	had	significantly	lower	

EC	exposures	(p	<	0.01,	p	=	0.02).	However,	the	model	only	explained	7.6%	of	the	observed	

variance	(Appendix	2).		Van	Vliet	et	al.	(2013)	reported	a	similar	lack	of	relationship	between	

cooking	area	and	personal	BC	in	Central	Ghana.	

 Ambient	carbonaceous	PM2.5		

	 Average	ambient	PM2.5	EC	and	OC	concentrations	were	0.3	µg/m3	and	4.1	µg/m3,	

respectively	(Figure	3-4	and	Appendix	2).		These	were	lower	than	those	measured	in	Navrongo	

by	Ofosu	et	al.	(2013),	who	reported	0.95	µg/m3,	and	11.36	µg/m3.		That	study	reported	an	

average	ratio	of	total	particulate	carbon	to	total	PM2.5	mass	of	38.0%.	Using	these	results,	the	
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mean	total	mass	concentrations	in	our	work	should	be	in	the	range	of	11.6	µg/m3
,	substantially	

lower	than	that	measured	by	the	Ofosu	study	(mean	total	PM2.5	mass	concentration	of	32.4	

µg/m3	was	reported).		The	difference	could	be	due	in	part	to	the	fact	that	the	Ofosu	study	site	

was	closer	to	a	main	road	(not	reported,	but	between	10-200m),	than	here	(395m)	(Figure	3-1).			

	 Our	ambient	measurements	can	also	be	compared	with	other	regional	measurements	

from	Ouagadougou,	Burkina	Faso,	and	from	Accra.		In	Ouagadougou,	Boman	et	al.	(2009)	

measured	total	PM2.5	concentrations	from	27-164	µg/m3,	and	BC	concentrations	from	1.3-8.2	

µg/m3	during	intensive	sampling	from	29	November	to	11	December	2007,	in	the	midst	of	the	

Harmattan	season.		In	Accra,	Zhou	et	al.	(2013;	2014)	measured	ambient	PM2.5	concentrations	

ranging	from	63-104	µg/m3	for	the	‘poorer’	neighborhoods,	to	21-55	µg/m3	for	the	‘affluent’	

neighborhoods.	They	also	found	seasonal	increases	in	regional	and	locally	resuspended	PM2.5	

and	PM10,	which	were	attributed	to	the	Harmattan	winds.		Van	Vliet	et	al.	(2013)	reported	

average	ambient	PM2.5	BC	concentrations	of	2.0	µg/m3	(1.1,	2.9)	(n	=	9),	and	PM2.5	mass	

concentrations	of	20	µg/m3	(12.1,	27.9).	

	

	

Figure	3-4.		Time	series	of	weekly	EC	and	OC	PM2.5	samples	collected	in	Navrongo	from	
September	2013-November	2014,	presented	with	pointwise	uncertainty	estimates.			

	

Table	3-4.		Summary	of	ambient	carbonaceous	PM2.5	EC,	OC,	and	organics	samples.		Flagged	

samples	were	removed	from	analysis	due	to	various	possible	issues	including	sampling	duration	

and	contamination.	

All	Ambient	EC/OC	Samples	(n	=	50)	
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 Personal	PM2.5	source	apportionment	results	

	 A	6-factor	PMF	solution	(Figure	3-5)	was	identified	for	the	P-M	data	set.	The	temporal	

patterns	of	factors	were	of	little	help	in	identifying	sources	in	the	personal	and	

microenvironmental	data	set	due	to	the	short	and	overlapping	time	periods	over	which	samples	

were	collected	(Appendix	2).		Organics	source	fingerprints	typically	used	for	source	

identification	and	validation	have	not	been	generated	for	Africa	to	our	knowledge,	limiting	our	

ability	to	interpret	some	of	the	solutions.		We	thus	rely	on	previously	collected	source	

fingerprints	from	around	the	world,	primarily	the	United	States.		Future	work	will	aim	to	fill	

these	gaps.		 	

		 Mean	 Median	 Stdev	 Geometric	Mean	 %BDL	
	OC	(µg/m3)	 4.1	 3.2	 4.3	 2.8	 2.0	
	EC	(µg/m3)	 0.3	 0.1	 0.3	 0.1	 47.4	
	EC/OC	%	 6.5%	

	 	 	 	 	PMF	Ambient	PM2.5	Dataset		(n	=	25)	
	*units	in	ng/m3	unless	noted	 Mean	 Median	 Stdev	 Geometric	Mean	 %BDL	 S/N	

OC	(µg/m3)	 3.65	 3.80	 1.67	 3.13	 0.0	 6.7	

EC	(µg/m3)	 0.39	 0.25	 0.33	 0.23	 0.0	 3.0	

docosane	(C22)	 0.34	 0.36	 0.26	 0.26	 0.0	 5.7	

tricosane	(C23)	 0.53	 0.41	 0.39	 0.40	 0.0	 5.3	

tetracosane	(C24)	 0.66	 0.48	 0.67	 0.44	 0.0	 4.5	

pentacosane	(C25)	 1.10	 0.77	 0.86	 0.86	 0.0	 5.4	

heptacosane	(C27)	 2.07	 1.68	 1.84	 1.66	 0.0	 6.8	

nonacosane	(C29)	 3.96	 2.20	 7.02	 2.46	 0.0	 7.7	

hentriacontane	(C31)	 3.16	 2.28	 3.49	 2.27	 0.0	 8.0	

fluoranthene	 0.05	 0.04	 0.04	 0.03	 0.0	 5.2	

pyrene	 0.03	 0.02	 0.02	 0.02	 0.0	 5.2	

benzo[b&k]fluoranthene	 0.18	 0.19	 0.10	 0.15	 0.1	 7.9	

benz[a&e]pyrene	 0.14	 0.15	 0.07	 0.12	 0.1	 7.4	

indeno[1,2,3-cd]pyrene	 0.06	 0.06	 0.03	 0.05	 0.0	 5.7	

benzo[ghi]perylene	 0.09	 0.08	 0.05	 0.07	 0.0	 5.5	

ba-30-norhopane	 0.15	 0.14	 0.07	 0.13	 0.3	 6.0	

ab-hopane	 0.12	 0.11	 0.07	 0.10	 0.3	 5.2	

coniferaldehyde	 2.31	 1.66	 1.98	 1.71	 0.3	 5.4	

acetosyringone	 0.34	 0.29	 0.32	 0.23	 0.1	 3.7	
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Figure	3-5.		6-factor	PMF	solution	factor	profiles	for	the	personal	and	microenvironmental	data,	
reported	as	percent	of	species,	along	with	bootstrapped	standard	deviations.		Mean	
contributions	to	OC	and	EC	are	shown	for	each	factor	in	units	of	ng/m3,	and	by	the	percentage	
of	total	apportioned.	

	 The	‘Light	n-alkane’	factor	is	characterized	by	a	high	proportion	of	the	low	molecular	

weight	n-alkanes,	and	hopanes.		This	factor	contributes	20.5%	and	11.7%	(Table	1,	SI)	of	the	

median	apportioned	OC	and	EC,	respectively,	where	medians	are	used	due	to	skewed	

distributions.		This	pattern	is	indicative	of	combustion	of	fossil	fuels	such	as	diesel	(Rogge	et	al.,	

1993a).		The	‘light	SVOC’	factor	has	a	high	proportion	of	light	n-alkanes	and	semi-volatile	PAHs,	

including	flouranthene	and	pyrene.		This	factor	could	be	attributed	to	early	stage	(smoldering)	

biomass	combustion	when	light	volatiles	first	escape,	or	to	charcoal	burning,	which	has	been	

shown	to	have	high	flouranthene	and	pyrene	concentrations	(Hou	et	al.,	2009).		The	‘light	

SVOC’	factor	has	a	median	of	7.9%	of	OC	and	0.0%	of	EC	apportioned	to	it.		The	‘odd	n-alkane’	

factor	shows	the	well-known	pattern	of	odd	n-alkanes	enrichment	characteristic	of	biogenic	

detritus	like	plant	waxes	(Rogge	et	al.,	1993c),	and	has	a	median	of	38.4%	of	the	OC	and	59.2%	
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of	EC	apportioned	to	it.		A	source	with	a	biogenic	component	would	be	expected,	as	the	study	

participants	all	live	on	small	rural	agriculture	farms,	but	the	high	EC	and	OC	apportionment	

point	to	contributions	from	additional	sources.		These	samples	were	primarily	collected	during	

the	windy	Harmattan	season,	so	increased	biogenic	material	due	to	resuspension	would	be	

expected,	but	this	also	occurs	contemporaneously	with	seasonal	crop	burning.		Bin	Abas	et	al.	

(1995)	showed	that	smoke	samples	of	forest	litter	from	the	Amazon	show	a	clear	odd	n-alkane	

preference,	suggesting	that	local	and	regional	biomass	residue	and	crop	burning	may	contribute	

to	this	source.	The	‘hopane	and	n-alkane’	factor	contributes	the	largest	fraction	of	the	heavier	

alkanes.		This	profile	is	indicative	of	gasoline	engine	combustion,	road	dust,	motor	oil,	and	tire	

wear	(Rogge	et	al.,	1993a	and	b;	Schauer	et	al.,	1999)	and	has	24.0%	of	OC,	and	13.7%	of	EC	

apportioned	to	it.		This	factor	could	also	be	related	to	trash	burning,	as	various	plastic	types	

have	been	shown	to	have	similar	fingerprints	to	motor	vehicle	combustion	(Mohr	et	al.,	2009),	

though	the	data	on	organic	PM	from	combustion	of	such	materials	is	limited	(Estrellan	and	Lino,	

2010).		The	‘PAH’	factor	has	a	median	of	3.2%	of	the	apportioned	OC	and	14.2%	of	the	

apportioned	EC,	suggesting	that	this	may	be	from	combustion	sources	such	as	the	flaming	

phase	of	biomass	combustion,	or	from	non-catalyst	equipped	gasoline	vehicles	(Rogge	et	al.,	

1993a).		The	‘methoxyphenol’	factor	has	the	greatest	proportion	of	the	syringone,	

acetosyringone,	and	coniferaldehyde,	which	are	all	biomass	combustion	markers	(Schauer	et	

al.,	2001),	along	with	small	amounts	of	the	light	alkanes	and	hopanes.		This	factor	contributes	a	

median	of	6.0%	of	the	OC	and	1.1%	of	the	EC.			

 Factor	enrichment	in	personal	vs.	cooking	area	samples	

	 Comparing	the	factor	contributions	of	the	personal	and	cooking	area	microenvironment	

samples	(Figure	3-6),	we	find	enrichment	of	some	factors,	providing	additional	evidence	on	the	

sources	of	PMF	factor	profiles.		The	data	were	aggregated	into	the	personal	and	cooking	area	

samples	because	there	were	not	enough	samples	(n=10)	to	directly	model	the	individual	vs.	

cooking	area	PMF	factor	contributions.		The	‘methoxyphenol’	factor,	associated	with	wood	

smoke,	had	a	median	contribution	in	the	cooking	area	microenvironment	90%	higher	than	in	

the	personal	measurements,	and	comes	from	a	different	distribution	according	to	the	Kruskal-

Wallis	test,	at	p	=	0.06.		We	would	expect	enrichment	in	this	factor	since	the	assumed	main	
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source	of	PM2.5	in	the	cooking	area	is	generally	from	biofuel	combustion.		Similarly,	the	‘PAH’	

factor	was	enriched	in	the	cooking	area	samples,	with	a	median	contribution	249%	higher	than	

the	personal	samples	(p	=	0.12),	consistent	with	flaming	household	combustion	emissions.		The	

lack	of	cooking	area	enrichment	for	the	‘light	SVOC’	factor	suggests	that	this	factor	may	have	

other	sources	apart	from	smoldering	biomass	combustion.		We	would	also	expect	personal	

samples	to	be	enriched	in	motor	vehicle-related	sources,	and	we	find	that	the	‘hopane	and	n-

alkane’	factor	is	61%	higher	in	the	personal	samples,	though	not	significant.		There	was	no	

significant	enrichment	of	the	‘odd	n-alkane’	factor,	suggesting	that	this	biomass	detritus	and	

vegetation	combustion-related	source	is	more	regional	in	nature.		Overall,	the	two	factors	most	

strongly	linked	to	home	biomass	combustion,	the	‘methoxyphenols’	and	‘PAHs’,	contribute	a	

median	of	2.5%	of	the	OC,	11.5%	of	the	EC,	and	3.0%	of	the	carbonaceous	PM2.5	to	the	personal	

samples,	and	8.0%	of	the	OC,	30.5%	of	the	EC,	and	9.5%	of	the	carbonaceous	PM2.5	for	the	

cooking	area	samples	(Appendix	2	Table	A2-1).		The	largest	contributors	to	total	carbonaceous	

PM2.5	in	the	personal	samples	are	the	‘odd	n-alkane’	source	(41.1%),	associated	with	

resuspended	biomass	detritus	and	local	and	regional	biomass	burning,	along	with	the	‘light	n-

alkane’	(15.9%)	and	‘hopane	and	n-alkane’	(26.4%),	which	are	both	related	to	vehicular	

combustion	emissions.	
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Figure	3-6		Comparisons	of	factor	contributions	to	personal	vs.	cooking	area	microenvironment	
samples.			P-values	shown	are	from	the	Kruskal-Wallis	non-parametric	ANOVA	test	to	compare	
distributions	of	two	or	more	groups.		

	

 Personal	exposure	mixed	effects	modeling	using	PMF	factors	

	 The	two	identified	PMF	factors	related	to	home	biomass	combustion,	the	‘PAH’	and	

‘methoxyphenol’	factors,	enable	an	analysis	of	the	differences	in	exposure	to	those	factors	

based	on	stove	intervention	group.		A	mixed	effects	model	(Equation	3-2)	is	again	used,	with	

fewer	covariates	than	that	specified	in	Equation	3-1	due	to	the	smaller	subset	of	samples	

available	with	speciated	organics	data	(Table	3-4).	

	

ln(Yij)	~	β0	+	β1(stovegroup)i	+	β2(family)i	+	β3(gender*age)i	+	β4(primary	cook)i	+	
αj	+	eij	

Equation	
3-4	

First,	Equation	3-4	was	applied	with	OC	as	the	dependent	variable,	and	we	found	consistent	

results	with	the	larger	data	set:	participants	in	the	intervention	groups	have	lower	OC	PM2.5	

exposures	than	the	control	groups	(p	<	0.05	for	the	groups	with	Philips	stoves,	p	=	0.12	for	the	

Gyapa/Gyapa	group),	and	there	are	no	effects	by	number	of	family	members,	age	category,	or	

primary	cook	status	(Appendix	2).		This	process	was	repeated	with	EC	as	the	dependent	

variable,	and	we	found	that	the	results	were	not	in	exact	agreement	with	the	main	data	set	

results.		While	in	the	main	model	(Section	3.3.1)	all	intervention	groups	had	lower	EC	exposure,	

here	only	the	Philips/Philips	and	Philips/Gyapa	group	had	lower	EC	exposures	relative	to	the	

control	group	(p	=	0.10	and	p	=	0.19,	respectively),	and	there	were	no	significant	differences	by	

the	other	covariates.			

	 Equation	3-4	was	then	applied	to	the	source	contributions	from	PMF	factors	as	the	

dependent	variables,	in	effect	isolating	the	source-specific	portions	of	the	measured	PM2.5	

(Table	3-3).		Personal	exposure	to	the	‘methoxyphenols’	factor	was	79.2%	lower	for	the	

Philips/Philips	group	(p	=	0.11),	78.3%	lower	for	the	Gyapa/Philips	(p	=	0.26),	and	39.6%	lower	

for	the	Gyapa/Gyapa	group	(p	=	0.70).		Exposure	for	the	primary	cook	was	364%	higher	(p	=	

0.16)	for	this	factor	than	non-cooks,	and	there	were	no	significant	differences	by	age-by-

gender,	or	number	of	family	members.		The	‘PAH’	factor	had	98.2%	lower	exposure	for	the	
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Philips/Philips	group	(p	<	0.01),	and	no	other	significant	differences	or	large	effects.		This	is	a	

reasonable	result	given	that	our	‘PAH’	source	appears	to	be	associated	with	flaming	

combustion.			This	approach	would	have	benefitted	from	a	larger	sample	size.		

 Ambient	PM2.5	source	apportionment		

	 Six	PMF	factors	were	identified	for	the	ambient	PM2.5	data	set	(Table	2-4).		These	

ambient	factor	profiles	(Figure	3-7)	were	similar	to	those	of	the	P-M	profiles	(Figure	3-5),	with	

all	Spearman’s	correlation	coefficients	significant	(0.53	to	0.88,	p	<	0.05),	except	0.35	for	the	

‘PAH’	factor,	which	may	reflect	a	merging	with	the	biogenic	factor	seen	in	the	P-M	profiles.		The	

‘hopane	and	n-alkane’	factor	from	the	P-M	profiles	were	separated	into	a	‘hopane’	factor	in	the	

ambient	analysis,	with	more	of	the	alkanes	instead	apportioned	to	the	‘odd	n-alkane’	factor	

here.			

	 To	better	understand	source	origins	of	these	ambient	factors,	the	PMF	factor	

contributions	over	time	were	plotted	against	ambient	temperature	and	wind	speed	data.		

Meteorological	data	were	collected	from	a	Weather	Underground	station	(Station	65401).	Data	

from	this	site	are	reported	sparsely,	with	1-4	measurements	made	per	day.	Only	maximum	

temperature	and	wind	speeds	observed	during	the	sample	collection	periods	were	used	for	

analysis	(results	were	consistent	with	other	extracted	features	like	the	median	and	mean).		

Comparisons	of	factor	profiles	with	temperature	were	made	with	the	Spearman	correlation	

coefficient	due	to	non-normality.		Since	PM	relationships	with	wind	speed	are	often	more	

complex	due	to	dilution	and	resuspension,	trends	were	analyzed	after	spline	smoothing	the	

data	(Appendix	2,	Figure	A2-2).	
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Figure	3-7		Personal	and	microenvironmental	sample	factor	profiles	for	the	6-factor	PMF	
solution.	

The	‘odd	n-alkane’	factor	shows	an	increase	during	the	Harmattan	season	from	

November	to	mid-January,	consistent	with	long-range	transport	and	generation	and	

resuspension	of	biogenic	detritus.		The	smoothed	relationship	with	wind	shows	decreasing	PM	

concentrations	associated	with	wind	speeds	up	to	10m/s,	and	then	increasing	concentrations	

above	10m/s,	though	the	data	are	sparse	at	higher	wind	speeds.		This	‘U’	shape	has	previously	

been	identified	in	various	works,	and	was	attributed	to	dilution	of	PM10-2.5	at	lower	wind	speeds	

and	resuspension	at	higher	speeds	(Harrison	et	al.,	2001;	Clements	et	al.,	2012).			

	 The	‘PAH’	factor	peaks	between	November	and	mid-January,	consistent	with	seasonal	

crop	burning.		To	further	confirm	the	source	origin,	we	compared	PAH	factor	contributions	with	

ambient	carbon	monoxide	(CO)	concentrations	and	emissions.		Ambient	CO	concentrations	

were	measured	continuously	at	the	same	site	as	the	ambient	PM2.5	filter	sampler	(Dickinson	et	

al.,	2015)	and	were	averaged	over	time	to	match	the	PM2.5	samples.		We	also	considered	CO	
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emissions	(kg/day)	from	open	biomass	burning,	calculated	by	the	Fire	INventory	from	NCAR	

(Wiedinmyer	et	al.,	2011).		The	‘PAH’	factor	contributions	has	a	Spearman	correlation	of	0.76	

with	the	locally	measured	average	CO,	and	a	correlation	of	0.72	with	the	FINN	emission	

estimates,	providing	compelling	evidence	that	this	source	is	associated	with	regional	and	

seasonal	biomass	burning.		This	factor	is	the	biggest	contributor	of	median	OC,	EC,	and	total	

carbonaceous	mass	(54.5%,	80.9%,	and	57.0%,	respectively	(Figure	3-7).		Additionally,	a	distinct	

‘U’	shaped	relationship	with	wind	speed	suggests	that	this	factor	also	has	local	sources,	like	

residential	biomass	waste	burning,	while	the	increase	with	wind	speed	is	likely	due	to	

correlation	with	seasonal	crop	burning,	and	the	seasonal	wind	pattern.		

	 The	‘light	SVOC’	factor	is	more	pronounced	in	the	hot-dry	season	from	mid-January	to	

April,	and	accounts	for	7.4%	of	the	apportioned	EC.		This	factor	could	be	associated	with	vehicle	

combustion	and	evaporative	fuel	emissions	(Schauer	et	al.,	1999).		There	is	a	diesel	storage	tank	

on	the	NHRC	grounds,	and	as	with	most	others	in	the	region,	it	is	poorly	sealed,	potentially	

contributing	evaporative	emissions.		This	factor	had	a	modest	increase	in	contributions	with	

higher	wind	speeds,	suggesting	that	it	may	be	due	to	regional	transport	of	combustion	

emissions	as	well,	especially	since	evaporative	emissions	would	not	account	for	the	EC	present	

in	this	factor.		Although	there	were	no	statistically	significant	correlations	with	temperature	and	

any	of	the	identified	factors,	the	largest	correlation	was	for	this	factor,	which	had	a	correlation	

coefficient	of	0.29,	lending	some	support	to	the	possibility	that	evaporative	fuel	emissions	

contribute	to	this	source.			

	 The	‘light	n-alkane’	factor	and	the	‘hopane	and	n-alkane’	factor	both	display	a	lack	of	

seasonality,	consistent	with	their	expected	motor	vehicle	or	fossil	fuel	combustion	sources.		The	

‘light	n-alkane’	factor	exhibited	a	dilution	effect	as	wind	increased	above	7m/s,	though	a	few	

data	points	could	be	driving	that	trend.		The	‘hopane	and	n-alkane’	factor	showed	a	slight	

increase	with	wind	speed.	

	 The	‘methoxyphenol’	factor	has	several	peaks	in	its	factor	contributions	(Figure	8),	

including	the	most	pronounced	in	November.		Wood	biomass	combustion	is	known	to	occur	

throughout	Navrongo	all	year-round,	so	we	do	not	expect	distinct	seasonality	here.		This	factor	

showed	correlations	of	0.53	and	0.56	with	ambient	CO	concentrations	and	open	biomass	
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burning	CO	emissions.		It	also	decreased	with	increasing	wind	speed,	indicative	of	dilution.		As	

such,	this	factor	is	likely	from	local	wood	burning,	which	we	assume	is	primarily	from	residential	

and	commercial	activities.		This	factor	contributes	a	median	of	15.3%	of	apportioned	OC	and	

0.2%	of	EC.		The	two	biomass	combustion-related	factors,	the	‘methoxyphenol’	factor	and	the	

‘PAH’	factor,	together	are	responsible	for	a	median	of	67.8%	of	the	OC	and	81.1%	of	the	EC.		

These	are	substantially	higher	contributions	than	for	the	P-M	results,	for	which	those	sources	

contributed	15.3%	and	9.2%	of	the	EC	and	OC,	likely	because	in	the	ambient	results	the	‘PAH’	

factor	has	also	been	associated	with	regional	crop	burning.	

	

							 	
Figure	3-8.		Ambient	PMF	factor	contributions	for	weekly-integrated	samples	collected	at	the	
Navrongo	Health	Research	Center.		Red	bands	shown	are	standard	deviations	from	the	
bootstrapped	solution.		Factor	correlations	with	locally	measured	CO	averages	and	satellite-
measured	CO	emissions	are	shown,	as	well	as	the	respective	CO	time	series.	
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Figure	3-9	Ambient	PMF	6-factor	solution	profiles	for	the	weekly	samples	collected	at	the	
NHRC.	

	

 	Comparison	with	past	works	and	regional	implications	

	 The	identified	ambient	source	profiles	can	be	somewhat	reconciled	with	the	pollution	

sources	in	Navrongo	described	by	Ofosu	et	al.	(2012).		For	example,	two-stroke	engine	

combustion	emissions	in	that	work	were	associated	with	observed	OC	and	the	motor	oil	

additives	Ca	and	Zn.		This	factor	contributed	an	average	of	9.9%	of	the	observed	PM2.5	mass.		

This	source	could	be	related	with	our	‘hopane	and	n-alkane’	factor	that	includes	high	levels	of	

ab-hopane	and	ba-30-norhopane,	both	of	which	are	associated	with	lubricating	oil	combustion,	

and	contributes	a	median	of	11.8%	of	the	carbonaceous	PM2.5.		Their	gasoline	combustion	

source,	identified	by	OC,	K,	Ca,	and	Fe	(contributing	a	mean	of	10.9%	of	mass),	is	somewhat	

similar	to	the	‘light	n-alkane’	factor	here	(contributing	a	median	of	11.3%	of	carbonaceous	

PM2.5),	which	also	has	some	of	the	hopanes	and	OC.		As	with	all	of	the	vehicle	combustion-
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related	factors	in	that	work,	they	did	not	observe	significant	weekend/weekday	differences,	

consistent	with	known	behavioral	trends	in	the	region.		Their	soil	factor,	containing	crustal	

elements	like	Na	and	Mg,	and	contributing	a	mean	of	35.9%	of	mass,	can	be	most	closely	

connected	with	our	‘odd	n-alkane’	factor,	which	shares	a	Harmattan	increase,	and	appears	to	

be	of	biogenic	origin,	but	contributes	a	median	of	only	4.4%	of	carbonaceous	mass.		The	

discrepancy	in	contribution	may	be	due	to	how	the	PMF	solution	split	our	co-temporal	‘PAH’	

and	‘odd	n-alkane’	sources,	as	can	be	noted	by	the	wide	confidence	bounds	on	their	source	

contributions	(Figure	3-8).		Our	‘PAH’	factor	may	thus	be	associated	with	local	and	regional	

sources	of	combustion	like	wood,	bush,	and	crop	burning,	as	well	as	regional	biogenic	sources,	

whereas	the	longer	time	series	in	Ofosu	et	al.	would	aid	in	separating	those	sources.		Similarly,	

the	diesel	combustion	profile	reported	by	Ofosu	et	al.	that	includes	a	large	fraction	of	their	

observed	EC	and	OC	(contributing	a	mean	of	11.5%	of	mass),	could	also	be	associated	with	our	

‘PAH’	factor	(contributing	a	median	of	57.0%	of	carbonaceous	mass).		Ofosu	et	al.	describe	a	

biomass-burning	factor,	identified	by	OC,	EC	and	K,	which	they	associate	with	bush	burning,	and	

contributes	a	mean	of	15.8%	of	mass.		This	can	be	matched	with	our	‘methoxyphenol’	factor,	

and	again,	the	‘PAH’	factor.		Finally,	their	road	dust	factor,	which	looks	similar	to	their	soil	

factor	but	with	more	OC	(contributing	a	mean	of	16.0%	of	mass),	may	be	most	closely	matched	

with	our	‘light	SVOC’	factor	(contributing	a	median	of	1.6%	of	carbonaceous	mass)	and	the	

other	vehicle-related	factors.		We	find	that	it	is	difficult	to	separate	road	dust	with	vehicle	

emissions	due	to	co-emission.	We	hypothesize	that	the	‘light	SVOC’	factor	here	is	associated	

with	smoldering	biomass	combustion	and	evaporative	fuel	emissions.			

