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Abstract

The paper presents Cauchy stress tensor computation overrphel grids
of Message Passing Interface (MPI) parallel Three-Dimemwsial (3D) Dis-
crete Element Method (DEM) simulations of granular materits, considering
spherical and non-spherical particles. The stress tensamnoputation is stud-
ied for quasi-static and dynamic conditions, and its resulig symmetry or
asymmetry is discussed within the context of classical conttum mechanics
(CCM), granular materials mechanics (GMM), and micropolarcontinuum
mechanics (MCM). The average Cauchy stress tensor computat follows
Bagi's and Nicot's formulations and is veri ed within MPI parallel 3D DEM
simulations involving dynamically-adaptive compute grid. These grids al-
low calculation of temporal and spatial distributions of stess across granular
materials under static and dynamic conditions. The vertidastress com-
ponent in gravitationally-deposited particle assembliesxhibits non-uniform
spatial distributions under static equilibrium, and its zane of maximum value
changes during the process of gravitational pluviation andollapse. These
phenomena reveal a microstructural e ect on stress distrision within gran-
ular materials that is attributed to their discrete particulate nature (particle
size, shape, gradation, boundary conditions, etc).
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1. INTRODUCTION

Granular materials may behave mechanically in a discrete aontinu-
ous manner, exhibiting solid- or uid-like properties and tansitions in be-
tween. Regardless of mechanical response, the underlyiragtigulate nature
of granular materials is responsible for their range of beWiar and proper-
ties. Even with anticipated adoption of exascale computinglatforms (with
limited access), it will be too computationally expensived account for ev-
ery particle (or grain) of a granular material with regard toengineering de-
sign, such as building foundations subjected to sand liqaetion, tire/tool
interactions with granular soils on the Earth, Moon, or Mars marine soil
anchoring mechanisms, etc. Such simulations would requibélions to tril-
lions, if not more, of non-spherical particles within 3D DEMcodes, with
possible additional coupling to Computational Fluid Dynancs (CFD). As
a result, for the foreseeable future, continuum mechanicsiwikely remain
the most e cient modeling framework within which to simulate the range
of mechanical behavior and properties that granular mateais experience.
However, recognizing the de ciencies of a purely continuunpproach, mul-
tiscale modeling approaches are being developed wherebyNDEFD codes
are hierarchically or concurrently coupled to continuum nonerical methods
such as the Finite Element Method (FEM) or meshfree methodg-or such
methods, it is necessary to upscale discrete particle bel@vto continuum
variables such as stress, strain, stress-rate and straiate, etc, within large
deformation, nonlinear continuum mechanics, and to do so thin a MPI
parallel 3D DEM code. Thus, as a rst step, the paper focusesadhe com-
putation of the Cauchy stress tensor within dynamically-adptive compute
grids associated with an MPI parallel 3D DEM non-spherical article code
ParaEllip3d (Yan and Regueirg 2018hc,f,a,€). Speci cally, the paper fo-
cuses on two aspects of the problem:

1. The microstructural de nition of the average stress ternm over
a particle assembly has been a controversial topidNVeber, 1966
Christo ersen et al., 1981 Rothenburg and Selvadurai 1981 Bagi,
1996 1999 2003 Kuhn, 2003 Bardet and Vardoulakis 200%
Fortin et al., 2003 De Saxe et al, 2004 Balevcius and Markauskas
2007 Nicot et al., 2013 Yan and Regueirg 20189, especially when
inertial terms are included. In particular, a point of contation has
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been whether stress tensor asymmetry should be accounted do not.
Chang and Ma(199)); Huang et al. (2002; Duan et al. (2010 advo-
cated the use of an asymmetric stress tensor, whiBndall and Strack
(1979; Dumn et al. (2010 suggested negligible stress asymmetry for
practical purposes.

2. The computational capability of 3D DEM is limited by two fac-
tors: (i) number of particles, and (ii) shape and size distibiution
that can be simulated. For example, most applications invel
ing complex-shaped (non-spherical) particles such as aismetric
ellipsoids (Ng, 1994 2009, three-axis ellipsoids Yan et al., 2010,
poly-ellipsoids Peters et al, 2009 Zhang et al, 2018, superellipsoids
(Wellmann et al, 2008 Delaney et al, 2010, or asymmetrical par-
ticles constructed by non-uniform rational Basis-SplinegNURBS)
(Lim and Andrade, 2014 constrain their number of particles to tens
of thousands, typically not exceeding 100,000. This parte number
limitation may cause simulations to miss interesting grarar physics
that are only observed for greater than 500,000 to many miins (and
perhaps billions to trillions) of non-spherical particles

Recently, Yan and Regueiro(2018d attempted to clarify the stress ten-
sor de nition and its symmetry property by conducting OpenMP (serial-
like) 3D DEM simulations for various static, quasi-staticand dynamic cases,
such as gravitational deposition, isotropic/oedometer copression, and high-
strain-rate (HSR) oedometer impact. They concluded that thetress tensor
should be calculated using Bagi's formulaBagi, 1996 1999 2003, not We-
ber's (Weber, 1966 Christo ersen et al., 1981 Rothenburg and Selvadurai
1981 or Drescher's formulas Drescher and De Jong 1972 Cowin, 1977
Cundall and Strack 1983, for a particle assembly or representative vol-
ume element (RVE) in static equilibrium. They proposed to moifly De
Saxe's formula (Fortin et al., 2003 De Saxe et al, 2009 and Nicot's for-
mula (Nicot et al., 2013, which take into account body forces and inertial
terms, by incorporating aboundary-radius-gapterm, such that these stress
de nitions are consistent with and converge to Bagi's de rtion under static
conditions. This is important when studying granular phenmena that tran-
sition between static, quasi-static, and dynamic conditius.

With regard to computational capabilities, parallel compting of 3D
DEM has become an indispensable trend in numerical modelirod granu-
lar materials that involve a large number of particles, espally for model-
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ing complex-shaped (i.e., non-spherical) particles whialequire high CPU-
demand. There has been considerable interest in developiagd utilizing
parallel DEM codes in recent yearsHenty, 200Q Baugh Jr and Konduri,
2001 Washington and Meegoda2003 Maknickas et al, 200§. For exam-
ple, Vedachalam and Virdeg(2011 used LAMMPS (large-scale atomic and
molecular massively parallel simulator, developed by SaiadNational Lab-
oratories) and LIGGGHTS (LAMMPS improved for general granula and
granular heat transfer simulations) to study the motion of sow particles,
wherein the snow grains are assumed to be spherical partecle mm in di-
ameter. An empirical coe cient of restitution (ratio of rebound velocity to
impact velocity) is adopted rather than the strict Hertzian ronlinear contact
model, while Mindlin's history-dependent shear model is mgonsidered. Re-
cently, Yan and Regueiro(2018hc,f,a,e) provided unprecedented parallel 3D
DEM simulation capability for complex-shaped particles aoss ve orders of
magnitude of simulation scale (i.e., number of particles)roU.S. Department
of Defense (DoD) supercomputers usirfgaraEllip3d, a MPI parallel 3D DEM
code developed at the University of Colorado Boulder, proviag detailed per-
formance analyses including speedup, e ciency, scalalyli and granularity.
For example, up to 2,048 compute nodes (32,768 cores) aredu® simu-
lating 10 million three-axis ellipsoidal particles (equialent to approximately
1 billion spherical particles in terms of computational dewnd). They de-
termined that superlinear speedup is a common phenomenom farge scale
MPI parallel 3D DEM simulations of complex-shaped particlke based upon a
spatial domain decomposition algorithm. It was shown to besaociated with
inherent perfect scalability of 3D DEM; i.e., its memory sdability function
is a nonlinearly decreasing function of the number of procass.

Computing the Cauchy stress tensor and its spatial distriltion over gran-
ular materials does not require parallel computing, per sdéut in addition
to being able to simulate a large number of particles, it alsprovides a
natural and accurate spatial partitioning boundary using prallel compute
grids (spatially-adaptive grids if the parallel algorithmis well designed). In
fact, for MPI parallel 3D DEM simulations of complex-shapegbarticles, the
parallel compute grid size can be easily changed such thataan adapt to
any characteristic length scale needed in continuum model$ can be much
larger than the mean particle diameter, or it can be equivate to a sin-
gle particle diameter. Furthermore, the compute grids of MPparallel 3D
DEM provide a natural framework for calculating nite strain measures in
granular materials Zhang and Regueirp 2015, by tracking the motion of

4



particles within the grids, therefore making it possible tstudy stress-strain
and stress-strain-rate-form constitutive relations (noctovered in the paper).

