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When two RF circuits or devices are connected, there is often an impedance mismatch caus-

ing unwanted reflection if not corrected. Impedance matching can be realized using lumped or

distributed circuit elements. When considering transmission line segments, the length of the line

with respect to the wavelength of the matched frequency is significant. It has been empirically

observed [1] while designing short transmission line matching circuits, that there is a lower limit to

the segment length that can provide a perfect match when constraints are placed on the possible

values of characteristic impedance. However, this limit has not been extensively studied.

In this dissertation, lengths limits for zero reflection are derived. The length limits are a func-

tion of the characteristic impedances used along the non-uniform transmission line. Discontinuities

along the transmission line can be used in impedance matching. A study of complex reflection

using global and local reflection coefficients is developed to understand the contributions of line

length, taper, and impedance discontinuities.

A special case of a nonuniform transmission line that can be used for impedance matching is

the exponential line. While past studies of exponential transmission lines have concentrated on the

case where there are no discontinuities at the load and input ends of the line, this dissertation allows

for an infinite number of exponential lines with various discontinuities at the load and source end of

the line. For this case, a closed form solution for the reflection coefficient as a function of distance

along the line can be computed. A one-parameter family of designs for an exponentially tapered

transmission line needed to match a given resistive load to a real input impedance is derived.

Consideration is also given to frequency bandwidth, ripple height, and length of the matching

section. Several of these transmission lines have been fabricated and measured.
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Chapter 1

Introduction

1.1 Background

When an electromagnetic wave propagates through a medium and encounters a change in

the wave impedance, a reflection of some portion of the energy will occur in the direction of

the wave’s source. Likewise, an electromagnetic wave propagating along a transmission line that

encounters a change in the characteristic impedance of the line will also have a portion of its energy

reflected toward its source. It is desirable in most RF systems for these reflections of energy to be

minimized. Much standard RF equipment is designed with an characteristic impedance of 50Ω or

75Ω. If components could be chosen with the desired impedance in the first place these reflections

could be essentially eliminated, but this is not always possible.

When devices such as antennas, amplifiers, directional couplers, and power dividers are used,

they typically have characteristic impedances that are not 50Ω or 75Ω. When these load impedances

are used in a circuit with unmatched input impedance, there are several techniques by which the

source and load impedances can be matched. This can be done with lumped LC elements as

shown in Figure 1.1. Transmission lines can also be used to match load impedances to the source

characteristic impedance. Nonuniform transmission lines use changes in impedance characteristics

and abrupt changes in impedance or ”jumps” to match a load to a source impedance.

There are a number of impedance matching techniques that make use of one or more lengths

of transmission-line. The quarter-wave transformer (Figures 1.2 and 1.3) uses a single uniform

transmission line with a characteristic impedance equal to the geometric mean of the input and
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R2 = L / (C x R1)

Figure 1.1: Antenna matched with lumped elements.[2]
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Power Divider

Figure 1.2: Diagram and example picture of a quarter-wave transformer.[3]

the load impedance when both are real. The two discontinuities along with the λ/4 section of

transmission line create an ideal match (ρ0 = 0) at a single frequency and odd harmonics over some

limited bandwidth.

Many applications that do not require large bandwidth can make use of impedance trans-

formers shorter than λ/4 which can conserve space and reduce losses [6]. Even shorter transmission

lines can be realized in a similar manner by allowing larger impedance discontinuities [7], [8]. Using

this technique, the total electrical length of the coupler can be made arbitrarily small, although

parasitic effects are neglected that will probably limit the possible size reduction in practice. On

the other hand, at times wide bandwidth, high-pass impedance transformation is needed, such as

when testing semiconductors [9], or for use in wide-band amplifier circuits or RF power harvesting

[10]. Such matching devices will require longer electrical lengths.

Using nonuniform transmission lines for impedance matching as shown in Figures 1.2, 1.3,

and 1.4, the matching characteristics of length and bandwidth are primary considerations. In

order to conserve physical space, or minimize loss, it is often favorable to use a short section of

transmission line to match a load to a transmission line. It has been empirically observed [1] while

designing short transmission line matching circuits, that there is a lower limit to the segment length

that will provide a perfect match when constraints are placed on possible values of characteristic

impedance. While circuit simulating tools are often used to help find a matching circuit, a priori

knowledge of a lower length limit with respect to wavelength can be useful in determining initial
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Figure 1.3: Ultrasound quarter-wave matched layer.[4][5]

Figure 1.4: Microstrip non-uniform transmission line example.[1]
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design parameters. This length is studied and characterized for any non-uniform transmission line.

To study the overall length of a non-uniform transmission line for impedance transformation,

it is useful to plot complex reflection coefficient with respect to position along the line. Choosing

the characteristic impedance along that length of line, or a external characteristic impedance as

a reference give different insights into how the matching is accomplished. These global and local

reflection coefficients are defined and plotted herein.

In order to investigate the length for non-uniform line transformers, a closed form solution

example would be “convenient”. For the general case, this is not realizable, but for a limited

number of cases, a closed form solution can be found. One of these cases is when the non-uniform

line follows an exponential taper. The exponential taper is studied mathematically and using the

global and local reflection coefficients to compare to the overall length limits and analyze bandwidth.

The exponential study is not limited to the classical problem of the exponential transmission line,

Chapters 3 and 4 will consider the effects of impedance discontinuities at each end of the line.

There has been almost no study of exponential lines with such discontinuities. By allowing for

these jumps in characteristic impedance at the input and load end of the taper, a wide range of

solutions are available from short (narrow bandwidth) to wider bandwidth but much longer lengths.

We will study the trade-offs involved as well as the effects of parasitics by comparing the circuit

model with the full-wave electromagnetic solution and measured data.

1.2 Previous Work

While studying various non-uniform transmission lines, it has been observed that there is

a fundamental limit to the shortest line which will transform between two impedances with zero

reflection [1]. An analytical approach to finding this length limit has been studied [11] [12] and is

discussed in this dissertation.



Chapter 2

Solution Methods for Reflection on a Nonuniform Line

2.1 ABCD Parameters of a lossless 2-Port Matching Network

Analysis and design of two-port networks is easily done using ABCD Parameters. Figure 2.1

shows the transmission lines and impedances around a two-port device that will be matched. ABCD

parameters can be used to mathematically represent any two-port network where discrete ports can

be defined in an RF circuit. Voltages and currents on the source side of a transmission line are

given the notations VS and IS , while VL and IL characterize the load side of the circuit. The ABCD

parameters are defined in terms of these as follows:

VS = AVL +BIL (2.1)

IS = CVL +DIL (2.2)

For reciprocal networks, the determinant of the ABCD matrix will be equal to 1. This will give

an additional equation:

1 = AD −BC (2.3)
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Figure 2.1: Matching network: the ABCD Matrix.

2.2 Modeling a Lossless Two-port Matching Network with ABCD Parame-

ters

We will assume that the source and load impedances Z01 and Z02 are real. Then S11 for the

circuit shown in Figure 2.1 is [13]:

S11 =
AZ02 +B − CZ01Z02 −DZ01

AZ02 +B + CZ01Z02 +DZ01
(2.4)

This is true for any lossless two-port device or transmission line. The condition for no reflection at

port 1 can be found by setting the numerator of (2.4) to zero:

0 = AZ02 +B − CZ01Z02 −DZ01 (2.5)

In the case of a lossless network, the parameters A and D will be real while B and C will be strictly

imaginary. By separating the real and imaginary parts of (2.5), and setting each of them to 0, the

following relationships are obtained:

0 = AZ02 −DZ01 (2.6)

0 = B − CZ01Z02 (2.7)

For given values of Z01 and Z02, (2.6) and (2.7) can be solved for the ABCD parameters needed to

create the match. Now, (2.3) can be used to eliminate A, but three parameters, B, C, and D, remain
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to be determined, and only two equations are available to do so. By selecting a value for one of B,

C, or D, a unique solution can be found for the other two variables. These universal relationships

can then be used to determine ABCD parameter relationships for any lossless reciprocal matching

network. These parameters will be used to solve for specific cases of nonuniform transmission line

matching circuits.

2.3 Nonuniform Transmission Lines

The nonuniform transmission-line for the lossless line is expressed by the telegraphers’ equa-

tions:

dV

dx
= −jωL(x)I (2.8)

dI

dx
= −jωC(x)V (2.9)

In equations (2.8) and (2.9), x is the spatial coordinate along the axis of the line, L(x) is the

inductance per unit length of the line, C(x) is the capacitance per unit length and ω = 2πf is the

angular frequency. The local characteristic impedance of the line is

Z0(x) =

√
L(x)

C(x)
(2.10)

which we will assume to be positive and real. It can be difficult to measure, or know a priori the

inductance or capacitance per unit length along a nonuniform transmission line. It is more conve-

nient to describe these lines in terms of the local characteristic impedance Z0. The telegraphers’

equations are converted into a form defined only by Z0, V and I by introducing a new variable τ :

τ =

x∫
0

dx′

v(x′)
=

x∫
0

√
L(x′)C(x′)dx′ (2.11)

where v(x) = 1/
√
L(x)C(x) is the local wave velocity. As defined, τ has the meaning of delay

time of a wave traveling between 0 and x along the line [12]. As long as L > 0 and C > 0, τ will

be a monotonic increasing function of x. The telegraphers’ equations (2.8) and (2.9) can now be
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expressed in terms of τ as

dV (τ)

dτ
= −jωZ0(τ)I(τ) (2.12)

dI(τ)

dτ
= − jω

Z0(τ)
V (τ) (2.13)

This form of the telegraphers’ equations can be solved without knowing the specific values of C(x)

and L(x), but only the characteristic impedance Z0 as a function of τ . When a transmission line

is in a homogeneous medium, τ and x will vary proportionally, as in stripline construction. In

microstrip lines, however, the fringing field is not contained entirely within in the dielectric. The

effective dielectric constant at a point along a nonuniform microstrip transmission line is the com-

bined impact of electromagnetic fields contained within the dielectric slab and fringing fields in

the air near the trace. Wider lines have a higher percentage of their field contained within the

dielectric, while thinner transmission lines will have a larger percentage of energy in fringing field

outside of the dielectric. When designing and constructing circuits in a homogeneous medium like

a stripline circuit, using the time delay, τ , to compute an impedance taper produces the same taper

in the physical dimension x. When constructing the same circuit in a microstrip configuration, the

variation in x will have to take into account the changing effective dielectric constant due to fringing

fields. The circuits shown in Chapter 4 were fabricated using the homogeneous stripline configu-

ration to simplify the computation of the tapers along the physical dimension of the nonuniform

transmission line.

The current I can be eliminated from (2.12) and (2.13) by taking the derivative of (2.12) and

using (2.12) and (2.13):

d2V (τ)

dτ2
− 2N

dV (τ)

dτ
+ ω2V (τ) = 0 (2.14)

where we have defined:

N(τ) =
1

2

Z ′0(τ)

Z0(τ)
(2.15)

and Z ′0(τ) is the derivative of Z0(τ) with respect to τ . Equation (2.14), is a second order differential

equation for voltage. The quantities that vary as a function of the variable, τ , are the voltage, V ,
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and N which is the relative rate of change of the characteristic impedance.

Often, it is the reflection coefficient that is of primary importance, so it is customary to define

a local reflection coefficient [14]:

Γ(τ) =
V (τ)− Z0(τ)I(τ)

V (τ) + Z0(τ)I(τ)
(2.16)

This local reflection coefficient is the most commonly used reflection coefficient in the study of

nonuniform transmission lines. It has been constructed in a form of the reflection coefficient that

is often associated with the study of uniform transmission lines, and simplifies to that form when

Z0(τ) = constant. This gives a way to analyze the varying reflection coefficient along a nonuniform

line in a format that is similar to the uniform line. The local reflection coefficient makes use of

voltage, V (τ), current I(τ), and characteristic impedance Z0(τ) that all are τ dependent. The local

reflection and a global reflection coefficient will be further discussed in Appendix B.

Equation (2.14) is a differential equation that describes the voltage along a nonuniform trans-

mission lines. It is useful to study the voltages along a line for several reasons including when there

is a concern of reaching a breakdown voltage. In general, however, circuit designers are interested

in reflection coefficient regardless of the magnitude of the voltages that appear on the line. Having

an equation for the reflection coefficient along the nonuniform line is advantageous since it will not

depend on the magnitude of the voltages and currents along the line. It is therefore useful to seek

a differential equation that is satisfied by Γ(τ). This is accomplished by differentiating (2.16) with

respect to τ .

dΓ(τ)

dτ
=

[V (τ) + Z0(τ)I(τ)][V (τ)− Z0(τ)I(τ)]′ − [V (τ)− Z0(τ)I(τ)][(V (τ) + Z0(τ)I(τ)]′

[V (τ) + Z0(τ)I(τ)]2
(2.17)

This can be evaluated by using the product rule for differentiation. By breaking the equation

into a minuend and subtrahend, and removing the notation for the τ dependency on all instances
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of V , I, and Z0,

dΓ

dτ
=
V V ′ − V Z0I

′ − V IZ ′0 + Z0IV
′ − Z0IZ0I

′ − Z0IIZ
′
0

[V + Z0I]2

− V V ′ + V Z0I
′ + V IZ ′0 − Z0IV

′ − Z0IZ0I
′ − Z0IIZ

′
0

[V + Z0I]2

(2.18)

Combining all like terms and removing those that cancel:

dΓ

dτ
=

2(−V Z0I
′ − V IZ ′0 + Z0IV

′)

[V + Z0I]2
(2.19)

Now, using (2.12) and (2.13), to replace all of the derivatives of V and I:

dΓ

dτ
=

2(−V Z0(−jωZ0
)V )− V IZ ′0 + Z0I(−jωZ0I)

[V + Z0I]2
(2.20)

When separating terms that contain Z ′0, it is noted that only the terms not containing Z ′0 contain

jω:

dΓ

dτ
=

2jω(V 2 − Z2
0I

2)

[V + Z0I]2
− 2V IZ ′0

[V + Z0I]2
(2.21)

Considering the first term on the right hand side, we get

2jω[(V − Z0I)(V + Z0I)]

[(V + Z0I)(V + Z0I)]
=

2jω(V − Z0I)

(V + Z0I)
= 2ωΓ (2.22)

Using the definition for Γ(τ) in (2.16). Thus,

dΓ

dτ
= 2jωΓ− 2V IZ ′0

[(V + Z0I)(V + Z0I)]
(2.23)

Using the definition (2.16), the following equation is obtained for 1− Γ(τ)2,

1− Γ(τ)2 = 1− [V (τ)− Z0(τ)I(τ)]2

[V (τ) + Z0(τ)I(τ)]2
=

(V + Z0I)2

(V + Z0I)2
− [V (τ)− Z0(τ)I(τ)]2

[V (τ) + Z0(τ)I(τ)]2
=

4V (τ)Z0(τ)I(τ)

[V (τ) + Z0(τ)I(τ)]2

(2.24)

Additionally:

N(1− Γ(τ)2) =
1

2

Z ′0
Z0

4V (τ)Z0(τ)I(τ)

[V (τ) + Z0(τ)I(τ)]2
=

2Z ′0V (τ)I(τ)

[V (τ) + Z0(τ)I(τ)]2
(2.25)

Substituting (2.25) into (2.23), the result is a differential equation in terms of Γ(τ) and only one

other τ dependency in the impedance variable N(τ):

dΓ(τ)

dτ
= 2jωΓ(τ)−N(τ)

[
1− Γ2(τ)

]
(2.26)
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This differential equation for Γ is called a Riccati equation and it is satisfied by the local reflection

coefficient, Γ(τ). The differential equations (2.14) and (2.26) are not analytically solvable for all

cases.

Solutions for voltage, or reflection coefficient, along a nonuniform transmission line can be

solved using a few possible techniques. These equations can be solved in a variety of ways which

will be detailed in the following sections. Each of these methods can give useful results for circuit

designers, but care must be taken to understand the limitations of each technique.

2.3.1 Analytical Solutions for the Exponential Line Case

In some cases a direct solution to equations 2.14 and 2.26, can be found [15]. One of the

cases which is when N =constant. Recall N(τ) = 1
2
Z′0(τ)
Z0(τ) , so the case when N =constant is the

case when voltage or reflection coefficient along a nonuniform transmission line is exponential with

respect to τ , time delay along the line. The exponential line will be discussed in detail. What is

novel in this study of the exponential line is that since there is no limitation on the values of Z0

at the start and end of the line for the Riccati equation to be solvable, none will be imposed. This

means that the exponential lines studied herein will be allowed to have discontinuities at the source

and load ends of the line.