	 The	overall	results	of	these	two	source	apportionment	studies	are	consistent	and	

highlight	the	relatively	balanced	contribution	of	biomass	combustion,	biogenic,	and	vehicular	

sources	to	ambient	PM2.5	in	northern	Ghana	in	terms	of	both	organics	and	metals	in	PM2.5.		The	

significant	Harmattan-influenced	dust	source	is	clearly	difficult	to	control	regionally.		A	portion	

of	the	‘PAH’	source,	however,	could	be	lowered	by	reducing	flaming	biomass	burning	in	homes	

and	regionally,	with	a	combination	of	improved	household	combustion	practices,	and	changes	

in	farming	and	land	use	behaviors.		Other	sources	also	have	potential	for	reduction,	such	as	

through	vehicle	emissions	controls.	Waste	is	currently	disposed	of	via	open	burning,	and	
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although	we	did	not	directly	identify	a	waste-burning	specific	source,	this	local	and	regional	

source	could	contribute	to	several	of	the	PMF	factors	we	observed.	Improvements	to	waste	

management	would	be	expected	to	yield	air	quality	benefits.			

 Conclusions	

	 Personal,	cooking	area,	and	ambient	carbonaceous	PM2.5	were	quantified	as	part	of	the	

REACCTING	cookstove	intervention	study	in	Navrongo,	Northern	Ghana.	We	used	these	

measurements	to	determine	personal	exposures,	and	to	determine	the	differences	in	

exposures	for	different	groups	of	a	cookstove	intervention	study.	Further,	we	used	analysis	of	

the	PM2.5	organic	species	to	identify	sources	of	PM	at	different	scales,	and	to	determine	the	

impact	of	local	biomass	burning	on	particulate	exposure.	The	results	from	this	study	can	be	

used	to	inform	air	quality	studies	and	provide	robust	information	towards	the	impact	of	

improved	stoves	in	Northern	Ghana.		

The	cookstove	intervention	produced	reductions	in	OC	exposure	in	all	of	the	groups	

given	improved	stoves,	compared	to	the	control	group,	despite	continued	use	of	traditional	

cooking	methods	across	all	study	groups	(Piedrahita	et	al.,	2016).		We	also	found	significant	

reductions	in	EC	exposure	in	both	of	the	groups	receiving	a	Philips	stove,	which	is	expected	to	

have	benefits	for	both	health	and	climate.		

The	average	concentrations	of	carbonaceous	PM2.5	in	the	personal	samples	(42.5µg/m3)	

were	much	higher	than	the	concentrations	of	the	ambient	samples	(4.4µg/m3).	Source	

apportionment	performed	on	both	personal	exposure	and	regional	ambient	data	showed	

strong	similarities	in	the	factor	profiles,	suggesting	that	the	processes	that	drive	regional	air	

quality	are	the	same	as	those	that	drive	exposures.	In	both	the	exposure/cooking	area	and	

ambient	samples,	we	identified	two	biomass	combustion-related	sources,	likely	indicative	of	

different	phases	of	combustion,	or	stove	types.		These	factors	contributed	a	median	of	9.2%	of	

OC	and	15.3%	of	EC	to	personal	and	cooking	area	samples.		This	result	suggests	that	although	

cooking	is	an	important	source	of	PM2.5,	personal	PM2.5	exposures	in	this	region	are	also	heavily	

impacted	by	other	sources.		

Finally,	we	directly	modeled	the	effect	of	stove	group	on	cooking-specific	exposures	

using	the	PMF	factors.	We	found	lower	but	not	significant	differences	in	‘methoxyphenol’	factor	
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exposure	in	the	intervention	groups	relative	to	controls,	and	significantly	lower	‘PAH’	factor	

exposure	in	the	Philips/Philips	group	relative	to	controls.	This	type	of	approach	informs	the	

relative	importance	of	PM	sources	and	would	be	a	valuable	addition	to	studies	around	the	

world,	given	the	regional	variability	in	cooking	behaviors,	cookstoves,	fuels,	and	prevalence	of	

non-cooking	PM	sources.			
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Exposures	to	carbon	monoxide	in	a	cookstove	intervention	in	Northern	Ghana	

	

Ricardo	Piedrahita,	Ernest	Kanyomse,	Evan	Coffey,	Yolanda	Hagar,	Christine	Wiedinmyer,	Katie	

Dickinson,	Abraham	Oduro,	Michael	Hannigan	

	

Abstract	

	 Burning	biomass	in	traditional	cookstoves	for	home	energy	use	is	a	major	health	and	

environmental	concern.		In	our	study,	two	nominally	cleaner	burning	and	more	efficient	stoves	

were	distributed	over	four	study	groups	in	rural	Northern	Ghana.		To	measure	the	effect	of	

these	stove	interventions	on	personal	pollutant	exposures,	participants	periodically	wore	real-

time	carbon	monoxide	(CO)	monitors.		Intervention	effects	on	CO	exposure	were	assessed	using	

mixed	effects	modeling.		Relative	to	the	control	group,	there	was	a	14.9%	reduction	in	CO	

exposures	in	the	group	given	two	Philips	forced	draft	stoves	(p	=	0.40),	5.6%	reduction	in	the	

group	given	two	Gyapa	stoves	(locally	made	rocket	stoves)	(p	=	0.78),	and	0.1%	reduction	in	the	

group	given	one	Gyapa	and	one	Philips	stove	(p	=	1.00).		Overall,	CO	exposure	for	participants	

was	low	given	the	prevalence	of	cooking	over	3-stone	fires,	with	only	7.5%	of	daily	samples	

exceeding	WHO	Interim-1	standards.		For	the	wearable	CO	monitors	used	in	this	study,	we	

present	quantification	methods	and	performance	of	duplicates.	Lastly,	we	analyzed	the	

relationship	between	personal	carbonaceous	PM2.5	and	CO	exposure	for	the	data	set	that	

included	both	measurements,	finding	that	there	is	only	a	weak	relationship,	most	likely	due	to	

the	diversity	of	identified	air	pollution	sources	in	the	region	and	variability	in	behaviors.	

 Background	and	motivation	

	 Carbon	monoxide	(CO)	is	commonly	measured	in	cookstove	and	air	pollution	exposure	

studies	due	to	its	association	with	adverse	health	effects	and	birth	outcomes	such	as	low	birth	

weight	(Smith	et	al.,	2000;	Longo	et	al.,	1977;	Astrup,	1972),	the	low	cost	of	real-time	wearable	

monitors,	logistical	challenges	of	measuring	other	pollutants,	and	correlation	with	other	co-

emitted	pollutants.		These	reasons,	along	with	the	well-established	health	effects	associated	
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with	PM2.5	(e.g.,	Naeher	et	al.,	2007),	have	led	to	the	study	and	use	of	CO	as	a	surrogate	for	

PM2.5.	Previous	works	have	found	varied	results	for	this	relationship,	with	differences	ascribed	

to	variability	in	source	types	like	fuels	and	stoves,	behaviors,	and	home	designs,	among	other	

characteristics	(Naeher	et	al.,	2001;	Northcross	et	al.,	2010;	McCracken	et	al.,	2013;	Dionisio	et	

al.,	2012a;	Carter	et	al.,	2016	in	press).		Here,	we	add	to	the	literature	on	this	topic	to	further	

the	understanding	of	source	types	for	rural	communities	in	Northern	Ghana.	 	

	 This	work	is	part	of	the	REACCTING	study	(Research	of	Emissions,	Air	quality,	Climate,	

and	Cooking	Technologies	in	Northern	Ghana),	a	200	household	cookstove	intervention	in	the	

Kassena-Nankana	districts	of	Northern	Ghana	from	November	2013	to	November	2015	

(Dickinson	et	al.	2015).		The	200	study	households	were	divided	into	four	groups,	with	one	

group	given	two	locally	made	Gyapa	rocket	stoves,	one	group	given	two	Philips	HD4012	LS	

forced	draft	stoves,	one	group	give	one	of	each	intervention	stove,	and	the	last	group	serving	as	

control	until	the	end	of	the	study,	when	they	were	given	their	choice	of	two	stoves.		The	study	

region	is	described	by	Oduro	et	al.	(2012)	and	Dickinson	et	al.	(2015).		Piedrahita	et	al.	(2017a)	

reports	personal,	cooking	area,	and	ambient	carbonaceous	PM2.5	results	from	the	study.		Here,	

we	present	personal	CO	exposure	results	over	the	complete	study	period,	focusing	on	the	

effects	of	stove	group	and	other	covariates	on	exposure.		Further,	we	also	identify	and	

characterize	behavioral	characteristics	gleaned	through	the	trends	observed	in	the	CO	exposure	

daily	time	series.			

 Personal	CO	sampling	methods	

	 Personal	CO	exposure	sampling	was	performed	throughout	the	REACCTING	study,	from	

November	2013	through	November	2015,	with	a	total	of	751	days	of	data	collected	(derived	

from	48-h	samples)	and	passed	through	quality	checks	(Table	4-1,	Appendix	3).		Lascar	USB-

CO300	and	CO1000	monitors	were	used	to	measure	1-minute	CO	concentrations	and	were	

typically	worn	by	the	mother	and	child	of	the	household,	as	well	as	other	available	and	

consenting	family	members.		Sampling	was	usually	carried	out	from	Monday-Wednesday,	and	

then	Wednesday-Friday,	at	four	households	during	each	period,	one	from	each	arm	of	the	

intervention	study.	Adult	study	participants	typically	wore	the	monitors	either	on	neck	

lanyards,	or	in	a	waist	pack	when	additional	monitoring	equipment	was	included,	such	as	PM2.5	
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filter	samplers.		Children	carried	the	monitors	in	chest	pockets	of	custom	locally	fabricated	

cotton	t-shirts,	or	in	backpacks	when	carrying	other	monitors.		Field	enumerators	asked	the	

participants	to	wear	the	Lascar	monitors	as	much	possible,	and	instructed	them	to	leave	them	

within	arms-reach	if	they	could	not	wear	them	or	while	they	were	sleeping.		

Bluetooth	Beacons	were	deployed	during	a	subset	of	sampling	periods	to	estimate	

distance	between	participants	and	cookstoves	(Piedrahita	et	al.,	2017c,	submitted).	The	

variability	in	the	distance	measurement	was	used	to	estimate	compliance;	no	variability	was	

assumed	to	indicate	no	motion	of	the	Lascar	USB-CO	monitor	and	no	motion	means	the	

monitoring	devices	were	not	being	worn.		Here,	a	participant	was	deemed	compliant	during	

time	periods	in	which	the	standard	deviation	of	the	measured	Bluetooth	signal	was	greater	

than	2,	on	a	rolling-hour	basis,	and	during	daytime	hours	(7:00-21:00).		The	threshold	was	

calculated	from	the	noise	during	calibrations	over	multiple	distance	points	(Piedrahita	et	al.,	

2017c,	submitted).		The	average	measured	rate	of	compliance	for	this	data	subset	was	81.0%,	

and	can	be	expected	to	be	a	lower	bound	for	the	sample	as	a	whole	because	when	the	Beacons	

were	deployed,	they	were	part	of	the	larger	sampling	pack,	whereas	most	deployments	had	

only	the	Lascar	USB-CO	monitors,	which	are	less	intrusive	to	wear.			

	 	

Table	4-1.		Sample	statistics	for	the	personal	CO	exposure	deployments	throughout	REACCTING.			

		 		 Control	 Gyapa/Philips	 Philips/Philips	 Gyapa/Gyapa	

Sa
m
pl
e	
ov

er
vi
ew

	

Days	deployed	that	failed	
QA/QC	and	were	
removed	

42	 35	 72	 52	

Days	deployed	that	
passed	QA/QC	and	were	
retained	in	analysis	

160	 136	 157	 149	

Mean	sample	duration	in	
hours	(stdev)	 23.2	(1.3)	 23.1	(1.3)	 23.1	(1.4)	 23.3	(1.1)	

Duplicate	days	deployed	 36	 21	 48	 45.0	
Unique	participants	 61	 73	 68	 66	

Ge
nd

er
	a
nd

	a
ge
	c
ov

ar
ia
te
s	

Primary	cook	females	
>5y	 110	 94	 96	 113	

Non-primary	cook	
females	>5y	 27	 24	 14	 11	

Non-primary	cook	males	
>5y	 16	 24	 20	 10	

Children	<5y	 40	 49	 67	 36	
Female	over	5y	(n,	med,	
stdev,	max,	min)	 137,	30.7,	17.,	75.4,	5.	 118,	34.4,	13.1,	63.4,	5.8	 110,	31.4,	11.6,	53.4,	6.4	 124,	34.4,	13.9,	63.4,	5.2	

Female	under	5y	(n,	med,	
stdev,	max,	min)	 23,	2.1,	1.3,	4.9,	1.2	 18,	3.5,	.7,	4.,	2.4	 47,	3.1,	1.1,	4.8,	1.2	 25,	3.,	.8,	5.,	2.1	

Male	over	5y	(n,	med,	
stdev,	max,	min)	 16,	8.,	3.1,	13.8,	5.8	 24,	14.,	20.6,	61.4,	6.1	 20,	7.3,	1.3,	11.6,	6.4	 10,	6.9,	1.6,	10.,	5.6	

Male	under	5y	(n,	med,	 17,	2.2,	.9,	4.2,	1.3	 31,	2.5,	1.,	4.6,	1.4	 20,	2.8,	1.2,	4.9,	1.1	 11,	3.1,	1.3,	3.9,	1.1	
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stdev,	max,	min)	
SE
S	

Poorest	 22	 45	 23	 43	
Poorer	 50	 35	 57	 45	
Poor	 39	 46	 43	 28	
Less	poor	 58	 27	 33	 13	
Least	poor	 24	 38	 41	 41	

Se
as
on

s	

Harmattan	bush	burning	 76	 80	 108	 77	
Hot	dry	 35	 38	 30	 28	
Light	Rainy	 18	 25	 21	 31	
Heavy	Rainy	 58	 38	 36	 26	
Transition	 6	 10	 2	 8	

	

 Calibration	and	data	preparation	methods	

	 CO	logger	calibrations	were	performed	as	often	as	possible	over	the	2-year	study	period,	

averaging	1.5	calibrations	per	monitor	(range	1	to	7,	standard	deviation	=	1.5)	and	Pearson’s	R	

of	0.99±0.06	from	linear	calibration	functions	(Figure	A3-1).		In	most	cases	monitors	were	

calibrated	with	certified	standards,	and	in	a	few,	field	normalization	was	performed	using	a	

reference	monitor	(Thermo	48C,	Thermo	Scientific).		On	a	weekly	basis,	the	loggers	were	co-

located	with	the	reference	monitor	at	the	Navrongo	Health	Research	Centre	(NHRC)	for	field	

normalization.	However,	the	ambient	concentrations	were	usually	too	low	to	generate	a	

satisfactory	calibration	curve	in	the	range	desired	for	the	personal	exposure	measurements.			

201	sampling	days	(25.0%)	were	removed	due	to	sensor	degradation	and	electronics	

concerns.		Paired	CO	Lascar	monitors	were	successfully	deployed	on	150	days,	with	duplicates	

showing	a	Pearson’s	R	of	0.81	for	the	calibrated	and	0.92	for	the	un-calibrated	daily	average	

concentrations	(Appendix	3).	Lower	correlation	for	the	calibrated	monitors	can	be	attributed	to	

the	general	observed	trend	of	decreased	sensitivity	with	Lascar	age.		When	some	of	the	

monitors	were	calibrated	and	others	were	not,	the	improved	data	quality	of	the	calibrated	ones	

resulted	in	poorer	correlation.		As	the	monitors	were	randomly	distributed	among	stove	groups	

and	individuals,	there	is	minimal	risk	of	systematic	bias	and	the	calibrated	Lascars	should	

provide	more	accurate	results	despite	the	lower	correlation.		Calibrations	are	also	important	to	

avoid	bias	related	to	the	factory	calibration	of	the	monitors	and	to	adjust	for	the	Lascar	change	

in	sensitivity	over	time.		When	the	monitors	were	first	calibrated	using	a	linear	regression	of	the	

form	Lascar	Signal	=	p1	+	p2(Reference	Concentration)	+	e,		the	average	slope	(sensitivity)	was	

1.06	±	0.06	and	intercept	was	0.08	±	0.13ppm.		While	this	is	reasonably	accurate	and	consistent	

for	the	intended	use	of	the	monitors,	some	displayed	up	to	16%	error	out	of	the	box,	strongly	
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supporting	the	need	for	calibration.		When	paired	monitors	were	deployed,	and	both	were	

deemed	free	of	failures,	minute	average	concentrations	from	the	two	monitors	were	used	in	

further	analyses.			

 Personal	exposure	mixed	effects	model	specification	

	 Mixed	effects	modeling	was	performed	to	ascertain	the	intervention	effects	while	

accounting	for	repeated	measures	(Peretz	et	al.,	2002;	Burton	et	al.,	1998),	in	an	approach	

similar	to	Piedrahita	et	al.	(2017a).		A	parsimonious	model	was	developed	in	which	daily	

average	log-transformed	CO	exposure	(ppm)	was	regressed	against	stove	group,	season,	socio-

economic	status,	and	a	categorical	variable	describing	primary	cook	status	with	gender	and	age	

group	(Equation	4-1).			

Log(Personal	COij)	=	ß0	+	ß1(Stove	group)i	+	ß2(SES)i	+	β3(Primary	cook*Gender)i		+	
β4(Season)ij	+	αj	+	eij	

Equation	
4-1	

	

	The	equation	above	is	slightly	simplified,	as	ß2	represents	five	categories	for	socioeconomic	

status	(SES)	for	each	household,	‘poorest’,	‘very	poor’,	‘poor’,	‘less	poor’,	and	‘least	poor’.	The	

SES	categories	were	calculated	as	by	Awini	et	al.	(2010)	using	a	principal	components	analysis	of	

wealth	indicators	like	access	to	electricity,	sanitation,	and	water.		ß3	represents	four	categories,	

‘female	primary	cook’	(all	over	5	years	old),	‘female	non-primary	cook	over	five	years	old’,	‘male	

non-primary	cook	over	5	years	old’,	and	‘children	under	five	years	old’,	where	primary	

household	cook	was	identified	in	the	baseline	survey	(Dickinson	et	al	2015),	and	there	were	no	

male	primary	cooks.		ß4	represents	the	season	categories,	defined	as	‘light	rainy’	(April-June),	

‘heavy	rainy’	(June-October),	‘transition’	(October),	‘Harmattan’	(November	to	mid-February),	

and	‘hot	dry’	(mid-February	to	April).		The	random	intercept	αj	accounts	for	the	correlation	

within	subjects	due	to	repeated	measures	and	has	variance	representing	the	between	subject	

variation,	and	eij	represents	the	random	error,	with	its	variance	representing	the	within-child	

variation.		A	small	positive	exposure	concentration	was	added	to	all	values	so	as	to	include	

exposures	of	zero	ppm	in	the	log-transformed	model.		A	compound	symmetry	covariance	

structure	was	employed,	using	the	assumption	that	any	repeated	measurements	of	participants	

had	equal	correlation	regardless	of	the	time	between	them	(Peretz	et	al.,	2002).		The	AIC	and	

adjusted	R2	were	used	to	select	the	model	and	assess	the	fit	after	the	most	relevant	variables	
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were	included	(stove	group,	season,	SES).		Using	these	model	selection	methods,	the	number	of	

family	members	and	other	age	group	variables	were	not	found	to	have	significant	effects	and	

did	not	improve	the	fit,	so	were	excluded	from	the	final	model	we	present.		Residual	

distributions	approached	normality,	satisfying	the	assumptions	required	to	employ	this	

modeling	technique.		We	applied	Equation	1	separately	to	the	calibrated	and	un-calibrated	

Lascar	CO	data	sets	in	order	to	compare	results	and	understand	the	importance	of	our	

calibrations	over	the	study.	

 Results	

 Personal	CO	exposure	results	

	 The	results	from	Equation	4-1	are	presented	here	in	terms	of	percent	change	relative	to	

the	reference	categories	built	into	the	model,	as	well	as	expected	concentration	values	

(geometric	means)	at	those	categories	(Table	4-2).		The	reference	for	Equation	4-1	were	those	

measurements	taken	from	primary	cooks	(all	female)	in	the	control	stove	group	also	in	the	

`poorest’	SES	category	during	the	Harmattan	season.		The	reference	group	experienced	a	daily	

CO	exposure	concentration	expected	value	of	0.61	ppm	(95%	CI	0.38	–	0.95).		By	holding	all	

variables	constant	except	for	stove	group,	the	effect	of	stove	group	is	isolated	relative	to	the	

control	group.		Predicted	CO	exposure	of	the	Gyapa/Gyapa	group	was	5.6%	lower	than	control	

group	(0.57	ppm	(0.38-0.95),	p	=	0.78),	the	Philips/Philips	group	was	14.9%	lower	(0.52	ppm	

(0.35-0.75),	p	=	0.40),	and	the	Philips/Gyapa	group	was	0.08%	lower	(0.60	ppm	(0.41-0.89),	p	=	

1.00).		Males	and	females	listed	as	non-primary	cooks	experienced	33.3%	(p	=	0.08)	and	17.1%	

(p	=	0.42)	lower	average	CO	exposures	than	female	primary	cooks,	respectively.		Children	

experienced	35.1%	lower	exposures	than	female	primary	cooks	(p	=	0.01).		The	‘light	rainy’	and	

‘heavy	rainy’	seasons	had	49.3%	and	42.9%	higher	expected	exposures	than	the	‘Harmattan’	(p	

=	0.03,	p	=	0.02),	while	the	‘hot	dry’	season	was	31.5%	lower	(p	=	0.02)	than	the	‘Harmattan’	

season.		Relative	to	the	‘poorest’	SES	group,	on	average	the	‘poorer’,	‘poor’,	‘less	poor’,	and	

‘least	poor’	groups	experienced	12.7%	20.8%,	35.8%,	and	38.9%	lower	exposure	levels	

respectively	(p	=	0.53;	0.29;	0.06;	0.03).		The	between-subject	variation	was	0.68	(p	<	0.01),	and	

residual	error	variation	was	1.46,	giving	an	intra-class	correlation	coefficient	of	0.32.		Most	of	

the	unexplained	variability	observed	in	daily	average	CO	exposures	is	thus	due	to	day-to-day	
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differences	within	participants	rather	than	between	participants.		Summary	statistics	grouped	

by	the	same	model	covariates	as	Equation	4-1	are	presented	in	Appendix	3.	

	

Table	4-2.		Personal	CO	exposure	using	Equation	4-1.	The	reference	group	from	the	regression	
is	the	control	group,	for	primary	cook	females,	in	the	poorest	SES	group	in	the	Harmattan	
season.	

St
ov

e	
gr
ou

ps
	 Equation	1	 %	change	from	

reference	group	
Expected	exposure	(ppm)	

(95%	CI)	 P	value			
Control	 Reference	group	 .61	(.38,	.95)	 0.03	
Gyapa/Philips	 -0.1	 .6	(.41,	.89)	 1.00	
Philips/Philips	 -14.9	 .52	(.35,	.75)	 0.40	
Gyapa/Gyapa	 -5.6	 .57	(.38,	.85)	 0.78	

G
en

de
r		 Primary	cook	females	>5y	 Reference	group	 		 		

Non-primary	cook	females	>5y	 -33.3	 .40	(.26,	.63)	 0.08	
Non-primary	cook	males	>5y	 -17.1	 .50	(.32,	.80)	 0.42	
Children	<5y	 -35.1	 .39	(.28,	.55)	 0.01	

SE
S	

Least	poor	 -38.9	 .37	(.24,	.58)	 0.03	
Less	poor	 -35.8	 .39	(.24,	.62)	 0.06	
Poor	 -20.8	 .48	(.31,	.74)	 0.29	
Poorer	 -12.7	 .53	(.35,	.81)	 0.53	
Poorest	 Reference	group	 		 		

Se
as
on

s	

Harmattan	bush	burning	 Reference	group	 		 		
Transition	 6.4	 .64	(.34,	1.22)	 0.85	
Light	rainy	 49.3	 .90	(.63,	1.29)	 0.03	
Heavy	rainy	 42.9	 .87	(.63,	1.18)	 0.02	
Hot	dry	 -31.5	 .41	(.30,	.57)	 0.02	

		 		 		 		 		

		 		 N	 Random	error	variance	 Adjusted	R-squared	
Model	fit	statistics	 751	 .68	(.54,	.87)	 0.16	

	

	 Applying	Equation	4-1	to	the	un-calibrated	exposure	data	indicated	that	the	results	were	

stable	and	consistent	with	the	results	presented	in	Table	4-1,	though	the	‘light	rainy’	and	‘heavy	

rainy’	seasons	shifted	out	of	significance,	and	the	effects	of	all	stove	groups	showed	reductions	

relative	to	the	control	group,	though	still	not	significant	(Appendix	3.5).	

 Relationship	between	CO	and	carbonaceous	PM2.5	

	 Linear	regression	modeling	was	employed	to	assess	the	relationship	between	the	log	of	

personal	48-h	average	EC	and	OC	PM2.5	concentration	and	the	log	of	48-h	average	CO	

concentration,	with	108	personal	exposure	periods	available	for	the	comparison.		Personal	

PM2.5	EC	and	OC	were	analyzed	using	the	NIOSH	5040	method	(Birch,	2003),	as	described	by	

Piedrahita	et	al.	(2017a).		A	linear	regression	was	employed	to	assess	this	relationship	(Equation	

4-2).	
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Log(Personal	PM2.5)i	=	ß0	+	ß1*(log(CO))i		+	ei		 Equation	4-2	

	

The	R2	of	Equation	4-2	was	0.012	for	EC	and	0.047	for	OC	(Figure	4-1;	Appendix	3).		The	weak	

relationships	are	likely	due	to	the	variability	in	behaviors	and	the	diversity	of	air	pollution	

sources	in	the	region	(Ofosu	et	al.,	2013;	Piedrahita	et	al.,	2017a).		The	stronger	relationship	

with	OC	may	be	due	to	the	higher	co-emission	of	CO	than	with	EC	in	a	typical	biomass	fire	

(Andreae	et	al.	2001;	Patterson	et	al.	1986;	Akagi	et	al.,	2011).		Additionally,	the	later	

smoldering	phase	of	biomass	combustion	may	be	a	higher	source	of	exposure	than	other	

combustion	phases,	due	to	behavioral	factors.	In	the	smoldering	phase	of	biomass	burning	

combustion,	CO	and	OC	are	more	abundantly	co-emitted	than	with	EC	due	to	oxygen	deficient	

combustion.	

	

Figure	4-2.		PM2.5	EC	and	OC	concentration	vs.	CO	personal	exposure	concentration	from	the	
dataset	with	concurrent	measurements.		Note	the	low	correlation	between	pollutants,	even	
when	accounting	for	stove	group.	
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 Discussion	

 Contributing	factors	to	personal	CO	exposure	

	 Results	from	Equation	4-1	showed	reductions	in	CO	exposure	for	two	of	the	three	

intervention	groups,	though	not	substantial	or	statistically	significant,	suggesting	some	

reduction	in	air	pollution	exposure	for	the	Gyapa/Gyapa	and	Philips/Philips	intervention	groups.		