It should be noted that a proper implementation and applicabn of the
average Cauchy stress tensor in a typical spatial domain dsuoposition par-
allelism of MPI parallel 3D DEM relies upon the form of stressensor def-
inition and thus requires careful treatment. For example,fiBagi's formula
is adopted, it is not only necessary to collect boundary-ptcle contact in-
formation, but also requires processing particle-partielcontact information
between adjacent compute grids and de ne branch vectors agately, which
will be covered in detail in the paper.

The structure of the remainder of the paper is as follows: Sem 2 sum-
marizes various analytical formulas for the calculation ahe Cauchy stress
tensor in granular materials; Sectior3 discusses conceptually stress tensor
symmetry from the perspective of classical continuum mechias (CCM),
granular materials mechanics (GMM), and micropolar contimum mechan-
ics (MCM); Section4 presents the MPI parallel computing framework of 3D
DEM based upon spatial domain decomposition; Sectiddetails the correct
algorithm for stress tensor calculation in MPI parallel 3D [EM; Section 6
provides an analysis of stress tensor components calcuthigsing OpenMP
3D DEM,; Section7 provides stress tensor spatial distributions across pacte
assemblies via MPI parallel 3D DEM; Sectio® examines temporal and spa-
tial distributions of stress during dynamic processes; Sem 9 investigates
the microstructural e ects of particle assemblies on stresdistribution; and
the last section provides conclusions and outlooks.

2. ANALYTICAL STRESS TENSOR FORMULAS FOR GRAN-
ULAR MATERIALS

Weber (1969 proposed a stress tensor de nition for granular materials
by averaging the particle contact forces in the vicinity of aspatial point.
Christo ersen et al. (1981 derived the same formula for stress by volume-
averaging the product of contact forces and branch vectorgpplying the
principle of virtual work. In summary, Weber (1966; Christo ersen et al.
(198)); Rothenburg and Selvadura(198] calculated the stress tensor using
the following formula as,

h ij | weber = V2 ficljc (1)



whereV is the RVE volume,c is the particle contact point, andl is the total
number of particle contacts internal to the RVE. The force veor f ¢ is the
contact force transmitted at internal particle contact pont c, as illustrated
in Fig.1(a). The vector I? is the branch vector for internal contact pointc
which connects the centroids of two adjoining patrticles.

~~ RVE boundary
- external or boundary forces
<— internal forces

RVE boundary

centroid of boundary particles
connection of centroids
boundary-radius-gap

$ 1

(a) Internal and external forces. (b) Boundary-radius-gap.

Figure 1: Schematic of RVE.

Drescher and De Jond1972; Cowin (1977; Cundall and Strack (1983
presented a stress de nition which considered the relatidnetween a volume
average of stress and a surface integral of traction withitassical continuum
mechanics. Such a de nition was made without employing therimciple of
virtual work as,

. 1 X
h ij | Drescher = v fi Xj (2)
e2E
whereE is all particle contacts external to or on the boundary of théRVE,
f £ is the contact force vector at pointe on the RVE boundary, as shown in
Fig.1(a), and xf is the current space coordinate vector of contact poirg on
the boundary.

Bagi (1996 presented de nitions of stress and small strain in terms of

local, micro-level variables with the help of two compleméary geometrical



systems. Bagi (1999 presented the stress tensor de nition of particle as-
semblies with volumetric loads in addition to boundary fores, using clearly-
de ned branch vectors. For internal contacts, a branch veor connects the
centroids of two particles, and for external contacts, a brech vector points
from the centroid of a boundary particle to its external cordct point. The
stress tensor de nition included both internal and externbcontact forces
such that (Bagi, 2003,
|
H 1 X C|c X e|e
h i iBagi = v fry+ 7 3)
c2l e2E

wheref £ is the contact force vector at pointe on the RVE boundary, and
I? is the branch vector associated with external contact poing, also called
boundary-radius gapwhich points from the centroid of a boundary particle
to the external contact point e, as illustrated in Fig.1(b).

Bardet and Vardoulakis (200]) noted that stress tensor symmetry has
signi cance in computational granular mechanics, particarly for DEM sim-
ulations employing dynamic relaxation (DR) to solve the dyamic equilib-
rium equations for quasi-static problems. They concludechat computed
stress tensor asymmetry implied inaccurate calculation drfor lack of static
equilibrium. If correct, their conclusion would also be apable to dynamic
simulations which eventually reach static equilibrium.

Fortin et al. (2003; De Saxe et al. (2009 constructed an average
Cauchy stress tensor in integral form which takes into accatithe contact
reaction forces and body forces as,

X z |
xiféf+ x5 g g dv (4)
\%

h i | De saxe =

<| PR

c2f I[ Eg

wheref® denotes either an internal or boundary contact force vectat point
C, g is the gravitational acceleration vector,a; is the acceleration vector,
and x; is the current spatial coordinate vector withinV. It was noted that
the constructed stress tensor is automatically symmetricna invariant by
translation. De Saxce et al. (2009 also presented a rigorous proof of stress
tensor symmetry by applying the balance of angular momentum

Nicot et al. (2013 studied the stress tensor de nition based on an equiva-
lent continuum, but using di erent decomposition of dyname contributions.



They concluded that the stress tensor can be expressed as msf two con-

tributions: (i) the standard term by Love-Weber formula for quasi-statics;
and (ii) dynamic terms resulting from rotational particle \elocities and accel-
erations. It is interesting to observe from their numericasimulation of silo

discharge that the stress inertial terms are an order of magade lower than

the static stress terms. The balance of linear momentum islied upon in

their derivation, whereas the balance of angular momentuns inot. Nicot's

formula is as follows,

: _ 1X c|c 1 X " p p p pPp py2 P
hij I Nicot = V2 fil V2 LI T A P GO A (5)
c2l p2f1[ Eg

where p denotes a particle withinl [ E, "y is the permutation symbol, E
denotes the angular velocity vector of particlp and P its magnitude, and ,‘J’
is the inertial tensor for particlep. The angular velocity, angular acceleration,
and inertial tensor are written with respect to the global cordinate system
(GCS) in Eq.(5), and must be converted to GCS if rst calculated in a local
coordinate system (LCS) associated with particle.

Yan and Regueiro(20189 proved the so-calledequation of stress equiv-
alence and concluded that the stress tensor for a particle assembdr RVE
which is subjected to boundary forces and gravity forces itiagic equilibrium
should be calculated via Bagi's formula, not Weber's formal As a result,

Yan and Regueiro(2018d derived a so-callednodi ed Nicot's formula as,
!

H 1 X Cc|c e|e
hij'Nicot-zzv fily + ]
c2l e2E |
- (6)
1 X " pp P PP P2 P
Vi k= gt 0ok (DT
p2f I[ Eg
and so-calledmodi ed De Saxe's formula as,
. ! 7 !
h i iDe Saxe-2 = V fiC|jc+ fielje v y Xi ajdV ; (7)

c2l e2E

by incorporating the boundary-radius-gap term. Themodi ed Nicot's for-
mula and modi ed De Saxe's formula share two important features: (i) the
gravity term vanishes, and (ii) both converge to Bagi's formla under static
conditions.



3. SYMMETRY OF STRESS TENSOR IN GRANULAR MATE-
RIALS

3.1. Stress tensor in classical continuum mechanics (CCM)
In CCM, the balance of linear momentum and angular momentunof a
continuous body are expressed in E@) and (9), respectively, as,
Z Z

tdS+ fdV = 0; (8)
Z @V Z \Y
X tds+ x fdv=0; (9)
@V \%
n =torn j =t (10)

where x denotes current coordinate invV or on @V f is the body force
per unit volume, f = (g a), including both gravity accelerationg and
inertial accelerationa, is the mass density, and is the traction on @V
Equation (10) represents Cauchy's stress theorem and provides the deion
of the Cauchy stress tensor in a continuous body.

It is well known that on the basis of Eq.00), ; = ;i if Eq.(8) and (9) are
satis ed simultaneously; ; 6 ;i if Eq.(9) is not satis ed (typically because
of the existence of external moment or imbalance of angularomentum).
Equation (9) implies that there is no stress couple or local rotationalczel-
eration within CCM, whereas they exist in MCM. In essence, #balance of
angular momentum of an in nitesimally-small di erential volume elementdv
within a classical continuum body ensures that there existso \external” or
unbalanced moment on that element.

3.2. Stress tensor in granular materials mechanics (GMM)

De Saxe et al. (2009 proved Cauchy stress tensor symmetry utilizing
the equations of balance of linear and angular momenta in CCNllote that
the modi ed De Saxe's formula in Eq.(7) reduces to Bagi's formula for
static equilibrium, so the proof of Cauchy stress symmetryiterms of Bagi's
formula is incorporated as well. The proof is brie y summaged.