It is desirable to solve for ABCD parameters for a transmission line to incorporate the char-

acteristics into a network. The solution for these parameters for an exponentially tapered line will

be shown. When N is a constant in equation (2.14), the solution for voltage will have the form:

V = V1e
m1τ + V2e

m2τ (2.27)

This defines the voltage on an exponential transmission line. Finding the correct values for m1 and

m2 will give the solution for (2.14). Substituting (2.27) into (2.14).

V1e
m1τ (m2

1 − 2Nm1 + ω)2 + V2e
m2τ (m2

2 − 2Nm1 + ω)2 = 0 (2.28)
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This must be true for any V1, V2, so setting V2 = 0, we must have:

V1e
m1τ (m2

1 − 2Nm1 + ω)2 = 0 (2.29)

since:

dV

dτ
= V1m1e

m1τ

and

d2V

dτ2
= V1m1

2em1τ

Equation (2.29) can be solved using the quadratic equation

m =
2N ±

√
4N2 − 4ω2

2

m = N ±
√
N2 − ω2

These two solutions will produce the correct values for m1 and m2 to be used in (2.28):

m1 = N +
√
N2 − ω2

m2 = N −
√
N2 − ω2

(2.30)

Next, rearrange (2.12)

I(τ) =
dV (τ)
dτ

−jωZ0(τ)
(2.31)

and use the derivative of (2.27):

dV

dτ
= m1V1e

m1τ +m2V2e
m2τ (2.32)

In an effort to solve for A, the open circuit condition will be applied at the load end I(T ) = 0 when

τ = T . Equation (2.12) is then used to solve (2.31) when τ = T .

I(T ) = 0 =
1

jωZ0(T )
(m1V1e

m1T +m2V2e
m2T ) (2.33)

In order to solve for the ratio of V 1 to V 2, all of the outer constant factors are eliminated, and the

equation for I(T ) is simplified to

m1V1e
m1T = −m2V2e

m2T (2.34)
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Or, rearranging (2.34)

V1

V2
=
−m2e

m2T

m1em1T
(2.35)

When I(T ) = 0, I(L) = 0 in (2.1), therefore

A =
VS
VL

=
V0

VT
=

V1 + V2

V1em1T + V2em2T
(2.36)

or,

A =
V1
V2

+ 1
V1
V2
em1T + em2T

=
−m2e

m2T +m1e
m1T

−m2em2T em1T + em2Tm1em1T
(2.37)

Inserting values for m1 and m2 from (2.30) and defining S =
√
N2 − ω2,

A =
−(N − S)e(N−S)T + (N + S)e(N+S)T

−(N − S)e(N−S)T (e(N+S)T ) + e(N−S)T (N + S)e(N+S)T

=
−NeNT e−ST + SeNT e−ST +NeNT eST + SeNT eST

−Ne2NT + Se2NT +Ne2NT + Se2NT
(2.38)

All terms have eNT . This can be removed from all terms and numerator and denominator

cancel.

A =
−Ne−ST + Se−ST +NeST + SeST

−NeNT + SeNT +NeNT + SeNT
=
N(eST − e−ST ) + S(eST + e−ST )

2SeNT
(2.39)

The terms in parenthesis in 2.39 can be expressed in terms of sinh and cosh

A =
N(2 sinhST ) + S(2 coshST )

2SeNT
(2.40)

A =
e−NT

S
(N sinhST + S coshST ) (2.41)

This is the solution for A in the ABCD matrix for all exponential lines. B, C, and D have been

found by a number of authors using similar techniques, e. g., [16, 17]. For parameter definitions as
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used in (3.1), these can be expressed as:

B = jω
KeNT

S
(sinhST )

C = jω
e−NT

SK
(sinhST )

D =
eNT

S
(S coshST −N sinhST ) (2.42)

where

S =
√
N2 − ω2 (2.43)

The characteristics of the ABCD matrix describe completely the parameters for an exponen-

tial line regardless of the impedances of the connecting lines or loads. This means that exponential

lines with discontinuities at the source or load end can be investigated using the ABCD technique.

The study of these designs is described in Chapter 3.

2.3.2 Numerical Solution: Runge-Kutta

In most cases, it is not possible to write down an analytical solution for 2.14. One option

is to solve it using a numerical solution based, for example, on the Runge-Kutta method[18]. The

accuracy of this solution will be limited by computational capabilities, and the any possible round-

off error associated with the significant figures used. In general, this method can be used to obtain

very accurate results. The Runge-Kutta method is an iterative stepping method to solve a first-

order differential equation. In this case it will be used to solve the reflections along a transmission

line as defined in (2.14). The principal of the Runge-Kutta method approximates Γ′(τ) by a finite

difference Γ(τ+∆τ)−Γ(τ)
∆τ . Runge-Kutta improves on this by choosing weighting points to reduce

error. The most commonly used Runge-Kutta Method uses information from four data points

along an interval to iteratively solve for the function at the next point[18]. This is commonly

abbreviated RK4.

The Runge-Kutta method can be used to solve for reflection coefficient in any two-port

transmission line. For illustrative purposes, the method has been applied to an exponential line

which has been solved analytically. Figure 2.2 shows the case of an exponential transmission line
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Figure 2.2: Exponential Taper Solution: Analytical vs Runge-Kutta (RK4) with 10 discrete steps.

Figure 2.3: Exponential Taper Solution: Analytical vs Runge-Kutta (RK4) with 50 discrete steps.
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with no discontinuities and a 10:1 impedance ratio solved using RK4 with only 10 discrete steps

along the length of the line. The results are then converted into a frequency response which aligns

well through the design frequency (ω = ω0), but begins to show errors at higher frequencies. Figure

2.3 shows the same solution using RK4, but witn 50 steps used along the transmission line. This

result has very little error in the frequency response at all frequencies up to four times the design

frequency.

2.3.3 WKB Approximate Solution

An alternative method treating nonuniform lines analytically is what we will call the WKB

approximation, though it is more properly attributed to Rayleigh, Bolinder, and Bremmer [19],[20],

[21], [22], [23]. It has been used in the design of gradual-taper matching sections, e. g. in [24], [25],

[26]. It consists in neglecting the term Γ2(τ) compared to 1 on the right side of (2.26), so that we

have approximately

Γ(τ) ' Γ(τ0)e2jω(τ−τ0) −
∫ τ

τ0

N(τ ′)e2jω(τ−τ ′) dτ ′ (2.44)

The WKB approximation gives the most accurate results when the taper rate N(τ) is small

compared to ω—it can be viewed either as a high-frequency or gentle-taper approximation. The

errors for the WKB solution will be at largest at lower frequencies or for nonuniform line segments

that are relatively short compared to a wavelength.

In Figure 2.4, the exponential taper with no discontinuities at the source and load end is

displayed and shows a comparison of the frequency response of the circuit computed using equation

(2.26) and (2.44). Frequencies ω/ω0 > 2 have good agreement with deviations of 0.2 dB in the

areas of response near -20 dB. For frequencies ω/ω0 < 2 there is a significant deviation when

using WKB for a 10:1 impedance transformation. At the lowest frequencies near ω/ω0 = 0, the

WKB response even exceeds 0 dB which is a physically unrealizable condition for a passive circuit.

The WKB approximation solutions for nonuniform lines exhibit several characteristics that can be

seen in Figure 2.4. First, at the lowest frequencies, the reflection coefficient is computed to have

a value Γ > 1, or , Γ > 0dB. This violates passivity for passive nonuniform transmission lines.
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Figure 2.4: Exponential Taper Solution: Analytical vs WKB.
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The frequency at which the reflection shows the deepest null, or lowest reflection, is lower than the

design frequency for the match due to the approximation. In fact, all frequencies are shifted slightly

lower with the most dramatic shifting at lower frequencies. At higher frequencies, the WKB results

track closely to the analytical solution.

2.3.4 ABCD as a Power Series

An additional option for solving equation (2.14) is to use a power series expansion of the

ABCD matrix. A section of lossless nonuniform transmission line between τ = 0 and an arbitrary

point τ can be described in terms of chain parameters through the equation V (0)

I(0)

 =

 A(τ) B(τ)

C(τ) D(τ)


 V (τ)

I(τ)

 (2.45)

(see [12] and references therein).

By reciprocity (AD −BC = 1),this relationship can be rewritten as V (τ)

I(τ)

 =

 D(τ) −B(τ)

−C(τ) A(τ)


 V (0)

I(0)

 (2.46)

and the initial conditions require that A(0) = D(0) = 1 and B(0) = C(0) = 0.

Inserting (2.46) into the telegrapher’s equations (2.12) (2.13) and requiring the result to be

true for any values of V (0) and I(0) gives two decoupled sets of differential equations

d

dτ
B(τ) = jωZ0(τ)A(τ);

d

dτ
A(τ) =

jω

Z0(τ)
B(τ) (2.47)

d

dτ
D(τ) = jωZ0(τ)C(τ);

d

dτ
C(τ) =

jω

Z0(τ)
D(τ) (2.48)

which are identical except for the fact that the initial conditions are different. Here,

Z0 =

√
L

C

is the τ -dependent characteristic impedance of the nonuniform line. For lossless structures, Z0 is

real and positive; it may have step discontinuities, but practical considerations dictate that it must
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be bounded away from 0 and ∞. It is reasonable to assume that Z0(τ) and 1/Z0(τ) are integrable

functions.

The solutions to these equations can be expressed as power series in jω [12]. These series are

essentially those obtained by Peano’s method of successive approximations [27, 28]. Writing

A(τ) = A0(τ) + (jω)2A1(τ) + (jω)4A2(τ) + . . .

B(τ) = (jω)B0(τ) + (jω)3B1(τ) + (jω)5B2(τ) + . . .

C(τ) = (jω)C0(τ) + (jω)3C1(τ) + (jω)5C2(τ) + . . .

D(τ) = D0(τ) + (jω)2D1(τ) + (jω)4D2(τ) + . . . (2.49)

we substitute these expansions into (2.47) and (2.48) and equate terms with identical powers of jω

to get

d

dτ
A0(τ) =

d

dτ
D0(τ) = 0;

d

dτ
B0(τ) = Z0(τ)A0(τ);

d

dτ
C0(τ) =

1

Z0(τ)
D0(τ);

d

dτ
A1(τ) =

1

Z0(τ)
B0(τ);

d

dτ
D1(τ) = Z0(τ)C0(τ)

and in general:

d

dτ
Bn(τ) = Z0(τ)An(τ);

d

dτ
Cn(τ) =

1

Z0(τ)
Dn(τ); (2.50)

d

dτ
An+1(τ) =

1

Z0(τ)
Bn(τ);

d

dτ
Dn+1(τ) = Z0(τ)Cn(τ)

for n ≥ 0. The initial conditions for these equations are

A0(0) = D0(0) = 1; An(0) = Dn(0) = 0 (n > 0);

Bn(0) = Cn(0) = 0 (n ≥ 0)

so we can solve the differential equations recursively by quadratures:

A0(τ) = D0(τ) ≡ 1;

B0(τ) =

∫ τ

0
Z0(τ1) dτ1; C0(τ) =

∫ τ

0

1

Z0(τ1)
dτ1
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and in general:

An+1(τ) =

∫ τ

0

1

Z0(τ1)
Bn(τ1) dτ1

Bn+1(τ) =

∫ τ

0
Z0(τ1)An+1(τ1) dτ1

Dn+1(τ) =

∫ τ

0
Z0(τ1)Cn(τ1) dτ1

Cn+1(τ) =

∫ τ

0

1

Z0(τ1)
Dn+1(τ1) dτ1 (2.51)

for n ≥ 0. When An, etc. are written without an argument, it will be assumed that τ = T :

An(T ) ≡ An and so on, where T is the total “length” (i. e., time delay) of the entire section of

nonuniform line. With the exception of the constants A0 and D0, all of the coefficients An(τ),

Bn(τ), Cn(τ) and Dn(τ) are positive monotonically increasing functions of τ .

It should be noted that this series solution is also applicable to the problem of plane-wave

reflection and transmission from an inhomogeneous layer. In the electromagnetic case, if the per-

mittivity of the layer is ε(x) and the permeability is µ(x), then a wave that varies as e−jkyy obeys

the transmission-line equations if we put [15, p. 20]

L(x) = µ(x); C(x) = ε(x)−
k2
y

ω2µ(x)

in the TE case (only Ez, Hx and Hy are nonzero), or

L(x) = µ(x)−
k2
y

ω2ε(x)
; C(x) = ε(x)

in the TM case (only Hz, Ex and Ey are nonzero). If only terms up to first order (i. e., B0 and C0)

are retained, we recover the approximate description of a thin inhomogeneous layer due to Drude

[29, pp. 287-288] (see also [30, p. 301]).

The power series expansion above is another (in principal) exact solution for the ABCD

matrix of any nonuniform transmission line. Since each of the parameters in the ABCD matrix is

an infinite series, solving this set of equations for any specific transmission line requires either a

numerical solution, or an approximation. The approximation can be computed by truncating the

series after a certain number of terms has been solved. This can also be a useful way to evaluate
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impedance transformation using nonuniform transmission lines. Applications of this method will

be explored in Chapter 5.



Chapter 3

General Analytical Design of Exponential Line Matching Circuits

In this chapter, the ABCD analysis from Chapter 2 is used to obtain a more general design

of matching sections using the exponential line. The design will not be limited to exponential line

circuits that have continuous impedance characteristics at the ends of the exponential taper. By

allowing the freedom of discontinuities at either end of the exponential line segment, an broad range

of matching characteristics with very few limitations.

For the designs created in this chapter, a software tool has been created to design an expo-

nentially tapered nonuniform transmission line to match an input and load impedance. The circuit

is created for a center frequency and impedance ratio by choosing an electrical length or maximum

impedance discontinuity. With these inputs, the shape of the nonuniform is produced [31].

3.1 ABCD Parameters for Exponential Transmission Lines

In equation 2.15, the case where N = constant defines the exponential line as shown in

Figure 3.1. From the diagram in Figure 2.1 we take Z01 = Z00 and Z02 = ZL (both real) hereafter

since our goal is to find circuits that provide a match. Consider a transmission line with total time

delay T (normalized line length), a tapered impedance value defined by an initial impedance K

and a constant taper rate N :

Z0(τ) = Ke2Nτ (3.1)
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Figure 3.1: Exponential-line transformer with impedance discontinuities.
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ABCD was derived in section 2.3.1. Recalling equations 2.51 and 5.7:

A =
e−NT

S
(S coshST +N sinhST )

B = jω
KeNT

S
(sinhST )

C = jω
e−NT

SK
(sinhST )

D =
eNT

S
(S coshST −N sinhST ) (3.2)

where

S =
√
N2 − ω2 (3.3)

In order to find the exponential line characteristics which will give a perfect match, the A and D

parameters from equation (3.2) are first inserted into (2.6), giving:

0 =
e−NT

S
(S coshST +N sinhST )ZL −

eNT

S
(S coshST −N sinhST )Z00 (3.4)

Grouping all of the terms containing ST , this can be rewritten as:

1

NT

(
Z00e

2NT − ZL
Z00e2NT + ZL

)
=

tanh (ST )

ST
≡ Q (3.5)

Note that Q is a function of the three variables ω, N and T . Inserting the B and C parameters

from equation (3.2) into (2.7) gives:

0 = KeNT − e−NT

K
Z00ZL (3.6)

Solving for K:

K =

√
Z00ZL
e2NT

=
√
Z00ZLe

−NT (3.7)

Given a frequency ω, the two conditions (3.6) and (3.7) for zero reflection (S11 = 0) relate

the three variables K, N and T . By choosing a value for any one of these three variables, and using

equations (3.6)(3.7), a unique solution can be found for the other two variables. In our procedure,

a family of solutions will be obtained by choosing K (the initial impedance value of the exponential
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section of transmission line) and determining the product NT from (3.7). Substituting this result

into (3.6) gives an equation that must be solved numerically using a root finding algorithm for the

product ST . From equation (3.3), we can get ωT which now completely defines the parameters of

the taper and electrical length.

As an example, an exponential line with no discontinuities is designed to match a source-load

mismatch of 10:1 at a design frequency of ω0. For no discontinuities, the source side impedance is

selected to be K/Z00 = 1. With this one parameter chosen, N and T are solved using (3.6) and

(3.7). The impedance taper, KeNτ , is shown in Figure 3.2 along with the frequency response of

the system.

For additional insight into how this type of nonuniform line creates a match, the Local

Reflection Coefficient Γ is shown on a Smith Chart in Figure 3.2. On the Smith Chart, it can be

noted that ”locally” there is no discontinuity at the load or source end of the nonuniform line, and

along all other points along the line a loop is traced representing local reflections which contribute

to the overall match at the source end. A more in-depth description of types of reflection coefficients

can be found in Appendix B.