Reduction	in	exposure	is	supported	by	previous	analysis	from	this	study	showing	that	

carbonaceous	PM2.5	was	lower	for	all	intervention	groups	(Piedrahita	et	al.,	2017a).		In	the	

PM2.5	analysis,	OC	was	found	to	be	significantly	lower	in	the	three	intervention	groups	by	

factors	of	49.4%	for	the	Philips/Philips	group,	57.3%	for	the	Gyapa/Gyapa	group,	and	63.2%	for	

the	Gyapa/Philips	group.		As	noted	in	that	work,	a	reduction	in	exposure	was	observed	despite	

high	continued	use	of	traditional	three	stone	fires	(TSFs)	in	all	the	intervention	groups	

(Piedrahita	et	al.,	2016),	especially	the	group	given	two	Philips	stoves,	which	here	had	the	

biggest	decrease	in	exposure.		The	Gyapa/Gyapa	and	the	Gyapa/Philips	groups	had	the	greatest	

replacement	of	TSFs,	with	TSF	use	reduced	by	about	half	of	days	cooked	as	measured	with	

stove	use	monitors	(SUMs)	and	household	surveys.			

	 Seasonal	effects	for	CO	exposure	were	not	consistent	with	the	EC	and	OC	results	in	

Piedrahita	et	al.	(2017),	but	they	may	be	explained	by	combustion	processes.		Compared	to	the	

‘Harmattan’	season,	CO	exposures	during	the	‘light	rainy’,	and	‘heavy	rainy’	seasons	were	

higher	by	49.3%	(p	=	0.03),	and	42.9%	(p	=	0.02),	while	CO	exposure	during	the	‘hot	dry’	season	

was	31.5%	(p	=	0.02)	lower,	and	there	was	an	increase	of	6.4%	for	the	‘transition’	season	(p	=	

0.93).		Lower	carbonaceous	PM2.5	exposures	were	observed	in	all	seasons	relative	to	the	

‘Harmattan’	season,	but	the	biggest	decreases	in	OC	were	during	the	‘light’	and	‘heavy’	rainy	

seasons	(Piedrahita	et	al.,	2017a),	in	contrast	to	the	results	in	the	CO	exposures.	This	disparity	

may	be	connected	to	the	relationship	between	CO	emissions	with	fuel	moisture,	with	higher	CO	

emissions	at	higher	fuel	moisture	contents	(Bhattacharya	et	al.,	2002),	whereas	that	trend	does	

not	appear	to	be	shared	with	PM2.5	at	the	fuel	moisture	levels	observed	here	(L’Orange	et	al.,	

2012).		Dionisio	et	al.	(2012b)	also	found	increased	CO	exposure	during	the	rainy	season	in	The	

Gambia,	when	measuring	exposure	for	children	under	five	years	of	age.		Ambient	differences	in	

seasonal	PM2.5	may	also	play	a	role.	The	decrease	in	the	‘hot	dry’	season	observed	in	this	study	
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may	be	due	to	changes	in	fuel	choices	and	behaviors,	as	well	as	the	relative	importance	of	non-

cooking	ambient	pollution	sources,	such	as	regional	biomass	burning	that	occurs	during	the	

Harmattan	season	(Piedrahita	et	al.,	2017).			

	 The	observed	exposures	may	have	been	affected	by	measurement	error.		The	RMSE	of	

daily-average	duplicate	Lascar	CO	monitors	was	1.05	ppm,	higher	than	the	expected	exposure	

of	any	stove	group.		Differences	observed	between	stove	groups	may	thus	have	been	

attenuated.	However,	the	large	quantity	of	samples	collected	improves	the	statistical	power	

and	allows	the	identification	of	differences.		Confidence	in	the	results	would	be	bolstered	by	

more	frequent	calibration	and	more	precise	instrumentation,	which	should	be	part	of	future	

work.	

 Observations	from	the	real-time	CO	exposure	time	series	

	 Temporal	patterns	from	the	minute-resolution	CO	data	can	illuminate	behavioral	

patterns,	and	changes	therein,	due	to	the	intervention.			

Figure	4-3	shows	CO	exposures	by	time	of	day	for	each	stove	group	smoothed	using	B-splines,	

which	we	use	because	of	their	efficient	computation	and	calculation	of	confidence	intervals	

(Eilers	and	Marx,	1996;	Morel,	2016).		All	groups	exhibited	high	exposure	modes	in	the	evening,	

peaking	around	5:00-6:00	pm	local	time,	while	the	Gyapa/Gyapa,	Gyapa/Philips,	and	control	

groups	had	additional	peak	exposures	at	different	times	throughout	the	morning.	The	

Gyapa/Gyapa	group	had	the	lowest	morning	time	exposure,	but	also	the	highest	evening	

exposure,	while	the	Gyapa/Philips	group	had	higher	morning	time	peaks	than	evening	peaks.		

The	control	and	Philips/Philips	groups	were	most	balanced	in	this	regard,	with	about	equal	CO	

exposures	in	the	morning	and	evening.		The	differences	in	morning	time	exposure	by	stove	

group	likely	stem	from	changes	in	cooking	behaviors,	fuel	type,	or	food	preparation	due	to	the	

stove	intervention.		The	diurnal	pattern	is	generally	consistent	with	expected	cooking	patterns,	

although	analysis	of	the	SUMs	showed	the	highest	use	for	most	stoves	in	the	afternoons	

(Piedrahita	et	al.,	2016).	
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Figure	4-3.		Spline-smoothed	personal	CO	concentration	by	time	of	day	and	stove	group.		The	
shaded	bands	represent	95%	confidence	intervals	on	the	mean	estimates.	

	 Aggregate,	smoothed	time	series	were	also	plotted	specifically	for	the	primary	cooks	

and	for	the	study	participants	by	gender	(Appendix	3).		Primary	cook	females	had	high	morning	

and	evening	peaks,	with	wider	morning	peaks	than	male	participants,	pointing	to	differences	in	

exposure	sources,	with	those	male	exposures	possibly	incurred	when	away	from	home,	

commuting	or	at	work.		Males	under	5	had	very	similar	exposure	trends	to	the	males	over	5,	

and	females	under	5	had	somewhat	similar	exposure	trends	to	females	over	5.		These	results	

suggest	that	gender	roles	are	contributing	to	exposures	as	has	been	widely	reported	in	other	

locations.		

	 To	further	investigate	personal	exposure	by	stove	group,	we	examined	the	time	series	of	

the	CO	concentrations	measured	in	the	cooking	areas,	which	were	available	on	a	subset	of	the	

exposure	monitoring	periods	(Figure	4-4).		The	cooking	area	CO	concentration	time	series	by	

stove	group	consistently	showed	morning	and	evening	peaks,	for	all	the	stove	groups,	and	

largely	matched	the	personal	exposure	trends	for	the	earliest	and	latest	peaks.		The	personal	

exposure	trends	showed	more	pronounced	increases	later	in	the	morning,	when	the	cooking	

area	CO	was	not	elevated,	pointing	to	non-home	CO	exposure	sources.		Cooking	area	morning	

and	afternoon	CO	peaks	were	also	substantially	higher	than	personal	CO	for	all	groups,	

especially	for	the	control	group,	possibly	indicative	of	changes	in	cooks’	behaviors	due	to	
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available	stove	type.		Seasonal	differences	in	the	diurnal	trends	in	microenvironment	CO	

concentrations	were	highly	variable	(Appendix	3),	possibly	due	to	lower	data	density	for	some	

of	the	study	groups.	This,	along	with	stove	use,	warrant	further	exploration	as	they	also	hold	

information	about	fuel	and	behavior	change	with	season.		

	
	

	
Figure	4-4.		Spline-smoothed	cooking	area	CO	concentration	by	time	of	day	and	stove	group.	

	

 Comparisons	with	previous	personal	CO	exposure	results	

	 Exposures	in	this	study	were	generally	low	in	comparison	to	past	cookstove	studies,	

given	the	extensive	use	of	biomass	fuels	in	the	study	households.		7.5%	of	daily	samples	

exceeded	the	WHO	Interim-1	guideline	over	the	1-hour	maximum	averaging	periods	(35	

mg/m3),	and	less	for	the	other	guideline	averaging	periods	(WHO	2010;	Appendix	3).		Mean	

(standard	deviation)	CO	exposure	for	the	control,	Gyapa/Gyapa,	Philips/Philips,	and	

Gyapa/Philips	groups	were	0.98	(0.52,	±1.37),	1.10	(0.50,	±1.64),	0.94	(0.37,	±1.60),	and	1.09	

(0.54,	±2.12)	ppm,	respectively	(Appendix	3	Table	A3-1).		Key	characteristics	influencing	

exposure	here	include	the	prevalence	of	outdoor	cooking,	where	pollutants	can	disperse	at	a	

faster	rate,	and	low	dwelling,	vehicular,	and	industrial	activity	density.		In	comparison,	a	study	

in	The	Gambia	that	monitored	the	CO	exposures	of	children	under	age	5	found	mean	48-h	
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exposures	of	1.04ppm	(±1.46ppm)	(Dionisio	et	al.,	2012b).		In	rural	Upper	West	Ghana,	a	study	

measuring	the	effects	of	a	brick	and	mortar	chimney	stove	intervention	found	that	there	was	

no	significant	difference	in	CO	exposure	compared	to	the	control	group,	as	measured	during	

uncontrolled	cooking	tests	(Burwen	and	Levine,	2012).		Ochieng	et	al.	(2013)	found	median	

personal	CO	concentrations	of	primary	cooks	of	6.5ppm	in	rural	Kenyan	homes	using	TSFs,	and	

4.4ppm	in	homes	using	improved	mud	stoves.	In	Guatemala,	a	colder	climate	with	more	indoor	

cooking,	adult	women	cooks	in	the	control	group	of	the	RESPIRE	study	experienced	average	48-

h	exposures	of	4.8ppm	(±3.6),	while	the	group	with	an	improved	plancha	stove	had	an	average	

exposure	of	2.2ppm	(±2.6).		Also	in	RESPIRE,	children	under	18	months	in	the	control	group	had	

average	exposures	of	2.8ppm	(±2.5),	while	the	intervention	group	averaged	1.5ppm	(±1.9)	

(Smith	et	al.,	2010).		

 Relationship	between	personal	CO	and	carbonaceous	PM2.5	

Strong	relationships	between	CO	and	either	PM2.5	EC	and	PM2.5	OC	were	not	expected	in	

this	study	region,	due	to	the	observed	variability	in	cooking	areas	(often	moved	indoors	and	

outdoors),	and	the	numerous	contributing	pollution	source	types	observed	both	by	observation	

and	by	source	apportionment	(Piedrahita	et	al.,	2017a).	This	is	consistent	with	other	studies.		

Roden	et	al.	(2009)	directly	measured	emission	factors	from	biomass	cookstoves	in	laboratory	

and	field	settings,	and	found	correlation	coefficients	between	CO	and	PM2.5	of	0.79	in-lab	and	

0.30	in-field.		Dionisio	et	al.	(2012a)	measured	CO	and	PM2.5	(N=29)	on	children	under	age	5	in	

The	Gambia,	and	found	a	correlation	coefficient	of	-0.04.		In	Kenya,	Ezzati	et	al.	(2000)	found	

large	variations	in	the	strength	of	kitchen	CO-PM10	relationships	depending	on	fuel	and	stove	

types.		They	further	noted	that	the	real-time	correlation	between	CO	and	PM	is	weak	and	is	

thus	a	concern	for	the	valid	use	of	CO	as	a	PM	surrogate.		McCracken	et	al.	(2013)	observed	a	

strong	relationship	between	CO	and	PM2.5	likely	due	to	the	relative	contribution	of	cooking	on	

personal	exposure	in	the	Guatemalan	study	region,	consistency	in	fuels	used,	and	the	use	of	an	

indoor	cooking	area	with	a	relatively	tight	ventilation	envelope,	that	serves	as	the	nucleus	of	

the	home.	Carter	et	al.	(2016)	reviewed	studies	performing	both	indoor	and	personal	CO	and	

PM2.5	comparisons,	and	found	correlation	coefficients	(r)	for	personal	exposure	ranging	from	

0.22	to	0.97	(median=0.53),	and	from	0.10	to	0.96	(median=0.71)	for	cooking	areas.		That	work	
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discussed	the	sources	of	variability	contributing	to	the	quality	of	the	relationship,	and	noted	

that	rigorous	validation	of	the	relationship	should	be	performed	if	its	widespread	use	is	

intended	in	a	study.	Our	study	confirms	this,	suggesting	that	CO	is	not	a	good	surrogate	for	PM	

exposure	in	our	study	region.		

 Conclusions	

	 This	work	identified	the	effects	of	a	cookstove	intervention	on	CO	personal	exposure	in	

a	rural	area	of	Northern	Ghana.		Modest	decreases	in	exposure	in	the	three	intervention	groups	

were	observed,	with	the	largest	decrease	or	14.9%	seen	in	the	Philips/Philips	group	(p	=	0.40).		

Average	exposure	levels	for	all	groups	were	quite	low,	with	averages	for	all	groups	under	1.10	

ppm.		High	acute	exposures	indicative	of	cooking	events	were	clearly	observed	in	many	

exposure	time	series,	especially	for	women	that	are	primary	cooks,	but	they	were	usually	lower	

than	the	WHO	Interim-1	guidelines.		Seasonal	impacts	on	CO	exposure	were	generally	

consistent	with	PM2.5	trends	identified	in	previous	work,	and	likely	related	to	fuel	type,	

combustion	and	weather	conditions,	and	cooking	behavior	changes.		A	better	understanding	of	

these	effects,	along	with	the	observed	trend	of	decreasing	CO	with	increasing	SES,	would	

provide	valuable	feedback	for	study	participants.		Time	of	day	effects	by	stove	group	showed	

clear	differences	that	also	warrant	further	investigation.		Future	work	will	also	address	the	link	

between	cookstove	use	and	CO	exposure	over	time,	as	stove	breakdowns	over	the	two-year	

study	were	not	uncommon,	and	may	have	influenced	inter-group	comparisons.	

	 The	relationship	between	CO	and	PM2.5	was	weak,	suggesting	that	CO	should	not	be	

used	as	a	surrogate	for	PM2.5	exposure	in	the	region,	a	finding	also	supported	by	a	source	

apportionment	analysis	of	the	organic	component	of	PM2.5	from	personal	and	cooking	area	

samples.	
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Bluetooth	Beacon	proximity	sensing	to	improve	exposure	assessment	

	

Ricardo	Piedrahita,	Yolanda	Hagar,	Ernest	Kanyomse,	Evan	Coffey,	Katelin	Verploeg,	Christine	

Wiedinmyer,	Katie	Dickinson,	Abraham	Oduro,	Michael	Hannigan	

	

Abstract	

	 Biomass	burning	for	home	energy	use	contributes	to	negative	health	outcomes	and	

environmental	degradation.		In	the	REACCTING	study	(Research	on	Emissions,	Air	quality,	

Climate,	and	Cooking	Technologies	in	Northern	Ghana),	personal	exposure	to	carbon	monoxide	

(CO)	was	measured	to	gauge	the	effect	of	introducing	two	different	stove	types	over	four	study	

groups.		A	novel	Bluetooth	Low-Energy	(BLE)	Beacon	system	was	deployed	on	a	subset	of	those	

CO	measurement	periods	to	estimate	participants’	distance	to	the	most-used	cooking	areas	at	

each	home	over	time.		In	addition	to	presenting	methods	and	validation	for	the	BLE	Beacon	

system,	we	present	exposure	assessment	modeling	results	using	two	different	approaches:		the	

first,	in	which	the	proximity	data	was	used	to	better	understand	exposure	and	behaviors	within	

and	away	from	homes,	and	the	second,	in	which	the	proximity	data	was	used	to	improve	the	

prediction	of	personal	exposure	via	microenvironment	exposure	measurements.			

 Background	and	motivation	

	 REACCTING	(Research	on	Emissions,	Air	quality,	Climate,	and	Cooking	Technologies	in	

Northern	Ghana)	was	a	200-home	cookstove	intervention	study	in	the	Kassena-Nankana	

districts	of	Northern	Ghana	from	November	2013	to	February	2016.		The	intervention	consisted	

of	50	households	given	two	locally	made	rocket	stoves	(Gyapa),	50	households	given	two	Philips	

HD4012	LS	stoves,	50	households	given	one	Gyapa	stove	and	one	Philips	stove,	and	50	control	

households	generally	using	traditional	3-stone	fires	(TSFs)	and	coalpots	with	biomass	and	

charcoal,	respectively.		The	control	was	given	their	choice	of	stoves	after	the	study.		The	study	

protocol	is	presented	in	Dickinson	et	al.	(2015),	while	detail	on	the	study	region	and	population	

is	presented	in	Oduro	et	al.	(2012).		Stove	usage	trends	over	the	first	year	of	the	intervention	
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were	reported	in	Piedrahita	et	al.	(2016),	and	PM2.5	results	for	personal,	cooking	area	

microenvironment,	and	regional	measurements	were	reported	in	Piedrahita	et	al.	(2017a).		

Personal	CO	exposure	results	over	the	duration	of	the	entire	study	are	presented	in	Piedrahita	

et	al.	(2017b,	submitted).			

	 In	this	work,	we	present	results	on	carbon	monoxide	(CO)	exposure	of	intervention	

groups,	and	on	the	relationship	between	personal	and	cooking	area	microenvironment	CO,	for	

the	deployments	that	also	included	a	novel	Bluetooth	Low	Energy	(BLE)	Beacon	system.		We	

developed	this	BLE	Beacon	system	using	commercially	available	Beacons,	to	estimate	the	user’s	

distance	to	the	cooking	area	(time-activity	data)	and	therein	refine	our	exposure	assessment	

and	improve	personal-to-cooking	area	CO	modeling.		There	is	substantial	interest	from	health-

related	fields	in	acquiring	detailed	spatial	information	for	personal	exposure	monitoring	(Jerret	

et	al.,	2015).	

 Proximity	monitoring	background	

A	Bluetooth	Low	Energy	(BLE)	Beacon	proximity	monitoring	system	fills	two	gaps	in	the	

exposure	assessment	toolbox.		First,	the	time-location	data	provided	by	the	system	allows	for	

separate	analysis	of	exposure	from	sources	at	home	vs.	away	from	home.		Second,	adding	a	

significant	predictor	of	distance	within	the	home	could	allow	better	estimates	of	personal	

exposure	from	microenvironment	measurements.		Personal	exposure	measurements	of	air	

pollution	have	traditionally	been	difficult	to	collect	due	to	instrument	size,	power	consumption,	

operating	noise,	and	high	costs.		Such	issues	can	lead	to	non-compliance	of	protocols	by	users.	

Modeling	personal	exposure	from	microenvironment	measurements	is	thus	an	attractive	

proposition,	and	past	cookstove	studies	have	done	this	using	time-location	budgets	from	

surveys	(Brauer	et	al.,	1996;	Albalak	et	al.,	1999;	Zuk	et	al.,	2007;	Cynthia	et	al.,	2008;	Dionisio	

et	al.,	2012a;	Balakrishnan	et	al.,	2002,	2004).	Although	regional	differences	make	it	difficult	to	

compare	across	studies,	other	cookstove	studies	have	used	similar	time-activity	budgets	and	

area	monitors	to	predict	personal	exposure.		Baumgartner	et	al.	(2011)	found	a	correlation	

coefficient	of	0.58	(0.34,	0.75)	between	home	and	personal	PM2.5	for	adult	women	over	24h	

measurements,	though	measurements	for	children	were	not	correlated.	Cynthia	et	al.	(2008)	

assessed	the	quality	of	this	relationship	for	PM2.5	in	Michoacán	Mexico,	and	found	a	weak	
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relationship.		They	noted	that	exposures	from	short	duration	visits	in	rooms	can	be	important	

for	exposure	(like	walking	into	a	smoky	kitchen	for	a	moment),	and	can	be	difficult	to	record	

using	traditional	methods.		They	proposed	that	until	a	better	system	is	developed	for	recording	

presence	in	rooms,	the	approach	should	not	be	attempted	in	their	study	location	due	to	

important	source	of	variability	that	were	not	being	captured.			

Self-reported	time-activity	measurement	approaches	(Freeman	and	Tejada,	2002)	are	

resource	intensive	and	can	result	in	misclassifications	(Clark	et	al.,	2013).		New	developments	in	

wireless	technologies	such	as	Wi-Fi	allow	precise	indoor	location	estimates,	but	resources	are	

required	to	train	the	identification	system	and	a	high	density	of	Wi-Fi	access	points	is	required.		

Global	Positioning	System	(GPS)	devices	can	be	used	to	assess	location	(Elgethun	et	al.,	2003;	

Rooney	et	al.,	2012),	but	these	tools	tend	to	have	a	relatively	high	power	consumption	and	

accuracy	can	suffer	in	regions	with	certain	geographic	characteristics	and,	perhaps	more	

crucially,	indoors.		Radio	Frequency	Identification	(RFID)	tags	can	be	used	as	binary	room-

location	indicators,	but	users	must	place	their	small	‘passive’	type	badges	close	to	the	RFID	

receiver,	making	compliance	a	concern.		Larger	‘active’	RFID	badges	that	use	a	battery	to	

increase	transmission	power	have	been	shown	to	perform	well	in	indoor	location	testing	(Ni	et	

al.,	2004),	and	would	be	a	viable	technology	if	the	additional	logging	capabilities	conferred	by	

the	phones	are	not	needed.		Costs	are	also	generally	higher	than	Beacon	systems.	

	 Allen-Piccolo	et	al.	(2009)	introduced	an	ultrasound-based	time-activity	monitoring	

platform	(UCB-TAMS)	for	cookstove	applications	that	displayed	promising	results.		Ultrasound	

has	lower	attenuation	than	Bluetooth,	improving	signal	consistency	in	difficult	geometries	or	

crowded	spaces,	but	such	systems	have	not	come	into	widespread	use.		As	used	in	their	study,	

one	receiver	is	placed	in	each	room	of	interest,	and	the	users	wear	the	ultrasonic	transmitters	

on	the	outside	of	their	clothing.		A	receiver	and	three	transmitters	were	reported	to	cost	$80	

when	purchased	at	scale,	very	similar	to	the	cost	of	the	system	presented	here.	We	were	

unable	to	perform	a	direct	comparison	between	the	systems	due	to	UCB-TAMS	unavailability.	 		

BLE	Beacon	technology	appears	well	suited	for	indoor	localization	in	cookstove	studies	

as	it	offers	a	simple	measurement	principle,	system	flexibility,	commodity	pricing	for	the	

hardware,	and	the	ability	to	use	the	phone	for	additional	monitoring	tasks,	such	as	acceleration	



 

 

89 

(compliance	monitoring,	and	potentially	activity	classification),	real-time	data	sharing,	and	GPS,	

which	can	help	identify	important	non-home	pollution	source	locations.		Previous	versions	of	

Bluetooth	have	been	studied	extensively	for	indoor	localization	(e.g.	Bandara	et	al.,	2004;	

Hossain	and	Soh,	2007),	but	with	substantially	different	goals	of	high	accuracy	and	precision,	

usually	involving	more	Bluetooth	transmitters	and	well-characterized	spaces.	In	this	work,	we	

show	that	a	BLE	Beacon	system	contributes	substantially	to	personal	exposure	monitoring	with	

only	zonal	time-location	information,	which	is	simpler	to	obtain.		First,	Beacon	system	

performance	validation	results	are	presented	along	with	relevant	metrics.		We	then	show	that	

distance	categorization	improves	exposure	model	performance	and	adds	valuable	insights	to	

the	subset	of	personal	CO	exposure	samples	available	with	Beacon	data	from	the	REACCTING	

study.			

 Methods	

 Sampling	system	overview	

	 A	total	of	71	48-h	personal	CO	exposure	samples	were	collected,	along	with	BLE	Beacon	

measurements.		Primary	cook	females	were	targeted	for	participation	in	the	BLE	Beacon	

measurements	to	better	understand	the	exposures	and	activity	patterns	of	those	spending	the	

most	time	in	cooking	areas	(Table	5-1).		Thirty-eight	of	those	samples	also	had	cooking	area	

microenvironment	CO	measurements	taken	(see	configurations	as	shown	in	Figure	5-1).		In	this	

work,	we	present	results	for	a	subset	of	personal	exposure	CO	measurements	that	have	

corresponding	BLE	Beacon	measurements,	but	a	full	analysis	of	all	personal	CO	measurements	

is	presented	Piedrahita	et	al.	(2017b,	submitted).			

	

Table	5-1.		Sample	statistics	for	the	home	monitoring	deployments	that	included	BLE	Beacons.		
These	include	number	of	deployments,	average	sampling	duration	of	48	and	24	h,	number	of	
samples	removed	due	to	faulty	Lascars	CO	monitors.	

		
		

All	available	days	with	
personal	CO	and	
beacon	data	

	'Home	cooking	by	stove	
group'	vs.	'home	not	cooking'	
vs.	'away'	data	set	(Eq.	1)	

Personal	vs.	cooking	
area	CO	by	zones	(Eq.	2)	

Daily	average	personal	vs.	
cooking	area	CO	(Eq.	3)	

Du
ra
tio

n	

Compliant	and	non-
flagged	periods	
deployed	

279	(time-activity	
periods)	 107	(time-activity	periods)	 123	(zone-days)	 38	(days)	

Daily	compliant	
duration	in	hours	
(mean	(stdev))	

19.9	(3.25)	 20.28	(3.6)	 20.94	(3.48)	 20.22	(3.81)	

Unique	participants	 31	 22	 21	 22	
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Ge
nd

er
	c
ov
ar
ia
te
s	

Primary	cook	Females	 228	 101	 115	 36	
Non-primary	cook	
females	 51	 6	 8	 2	

Males	 0	 0	 0	 0	
Female	over	5y	(med,	
stdev,	max,	min)	 38.4,	12.9,	12.3,	73.4	 39.4,	14.2,	73.4,	12.3	 39.4,	14.2,	73.4,	12.3	 39.4,	14.8,	73.4,	12.3	

Female	under	5y	
(med,	stdev,	max,	
min)	

2.1,	.9,	1.9,	4.2	 3.3,	.5,	3.8,	2.9	 3.3,	.5,	3.8,	2.9	 3.3,	.6,	3.8,	2.9	

SE
S	

Poorest	 48	 24	 30	 30	
Poorer	 72	 24	 26	 26	
Poor	 69	 12	 15	 15	
Less	poor	 27	 20	 23	 23	
Least	poor	 63	 27	 29	 29	

Se
as
on

s	

Harmattan	 150	 37	 47	 13	
Hot	dry	 23	 11	 15	 4	
Light	Rainy	 31	 20	 25	 4	
Heavy	Rainy	 75	 39	 36	 14	
Transition	 0	 0	 0	 0	

St
ov
e	
Gr
ou

p	 Control	 31	 14	 15	 6	
Gyapa/Philips	 48	 27	 28	 9	
Philips/Philips	 110	 29	 31	 10	
Gyapa/Gyapa	 90	 37	 49	 13	

	

Microenvironment	air	quality	monitors	(G-Pods,	Boulder	CO,	

mobilesensingtechnology.com)	were	placed	in	the	two	most	used	cooking	areas	in	each	home,	

and	were	equipped	to	measure	CO	and	CO2,	and	in	some	cases,	integrated	PM2.5,	and	total	

VOCs	(Appendix	4;	Dickinson	et	al.,	2015).		Study	participants	carried	personal	CO	monitors	

along	with	Bluetooth-logging	Android	phones.		BLE	Beacons	were	adhered	to	the	G-Pods	to	

provide	distance	estimates	between	participants	and	the	two	primary	cooking	areas.		Any	

personal	location	tracking	device	introduces	serious	ethical	questions,	as	the	potential	for	

misuse	and	exploitation	exists	(Benatar	et	al.,	2002),	so	verbal	consent	was	obtained	from	study	

participants,	after	explaining	the	operation	of	each	instrument	they	carried,	and	participants	

were	also	given	the	option	to	have	their	data	deleted	at	the	end	of	the	sampling	period	if	they	

so	desired.		
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Figure	5-1.		Example	deployment	diagram.		Beacons	were	mounted	on	the	cases	of	the	orange	
G-Pod	pollution	monitors.		Logging	Android	phones	were	worn	by	participants	along	with	
personal	air	quality	monitors.	