The balance of linear and angular momenta are expressed iméx nota-

tion as,
Z Z

tidS+ fidv =0; (11)
Z Z @V \Y
(Xitj thi)dS+ (Xifj Xjfi)dV =0fori6 j; 12)
@v v
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and the average stress is thus de ned as,
!
Z Z :

h iji = Xitj dS+ XifjdV : (13)
\Y

1
V @v
Then, if j is symmetric, we have,
e z !
_v @V(Xitj thi)ds+ V(Xifj xjfi)dV =0 (14)

It must be emphasized that Eqg.L4) may not hold in GMM or MCM. For
example, it is possible to show that the following equationdids for a particle
assembly or RVE in GMM,

X X X
I© fC+ |° fe= 1°_" (15)
c2l e2E p2fI[ Eg

wherel P denotes the moment of inertial tensor of particle. For discussion

purposes, we assign = g4l P _®. Hence, with Eqgs.(4) and (15),
the shear terms of stress take the following form in GMM:

— 1 .
23 2Ty oL
1
3 BT 2, (16)
— 1 .
A AV

where ,, , and 3 are the three components of . This means that in
a particle assembly or RVE the average stress tensor could bgymmetric
if any particle exhibits angular acceleration, which is higly likely during
dynamic loading such as gravitational pluviation.

3.3. Stress tensor in micropolar continuum mechanics (MCM)

In MCM, the balance of angular momentum does not necessarlyad to
symmetry of the Cauchy stress tensor. In fact, the Cauchy #ss tensor is
asymmetric generally in MCM, and the imbalance of angular nmeentum of
CCM is generalized to include additional terms (surface cple, body couple,
and intrinsic spin) such that they become balanced. Thereafe, the average
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stress tensor calculated using EdLB) may not be symmetric. In MCM, the
balance of angular momentum is stated a€s(ingen, 1969,

& 1 Mgt Cpep ') =0; 17)
whereeg, is a coe cient such that ¢ =1 for k=1;2;3 (i 6 ] 6 k), the skew
partis ;= ( j ii )=2, mj; is the higher-order couple stress, j; is the
body couple force, and! j; is the micro-spin inertia, de ned respectively as,

Z
(my; nj)da:= |(J » Ondal),
Zja
(" i)dv:= O Davt); (18)
ZV
(! ji)dv:= ( )‘j( ¥ OlavO;
dv
where |(1 ) is the symmetric Cauchy stress of micro-element, ,( ) is the
relative position vector of micro-element , () is the mass density of micro-
element , fj( ) is the body force per unit mass on micro-element, and n,( )

is the unit normal vector on micro-element . Note that micro-element
within MCM may be a single particle or cluster of particles Eringen, 1968.
Expressing Eq.0L7) for k = 1, 2; 3, respectively, we have,

23 32 = (Yas2 '23) (a2 230 (Miazy Mygsy)
31 13 = (Yaz la) (i Tz)  (Mizgy mMyzy) (19)
12 21 = (Y21 ') (o 12 (Mg mMyagy):

It can be seen that if the skew parts of the micro-spin inertigensor ! , body
force couple *, and divergence of couple stress (div) are zero, then the
Cauchy stress tensor is symmetric. Otherwise, if any of theserms are non-
zero, such as the skew part of the micro-spin inertia tensot , the Cauchy
stress will be asymmetric, such as shown in Eq4) for GMM.

In CCM, the Cauchy stress tensor is symmetric under static ahdynamic
conditions. In MCM, the Cauchy stress tensor becomes symmetonly when
the right-hand-side terms in Eq.(9) are zero, such as for static conditions and
when body force couple and divergence of couple stress argligéble. That is
why Bagi's formula is chosen under static conditions: stresalculated from
Bagi's formula satis es symmetry whether the granular mateal is treated
as CCM, or special conditions (0 and divm  0) for MCM.
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To evaluate the degree of asymmetry of the stress tensor, we e a
qguantity, relative asymmetry index(RAIl), as the ratio of L,-norm of the
skew-symmetric part to the symmetric part with diagonal elments set to
zero, such that,

|
* L2 norm

Lhyih i
RAI = e (20)
% h i i +h i iT
diag=0

3.4. Stress wave propagation

In dynamic simulations, forces exerted on the boundary of éhparticle
assembly in each time step are not felt instantaneously by ¢hinterior par-
ticles because it takes a certain number of time steps for tHegEM system
to transmit boundary forces to the interior particles (for he wave to prop-
agate through the assembly). No doubt this also holds true fajuasi-static
simulations, to a certain degree. When this stress wave eteis pronounced,
the balance of linear and angular momenta are not satis ed l@ssically) at a
discrete instant in time, namely, Eqg.(2) does not hold, and the stress tensor
IS asymmetric.

More simply, when a dynamic boundary condition (force, disacement,
or combination thereof) is applied to a particle assemblyt may exert an
external moment, and in turn impose an imbalance of angular amentum;
the particle assembly undergoes an overall \rotational” a®leration, or so-
called \intrinsic spin." This phenomenon does not exist foan in nitesimally-
small continuum point with di erential volume dv in CCM, for which it
always holds that j = ; because the balance of angular momentum is
satised. In MCM, the dierential volume dv has length as indicated in
Egs.(17)-(19).

The overall \rotation" or \intrinsic spin" of a particle ass embly may not
be easily observed macroscopically. For example, it exigdsiring oedome-
ter/uniaxial strain in compression, for which the specimeronly undergoes
macroscopic axial strain. In fact, any form of deformationfca granular ma-
terial will include macroscopic rotation (or a moment due tcconstraint on
rotation), which is an essential di erence from CCM. How to dee rota-
tional e ects on the stress tensor computation will rely on MM, and this is
beyond the scope of the paper.
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4. PARALLEL COMPUTING FOR 3D DEM

4.1. Four-step design and link-block

The four-step design paradigm proposed biyoster (1995 for MPI par-
allelization was followed for the design of the MPI paralleBD DEM code
ParaEllip3d: partitioning, communication, agglomeration, and mappig.
The computational spatial domains are divided via the linkcell (LC) method
into equal-sized cubical cells of length not smaller than éhdiameter of the
largest particle, illustrated in Fig.2(a).

[(AERE AR NLE ERENE NE B ]

border layer of block

virtual cell block

(a) link-cell algorithm, a cell (b) Schematic of link-blocks, virtual cells, and
having 26 neighbors in 3D. border layers.

Figure 2: Link-cell to link-block algorithms.

We extend the link-cell (LC) method to a link-block (LB) technique in
MPI parallel 3D DEM. With introduction of LB, Foster's four- step paradigm
can be readily applied in designing a parallel algorithm in EM. Partition-
ing: The computational domain is divided into blocks. Each blocknay
consist of many virtual cells. In Fig2(b), there are 8 blocks numbered from
0 to 7, each containing 5 x 5 x 5 small virtual cells. The size tfie virtual
cells may be chosen to be the maximum diameter of the discrgtarticles.
Communication:  Each cell, as a primitive task unit, can communicate
with 26 possible surrounding ones to determine contact deteon. However,
the communication mechanism may change after agglomeratioAgglom-
eration: By combining 5 x 5 x 5 virtual cells into a block, communicatin
overhead is lowered, such that each block only needs to conmuate with
neighboring blocks through border/ghost layers (BL), whic are virtual cells
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marked by blue dots in Fig2(b). Note that each block communicates with 26
possible BLs, i.e., 6 surface BLs, 12 edge BLs, and 8 vertexdMapping:
There are a number of choices for mapping a block of particlés a core,
a CPU, multiCPUs within a node, or even a whole node. Very oftenaeh
block is mapped to a whole compute node.

4.2. Interblock communication

In Fig.2(b), a border/ghost layer is not limited to constructing a suface
layer between two adjacent blocks, as there are other form&or example,
block 3 communicates with block 1 through a surface bordenfar, with block
0 through an edge border layer, and with block 4 through a vesk border
layer, as shown in Fig2(b).

A \patch" test is designed using 162 ellipsoidal particles.The particle
assembly is composed of two layers of 81 particles, gravitatally-deposited
into a rigid container, illustrated in Fig.3(a). The container is partitioned
into four blocks separated by blue dashed lines shown in F3¢pb), which also
represents the initial con guration of the randomly-sizedoarticles as shown
from a top view.