Similarly, the design of a much shorter impedance transforming nonuniform transmission line

can be produced by allowing for larger discontinuities at either end of the exponential line. For the

10:1 impedance ratio, an input impedance of K/Z00 = 10 was chosen. Repeating the procedure of

solving (3.6) and (3.7), N and T were found. The resulting impedance taper, frequency response,

and Smith Chart can be seen in Figure 3.3.

The exponential lines with large discontinuities create a match at ω0 in a much shorter length

of transmission line and a negative value of N . The discontinuities have a large contribution to the

matching process which can be visualized in the renormalizations in Figure 3.3. The sacrifice for

this shortened length is a narrowing of bandwidth in the frequency response. This analytic study

does not yet take into account the parasitic effects of the impedance discontinuities. This will be

studied in later chapters.

For exponential tapers created for impedance matching by (3.6) and (3.7), the midpoint
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Figure 3.2: a) Exponential line with K/Z00 = 1 for matching 10:1 impedance mismatch. b) Input
reflection coefficient (ΓG@τ = 0) vs. frequency. c) Local Reflection Coefficient (Γ) vs. position
along transmission line (τ@ω = ω0).
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Figure 3.3: a) Exponential line with K/Z00 = 10 for matching 10:1 impedance mismatch. b) Input
reflection coefficient (ΓG@τ = 0) vs. frequency. c) Local Reflection Coefficient (Γ) vs. position
along transmission line (τ@ω = ω0).
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Figure 3.4: a) Exponential Line with K/Z00 = 3.16 (λ/4 transformer) for matching 10:1 impedance
mismatch. b) Input reflection coefficient (ΓG@τ = 0) vs. frequency. c) Local Reflection Coefficient
(Γ) vs. position along transmission line (τ@ω = ω0).
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impedance is always the geometric mean of the source and load (for the case of these studies

√
10 ∗ 1 ≈ 3.16). This value is also that of the uniform line associated with the quarter-wave

transformer. Figure 3.4 shows the response for the quarter-wave transformer computed in the same

way as the K/Z00 = 1 and K/Z00 = 10 exponentially tapered impedance transformers.

To aid in the visualization of the number and types of exponential matching circuits that

can be realized, six discrete tapers are shown in Figure 3.5. The frequency response for each of

these six tapers can be seen in Figure 3.8. While the six discrete cases give an idea of what types

of exponential tapers can be designed to match 10:1 impedance discontinuities, the total number

of solutions can be thought of as a continuum of relationships between the variables defined herein

as K, N , and T . Using some factors to normalize these values to ω, Figures 3.6 and 3.7 show

what solutions can be created by this design technique. The six discrete exponential tapers are also

noted in Figures 3.6 and 3.7 using stars associating them with Figure 3.8. Figures 3.6 and 3.7 also

include the characteristics for exponential lines designed to match impedance tapers of 2:1 and 5:1.

The magnitude of S11 as a function of frequency for the exponential transmission lines with

different values of K shown in Figure 3.5 have been computed using equations (3.6) and (3.7),

and results are shown in Figure 3.8. For all cases, a deep null is realized at the design frequency

ω = ω0 = 2πf0. The bandwidth is broader for K values closer to K = Z00. As K is increased,

creating a larger discontinuity betweenK and Z00, the transmission line is shortened, but bandwidth

is also narrower. The commonly used quarter-wave transformer (Figure 3.5d) is seen to be a special

case of our family of designs, in which K =
√
Z00ZL, N = 0. and d/λ = ωT

2π = 1/4.
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Figure 3.5: Exponential Taper Impedance Model for 6 Values of K with ZL/Z00 = 10.
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Figure 3.6: Normalized overall transmission line length vs. normalized impedance at the source
end.
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Figure 3.7: Normalized taper rate of exponential transmission line vs. normalized impedance at
the source end.
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Figure 3.8: Input reflection coefficient |S11| computed from the ABCD Matrix for Z00 = 1 Ω and
ZL = 10 Ω (Note: The cases K = 10 Ω and K = 15 Ω are nearly identical).
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3.1.1 Comparison of ”short” (L . λ/4) impedance transformers

The Bramham [6], or two-step transformer (Figure 3.9) is another example of a transmission

line that can be used for zero-reflection impedance transformation.

This transmission line has a shorter overall length than the quarter-wave transformer for a

given frequency and a reduced bandwidth. This gives a viable design choice for applications where

a shorter transmission line is desired due to space constraints, or material losses must be minimized.

Out of this family of narrow band responses, as is well known, the quarter-wave transformer

has a ripple such that at frequencies above the design frequency, the reflection reaches the same

level as at frequency = 0, before decreasing again to have a match at 3ω0 and this is repeated

periodically after that. For exponential transmission lines that are shorter than the quarter-wave

transformer, not only does the bandwidth at ω0 decrease, but the rebound at frequencies above the

design frequency can actually be higher than at frequency = 0 (See Figure 3.8). For exponential

lines that are longer than the quarter-wave transformer, we see that the rebound after ω0 is not as

high and the response has begun to take on a high-pass character that will be discussed in more

detail in subsection 3.1.2.

While the quarter-wave and Bramham transformers give two possible design configurations

for zero-reflection impedance transformation, the family of exponential curves that have been ana-

lytically treated in the previous section of this paper provide a great deal of flexibility for choosing

an optimal circuit length. Results from equations (3.6) and (3.7) show that exponential line trans-

formers that perfectly match ZL to Z00 can also be significantly shorter than λ/4. Two examples

of this are the tapers of Figure 3.5e, for which K = ZL and the same impedance discontinuities as

the Bramham circuit, and that of Figure 3.5f, which has larger impedance discontinuities at τ = 0

and τ = T . In both cases, K >
√
ZLZ00 and the length of the transmission line section is reduced

as K increases. To compare the bandwidth of these circuits, a level below which the reflection is

considered to be within the passband must be selected. In practice, this choice will be application

dependent, but the -20 dB level was chosen here as representative. A comparison of section length
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Transmission line Length -20 dB Bandwidth

Exponential (K=1.0Ω) .533λ 15.7%
Exponential (K=1.105Ω) .487λ 15.1%
Exponential (K=1.5Ω) .381λ 12.0%

Exponential (K=3.16Ω) (λ/4) .250λ 9.0%
Exponential (K=ZL=10Ω) .141λ 7.7%

Bramham .093λ 7.7%
Exponential (K=15Ω) .113λ 7.5%
Exponential (K=21Ω) .093λ 7.3%
Exponential (K=25Ω) .084λ 7.3%
Exponential (K=30Ω) .075λ 7.2%

Table 3.1: Bandwidth comparison for short lines: Quarter-wave, Bramham and exponential tapers.

and frequency bandwidth for these two exponential tapers along with the Bramham transformer

can be found in Table 3.1. Note especially that exponentially tapered matching sections of shorter

length than the Bramham circuit are possible with very little reduction in bandwidth compared

with the quarter-wave transformer.

3.1.2 Comparison of ”long” (L & λ/4) impedance transformers

Most published work for the exponentially tapered impedance transformer has been done with

no impedance discontinuities at the ends of the taper. When implemented with relatively small

or no impedance discontinuities, the exponential line can produce a good impedance match for a

large, high-pass frequency range. The length of such a tapered line will exceed a half wavelength.

In this case, the exponential taper compares to other smooth tapered transmission line matching

sections such as the Klopfenstein taper [25]. The figure of merit for the frequency response of a

high-pass matching circuit with ripple amplitude below a certain threshold must be described in

a different way than in terms of a percent bandwidth. The well-known equal-ripple Klopfenstein

taper is designed to have a given maximum ripple height above a given design frequency. Other

high-pass tapers are probably best characterized in terms of the limiting ripple level as ω →∞, as

well as the worst (highest) ripple level above the design frequency. The ripple level has no direct

connection with the level that was chosen in the previous subsection to define the bandwidth of
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Figure 3.9: Bramham (left) and Klopfenstein (right) transformers for ZL/Z00 = 10.
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short-length matching sections.

Klopfenstein tapered transmission line matching sections are realized by using a formula that

defines the taper and the two impedance discontinuities at the ends. This solution is optimized to

provide a known maximum ripple in the high frequency pass band at frequencies above the band-

edge frequency. This maximum ripple, however, is traditionally computed using the assumptions

of the WKB approximation, which requires that the impedance taper rate N is not too large, or

the frequency is not too small. A numerically ”exact” solution for the Klopfenstein taper can be

implemented, for example, using the Runge-Kutta method.

A Klopfenstein impedance taper with −20 dB ripple along with an exponential taper with

K = 1.105 Ω for comparison are shown in Figure 3.10. The exponential taper was chosen with

identical impedance discontinuities at the ends so as to create a high-pass circuit whose ripple

stabilizes to −20 dB at high frequencies. Both circuits were designed to have a perfect match

at ω0. The results shown in Figure 3.10 were calculated using the Runge-Kutta method for the

Klopfenstein taper, and from the analytical formulas for the exponential taper. The ripple levels

are not all exactly −20 dB for either taper. In the case of the Klopfenstein taper, this is because the

WKB approximation is used for the design, and at sufficiently low frequencies does not quite agree

with the exact solution, particularly at the first ripple. When the Klopfenstein design technique is

used for a smaller impedance mismatch such as 2:1, the approximate result more closely resembles

the exact solution than for the impedance mismatch of 10:1 that has been considered here. The

exponential line has a shorter overall length, but gives a poorer match at frequencies in the range

1 < ω/ω0 < 5. Both tapers have |S11| remaining < 0 dB as ω → 0, as should be expected.

The exponential taper with K = 1.105 Ω shown in Figure 3.10 has a ripple that approaches

−20 dB at the highest frequencies. The first ripple, however, is measured at −11.8 dB. Figure 3.11

compares that same exponential taper compared to a Klopfenstein taper that has a ripple height at

the −11.8 dB S11 level. This Klopfenstein is slightly shorter with larger impedance discontinuities

that the K = 1.105 Ω exponential taper.
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Figure 3.10: Taper and |S11| of Klopfenstein and exponential taper with same discontinuities.

Figure 3.11: Taper and |S11| of Klopfenstein and exponential taper with same first |S11| ripple
height.



Chapter 4

Numerical and Experimental Verification of Analytical Results

Equations (3.6) and (3.7) give exact matching solutions for all cases of the exponential line

impedance transformer. However, parasitic capacitance and inductance are not accounted for in

these models. Several exponential circuits have been fabricated and tested to verify the design

procedures in Chapter 3 and are presented in this chapter. HFSS full-wave models have been

created to study the parasitic effects and material losses, but not fabrication imperfections.

Balanced stripline construction was selected in order to excite TEM modes where all of

the fields could be contained within the dielectric material regardless of stripline width. 20 mil

Rogers TC350 (εr = 3.5) was selected as a favorable substrate for widths of the highest and lowest

impedances required as shown in Figure 4.1.

In Chapter 3, several impedance ratios were investigated, but most emphasis has been placed

on impedance ratios where RL/Z00 = 10. This ratio was chosen as large enough to have signif-

icant need for impedance transformation, yet not so large that there would be too few practical

applications that could make use of the design. All of the designs investigated in Chapter 4 have

Z00/RL = 10. This normalized impedance ratio was realized for HFSS and the fabricated units by

setting Z00 = 5Ω and RL = 50Ω.

4.1 Verification Using Full-Wave Simulation

A simulation model was created using Ansys HFSS to compare with the analytically computed

results from Chapter 3. The HFSS model takes into account parasitic inductance and capacitance.
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0.020"
1 oz copper

Stripline circuit cross section

Rogers TC350

Rogers TC350
(0.0014")

0.020"

Figure 4.1: Material stack-up for stripline circuits.

The ABCD model has been created assuming lossless material, so an additional HFSS study has

been made to examine the impact of dielectric material and copper loss. These circuits were

designed to create a match at different frequencies on the same material stack-up in order to

understand these impacts at different frequencies.

The structure used for comparison is a balanced stripline using Rogers TC350 (εr = 3.5),

creating a 0.040′′ spacing between the ground planes as shown in Figure 4.1. Stripline widths were

chosen using the formulas in [32], but these formulas tended to have inaccuracies for the narrowest

and widest strips; therefore, Ansys Electronics 2D Extractor was used to find more precise widths

for the tapers which have the necessary impedances. Parameters were chosen so that Z00 = 5 Ω

(width = 0.3713′′) and ZL = 50 Ω (width = 0.0197′′). In Chapter 3, only normalized frequencies

(ω0/ω) were discussed. In the HFSS simulation, lengths of the exponential tapers were chosen for

a design frequency of 1 GHz. The selection of the design frequency will be further discussed in

section 4.1.1 after a few examples of the HFSS results have been shown.

Figure 4.2 shows the results for an exponentially tapered impedance transformer with no

impedance discontinuities. In this case, Z00 = K = 5 Ω corresponding to K/Z00 = 1 in Figures 3.5.

The HFSS model matches closely to the analytical ABCD prediction. The null depth for the

matched region is nearly -60 dB, and the bandwidth of the matched region is nearly identical.

Interestingly, the HFSS results show a 1% frequency shift toward higher frequencies for the match.

Frequency shifts for the K/Z00 = 1 case are attributed to the distributed parasitic capacitance
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and inductance along the taper. Since there are no abrupt changes in the characteristic impedance

along the taper, it is expected that the impacts of capacitive and inductive parasitics will be small.

When the initial impedance of the tapered selection of the transmission line design is selected

to be the geometric mean of the input and load impedances (
√
Z00RL), the quarter-wave transformer

is created. In Figure 4.3, K =
√
Z00RL = 15.81Ω. The resultant HFSS reflection coefficient vs.

frequency shows another good match to the analytical ABCD design. The null is less deep than for

the K = 5 Ω case, but at -35.5 dB, it is still very good for most applications. The frequency shift in

this case has moved the resonance 1.5% lower than the design frequency. The only nonuniformities

in this model are the abrupt discontinuities at either end of the quarter-wave transformer. This

type of parasitic capacitances and inductances from abrupt changes in characteristic impedance

drives the response to lower frequencies. In practice, this can be compensated for by shortening

the length of the central section slightly.

Figures 4.4 and 4.5 show examples of exponential tapers that have an impedance taper

with decreasing slope (N < 0). In both cases, there is a larger frequency shift toward lower

frequencies produced by the larger parasitic capacitance and inductance. Based on inference from

the K = 5 Ω and K = 15.81 Ω cases, the dominant parasitic impact is produced by the large

impedance discontinuities present at τ = 0 (x = 0) and τ = T (x/λ = d). For the K = 50 Ω

and K = 75 Ω cases, the frequency response is shifted 4% and 5.5% respectively. The null depth

achieved for the models of these impedance transformers is still very good (< −30 dB). Recalling

that both of these exponential lines are shorter than λ/4, Figures 4.4 and 4.5 show very usable

impedance transformers for any application where a small reduction in frequency bandwidth can

be accepted. Again, the frequency of the match can be corrected to match the design frequency by

shortening the matching circuit even more.
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[1.01, -59.8]

5 Ω

Figure 4.2: ABCD and HFSS solutions for K = 5 Ω with Z00 = 5 Ω and ZL = 50 Ω. All other
physical parameters as specified in the text.

[0.985, -35.5]

15.81 Ω

Figure 4.3: ABCD and HFSS solutions for the quarter wave-transformer (K = 15.81 Ω) with
Z00 = 5 Ω and ZL = 50 Ω. All other physical parameters as specified in the text.
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[0.960, -34.8]

50 Ω

Figure 4.4: ABCD and HFSS solutions for K = 50 Ω with Z00 = 5 Ω and ZL = 50 Ω. All other
physical parameters as specified in the text.

[0.945, -38.0]

75 Ω

Figure 4.5: ABCD and HFSS solutions for K = 75 Ω with Z00 = 5 Ω and ZL = 50 Ω. All other
physical parameters as specified in the text.
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4.1.1 Frequency and Loss Considerations Using Full-Wave Simulation

Figure 4.6 shows full-wave models for the K/Z00 = 10 case for three different design fre-

quencies. The K/Z00 = 10 case was chosen as a good case to test for frequency shift compared to

design frequency since the lossless model exhibits a 4% frequency shift in Figure 4.4, and uses no

characteristic impedance values higher or lower than the impedance values of Z00 and RL. Simu-

lated results can be seen compared to the ABCD solution in Figure 4.6. When f0 = 250 MHz, the

parasitic effects are relatively small and the simulation agrees with the results given by the ABCD

solution. As higher f0 are selected, the null depth and bandwidth characteristics remain similar to

the analytical solution, but the parasitic effects add electrical length to the line and decrease the

center frequency of the response (f/f0 = 0.825 for the 4 GHz case). When loss characteristics for

TC350 (tanδ = 0.002) and copper conductivity (58MS/m) are considered, the center frequency is

shifted slightly lower. This change in frequency response is never more than 1% compared to the

lossless HFSS case. The nulls at matched frequencies are also changed, but are always around -30

dB or lower.