 BLE	Beacons	

	 BLE	Beacons	are	small	battery	powered	devices	that	periodically	broadcast	their	MAC	

addresses	and	other	unique	identifying	information.		They	have	found	use	in	a	variety	of	

commercial	applications	requiring	location-based	services,	such	as	advertising,	where	a	phone	

would	perform	a	task	upon	receipt	of	a	BLE	Beacon	signal,	like	offering	an	in-store	coupon.		

Roximity	Model	X	Beacons	(Roximity,	Denver,	CO)	were	used	in	our	study	due	to	their	small	size	

(6.4	x	6.4	x	2.5	cm),	claimed	battery	life	of	5	years,	and	cost	of	$12	(USD)	per	Beacon.	They	

employ	the	Apple	iBeacon	protocol	to	transmit	data,	but	in	our	application,	only	the	Beacon	

MAC	addresses	and	received	signal	strength	indicator	(RSSI)	are	recorded,	so	this	approach	can	

be	used	with	both	iOS	and	Android	devices.		The	phones	record	the	identifying	information	and	

RSSI	from	any	Beacon	within	range	(generally	less	than	100m	in	open	space).		RSSI	is	then	

converted	to	a	distance	measure,	providing	an	estimate	of	distance	from	phone	to	Beacon.			

 BLE	Beacon	Receivers	

#Cookstoves)2015)||)reacc2ng.com) 4)

Beacons)mounted)on)pollu2on)monitors)

Par2cipant)wears)a)phone)
to)log)the)data)along)with)
pollu2on)sensors)

Child)wears)a)beacon)to)
show)distance)to)mother)

SUM)

SUM)
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	 Phicomm	C230w	Android	phones	served	as	Bluetooth	receivers	and	data	loggers	($56	

(USD)	per	unit).		A	custom	Android	application	was	written	and	installed	on	each	phone	to	log	

the	Beacon	address	data,	Beacon	RSSI,	as	well	as	acceleration,	GPS,	and	GPS	accuracy	(GPS	can	

be	manually	disabled).		Data	was	logged	every	six	seconds	to	the	phone’s	microSD	card	in	the	

JSON	format.		The	app	can	be	configured	to	upload	data	to	a	remote	server,	but	data	was	

downloaded	manually	in	our	study.		The	phone	battery	was	swapped	for	an	external	6.6Ah	li-

ion	battery	pack,	yielding	50-60	hours	of	continuous	use.		Phones	with	battery	packs	weighed	

280g,	and	were	consistently	placed	in	the	outer	pockets	of	the	personal	sampling	pack.	

 BLE	Beacon	Data	Processing	

	 RSSI	is	sensitive	to	path	effects	like	room	geometry,	and	obstructions	in	the	

measurement	area,	including	people,	since	water	is	a	strong	signal	attenuator	for	Bluetooth,	

transmitting	on	the	2.4GHz	band.		Considering	such	limitations,	many	applications	use	distance	

categories.		Here,	we	used	zones	defined	as	‘near’	(<15m),	‘medium-near’	(15-30m),	‘medium-

far’	(30-50m),	‘far’	(50-90m),	and	‘within	signal	range’	(>90m).		

	 To	understand	signal	measurement	uncertainty,	we	can	first	look	at	the	results	of	a	

simple	test	we	conducted	outdoors	with	one	phone	and	one	Beacon.		When	the	body	is	directly	

between	a	phone	and	Beacon,	the	signal	attenuation	is	equivalent	to	predicting	a	change	in	

distance	from	~1	meter	to	~10	meters.		When	performed	indoors,	the	results	are	usually	less	

pronounced,	due	to	signal	reflectance	aiding	the	Beacon	signal	to	reach	the	phone.		The	two	

primary	modes	of	localization	miscategorization	are	1)	high	frequency	attenuation,	or	a	

‘teleportation’	effect,	where	phones	appear	to	jump	between	distances	faster	than	physically	

probable,	and	2)	sustained	attenuation	that	consistently	places	the	user	farther	from	the	

Beacon	than	they	are.		The	first	issue	can	be	mitigated	with	algorithms	(Madhavapeddy	et	al.,	

2005;	Zanca	et	al.,	2008).		The	second	issue	was	not	addressed	in	this	work,	which	may	have	

resulted	in	bias,	but	this	effect	can	be	mitigated	with	more	BLE	emitters	or	receivers	

throughout	the	study	area,	or	if	other	types	of	sensors	are	also	used.		

	 We	developed	a	filtering	algorithm	to	reduce	the	high-frequency	attenuation	effects,	as	

previous	works	have	mainly	focused	on	precise	within-room	location	or	room	categorization	

(Zhou	et	al.,	2006;	Dahlgren	and	Mahmoud,	2014)	rather	than	distance	time	series	
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categorization.		Our	approach,	the	‘maximum	velocity’	(MV)	filter,	assigns	greater	weight	to	

higher	signal	strength	data	by	defining	a	maximum	change	in	distance	over	time	(an	‘expected	

walking	velocity’),	and	recursively	adjusts	the	signal	strength	values	i	according	to	the	previous	

value	i-1.		The	expected	velocity	here	was	set	to	ß	=	1	m/s,	and	with	∆t	the	time	between	

samples,	the	predefined	maximum	distance	is	then	dmax	=	ß∆t,	giving	di	=	di-1	+	ß∆t.	For	

example,	as	we	collected	six-second	data,	if	consecutive	distance	readings	are	5m	and	25m,	the	

second	data	point	would	be	modified	to	d2	=	5m	+	1m/s*6s	=	11m.		Minute	medians	are	then	

extracted	from	this	data	to	further	reduce	noise	and	align	with	other	minute-data.		Participant	

compliance,	meaning	the	daytime	hours	when	participants	were	predicted	to	be	wearing	the	

phone	and	air	sampling	equipment	was	estimated	at	81.9%	using	the	variability	in	the	

Bluetooth	signals	over	time	(Piedrahita	et	al.,	2017b,	submitted;	Appendix	4).	

 Calibration	and	Validation	

	 In	July,	2016,	the	Beacon	RSSI	values	were	calibrated	against	distance,	and	validation	

testing	took	place.		We	first	performed	testing	in	an	open	field	as	a	base	case	to	assess	

calibration	reliability	and	the	effectiveness	of	our	classification	scheme.		Two	phones	were	

placed	in	the	center	of	a	set	of	concentric	circles	at	radii	of	2m,	5m,	10m,	20m,	and	40m,	and	a	

person	wearing	two	Beacons	on	either	hip	walked	slowly	and	randomly	throughout	each	zone	

for	20	minutes.		These	zone	categories	were	different	(smaller)	than	those	used	in	the	models	

for	the	field	data	because	we	found	that	in	the	field,	sustained	attenuation	interference	effects	

observed	in	typical	homes	resulted	in	unbalanced	distributions	over	the	distance	categories,	

and	we	wished	to	balance	them.			A	second	validation	test	was	later	performed	in	a	location	

with	additional	obstructions	(Appendix	4).	

	 Before	the	start	of	each	20-minute	testing	period,	there	were	periods	when	the	tester	

stood	still	at	the	intersections	of	the	areas,	in	order	to	generate	known	calibration	data.		The	

data	from	both	Beacons	and	both	phones	was	aggregated	to	generate	a	single	calibration	

function	for	all	data	collected	during	validation	testing	as	well	as	throughout	the	study	

deployments	in	Ghana.		Details	on	BLE	Beacon	distance	calibrations	are	presented	in	Appendix	

4.		
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	 Classification	into	zones	was	performed	using	a	single	Beacon,	as	the	deployment	in	

Ghana	did.		However,	we	also	tested	the	performance	of	a	merged	signal	that	combined	the	

two	Beacons	worn	on	the	hips,	by	selecting	the	stronger	signal	at	each	time	point,	then	

applying	the	MV	filter.		This	approach	could	be	used	to	reduce	the	multi-path	and	attenuation	

effects	in	future	deployments,	though	if	participants	carry	the	Beacons	rather	than	the	phone,	

they	would	miss	out	on	benefits	of	wearing	the	phone,	such	as	user	GPS	and	acceleration	

logging.		Classification	performance	was	assessed	using	the	matching	success	rate	and	the	rate	

at	which	the	predicted	classification	was	within	one	zone	of	the	correct	zone,	for	all	available	

combinations	of	phones	and	Beacons.	

Validation	testing	for	the	‘open	field’	deployment	and	all	combinations	of	phones	and	

Beacons,	when	using	the	MV	filter	and	data	from	a	single	Beacon,	showed	correct	classification	

of	zones	on	34.7%	of	observations,	and	65.3%	of	observations	were	within	one	zone	of	the	

correct	zone.		In	the	later	validation	test	with	additional	obstructions,	those	classification	rates	

were	28.2%	and	68.6%,	respectively.		The	classification	rates	when	using	merged	data	from	

both	Beacons	on	the	hips	were	53.2%	and	89.5%	for	correctly	classified,	within-one	

classification	for	the	‘open	field’	test,	and	a	similar	46.0%	and	91.3%	for	the	validation	set	with	

obstructions	(Appendix	4,	Figures	A4-2	and	A4-3).	

 CO	exposure	as	a	function	of	time-activity	category	

The	inclusion	of	time-activity	data	allows	us	to	gain	additional	information	about	how	

different	cookstoves	and	cooking	behaviors	impact	CO	exposure.		To	help	illustrate	this,	a	time	

series	of	Beacon	proximity	data	along	with	personal	and	cooking	area	CO	is	presented	in	Figure	

5-2.		The	data	show	a	clear	relationship	between	personal	CO	exposure	and	cooking	area	CO	

when	the	user	is	at	home,	and	sharp	reduction	of	personal	CO	when	the	user	leaves	home	at	

13:00,	as	the	home	CO	level	remains	elevated.		The	home	also	appears	to	use	the	Philips	stove	

more	than	the	TSFs	throughout	the	day.		This	user	is	unique	in	that	they	do	not	spend	the	night	

within	range	of	the	cooking	area,	either	spending	it	in	another	home,	or	obstructed	enough	to	

be	out	of	range.		It	can	also	be	seen	that	periods	spent	near	the	stove,	as	defined	by	the	nearest	

proximity	values,	have	high	variability.		It	is	difficult	to	discern	whether	this	is	due	to	real	

movement	or	teleportation	effects,	and	additional	Beacons	could	reduce	this	uncertainty.	
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Figure	5-2.		Time	series	showing	personal	and	cooking	area	CO	concentration	with	Beacon	
proximity	data	to	each	cooking	area.		The	cooking	area	monitor	and	their	respective	Beacons	
were	named	G8	and	G9.		Lower	plots	show	proximity	to	the	given	cooking	areas,	and	the	
number	of	samples	observed	in	each	zone,	or	in	the	case	of	>zone	4,	when	signal	is	weak	or	
lost.		Zone	thresholds	were	defined	as	15m,	30m,	50m,	and	90m.	

	 To	quantify	some	of	these	features,	a	mixed	effects	regression	model	was	used	to	

determine	the	effect	of	the	intervention	on	CO	exposure	for	various	time-activity	categories.		

Specifically,	in	Equation	5-1,	log(Mean	personal	COijk)	represents	the	log-transformed	average	
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CO	concentration	on	day	i	for	individual	j,	in	time-activity	k.		The	‘time-activity’	categorical	

variable	is	defined	using	the	Beacon	proximity	data	in	conjunction	with	available	

microenvironment	CO	data,	and	has	six	possible	states:	State	1	(“Away	From	Home”):	

participant	is	considered	‘away	from	home’	if	more	than	90m	away	from	both	cooking	areas;		

State	2	(“Home	Not	Cooking”):	participant	is	within	90m	of	any	cooking	area	but	no	cooking	

appears	to	be	in	progress;	and	States	3-6	(“Home	Cooking”):	for	each	of	the	four	stove	groups,	

participant	is	within	90m	of	any	cooking	area	in	the	home,	and	any	cooking	area	CO	

measurement	in	the	home	is	above	10ppm.	

To	determine	the	effect	of	stove	group	on	personal	exposure	at	home	when	the	stoves	

are	in	use,	the	‘home	cooking’	category	is	interacted	with	stove	group	giving	categories	of	

‘control	group	home	cooking’,	‘Gyapa/Gyapa	group	home	cooking’,	‘Philips/Philips	group	home	

cooking’,	and	‘Gyapa/Philips’	home	cooking.	Covariates	such	as	socioeconomic	status	and	

season	were	too	sparse	in	some	categories	to	include.		The	individual	random	intercept	αj	

accounts	for	the	correlation	within	subjects	due	to	repeated	measures,	and	eij	represents	the	

random	variation	from	subject	to	subject.		More	than	12	hours	of	data	was	required	of	the	daily	

data	(50%	data	completion)	for	inclusion	in	the	model,	as	the	primary	goal	of	these	models	was	

to	assess	the	system	rather	than	assess	exposure	over	the	entire	intervention.		
	

Log(Mean	personal	COijk)	=	ß0	+	ß1(TimeActivityijk)	+	αj	+	eijk	 Equation	5-1	

	

		 This	model	is	useful	for	identifying	time-activity	categories	with	high	average	exposures.		

However,	it	is	also	beneficial	to	also	consider	time	spent	in	each	time-activity	category	to	

identify	where	the	most	exposure	comes	from	each	day.		Equation	5-1	was	thus	modified	by	

changing	the	dependent	variable	to	total	exposure	by	daily	time-activity	(ppm-hr)	(Equation	

5-2).	This	approach	highlights	nuances	in	different	cooking	behaviors.	For	example,	if	one	stove	

group	has	very	high	average	exposures	near	the	stove,	but	does	not	spend	as	much	time	near	

that	stove,	total	exposure	levels	may	be	different	than	stoves	that	have	the	opposite	effect.	
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Log(Total	personal	COijk)	=	ß0	+	ß1(TimeActivityk)	+	αj	+	eijk	 Equation	5-2	

	

 	Personal	vs.	microenvironmental	CO	modeling	

In	addition	to	the	exposure	assessment	models	described	in	Equation	5-1	and	Equation	

5-2,	we	also	investigated	average	personal	CO	exposure	as	a	function	of	the	user’s	distance	

away	from	each	cooking	area	and	the	cooking	area	CO	measurements	(see	Equation	5-3).	This	

approach	reflects	previous	efforts	to	estimate	personal	exposures	by	assigning	mean	area	

concentrations	from	different	areas	in	a	home,	using	time-activity	budgets	(Dionisio	et	al.,	

2012a;	Zuk	et	al.,	2007;	Cynthia	et	al.,	2008;	Özkaynak	et	al.,	1999).		Such	an	approach	would	be	

expected	to	perform	better	with	precise	time-activity	budgets	from	a	BLE	Beacon	system.		Here,	

we	show	that	this	is	the	case	when	looking	at	the	cooking	area	microenvironment	by	isolating	

exposures	when	the	users	are	at	home.		The	dependent	variable	was	the	log	transformed	

average	personal	CO	exposure	for	each	user	deployment	i,	at	each	distance	zone	j	from	a	

cooking	area,	using	only	observations	when	the	participant	was	within	zone	4	(based	on	the	BLE	

Beacon	distance	data).		The	independent	variable	was	cooking	area	CO,	linearly	scaled	by	

distance	zone	so	as	to	account	for	dispersion	(e.g.	100%	of	the	cooking	area	CO	was	applied	if	

the	user	was	in	the	nearest	zone	to	the	cooking	area,	and	80%	if	in	the	second	nearest),	and	

then	log	transformed.		An	exponential	weighting	scheme	was	also	tested	to	reflect	the	Gaussian	

dispersion	of	CO	through	the	cooking	environment,	but	resulted	in	no	significant	difference	in	

performance,	likely	due	to	the	naturally	high	variability	in	the	environment.	If	multiple	cooking	

areas	were	monitored,	we	used	a	weighted	average	of	the	cooking	areas	based	on	the	

participant’s	proximity	to	each.		It	is	implicitly	assumed	that	concentrations	within	each	zone	

are	uniformly	distributed,	and	average	exposures	within	each	zone	are	independent	of	one	

another.	
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Log(Personal	COijk)	=	ß0	+	ß1(weighted	cooking	area	COijk)	+	

αj	+	eijk	
Equation	5-3	

	

As	a	contrast,	we	also	examine	how	the	exposure	assessment	model	results	change	if	the	

Beacon	proximity	data	were	removed	(Equation	5-4).		To	do	so,	log	transformed	daily	average	

personal	CO	concentration	was	regressed	against	log	transformed	daily	average	cooking	area	

CO	concentration.		Thirty-eight	daily	samples	were	available	for	analysis	in	which	Beacon	data	

was	also	collected.	

	

Log(Personal	COij)	=	ß0	+	ß1(Daily	average	cooking	area	COij)	

+	αj	+	eij	
Equation	5-4	

	

 Results	

The	BLE	Beacon	system	allowed	us	to	assess	and	compare	participant	time-activity	

characteristics.		On	average,	participants	spent	8.5%	(±	7.9%)	of	their	sampling	days	at	home	

while	cooking,	51.4%	(±	30.5%)	of	their	time	at	home	and	not	cooking,	and	40.1%	(±	32.1%)	of	

their	time	away	(recall	that	‘away’	is	defined	as	beyond	zone	4	(90m),	and	can	still	be	within	

signal	range).		These	results	were	calculated	using	the	data	for	which	cooking	area	CO	was	

monitored.		For	the	data	set	in	which	only	CO	and	Beacon	data	was	collected	(33	additional	

days,	presented	as	‘all	available	data’	in	column	1	of	Table	5-1),	24.9%	of	the	day	was	spent	

within	zone	1,	14.4%	was	spent	in	zone	2,	13.4%	was	spent	in	zone	3,	14.8%	was	spent	in	zone	

4,	and	39.3%	was	spent	beyond	zone	4	(Figure	5-3).		We	observed	some	participants	with	over	

90%	of	their	time	spend	in	zone	1,	which	seems	unreasonable,	and	could	be	indicative	of	non-

compliance,	suggesting	that	additional	compliance	filtering	steps	may	be	appropriate	in	future	

work.	Time-activity	variability	among	users	was	high,	changing	with	tasks	and	behaviors	

depending	on	household	needs.		Figure	5-3	shows	that	32.6%	of	total	daily	exposure	(ppm-hr)	

was	experienced	within	zone	1,	30.7%	was	experienced	in	zones	2-4,	and	36.7%	was	incurred	

beyond	zone	4.		
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Figure	5-3.	Time	spent	in	each	zone	as	percentage	of	the	day.		Marker	colors	indicate	the	day’s	
mean	exposure	to	CO.		Some	participants	spent	nearly	the	entire	day	within	zone	1,	leading	to	
questions	about	compliance.		Additional	sensor	streams	could	improve	our	measurement	of	
compliance	in	future	work.	

Directly	analyzing	average	exposure	by	the	zone,	the	daily	median	and	average	

exposures	were	highest	in	the	near-cookstove	regions,	decreasing	with	increasing	distance	from	

the	cooking	areas,	although	this	decreasing	trend	was	not	statistically	significant	(Figure	5-4).	

	 	

	

Figure	5-4.		Mean	exposure	distributions	categorized	by	zones.		Marker	colors	indicate	the	
participant’s	average	exposure	from	the	entire	day,	and	red	stars	represent	means	by	zone.		
Slope	of	decreasing	average	exposure	by	zone	was	not	found	to	be	statistically	significant	by	
univariate	linear	regression.	
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 CO	personal	exposure	results	using	home	vs.	away	categorization	

	 The	reference	category	from	Equation	5-1,	which	is	the	control	group	at	home	and	

cooking,	had	expected	exposure	levels	of	3.62ppm	(0.78,	16.75ppm).		Relative	to	the	reference	

group,	the	three	intervention	groups	had	large	but	not	statistically	significant	reductions	in	

exposure	during	cooking	periods	at	home.		The	Gyapa/Gyapa	group	had	82.4%	lower	exposure	

(0.64ppm,	(0.10,	4.05),	p	=	0.07),	the	Philips/Philips	group	had	62.4%	lower	exposure	(1.36ppm,	

(0.20,	9.20),	p	=	0.31),	and	the	Philips/Gyapa	group	had	81.1%	lower	exposure	(0.69ppm,	(0.10,	

4.62),	p	=	0.23).		Exposures	in	the	‘home	not	cooking’	and	‘away’	categories	accounted	for	

95.0%	(0.18	ppm	(0.03,	0.94),	p	=	0.00)	and	96.5%	(0.13ppm	(0.02,	0.65),	p	=0.00)	lower	

exposure	than	the	reference	group,	respectively.		While	some	of	these	differences	are	not	

significant	statistically,	the	dramatic	difference	in	estimates	is	notable,	and	may	be	significant	

with	larger	sample	sizes.		See	Table	5-2	for	results.	

	 Modeling	integrated	exposure	by	time-activity	category	(Equation	5-2)	yielded	similar	

results,	indicating	that	the	categories	with	the	highest	average	exposures	were	also	

contributing	to	most	of	the	personal	exposure	(Table	5-2).		The	Gyapa/Gyapa,	Philips/Philips,	

and	Gyapa/Philips	homes	were	respectively	responsible	for	94.5%	(p	=	0.01),	71.8%	(p	=	0.30),	

and	92.7%	(p	=	0.01)	lower	integrated	exposures	relative	to	the	control	group,	who	experienced	

2.45ppm-hr	of	integrated	exposure	(0.53,	4.37),	while	cooking	at	home.		‘Away’	and	‘home	not	

cooking’	had	integrated	exposure	contributions	that	were	89.0%	and	96.0%	lower	than	the	

control	group’s	total	daily	cooking	exposure.	
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Table	5-2.		Summary	of	results	from	Equation	5-1	and	Equation	5-2,	modeling	personal	CO	
exposure	by	time-activity	categories.	

	

 Personal	CO	exposure	assessment	using	cooking	microenvironment	CO	

	 Model	results	using	Equation	5-4	indicate	that	on	a	daily	average	basis,	the	log	of	

cooking	area	microenvironment	CO	is	a	significant	predictor	of	the	log	of	personal	CO	exposure	

(p	<	0.01),	accounting	for	28%	of	within-subject	variability	(R2adjusted	=	0.28).		The	coefficient	on	

the	log	of	weighted	area	CO	was	0.81	(CI	=	0.40,	1.21),	corresponding	to	a	124.3%	(49.9%,	

235.6%)	increase	in	personal	CO	for	an	increase	of	one	on	the	log	of	the	weighted	area	CO.		

	 The	model	from	Equation	5-3	(Appendix	4,	Table	A4-1),	fitting	the	log	of	average	

personal	CO	exposure	with	the	BLE	Beacon	zone-weighted	cooking	area	CO	measurements	

(Equation	5-3,	Figure	5-5),	was	much	improved	over	the	daily	average	model,	accounting	for	

63%	of	within-subject	variability.		With	Equation	5-3,	there	was	a	173.5%	(124.8%,	232.9%)	

increase	in	personal	at-home	expected	CO	for	every	decrease	of	1	on	the	log-transformed	

		
Average	personal	exposure	vs.	'home	cooking',	'home	

not	cooking',	and	'away'	(Eq.	5-1)	
Total	integrated	personal	exposure	vs.	'home	cooking'	,	'home	

not	cooking',	and	'away'	(Eq.	5-2)	

		

Expected	
value	ppm	
(95%	CI)	

Coefficient	
(95%	CI)	

%	change	
(95%	CI)	

P-
value	

Expected	
value	
(ppm*hr)	 Coefficient	(95%	CI)	

%	change	
(95%	CI)	

P-
value	

Intercept	
(control	group	
home	cooking)	

3.62	(.78,	
16.75)	

1.29	(-0.24,	
2.82)	 NA	 0.10	

11.57	(1.69,	
79.07)	 2.45	(.53,	4.37)	 NA	 0.01	

Gyapa/Gyapa	
Home	cooking	

.64	(0.10,	
4.05)	

-1.74	(-3.58,	
0.11)	

-82.4	(-97.2,	
11.7)	 0.07	

.64	(.06,	
6.45)	 -2.9	(-5.22,	-.58)	

-94.5	(-99.5,	-
44.2)	 0.01	

Philips/Philips	
Home	cooking	

1.36	(0.20,	
9.2)	

-0.98	(-2.89,	
0.93)	

-62.4	(-94.4,	
153.8)	 0.31	

3.26	(.30,	
35.89)	 -1.26	(-3.66,	1.13)	

-71.8	(-97.4,	
210.3)	 0.30	

Gyapa/Philips	
Home	cooking	

0.69	(0.10,	
4.62)	

-1.67	(-3.57,	
0.24)	

-81.1	(-97.2,	
27.6)	 0.09	

.84	(.08,	
9.28)	 -2.62	(-5.01,	-.22)	

-92.7	(-99.3,	-
19.7)	 0.03	

Home	not	
cooking	

0.18	(0.04,	
.94)	

-2.99	(-4.62,	
-1.35)	

-95.0	(-99.0,	
-74.2)	 0.00	

1.27	(.16,	
9.83)	 -2.21	(-4.26,	-.16)	

-89.0	(-98.6,	-
15.0)	 0.03	

Away	from	
home	

0.13	(0.02,	
0.65)	

-3.36	(-4.99,	
-1.72)	

-96.5	(-99.3,	
-82.2)	 0.00	

.46	(.06,	
3.59)	 -3.22	(-5.27,	-1.17)	

-96.0	(-99.5,	-
69.0)	 0.00	

		 Eq.	1a	 		 		 		 Eq.	1b	 		 		 		
Random	effect	
by	individual	
variance	 0	 		 		 		

0	
	 		 		 		

Random	error	
variance	

2.98	(2.28,	
3.89)	 		 		 		

4.69	(3.59,	
6.14)	 		 		 		

Adjusted	R-
squared	 0.20	 		 		 		 0.08	 		 		 		
N	 107	 		 		 		 107	 		 		 		
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weighted	cooking	area	CO	(as	the	participant	got	closer	to	the	cooking	area).		The	random	

intercept	variance	was	0.35,	and	intra-class	correlation	coefficient	was	0.26.			