Each block is mapped to and computed by an individual processo
there are four processes, p0 to p3. Each process needs to canioate with
other processes to determine its own boundary conditions. ofFexample,
process p3 needs to know those particles from process pl thed enclosed
by the purple rectangular box, those from process p2 encldsby the red
rectangular box, and those from process p0O enclosed by theegm square
box. A detailed movie records how those particles move acsothe borders
and collide with particles from other blocks, and it revealthat each process
is able to determine its boundary conditions accurately. Tda overall motion
of the 162 particles through parallel computing is observetd be the same
as that observed in an OpenMP computation.

4.3. Load balance and adaptive compute grids

In MPI parallel computing it is important to maintain load balance be-
tween processes; otherwise, some processes are busy cangputhile others
could be hungry awaiting tasks. To this end, dynamically-aaptive compute
grids are developed. Figurd demonstrates a simulation of particles falling
into a container via gravity, whereby the compute grids (madeed by green
lines) dynamically follow the particle motions and redistibute across space.
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(a) 3D view of initial con guration. (b) Top view of initial con guration.

(c) Top view at time t1 during (d) Top view at time t2 during
simulation. simulation.

Figure 3: lllustration of interblock communication.
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(a) Initial con guration of  (b) Middle stage of particle (c) Final stage of particle
particle pluviation. pluviation. pluviation.

Figure 4: Dynamically-adaptive compute grids that achievee cient load balance.

4.4. Particle-boundary interaction

The MPI parallel 3D DEM code ParaEllip3d not only needs to gather
particle data from all processes, but also needs to collecarticle-boundary
interaction data from those boundary processes. As shown ingH, in order
to obtain particle-boundary interaction data on the bottomand four sides of
the top-open rigid container, relevant parallel processesust be identi ed,
collected, and communicated to the root process for data ngang.

5. STRESS TENSOR IMPLEMENTATION IN PARALLEL DEM

Yan and Regueiro(2018d have pointed out that the stress tensor should
be calculated via Bagi's formula, not Weber's formula or Dsxher's formula
in static equilibrium. They suggested using the modi ed Nicts formula in
dynamic simulations, which takes into account inertial tems of particle rota-
tional velocities and accelerations. The stress calculateising the modi ed
Nicot's formula converges to that calculated by Bagi's forma, under static
conditions. These two formulas are chosen and implementadRParaEllip3d
for stress tensor calculation.

Bagi's formula includes internal contact forces (correspdingly, internal
branch vectors) and external contact forces (correspondjly, external branch
vectors). These two parts are not necessarily di erentiatein serial comput-
ing of 3D DEM. However, they must be distinguished in paralletomputing
in order to implement correct stress tensor calculations.

Figure 5 illustrates a particle assembly structure in parallel comyting of
DEM. As an example, process p0 only owns black particles thateaassigned
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Figure 5: Internal and external particles of a MPI process.
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to it at the stage of one-time global partitioning. During the stage of MPI

transmission, pO receives green particles from adjacentogesses pl-3. At
the stage of neighbor search and contact resolution, pO aetly owns both

black and green patrticles, but it does not need to distinguisblack ones from
green ones for contact force computation. Nevertheless, &etstage of stress
tensor calculation, the black particles are internal partles, and the green
particles are external particles, which must be treated derently according

to Bagi's formula in Eq.(3).

For any contact-pair consisting of two particles that has ben detected,
if both particles are \black," then they are treated as an inernal contact-
pair and computed by the rst term of Eq.(3). If one of the particles is
\green," then they are treated as an external contact-pair @d computed
by the second term of Eq.8). The direction of the branch vectors must
be carefully determined. In addition, a process needs to hdle particle-
boundary contacts if it is a boundary process. For examplergcesses p0-3
are all boundary processes, as shown in Fag.The contact force vectors and
associated branch vectors accounting for thkoundary-radius-gapbetween
the boundary surface and its particles must be evaluated prerly in order
for the stress tensor calculation to be correctly computed.

6. STRESS TENSOR CALCULATION IN SERIAL COMPUT-
ING

Before calculating stress for MPI mode of the 3D DEM codearaEllip3d,
serial and OpenMP-enabled numerical simulations are perfoed to calculate
the average stress tensor and quantify its symmetry or lackhéreof. The
OpenMP-enabled numerical simulations use 16 or 32 cores txalerate the
computation.

ParaEllip3d is a 3D DEM code developed at the University of Colorado
Boulder with general capacity to simulate a wide range of lalvatory exper-
iments and in-situ eld tests that involve a large number of omplex-shaped
(i.e., non-spherical) particles. The interparticle contet constitutive rela-
tion is based on the nonlinear Hertzian normal contact modelna history-
dependent Mindlin shear contact model, combined with Couthab friction
and interparticle contact damping, which are described inetail and veri ed
numerically in Yan (2009; Yan et al. (2010Q. The simulated particle shapes
range from spherical to three-axis ellipsoidal (with varigon of 1st and 2nd
aspect ratios), to non-axisymmetric ploy-ellipsoidal (wh variation of 1st
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and 2nd aspect ratio, and variation of three non-axisymmejrratios). The

simulation types include but are not limited to: grain numbe/size/mass
distribution and Itering; gravitational deposition (plu viation or raining);

degravitation response; isotropic compression; oedonrtmiaxial compres-
sion; conventional triaxial compression; true triaxial cmpression; plane-
strain compression; quasi-static and dynamic penetratiorhigh-strain-rate
impact and deformation; compressive and shear wave prop#éga; con-
strained and unconstrained collapse; hierarchical multale coupling with
FEM; and two-way multiphysics coupling with Computational Fluid Dy-

namics (CFD) for shock wave or explosive wave interaction.uRdamentals
of the DEM such as time integration method, rotation of elligoids, con-
tact resolution, energy statistics, etc, are detailed irvan (2008; Yan et al.

(2010; Yan and Regueiro(20183.

6.1. Damping mechanism

In DEM, two forms of damping mechanism are usually applied:1j global
damping (also referred to as background damping), which oges on the
absolute velocities and angular velocities of the partide Global damping as
such may be envisioned as the e ect of dashpots connectingcleaarticle to
ground (Cundall and Strack 1979, which is not physically-based; (2) inter-
particle contact damping is essential and physical to mod#he mechanical
interaction between patrticles, which is especially true falynamic problems
where interparticle collisions dominate the kinetic eneggdissipation. The
contact interface is illustrated in Fig6, characterized by normal sti nessky,
shear sti nessk, friction coe cient , and normal contact damping coe -
cient ¢,.

For example, the normal damping coe cientc, (Onate and Rojek 2009
can be taken as a fraction of the critical dampin@,, for the system of two
rigid bodies with massesn; and m,, connected with a spring of sti nessk,
(Taylor and Preece 1992:

r—
m1imsk,

Cy = 2 —— 21

“f my+ m, (21)

Ch = Cq (22)

where is the damping ratio. Note this damping ratio portrays interparticle
energy dissipation and can be calibrated with experimentecorded by high-
speed cameras. We found that it ranges betweer268 0:85 by observation
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Figure 6: Model of contact interface.

of numerous experimental and numerical tests of pluviationt is taken as
1:0 in quasi-static simulations. In the shear direction of cdact between
particles, friction dissipates energy.

The global damping (translational and rotational) is usudl applied to
each individual particle and unavoidably a ects the linearand angular mo-
mentum of the particle; the interparticle contact damping &long in-contact
normal and shear relative velocity directions) is applieda each pair of in-
contact particles as a pair of action and reaction \forces,Wwhich has no
bearing on the linear momentum, or angular momentum for moiwsperse
spherical particle assemblies, yet may have slight in ueecon angular mo-
mentum of general particle assemblies. Obviously, the stetensor formulas
presented in this paper do not take this into account. Statisimulations or
static equilibrium state obtained by dynamic simulations d not have this
problem, because the damping mechanism normally vanishdstlze instant
of reaching static equilibrium.

Note that all simulations in this paper only use interpartice damping,
and do not apply any global damping in order to eliminate then uence
of damping \force" on the linear and angular momentum of the article
assembly in dynamic or quasi-static state.

Static states of a particle assembly are obtained from graational depo-
sition, in which particles are initially \ oated" in space without interaction,
and then gravitationally-deposited into a rigid container At the end of the
simulation, all particles come to rest and are packed underayity. The
parameters are listed in Tablel. The following sections provide the stress
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tensor calculations fromYan and Regueiro(20189 (in review) for complete-
ness and comparison with later results from parallel compuag.

Young's modulusE (Pa) 45 101

Poisson's ratio 0:25

speci ¢ gravity Gg 2:65

interparticle coef. of friction ; 0:5

particle-wall coef. of friction 05

interparticle contact damping ratio 0:25 0:85

particle radii (m) 0:001 0:0025

particle shape (aspect ratio) 1:1:1, 1:0.8:0.6, 1:0.8:0.4, 1.0.6:0.4
time step4 t (sec) 50 10 ‘ or smaller

Table 1: Numerical parameters used in gravitational pluviaion simulations.