For this reason, the design frequency (f0) of 1 GHz was selected for both HFSS and fabrication

studies. This frequency is high enough to show the sensitivity of the circuit performance to the effect

of parasitics at the impedance transitions in the circuit, but low enough to reduce measurement

errors due to small scale fabrication features when the circuits are built.

The advantage of stripline circuits over microstrip is that all fields are contained in the same

dielectric material. With microstrip circuits, there is a fringing field which exists in the air. As the

width of the microstrip trace changes, the percentage of the total field contained in the dielectric or

air will vary. This variation creates a non-proportional relation between the delay time along the

transmission line, τ , and distance along the same line x, as defined in equation (2.11). By choosing

stripline, tapers dependence on the physical dimension, x, is easily related to the dependence on

τ . Additionally, there is a dispersive effect on microstrip lines. As frequency increases, there is a

tendency for more of the field energy to concentrate in the dielectric. This creates an additional
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Figure 4.6: ABCD and HFSS solutions comparing theoretical and full-wave simulation results with
and without lossy material for K = 5 Ω with Z00 = 5 Ω and ZL = 50 Ω. All other physical
parameters as specified in the text.
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effect that the microstrip propagation constant will not simply be proportional to frequency. This

dispersive effect can also be avoided by building stripline circuits.

4.2 Experimental Verification Using Stripline Circuits

Physical stripline models were also built to verify the practicality of the designs. Circuits

corresponding to Figure 3.5 “b”, “d”, “e”, and “f” were fabricated for comparison to the analytically

produced results. A picture of the cross section of the fabricated stripline is shown in Figure 4.1.

4.2.1 Circuit Fabrication

Stripline circuits are often fabricated by combining two dielectric boards with an adhesive

laminate between them. Copper features for the middle trace can be milled using controlled-depth

milling, or chemical etching the features of the central trace. In this case, fabrication was completed

using a chemical etch solution in order to have accurate dimensions of the trace, and in order to not

remove any of the dielectric material near the edge of the trace which would create a small air gap

when the top dielectric comes in contact with the copper trace. The second side of the dielectric

material was stripped of all copper. The two halves were held together during testing with clamps

to minimize the air gap associated with the thickness of the 1 oz copper strip (see Figure 4.1). The

etch process was performed in the fabrication laboratory at the University of Colorado, Boulder

and pictures of the process can be seen in Figures 4.7-4.10.

The circuit designs were exported as .dxf files from HFSS and transferred onto a standard

paper as dark images from a laser printer (see Figure 4.7). Those dark images were adhered to the

copper cladding on one side of the 0.020” Rogers TC350 dielectric board by heat transfer using

a laminator (see Figure 4.8). In Figure 4.9 the paper is being removed from the top side of the

dielectric board by soaking in water. When the board with the black artwork was removed from the

water and the paper removed, some gaps were noticed in the traces. Those gaps were filled with a

black marker to keep copper within the boundary of where the stripline traces are intended to stay.

The dielectric board with the image of the transmission lines was then placed in a cupric chloride
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(CuCl2) solution to etch away the unnecessary copper from the dielectric board. In Figure 4.10

shows the small etching tank with circulating pump used to remove copper everywhere on the

side of the board with the stripline transmission line segments. Another set of boards was etched

completely on one side using the same process described above to create the opposing side of the

stripline circuit.

These stripline circuits were designed with 50 Ω traces at both ends leading into exponentially

tapered sections that then connect with a much wider 5 Ω trace in the center of the board, in a

so-called “back-to-back” configuration. This type of construction allows for 50 Ω connectors to

be placed on both ends for measurements with a network analyzer. The method for retrieving

single-ended reflection coefficients from the measurements of this type of back-to-back circuit will

be presented in section 4.2.4. HFSS simulations were also created in the back-to-back configuration

to verify the raw measurements and processing technique that computes the single-ended reflection

coefficients.

Eight stripline matching circuits were fabricated, four on each of two boards. Additional

metallic traces of 0.0197′′ wide were placed on either side of each matching circuit in order to

create a standard boundary for any evanescent fields that may decay laterally from the exponential

traces, as shown in Figure 4.11. The 0.0197′′ trace width was selected to be the correct width for

a 50 Ω trace so that can be used for baseline measurements to check equipment calibration and

troubleshoot any erroneous measurements. An image of the two circuit boards with traces already

etched can be seen in Figure 4.11.

4.2.2 Measuring the Stripline Circuits

The two boards shown in Figure 4.11 were placed on 0.25” aluminum block with tapped

screw holes in the edges. SMA edge launch connectors were fixed to the edge (see Figure 4.12.

The trace protruding from the SMA connectors is spaced 0.020” from the surface of the aluminum

block to allow the dielectric board to be inserted between the block and the SMA trace. The SMA

trace is 0.020” wide which overlaps the 50 Ω trace on the dielectric board almost perfectly. The
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Figure 4.7: Mask used for stripline circuit.
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Figure 4.8: Lamination device for transferring artwork to the copper clad dielectric substrate.
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Figure 4.9: Water bath to remove the paper from the dielectric board.
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Figure 4.10: Etching bath with circulating pump.
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50 Ω stripline trace for the circuit to be measured was aligned with the SMA trace of the connector

and the blank top dielectric board was carefully placed over the trace to form the full stripline

circuit, as seen in Figure 4.12. The top board of the stripline has a full groundplane on one side,

and no copper at all on the other side. In Figure 4.12, a small “mouse hole” can be seen next to

the connector. This was found to be necessary to allow a visual inspection of the trace alignment

before measurements were taken. The small hole also kept the excessive pressure from being applied

to the SMA trace. The SMA trace has a thickness of approximately 0.005”, and applying higher

levels of pressure directly to the trace either caused the trace to break, or a larger air bubble to

be present along the trace creating reflections which obscured the measurement. After the top of

the stripline circuit was placed on the trace to be measured, a small cylinder of Teflon (εr = 2.02)

that had been cut from a piece of coaxial cable was placed into the ”mouse hole” to create a more

homogeneous dielectric near the transition from SMA coax to SMA trace (see Figure 4.13). This

was not a perfect, homogeneous (εr = 3.5) transition but, through a process of trial and error,

was shown to minimize reflections at the coax-stripline interface while reducing strain and eventual

breakage of the coax connectors. Subsequently, another 0.25” aluminum block was placed on top

of the stripline stack-up and clamped in place. As seen in Figure 4.12, two different methods

of clamping the stripline boards were employed to create even pressure across the entire circuit

area. The best configuration was found to be when the clamps were placed farther from the SMA

connectors and the pressure transferred to the rest of the board through the 0.25” flat aluminum

blocks. Additional screws were inserted into the top aluminum block to secure the SMA connector,

and provide a ground path near the coax to stripline transition. Copper tape was also applied

along the edges of the stripline stackup to ensure continuity between the two groundplanes.

4.2.3 Measurement of Back-to-Back Stripline Circuits

Calibrated network analyzer leads were connected to the two SMA ports. S-parameter data

was recorded for the eight circuits. Each of the four exponentially tapered transmission lines

designed to be tested was manufactured both with a 0.5” and with a 2” uniform 5 Ω section in the
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21_PAB_03a 21_PAB_03b

Figure 4.11: 2 Boards with etched circuits for stripline Construction

Figure 4.12: SMA connector attachment and trace alignment
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Figure 4.13: Detail of ”mouse hole” at SMA connector point
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Figure 4.14: ”Mouse hole” filled with Teflon dielectric

Figure 4.15: Final clamped stripline circuit



57

Naming Conven�on:

21_PAB_04a 1
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Figure 4.16: Circuit Board 21 PAB 04a

Naming Conven�on:
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� ���: 2in �� sec on
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� ���: 2in �� sec on

� ���: 0.5in �� sec on

All odd numbered

lines are 50 Ω line

Figure 4.17: Circuit Board 21 PAB 04b
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middle. This section of 5 Ω transmission line acts as a Z00 section that needs to be matched to the

RL = 50 Ω section at either end of the line. The 50 Ω sections provide a convenient location to

connect to a 50 Ω network analyzer with minimal reflections at the coax-stripline transition. HFSS

models of the eight back-to-back circuits were also created as a control to allow the fabrication and

testing anomalies to be examined. These boards are shown in detail in Figures 4.16 and 4.17.

As an example of measurement data from back-to-back circuits, Figure 4.18 shows the mea-

sured values for |S11| for the first trace at the top of Figure 4.16. This measurement is labeled

“21 PAB 04a #2”. The first stripline circuit in the top of Figure 4.16 is a 50 Ω trace constructed

as a boundary between trace #2 and the edge of the board. Therefore, trace “21 PAB 04a #2” is

an exponential impedance tranforming circuit with Z00 = K = 5 Ω and a 2” central RL = 50 Ω,

section. Figure 4.18 shows both the fabricated circuit measurement |S11| and its corresponding

HFSS model. At first glance, the frequency response seems rather complicated compared to typ-

ical reflection coefficient plots for impedance transformers. Looking specifically at the reflection

coefficient of the HFSS circuit in Figure 4.18, it is clear that there is a passband around the design

frequency ω/ω0 = 1 or 1 GHz. There is a general agreement in the shape of the reflection coeffi-

cient over frequency, but the measured response is clearly shifted higher in frequency. Of the eight

measured circuits, this one has the worst correlation to the HFSS model.

There are a few reasons why the reflection coefficient measurement for “21 PAB 04a #2” has

the worst correlation of all the measured stripline circuits. This exponential taper is the longest of

the eight circuits with a relatively long, 2-inch RL = 5 Ω section. This means there are relatively

short leading ZL = 50 Ω sections, and the coax stripline section is close to the beginning of the

tapered section, where the small air gaps and Teflon section in the “mouse hole” are located. This

was also the first trace that was measured after fabrication, and one end of the trace delaminated

from the board and broke off. It was replaced with a piece of copper tape soldered in place.

The small bump from the solder, surely increased the small air gap on the trace near the tapered

section of the exponential line. It makes sense, that the frequency response would be shifted

higher in frequency when the design was created expecting homogeneous εr = 3.5 stripline, but the
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21_PAB_04a Trace #2

Figure 4.18: Trace 2 Results Measured Compared to HFSS

21_PAB_04a Trace #4

Figure 4.19: 21 PAB 04a Trace 4 Results Measured Compared to HFSS
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21_PAB_04a Trace #6

Figure 4.20: 21 PAB 04a Trace 6 Results Measured Compared to HFSS

21_PAB_04a Trace #8

Figure 4.21: 21 PAB 04a Trace 8 Results Measured Compared to HFSS
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measured circuit has the εr = 3.5 with a significant pocket of error on one side of the trace.

Reflection coefficient measurements for “21 PAB 04a #4” are shown in Figure 4.19. This is

the second longest circuit fabricated, but does not have the mechanically repaired characteristics

of “21 PAB 04a #2”. The comparison of HFSS to fabricated |S11| result is better, and in general

correlates rather well. There is a significant upward frequency shift of the measured data around

the design frequency, ω/ω0 = 1.

Figures 4.20 and 4.21 show the reflection coefficients for the two quarter-wave transformer

circuits associated with “21 PAB 04a #6” and “21 PAB 04a #8” in Figure 4.16. The quarter-wave

transformer circuits do show some upward shift in frequency that may be associated with very small

separations between the two halves of the stripline board, but in general show good agreement, and

the deviations between measured and HFSS data are a good representation of what sensitivities

impedance transformers have to fabrication anomalies of prototype circuits built in a university

laboratory.

The |S11| measurements for the circuits shorter than the quarter-wave transformers that

have a negative sloped exponential taper (N < 0), are shown in Figures 4.22 through 4.25. These

circuits are all shown on board “21 PAB 04b” in Figure 4.17. While these circuits are known to

have narrow bandwidth regions of small reflection coefficient, and would be expected to be sensitive

to fabrication abnormalities, the agreement between fabrication and HFSS is very good. It is still

difficult to see the expected frequency response of the single ended impedance transformer by

looking at the back-to-back measurements in Figures 4.22 through 4.25. It is necessary to somehow

reduce the circuit in half of to eliminate the complicated multi-resonance response seen in the back-

to-back measurements. This technique for the back-to-back to single-ended circuit reduction will

be shown in the next section.

4.2.4 Retrieving Single-Ended S-Parameters for the Impedance Transformer

For each type of taper, a circuit was fabricated with two different lengths of 5 Ω central

section, 0.5” and 2” were selected. This type of back-to-back circuit allows for measurements to be
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21_PAB_04b Trace #2

Figure 4.22: 21 PAB 04b Trace 2 Results Measured Compared to HFSS

21_PAB_04b Trace #4

Figure 4.23: 21 PAB 04b Trace 4 Results Measured Compared to HFSS
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21_PAB_04b Trace #6

Figure 4.24: 21 PAB 04b Trace 6 Results Measured Compared to HFSS

21_PAB_04b Trace #8

Figure 4.25: 21 PAB 04b Trace 8 Results Measured Compared to HFSS
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carried out using 50 Ω connectors and network analyzer calibration. Typical results for two sets of

2-port S-parameters measured for back-to-back circuits have already been shown in Figures 4.18

- 4.25. Figure 4.26 shows |S11| measurements for two back-to-back circuits of the quarter-wave

transformer with different 5 Ω central sections. It is interesting to note, that neither of these

measurements give a very good indication of what a single-ended circuit performance might look

like which will be shown in Figure 4.27.

Measured S-parameters for the back-to-back circuits can be used to extract the single-ended

S-parameters for one half of the fabricated circuits [33] as follows:

S11 =
SI11S

II
21e
−γl2 − SII11S

I
21e
−γl1

SII21e
−γl2 − SI21e

−γl1
(4.1)

S22 =
SII11 − SI11

SII21e
−γl2 − SI21e

−γl1
(4.2)

S2
21 =

2SII21S
I
21 sinh[γ(l1 − l2)]

SII21e
−γl2 − SI21e

−γl1
(4.3)

where SIik are the measured S-parameters for a central section of length l1, SIIik are the measured

S-parameters for a central section of length l2 and γ is the complex propagation constant of the

central section.

The result for a quarter-wave transformer as shown in Figure 3.5 “d” has been computed.

Measured back-to-back S-parameter data from Figure 4.26 have been used to extract single-ended

|S11| shown in Figure 4.27. Likewise, for the additional circuits shown in Figures 3.5 “e”, “f”, and

“b” extracted results are shown in Figures 4.28, 4.29, and 4.30 respectively. In all of these cases,

the design frequency was 1 GHz.

Similar to Figure 4.6, the full-wave results shown in Figures 4.27, 4.28,and 4.29 show low-

ered match frequencies. Fabricated stripline results show the resonant frequency shifted slightly

higher in frequency than HFSS, most likely due to the introduction of small air gaps around the

stripline circuit where the two halves of the stripline circuit were pressed together. Higher fre-

quency measurements, ω/ω0 > 1.2, show some irregularities in the measurement that are indicative
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Figure 4.26: Measured |SI,II11 | for two back-to-back quarter-wave transformer circuits.
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of fabrication issues rather than design inconsistencies. In general, measured results compare well

to theoretical and full-wave simulated results.

Recall that the measurement for the exponential line impedance transformer with no impedance

discontinuities, K = 5 Ω had the back-to-back measurements with the most inconsistencies due to

the impedance taper starting so close to the connector location, and the need to repair damaged

traces (see Figures 4.18 and 4.19). The resultant single ended measurement shown in Figure 4.30

is likewise correlates poorly to analytical or HFSS results. Considering the difficulties in collecting

usable data for these longer traces, the resulting single ended |S11| for single-ended data is not

as bad as might have been expected. The main resonance occurs 15-20% higher than the design

frequency, but |S11| < −20dB is still realized. The second resonance around 1.9 GHz is present,

and overall the general shape of the |S11| is qualitatively correct.
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Figure 4.27: Quarter-wave transformer: Comparison of single ended |S11| computed analytically,
modeled in HFSS, extracted from HFSS back-to-back stripline circuits, and extracted from mea-
surements of physical stripline circuits.
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Figure 4.28: Exponential with K = 50 Ω: Comparison of single ended |S11| computed analyti-
cally, modeled in HFSS, extracted from HFSS back-to-back stripline circuits, and extracted from
measurements of physical stripline circuits.
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Figure 4.29: Exponential with K = 75 Ω: Comparison of single ended |S11| computed analyti-
cally, modeled in HFSS, extracted from HFSS back-to-back stripline circuits, and extracted from
measurements of physical stripline circuits.