	

	

	
Figure	5-5.		Relationship	between	at-home	personal	and	cooking	area	CO	using	Beacon	weight-
derived	cooking	area	CO,	using	Equation	5-3.	

	

 Discussion		

 Personal	exposure	models	

	 Model	results	using	Equation	5-1	(Table	5-2)	showed	significantly	higher	average	

exposures	during	‘home	cooking’	in	the	control	group	relative	to	the	‘home	not-cooking’	and	

‘away’	categories.		No	significant	differences	were	found	between	the	control	group	and	the	

intervention	groups	for	the	‘home	cooking’	data,	though	the	effect	estimates	showed	
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substantially	lower	exposure	for	all	groups	relative	to	the	control	group	(at	least	62.4%	lower).		

This	suggests	that	the	intervention	may	have	served	to	reduce	CO	exposure,	and	low	statistical	

significance	is	due	to	low	sample	sizes	and	high	variability.		Analysis	of	the	daily	average	values	

for	this	same	data	set	showed	lower	exposure	for	the	intervention	groups,	but	by	smaller	

margins,	and	still	not	significant	(Appendix	5).		Analysis	of	the	complete	CO	exposure	data	set	

carried	out	in	Piedrahita	et	al.	(2017b,	submitted),	again	with	daily	averages,	showed	lower	

exposure	for	the	three	intervention	groups,	where	the	largest	reduction	was	for	the	

Philips/Philips	group	at	14.9%	(p	=	0.40),	the	Gyapa/Philips	group	was	0.1%	lower	(p	=	1.00),	

and	the	Gyapa/Gyapa	group	was	5.6%	lower	(p	=	0.78).		Modeling	the	effect	of	stove	group	

using	daily	averages	with	only	the	data	available	with	Beacons	yielded	much	larger	reductions	

relative	to	the	stove	group,	so	the	magnitude	of	effects	seen	in	the	results	from	Equation	5-1	

are	likely	also	a	consequence	of	the	small	sample	size	(Appendix	4.7).		The	intervention	

cookstoves	may	have	also	decreased	in	performance	over	the	course	of	the	intervention,	

perhaps	reflected	in	the	more	modest	exposure	reduction	in	the	Philips/Philips	group	here,	as	

the	Beacon-supported	measurements	were	collected	in	the	latter	half	of	the	study	period.			

	 The	importance	of	home-level	air	pollution	sources	thus	appears	to	be	quite	substantial,	

but	it	is	important	to	consider	that	the	average	exposures	were	based	on	different	time	

durations,	and	cooking	takes	up	less	time	than	the	‘home	not	cooking’	and	‘away’	categories.		

Model	results	using	Equation	5-2	reflect	this,	and	summary	statistics	presented	in	Figure	5-3	

indicate	that	36.7%	of	average	daily	exposure	is	experienced	beyond	zone	4.		Source	

apportionment	of	PM2.5	in	the	same	study	showed	that	two	cooking-related	sources	accounted	

for	a	median	15.3%	of	elemental	carbon	(EC)	and	9.2%	of	organic	carbon	(OC)	in	personal	and	

cooking	area	concentrations,	with	other	important	sources	including	a	biomass	combustion	

source	that	appeared	to	be	more	regional	in	nature,	and	vehicular	combustion	(Piedrahita	et	

al.,	2017).		It	should	be	noted	that	neither	total	daily	PM2.5,	nor	EC	and	OC	have	been	found	to	

be	well	correlated	with	CO	in	rural	settings	in	personal	or	microenvironmental	measurements	in	

the	region	(Dionisio	et	al.,	2012a;	Piedrahita	et	al.,	2017b,	submitted).			

	 Results	from	the	models	using	Equation	5-3	and	Equation	5-4	show	that	

microenvironment	CO	measurements	coupled	with	cooking	area	proximity	data	can	
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substantially	improve	prediction	of	personal	exposure	using	area	measurements,	even	in	areas	

with	high	variability	in	cooking	location,	ventilation,	and	cooking	area	geometry.		

	 While	the	system	we	have	developed	shows	promising	results,	further	testing	should	be	

performed	to	assess	performance	and	limitations	in	other	regions,	household	member	types,	

seasons,	and	with	other	pollutants.		Additionally,	the	relationship	is	likely	to	vary	based	on	

regions	and	cooking	behaviors,	so	pilot	studies	should	always	be	performed	to	determine	

model	coefficients	and	quality	of	fit.	

 Conclusions	

	 With	a	relatively	low	budget	of	$600	for	5	sets	of	equipment,	we	were	able	to	add	time-

activity	data	that	improved	our	understanding	of	personal	CO	exposure	in	REACCTING.		There	

were	significant	inter-user	differences	by	exposure	location,	and	thus	exposure	sources.		One	

mode	of	user	had	CO	exposure	tightly	correlated	with	distance	from	the	main	cooking	area,	

while	another	experienced	the	majority	of	their	exposure	outside	the	home.		The	results	

presented	here	demonstrate	the	ability	to	bypass	potential	sources	of	error	and	cofounding,	

and	more	accurately	measure	CO	exposure	differences	due	to	the	intervention.		Such	a	system	

could	even	be	used	to	customize	exposure	reduction	strategies	to	different	types	of	users.	

	We	find	that	even	in	the	dynamic	and	predominantly	outdoor	homes	in	Northern	

Ghana,	using	the	time-activity	data	provided	reasonably	good	performance	in	predicting	

personal	exposure.		We	would	expect	improved	performance	in	places	with	tighter	building	

envelopes,	more	time	spent	in	the	main	cooking	area,	and	fewer	sources	of	combustion	

emissions.		In	addition	to	improved	exposure	modeling	and	time-activity	apportionment,	

variability	within	individuals	can	be	explored	in	detail.		While	so	much	information	may	be	

difficult	to	synthesize	into	a	model	due	to	the	high	variability,	and	need	for	much	more	data	to	

do	it	well,	having	such	data	provides	great	potential	going	forward.			
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Laboratory	assessment	of	electrochemical	carbon	monoxide	monitors	

	

Ricardo	Piedrahita,	Yolanda	Hagar,	Michael	Hannigan	

	

Abstract	

	 Lascar	USB-CO	monitors	have	been	widely	used	in	recent	personal	exposure	studies	due	

to	their	low	cost,	low-power	consumption,	ease	of	use,	simple	calibration,	and	stability	over	

time.		However,	in	some	field	trials,	we	observed	changes	in	sensor	sensitivity	and	increases	in	

response	time	as	the	sensors	aged.		In	that	study,	we	were	interested	in	peak	mixing	ratios	and	

average	exposures	over	sampling	periods.		Changes	in	response	time	can	affect	the	average	

exposure	substantially,	and	as	such	we	sought	to	understand	the	causes	and	magnitudes	of	

such	changes	in	sensing	characteristics.		We	thus	conducted	laboratory	experiments	during	an	

attempt	to	accelerate	the	aging	of	new	sensors	using	high	CO	exposure	and	drying	of	the	

electrolyte.		We	found	significant	changes	in	response	times	with	cumulative	exposure	of	the	

sensor,	and	differences	between	individual	sensors.	

	 We	also	used	the	laboratory	data	to	compare	three	approaches	for	generating	and	

applying	calibrations	to	inform	expected	performance	in	the	field.		The	first	method,	for	optimal	

measurement	accuracy,	and	ideal	for	a	study	with	ample	resources,	was	a	multi-point	

calibration	on	the	day	of	every	deployment.		The	second	method,	useful	for	studies	with	more	

limited	resources,	used	only	calibrations	from	the	start	and	end	of	the	five-month	period,	and	

applied	an	interpolated	sensitivity	to	the	data	in	between.		The	final	approach	used	the	raw	

value	directly	generated	by	the	Lascar	CO	monitor.		We	found	average	exposure	errors	of	1.9%	

and	1.2%	for	the	first	and	second	calibration	approach,	respectively,	and	19.1%	error	using	the	

raw	data.	

 Background	and	motivation	

	 Electrochemical	gas	sensors	are	widely	used	in	personal	exposure	monitoring,	owing	to	

their	low	power	operation,	small	size,	relatively	low	cost	($20-100,	typically),	linear	response,	

calibration	stability	over	time,	and	fast	response	times.		Sensing	challenges	can	include	cross-
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sensitivities	to	non-target	gases,	and	non-linearity	with	temperature	and	humidity.		Practical	

challenges	include	a	lifetime	on	the	order	of	one	to	two	years	(though	the	sensor	used	in	this	

work	lists	a	lifetime	of	seven	years;	Nemoto,	2016)	due	to	degradation	of	sensor	electrodes	and	

drying	of	the	electrolyte	solution,	which	can	also	change	sensing	properties	nonlinearly	over	

time.		Previous	works	using	real-time	and	dosimeter	tube	CO	measurements	abound	in	the	

cookstove	literature,	but	there	has	been	limited	work	published	on	sensor	characteristics,	like	

calibration	of	real-time	monitors,	agreement	of	duplicates,	sensor	response	times,	and	

response	linearity	over	time.		Edwards	et	al.	(2007)	and	Smith	et	al.	(2010),	presented	

calibration	methods	for	the	HOBO	CO	logger	(Onset	Computer	Corp)	similar	in	measurement	

principal	to	the	Lascar	USB-CO	used	in	this	work.		Cheng	et	al.	(2010)	and	Young	and	Jones	

(2014)	have	characterized	the	response	and	decay	times	of	CO	data	loggers	(Langan,	and	Lascar	

USB-CO,	respectively)	as	a	means	of	correcting	the	time	series,	especially	in	response	to	short	

duration	peaks	that	can	be	underestimated	due	to	sensor	dynamics.	Here,	we	assess	the	

stability	of	characteristic	response	times	as	well	as	calibration	coefficients	with	a	batch	of	ten	

Lascar	USB-CO1000	monitors	tested	from	March	31,	2016	to	October	7,	2016,	under	laboratory	

conditions.	

	 Changes	in	sensitivity	and	baseline	drift	can	be	adjusted	for	using	linear	regression	

calibrations.		However,	measurement	of	sensor	response	times	requires	a	more	involved	

experimental	setup.		We	present	the	extent	of	the	potential	error	derived	from	these	effects	as	

a	function	of	total	previous	exposure	experienced	by	the	sensor,	assess	inter-monitor	

variability,	and	offer	practical	advice	for	maintaining	data	quality	in	challenging	study	

conditions.		

 Electrochemical	sensor	operation	

	 The	Nemoto	NAP-505	sensor	used	in	the	Lascar	CO-USB	allows	gas	to	diffuse	through	a	

filter	membrane,	then	through	a	capillary,	a	charcoal	filter,	and	finally	to	the	working	electrode	

where	CO	is	oxidized	with	H2O	to	form	CO2,	2H+	and	2e-.		The	2H+	migrates	into	an	acidic	

electrolyte	solution	bathing	the	electrodes,	while	the	electrons	are	measured	with	a	specially	

designed	potentiostat	circuit.		This	circuit	then	provides	electrons	to	a	counter	electrode	to	

maintain	an	equal	potential	between	both	electrodes.		At	the	counter	electrode,	atmospheric	
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oxygen	reacts	with	hydrogen	and	electrons	to	form	H2O,	replenishing	the	electrolyte.		A	

reference	electrode	is	maintained	at	a	constant	potential	to	help	regulate	the	working	

electrode.	The	manufacturer	states	that	the	time	to	normal	operation	is	under	two	minutes	for	

a	sensor	stored	for	six	months	(Nemoto,	2016).		The	manufacturer	and	peer	reviewed	works	

have	demonstrated	high	linearity	for	various	types	of	electrochemical	CO	sensors,	within	mixing	

ratios	of	interest	for	personal	exposure	measurements	(0	to	over	100	ppm)	(Buck	et	al.,	2013).		

Response	times	were	characterized	for	three	different	electrochemical	sensor	types	in	that	

work,	with	T90	times	averaging	11.5	to	33.8	seconds.		They	found	no	correlation	between	T90	

response	times,	and	the	set	point	mixing	ratios	they	were	approaching.		However,	they	found	a	

strong	linear	correlation	between	the	slope	of	the	initial	sensor	response	and	the	mixing	ratio	

set	point	in	the	chamber,	suggesting	that	predicting	the	actual	mixing	ratio	should	be	possible	

from	the	initial	slope	of	a	signal	rise.		Decay	times	were	not	investigated	in	that	work.			

 Electrochemical	sensor	performance	limitations		

	 Sensor	response	times	are	governed	by	both	gas	diffusion	rates	and	reaction	rates.		

Reduced	diffusion	rates	could	be	caused	by	befouling	of	the	primary	filter,	increasing	the	time	

needed	for	the	target	analyte	to	reach	the	working	electrode.		Reduced	reaction	rates	could	be	

due	to	damage	or	corrosion	of	the	working	electrode,	leaving	fewer	available	reaction	sites,	or	

due	to	evaporative	loss	of	electrolyte	fluid	over	time,	which	would	result	in	slowed	H+	ion	

transport	through	the	electrolyte	so	that	the	reduction	reaction	at	the	counter	electrode	could	

not	occur	as	quickly.		Inspecting	previously	used	Lascar	USB-CO	monitors	it	is	clear	that	both	

occur,	with	visible	fouling	of	the	filter	surface,	as	well	as	dried	out	electrolyte	baths,	though	the	

relative	importance	of	these	is	not	determined	in	this	work.	

 Our	testing	approach	

Our	research	group	first	used	the	Lascar	USB-CO	monitors	during	a	cookstove	

intervention	study	in	Ghana	(Dickinson	et	al.,	2015;	Piedrahita	et	al.,	2017b	submitted).		The	

monitors	generally	worked	well	and	exhibited	good	stability,	but	we	observed	a	rate	of	sensor	

and	logging	failures	that	prompted	us	to	investigate	further.		Monitor	failure	was	presented	

with	four	different	symptoms:		1)	failure	to	log	data,	often	due	to	damage	to	the	electronics	

from	moisture	or	impact;	2)	highly	sporadic	and	fluctuating	data,	which	may	be	due	to	electrical	
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issues	with	the	embedded	system	or	sensor;	3)	slow	response	and	recovery	times	due	to	CO	

spikes;	4)	no	sensor	response	to	CO.		In	the	REACCTING	study,	25.0%	of	sample	days	(201	days)	

were	removed	due	to	the	last	three	issues.		To	further	investigate	symptoms	three	and	four,	

controlled	laboratory	tests	were	performed	at	the	Hannigan	Lab.		The	main	modes	of	

electrochemical	sensor	degradation	were	expected	to	be	damage	to	the	sensor	electrodes,	

drying	of	the	electrolyte	solution,	and	fouling	of	the	sensor’s	particle	filter.		We	sought	to	

determine	the	importance	of	the	first	two	causes,	as	the	last	is	dependent	on	many	possible	

types	of	random	befouling	events.		

 Methods	

 Laboratory	set	up	

	 Laboratory	testing	was	conducted	at	the	Hannigan	Lab	at	the	University	of	Colorado,	

Boulder.		A	LabVIEW	controlled	gas	delivery	system	was	employed	(Piedrahita	et	al.,	2014).		To	

achieve	the	desired	CO	mixing	ratios	between	0-700	ppm,	two	different	CO	gas	standards	were	

used;	1.)	A	certified	1010	ppm	standards	from	Air	Liquide,	injected	through	a	0-1000	sccm	MFC,	

and	2.)	A	pure	CO	standard	from	AirGas,	injected	through	a	0-20	sccm	MFC.		A	0.94L	chamber	

was	used	to	house	the	5-10	Lascar	monitors	used	at	any	time	during	testing.		With	10	Lascars	

and	dead-volume	blocks,	the	empty	volume	remaining	in	the	chamber	was	0.3L.		A	calibrated	

mass	flow	controller	(MFC,	Tynan	Corp.)	flowed	zero-grade	air	at	a	constant	rate	of	3	lmin-1,	

resulting	in	a	T90	time	of	24	seconds	in	the	selected	chamber	(6	seconds/air	exchange).		A	pre	

and	post-calibrated	API	300	CO	monitor	provided	the	reference	data	with	which	to	compare	the	

Lascar	measurements.		The	API	monitor	sampled	directly	from	the	testing	chamber	at	a	rate	of	

0.790	lmin-1.		The	sensors	were	tested	at	room	temperature	(mean	26.6	oC,	±2.4	oC)	and	high	

temperature	tests	were	conducted	(35	oC)	to	assess	changes	in	sensitivity	and	response	time.		A	

temperature	probe	inserted	into	the	chamber	provided	feedback	for	the	temperature	

controller,	and	a	heat	lamp	was	used	to	heat	the	chamber	uniformly.		In	this	work,	only	the	

room-temperature	tests	are	analyzed.	

 Accelerated	aging	test	procedure	

	 Ten	new	and	unused	Lascar	USB-CO	monitors	were	set	to	log	at	10s	intervals.		An	initial	

test	was	performed	with	all	10	units	over	a	22-hour	period.		Two	identical	11-step	calibrations	
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were	repeated	consecutively,	alternating	clean	air	and	a	CO	spike	for	30	minute	periods	as	

follows:	clean	air	-	18	ppm	CO	-	clean	air	-	39	ppm	CO	-	clean	air	-	81	ppm	CO	-	clean	air	-	220	

ppm	CO	-	clean	air	-	400	ppm	CO	-	clean	air,	though	there	was	some	variability	in	the	mixing	

ratio	set	points	due	to	system	variation.		After	this,	a	two-hour	simulation	of	a	typical	cooking	

event	CO	time	series	was	performed,	with	CO	values	ranging	from	0-500ppm.		Then,	the	

chamber	was	heated	to	35	oC,	and	the	‘base’	calibration	was	performed	again.		A	time	series	of	

a	calibration	is	shown	in	(Figure	6-1).		Five	of	the	units	(the	‘fresh	controls’)	were	stored	in	a	

sealed	bag	between	trials	to	serve	as	controls	and	used	for	comparison	at	the	end	of	the	tests.		

The	‘fresh’	control	units	were	tested	four	times	over	the	26	weeks	(on	the	1st,	15th,	16th,	and	

26th	week),	while	the	‘used’	batch	of	was	tested	23	times	over	that	period,	with	most	

calibration	occurring	in	the	first	two	months	of	testing.		To	accelerate	the	aging	process,	dry	air	

was	used	in	the	tests,	and	before	each	test,	a	four-hour	exposure	to	elevated	mixing	ratios	

(400-600	ppm)	was	carried	out.			

	

Figure	6-1.		Typical	calibration	time	series,	shown	along	with	the	calculated	response	times	to	
CO	inputs.	

	 The	Lascar	monitors	were	weighed	three	times	over	the	test	period	to	identify	whether	

a	significant	change	in	electrolyte	mass	had	occurred	in	the	aged	group	vs.	the	control	group.		A	

Mettler	AE163	balance	with	0.1mg	resolution	was	used	to	weigh	the	monitors	after	removing	

the	batteries,	USB	dust	shields,	and	external	housings.		No	significant	changes	in	sensor	weights	
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were	detected	for	either	group,	suggesting	that	there	was	no	significant	drying	of	the	

electrolyte	throughout	our	testing	period.	

 Results	

 Calibration	stability	over	time	

	 Stability	of	calibration	slopes	(Figure	6-2)	was	assessed	with	a	linear	mixed	effects	model	

as	shown	in	Equation	6-1	(Burton	et	al.,	1998).		Si	represents	the	calibration	curve	slope	for	

Lascar	i,	at	time	point	j,	regressed	against	the	log	cumulative	exposure	CE	(in	ppm-hours),	

where	b0	is	an	overall	intercept	corresponding	to	the	‘fresh’	batch	of	monitors	and	B	represents	

the	‘used’	monitors,	which	are	interacted	with	cumulative	exposure	here.		Cumulative	exposure	

is	collinear	with	time,	so	it	cannot	be	ruled	out	that	relationships	identified	with	that	variable	

herein	are	in	fact	related	to	a	different	temporal	characteristic	that	we	were	unable	to	control	

for.		Average	chamber	temperature	during	testing	was	not	a	significant	predictor	in	any	of	the	

models	presented	in	this	work,	so	were	not	kept	in	the	final	models.		The	model	used	a	random	

intercept	ai	on	the	individual	sensors,	and	a	random	slope	ji	by	cumulative	exposure	to	account	

for	individual	variations	between	units	and	repeated	measurements.		Throughout	this	paper,	

cumulative	exposure	is	calculated	in	units	of	ppm-hours,	using	the	raw	Lascar	signal	to	maintain	

independence	from	calibration	approach.		Linear	modeling	assumptions	of	homoscedasticity,	

independence,	and	normality	of	residuals	were	met	for	this	and	the	other	models	presented	in	

this	paper.			

Sijk	=	b0	+	b1log(CEij)Bk	+eijk		+	ai	+	ji	 Equation	6-1	
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Figure	6-2.		Calibration	sensitivities	(regression	slopes)	for	all	Lascar	monitors	plotted	against	
cumulative	exposure	experienced	by	the	Lascar	sensors	in	their	lifetimes.		The	star	symbols	
represent	Lascar	monitors	from	the	‘fresh’	batch.	

	 Results	from	Equation	6-1	indicated	that	overall,	there	was	a	significant	reduction	in	

sensitivity	over	time	of	1.63e-6	[ppm/Lascar	ppm]	per	unit	of	cumulative	exposure	in	ppm-hr	

(Appendix	5	Table	A5.1).		The	‘used’	set	of	five	Lascar	monitors	(used	more	frequently)	

exhibited	better	calibration	sensitivity	stability	than	the	‘fresh’	batch	(-1.01e6	vs.	-5.75e6	

[ppm/Lascar	ppm]	per	unit	of	cumulative	exposure),	and	the	offset	was	greater	for	the	‘fresh’	

batch.	

	 Calibration	intercepts	are	also	presented	in	Figure	6-2,	showing	that	there	can	be	

substantial	offset,	both	positive	or	negative.		This	variability	is	indicative	of	low	sensitivity	at	low	

CO	levels,	and	could	lead	to	substantial	relative	error	in	clean	environments.		The	intercepts	of	

Lascar	51	are	very	high,	and	represent	poor	fits	from	calibrations	as	the	later	measurements	

were	very	noisy.		Of	all	laboratory	calibration	tests,	89%	of	trials	successfully	recorded	data,	

with	55%	of	failures	coming	from	a	single	unit,	Lascar	48.			

 Average	exposure	error	over	time	
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	 To	simulate	a	real-world	sensor	deployment,	we	modeled	average	percent	error	(PE)	of	

average	exposure	using	sensor	data	prepared	with	three	different	calibration	approaches,	while	

controlling	for	the	log	of	cumulative	sensor	exposure	and	sensor	batch	(Equation	6-2).			

PEijk	=	b0	+	b1log(CEij)(Bk)	+	eijk	+	ai	+	ji	 Equation	6-2	

	 Average	percent	error	was	calculated	as	error	in	the	mean	calibrated	sensor	mixing	

ratios	relative	to	the	mean	reference	monitor	mixing	ratios	using	an	‘exposure	test	period’	from	

each	calibration	test.		The	first	calibration	(Figure	6-3)	approach	compared	the	reference	mean	

exposure	with	the	sensor	data	calibrated	using	the	nearest	calibration	available,	which	

represents	the	gold	standard	for	personal	exposure	measurement	calibration.		The	second	

approach	compared	the	mean	reference	data	with	mean	sensor	data	calibrated	using	only	the	

first	and	last	available	calibration	(‘pre/post	calibration’),	and	a	linear	interpolation	between	

them,	correcting	for	total	cumulative	exposure	for	the	given	monitor,	as	measured	by	the	data	

directly	output	by	each	monitor	(raw	data).		The	third	approach	directly	compared	the	mean	

reference	data	with	the	raw	and	uncorrected	Lascar	data.		In	all	three	cases,	the	baseline	was	

shifted	to	zero,	reflecting	a	practice	that	can	be	performed	in	the	field	even	without	gas	

standards,	and	can	reduce	bias.		A	random	intercept	and	slope	was	included	to	account	for	

inter-sensor	variations	and	repeated	measures.	
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Figure	6-3.		Percent	error	in	average	exposures	using	three	different	calibration	approaches,	
plotted	against	the	cumulative	exposure	the	Lascar	has	experienced	in	its	lifetime.		Stars	
represent	the	‘fresh’	Lascar	batch,	and	dots	represent	the	‘frequently	used’	batch.	

	 The	‘nearest	calibration	approach’	yielded	an	overall	average	of	-1.9%	in	average	error	

during	the	exposure	periods	(standard	deviation	=	9.6%).		From	the	results	of	Equation	6-2,	the	

‘fresh’	batch	had	-5.8%	average	error	(p<0.05),	and	the	‘used’	batch	had	an	average	error	of	-

+1.8%	(p<0.05).		There	was	no	significant	change	in	percent	error	with	cumulative	exposure,	

indicating	that	average	changes	in	sensor	behavior	over	time	were	corrected	for	by	using	

frequent	calibration.		However,	the	random	intercept	and	slopes	by	Lascar	monitor	were	

significant,	showing	that	between-monitor	variability	of	calibration	drift	must	be	considered	

when	calibration	devices.		Complete	model	output	for	all	models	is	presented	in	Appendix	5	

Table	A5.1.	
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	 The	‘pre/post’	approach	had	an	average	percent	error	of	-1.2%,	nominally	better	than	

the	previous	approach,	but	at	a	cost	of	higher	variability	(±15.1%).	Using	Equation	6-2,	there	

was	no	significant	slope	in	the	error	over	time,	showing	that	this	approach	corrected	for	

calibration	drift	satisfactorily,	but	there	was	a	significant	offset	of	-10.7%	for	the	‘fresh’	batch	

(p<0.05),	indicative	of	an	exposure	overestimation	for	that	batch.		The	‘used’	batch	error	was	

+0.8%	relative	to	the	reference	data.	

	 The	raw	Lascar	data	error	was	-19.1%	on	average	(±23.8%),	relative	to	the	reference	

data.		The	error	over	time	slope	was	-1.6e-3	[%	error/cumulative	ppm-hr]	(p	=	0.09).		There	

were	no	significant	differences	by	batch,	likely	due	to	the	high	variability	in	the	data.	

	

 Transient	responses	characteristics	

	 There	were	three	dynamic	parameters	of	interest	in	our	work,	1)	rise	time	to	respond	to	

an	input	of	CO,	2)	decay	time	going	from	elevated	CO	to	clean	air,	and	3)	the	maximum	slope	

when	stabilizing	in	response	to	an	input	of	CO.		Rise	and	decay	response	times	to	90%	of	the	

steady	state	target	mixing	ratios	(T90)	were	calculated	at	four	mixing	ratios	for	each	calibration	

(5-15ppm,	20-40ppm,	250-350ppm,	550-650ppm).		Response	times	were	calculated	as	the	time	

to	90%	of	the	maximum	observed	peak	value,	or	zero	value,	starting	when	four	consecutive	

slopes	were	positive,	or	negative.	Response	rise	and	decay	times,	with	means	of	183.8s	(±91.2s)	

and	103.2s	(±52.9s),	respectively,	were	generally	higher	than	the	‘<30s’	listed	in	the	sensor’s	

data	sheet	(Nemoto,	2016),	and	higher	than	those	seen	in	Cheng	et	al.	(2010)	or	Buck	et	al.	