6.2. Monodisperse spherical particle assemblies

Monodisperse spherical particle (1.5 mm radius) assemisliare simulated
with di erent number of particles: 68, 153, 600, 1,176, 1,532,400 and 3,456,
respectively. The nal rested state for each of the particleassemblies is
illustrated in Fig.7. The processes of boundary contact forces and assembly
energy for 68 and 3,456 particles are plotted in Fig. and it is observed
that the rotational energy contributes a very small fractio relative to the
translational energy during the process of particle packgand rebounding.

Table 2 lists the 3x3 matrix of stress tensor components calculatealy
Weber's and Bagi's formulas for the 7 cases. It is clear thahé stress tensor
calculated by Weber's formula is asymmetric for small numlog of particles,
and the asymmetry decreases with an increasing number of peles. On the
other hand, the stress tensor calculated by Bagi's formulaeibits excellent
symmetry for all cases (68 particles to 3,456 particles). Em for 3,456 par-
ticles, the stress gap between Weber's and Bagi's formulasstill apparent.
The RAI's are calculated for all cases. By Weber's formula, is as high as
15.1% for 68 particles and as low as 1.1% for 1,176 particlesle it is below
0.03% by Bagi's formula for all cases. As a technical index, aARvalue of
1% indicates clear asymmetry, and 5% represents strong asyetry.

6.3. Polydisperse ellipsoidal particle assemblies

Polydisperse ellipsoidal particle assemblies (1.0 to 2.5mmradius) are
simulated with di erent number of particles: 69, 179, 476, 071, 1,904 and
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(1) 68 (2) 153 (3) 600 (4) 1,176

(5) 1,536 (6) 2,400 (7) 3,456

Figure 7: Rested state of monodisperse spherical particlessemblies.

(a) 68 particles (b) 3,456 particles

Figure 8: Boundary contact forces and assembly energy in gétational deposition.
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Table 2: Static stress tensor of monodisperse spherical pécle assemblies.

Weber's formula Bagi's formula
particles stress tensor RAI (%) stress tensor RAI (%)
-6.44E+01 -1.15E+01 -2.72E+00 -9.07E+01 -9.70E+00 -1.19E+00
68 -8.11E+00 -6.16E+01 -5.34E+00 15.1 -9.70E+00 -8.76E+01 -4.44 E+00 8.03E-05
-1.37E+00 -5.50E+00 -1.09E+02 -1.19E+00 -4.44E+00 -1.25E+02
-8.12E+01 -2.31E-01 2.55E+00 -1.01E+02 4.87E-01 2.82E+00
153 -1.35E-04 -7.86E+01 -8.39E+00 2.2 4.87E-01 -9.84E+01 -9.1 5E+00 2.33E-03
2.54E+00 -8.09E+00 -9.68E+01 2.82E+00 -9.15E+00 -1.15E+02
-1.46E+02 -2.85E+01 8.86E+00 -1.71E+02 -2.83E+01 7.75E+00
600 -2.72E+01 -1.51E+02 1.48E+01 2.2 -2.83E+01 -1.76E+02 1.50E+0 1 5.29E-05
9.21E+00 1.56E+01 -2.54E+02 7.75E+00 1.50E+01 -2.80E+02
-2.35E+02 3.97E+01 -8.45E+00 -2.66E+02 3.95E+01 -8.25E+00
1,176 3.96E+01 -2.34E+02 -1.42E+01 11 3.95E+01 -2.65E+02 -1.39 E+01 1.74E-05
-7.88E+00 -1.34E+01 -3.05E+02 -8.25E+00 -1.39E+01 -3.27E+02
-1.88E+02 -9.42E+00 4.69E+00 -2.09E+02 -9.84E+00 5.25E+00
1,536 -9.95E+00 -1.90E+02 -1.05E+00 52 -9.84E+00 -2.11E+02 -4, 00E-01 2.71E-02
5.62E+00 -5.35E-01 -2.55E+02 5.25E+00 -4.00E-01 -2.76E+02
-2.42E+02 -3.77E+00 -8.39E+00 -2.65E+02 -3.84E+00 -8.16E+00
2,400 -4.24E+00 -2.43E+02 2.18E+00 4.0 -3.84E+00 -2.66E+02 2.56 E+00 2.94E-04
-8.16E+00 2.81E+00 -3.32E+02 -8.16E+00 2.56E+00 -3.55E+02
-2.29E+02 1.11E+01 -2.17E+00 -2.47E+02 1.10E+01 -1.98E+00
3,456 1.14E+01 -2.29E+02 -1.89E+00 1.7 1.10E+01 -2.48E+02 -1.64 E+00 2.07E-03
-2.07E+00 -1.57E+00 -3.56E+02 -1.98E+00 -1.64E+00 -3.79E+02

2,975, respectively. The nal rested state of each of the parle assemblies
is illustrated in Fig.9.

Table 3 lists the 3x3 matrix of stress tensor components calculatdéy We-
ber's and Bagi's formulas for the 6 cases. It exhibits a trerglmilar to that for
monodisperse spherical particle assemblies. The stressnirBagi's formula
exhibits excellent symmetry. Note that contact geometry redution between
ellipsoids is numerically challenging. As an estimate, moaesupercomput-
ers are typically capable of computing up to L®00 30, 000 particles per
core (PPC) of spheres, and 150 300 PPC of complex-shaped particles such
as ellipsoids or poly-ellipsoids with optimal computatioal granularity (CG)
for large-scale MPI simulations Yan and Regueirg 20180. The RAI by We-
ber's formula ranges from 3.9% to 30.0%, indicating strongammetry; while
it is typically below 0.3% calculated by Bagi's formula for k cases.

It was proven in Section3 that the Cauchy stress tensor is symmetric
under static conditions for CCM and GMM. Bardet and Vardoulakis (2001
stated that computed stress tensor asymmetry implies inagrate calculation
and/or lack of static equilibrium. The simulations of di erent shapes and size
gradation of particles in this section provide clear numezal veri cation that
at rested (static) state, Bagi's formula provides a symmeit stress tensor,
whereas Weber's formula does not. We emphasize that stregmsor sym-
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(1) 69

(4) 1,071

Figure 9: Rested state of polydisperse ellipsoidal parti@ assemblies.

(2) 179

(5) 1,904

(3) 476

(6) 2,975

Table 3: Static stress tensor of polydisperse ellipsoidal rticle assemblies.

Weber's formula

Bagi's formula

particles stress tensor RAI (%) stress tensor RAI (%)
-2.83E+01 1.76E+00 9.77E-02 -4.12E+01 -5.52E-01 1.77E+00
69 1.39E+00 -3.77E+01 1.30E+01 3.9 -6.30E-01 -5.75E+01 1.57E+01 2.80E-01
-3.45E-01 1.39E+01 -6.30E+01 1.74E+00 1.57E+01 -8.10E+01
-4.62E+01 5.09E-01 3.03E-01 -5.81E+01 7.73E-01 9.67E-01
179 1.44E+00 -4.10E+01 2.27E+00 30.0 7.73E-01 -5.09E+01 8.39E- 01 2.47E-03
-4.20E-01 1.66E+00 -5.61E+01 9.67E-01 8.39E-01 -6.98E+01
-8.36E+01 5.66E+00 1.58E+00 -9.81E+01 3.67E+00 1.57E+00
476 3.58E+00 -8.39E+01 2.35E+00 20.3 3.67E+00 -9.74E+01 2.62E+00 3.29E-03
1.90E+00 3.94E+00 -1.09E+02 1.57E+00 2.62E+00 -1.26E+02
-1.19E+02 7.53E+00 2.66E+00 -1.36E+02 8.36E+00 3.67E+00
1,071 6.95E+00 -1.18E+02 3.81E-01 6.3 8.36E+00 -1.33E+02 -3.01 E-01 9.05E-03
3.41E+00 7.62E-01 -1.51E+02 3.68E+00 -3.00E-01 -1.66E+02
-1.32E+02 -2.81E+00 8.30E+00 -1.47E+02 -1.49E+00 9.85E+00
1,904 -2.27E+00 -1.29E+02 -7.09E-02 4.8 -1.49E+00 -1.43E+02 -8 .66E-01 2.23E-02
8.36E+00 -7.34E-01 -1.79E+02 9.85E+00 -8.62E-01 -1.96E+02
-1.60E+02 1.49E+00 -5.74E-01 -1.75E+02 1.25E+00 5.09E-01
2,975 1.09E+00 -1.71E+02 3.43E+00 6.3 1.24E+00 -1.85E+02 4.35E+0 0 2.37E-02
-1.00E-01 3.80E+00 -2.13E+02 5.07E-01 4.35E+00 -2.29E+02
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metry is independent of the RVE size, or size of averaging vohe, which
is contrary to the conclusion byLin and Wu (2019. In addition, from the
perspective of stress tensor calculation, the number of pites in the RVE
does not need to be large, namely, tens or hundreds of paréisiwould be ad-
equate provided that high-precision contact geometric rekition is assured,
which ParaEllip3d successfully provides.