K = 5 Ω

Figure 4.30: Exponential with K = 5.0 Ω: Comparison of single ended |S11| computed analyti-
cally, modeled in HFSS, extracted from HFSS back-to-back stripline circuits, and extracted from
measurements of physical stripline circuits.



Chapter 5

Length Limits for Perfectly Matched Transmission Line Impedance

Transformation

As stated in Chapter 2, an exact solution for the reflection coefficient can be found for any

device with known ABCD parameters. When a very electrically short impedance transformer is

required, a designer may want to know the shortest possible length before attempting a project with

limited space. The ABCD matrix can be represented as a power series in terms of frequency, ω. This

is a universal solution that will be accurate for any nonuniform transmission line. However, since

the resulting power series is infinite and cannot be simplified universally, the number of coefficients

available in the solution set will restrict the accuracy of the solution.

Although a full, infinite solution for all possible nonuniform transmission lines cannot be

found by the power series expansion of the ABCD matrix, it is possible to determine a fundamental

limit describing the shortest transmission line which will create a match between a given source

and load impedance. This limit can also be thought of as giving the lowest frequency for which a

perfect impedance match can be performed given a specific length of transmission line. One such

limit has been presented using this idea [12], and an improvement to the quality of this limit is

presented in this chapter.

It has been found that transmission line matching sections can be arbitrarily short if large

characteristic impedance changes are allowed within the matching circuit [8]. In practical designs,

parasitic effects and fabrication restrictions will limit the practical impedance between some max-

imum and minimum values. In the example of a stripline circuit, very high impedance lines will
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necessitate narrow transmission line traces. If the etch tolerance is 0.001”, then a trace of 0.010”

will be subject to 10% error in thickness and a corresponding error in characteristic impedance

value. A trace of further increased impedance may have a width of 0.003”, and would be subject

to 33% error. Additionally, a trace that is designed to be only 0.001” in width, could become an

open circuit due to physical gaps in the line and not function at all as an impedance transformer.

For low impedance values, the traces can become so wide that higher order modes could be present

on the circuit in some sections and will disturb the overall operation of the impedance transformer.

For any type of transmission line, the physical characteristics of the materials and the design pa-

rameters will create an upper and lower limit for the impedance values that can be used for the

matching circuit such that,

0 < Z0min ≤ Z0 ≤ Z0max <∞ (5.1)

This limitation in Z0max and Z0min will create a limit on the possible length for a nonuniform

line impedance transformer at a specific frequency, or the lower frequency limit for an impedance

transformer of known length.

5.1 Expressions for the Chain Parameters

In Chapter 2, chain parameters for a lossless nonuniform transmission line between τ = 0

and an arbitrary point τ were shown to be:

A(τ) =
+∞∑
n=0

(jω)2nAn = A0(τ) + (jω)2A1(τ) + (jω)4A2(τ) + . . .

B(τ) =
+∞∑
n=0

(jω)2n+1Bn = jωB0(τ) + (jω)3B1(τ) + (jω)5B2(τ) + . . .

C(τ) =

+∞∑
n=0

(jω)2n+1Cn = jωC0(τ) + (jω)3C1(τ) + (jω)5C2(τ) + . . .

D(τ) =

+∞∑
n=0

(jω)2nDn = D0(τ) + (jω)2D1(τ) + (jω)4D2(τ) + . . . (5.2)
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We substitute these expansions into (2.47) and (2.48) and equate terms with identical powers of ω.

The ω0 terms are only present in the coefficient related to A0 and D0

d

dτ
A0(τ) =

d

dτ
D0(τ) = 0;

A0(τ)−A0(0) = 0, D0(τ)−D0(0) = 0 (5.3)

A0(0) = D0(0) = 1;

Therefore:

A0(τ) = D0(τ) ≡ 1;

The coefficients that are associated with ω1 are B0 and C0, which are related to A0 and D0 as

d

dτ
B0(τ) = Z0(τ)A0(τ);

d

dτ
C0(τ) =

1

Z0(τ)
D0(τ);

d

dτ
B0(τ) = Z0(τ)1;

d

dτ
C0(τ) =

1

Z0(τ)
1;

B0(τ) =

∫ τ

0
Z0(τ1)dτ1; C0(τ) =

∫ τ

0

1

Z0(τ1)
dτ1; (5.4)

The ω2 terms are then:

d

dτ
A1(τ) =

1

Z0(τ)
B0(τ);

d

dτ
D1(τ) = Z0(τ)C0(τ)

Substituting what has been found for B0 and C0 from (5.4):

A1(τ) =

∫ τ

0

1

Z0(τ1)

∫ τ1

0
Z0(τ2)dτ2 dτ1; D1(τ) =

∫ τ

0
Z0(τ1)

∫ τ1

0

1

Z0(τ2)
dτ2 dτ1 (5.5)

and in general we have:

d

dτ
An+1(τ) =

1

Z0(τ)
Bn(τ);

d

dτ
Dn+1(τ) = Z0(τ)Cn(τ)

d

dτ
Bn+1(τ) = Z0(τ)An+1(τ);

d

dτ
Cn+1(τ) =

1

Z0(τ)
Dn+1(τ); (5.6)

for n ≥ 0. The initial conditions for these equations are

An(0) = Dn(0) = 0 (n > 0);



72

Bn(0) = Cn(0) = 0 (n ≥ 0)

and in general:

An+1(τ) =

∫ τ

0

1

Z0(τ1)
Bn(τ1) dτ1

Bn+1(τ) =

∫ τ

0
Z0(τ1)An+1(τ1) dτ1

Dn+1(τ) =

∫ τ

0
Z0(τ1)Cn(τ1) dτ1

Cn+1(τ) =

∫ τ

0

1

Z0(τ1)
Dn+1(τ1) dτ1 (5.7)

so we can solve the differential equations recursively by quadratures. With the exception of the con-

stants A0 and D0, all of the coefficients An(τ), Bn(τ), Cn(τ) and Dn(τ) are positive monotonically

increasing functions of τ .

We start with:

A0(τ) = D0(τ) ≡ 1;

From (5.4), recall:

B0(τ) =

∫ τ

0
Z0(τ1) dτ1; C0(τ) =

∫ τ

0

1

Z0(τ1)
dτ1

Limits for the Z0(τ) function of the nonuniform line use the observation about maximum and

minimum values for Z(τ) in a given configuration from (5.1). We can then obtain bounds for the

coefficients An(τ), Bn(τ), Cn(τ) and Dn(τ). For B0 and C0 this gives,

B0(τ) ≤
∫ τ

0
Z0max dτ1 = Z0max(τ); C0(τ) ≤

∫ τ

0

1

Z0min
=

τ

Z0min
dτ1

Recalling (5.5),

A1(τ) =

∫ τ

0

1

Z0(τ1)

[ ∫ τ1

0
Z0(τ2)dτ2

]
dτ1; D1(τ) =

∫ τ

0
Z0(τ1)

[ ∫ τ1

0

1

Z0(τ2)
dτ2

]
dτ1

The upper limits on the coefficients for A1 and D1 are then:

A1(τ) ≤
∫ τ

0

1

Z0min

[ ∫ τ1

0
Z0maxdτ2

]
dτ1; D1(τ) ≤

∫ τ

0
Z0max

[ ∫ τ1

0

1

Z0min
τ1dτ2

]
dτ1 (5.8)
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Z0min and Z0max in (5.8) are no longer functions of τ , but constants that can be brought outside

the integral:

A1(τ) ≤ Z0max

Z0min

∫ τ

0

[ ∫ τ1

0
1 dτ2

]
dτ1; D1(τ) ≤ Z0max

Z0min

∫ τ

0

[ ∫ τ1

0
1 dτ2

]
dτ1

Then evaluating the inner integrals, we have:

A1(τ) ≤ Z0max

Z0min

∫ τ

0
τ1dτ1; D1(τ) ≤ Z0max

Z0min

∫ τ

0
τ1dτ1

and upon integrating,

A1(τ) ≤ Z0max

Z0min

(
τ2

2
− 0

2

)
; D1(τ) ≤ Z0max

Z0min

(
τ2

2
− 0

2

)

A1(τ) ≤ Z0max

Z0min

(
τ2

2

)
; D1(τ) ≤ Z0max

Z0min

(
τ2

2

)
(5.9)

Using (5.7) and the solutions for A1 and B1 from (5.9), solutions for the upper limits of B1 and C1

are found:

B1(τ) ≤
∫ τ

0
Z0maxA1(τ1) dτ1; C1(τ) ≤

∫ τ

0

1

Z0min
D1(τ1) dτ1

B1(τ) ≤
∫ τ

0
Z0max

Z0max

Z0min

(
τ2

1

2

)
dτ1; C1(τ) ≤

∫ τ

0

1

Z0min

Z0max

Z0min

(
τ2

1

2

)
dτ1

B1(τ) ≤ Z0max
Z0max

Z0min

∫ τ

0

(
τ2

1

2

)
dτ1 ; C1(τ) ≤ 1

Z0min

Z0max

Z0min

∫ τ

0

(
τ2

1

2

)
dτ1

B1(τ) ≤ Z0max
Z0max

Z0min

(
τ3

6

)
; C1(τ) ≤ 1

Z0min

Z0max

Z0min

(
τ3

6

)
(5.10)

When An, etc. are written without an argument, it will be assumed that τ = T : An(T ) ≡ An

and so on, where T is the total “length” (i. e., time delay) of the entire section of nonuniform line.

The bounds for the coefficients in the series (5.2) are found by mathematical induction:(
Z0min

Z0max

)n T 2n

(2n)!
≤ An ≤

(
Z0max

Z0min

)n T 2n

(2n)!(
Z0min

Z0max

)n
Z0min

T 2n + 1

(2n+ 1)!
≤ Bn ≤

(
Z0max

Z0min

)n
Z0max

T 2n+1

(2n+ 1)!
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Z0min

Z0max

)n 1

Z0max

T 2n + 1

(2n+ 1)!
≤ Cn ≤

(
Z0max

Z0min

)n 1

Z0min

T 2n+1

(2n+ 1)!

(
Z0min

Z0max

)n T 2n

(2n)!
≤ Dn ≤

(
Z0max

Z0min

)n T 2n

(2n)!
(5.11)

5.2 Matching Using the Chain Matrix

Recall from Chapter 2 the matched condition (2.5) from the ABCD solution of a matching

circuit. The two necessary conditions required for a match are given by (2.6) and (2.7) and are

rewritten below for clarity:

M = AZ02 −DZ01 = 0 (5.12)

P = B − CZ01Z02 = 0 (5.13)

For a lossless circuit, the ABCD condition for the real portion of the reflection coefficient

(5.12) has been named as the variable M , and the imaginary portion (5.13) is denoted with the

variable P . Both have been set to 0 to enforce a matched condition with S11 = Γ0 = 0. Figure 5.1

shows how M = 0 and P = 0 are satisfied by a quarter-wave transformer. The length, λ/4, creates

a condition where A = D = 0 at the design frequency thereby creating the M = 0 condition

regardless of the values of Z01 = Z00 and Z02 = RL. P = 0 for the quarter-wave transformer is

accomplished at the design frequency and its odd multiples when the impedance of the uniform

line has a value of
√
Z01Z02.

The conditions are also shown for an exponential line with no discontinuities and the impedance

matching conditions M = 0 and P = 0 in Figure 5.2. In this case, M = 0 is achieved by a correct

scaling of A and D to correspond to the 10:1 impedance discontinuity. The length of the expo-

nential line then satisfies (5.13) since that length creates a point where B and C cross at zero and

therefore satisfy P = 0.
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Figure 5.1: Quarter-wave transformer relationship between A, B, C, and D for matched condition.

Figure 5.2: Exponential line relationship between A, B, C, and D for matched condition.
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All transmission line impedance transformers create a combination of M = 0 and P = 0

conditions through line length and taper characteristics. While the two examples in Figures 5.1

and 5.2 have readily solvable ABCD parameters, by the use of the nested integrals of (5.7), all

transmission line ABCD parameters can in principle be solved. The accuracy of the solution will

depend on the number of coefficients that are computed.

5.3 Using the Coefficient Limits to Define a Length Limit

An initial but rather crude transmission line length limit for a particular impedance maximum

and minimum on the nonuniform line was found in [12] and is shown in Figure 5.12 below. The

bounds found there are not restricted to real ω , and can be quite poor. Here we will derive an

improved bound for real-life circuits by using positive, real frequencies, ω from the start.

5.3.1 Satisfying M = 0

Applying (5.2) to (5.12) gives,

M =
+∞∑
n=0

(jω)2nAnZ02 −
+∞∑
n=0

(jω)2nDnZ01 = 0 (5.14)

or, since j2 = −1:

M =
+∞∑
n=0

(−1)n(ω)2nAnZ02 −
+∞∑
n=0

(−1)n(ω)2nDnZ01 = 0 (5.15)

Since An and Dn are all positive and real, it is clear in (5.15) which coefficients will be positive or

negative, so we regroup the terms as

M(ω) = (Ap −Am)Z02 − (Dp −Dm)Z01 = 0 (5.16)

where Ap and Dp are the terms of (5.15) that will be positive and Am and Dm are the terms that

will be negative.

Forcing M(ω) = 0 and re-arranging so both sides are positive,

ApZ02 +DMZ01 = AmZ02 +DpZ01 (5.17)
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Each half of this equation can be given a name for the purpose of finding where the two are equal:

F (ω) = ApZ02 +DmZ01

G(ω) = AmZ02 +DpZ01 (5.18)

Expressions for F and G above (5.18) can be set to be equal to each other for a match of the circuit

when all of the parameters are known. This is shown in Figure 5.3. Bounds on F and G are also

useful for defining the length limits below which a match will not be possible for a particular Z0max

and Z0min.

A few more quantities are defined to relate (5.18) to the chain parameter limits (5.11). Let

Alp(ω) be defined using the lower limits of the coefficients for A from (5.11) using only the even

values of n in (5.15). Likewise, Dlm is defined from the negative coefficients of Dl from (5.15).

Alp(ω) = 1 + (W 2
l )2T

4

4!
(ω4) + (W 2

l )4T
8

8!
(ω8) + ...

Dlm(ω) = 1 + (W 2
l )
T 2

2!
(ω2) + (W 2

l )3T
6

6!
(ω6) + ... (5.19)

where

W 2
u =

Z0max

Z0min

and

W 2
l =

Z0min

Z0max

A lower limit for F is then:

Fl(ω) = Alp(ω)Z02 +Dlm(ω)Z01 (5.20)

Similarly, defining Aum using the negative coefficients of the lower limit of the coefficients of A,

and Dup as the lower bounds of the positive coefficients of D, an upper limit for G is obtained as:

Gu(ω) = Aum(ω)Z02 +Dup(ω)Z01 (5.21)
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If � and � can be solved, this is

the normalized line length that

will give a match.

Figure 5.3: Location of typical exact impedance match
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If � and � cannot be solved

directly, this point will give a

lower bound below which a

solution could not exist.

Figure 5.4: Lower limit of length for typical exact impedance match
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Equations (5.20) and (5.21), will have a crossing point that will occur at a normalized length

(relative to frequency: ωT ) less than or equal to the length at which an exact match of the

impedances RL and Z00 is possible. A graphical representation of this Fl-Gu crossing can be seen

in Figure 5.4, relative to the location of the exact match.

Equations (5.19) can be simplified using some trigonometric and hyperbolic power series:

cosx = 1− x2

2!
+
x4

4!
− ...

coshx = 1 +
x2

2!
+
x4

4!
+ ...