(2013).		This	likely	due	to	the	24-second	time	to	steady	state	of	our	chamber,	so	this	data	does	

not	represent	a	true	measurement	of	response	time.		Rather,	because	our	experimental	set	up	



 

 

115 

remained	constant	over	time,	we	can	make	claims	about	this	pseudo-response	time.

	 	
Figure	6-4.		Time	to	steady	state	for	the	Lascar	sensors,	plotted	against	the	peak	mixing	ratio	
being	approached	or	departed.		Rise	time	had	less	structure	and	more	variability	than	decay	
time.	

	 Using	Equation	6-3,	the	log	of	rise	times	and	decay	times	t	for	sensor	i	on	trial	j	were	

regressed	against	the	cumulative	exposure	CE	for	sensor	i	on	trial	j	interacted	with	the	log	of	

the	mixing	ratio	peak	CP	that	the	measurement	was	rising	to	or	decaying	from,	once	again	

controlling	for	batch	B	and	including	a	random	intercept	and	slope	for	the	individual	sensors.		

The	rise	and	decay	was	analyzed	separately	to	determine	if	there	was	any	change	in	sensitivity	

as	the	sensors	experienced	more	exposure.			

log(tijk)	=	b0	+	b1log(CPij)(CEij)(Bk)	+e	ijk	+	aI	+	ji	 Equation	6-3	

	 The	model	for	rise	time	using	Equation	6-3	had	a	-13.7%	decrease	in	response	time	with	

an	increase	of	one	in	the	log	of	peak	mixing	ratio	(p	<	0.01,	an	increase	of	0.0006%	(p	=	0.046	)	

with	cumulative	exposure	at	the	time	of	testing,	and	a	slight	(0.0002%,	p	<	0.01)	decrease	in	
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response	time	due	to	the	interaction	between	peak	exposure	and	with	cumulative	exposure	

(Appendix	5	Table	A5.2).		There	was	no	effect	by	batch,	though	the	random	intercept	and	slope	

by	sensor	were	both	significant.			

	 The	model	for	decay	time	using	Equation	6-3,	had	the	opposite	response	with	respect	to	

peak	mixing	ratio.		The	response	time	was	11.1%	greater	for	every	increase	in	the	log	of	peak	

mixing	ratio	of	one	(p	=	0.055),	and	was	0.0004%	greater	for	every	decrease	of	one	in	

cumulative	exposure	in	ppm-hrs.		The	‘used’	batch	had	an	83.5%	faster	response	time	than	the	

‘fresh’	batch.		The	average	daily	CO	cumulative	exposure	seen	in	the	REACCTING	study	for	

participants	cooking	over	traditional	biomass	fires	was	25.2	ppm-hr	(Piedrahita	et	al.,	2017b,	

submitted).		At	this	rate,	even	100	days	of	such	exposures	should	only	result	in	an	increase	of	

1.5%	in	the	response	time	of	the	sensors.		This	is	substantially	less	than	we	observed	in	some	

calibrations,	suggesting	that	the	primary	driver	was	not	drying	or	exposure	to	high	

concentrations	as	we	have	exposed	the	sensors	to	in	these	tests,	but	rather	particulate	filter	

fouling	affecting	diffusion	rates,	or	sensor	damage	that	slowed	the	reaction	rates	in	ways	we	

have	not	observed	here.			

	 The	characteristic	times	of	the	rise	were	higher	than	those	of	the	decays	here,	especially	

for	the	lower	concentration	peaks.		We	have	not	identified	any	reason	for	our	gas	delivery	

system	to	be	responsible	for	this,	and	believe	it	to	be	a	real	effect.		This	effect	would	be	

expected	to	thus	reduce	the	average	exposure	estimate	to	an	extent.		It	would	be	of	great	

future	interest	to	apply	the	temporal	correction	of	Cheng	et	al.	(2010)	to	identify	the	magnitude	

and	change	in	average	exposure	over	time	due	to	these	time	responses.		

	 We	also	investigated	the	relationship	between	the	maximum	slope	observed	during	rise	

due	to	a	step	in	the	mixing	ratio	the	sensors	were	exposed	to,	and	the	magnitude	of	that	step	

(Figure	6-5).		Maximum	slope	was	calculated	as	the	largest	consecutive	difference	between	the	

10-second	samples	during	the	approach	to	those	mixing	ratios.		This	was	modeled	using	

Equation	6-4,	regressing	the	maximum	slope	(Smax)	against	the	mixing	ratio	of	the	peak	MRP	
that	was	being	approached,	interacted	with	cumulative	exposure	CE	and	batch	B.		Characteristic	

time	responses	have	been	used	to	correct	for	time	lags	in	electrochemical	CO	sensors	
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previously	(Cheng	et	al.,	2010),	and	could	improve	exposure	estimates	if	implemented,	if	the	

characteristic	times	are	known.	

Smax,ikj	=	b0	+	b1(MRPij)(CEij)(Bk)	+eijk		+	aI	+	ji	 Equation	6-4	

	 		
Figure	6-5.		Maximum	slope	[ppm/second]	during	approach	to	an	elevated	CO	mixing	ratio.	

	 Similar	to	Buck	et	al.	(2013),	we	found	a	significant	association	between	maximum	slope	

during	the	approach	to	a	peak,	and	the	magnitude	of	the	peak	that	was	being	approached	

(p<0.01,	104.6%	higher	maximum	slope	per	unit	log(mixing	ratio	peak).		The	log	of	the	

cumulative	exposure	experienced	by	the	sensor	was	independently	responsible	for	-0.0005%	

decrease	in	maximum	slope	per	ppm-hr,	but	this	was	not	significant	(p	=	0.1),	corroborating	the	

observed	reduction	in	response	times	from	Model	2.		There	was	no	difference	by	batch.			

	

 Conclusions	

	 The	identified	sensor	behaviors	may	help	improve	personal	exposure	assessments,	at	

varying	costs.		Calibrating	as	frequently	as	possible	is	ideal,	because	although	a	pre/post	
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calibration	performed	quite	well	relative	to	the	daily	calibrations,	using	only	2/23	of	the	

calibrations,	there	would	be	risk	of	losing	a	post-calibration	due	to	instrument	failure.		Frequent	

calibration	can	also	help	identify	when	a	sensor	stops	responding	sufficiently	quickly,	and	may	

be	introducing	bias	to	the	measurement,	or	if	it	is	simply	logging	zero	data	erroneously.		

Implementing	a	system	to	correct	for	time	responses	will	improve	accuracy,	but	may	be	too	

burdensome	to	be	practical	in	the	field.		It	may	be	preferable	to	simply	stop	use	of	Lascars	after	

a	preset	period,	or	cumulative	exposure,	and	remove	them	from	circulation	in	a	piecewise	

manner	so	as	to	reduce	any	longitudinal	bias	that	could	be	introduced	by	swapping	entire	

batches.		We	were	not	able	to	identify	a	maximum	cumulative	exposure	value,	or	lifetime	in	

this	work,	and	as	of	now,	this	value	simply	depends	on	calibration	and	responsiveness	

performance	when	the	sensor	is	being	used	for	exposure	measurements	in	the	field.		Indeed,	

the	manufacturer	claims	a	sensor	lifetime	of	7	years,	which	most	instruments	used	in	the	field	

would	never	reach	intact.	
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CONCLUSIONS									

	

This	work	helped	assess	key	links	of	the	causal	chain	(Figure	7-1)	from	a	cookstove	

intervention	to	human	and	environmental	health,	and	developed	improved	methods	to	do	so.		

Measurement	of	cookstove	use	with	electronic	monitors,	in	concert	with	survey	data,	frames	

the	discussion	of	replacement	and	expected	uptake	in	the	event	of	more	widespread	

distribution	of	portable	improved	cookstoves.		The	accompanying	air	quality	measurement	

campaigns	helped	gauge	the	intervention	effectiveness,	and	increased	our	understanding	of	the	

importance	of	different	air	pollution	sources	to	personal	exposure,	and	to	regional	air	quality.		

	
Figure	7-1.		Causal	chain	from	cooking	behaviors	to	health	and	environmental	outcomes,	
updated	with	regions	of	the	relationship	addressed	by	this	dissertation.	

Returning	to	the	questions	posed	in	the	introduction:	Will	the	population	consistently	

and	exclusively	use	an	improved	cooking	technology	if	given	the	opportunity?		We	observed	

substantial	use	of	the	intervention	stoves	but	only	moderate	reductions	in	traditional	cookstove	

use,	supporting	the	non-linear	view	of	the	energy-ladder	theory.		Given	this,	will	real-world	use	

of	the	improved	cookstoves	result	in	exposure	reductions	of	components	of	woodsmoke?		We	
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did	observe	reductions	in	CO	and	carbonaceous	PM2.5	exposure	at	varying	magnitudes	and	

significance	levels,	providing	evidence	that	the	selected	cookstoves	may	be	beneficial	to	the	

region	and	may	be	in	precisely	the	regime	of	dose-response	relationships	that	may	provide	

significant	reductions	in	health	effects	such	as	pneumonia.		

Is	woodsmoke	from	cooking	in	fact	the	most	significant	source	of	pollution	impacting	

personal	exposure,	or	are	there	other	important	sources	and	behaviors	associated	with	

exposure?		Evidence	on	this	is	mixed,	as	source	apportionment	of	PM2.5	found	that	sources	

related	to	biomass	combustion	made	up	only	9.2%	of	OC	and	15.3%	of	EC	to	personal	and	

cooking	area	microenvironment	samples,	while	64.5%	of	CO	exposure	was	incurred	at	home,	

according	to	the	Beacon	data.		These	results	are	from	different	stages	of	the	intervention,	and	

are	certainly	not	in	conflict,	and	may	suggest	that	exposures	at	home	from	sources	unrelated	to	

biomass	are	important,	and	that	exposure	when	away	from	home	is	substantial.	

Future	work	should	consider	real-time	personal	PM2.5	measurement,	in	conjunction	with	

BLE	Beacon	measurement.		PM2.5	remains	the	most-studied	pollutant	from	biomass	cookstove	

smoke,	due	to	its	strong	causal	links	with	negative	health	effects.		Additionally,	PM	

measurement	instrument	sizes	and	costs	have	dropped	since	the	start	of	the	REACCTING	

project,	and	they	may	present	fewer	logistical	challenges	than	gas	measurement,	due	to	more	

stable	calibrations.		Most	wearable	PM	monitors	rely	on	optical	measurements,	which	are	more	

easily	maintained,	only	requiring	cleaning	and	zeroing	periodically,	whereas	gas	sensors	need	

periodic	multipoint	calibrations	to	known	standards,	often	challenging	and	costly	to	do	in	rural	

areas.		The	simultaneous	measurement	of	real-time	PM	and	Beacon	data,	ideally	in	addition	to	

thermocouple	stove	usage	monitoring,	would	lend	high	confidence	to	exposure	study	results	at	

a	relatively	low	cost.		Such	a	data	stream	would	provide	a	rich	vein	of	information	on	behaviors	

and	exposures	that	this	thesis	has	provided	a	path	to	analyze.		

Further	work	to	measure	fuel	use	over	time	using	kitchen	performance	tests	would	be	

beneficial	to	understand	the	environmental	co-benefits	of	the	intervention.		Also,	although	

improved	fuel	efficiency	was	observed	during	uncontrolled	cooking	tests	as	part	of	this	study,	

the	sample	size	was	small	and	not	necessarily	representative	of	standard	home	use.			Despite	

this	worry,	a	household	level	reduction	in	average	fuel	use	is	supported	by	the	observed	
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reductions	in	exposures	in	the	intervention	households	due	to	the	magnitude	of	the	effects	of	

OC	for	example,	vs.	the	observed	efficiency	improvements.		Further	economic	assessments	that	

help	build	a	foundation	for	a	cookstove	market	to	develop	in	the	region	are	eagerly	awaited,	

and	stand	on	firm	footing	as	to	the	potential	benefits	to	the	community.			
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Assessment	of	cookstove	stacking	in	Northern	Ghana	using	surveys	and	stove	use	monitors	

	

	
Figure	A1-1	Gyapa/Philips	group	
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Figure	A	1-2		Control	group.	
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Figure	A	1-3.		Philips/Philips	group	
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Figure	A	1-4.		Gyapa/Gyapa	group.	
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Figure	A	1-5		Reactivity	to	enumerator	visits.		Ratio	of	use	in	sliding	3-day	windows	after	the	
visit	over	the	3	days	before	the	visit	was	scheduled.		Above	shows	this	data	by	number	of	uses	
in	the	3-day	window,	while	below	shows	ratio	by	days	used.	
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Figure	A	1-6.		Agreement	between	SUM	and	survey	results	on	whether	a	stove	was	used	
'yesterday'.	

	

	

	

	

	 	



 143 

	

 

Exposures	to	and	origins	of	carbonaceous	PM2.5	in	a	cookstove	intervention	in	Northern	Ghana	

	
Figure	A	2-1.		Wood	fuel	moisture	content	as	measured	at	households	during	personal	exposure	sampling	periods.		Note	the	
elevated	during	the	rainy	seasons	from	April	to	November	on	both	years.		The	trend	line	is	a	
penalized	b-spline	with	95%	confidence	intervals,	computed	with	the	GRAMM	package	for	
MATLAB.	
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Figure	A	2-2.		Mean	wind	speeds	from	the	PM2.5	sampling	periods	vs.	the	factor	contributions	
in	relative	concentration	units.	The	trend	line	is	a	penalized	b-spline	with	95%	confidence	
intervals,	computed	with	the	GRAMM	package	for	MATLAB.	
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Figure	A	2-3.		6-factor	solution	contributions	for	the	personal	and	microenvironmental	EC/OC	
and	organics	data	set.		

	

 		Mixed	effects	model	results	for	personal	exposure	to	OC		
Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													190	

				Fixed	effects	coefficients										17	

				Random	effects	coefficients									88	

				Covariance	parameters																2	

	

Formula:	

				OCLOG	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	GENDERAGECAT	+	season	+	SES	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				566.57				628.26				-264.28										528.57			
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Fixed	effects	coefficients	(95%	CIs):	

				Name																								Estimate					SE										tStat							DF					pValue								Lower								Upper					

				'(Intercept)'																		4.1748					0.41592						10.038				173				5.6796e-19							3.3539							4.9958	

				'StoveGroup_C'															-0.99978					0.34955					-2.8602				173					0.0047556						-1.6897					-0.30984	

				'StoveGroup_B'															-0.68192					0.26237					-2.5991				173						0.010154						-1.1998					-0.16407	

				'StoveGroup_A'															-0.85045					0.30684					-2.7716				173					0.0061881						-1.4561					-0.24482	

				'familymembers'													-0.015671				0.025041					-0.6258				173							0.53227				-0.065096					0.033754	

				'primarycook_1'															0.47211					0.27575						1.7121				173						0.088675				-0.072163							1.0164	

				'GENDERAGECAT_F1'												-0.70665					0.36753					-1.9227				173						0.056159						-1.4321					0.018766	

				'GENDERAGECAT_M0'												-0.30457					0.35375				-0.86096				173							0.39045						-1.0028						0.39366	

				'GENDERAGECAT_M1'												-0.25163					0.46087				-0.54598				173							0.58578						-1.1613						0.65803	

				'season_Heavy_Rainy'									-0.42401					0.16544						-2.563				173							0.01123					-0.75054				-0.097472	

				'season_Hot_dry'													-0.13148					0.22652				-0.58041				173							0.56239					-0.57858						0.31562	

				'season_Light_Rainy'										-0.4229					0.23805					-1.7765				173								0.0774					-0.89276					0.046949	

				'season_Other'															-0.37198					0.25927					-1.4347				173							0.15317					-0.88372						0.13976	

				'SES_Poorer'																		0.52092					0.25798						2.0192				173							0.04501					0.011719							1.0301	

				'SES_Less_poor'														-0.23748						0.3233				-0.73454				173							0.46361					-0.87559						0.40064	

				'SES_Least_poor'														0.37819					0.31037						1.2185				173							0.22469					-0.23441						0.99079	

				'SES_Poorest'																	0.78795					0.37097							2.124				173							0.03509					0.055738							1.5202	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(88	Levels)	

				Name1																Name2																Type									Estimate				Lower					Upper			

				'(Intercept)'								'(Intercept)'								'std'								0.50395					0.2796				0.90832	

	

Group:	Error	

				Name													Estimate				Lower						Upper		

				'Res	Std'								0.8621						0.73314				1.0137	

 		Mixed	effects	model	results	for	personal	exposure	to	EC	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													190	

				Fixed	effects	coefficients										17	

				Random	effects	coefficients									88	

				Covariance	parameters																2	
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Formula:	

				ECLOG	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	GENDERAGECAT	+	season	+	SES	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				630.33				692.02				-296.16										592.33			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																								Estimate				SE										tStat							DF					pValue								Lower								Upper					

				'(Intercept)'																	0.9109					0.44235						2.0592				173						0.040972					0.037796								1.784	

				'StoveGroup_C'														-0.89909					0.36838					-2.4406				173							0.01567						-1.6262					-0.17198	

				'StoveGroup_B'																-0.967					0.26596					-3.6359				173				0.00036523							-1.492					-0.44205	

				'StoveGroup_A'														-0.58453					0.31816					-1.8372				173						0.067895						-1.2125					0.043449	

				'familymembers'													0.026129				0.026525					0.98507				173							0.32597				-0.026225					0.078483	

				'primarycook_1'														0.27462					0.28926					0.94938				173							0.34375					-0.29632						0.84556	

				'GENDERAGECAT_F1'											-0.24108					0.38745				-0.62223				173							0.53461						-1.0058						0.52365	

				'GENDERAGECAT_M0'											-0.22794					0.37618				-0.60594				173							0.54535					-0.97043						0.51455	

				'GENDERAGECAT_M1'												0.36721						0.4902						0.7491				173							0.45481					-0.60033							1.3347	

				'season_Heavy_Rainy'								-0.70584					0.20645					-3.4188				173				0.00078427						-1.1133					-0.29834	

				'season_Hot_dry'												-0.79192					0.28078					-2.8204				173					0.0053564						-1.3461					-0.23772	

				'season_Light_Rainy'									-1.9591					0.29334					-6.6788				173				3.1604e-10						-2.5381						-1.3801	

				'season_Other'														-0.67674					0.31655					-2.1379				173							0.03393						-1.3015				-0.051949	

				'SES_Poorer'																	0.32202					0.26567						1.2121				173							0.22713					-0.20236							0.8464	

				'SES_Less_poor'													-0.32176					0.33258				-0.96747				173							0.33466					-0.97819						0.33467	

				'SES_Least_poor'													0.19924					0.32307					0.61671				173							0.53824					-0.43843							0.8369	

				'SES_Poorest'																0.69911					0.39533						1.7684				173						0.078753				-0.081181							1.4794	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(88	Levels)	

				Name1																Name2																Type									Estimate				Lower							Upper		

				'(Intercept)'								'(Intercept)'								'std'								0.3097						0.087633				1.0945	

	

Group:	Error	

				Name													Estimate				Lower						Upper	

				'Res	Std'								1.1105						0.97324				1.267	
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 Mixed	effects	model	results	for	cooking	area	OC	
Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														86	

				Fixed	effects	coefficients											9	

				Random	effects	coefficients									34	

				Covariance	parameters																2	

	

Formula:	

				microOCLOG	~	1	+	StoveGroup	+	familymembers	+	season	+	(1	|	COMPOUND)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				253.39				280.39				-115.69										231.39			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																								Estimate					SE									tStat							DF				pValue								Lower								Upper				

				'(Intercept)'																		4.6067					0.4397						10.477				77				1.7936e-16							3.7312						5.4823	

				'StoveGroup_C'															-0.55785				0.41372					-1.3484				77							0.18149						-1.3817					0.26598	

				'StoveGroup_B'																-0.7018				0.33828					-2.0746				77							0.04136						-1.3754				-0.02821	

				'StoveGroup_A'																-1.1012					0.3468					-3.1753				77					0.0021528						-1.7918				-0.41064	

				'familymembers'													0.0012941				0.03317				0.039014				77							0.96898				-0.064756				0.067344	

				'season_Heavy_Rainy'										0.56002				0.29149						1.9213				77						0.058398				-0.020398						1.1404	

				'season_Hot_dry'														-0.5673				0.37416					-1.5162				77							0.13357						-1.3123					0.17775	

				'season_Light_Rainy'									-0.21004				0.33942				-0.61882				77							0.53786						-0.8859					0.46583	

				'season_Other'																	1.0003				0.36075						2.7728				77					0.0069683						0.28193						1.7186	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	COMPOUND	(34	Levels)	

				Name1																Name2																Type									Estimate				Lower						Upper			

				'(Intercept)'								'(Intercept)'								'std'								0.33235					0.12007				0.91992	

	

Group:	Error	

				Name													Estimate				Lower						Upper		

				'Res	Std'								0.87536					0.72641				1.0549	
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 Mixed	effects	model	results	for	cooking	area	EC	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														86	

				Fixed	effects	coefficients											9	

				Random	effects	coefficients									34	

				Covariance	parameters																2	

	

Formula:	

				microECLOG	~	1	+	StoveGroup	+	familymembers	+	season	+	(1	|	COMPOUND)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				300.16				327.16				-139.08										278.16			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																								Estimate					SE										tStat							DF				pValue								Lower							Upper				

				'(Intercept)'																			1.876					0.53597						3.5001				77				0.00077667					0.80872						2.9432	

				'StoveGroup_C'															-0.24647					0.46945				-0.52501				77							0.60108					-1.1813					0.68834	

				'StoveGroup_B'															-0.67518					0.38951					-1.7334				77						0.087022					-1.4508					0.10042	

				'StoveGroup_A'															-0.44522					0.40709					-1.0937				77							0.27751					-1.2558						0.3654	

				'familymembers'													-0.058029				0.039532					-1.4679				77								0.1462				-0.13675				0.020688	

				'season_Heavy_Rainy'										0.63824					0.39711						1.6072				77								0.1121				-0.15249							1.429	

				'season_Hot_dry'													-0.81885					0.50787					-1.6123				77							0.11098					-1.8301					0.19244	

				'season_Light_Rainy'										-1.0274					0.45452					-2.2603				77						0.026629					-1.9324				-0.12228	

				'season_Other'																	1.0593					0.48149						2.2001				77						0.030796					0.10057						2.0181	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	COMPOUND	(34	Levels)	

				Name1																Name2																Type									Estimate						Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								3.1419e-09				NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper		
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				'Res	Std'								1.2193						1.05					1.4158	

	

 		Mixed	effects	model	results	for	personal	exposure	vs.	cooking	area	microenvironment	

OC	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													141	

				Fixed	effects	coefficients										13	

				Random	effects	coefficients									73	

				Covariance	parameters																2	

	

Formula:	

				OCLOG	~	1	+	familymembers	+	GENDERAGECAT	+	season	+	microOCLOG	+	StoveGroup:microOCLOG	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC						BIC							LogLikelihood				Deviance	

				376.8				421.03				-173.4											346.8				

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																													Estimate					SE										tStat							DF					pValue							Lower								Upper					

				'(Intercept)'																							2.2674						0.4499						5.0397				128				1.554e-06							1.3772							3.1576	

				'familymembers'																			0.028669				0.022446						1.2773				128						0.20382				-0.015744					0.073082	

				'GENDERAGECAT_F1'																	0.063429					0.27036					0.23461				128						0.81489					-0.47152						0.59838	

				'GENDERAGECAT_M0'																	-0.12801					0.31694				-0.40389				128						0.68697					-0.75512							0.4991	

				'GENDERAGECAT_M1'																			0.3582					0.37367					0.95861				128						0.33956					-0.38116							1.0976	

				'season_Heavy_Rainy'														-0.43406					0.19701					-2.2032				128					0.029371					-0.82388				-0.044232	

				'season_Hot_dry'																		0.048375					0.26809					0.18044				128						0.85709					-0.48209						0.57884	

				'season_Light_Rainy'														-0.25541					0.25386					-1.0061				128						0.31625					-0.75771						0.24689	

				'season_Other'																				-0.51697					0.27623					-1.8715				128					0.063555						-1.0635					0.029597	

				'microOCLOG'																							0.22606				0.077792							2.906				128				0.0043157					0.072136						0.37999	

				'StoveGroup_C:microOCLOG'									0.046827					0.05705						0.8208				128						0.41329				-0.066057						0.15971	

				'StoveGroup_B:microOCLOG'								-0.040036				0.046039				-0.86962				128						0.38614					-0.13113						0.05106	

				'StoveGroup_A:microOCLOG'								-0.036951					0.05568				-0.66363				128						0.50812					-0.14712					0.073221	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(73	Levels)	



 151 

				Name1																Name2																Type									Estimate				Lower							Upper		

				'(Intercept)'								'(Intercept)'								'std'								0.18847					0.013128				2.7058	

	

Group:	Error	

				Name													Estimate				Lower					Upper			

				'Res	Std'								0.80681					0.6755				0.96364	

	

 		Mixed	effects	model	results	for	personal	exposure	vs.	cooking	area	microenvironment	

EC	

	
Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													141	

				Fixed	effects	coefficients										13	

				Random	effects	coefficients									73	

				Covariance	parameters																2	

	

Formula:	

				ECLOG	~	1	+	familymembers	+	GENDERAGECAT	+	season	+	microECLOG	+	StoveGroup:microECLOG	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				452.82				497.05				-211.41										422.82			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																													Estimate						SE										tStat								DF					pValue								Lower									Upper							

				'(Intercept)'																						-0.36866					0.45686					-0.80693				128								0.4212							-1.2726								0.53533	

				'familymembers'																				0.055599				0.030245							1.8383				128						0.068342				-0.0042466								0.11544	

				'GENDERAGECAT_F1'																			0.28751					0.37008						0.77688				128							0.43867						-0.44476									1.0198	

				'GENDERAGECAT_M0'																	0.0078422					0.43144					0.018177				128							0.98553						-0.84583								0.86151	

				'GENDERAGECAT_M1'																			0.63216					0.50833							1.2436				128							0.21592						-0.37365										1.638	

				'season_Heavy_Rainy'																-0.6299					0.25833						-2.4384				128						0.016126								-1.141							-0.11875	

				'season_Hot_dry'																			-0.58253					0.35002						-1.6643				128						0.098502							-1.2751								0.11004	

				'season_Light_Rainy'																-1.7442					0.35996						-4.8457				128				3.5836e-06							-2.4565									-1.032	

				'season_Other'																						-0.5769					0.36662						-1.5736				128							0.11806							-1.3023								0.14853	

				'microECLOG'																								0.25854					0.14547							1.7772				128						0.077903					-0.029302								0.54639	