6.4. Bagi's vs Weber's vs Drescher's formulas

The static stress tensor calculated from Weber's, Dreschgrand Bagi's
formulas are compared in Tablel, using the assembly of 1,536 monodisperse

spherical particles.

Table 4: Stress tensors calculated from various formulas

formula stress tensor RAI (%)
-2.09E+02 -9.84E+00 5.25E+00

Bagi -9.84E+00 -2.11E+02 -4.00E-01  0.028
5.25E+00 -4.00E-01 -2.76E+02
-1.88E+02 -9.42E+00 4.69E+00

Weber -9.95E+00 -1.90E+02 -1.05E+00 5.2
5.62E+00 -5.35E-01 -2.55E+02
-2.09E+02 -9.84E+00 5.25E+00

Drescher -9.84E+00 -2.11E+02 -4.74E-01 94.7
2.19E+02 2.14E+02 1.88E+01

First, the stresses calculated by Weber's and Drescher'srimulas are
asymmetric and are di erent from the result of Bagi's formuh. Second, the
RAI by Bagi's formula is low (below 0.03%), whereas the RAI by Weer's
formula is 5.2% indicating strong asymmetry, and the RAI by Descher's

formula is 94.7% representing high asymmetry. In additiorthe ,, (or

33)

component by Drescher's formula deviates signi cantly frm that by Weber's
and Bagi's formulas.
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7. STRESS TENSOR CALCULATION IN PARALLEL COM-
PUTING

7.1. DoD supercomputers

The target architectures in this work are four of the DoD supeomputers:
Thunder, Topaz, Excalibur, and Onyx, and their architectual parameters are
listed in Table 5.

Table 5: Four DoD Supercomputers fpttps://centers.hpc.mil/systems/summary.html ).
supercomputer Thunder Topaz Excalibur Onyx
system SGI ICE X SGI ICE X Cray XC40 Cray XC40/50
compute nodes 3,576 3,492 3,162 3,438
cores per node 36 36 32 44
total cores 125,888 125,440 101,184 161,448
memory per node 128 GB 128 GB 128 GB 128 GB
CPU Xeon E5-2699v3 Xeon E5-2699v3 Xeon E5-2698v3  Xeon E5-2699v4
core speed 2.3 GHz 2.3 GHz 2.3 GHz 2.8 Ghz
interconnect 4x FDR InniBand  4x FDR In niBand Cray Aries Cray Aries
peak PFLOPS 5.62 4.66 3.77 6.06
default MPI SGI MPT SGI MPT Cray MPICH2 Cray MPICH2

7.2. Stress tensor symmetry

A parallel simulation depositing 7,200 spherical partickeinto a rigid con-
tainer is conducted using 3 x 3 x 4 compute grids in x, y, z dirgons,
respectively, as illustrated in Fig4. Spatial distribution of ,, in the rested
state is plotted in Fig.10. Note that some of the digits are hidden due to
post-process rendering e ect, and only the numbers at the poand left parts
of the gure are readable.

Stress tensors over the grids are calculated in the restects using Bagi's
formula. From nine columns of compute grids, the central aainn and an
edge column are selected to print out their stress tensor uas in top-down
order in Table 6. It is seen that excellent symmetry is achieved, whether
from internal compute grids or from boundary compute gridsThis veri es
that the stress tensor calculation algorithm in MPI parallé 3D DEM is im-
plemented correctly. It is also observed that,, increases with depth due to
gravity, as expected.
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Figure 10: ., distribution of 7,200 particles using 3 x 3 x 4 grids.

Table 6: Static stress tensors calculated over parallel coputing grids.

central column edge column

grid stress tensor RAI (%) stress tensor RAI (%)
-4.17E+01 -4.81E+00  -2.16E+00 -6.17E+01 3.89E-01 -8.70E+00
top -4.81E+00 -4.17E+01 -2.95E+00 2.68E-02 3.89E-01 -6.50E+01 -1.03E+01 5.32E-04
-2.16E+00 -2.94E+00 -5.52E+01 -8.70E+00 -1.03E+01 -7.80E+01
-3.99E+02 -1.55E+01 -5.02E+00 -2.77E+02 -2.55E+01 9.72E+00
mid-top -1.55E+01 -3.89E+02 -2.18E+00 1.50E-03 -2.55E+01 -3.2 7E+02 -4.63E+01 1.32E-04
-5.02E+00 -2.18E+00 -4.74E+02 9.72E+00 -4.63E+01 -3.28E+02
-6.31E+02 -1.10E+02 -2.17E+01 -4.32E+02 -1.51E+02 1.00E+02
mid-bottom -1.10E+02 -5.97E+02 -1.14E+01 3.56E-04 -1.51E+02 - 4.09E+02 1.30E+02 2.77E-05
-2.17E+01 -1.14E+01 -1.06E+03 1.00E+02 1.30E+02 -6.50E+02
-7.29E+02 -1.93E+01 -4.93E-01 -5.63E+02 -1.51E+02 -3.12E+01
bottom -1.93E+01 -7.19E+02 7.80E+00 2.29E-04  -1.51E+02 -5.67E +02 -2.02E+01 5.41E-04
-4.93E-01 7.80E+00  -1.38E+03 -3.12E+01 -2.02E+01 -9.11E+02
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7.3. Spatial distribution of ,

Three di erent spherical particle assemblies (7k, 50k, an#50k particles,
respectively) are used to investigate the spatial distridion of ,, utilizing
parallel computing. The particles are dropped into rigid aatainers via grav-
itational pluviation, and then the assemblies are trimmed at at the top
surface. High-resolution movies generated from the simuilans of gravita-
tional deposition are displayed at the following YouTube mlylist (note: play
with 1080p or 1440p HD option to observe detailshttps://www.youtube.
com/playlist?list=PLOSpdOMtb6vXWB2qqROk6HCc35Qcj12tX

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 11: Top-trimmed spherical particle assemblies.

The top-trimmed assemblies consist of 7k, 50k, and 250k pigles, re-
spectively, and their heights are 0.06 cm, 0.15 cm, and 0.5@ crespectively,
as shown in Figll The number of particles per grid in parallel computing is
roughly 55, 75, and 55 for the three specimens, respectivefy vertical slice
view of ,, is plotted for the three assemblies in Fig2, wherein the ,, con-
tours exhibit a dome-shaped spatial distribution. Zebraksaded graphs are
used to plot the distribution more clearly in Figl3, exhibiting ., contour
dome-shapes for each of the three di erent assemblies. Thgatal distribu-
tion captured by parallel computing of 3D DEM di ers from that calculated
by CCM, which would provide evenly-distributed ,, in the horizontal direc-
tion for the case of no boundary friction, as shown later in Bi27(b).

The dome-shaped spatial distribution of ,, is associated with conducting
pluviation in a relatively narrow container, which prevens particles from
moving laterally, locking up di erent microstructures alang horizontal levels.
As illustrated later in Section 9.2, the horizontal stress y, also produces a
dome-shaped distribution. From the vertical centerline teside walls of the
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container, the lockup may become more pronounced and resimtsuch stress
distributions. This conjecture will be further studied by analysis of internal
topology and fabric across the particle assemblies, for emple, usingQhull
(www.ghull.org ), which enables construction of tetrahedra in 3D space that
connect the centroids of every four neighboring particlesr the contact points
of every four neighboring interparticle contact pairs, an@xamines important
geometric quantities such as tetrahedral shape/volume, Isbangles, dihedral
angles, etc.

In addition, Section 9.2 delineates incremental displacement (Fig6) and
dislocation pattern (Fig.29) of the particle assemblies as a result of pluviation,
which could also contribute to the stress distribution.

(a) 7k particles. (b) 50k particles. (c) 250k particles.

Figure 12: Vertical slice view of ;.

(a) 7k patrticles. (b) 50k patrticles. (c) 250k particles.
Figure 13: Vertical slice view of ;.
Figure 14 provides a horizontal slice view of ,, for the three assemblies.