1

2
(coshx+ cosx) = 1 +

x4

4!
+
x8

8!
+ ... (5.22)

1

2
(coshx− cosx) = 1 +

x2

2!
+
x6

6!
+ ... (5.23)

Substituting these identities into (5.19):

Alp(ω) =
1

2

(
cosh(ωTWl) + cos(ωTWl)

)
Dlm(ω) =

1

2

(
cosh(ωTWl)− cos(ωTWl)

)
(5.24)

so that,

Fl(ω) =
1

2

(
cosh(ωTWl) + cos(ωTWl)

)
Z02 +

1

2

(
cosh(ωTWl)− cos(ωTWl)

)
Z01 (5.25)

In a similar way Gu is given as:

Gu(ω) =
1

2

(
cosh(ωTWu)− cos(ωTWu)

)
Z02 +

1

2

(
cosh(ωTWu) + cos(ωTWu)

)
Z01 (5.26)

5.3.2 Satisfying P = 0

In a similar way, B and C parameters must satisfy the conditions in (5.13) in order for a

nonuniform transmission line to perform a match.
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Applying (5.2) to (5.13) gives,

P =

+∞∑
n=0

(jω)2n+1Bn −
+∞∑
n=0

(jω)2n+1CnZ02Z01 = 0 (5.27)

or, since j2 = −1:

P = j
+∞∑
n=0

(−1)n(ω)2n+1Bn −
+∞∑
n=0

(−1)n(ω)2n+1CnZ01Z02 = 0 (5.28)

Since Bn and Cn are all positive and real, it is clear in (5.28) which coefficients will be positive

or negative, so we regroup the terms as

P (ω) = (Bp −Bm)− (Cp − Cm)Z01Z02 = 0 (5.29)

where Bp and Cp are the terms of (5.28) that will be positive and Bm and Cm are the terms that

will be negative.

Forcing P (ω) = 0 and re-arranging so both sides are positive,

Bp + CmZ01Z02 = Bm + CpZ01Z02 (5.30)

Each half of this equation can be given a name for the purpose of finding where the two are equal:

jH(ω) = Bp + CmZ01Z02

jJ(ω) = Bm + CpZ01Z02 (5.31)

We have included the factor j on the left side of (5.31) to make H and J real. Solutions for H

and J above (5.31) are set to be equal to each other for a match of the circuit when all of the

parameters are known. H and J can also be used for obtaining length limits below which a match

will not be possible for a particular Z0max and Z0min. Here,

Bp(ω) = ωB0 + ω5B2 + ω9B4 + ...

Bm(ω) = ω3B1 + ω7B3 + ω11B5 + ...

Cp(ω) = ωC0 + ω5C2 + ω9C4 + ...

Cm(ω) = ω3C1 + ω7C3 + ω11C5 + ...

(5.32)
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Additional quantities are defined to relate (5.31) to the chain parameter limits (5.11). Let

Blp(ω) be defined using the lower limits of the coefficients for B from (5.11) using only the even

values of n in (5.28). Likewise, Clm is defined from the negative coefficients of Cl from (5.28).

Blp(ω) = ωZ0minT + ω5(W 2
l )2Z0min

T 5

5!
+ ω9(W 2

l )4Z0min
T 9

9!
+ ...

Clm(ω) = ω3(W 2
l )1 1

Z0max

T 3

3!
+ ω7(W 2

l )3 1

Z0max

T 7

7!
+ ω11(W 2

l )5 1

Z0max

T 11

11!
+ ... (5.33)

where

W 2
u =

Z0max

Z0min

and

W 2
l =

Z0min

Z0max

Blp(ω) =
Z0min

Wl

(
ωWlT + ω5W 5

l

T 5

5!
+ ω9W 9

l

T 9

9!
+ ...

)
Clm(ω) =

1

WlZ0max

(
ω3W 3

l

T 3

3!
+ ω7W 7

l

T 7

7!
+ ω11W 11

l

T 11

11!
+ ...

)
(5.34)

The lower limit for H is defined as:

Hl(ω) = Blp(ω) + Clm(ω)Z01Z02 (5.35)

Similarly, defining Bum using the negative coefficients of the lower bounds of the coefficients of B

and Cup using the lower bound of the positive coefficients of C, an upper limit for J is obtained:

Ju(ω) = Bum(ω) + Cup(ω)Z01Z02 (5.36)

Equations (5.35) and (5.36) will have a crossing point that will occur at a length (relative to

frequency: ωT ) less than or equal to the length at which an exact match of the impedances RL

and Z00 is possible.

Equation (5.33) can be simplified using some trigonometric and hyperbolic power series.

sinx = x− x3

3!
+
x5

5!
− ...
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sinhx = x+
x3

3!
+
x5

5!
+ ...

1

2
(sinhx+ sinx) = x+

x5

5!
+
x9

9!
+ ... (5.37)

1

2
(sinhx− sinx) =

x3

3!
+
x7

7!
+ ... (5.38)

Substituting these identities into (5.33):

Blp(ω) =
Z0min

Wl

1

2

(
sinh(ωTWl) + sin(ωTWl)

)
Clm(ω) =

1

WlZ0max

1

2

(
sinh(ωTWl)− sin(ωTWl)

)
(5.39)

so that,

Hl(ω) =
Z0min

2Wl

(
sinh(ωTWl) + sin(ωTWl)

)
+

1

2WlZ0max

(
sinh(ωTWl)− sin(ωTWl)

)
Z01Z02 (5.40)

In a similar way Ju is given as:

Ju(ω) =
Z0max

2Wu

(
sinh(ωTWu)−sin(ωTWu)

)
+

1

2WuZ0min

(
sinh(ωTWu)+sin(ωTWu)

)
Z01Z02 (5.41)

5.3.3 Length Limits

All of the quantities needed for obtaining the upper and lower limits for solutions of (5.12)

and (5.13) have been defined. The conditions which define a matched condition must allow for both

M = 0 and P = 0. If Fl and Gu are known, the equations can be applied to impedance matching

cases to see what limits can be produced.

Figures 5.5 - 5.7, show line length limiting cases under three sample conditions for 10:1

impedance transformers. The length limits are created by applying the Z0min and Z0max charac-

teristics to the coefficients of An, Bn, Cn, and Dn as outlined above.

Figure 5.5 shows the unique conditions for the quarter-wave transformer. In the case when

Z0min = Z0max, the F and G expressions determine M (5.12) are equal at lengths 0.25λ and

odd multiples thereof. We view the zero-crossing closest to ωT = 0 as a point below which a
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Limits for:

� = 1

� =

� min = 3.16

�0m�� = 3.16

Figure 5.5: Lower and upper length limits for a 10:1 impedance transformer with Z0min = Z0max =
3.16 Ω.

Limits for:

� = 1

� =

� min = 3.01

�0m�� = 3.32

Figure 5.6: Lower and upper length limits for a 10:1 impedance transformer with Z0min = 3.01 Ω
and Z0max = 3.32 Ω.
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Limits for:

� = 1

� =

� min = 1

�0m�� = 10

Figure 5.7: Lower and upper length limits for a 10:1 impedance transformer with Z0min = 1 Ω and
Z0max = 3.16 Ω.
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perfect match will not occur (a lower length limit). If an intersection point existed for the H and

J equations that determine P , the higher (larger) ωT value would be taken as the lower limit.

The upper length limit indicates a point below which (lower ωt) the shortest match condition is

expected.

The M condition requires the match to exist at 0.25λ since the lower length limit and upper

length limit both appear at that length. The H and J equations that determine P , show an

interesting condition in that they are equal at all frequency points (ωT ). This means that although

Hl and Ju indicate a match as low as (ωT = 0), the higher (ωT = .25λ) is the overall lower limit.

When the Z0min and Z0max conditions are allowed to separate a little as shown in Figure 5.6,

the lower limit decreases (to ωT = 0.224) as defined by Fl and Gu. There is an upper limit given

by Fu and Gl at ωT = 0.335λ, which indicates that the shortest length matching circuit for a

10:1 matching circuit with Z0min = 3.01 Ω and Z0max = 3.32 Ω will occur between 0.224λ ≤ ωT ≤

0.335λ. The Hl, Ju crossing never happens, indicating that the Fl, Gu bound is the lowest length

bound. Likewise Hu and Jl do not cross, and provide no additional information on a upper length

bound.

A more extreme case of impedance deviation is considered when Z0min = 1 Ω and Z0max =

10 Ω (see Figure 5.7). Here the lower bound defined by Fl and Gu is found at a lower frequency

(ωT ), and no upper bounds are present. In fact for any case other than Z0min = Z0max, the Hl,

Ju crossing never happens, and can be discarded as a useful result for the limits created by the

approach in Chapter 5. The one consistently useful comparison is the lower bound created by the

Fl and Gu equality. For any condition of Z0min and Z0max impedance parameters, there appears

to be a length with respect to frequency where an equality of the positive and negative terms of

(5.12) exist indicating a lower length bound. Some further examples of the lower length limit found

using this information can be found in Section 5.4 below.
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5.4 Conclusion

Limits for the length of a nonuniform transmission line being used as an impedance matching

circuit are found by using the minimum and maximum characteristic impedance values of the

transmission line. Figures 5.8 through 5.11 show plots of Fl and Gu for several different specific

matching circuits. The intersection points of these two lines indicate the spot where these two

equations are equal. Lengths (with respect to frequency, ωT ), below these intersection points will

not allow a matching solution for the Z0min and Z0max selected. The Bramham circuit uses the

minimum and maximum impedances equal to the input and load impedances of the system. Using

these values for minimum and maximum and a comparison has been made representing the limit

found above and the known length of the Bramham circuit (see Figure 5.12). Expanding on the

data presented in Chapter 3, Table 5.1 shows how the limits found in this chapter can be compared

for exponential lines and other matching circuits. For the quarter-wave transformer, the limit

computed is 0.25λ. For transmission lines shorter than the quarter-wave transformer as shown in

Table 5.1, the length limit decreases more rapidly than the length of the circuit itself making the

bound less tight. Looking at exponential tapers longer than a quarter wave transformer, the length

limit derived in this chapter also decreases since Z0min and Z0max are diverging, but this divergence

does not create a shorter actual circuit, at least from the exponential family of tapers.

The results in Table 5.1 can be compared to those found in [12]. As shown in Figure 5.12, when

RL/Z00 = 10 and Z0max/Z0min = 10, the limit defined [12] gives a value of 0.05λ, while Table 5.1

shows a tighter bound of 0.067λ. Results for the length limit for the quarter-wave transformer can

also be compared; in [12] a limit is found to be 0.21λ when Z0min = Z0max =
√
RLZ00, while in

Table 5.1, this limit is exactly 0.25λ. In general, the bounds presented in this chapter are much

better than those of [12]. The major difference between the two limits is that [12] allows matches

for all complex s, while the method listed in this chapter replaces s with jω. The bounds found

in this chapter maintain their validity as long as ω is restricted to only positive real values, which

applies to most practical applications.
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Quarter-wave transformer:

� ��� � 16

� � 16

Lower limit:

0.25�

actual length:

0.25�

ZL/Z00=10

Z00=1 d=0.25�

�

Figure 5.8: Limits for a 10:1 impedance discontinuity with Z0max = Z0min =
√

10 ∗ 1 Ω

Figure 5.9: Limits for a 10:1 impedance discontinuity with Z0max = 3.32 Ω Z0min = 3.00 Ω
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Lower limit:

0.067�

actual length:

0.141�
� ��� � .

� �

ZL/Z00=10

Z00=1 d=0.141�

� �

Exponen�al Line: K Z00 = 10.0

Figure 5.10: Limits for a 10:1 impedance discontinuity with Z0max = 10 Ω Z0min = 1 Ω

Lower limit:

0.067�

actual length:

0.093�
� ��� � .

� �

ZL/Z00=10

Z00=1 d=0.093�

� �

Bramham circuit:

Figure 5.11: Limits for a 10:1 impedance discontinuity with Z0max = 10 Ω Z0min = 1 Ω Bramham
configuration
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1 2 3 4 5 6 7 8 9 10

R
L
/Z

00

0

0.05

0.1

0.15

0.2

(d
/

) e
ff

Length of the Bramham Matching Circuit

Lower Bound (Kuester 2012)

Bramham Circuit

Lower Bound (Chapter 5)

Figure 5.12: Limit found for the Bramham circuit by solving for ω from Equations (5.20) and (5.21

Transmission line Length Limit Actual Length -20 dB Bandwidth

Exponential (K=1.0Ω) .067λ .533λ 15.7%
Exponential (K=1.105Ω) .072λ .487λ 15.1%
Exponential (K=1.5Ω) .100λ .381λ 12.0%

Exponential (K=3.16Ω) (λ/4) .250λ .250λ 9.0%
Exponential (K=ZL=10Ω) .067λ .141λ 7.7%

Bramham .067λ .093λ 7.7%
Exponential (K=15Ω) .045λ .113λ 7.5%
Exponential (K=21Ω) .032λ .093λ 7.3%
Exponential (K=25Ω) .027λ .084λ 7.3%
Exponential (K=30Ω) .022λ .075λ 7.2%

Table 5.1: Length limits compared to examples of known length: Quarter-wave, Bramham and
exponential tapers.



Chapter 6

Tighter Bounds Using a Bôcher Approach

The length limits presented in Chapter 5 make use of only Z0max and Z0min. In the case of

the quarter-wave transformer (Z0max = Z0min) the shortest possible line length that will produce

a match as predicted by the limit is exactly λ/4 (see Figure 5.8). For the more general case, when

Z0max and Z0min deviate from each other, the lower bounds are not as tight. In this chapter, we

search for a way to tighten the bound of Chapter 5 in the general case if more is known about

the taper to be used. What we will call the Bôcher approach seeks to get tighter bounds on the

length of matching transmission lines by using additional information (such as average impedance)

to bound An, Bn, Cn, and Dn more tightly.

6.1 The Bôcher Approach to Bounding the ABCD Coefficients

The bounds on the coefficients of the series expansions used in Chapter 5 were essentially

those of Peano [27] [28]. These bounds can be improved using a refinement suggested by the work

of Bôcher [34] (see also Pease [35], who uses the nonuniform transmission line as an example), but

will be modified somewhat to suit our needs. Beginning with the equation for An (5.7):

An =

∫ T

0

1

Z0(τ2n)

∫ τ2n

0
Z0(τ2n−1) · · ·

∫ τ2

0
Z0(τ1) dτ1dτ2 · · · dτ2n (6.1)

let the constant Z0ref be an arbitrary positive real reference impedance. Equation (6.1) is rewritten

as

An =

∫ T

0

Z0ref

Z0(τ2n)

∫ τ2n

0

Z0(τ2n−1)

Z0ref
· · ·
∫ τ2

0

Z0(τ1)

Z0ref
dτ1dτ2 · · · dτ2n (6.2)
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Next, define the (dimensionless) functions

φmax(τ) =



Z0(τ)

Z0ref
if Z0(τ) > Z0ref

Z0ref

Z0(τ)
if Z0(τ) < Z0ref

1 if Z0(τ) = Z0ref



= max

[
Z0(τ)

Z0ref
,
Z0ref

Z0(τ)

]
(6.3)

and

φmin(τ) =



Z0ref

Z0(τ)
if Z0(τ) > Z0ref

Z0(τ)

Z0ref
if Z0(τ) < Z0ref

1 if Z0(τ) = Z0ref



= min

[
Z0(τ)

Z0ref
,
Z0ref

Z0(τ)

]
(6.4)

Clearly, we have

φmin(τ) ≤ Z0ref

Z0(τ)
≤ φmax(τ), φmin(τ) ≤ Z0(τ)

Z0ref
≤ φmax(τ), and φmin(τ) ≤ 1 ≤ φmax(τ) (6.5)

for all τ .

From (6.5) and (6.2) then, we have

An ≤
∫ T

0
φmax(τ2n)

∫ τ2n

0
φmax(τ2n−1) · · ·

∫ τ2

0
φmax(τ1) dτ1dτ2 · · · dτ2n (6.6)

The right side of (6.6) can now be evaluated using a lemma due to Cauchy [34] which will be the

basis of the Bôcher approach. A lower bound for An can be computed in a similar way.

An ≥
∫ T

0
φmin(τ2n)

∫ τ2n

0
φmin(τ2n−1) · · ·

∫ τ2

0
φmin(τ1) dτ1dτ2 · · · dτ2n (6.7)
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and will also be evaluated using Cauchy’s lemma.

Cauchy Formula for Repeated Integration Let

qk(τ) ≡
∫ τ

0
q(τk)

∫ τk

0
q(τk−1) · · ·

∫ τ2

0
q(τ1) dτ1dτ2 · · · dτk

where q(τ) is a suitably integrable function. Then

qk(τ) =
1

k!

[∫ τ

0
q(τ ′) dτ ′

]k
=

1

k!
[q1(τ)]k (6.8)

where

q1(τ) =

∫ τ

0
q(τ ′) dτ ′ (6.9)

To prove (6.8), note that it is obviously true for k = 1, and that q′1(τ) = q(τ). Now suppose

it is true for k − 1. We have

qk(τ) =

∫ τ

0
q(τk)qk−1(τk) dτk =

∫ τ

0
q′1(τk)

1

(k − 1)!
[q1(τk)]

k−1 dτk =
1

(k − 1)!