				'StoveGroup_C:microECLOG'								-0.0056563					0.17262				-0.032768				128							0.97391						-0.34721								0.33589	
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				'StoveGroup_B:microECLOG'										-0.12607					0.15423					-0.81737				128							0.41524						-0.43124								0.17911	

				'StoveGroup_A:microECLOG'										-0.35947					0.18143						-1.9814				128						0.049694						-0.71845				-0.00048764	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(73	Levels)	

				Name1																Name2																Type									Estimate				Lower							Upper		

				'(Intercept)'								'(Intercept)'								'std'								0.37198					0.096852				1.4287	

	

Group:	Error	

				Name													Estimate				Lower					Upper		

				'Res	Std'								1.0237						0.8477				1.2363	

 Mixed	effects	model	results	for	personal	exposure	to	PMF	factor	contributions	

 OC	mixed	effect	personal	exposure	model	with	subset	of	data	having	organics	

available	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				OCLOG	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				82.074				96.572				-32.037										64.074			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate					SE									tStat							DF				pValue								Lower								Upper						

				'(Intercept)'													4.2577				0.36939						11.526				30				1.5156e-12							3.5033								5.0121	

				'StoveGroup_C'										-0.71634				0.32002					-2.2384				30						0.032765						-1.3699					-0.062776	

				'StoveGroup_B'											-0.4743				0.22839					-2.0767				30						0.046492					-0.94074				-0.0078622	

				'StoveGroup_A'										-0.48396				0.30587					-1.5822				30							0.12409						-1.1086							0.14072	
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				'familymembers'								-0.025682				0.03057				-0.84009				30								0.4075				-0.088115						0.036751	

				'primarycook_1'									-0.20473				0.25667				-0.79764				30							0.43135					-0.72891							0.31946	

				'AGECAT_1'														0.087943				0.28173					0.31215				30							0.75708					-0.48743							0.66332	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								0.40671					NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								0.40671					NaN						NaN			 	

	

 EC	mixed	effect	personal	exposure	model	with	subset	of	data	having	organics	

available	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				ECLOG	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC						BIC						LogLikelihood				Deviance	

				107.3				121.8				-44.652										89.303			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate				SE									tStat							DF				pValue					Lower								Upper			

				'(Intercept)'											0.87036				0.51946						1.6755				30				0.10423					-0.19051					1.9312	

				'StoveGroup_C'									-0.59011				0.45003					-1.3113				30				0.19971						-1.5092				0.32897	

				'StoveGroup_B'									-0.54799				0.32118					-1.7062				30				0.09831						-1.2039				0.10795	
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				'StoveGroup_A'									0.086896				0.43014					0.20202				30				0.84127					-0.79157				0.96536	

				'familymembers'								0.018299				0.04299					0.42565				30					0.6734				-0.069499					0.1061	

				'primarycook_1'								-0.11542				0.36094				-0.31977				30				0.75136					-0.85256				0.62173	

				'AGECAT_1'														0.25735				0.39619					0.64956				30				0.52092					-0.55178					1.0665	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								0.57194					NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								0.57194					NaN						NaN			

	

 ‘Methoxyphenol’	factor	personal	exposure	mixed	effects	model	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logMethoxyphenols	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				187.94				202.43				-84.968										169.94			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate				SE									tStat							DF				pValue								Lower							Upper			

				'(Intercept)'												5.8786					1.5444						3.8063				30				0.00064829						2.7245					9.0328	

				'StoveGroup_C'										-1.5264						1.338					-1.1408				30							0.26298						-4.259					1.2062	
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				'StoveGroup_B'										-1.5694				0.95492					-1.6435				30							0.11073					-3.5196				0.38084	

				'StoveGroup_A'									-0.50355					1.2789				-0.39375				30							0.69655					-3.1154					2.1083	

				'familymembers'								0.051569				0.12782					0.40346				30							0.68947				-0.20947				0.31261	

				'primarycook_1'										1.5355					1.0731						1.4308				30							0.16281				-0.65615					3.7272	

				'AGECAT_1'														0.46315					1.1779					0.39319				30							0.69696					-1.9425					2.8688	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.7005						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.7005						NaN						NaN			

	

 ‘PAH’	factor	personal	exposure	mixed	effects	model	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logPAHs	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC						BIC						LogLikelihood				Deviance	

				192.6				207.1				-87.302										174.6				

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate				SE									tStat							DF				pValue								Lower							Upper			

				'(Intercept)'												6.4429						1.645						3.9167				30				0.00047989						3.0834					9.8024	
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				'StoveGroup_C'									-0.27025					1.4251				-0.18963				30							0.85088					-3.1808					2.6403	

				'StoveGroup_B'										-4.0027					1.0171					-3.9354				30				0.00045589					-6.0799				-1.9255	

				'StoveGroup_A'											0.0985					1.3622				0.072312				30							0.94283					-2.6834					2.8804	

				'familymembers'									0.14731				0.13614							1.082				30							0.28786				-0.13073				0.42534	

				'primarycook_1'									0.33506						1.143					0.29313				30							0.77144					-1.9993					2.6694	

				'AGECAT_1'														0.18056					1.2546					0.14392				30							0.88653					-2.3818					2.7429	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.8112						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.8112						NaN						NaN			

	

 ‘Light	n-alkane’	factor	personal	exposure	mixed	effects	model	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logLight_n_alkanes	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC						BIC						LogLikelihood				Deviance	

				198.8				213.3				-90.399										180.8				

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate					SE									tStat							DF				pValue								Lower							Upper			
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				'(Intercept)'													7.0069					1.7886						3.9174				30				0.00047885							3.354						10.66	

				'StoveGroup_C'										-0.52218					1.5496				-0.33698				30							0.73848					-3.6868					2.6425	

				'StoveGroup_B'												2.0892					1.1059						1.8891				30						0.068579				-0.16939					4.3477	

				'StoveGroup_A'											0.28696					1.4811					0.19375				30							0.84768					-2.7378					3.3118	

				'familymembers'								-0.041089				0.14803				-0.27758				30							0.78324					-0.3434				0.26122	

				'primarycook_1'											1.3805					1.2428						1.1108				30							0.27549					-1.1577					3.9187	

				'AGECAT_1'															-1.2146					1.3642				-0.89037				30							0.38035					-4.0007					1.5714	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.9694						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.9694						NaN						NaN			

	

 ‘Odd	n-alkane’	factor	personal	exposure	mixed	effects	model	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logOdd_n_alkanes	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				186.85				201.35				-84.425										168.85			

	

Fixed	effects	coefficients	(95%	CIs):	
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				Name																			Estimate				SE									tStat							DF				pValue								Lower							Upper				

				'(Intercept)'												11.324					1.5219						7.4404				30				2.7208e-08						8.2156						14.432	

				'StoveGroup_C'										-3.0521					1.3185					-2.3148				30						0.027649					-5.7449				-0.35936	

				'StoveGroup_B'									-0.13073						0.941				-0.13893				30							0.89044					-2.0525						1.7911	

				'StoveGroup_A'										-1.8253					1.2602					-1.4484				30							0.15788					-4.3991					0.74842	

				'familymembers'								-0.20634				0.12595					-1.6382				30							0.11182				-0.46357					0.05089	

				'primarycook_1'									0.99952					1.0575					0.94517				30							0.35212					-1.1602						3.1592	

				'AGECAT_1'														-1.4924					1.1608					-1.2857				30							0.20839						-3.863					0.87822	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.6757						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.6757						NaN						NaN			

	

 ‘Light	SVOC’	factor	personal	exposure	mixed	effects	model	

	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logLight_SVOCs	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				177.61				192.11				-79.806										159.61			
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Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate						SE									tStat									DF				pValue								Lower							Upper			

				'(Intercept)'														8.2098					1.3433								6.1115				30				1.0215e-06						5.4663					10.953	

				'StoveGroup_C'												0.13395					1.1638								0.1151				30							0.90914					-2.2428					2.5107	

				'StoveGroup_B'											-0.70906				0.83059						-0.85368				30							0.40005					-2.4053				0.98723	

				'StoveGroup_A'											-0.85567					1.1124						-0.76923				30							0.44777					-3.1274					1.4161	

				'familymembers'									-0.018466				0.11117							-0.1661				30								0.8692				-0.24551				0.20858	

				'primarycook_1'										-0.87379				0.93342						-0.93612				30							0.35669					-2.7801					1.0325	

				'AGECAT_1'													-0.0027845					1.0246				-0.0027177				30							0.99785					-2.0952					2.0897	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.4791						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.4791						NaN						NaN			

	

 ‘Hopane	and	n-alkane’	factor	personal	exposure	mixed	effects	model	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations														37	

				Fixed	effects	coefficients											7	

				Random	effects	coefficients									37	

				Covariance	parameters																2	

	

Formula:	

				logHopanes_and_n_alkanes	~	1	+	StoveGroup	+	familymembers	+	primarycook	+	AGECAT	+	(1	|	INDIVID)	

	

Model	fit	statistics:	

				AIC						BIC						LogLikelihood				Deviance	

				179.8				194.3				-80.901										161.8				
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Fixed	effects	coefficients	(95%	CIs):	

				Name																			Estimate						SE									tStat								DF				pValue							Lower							Upper			

				'(Intercept)'															8.615					1.3837							6.2261				30				7.423e-07						5.7891					11.441	

				'StoveGroup_C'												0.78099					1.1987						0.65151				30						0.51968					-1.6672					3.2292	

				'StoveGroup_B'														1.783				0.85553							2.0841				30					0.045769				0.035766					3.5302	

				'StoveGroup_A'										0.0077733					1.1458				0.0067843				30						0.99463					-2.3322					2.3477	

				'familymembers'								-0.0077907				0.11451				-0.068033				30						0.94621				-0.24166				0.22608	

				'primarycook_1'											-1.5495				0.96145						-1.6116				30						0.11752						-3.513				0.41408	

				'AGECAT_1'															-0.53513					1.0553					-0.50707				30						0.61581					-2.6904					1.6202	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	INDIVID	(37	Levels)	

				Name1																Name2																Type									Estimate				Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								1.5235						NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper	

				'Res	Std'								1.5235						NaN						NaN			

	

 EC,	OC,	and	TC	median	mass	apportionment	from	the	different	PMF	solutions	

presented.	

Table	A2-1		EC,	OC,	and	EC+OC	mass	apportionment	

Ambient	
Light	n-
alkanes	

Odd	n-
alkanes	 Light	SVOCs	 PAHs	

Hopanes	and	
n-alkanes	 Methoxyphenols	

OC	(ng/m3)	 224.0	 88.8	 18.4	 1014.7	 230.1	 284.8	
OC	(%)	 12.0	 4.8	 1.0	 54.5	 12.4	 15.3	
EC	(ng/m3)	 7.8	 2.1	 14.4	 158.4	 12.7	 0.4	
EC	(%)	 4.0	 1.1	 7.4	 80.9	 6.5	 0.2	
TC	(ng/m3)	 231.7	 90.9	 32.8	 1173.1	 242.8	 285.2	
TC	(%)	 11.3	 4.4	 1.6	 57.0	 11.8	 13.9	
	 	 	 	 	 	 	

Cooking	Area	
Light	n-
alkanes	

Odd	n-
alkanes	 Light	SVOCs	 PAHs	

Hopanes	and	
n-alkanes	 Methoxyphenols	

OC	(ng/m3)	 4830.0	 9296.4	 1788.2	 1933.7	 3659.4	 2516.2	
OC	(%)	 20.1	 38.7	 7.4	 8.0	 15.2	 10.5	
EC	(ng/m3)	 158.1	 819.3	 0.0	 493.2	 119.7	 27.1	
EC	(%)	 9.8	 50.7	 0.0	 30.5	 7.4	 1.7	
TC	(ng/m3)	 4988.1	 10115.7	 1788.2	 2426.9	 3779.1	 2543.3	
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TC	(%)	 19.5	 39.5	 7.0	 9.5	 14.7	 9.9	
	 	 	 	 	 	 	

Personal	
Light	n-
alkanes	

Odd	n-
alkanes	 Light	SVOCs	 PAHs	

Hopanes	and	
n-alkanes	 Methoxyphenols	

OC	(ng/m3)	 3552.2	 8716.6	 1798.5	 553.8	 5907.5	 1325.3	
OC	(%)	 16.3	 39.9	 8.2	 2.5	 27.0	 6.1	
EC	(ng/m3)	 116.3	 768.2	 0.0	 141.3	 193.2	 14.3	
EC	(%)	 9.4	 62.3	 0.0	 11.5	 15.7	 1.2	
TC	(ng/m3)	 3668.4	 9484.8	 1798.5	 695.1	 6100.7	 1339.5	
TC	(%)	 15.9	 41.1	 7.8	 3.0	 26.4	 5.8	
	 	 	 	 	 	 	
Personal	and	
Cooking	Area	

Light	n-
alkanes	

Odd	n-
alkanes	 Light	SVOCs	 PAHs	

Hopanes	and	
n-alkanes	 Methoxyphenols	

OC	(ng/m3)	 4645.1	 8716.6	 1798.5	 721.9	 5452.6	 1357.1	
OC	(%)	 20.5	 38.4	 7.9	 3.2	 24.0	 6.0	
EC	(ng/m3)	 152.1	 768.2	 0.0	 184.1	 178.3	 14.6	
EC	(%)	 11.7	 59.2	 0.0	 14.2	 13.7	 1.1	
TC	(ng/m3)	 4797.2	 9484.8	 1798.5	 906.0	 5631.0	 1371.7	
TC	(%)	 20.0	 39.5	 7.5	 3.8	 23.5	 5.7	
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Exposures	to	carbon	monoxide	in	a	cookstove	intervention	in	Northern	Ghana	
	

 CO	exposure	study	summary	statistics	

Summary	statistics	are	presented	in	Table	1	grouped	by	the	same	variable	categories	as	

used	in	the	exposure	model	presented	in	Section	3.1.	

Table	A3-1	.		Descriptive	CO	exposure	statistics	

		 Mean	(ppm)	 Median	(ppm)	 Std	dev	(ppm)	
Control	group	 0.98	 0.52	 1.37	
Gyapa/Philips	 1.09	 0.54	 2.12	
Philips/Philips	 0.94	 0.37	 1.60	
Gyapa/Gyapa	 1.10	 0.50	 1.64	
Primary	cook	females	>5y	 1.17	 0.59	 1.93	
Non-primary	cook	females	
>5y	

0.83	 0.45	 1.09	

Non-primary	cook	males	>5y	 0.91	 0.42	 1.52	
Children	<5y	 0.84	 0.34	 1.40	
Poorest	 1.10	 0.65	 1.69	
Poorer	 1.09	 0.52	 1.53	
Poor	 1.10	 0.49	 2.31	
Less	poor	 0.86	 0.44	 1.24	
Least	poor	 0.94	 0.34	 1.52	
Harmattan	bush	burning	 0.88	 0.44	 1.41	
Hot	dry	 0.71	 0.26	 1.04	
Light	Rainy	 1.21	 0.62	 1.38	
Heavy	Rainy	 1.49	 0.64	 2.59	
Transition	 1.06	 0.43	 1.60	
	

Exceedances	of	WHO	Tier-1	standards	from	this	study	were	calculated	using	the	calibrated	

minute-data	from	the	Lascar	USB-CO	monitors,	and	required	75%	data	completion	for	each	

time	scale	to	be	included.		The	fraction	of	exposure	exceeding	WHO	tier-1	standards	was	low	

compared	to	most	previous	cookstove	studies.	
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Figure	A	3-1		Distributions	of	average	CO	exposure	by	time	periods	relevant	to	WHO	tier-1	
standards	

	

 Lascar	USB-CO	calibration	and	quality	assurance	

Lascar	monitors	were	calibrated	with	certified	CO	standards	at	the	Hannigan	Lab	at	CU	
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two-point	span	checks	were	employed.		In	the	field,	balanced	sampling	was	performed	from	

high	and	low	concentration	time	points,	representative	of	the	concentrations	the	monitors	
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were	exposed	to	in	the	field.		

	
Figure	A	3-2		Example	calibration	of	a	Lascar	that	returned	from	the	field	after	deployment	to	
Navrongo.	

	 Data	filtering	for	quality	assurance	was	manually	performed	consistently	and	blind	to	

the	study	group.		There	were	various	types	of	error	observed	with	the	monitors	over	time,	and	

the	data	checker	relied	on	consistency	of	issues,	duplicate	measures,	and	calibration	quality	to	

remove	suspect	data.		A	time	series	of	calibration	data	deployments,	both	successful	and	

flagged,	is	shown	in	Error!	Reference	source	not	found..	
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Figure	A	3-3	Lascar	USB-CO	calibration	and	data	quality	time	line.		Some	Lascar	monitors	like	#1	
and	#3	never	operated	correctly	and	were	returned	to	the	manufacturer.		In	most	cases,	the	
monitors	were	non-operational	upon	their	return	to	the	CU	Boulder	Hannigan	Lab,	so	a	post-
calibration	could	not	be	performed.			
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The	duplicate	Lascar	CO	monitors	were	primarily	deployed	in	the	latter	half	of	the	study.		In	

Figure	4	we	present	the	comparison	among	duplicate	measures	for	both	the	uncalibrated	and	

calibrated	data.	

		
Figure	A	3-4		Agreement	of	daily	average	Lascar	USB-CO	duplicates	for	both	calibrated	and	raw	
values.	

	

 Complete	CO	exposure	mixed	effects	model	results	

The	mixed	effects	model	results	presented	in	section	3.1	are	presented	in	detail	here	with	

complete	model	output.		The	calibrated	and	uncalibrated	model	results	are	shown	for	

comparison	purposes.			
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				Fixed	effects	coefficients										15	
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Formula:	

				LogCalibratedMeans	~	1	+	SES	+	season	+	StoveGroup	+	primarycookbygender_age5	+	(1	|	UserID)	
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				AIC							BIC					LogLikelihood				Deviance	

				2781.4				2860				-1373.7										2747.4			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																		Estimate				SE									tStat								DF					pValue							Lower							Upper						

				'(Intercept)'																									-0.43276				0.23368							-1.852				736					0.064429				-0.89152						0.025988	

				'SES_Poorer'																										-0.13301				0.21612					-0.61543				736						0.53846					-0.5573							0.29128	

				'SES_Poor'																												-0.25135				0.22349						-1.1247				736							0.2611				-0.69009								0.1874	

				'SES_Less_poor'																							-0.45478				0.23658						-1.9223				736					0.054957				-0.91924					0.0096803	

				'SES_Least_poor'																						-0.50334				0.23012						-2.1873				736					0.029034				-0.95511					-0.051572	

				'season_Heavy_Rainy'																			0.32407				0.15867							2.0424				736					0.041472				0.012562							0.63557	

				'season_Light_Rainy'																			0.38067				0.18368							2.0725				736					0.038566				0.020078							0.74127	

				'season_Transition'																			0.030675				0.32699					0.093811				736						0.92528				-0.61127							0.67262	

				'season_Hot_dry'																						-0.33017				0.16591						-1.9901				736					0.046948				-0.65588				-0.0044663	

				'StoveGroup_C'																								0.011454				0.19579					0.058504				736						0.95336				-0.37292							0.39583	

				'StoveGroup_B'																								-0.14274				0.19469					-0.73316				736							0.4637				-0.52495							0.23947	

				'StoveGroup_A'																								-0.01935				0.20565				-0.094091				736						0.92506				-0.42308							0.38438	

				'primarycookbygender_age5_0F'									-0.43779				0.23105						-1.8948				736					0.058515				-0.89138						0.015809	

				'primarycookbygender_age5_0M'									-0.22312				0.23619					-0.94464				736						0.34515					-0.6868							0.24057	

				'primarycookbygender_age5_<5y'								-0.50652				0.16852						-3.0057				736				0.0027397				-0.83735						-0.17568	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	UserID	(268	Levels)	

				Name1																Name2																Type									Estimate				Lower						Upper			

				'(Intercept)'								'(Intercept)'								'std'								0.68991					0.54502				0.87331	

	

Group:	Error	

				Name													Estimate				Lower					Upper		

				'Res	Std'								1.377							1.2937				1.4656	 	

	

	

 Un-calibrated	CO	exposure	mixed	effects	model	results	
	
Linear	mixed-effects	model	fit	by	ML	
	
Model	information:	
				Number	of	observations													751	
				Fixed	effects	coefficients										15	
				Random	effects	coefficients								268	
				Covariance	parameters																2	
	
Formula:	
				LogCalibratedMeans	~	1	+	SES	+	season	+	StoveGroup	+	primarycookbygender_age5	+	(1	|	UserID)	
	
Model	fit	statistics:	
				AIC							BIC							LogLikelihood				Deviance	
				2736.7				2815.3				-1351.4										2702.7			
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Fixed	effects	coefficients	(95%	CIs):	
				Name																																		Estimate						SE									tStat									DF					pValue							Lower							Upper					
				'(Intercept)'																											-0.46921				0.22609							-2.0753				736					0.038301				-0.91306				-0.025357	
				'SES_Poorer'																											-0.087792				0.20908							-0.4199				736						0.67468				-0.49825						0.32267	
				'SES_Poor'																														-0.17955				0.21619						-0.83053				736						0.40651				-0.60397						0.24487	
				'SES_Less_poor'																									-0.39359				0.22888							-1.7196				736						0.08592				-0.84293					0.055748	
				'SES_Least_poor'																								-0.46576				0.22258							-2.0925				736					0.036733				-0.90273				-0.028789	
				'season_Heavy_Rainy'																					0.13046				0.15402							0.84703				736						0.39725				-0.17191						0.43283	
				'season_Light_Rainy'																				0.093011				0.17827							0.52174				736						0.60201				-0.25697						0.44299	
				'season_Transition'																			-0.0023797				0.31724				-0.0075012				736						0.99402				-0.62518						0.62042	
				'season_Hot_dry'																								-0.46855				0.16096							-2.9111				736				0.0037108				-0.78454					-0.15257	
				'StoveGroup_C'																									-0.028456				0.18937						-0.15026				736							0.8806				-0.40023						0.34332	
				'StoveGroup_B'																										-0.16357				0.18829						-0.86875				736						0.38526				-0.53322						0.20607	
				'StoveGroup_A'																									-0.076173				0.19892						-0.38294				736						0.70187				-0.46668						0.31434	
				'primarycookbygender_age5_0F'											-0.35722				0.22357							-1.5978				736						0.11052				-0.79613					0.081699	
				'primarycookbygender_age5_0M'											-0.15818				0.22855						-0.69207				736						0.48911				-0.60687						0.29052	
				'primarycookbygender_age5_<5y'										-0.47882				0.16308								-2.936				736				0.0034283				-0.79898					-0.15865	
	
Random	effects	covariance	parameters	(95%	CIs):	
Group:	UserID	(268	Levels)	
				Name1																Name2																Type									Estimate				Lower						Upper			
				'(Intercept)'								'(Intercept)'								'std'								0.66251					0.52274				0.83964	
	
Group:	Error	
				Name													Estimate				Lower					Upper		
				'Res	Std'								1.3389						1.2583				1.4247	
	

 Time	of	day	trends	for	cooking	area	CO	and	personal	CO	

	
Figure	A	3-5		Personal	exposure	by	season	and	stove	group,	smoothed	using	b-splines	
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Figure	A	3-6		B-spline	smoothed	personal	CO	exposure	grouped	by	primary	cook	status	gender	
group.		'0'	values	are	for	non-primary	cooks,	and	‘1’	is	for	the	females	listed	as	primary	cooks.		
Children	of	both	genders	and	under	age	five	were	grouped	together	for	the	‘<5y’	category.		No	
males	were	listed	as	primary	cooks.	

	

	
Figure	A	3-7		B-spline	smoothed	personal	CO	exposure	grouped	by	age	and	gender	group.		'0'	
values	are	under	5,	and	'1's	are	over	5	years	of	age.	
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 Modeling	CO	with	carbonaceous	PM2.5	

model_EC_simple	=		

	

	

Linear	regression	model:	

				LogECugm3	~	1	+	LogCO	

	

Estimated	Coefficients:	

																			Estimate						SE								tStat					pValue		

																			________				_______				_______				_______	

	

				(Intercept)				0.13616					0.17358				0.78442				0.43454	

				LogCO										0.12822					0.11449					1.1199				0.26527	

	

	

Number	of	observations:	108,	Error	degrees	of	freedom:	106	

Root	Mean	Squared	Error:	1.55	

R-squared:	0.0117,		Adjusted	R-Squared	0.00237	

F-statistic	vs.	constant	model:	1.25,	p-value	=	0.265	
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Linear	regression	model:	

				LogOCugm3	~	1	+	LogCO	

	

Estimated	Coefficients:	

																			Estimate							SE							tStat						pValue			

																			________				________				______				_________	

	

				(Intercept)					3.3357							0.1399				23.844				2.132e-44	

				LogCO										0.21109					0.092272				2.2877					0.024141	

	

	

Number	of	observations:	108,	Error	degrees	of	freedom:	106	

Root	Mean	Squared	Error:	1.25	

R-squared:	0.047,		Adjusted	R-Squared	0.0381	

F-statistic	vs.	constant	model:	5.23,	p-value	=	0.0241	
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Bluetooth	Beacon	proximity	sensing	to	improve	personal	exposure	assessment	

	

 G-Pod	cooking	area	micro-environment	monitoring	

	 The	G-Pod	air	quality	monitor	sampling	inlets	were	placed	1-meter	away	from	the	

cookstove	of	interest,	at	1-meter	height,	with	BLE	Beacons	bolted	to	the	outside	of	the	cases.		

CO	was	measured	with	Alphasense	CO-B4	electrochemical	sensors.		CO2	was	measured	with	

NDIR	sensors	(S200,	ELT	Corp.).		Temperature,	humidity,	and	barometric	pressure	were	also	

measured	in	the	G-Pod,	and	on	a	subset	of	samples,	total	VOCs	were	measured	with	PID	

sensors	(pID-Tech	Plus	Silver,	Baseline-Mocon	Inc.).		Integrated	PM2.5	was	collected	and	

analyzed	as	described	in	Piedrahita	et	al.	(2017).		From	December	2013	through	November	

2014,	only	the	most-used	cooking	area	was	monitored,	but	from	November	2014	–	January	

2016,	the	two	most-used	cooking	areas	were	monitored.				

 Cooking	area	microenvironment	measurements	calibration	and	data	processing	

	 We	employed	a	multi-step	protocol	to	ensure	data	quality	over	the	duration	of	the	

study.		CO	and	CO2	sensors	underwent	lab	calibrations	at	the	University	of	Colorado	Hannigan	

Lab	before	and	after	each	sampling	period	(November	2013,	October	2014,	May	2015,	October	

2015,	and	February	2016).		An	exponential	calibration	model	controlling	for	temperature	was	

used	for	the	Alphasense	CO	sensor	(Masson	et	al.,	2015),	while	a	first	order	linear	model	was	

used	for	the	ELT	CO2	sensor	(Piedrahita	et	al.,	2013).	Span	checks	were	performed	at	the	NHRC	

in	March	2015	after	receiving	cylinders	of	span	gases.		Calibrations	were	very	consistent	over	

time	for	these	sensors,	as	has	been	previously	shown	(Masson	et	al.,	2015).	