In the center, a ring-shaped distribution is revealed. An isurface view of
2z 1S presented in Figl5: (a) side view of the 7k particle assembly, where
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the dome-shape is plotted by an isosurface; and (b) bottomew of the 250k
particle assembly.

(a) 7k patrticles. (b) 50k patrticles. (c) 250k particles.

Figure 14: Horizontal slice view of ;.

(a) 7k particles. (b) 250k particles.

Figure 15: Isosurface view of ,, for 7k and 250k assemblies.

7.4. In uence of compute grid sizes

For each of the seven equations that calculate stress in gtdar materials,
Eq.() (7), the term V denotes volume of the RVE. In parallel computing
of 3D DEM, V is dependent on the size of the compute grids. It is interest-
ing to recognize that the dynamically-adaptive compute gtis used in MPI
parallel 3D DEM are neither purely Lagrangian nor purely Ewdrian: (a) the
compute grids provide spatial domain decomposition for paliel computing
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and are not tied to particles, though they follow the overalimotion of the
particle assembly in 3D space, similar to a Lagrangian pemsgtive; and (b)
generally the compute grids are not Eulerian; however, theyecome Eule-
rian if they are xed on purpose, which provides a exible wayto observe
uid-like behavior of granular materials (but adversely a ects load balancing
in parallel computing).

Figure 16 displays ,, along the compute grid surfaces of the 50k par-
ticle assembly at rest using 3x3x5, 5x5x7, and 7x7x13 grid$1(0, 285, 78
particles per grid accordingly), respectively. Apparenthdi erent values are
presented at the same location. For example, the center griah the left-front
surface provides -933, -1111, and -987 Pa fax, for the three di erent grids,
respectively. Overall, denser grids produce higher,, at greater depth and
produce lower ,, at lower depth due to volume averaging e ect.

Table 7 lists the stress tensor components calculated in the centeom-
pute grid of 7k and 50k particle assemblies, respectivelysing di erent com-
binations of grids. The normal stress components increasé&twdenser grids
(i.e., smaller grid sizes) in the case of 7k particles, anddease with denser
grids in the case of 50k particles. In general, the magnitud# stress tensor
components does not have a monotonic relation with the avegiag volume
used to calculate the stress tensor, and it actually depends the spatial
location of the grid inside the particle assembly. Furtheriore, the size of the
compute grids in parallel computing can be exibly chosen,cording to a
particular length-scale e ect of interest to be resolved byhe analyst.

Table 7: Stress tensor calculated using di erent compute gids

center grid of 7k particles center grid of 50k particles

grids stress tensor grids stress tensor
-3.20E+02  -5.98E+00 -4.02E+00 -1.12E+03  -6.30E+00 -1.87E +02
Ix1x1 -5.98E+00 -3.18E+02 -8.32E+00 3x3x5 -6.30E+00 -1.08 E+03 -1.11E+02
-4,02E+00 -8.32E+00  -4.68E+02 -1.87E+02  -1.11E+02 -1.87E +03
-5.09E+02  -1.11E+02 -2.19E+01 -7.42E+02 -1.20E+02 -3.81E +02
3x3x3 -1.11E+02 -5.00E+02 -1.83E+01 5x5x9 -1.20E+02 -6.98 E+02 -3.32E+02
-2.19E+01  -1.83E+01 -8.01E+02 -3.81E+02 -3.32E+02 -1.26E +03
-5.25E+02 -9.91E+01 -1.50E+02 -4.92E+02  -1.23E+02 -2.97E +02
5x5x5 -9.91E+01 -4.73E+02 -9.51E+01 7x7x13 -1.23E+02 -4.4 6E+02 -2.27E+02
-1.50E+02 -9.51E+01 -1.18E+03 -2.97E+02 -2.27E+02 -8.07E +02
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(a) 3x3x5 grids. (b) 5x5x9 grids.

(c) 7x7x13 grids.

Figure 16: 3D view of ,, using di erent compute grids (zoom-in to the PDF le to see
the small-font numbers).
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8. STRESS DISTRIBUTION DURING DYNAMIC PROCESSES

8.1. Gravitational pluviation

The temporal and spatial distributions of ,, during gravitational pluvi-
ation are studied using the third particle assembly descrédad in Section7.3.
The specimen consists of 250k particles that are initiallyoated up to 1.5
meters in height, and then allowed to drop under gravity intoa rigid con-
tainer. Each parallel computing grid contains roughly 55 p#cles. The
contour plots of vertical stress ,, are shown in two movies at YouTube:

22+ https://lyoutu.be/OtZoVFKRHjg
zoomed-in ,,: https://youtu.be/FBG4HQK4Hzo

(a) stage 18. (b) stage 24.

(c) stage 30. (d) stage 33.

Figure 17: ,, at di erent stages of 250k particle pluviation.
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The simulation output is evenly divided into 100 stages in tnhe, and
Fig.17 displays ., contour distributions at stages 18, 24, 30 and 33, respec-
tively. Note that blue color indicates zero stress. During pviation, as the
particles start to pack at the bottom of the container, the |le@ation of max-
imum ., keeps moving up until all particles are packed. When compag
the following two movies:

particles: https://youtu.be/V23MyTCdEGg
22+ https://lyoutu.be/FBG4HQK4Hzo,

it is seen that the location of maximum ,, is near the top surface of the
packed particles, where the most intense collisions occuetiveen particles.
Figure 18 shows the ,, contour distribution and particle assembly state at
stage 30, side-by-side for easier comparison.

@ zz- (b) particles.

Figure 18: ,, vs particle assembly state at stage 30.

8.2. Constrained collapse

Numerical collapse simulations using 535k di erent-shapeghrticles are
performed to observe stress tensor component distributisnThe simulation
process is essentially the same as pluviation, but using ader container
(and more particles) to observe the collapse and expansiohthe particle
assemblies. Each parallel computing grid contains rough®p particles. Four
particle shapes are chosen with the following aspect ratiosphere (1:1:1),
ellipsoid-1 (1:0.8:0.6), ellipsoid-2 (1:0.8:0.4), andliglsoid-3 (1:0.6:0.4), of
which the maximum particle semi-axis length is 2 mm. 3D deti of the
particle motion can be watched via the following movies at Yolube:
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sphere: https://youtu.be/ZVX4-fREy2M
ellipsoid-1: https://youtu.be/nrUUp1rz90Y
ellipsoid-2: https://youtu.be/AQuUG2tKeZC4
ellipsoid-3: https://youtu.be/6 XuyaMCjpll

Figure 19 demonstrates the collapse of 535k particles with 8 snapshkot
in time. Note the scattered particles in the central area of .19 (4 6)
that are rebounded from the front/back walls, not from the Ié&/right walls.
Figure 20 shows the cross-sectional view of sphere and ellipsoid-$eamblies
at rest.

@) ) ©) (4)

®) (6) () €)
Figure 19: Side view of the collapse process of 535k partide

(a) Sphere. (b) Ellipsoid-1.

Figure 20: Cross-sectional view of sphere and ellipsoid-1saemblies at rest.

Detailed temporal and spatial distributions of ,, can be viewed via the
following movies at YouTube:
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sphere ,: https://youtu.be/JevBgyBnLJA
ellipsoid-1 ,,: https://youtu.be/0SaBO0o57mqY
ellipsoid-2 ,,: https:/lyoutu.be/RY6gh2xazis
ellipsoid-3 ,,: https://lyoutu.be/ZBNBolp-PEg

(a) stage 04. (b) stage 08.

(c) stage 12. (d) stage 40.

Figure 21: ., contours at di erent stages of 535k particle collapse.

The collapse simulation output is also evenly divided intod0 stages in
time, and Fig.21 displays the ,, contours for the sphere assembly at stages
04, 08, 12, and 40, respectively. The stress is plotted usiagcombination
of midplane slice view and boundary view. At stage 04, the boim of the
particle assembly undergoes maximum stress due to partiskall collision; at
stage 08, the collision between upper and lower particlesuses the maximum
stress; at stage 12, the uid-like \wave" spreads and hits tla side walls of
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the container where the maximum stress occurs; and at stage, 4he particle
assembly is close to rested/static state.

Figure 22 displays the midplane slice view of ,, contours at rest using
zebra-shaded graphs for the four assemblies with di erentapticle shapes.
Overall, a layered stress distribution pattern is observegarallel to the sur-
face pro le of the collapsed particle assemblies.

(a) sphere. (b) ellipsoid-1.