∫ τ

0

1

k

d

dτk
[q1(τk)]

k dτk

which is equivalent to (6.8).

Having shown that this lemma is applicable for all k, it can now be applied to the problem

of finding limits on An by putting q(τ) = φmax(τ) in (6.8).

An ≤
1

(2n)!

[∫ T

0
φmax(τ) dτ

]2n

(6.10)

In a similar way, using q(τ) = φmin(τ), we can show that

An ≥
1

(2n)!

[∫ T

0
φmin(τ) dτ

]2n

(6.11)

Similar bounds can be found for Bn, Cn and Dn by the same method; the bounds for Dn are

identical to those in (6.10) and (6.11) for An. These bounds are sharp, with equality holding in

the case Z0(τ) = Z0ref = constant. For suitable choices of Z0ref , they seem likely to be tighter than

the Peano bounds ([27]) and ([28]) that were used in [12]. In fact, if we put Z0ref =
√
Z0maxZ0min,

then by (6.3), φmax ≤
√
Z0max/Z0min, while by (6.4), φmin ≥

√
Z0min/Z0max and thus∫ T

0
φmax(τ) dτ ≤ T

√
Z0max

Z0min
;

∫ T

0
φmin(τ) dτ ≥ T

√
Z0min

Z0max
(6.12)
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which show that (6.10) and (6.11) are at least as tight as (5.11) for this choice of Z0ref .

The bounds (6.10) and (6.11) can be written in various other ways. For instance,

T 2n

(2n)!
φ2n
l ≤

 An

Dn

 ≤ T 2n

(2n)!
φ2n
u (6.13)

where

φu =
1

T

∫ T

0
φmax(τ) dτ (6.14)

and

φl =
1

T

∫ T

0
φmin(τ) dτ (6.15)

Recall from (6.5) that

φl ≤ 1 ≤ φu

and therefore that the upper bounds are always ≥ T 2n/(2n)! while the lower bounds are ≤

T 2n/(2n)!, as was the case for the Peano bounds (5.11). But as seen above, with an optimum

choice of reference impedance the Bôcher bounds will be tighter than the Peano bounds.

In general, optimizing the choice of Z0ref can be a difficult task, and will not be attempted

here. We might choose Z0ref =
√
Z0maxZ0min (as performed in Appendix C for the exponential

line), or instead proceed as follows. If Z0ref ≥ Z0max, then (6.14) and (6.15) become

φu =
Y0av

Y0ref
> Z0maxY0av; φl =

Z0av

Z0ref
<

Z0av

Z0max
(6.16)

Where,

Z0av =
1

T

∫ T

0
Z0(τ) dτ ; Y0av =

1

T

∫ T

0
Y0(τ) dτ (6.17)

The smallest value our upper bound can take for such Z0ref is therefore achieved in the limit

Z0ref → Z0max; the largest value of our lower bound is also attained under the same condition:

When Z0ref gets even bigger than Z0max, the bounds just get looser. For this reason, the

best choice in this range is Z0ref = Z0max.

φu = Z0maxY0av; φl =
Z0av

Z0max
(6.18)
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In a similar way, if Z0ref ≤ Z0min, the best bounds are achieved when Z0ref = Z0min:

φu =
Z0av

Z0min
; φl = Z0minY0av (6.19)

We conclude that the optimum choice of Z0ref to obtain the lowest value of φu will lie in the range

Z0min ≤ Z0ref ≤ Z0max, and may have to be determined by numerical experimentation in any

particular case. An initial study of choices for Z0ref within this range is introduced in Appendix C.

6.1.1 Bounds on Bn and Cn

Bôcher-type bounds on Bn and Cn can be found in a similar way. The only complication is

that not all the factors of Z0ref will cancel as they did for An and Dn. We have

Z0ref
T 2n+1

(2n+ 1)!
φ2n+1
l ≤ Bn ≤ Z0ref

T 2n+1

(2n+ 1)!
φ2n+1
u (6.20)

1

Z0ref

T 2n+1

(2n+ 1)!
φ2n+1
l ≤ Cn ≤

1

Z0ref

T 2n+1

(2n+ 1)!
φ2n+1
u (6.21)

If only bounds on products of terms like BnCm are required, the reference impedance drops out

and we have:

T 2n+2m+2

(2n+ 1)!(2m+ 1)!
φ2n+2m+2
l ≤ BnCm ≤

T 2n+2m+2

(2n+ 1)!(2m+ 1)!
φ2n+2m+2
u (6.22)

But in (6.20) and (6.21), determination of the optimum choice of Z0ref is more complicated, and

can be expected to give different results than was the case for An and Dn.

6.1.2 Summary of Bôcher bounds

To summarize these results, the optimum Bôcher-type bounds in (6.13), (6.20) and (6.21)

are specified as follows:

Lower Bounds:

φl =
Z0av

Z0max

(
if

Z0av

Z0max
≥ Y0av

Y0max

)
(6.23)
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φl = Z0minY0av

(
if

Z0av

Z0max
≤ Y0av

Y0max

)
(6.24)

Upper Bounds:

φu = Z0maxY0av

(
if
Z0av

Z0min
≥ Y0av

Y0min

)
(6.25)

φu =
Z0av

Z0min

(
if
Z0av

Z0min
≤ Y0av

Y0min

)
(6.26)

6.2 Numerical Results for the Bramham Case

The Bôcher approach provides an opportunity to create tighter bounds on the coefficients

An, Bn, Cn, and Dn, which in turn, can create tighter length limits for the matching circuits. The

bounding technique is then the same as the one used in Chapter 5, but using the more defined

coefficient bounds. The addition of Z0ref as a parameter that can be optimized makes finding

universal limits a bit more involved.

We have tried different values of Z0ref for finding the coefficient bounds for the 10:1 Bramham

circuit to compare to the bounds in Figure 5.11. For φu, the choice of Z0ref =
√
Z0minZ0max gives

the tightest bound.

Wu = φu =

√
Z0maxZ0min

Z0min
=
√

10 = 3.162 (6.27)

These are the same as Peano bounds from Chapter 5, Although there is no advantage, the Peano

bounds are never worse.

For φl, choosing either Z0ref = Z0max or Z0ref = Z0min produced the tightest bound so (6.25)

or (6.25) could be used:

Wl = φl =
Z0av

Z0max
=

0.5(10 + 1)

10
= 0.55 (6.28)
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In this case, the bounds for Wl are significantly different from that found in Chapter 5 using the

Peano bounds. Looking at the resultant Fl and Gu plot in Figure 6.1, the Fl plot is significantly

different, potentially producing tighter length limits. In this Bramham case, however, the Fl line

is nearly horizontal in the region where the Gu line crosses, and only a very small change in the

length limit is realized.

In Appendix C, we have presented Bôcher bounds for the case of the exponential line. In

future developments of this work, a determination of length bounds for exponential lines may show

more significant improvements of the Bôcher approach.
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Lower limit:

0.067�

actual length:

0.093�

ZL/Z00=10

Z00=1 d=0.093�

= /

Bramham circuit:

�� = �� = √10

� = � = 55

Figure 6.1: Limits for a 10:1 impedance discontinuity with Wu = φu = 3.162 and Wl = φl = 0.55
Bramham configuration



Chapter 7

Conclusion

7.1 Results

Nonuniform transmission lines are effective impedance transformers for broadband and nar-

rowband applications. In this thesis, the trade-offs of performance and length have been demon-

strated showing that electrically short impedance transformers can be realized when very large

impedance variations are allowed. Practical limitations on the highest and lowest allowable impedance

characteristics can be used to define a limit on the shortest possible length a transmission line can

have to perform a match of a given impedance ratio. While much current design work is done in

software analysis tools, a priori knowledge of possible solutions can speed development efforts by

eliminating solution paths that will not give a possible solution.

A detailed investigation into the broad usage of exponentially tapered transmission lines has

been demonstrated. A design procedure has been presented giving a choice of exponential line

impedance matching solutions. The impedance matching response for an exponential line with

impedance discontinuities at either end has been analytically computed, simulated, and manu-

factured. A comparison of the ideal and the manufactured exponential line impedance matching

circuits revealed the sensitivity these circuits have to fabrication anomalies and the impacts of

capacitive and inductive parasitics. In general, modest parasitics were observed which had the

favorable impact of shortening the electrical length of the matching circuit while having minimal

impact on the frequency bandwidth or quality of the match.
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7.2 Future Work

In this thesis, only real load impedances have been considered. This research could be

continued to include using nonuniform matching circuits for matching complex load impedances.

In that case, the situation is additionally complicated by the frequency dependence of the load

impedance, which will interact with that of the matching circuit in a nontrivial way. The parasitic

effects of impedance discontinuities are one such type of frequency dependence; an analytical or

numerical treatment of these could be used to reduce any design iterations required by adjusting

the transmission line length in the original design. This study would be most useful if completed

for different types of transmission lines in various dielectric media.

A limiting factor for the usefulness of nonuniform transmission lines can be their power

handling capability. The narrowest line section in a nonuniform transmission line will limit the

maximum power that the circuit will allow before melting the trace. A study of the power handling

limitations of different substrates for these narrow transmission line sections can further define

physical limitations for nonuniform transmission line impedance transformation.

Impedance tapers have potential applications in other ways besides impedance matching.

The results of this thesis could be applied to the design of broadband coupling circuits such as

quadrature and 180◦ hybrids. Power dividers, diplexers and antenna array feed networks could also

benefit from the principles studied in this thesis.

Although the Chen-Hamid two-stage generalization of the Bramham matching circuit has

been known for some time, it does not seem to have been thoroughly studied from the standpoint

of optimization and compensation for parasitic effects. This would be a valuable extension of this

thesis work, as would the treatment of circuits with more than two stages. Some classical work on

this problem is well-known (Chebyshev, Butterworth and other types of stepped impedance filters,

for example), but designs that focused on shortening the length of the circuit have been very little

investigated.

Tighter limits than those found in Chapter 5 for the shortest possible nonuniform line match-
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ing circuits might also be found by further refining the bounds on the coefficients An, Bn, Cn and

Dn. An in-depth study of many inequalities has been initiated, and some of its initial findings

were presented in Chapter 6 and Appendix C. In some cases, as more information about a nonuni-

form transmission line (e. g., weighted averages or maximum rate of change of the characteristic

impedance) is applied to the calculation of a length limit, a tighter bound on that limit should

be possible to obtain. Since the bounds in this thesis are based on the series expansion of ABCD

Parameters, the possibility can be explored to find tighter bounds by improving the limits on only

some of the expansion coefficients rather than on the entire infinite series. Doing this for the coef-

ficients of lowest order should be profitable, since we are interested in short length/low frequency

situations where these coefficients are most important to the values of the chain parameters.
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Appendix A

Reflections from Continuous Transmission line with Discontinuities

Riccati Equation: The exact form of the transmission line equation can be expressed as:

ρ′(x) = 2jβρ(x)−N(x)(1− ρ2(x)) (A.1)

In the case when ρ(x) is small, ρ2(x) can be neglected. This is called the WentzelKramersBrillouin

(WKB) approximation:

ρ′(x) = 2jβρ(x)−N(x) (A.2)

While equation (A.1) can only be solved using numerical methods, equation (A.2) can be solved as

follows. Define.

ρ(x) = e2jβxf(x) (A.3)

Therefore.

ρ′(x) = 2jβrho(x) + e2jβxf ′(x) (A.4)

Substituting equation (A.2) for ρ(x).

2jβf(x)e2jβx + e2jβxf ′(x) = 2jβf(x)e2jβx −N(x) (A.5)

e2jβxf ′(x) = −N(x) (A.6)

f ′(x) = −N(x)e−2jβx (A.7)
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∫ d

x
−N(x)e−2jβxdx′ (A.8)

f(d)− f(x) = −
∫ d

x
−N(x′)e−2jβx′dx′ (A.9)

f(x) = f(d) +

∫ d

x
−N(x′)e−2jβx′dx′ (A.10)

f(x) = f(d) +

∫ d

x
−N(x′)e−2jβx′dx′ (A.11)

Recall ρ(x) = e2jβxf(x).

ρ(x) = f(d)e2jβx +

∫ d

x
−N(x′)e2jβ(x−x′)dx′ (A.12)

ρ(x) = ρ(d)e2jβ(x−d) +

∫ d

x
−N(x′)e2jβ(x−x′)dx′ (A.13)

Considering the return at the input end of the transmission line, x = 0.

ρ(0+) = ρ(d)e−2jβd +

∫ d

0
−N(x′)e2jβ(x′)dx′ (A.14)

ρ(d)e−2jβd indicates the reflection caused by a stepped impedance discontinuity between the

load and the adjoining portion of the taper.∫ d
0 −N(x′)e2jβ(x′)dx′ accounts for the sum of reflections accumulated along the continuous

portion of the impedance taper.

This derivation shows that all ways of solving the WKB equation (A.2), account for the

reflection at the load end of a transmission line and the continuous reflections accumulated along

the transmission line. An additional discontinuity at the source end of the transmission line can be

accounted for by normalizing the entire system to the Z00 value at the input of the transmission

line. There is an infinite series (citation required) of additional reflections between between the

source and load end of the transmission line.



Appendix B

Types of Reflection Coefficients

Impedance matching using any technique is described in terms of reflection coefficient, and

is often displayed on the Smith Chart. The insight from the looking at reflections on the Smith

Chart allows the designer to see how a match is obtained and the characteristics of the match such

as the bandwidth. In this appendix, the definition of reflection coefficient and its representation on

the Smith Chart will be investigated to show what insights can be achieved.

B.1 Introduction

Between any two connected RF components a mismatch in their impedance will create a

reflection. The reflection coefficient describes the magnitude and phase characteristics of the wave

reflected from a load due to a wave incident from the source. A reflection coefficient is commonly

used to describe impedance matching circuits. Figure B.1 describes a basic RF system with a

resistive load, RL, a transmission line of characteristic impedance Z0, and a reference impedance

Z00 which does not necessarily relate to any actual section of transmission line in the network.

Plotting this reflection coefficient on the complex plane in the form of a Smith chart [36]

[37] gives insight into the character of the mismatch of a system. The Smith chart is often used

as a convenient tool for displaying reflections due to mismatch and designing systems that work to

minimize these reflections. Here we will examine two possible definitions for the reflection coefficient

and how they can be used to gain insight into the matching process.
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Figure B.1: The circuit model representation of an EM transmission line.

B.2 Global and Local Reflection Coefficients

B.2.1 Global

In Figure B.1, a basic model of a circuit with three impedances (Z00, Z0, and RL) is shown.

We define a global reflection coefficient ΓG as the reflection along the transmission line as referenced

to a hypothetical transmission line with a characteristic impedance of Z00 [38]:

ΓG(z) =
Z(z)− Z00

Z(z) + Z00
(B.1)

The reference impedance for this global reflection coefficient describing the reflection at the input of

an RF system is often chosen to be the characteristic impedance of the input line, and in this case

the resulting ΓG is what is displayed when measurements are taken on a network analyzer. Such

measurement devices often use Z00 = 50Ω for this reference impedance. At the load Z(z = d) = ZL,

which gives:

ΓG(d) =
RL − Z00

RL + Z00
(B.2)

At the input, ΓG(0) = Z(0)−Z00

Z(0)+Z00
; for a system that matches ZL to Z00, ΓG(0) = 0.

Figure B.2 shows the global reflection coefficient ΓG at a single frequency, plotted on a Smith

chart for a 10:1 impedance mismatch, and also when a quarter-wave transformer is inserted to

achieve a perfect match at the chosen frequency. This Smith chart is referenced to Z00 = 1Ω.

When the reflection coefficient is measured on a network analyzer, it displays the global

reflection coefficient with respect to Z00 = 50Ω (although this can be changed by the user if desired),
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Figure B.2: Single point, single frequency global reflection coefficient, ΓG(0).
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Figure B.3: Quarter-wave transformer and exponential line global reflection coefficient.

the trace following the variation of ΓG with frequency at the fixed input position on the line. To

gain insight into how matching circuits work, we study this spatial variation rather than frequency

variation for two particular cases. Figure B.3 shows the variation of ΓG(z) along the transmission

line from source to load, all referenced to the characteristic impedance Z00 of the input line. The

global reflection coefficients for both a quarter-wave transformer and an exponentially tapered line

are shown. Although both circuits differ greatly in length and in the method by which they match

the load to the input impedance, the traces of their global reflection coefficients are rather similar.