	 The	G-Pods	were	configured	to	sample	at	15-second	intervals,	and	1-minute	medians	

were	used	for	further	analysis.		CO	and	CO2	data	were	baseline-adjusted	to	the	5th	percentile	of	

the	ambient	background	concentration,	to	mitigate	baseline	sensor	drift	over	time.		We	found	

evidence	of	uniform	background	levels	of	these	pollutants	(data	not	yet	published),	and	since	

ventilation	rates	are	very	high	in	the	measured	microenvironments	due	to	building	styles,	we	

considered	this	to	be	a	reasonable	approach	since	we	could	not	perform	full	calibrations	as	

often	as	desired.			
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 Beacon	distance	calibration	

	 The	iBeacon	protocol	includes	a	calibration	constant	to	normalize	the	RSSI-to-distance	

conversion	but	Android	devices	do	not	use	this	method,	which	made	it	necessary	to	perform	a	

calibration	with	our	specific	hardware	(Error!	Reference	source	not	found.).		Calibration	was	

performed	on	an	open	sports	field	free	of	extraneous	objects	using	an	equation	of	the	form	

distance	=10(p1	*	RSSI)/p2),	as	has	been	used	commonly	in	beacon	work	(Anagnostopoulos	and	

Deriaz,	2014).		Stationary	data	was	collected	with	two	phones	and	two	beacons	at	distances	of	

2,	5,	10,	20,	and	40m,	for	durations	of	three	minutes	at	each	distance.			

	 The	data	from	each	phone/beacon	combination	was	fit	individually	to	but	in	the	end	a	

single	calibration	using	all	the	data	was	kept	for	further	analysis	because	we	determined	that	

the	inter-phone	and	inter-beacon	differences	were	due	to	random	experimental	error,	like	

orientation,	rather	than	systemic	differences	in	hardware.		Additionally,	not	all	phones	were	

available	at	the	time	of	calibration,	so	a	bulk	approach	was	deemed	prudent.		An	r-squared	

value	of	0.72	was	obtained	using	all	the	data,	with	evenly	distributed	residuals	(Error!	

Reference	source	not	found.).		
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Figure	A	4-1.		RSSI-to-distance	calibrations	for	various	calibration	models.	The	bold	black	line	
shows	a	fit	using	aggregate	data	from	both	phones,	and	both	beacons,	while	the	thin	lines	are	
phone/beacon	specific.		Box	and	whisker	plots	show	the	distributions	of	the	all	the	raw	data,	
with	whiskers	representing	5th	and	95th	percentiles.		Note	that	the	outlying	curves	on	the	top	
and	bottom	of	the	plot	are	from	phone	4,	suggesting	a	performance	issue	with	that	phone.	
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Figure	4-1.		Modeled	categories	vs.	known	categories	for	all	merged	beacon	signal	data.		
Percentages	add	up	to	100	by	column,	as	the	x-axis	represent	the	known	category	values	

	

 Participant	protocol	compliance	

Compliance	was	calculated	using	the	rolling	standard	deviation	of	one-hour	segments	of	the	

minute	beacon	data	and	flagging	hours	in	which	the	standard	deviation	of	any	available	beacon	

signal	in	units	of	RSSI	was	greater	than	2,	excluding	nighttime	between	21:00	and	7:00.		

Standard	deviation	of	2	was	selected	based	on	noise	variability	during	calibration	periods	and	is	

in	units	of	RSSI	because	the	residuals	are	normally	and	evenly	distributed	throughout	the	

distance	categories,	but	residuals	are	not	evenly	distributed	after	passing	through	the	

exponential	calibration	curve	in	conversion	to	distance	(m).		Using	this	approach,	average	

compliance	was	measured	at	81.9%.	

 Beacon	system	validation		
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	 A	validation	test	was	performed	as	part	of	an	outdoors	cookstove	test.		The	same	

distance	ranges	were	prepared,	and	a	user	walked	throughout	each	range	for	20	minutes.		

Three	phones	were	placed	at	the	epicenter	of	the	region	arcs,	along	with	the	stove.		There	were	

more	obstructions	in	this	test	than	the	open	field,	making	it	a	more	realistic	scenario.		There	are	

still	limitations	with	this	approach,	and	it	is	not	meant	to	represent	all	indoor	use,	which	could	

be	highly	variable	due	to	placement	of	equipment,	home	layouts,	building	materials,	and	user	

behaviors.		Dedicated	indoor	testing	in	a	variety	of	environments	would	provide	a	better	

understanding	of	the	expected	performance.	

Validation	testing	for	both	deployments	and	all	combinations	of	phones	and	beacons	

showed	correct	classification	of	distance	categories	on	30.9%	of	observations	on	average,	and	

67.4%	of	observations	were	within	one	distance	zone	of	the	correct	zone.		System	performance	

was	not	significantly	different	between	the	initial	validation	test	and	the	outdoor	cooking	test.		

However,	classification	errors	were	not	evenly	distributed	among	distance	categories,	with	

lower	matching	success	rates	for	the	more	distant	ranges	(Figure	A4-3).		This	was	expected,	

since	the	relative	signal	drop-off	due	to	bodily	interference	is	higher	for	closer	ranges.		

Calibration	showed	inter-phone	variability	of	4.4m	(RMS	error)	(Error!	Reference	source	not	

found.),	suggesting	that	each	of	our	phones	would	have	benefitted	from	individual	calibrations,	

though	such	variability	is	model	specific	for	the	phone	and	may	not	be	the	case	with	other	

phone	models.	
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Figure	A4-2.		Performance	from	the	validation	deployment	in	an	open	field.		Light	colored	boxes	
show	the	match	rate,	and	dark	boxes	show	the	rate	at	which	the	algorithm	predicted	within	
one	zone	of	the	correct	zone.		Left	frames	show	performance	by	distance	zone,	while	right	
frames	show	overall	performance.		Top	frames	show	match	rates	using	the	MV	algorithm,	the	
middle	frames	show	rates	using	minute	medians,	and	the	bottom	frames	show	match	rates	
using	the	merged	beacon	data	along	with	the	MV	algorithm.	
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Figure	A4-3.	Performance	from	the	test	deployment	with	additional	obstructions.		Light	colored	
boxes	show	the	match	rate,	and	dark	boxes	show	the	rate	at	which	the	algorithm	predicted	
within	one	zone	of	the	correct	zone.		Left	frames	show	performance	by	distance	zone,	while	
right	frames	show	overall	performance.		Top	frames	show	match	rates	using	the	MV	algorithm,	
the	middle	frames	show	rates	using	minute	medians,	and	the	bottom	frames	show	match	rates	
using	the	merged	beacon	data	along	with	the	MV	algorithm.		

	 The	MV	filter	provided	a	2.2%	and	3.4%	improvement	over	the	simple	medians	for	the	

direct	match	rate	of	the	‘open	field’	and	‘obstructed’	data	sets,	and	0%	and	6.1%	improvement	

for	the	within-one	match	rate	of	the	‘open	field’	and	‘obstructed’	data	sets	(Figure	A4-2,	Figure	

A4-3).		The	physical	reasoning	behind	this	approach	suggests	that	it	would	improve	

performance	in	more	variable	and	dynamic	environments,	with	only	minor	potential	drawbacks	

in	outlying	use	cases.	

Merging	the	data	from	both	beacons	worn	by	the	user	resulted	in	substantially	better	

performance,	since	the	attenuation	effects	were	much	less	pronounced	due	to	the	improved	

direct	line-of-sight	to	the	phones	at	nearly	all	times.		53.1%	of	observations	were	correctly	
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classified	on	average,	while	89.5%	of	observations	were	classified	within	one	zone	for	the	‘open	

field’	test,	while	in	the	obstructed	data	set	the	values	were	46.0%	and	91.3%.		The	merged	data	

had	errors	that	were	more	evenly	distributed	among	categories.	

	

 CO	and	beacon	modeling	results	

	

Table	A	4-1	Summary	of	results	from	modeling	personal	CO	exposure	by	cooking	area	CO.	

		 Personal	vs.	cooking	area	CO	by	zones	(Eq.	5-3)	 Daily	average	personal	vs.	cooking	area	CO	(Eq.	5-4)	

		

Expected	
value	ppm	
(95%	CI)	

Coefficient	
(95%	CI)	

%	change	
(95%	CI)	

P-
value	

Expected	
value	ppm	
(95%	CI)	

Coefficient	
(95%	CI)	

%	change	
(95%	CI)	

P-
value	

Intercept	 .1	(.07,	.16)	
-2.27	(-

2.69,	-1.85)	 NA	 0.00	 .14	(.07,	.25)	
-2.	(-2.62,	-

1.38)	 NA	 0.00	
log(Weighted	
cooking	area	
CO)	

2.74	(2.25,	
3.33)	

1.01	(.81,	
1.2)	

173.54	
(124.75,	
232.92)	 0.00	

2.24	(1.5,	
3.36)	 .81	(.4,	1.21)	

124.25	
(49.87,	
235.56)	 0.00	

Random	effect	
by	individual	 		

.35	(.13,	
.94)	 		 		 		 0.00	 		 		

Random	error	
covariance	 		

1.	(.76,	
1.31)	 		 		 		

1.28	(.82,	
2.01)	 		 		

Adjusted	R-
squared	 		 0.63	 		 		 		 0.28	 		 		
N	 		 123	 		 		 		 38	 		 		

	

 Daily	average	modeling	by	stove	group	using	only	the	data	available	with	Beacons	
	

Model	information:	

				Number	of	observations														71	

				Fixed	effects	coefficients											4	

				Random	effects	coefficients									31	

				Covariance	parameters																2	

	

Formula:	

				LogPersonalCOMeans	~	1	+	StoveGroup	+	(1	|	UserID)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				274.86				288.44				-131.43										262.86			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																		Estimate				SE									tStat							DF				pValue					Lower						Upper			

				'(Intercept)'									-0.38888						0.689				-0.56442				67				0.57435				-1.7641				0.98636	
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				'StoveGroup_C'									-1.1923				0.84385					-1.4129				67				0.16232				-2.8766				0.49207	

				'StoveGroup_B'									-1.0066				0.73792					-1.3642				67				0.17708				-2.4795				0.46626	

				'StoveGroup_A'									-1.2481				0.76329					-1.6351				67				0.10671				-2.7716				0.27544	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	UserID	(31	Levels)	

				Name1																Name2																Type									Estimate						Lower				Upper	

				'(Intercept)'								'(Intercept)'								'std'								6.4937e-07				NaN						NaN			

	

Group:	Error	

				Name													Estimate				Lower				Upper		

				'Res	Std'								1.5406						1.307				1.8161	
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Laboratory	assessment	of	electrochemical	carbon	monoxide	monitors	
	

Table	A5.1		Sensitivity	and	relative	error	modeled	with	cumulative	exposure.	*Significant	at	p	=	0.05.	

	 Equation	1	for	slope	
change	over	time	

Equation	2	for	relative	
error	(%)	using	best	
calibration	

Equation	2	for	relative	
error	(%)	using	
pre/post	calibration	

Equation	2	for	relative	
error	(%)	using	raw	
data	

	 Coefficients	(CI)	 Coefficients	(CI)	 Coefficients	(CI)	 Coefficients	(CI)	
Intercept	(‘fresh’	
category)	

8.29E-1	(8.68E-1,	
7.89E-1)*	

5.83E+0	(1.15E+1,	
1.77E-1)	*	

1.07E+1	(1.98E+1,	
1.69E+0)	*	

-7.03E+0	(6.07E+0,	-
2.01E+1)	

Cumulative	exposure	
ppm-hr	

-5.75E-6	(-2.65E-6,	-
8.84E-6)	*	

-5.84E-4	(1.09E-4,	-
1.28E-3)	

-5.72E-4	(4.60E-4,	-
1.60E-3)	

-1.59E-3	(-2.35E-4,	-
2.95E-3)	*	

Batch	('used'	relative	to	
'fresh')	

6.78E-2	(1.20E-1,	
1.51E-2)	*	

-7.56E+0	(-1.02E+0,	-
1.41E+1)	

-1.15E+1	(-5.65E-1,	-
2.23E+1)	

-5.35E+0	(1.13E+1,	-
2.20E+1)	

Cumulative	
exposure:Batch	

4.74E-6	(8.00E-6,	
1.48E-6)	*	

5.35E-4	(1.23E-3,	-
1.63E-4)	

4.76E-4	(1.53E-3,	-
5.82E-4)	

1.31E-3	(2.79E-3,	-
1.59E-4)	

Random	intercept	
variance	

3.68E-2	(2.36E-2,	
5.74E-2)	*	

2.13E+0	(4.05E-1,	
1.12E+1)	*	

5.21E+0	(1.13E+0,	
2.39E+1)	*	

1.02E+1	(5.36E+0,	
1.94E+1)	*	

Random	slope	variance	 1.13E-6	(5.14E-7,	
2.47E-6)	*	

7.31E-5	(1.80E-5,	
2.97E-4)	*	

2.47E-4	(4.93E-5,	
1.24E-3)	*	

6.41E-4	(2.66E-4,	
1.54E-3)	*	

Error	variance	 3.40E-2	(2.95E-2,	
3.91E-2)	*	

8.10E+0	(7.08E+0,	
9.26E+0)	*	

1.18E+1	(9.99E+0,	
1.38E+1)	*	

1.43E+1	(1.23E+1,	
1.65E+1)	*	

	 	 	 	 	
	

 Calibration	slope	error	over	time	
	

Model	information:	

				Number	of	observations													119	

				Fixed	effects	coefficients											4	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				betaslope	~	1	+	cumulativerawdoseppmhr*BatchCat	+	(1	+	cumulativerawdoseppmhr	|	Lascar)	

	

Model	fit	statistics:	

				AIC								BIC								LogLikelihood				Deviance	

				-411.88				-389.65				213.94											-427.88		

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																										Estimate							SE												tStat					DF					pValue								Lower										Upper							

				'(Intercept)'																																					0.82871						0.020056					41.32				115				7.7289e-71								0.78898								0.86843	

				'cumulativerawdoseppmhr'																						-5.7452e-06				1.5637e-06				-3.674				115				0.00036405				-8.8427e-06				-2.6477e-06	

				'BatchCat_Used'																																		0.067784						0.026586				2.5496				115								0.0121							0.015122								0.12045	
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				'cumulativerawdoseppmhr:BatchCat_Used'									4.7403e-06				1.6469e-06				2.8784				115					0.0047667					1.4782e-06					

8.0025e-06	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																											Name2																											Type										Estimate						Lower									Upper						

				'(Intercept)'																			'(Intercept)'																			'std'											0.036805						0.023613						0.057364	

				'cumulativerawdoseppmhr'								'(Intercept)'																			'corr'											0.81064							0.12702							0.97215	

				'cumulativerawdoseppmhr'								'cumulativerawdoseppmhr'								'std'									1.1262e-06				5.1381e-07				2.4685e-06	

	

Group:	Error	

				Name													Estimate				Lower							Upper				

				'Res	Std'								0.034002				0.029543				0.039132	

	

 Best	calibration	approach	average	error	over	time	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													119	

				Fixed	effects	coefficients											4	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				BestPercentError	~	1	+	cumulativerawdoseppmhr*BatchCat	+	(1	+	cumulativerawdoseppmhr	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				865.36				887.59				-424.68										849.36			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																										Estimate							SE												tStat						DF					pValue						Lower										Upper						

				'(Intercept)'																																						5.8301								2.8541					2.0427				115				0.043364								0.17677								11.483	

				'cumulativerawdoseppmhr'																						-0.00058433				0.00035017				-1.6687				115				0.097893					-0.0012779				0.00010928	

				'BatchCat_Used'																																			-7.5622								3.3048				-2.2882				115				0.023952								-14.108							-1.0159	

				'cumulativerawdoseppmhr:BatchCat_Used'									0.00053541				0.00035262					1.5184				115					0.13166				-0.00016306					

0.0012339	
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Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																											Name2																											Type										Estimate						Lower									Upper						

				'(Intercept)'																			'(Intercept)'																			'std'													2.1325							0.40538								11.218	

				'cumulativerawdoseppmhr'								'(Intercept)'																			'corr'											0.99866												-1													1	

				'cumulativerawdoseppmhr'								'cumulativerawdoseppmhr'								'std'									7.3124e-05				1.7978e-05				0.00029742	

	

Group:	Error	

				Name													Estimate				Lower					Upper		

				'Res	Std'								8.0969						7.0827				9.2563	

	

 Pre/post	calibration	average	error	over	time	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													119	

				Fixed	effects	coefficients											4	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				PrePostPercentError	~	1	+	cumulativerawdoseppmhr*BatchCat	+	(1	+	cumulativerawdoseppmhr	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				963.83				986.07				-473.92										947.83			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																										Estimate							SE												tStat						DF					pValue						Lower										Upper						

				'(Intercept)'																																						10.733								4.5658					2.3508				115				0.020435									1.6894								19.777	

				'cumulativerawdoseppmhr'																						-0.00057236				0.00052107				-1.0984				115					0.27432					-0.0016045				0.00045979	

				'BatchCat_Used'																																			-11.456								5.4985				-2.0835				115				0.039424								-22.347						-0.56452	

				'cumulativerawdoseppmhr:BatchCat_Used'									0.00047613				0.00053402					0.8916				115					0.37447				-0.00058165					

0.0015339	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																											Name2																											Type										Estimate						Lower									Upper					
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				'(Intercept)'																			'(Intercept)'																			'std'														5.207								1.1322							23.947	

				'cumulativerawdoseppmhr'								'(Intercept)'																			'corr'																	1											NaN										NaN	

				'cumulativerawdoseppmhr'								'cumulativerawdoseppmhr'								'std'									0.00024709				4.9266e-05				0.0012393	

	

Group:	Error	

				Name													Estimate				Lower					Upper		

				'Res	Std'								11.755						9.9859				13.836	

	

 Raw	data	average	error	over	time	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													119	

				Fixed	effects	coefficients											4	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				RawPercentError	~	1	+	cumulativerawdoseppmhr*BatchCat	+	(1	+	cumulativerawdoseppmhr	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				1021.5				1043.8				-502.76										1005.5			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																										Estimate						SE												tStat							DF					pValue						Lower										Upper							

				'(Intercept)'																																				-7.0258								6.6135					-1.0623				115					0.29031								-20.126									6.0743	

				'cumulativerawdoseppmhr'																						-0.0015921				0.00068517					-2.3237				115						0.0219					-0.0029493				-0.00023492	

				'BatchCat_Used'																																		-5.3475								8.3906				-0.63732				115					0.52518								-21.968									11.273	

				'cumulativerawdoseppmhr:BatchCat_Used'									0.0013148				0.00074417						1.7668				115				0.079923				-0.00015929						

0.0027888	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																											Name2																											Type										Estimate						Lower									Upper					

				'(Intercept)'																			'(Intercept)'																			'std'													10.191								5.3569							19.388	

				'cumulativerawdoseppmhr'								'(Intercept)'																			'corr'											0.96774						-0.98766												1	

				'cumulativerawdoseppmhr'								'cumulativerawdoseppmhr'								'std'									0.00064071				0.00026619				0.0015422	
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Group:	Error	

				Name													Estimate				Lower					Upper		

				'Res	Std'								14.278						12.341				16.519	

	

Table	A5.2	Mixed	effects	modeling	results	for	relationships	between	dynamic	sensor	characteristics	and	

cumulative	sensor	exposures.	*Significant	at	p	=	0.05.	

	
Equation	6-3	for	log(rise	time	
(s))	

Equation	6-3	for	log(decay	time	
(s))	

Equation	6-4	for	log(maximum	
slope)	

	 Coefficients	(CI)	 Coefficients	(CI)	 Coefficients	(CI)	

Intercept	 6.00E+0	(5.45E+0,	6.56E+0)*	 4.27E+0	(3.72E+0,	4.82E+0)	*	 -3.17E+0	(-3.77E+0,	-2.56E+0)	*	

Batch	 -6.40E-1	(-1.31E+0,	3.30E-2)	 -1.08E+0	(-1.80E+0,	-3.58E-1)	*	 3.08E-1	(-4.24E-1,	1.04E+0)	

log(peak	concentration	(ppm))	 -1.48E-1	(-2.51E-1,	-4.40E-2)*	 1.05E-1	(-2.38E-3,	2.12E-1)	 7.16E-1	(6.04E-1,	8.28E-1)	*	

Cumulative	exposure	(ppm-hr)	 6.44E-6	(1.31E-7,	1.27E-5)	*	 3.78E-6	(-4.45E-7,	8.00E-6)	 -5.48E-6	(-1.20E-5,	9.94E-7)	
Batch_Used:log(peak	
concentration)	 1.24E-1	(-2.57E-3,	2.50E-1)	 1.83E-1	(4.13E-2,	3.24E-1)	*	 3.46E-3	(-1.32E-1,	1.39E-1)	
log(peak	concentration):	
cumulative	exposure	(ppm-hr)	 -1.66E-6	(-2.83E-6,	-4.88E-7*)	 -1.48E-6	(-2.28E-6,	-6.68E-7*)	 1.12E-6	(-8.36E-8,	2.33E-6)	

Random	intercept	variance	 5.27E-4	(4.47E-4,	6.21E-4)	*	 1.81E-1	(4.54E-2,	7.21E-1)	*	 8.92E-3	(1.89E-3,	4.21E-2)	*	

Random	slope	variance	 9.37E-5	(7.77E-6,	1.13E-3)	*	 7.47E-3	(1.91E-3,	2.92E-2)	*	 6.24E-5	(5.30E-5,	7.34E-5)	*	

Error	variance	 1.91E-1	(1.62E-1,	2.25E-1)	*	 1.41E-1	(1.21E-1,	1.64E-1)	*	 2.25E-1	(1.92E-1,	2.65E-1)	*	

	

 Maximum	slope	model	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													299	

				Fixed	effects	coefficients											6	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				logMaxSlope	~	1	+	BatchCat*logPeak_ppm	+	logPeak_ppm*cumulativedose60	+	(1	+	logPeak_ppm	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				425.92				462.92				-202.96										405.92			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																		Estimate						SE												tStat							DF					pValue								Lower										Upper						

				'(Intercept)'																												-3.1658							0.30806					-10.277				293				2.3366e-21									-3.772							-2.5595	
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				'BatchCat_Used'																											0.3077									0.372					0.82716				293							0.40882							-0.42443								1.0398	

				'logPeak_ppm'																													0.7159						0.056885						12.585				293					2.501e-29								0.60394							0.82785	

				'cumulativedose60'																				-5.481e-06				3.2898e-06					-1.6661				293						0.096767				-1.1956e-05				9.9358e-07	

				'BatchCat_Used:logPeak_ppm'												0.0034585						0.068699				0.050343				293							0.95988							-0.13175							0.13867	

				'logPeak_ppm:cumulativedose60'								1.1248e-06				6.1397e-07							1.832				293						0.067972				-8.3581e-08				2.3331e-06	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																Name2																Type										Estimate				Lower								Upper					

				'(Intercept)'								'(Intercept)'								'std'										0.09447					0.043477						0.20527	

				'logPeak_ppm'								'(Intercept)'								'corr'														-1										NaN										NaN	

				'logPeak_ppm'								'logPeak_ppm'								'std'									0.007899				0.0072833				0.0085667	

	

Group:	Error	

				Name													Estimate				Lower						Upper			

				'Res	Std'								0.47461					0.43769				0.51464	

	

 Rise	time	model	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													292	

				Fixed	effects	coefficients											6	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				logT90rise	~	1	+	BatchCat*logPeak_ppm	+	logPeak_ppm*cumulativedose60	+	(1	+	logPeak_ppm	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				370.92				407.68				-175.46										350.92			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																		Estimate							SE												tStat						DF					pValue								Lower										Upper							

				'(Intercept)'																														6.0037							0.28163					21.318				286				5.0183e-61									5.4494										6.558	

				'BatchCat_Used'																										-0.63975							0.34178				-1.8718				286						0.062253								-1.3125							0.032975	

				'logPeak_ppm'																												-0.14766						0.052665				-2.8037				286					0.0053978							-0.25132						-0.043996	
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				'cumulativedose60'																					6.4396e-06				3.2053e-06					2.0091				286						0.045469						1.307e-07					1.2748e-05	

				'BatchCat_Used:logPeak_ppm'															0.12358						0.064089					1.9283				286						0.054813						-0.002566								0.24972	

				'logPeak_ppm:cumulativedose60'								-1.6572e-06				5.9416e-07				-2.7892				286					0.0056382				-2.8267e-06				-4.8776e-07	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																Name2																Type										Estimate					Lower								Upper				

				'(Intercept)'								'(Intercept)'								'std'										0.022953						0.02115				0.024911	

				'logPeak_ppm'								'(Intercept)'								'corr'																1										NaN									NaN	

				'logPeak_ppm'								'logPeak_ppm'								'std'									0.0096794				0.0027867					0.03362	

	

Group:	Error	

				Name													Estimate				Lower						Upper			

				'Res	Std'								0.43689					0.40247				0.47427	

	

 Decay	time	model	
	

Linear	mixed-effects	model	fit	by	ML	

	

Model	information:	

				Number	of	observations													355	

				Fixed	effects	coefficients											6	

				Random	effects	coefficients									20	

				Covariance	parameters																4	

	

Formula:	

				logT90decay	~	1	+	BatchCat*logPeak_ppm	+	logPeak_ppm*cumulativedose60	+	(1	+	logPeak_ppm	|	Lascar)	

	

Model	fit	statistics:	

				AIC							BIC							LogLikelihood				Deviance	

				352.47				391.19				-166.24										332.47			

	

Fixed	effects	coefficients	(95%	CIs):	

				Name																																		Estimate							SE												tStat						DF					pValue								Lower										Upper							

				'(Intercept)'																														4.2694							0.28187					15.147				349				3.4692e-40										3.715									4.8237	

				'BatchCat_Used'																											-1.0782							0.36637				-2.9431				349					0.0034674								-1.7988							-0.35767	

				'logPeak_ppm'																													0.10494						0.054563					1.9232				349						0.055264					-0.0023764								0.21225	

				'cumulativedose60'																					3.7762e-06				2.1463e-06					1.7594				349						0.079389				-4.4515e-07					7.9975e-06	

				'BatchCat_Used:logPeak_ppm'															0.18268						0.071901					2.5408				349						0.011493							0.041271									0.3241	
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				'logPeak_ppm:cumulativedose60'								-1.4764e-06					4.109e-07				-3.5931				349				0.00037367				-2.2846e-06				-6.6827e-07	

	

Random	effects	covariance	parameters	(95%	CIs):	

Group:	Lascar	(10	Levels)	

				Name1																Name2																Type										Estimate				Lower							Upper				

				'(Intercept)'								'(Intercept)'								'std'										0.42539					0.21313					0.84904	

				'logPeak_ppm'								'(Intercept)'								'corr'								-0.98406				-0.99828				-0.86018	

				'logPeak_ppm'								'logPeak_ppm'								'std'									0.086449				0.043718					0.17095	

	

Group:	Error	

				Name													Estimate				Lower						Upper			

				'Res	Std'								0.37518					0.34788				0.40462	

	