B.2.1.1 Multiple Frequencies

Often when an antenna or RF circuit’s reflection coefficient is measured on a network analyzer,

a sweep of frequencies are collected. This allows the designer to see if a mismatch exists at a range

around the design frequency. When network analyzers show reflection coefficient on a Smith Chart,

the reference impedance is selected to match the ports of the analyzer (typically 50Ω). By using the

constant external reference impedance, the network analyzer measurements are of global reflection

coefficient. An example of a freqeuncy sweep is shown in Figure B.4.

B.2.2 Local

An alternative means to investigate how matching circuits operate, is to use a local reflection

coefficient Γ. This quantity is defined by comparing the total impedance Z(z) to the local char-

acteristic impedance at the position z along the transmission line rather than to a fixed reference
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Figure B.4: Frequency Sweep of a Uniform line example.
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impedance Z00 [14]:

Γ =
Z(z)− Z0(z)

Z(z) + Z0(z)
(B.3)

By contrast with (B.1), Z and Z0 are both functions of (z) in this case.

Since voltages and currents are continuous along a transmission line, Z(z) will be continuous.

This means that ΓG will also be continuous, but Γ may not be since there can be step discontinuities

in Z0(z). This behavior of Γ at discontinuities more dramatically points out the different ways by

which the exponential line and the quarter-wave transformer achieve the impedance match than is

done using plots of ΓG.

The Riccati differential equations satisfied by ΓG(z) and Γ(z) are also different [38], [14]. The

Riccati equation for Γ(z) contains a coefficient function N(z) = Z ′0(z)/2Z0(z), which is problematic

from both the analytical and numerical points of view when Z0 is discontinuous. The Riccati

equation for ΓG is easier to handle because it contains as coefficients only Z0 but not Z ′0.

Figure B.5 shows the local reflection coefficients for the quarter-wave and exponential line

matching circuits. In the case of the quarter-wave transformer, impedance discontinuities at the

load and input ends show up as jumps in the Smith chart trace, while the quarter-wave section

itself manifests as a semicircle about the center of the chart. Since there are no discontinuities at

the load or source end for the exponential line, the ends of the path for Γ traced on the Smith

chart are both located at 0. Some idea of the interpretation of the local reflection coefficient at

interior points of the nonuniform line is conveyed by Figure B.6, which shows how Γ(z) at a point

in the middle of an exponential transmission line is what the reflection coefficient would be if the

exponential taper were truncated at z and connected to a uniform transmission line at that point

whose characteristic impedance had the constant value of Z0(z) at that position.

B.3 Use of Global and Local Reflection Coefficient

Since the local reflection coefficient Γ requires knowledge of the characteristic impedance along

the length of the circuit being measured, it is less commonly used for measurements (the slotted
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Figure B.5: Quarter-wave transformer and exponential line local reflection coefficient.

Figure B.6: Local reflection coefficient shown for a portion of an exponential line.
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line, for example). The local reflection coefficient is, however, commonly used as a mathematical

tool when computing reflections. Both Γ and ΓG give insights into the matching and reflection

properties of RF circuits. Figure B.3 showed relatively little difference for two different matching

circuits by comparison with the results shown in Figure B.5. In this case, the local reflection

coefficient gives greater insight into the operation of the two matching circuits. We have shown

that both reflection coefficients provide insight into the understanding and design of nonuniform-line

impedance matching circuits.



Appendix C

Reflections from Continuous Transmission line with Discontinuities

C.1 Introduction

In Chapter 6, bounds for the coefficients of the ABCD matrix were proposed using the Bôcher

approach. The method required a Z0ref to be chosen and it was found that the tightest bounds

were found for all cases when Z0min ≤ Z0ref ≤ Z0max. For the general case, an optimum bound was

not researched between Z0min and Z0max. This raises the question whether there is an optimum

choice for Z0ref for all nonuniform lines, or in any specific cases.

In this Appendix a small study comparing the effect of using different Z0ref values for all

cases of the exponential line (6.1) was carried out. The solution was done for two distinct cases as

shown in Figure C.1 which both obey exponential lines of the form Z0(τ) = Ke2Nτ . This is not an

exhaustive study; only the first term An = A1 was considered for short and long exponential lines

to see if there are any differences at all in what Z0ref is chosen within Z0min ≤ Z0ref ≤ Zmax.

The solutions for long and short exponential tapers each with three choices for the Z0ref are

shown in Table C.1. Following the table is the derivation of each of the formulas for A1 limits. The

take-away from this study is that there are some advantages to choosing one Z0ref over another.

It is likely that this will be the way that tighter bounds can be realized for longer circuits. Recall

from Table 5.1, that longer broadband exponential tapers had the same length limits as the short

narrowband tapers when only Z0min and Z0min were considered. In what follows, the intermediate

value Zmiddle =
√
Z0maxZ0min = Z0(T2 ) = KeNT was used. For all exponential lines that match

two real impedances the Zmiddle value will be found at the midpoint in electrical distance. The



116

N < 0 N > 0

Di erent cases of exponen al lines�����
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Figure C.1: Examples of the three cases of exponential impedance transformers defined by negative,
zero, or positive slope of the curve.
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Exponential Type Z0ref Choice A1 Bounds Equation ref.

N < 0 Z0ref = Zmax
1
2

[
e2NT−1

2N

]2
≤ A1 ≤ 1

2

[
−1−e−2NT

2N

]2
(C.8), (C.11)

Z0ref = Zmin (C.16), (C.20)

Z0ref = Zmiddle
1
2

(
eNT

N − 1
N

)2
≤ A1 ≤ 1

2

(
1
N −

e−NT

N

)2
(C.48), (C.48)

N > 0 Z0ref = Zmax
1
2

[
1−e−2NT

2N

]2
≤ A1 ≤ 1

2

[
e2NT−1

2N

]2
(C.26), (C.25)

Z0ref = Zmin (C.35), (C.34)

Z0ref = Zmiddle
1
2

(
1
N −

e−NT

N

)2
≤ A1 ≤ 1

2

(
eNT

N − 1
N

)2
(C.61), (C.57)

Table C.1: Solutions for A1 for exponential lines with different Z0ref selections.

derivations are carried out without much comment.

C.2 N < 0 case: Z0max = Z0ref

Z0 = Ke2Nτ (C.1)

Z0min = Ke2NT (C.2)

Z0max = K (C.3)

φmax =
Z0ref

Z0(t)
=

K

Ke2Nτ
=

1

e2Nτ
(C.4)

φmin =
Z0(t)

Z0ref
=
Ke2Nτ

K
= e2Nτ (C.5)

An ≤
1

(2n)!

[∫ T

0
φmax(τ)dτ

]2n

=
1

(2n)!

[∫ T

0
e−2Nτdτ

]2n

(C.6)

A1 ≤
1

2

[
−e
−2Nτ

2N

∣∣∣∣T
0

]2

=
1

2

[
−e
−2NT

2N
+

1

2N

]2

(C.7)
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Thus: A1max (N < 0 case: Z0max = Z0ref ) is

A1 ≤
1

2

[
1 − e−2NT

2N

]2
(C.8)

Now solve for the lower bound.

An ≥
1

(2n)!

[∫ T

0
φmin(τ)dτ

]2n

=
1

(2n)!

[∫ T

0
e2Nτdτ

]2n

(C.9)

A1 ≥
1

2

[∫ T

0
e2Nτdτ

]2

=
1

2

[
e2NT

2N

∣∣∣∣T
0

]2

(C.10)

Thus: A1min (N < 0 case: Z0max = Z0ref ) is

A1 ≥
1

2

[
e2NT − 1

2N

]2
(C.11)

C.3 N < 0 case: Z0min = Z0ref

Equations (C.2) and (C.3) still apply

In this case, we have

φmin =
Z0ref

Z0(t)
=
Ke2NT

Ke2Nτ
=
e2NT

e2Nτ
(C.12)

φmax =
Z0(t)

Z0ref
=
Ke2Nτ

Ke2NT
=
e2Nτ

e2NT
(C.13)

An ≤
1

(2n)!

[∫ T

0
φmax(τ)dτ

]2n

=
1

(2n)!

[∫ T

0

e2Nτ

e2NT
dτ

]2n

(C.14)

A1 ≤
1

2

[∫ T

0

e2Nτ

e2NT
dτ

]2

=
1

2e4NT

[
e2Nτ

2N

∣∣∣∣T
0

]2

=
1

2e4NT

[
e2NT

2N
− 1

2N

]2

(C.15)

Thus A1max (N < 0 case: Z0min = Z0ref ) is:

A1 ≤
1

2e4NT

[
e2NT − 1

2N

]2
=

1

2

[
1 − e−2NT

2N

]2
(C.16)

This is identical to (C.8)



119

Now solve for the lower bound.

An ≥
1

(2n)!

[∫ T

0
φmin(τ)dτ

]2n

=
1

(2n)!

[∫ T

0

e2NT

e2Nτ
dτ

]2n

(C.17)

An ≥ (C.18)

A1 ≥
1

2

[∫ T

0

e2NT

e2Nτ
dτ

]2

=
e4NT

2

[
−e
−2NT

2N
+

1

2N

]2

(C.19)

Thus A1min (N < 0 case: Z0min = Z0ref ) is:

A1 ≥
1

2

[
1 − e−2NT

2N

]2
(C.20)

This is identical to (C.11)

C.4 N > 0 case: Z0min = Z0ref

This section uses much of the math from the previous section applied to the corresponding

conditions.

Z0min = K (C.21)

Z0max = Ke2NT (C.22)

Since Z0(t) > Z0ref ,

φmin =
Z0ref

Z0(t)
(C.23)

φmax =
Z0(t)

Z0ref
(C.24)

A1 ≤
1

2

[
e2NT − 1

2N

]2
(C.25)



120

A1 ≥
1

2

[
1 − e−2NT

2N

]2
(C.26)

C.5 N > 0 case: Z0max = Z0ref

This section uses much of the math from the previous section applied to the corresponding

conditions.

Z0min = K (C.27)

Z0max = Ke2NT (C.28)

Then

φmin =
Z0(t)

Z0ref
(C.29)

φmax =
Z0ref

Z0(t)
(C.30)

φmax =
Z0ref

Z0(t)
=
Ke2NT

Ke2Nτ
=
e2NT

e2Nτ
(C.31)

φmin =
Z0(t)

Z0ref
=
Ke2Nτ

Ke2NT
=
e2Nτ

e2NT
(C.32)

An ≤
1

(2n)!

[∫ T

0
φmax(τ)dτ

]2n

=
1

(2n)!

[∫ T

0

e2NT

e2Nτ
(τ)dτ

]2n

(C.33)

Thus for N > 0 case: Z0max = Z0ref ,

A1 ≤
1

2

[
1 − e2NT

2N

]2
(C.34)

and

A1 ≥
1

2

[
1 − e−2NT

2N

]2
(C.35)
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These are the same as (C.25) and (C.26) respectively.

C.6 N < 0 case: Z0middle = Z0ref

Z0min = Ke2NT (C.36)

Z0max = K (C.37)

Z0middle =
√
K ∗Ke2NT = KeNT (C.38)

φmax =


Z0(τ)
Z0ref

, if τ < T
2

Z0ref

Z0(τ) , if τ >
T
2

=


Ke2Nτ

KeNT
= e2Nτ

eNT
, if τ < T

2

KeNT

Ke2Nτ
= eNT

e2Nτ
, if τ > T

2

(C.39)

φmin =


Z(0ref)

Z0(τ) , if τ <
T
2

Z0(τ)
Z(0ref) , if τ >

T
2

=


KeNT

Ke2Nτ
= eNT

e2Nτ
, if τ < T

2

Ke2Nτ

KeNT
= e2Nτ

eNT
, if τ > T

2

(C.40)

An ≤
1

(2n)!

[∫ T

0
φmax(τ)dτ

]2n

=
1

(2n)!

[∫ T
2

0

e2Nτ

eNT
dτ +

∫ T

T
2

eNT

e2Nτ
dτ

]2n

(C.41)

A1 ≤
1

2

[
e−NT

∫ T
2

0
e2Nτdτ + eNT

∫ T

T
2

e−2Nτdτ

]2

=
1

2

[
e−NT

(
e2Nτ

2N

)∣∣∣∣T2
0

+ eNT
(
e−2Nτ

−2N

)∣∣∣∣T
T
2

]2

(C.42)

A1 ≤
1

2

[(
1

2N
− e−NT

2N

)
−
(
e−NT

2N
− 1

2N

)]2

=
1

2

(
1

2N
− e−NT

2N
− e−NT

2N
+

1

2N

)2

(C.43)

A1 ≤
1

2

(
1

N
−

e−NT

N

)2

(C.44)
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Likewise,

An ≥
1

(2n)!

[∫ T

0
φmin(τ)dτ

]2n

=
1

(2n)!

[∫ T
2

0

eNT

e2Nτ
dτ +

∫ T

T
2

e2Nτ

eNT
dτ

]2n

(C.45)

A1 ≥
1

2

[
eNT

∫ T
2

0
e−2Nτdτ + e−NT

∫ T

T
2

e2Nτdτ

]2

=
1

2

[
eNT

(
e−2Nτ

−2N

)∣∣∣∣T2
0

+ e−NT
(
e2Nτ

2N

)∣∣∣∣T
T
2

]2

(C.46)

A1 ≥
1

2

[(
1

−2N
− eNT

−2N

)
+

(
eNT

2N
− 1

2N

)]2

=
1

2

(
−1

2N
+
eNT

2N
+
eNT

2N
− 1

2N

)2

(C.47)

A1 ≥
1

2

(
eNT

N
−

1

N

)2

(C.48)

A little algebra (or numerical testing) will show that (C.44) is always tighter than (C.8), and (C.48)

is always tighter than (C.11)

C.7 N > 0 case: Z0middle = Z0ref

Z0min = K (C.49)

Z0max = Ke2NT (C.50)

Z0middle = KeNT (C.51)

φmax =


Z(0ref)

Z0(τ) , if τ <
T
2

Z0(τ)
Z(0ref) , if τ >

T
2

=


KeNT

Ke2Nτ
= eNT

e2Nτ
, if τ < T

2

Ke2Nτ

KeNT
= e2Nτ

eNT )
, if τ > T

2

(C.52)
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φmin =


Z0(τ)
Z(0ref) , if τ <

T
2

Z(0ref)

Z0(τ) , if τ >
T
2

=


Ke2Nτ

KeNT
= e2Nτ

eNT )
, if τ < T

2

KeNT

Ke2Nτ
= eNT

e2Nτ
, if τ > T

2

(C.53)

An ≤
1

(2n)!

[∫ T

0
φmax(τ)dτ

]2n

=
1

(2n)!

[∫ T
2

0

eNT

e2Nτ
dτ +

∫ T

T
2

e2Nτ

eNT
dτ

]2n

(C.54)

A1 ≤
1

2

[
eNT

∫ T
2

0
e−2Nτdτ + e−NT

∫ T

T
2

e2Nτdτ

]2

=
1

2

[
eNT

(
e−2Nτ

−2N

)∣∣∣∣T2
0

+ e−NT
(
e2Nτ

2N

)∣∣∣∣T
T
2

]2

(C.55)

A1 ≤
1

2

[(
1

−2N
− eNT

−2N

)
+

(
eNT

2N
− 1

2N

)]2

=
1

2

(
−1

2N
+
eNT

2N
+
eNT

2N
− 1

2N

)2

(C.56)

A1 ≤
1

2

(
eNT

N
−

1

N

)2

(C.57)

Likewise,

An ≥
1

(2n)!

[∫ T

0
φmin(τ)dτ

]2n

=
1

(2n)!

[∫ T
2

0

e2Nτ

eNT
dτ +

∫ T

T
2

eNT

e2Nτ
dτ

]2n

(C.58)

A1 ≥
1

2

[
e−NT

∫ T
2

0
e2Nτdτ + eNT

∫ T

T
2

e−2Nτdτ

]2

=
1

2

[
e−NT

(
e2Nτ

2N

)∣∣∣∣T2
0

+ eNT
(
e−2Nτ

−2N

)∣∣∣∣T
T
2

]2

(C.59)

A1 ≥
1

2

[(
1

2N
− e−NT

2N

)
−
(
e−NT

2N
− 1

2N

)]2

=
1

2

(
1

2N
− e−NT

2N
− e−NT

2N
+

1

2N

)2

(C.60)

A1 ≥
1

2

(
1

N
−

e−NT

N

)2

(C.61)
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C.8 Conclusion

The bounds shown in (C.44) and (C.57) are different than (C.8) and those shown in (C.48)

and (C.61) are different than (C.11). This difference indicates there can be an optimal choice. It

has not been proven in this Appendix what the selection of Z0ref will give the tightest bounds, but

it has been shown that improved bounds can be found by properly selecting Z0ref .
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