(c) ellipsoid-2. (d) ellipsoid-3.
Figure 22: ,, contours for particles with di erent aspect ratio.
In contrast to the dome-shaped ,, contour inside a narrow vertical con-
tainer, as shown in Sectiof?.3 the wider container allows more lateral motion

of the particles and alleviates the lockup e ect along its die walls, resulting
in a more evenly-distributed stress contour, particularlyn Fig.22(d).
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9. MICROSTRUCTURAL EFFECT ON STRESS DISTRIBU-
TION IN GRANULAR MATERIALS
9.1. In uence of bottom impact in pluviation

In the pluviation simulations, the initial locations of the particles are lifted
by a certain distance such that they generate stronger caions at the bottom
of the rigid container. The 7k, 50k, and 250k particle assenns are lifted
by 5, 10, and 20 cm, respectively, to create bottom gaps. Thdupiation
processes are displayed at the following YouTube playlistttps://www.
youtube.com/playlist?list=PLOSpdOMtb6vVnYZ795H3ku8C -0tBPIP{S .

(a) without bottom gap. (b) with 5 cm bottom gap.

Figure 23: ., with or without initial bottom gap for 7k particles.

(a) without bottom gap. (b) with 10 cm bottom gap.

Figure 24: ., with or without initial bottom gap for 50k particles.
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Figure 23 displays the ,, contours at rest for 7k particles with and with-
out 5 cm bottom gap, for which a slight di erence can be notiak yet, the
overall contour distributions are similar. Figure24 displays the ,, contours
at rest for 50k particles with and without the 10 cm bottom gap Figure 25
displays the ,, contours at rest for 250k particles with and without the
20 cm bottom gap. Again, the overall contour distributions a similar,
though a slight di erence is noticeable. Further investigaon into the re-
lations between various pluviation heights and granular ntarial properties
such as packing density/void ratio, fabric anisotropy, stss distribution, etc,
is needed to better understand the e ects.

(a) without bottom gap. (b) with 20 cm bottom gap.

Figure 25: ,; with or without initial bottom gap for 250k particles.

9.2. In uence of friction

Two more cases are investigated for the gravitational pluation tests:
(1) no particle-to-wall friction; (2) no friction whatsoewer, i.e., particle-
to-particle and particle-to-boundary friction vanish. The particle assem-
bly motions and corresponding incremental displacement st®r elds can
be observed in the following YouTube playlist: https://www.youtube.
com/playlist?list=PLOSpdOMtb6vVy7jG_Xiplqvbe]NGtLxa 9, wherein six
movies play continuously to show the di erences. With bounary friction,
the deposited/packed particles are locked immediately byne walls; whereas,
without boundary friction the deposited/packed particlesexhibit a stronger
rebound-and-repack process, during which particles cléarslide along the
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side and bottom walls. Without friction, the deposited/padked particles ex-
hibit slippage along walls and dislocations between partes.

Figure 26 displays the incremental displacement vector elds at a lafr
stage of the particle assembly motion for the 3 cases, and yhexhibit some
di erences.

(a) friction. (b) no wall friction. (c) no friction.

Figure 26: Friction e ect on incremental displacement vector elds of 7k particle assembly.

Figure 27 displays a slice view of ,, for the 3 cases. If comparing (a)
friction to (b) no wall friction, the di erence can be obsenred in the lower-
right zone, although the overall distributions are similar On the other hand,
case (c) provides a noticeably di erent stress distributio since it represents
a di erent material with zero friction.

(a) friction. (b) no wall friction. (c) no friction.
Figure 27: Friction e ect on ,, for 7k particle assembly.
The horizontal stress y distribution for the three cases is displayed in
Fig.28 Case (b) reveals higher y, in the lower-right zone than in case (a),

which could be the result of a frictionless wall that allows wre re-adjustment
between particles in that zone. Case (c) displays even highencentration
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of ,y in the lower-right corner. The ratio of horizontal to vertical stress
yw= zz, hamely, the coe cient of lateral earth pressure at resK, is worthy
of more investigation in a separate paper.

(a) friction. (b) no wall friction. (c) no friction.

Figure 28: Friction e ect on , for 7k particle assembly.

The three dierent friction conditions are also simulated ér the
50k particle assembly. The particle assembly motions are sgiayed at
the following YouTube playlist: https://www.youtube.com/playlist?
list=PLOSpdOMtb6vXzsWtvGbiudwOukkfL_7J4 where 3 movies play con-
tinuously to show the di erences. The particle assemblieseveal clear yet
distinct dislocations, which can be observed by dot-matrixiew shown
at the following YouTube playlist: https://www.youtube.com/playlist?
list=PLOSpdOMtb6vUQQjzq7070HokGSkQor8xEigure 29 displays the dis-
location pattern side view of the 50k particle assembly foe three cases.

(a) friction. (b) no wall friction. (c) no friction.

Figure 29: Friction e ect on dislocations for 50k particle assembly.
Figure 30 displays a slice view of ,, contour for the 50k particle assem-

41



bly for the three cases. If comparing (a) friction to (b) no wh friction, the
di erence may be observed in the lower-right zone, althougtine overall dis-
tributions are similar. Case (c) provides a di erent stresglistribution since
it represents a di erent material with zero friction.

(a) friction. (b) no wall friction. (c) no friction.

Figure 30: Friction e ect on ,, for 50k particle assembly.

From Figs.20, 26 and 29, it is noticed that the monodisperse assemblies
tend to \crystallize" by arranging themselves into regularsubsets. In our
tentative simulations of weak collision using low pluviatin/free fall height,
the phenomenon is not only observed in monodisperse assae®bf spheres,
but also seen in that of ellipsoids; and the atter the ellipsids, the weaker
the \crystallization." Small-scale polydisperse assemek have not demon-
strated such crystallization, and we do not yet have datasetfor large-scale
simulations of polydisperse assemblies to analyze. The stillization phe-
nomenon is worthy of further investigation, which should oger the in uence
of particle shape, particle size distribution, particle dtision strength associ-
ated with pluviation height, initial particle spatial dist ribution, and container
side gap space that allows lateral deformation of particlesaemblies.

9.3. Inuence of particle shape

We hypothesize that particle shape aects the stress distiution re-
sulting from gravitational pluviation. To support this hypothesis, four
particle aspect ratios (sphere (1:1:1), ellipsoid-1 (180.6), ellipsoid-2
(1:0.8:0.4), and ellipsoid-3 (1:0.6:0.4)) are used in thelupiation sim-
ulations for 250k particles. Each parallel computing grid antains
roughly 55 particles. The pluviation processes can be viedvevia
the following YouTube playlist: https://www.youtube.com/playlist?
list=PLOSpdOMtb6vU_7RwKbiBdpQGS7GGbBvUke rested states for the
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three aspect ratios of ellipsoidal particles are displayed Fig.31, in addition

to the spherical particles shown in Fidl1(c) (trimmed at the top). Clearly

they provide a di erent structure and packing density due toparticle shape
di erence.

(a) ellipsoid-1. (b) ellipsoid-2. (c) ellipsoid-3.

Figure 31: Particle shape e ect on deposited assemblies.

The sphere (Figl3(c)) and ellipsoid-1 (Fig32(a)) cases show a dome-
shaped ,, spatial distribution. However, the ellipsoid-2 and ellipsial-3 cases
(Figs.32(b),(c)) exhibit a river plate stress distribution, which shows lower
values in the center part of the particle assemblies, contrato that of dome-
shaped distribution. How the distribution is related to paricle shapes needs
a more comprehensive study involving distributions of lotized density or
void ratio, principle axis orientations, fabric tensors, gatial topology of par-
ticle centroid connectivity and contact point connectiviy, etc. But we have
recognized that they are related, such that it may be concledl that particle
shape a ects stress distribution in granular materials.

(a) ellipsoid-1. (b) ellipsoid-2. (c) ellipsoid-3.

Figure 32: Particle shape e ect on ,, spatial distribution.
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10. CONCLUSION AND OUTLOOK

Bagi's formula is chosen for stress tensor spatial distribon calculation
over granular materials under static conditions because) (it satis es sym-
metry, and (ii) a dynamic stress tensor formula, such amodi ed Nicot's
formula, converges to it for static equilibrium. Its implementation in MPI
parallel computing of 3D DEM is based upon spatial domain demposition
and dynamically-adaptive compute grids, and it requires parate treatment
in calculating the internal and external contact forces andorresponding
branch vectors. Numerical simulations verify the correctrss of implementa-
tion in the MPI parallel 3D DEM code ParaEllip3d by showing that stress
tensors calculated within each grid for parallel computingatisfy symmetry
under static conditions.

The combination of stress tensor calculation and large-degarallel com-
puting provides deeper insight into the micromechanical bavior (stress ten-
sor in the paper) of granular materials under static and dymaic conditions.
The normal stress components in gravitationally-depositeparticle assem-
blies exhibit non-uniform spatial distributions under staic equilibrium, and
the manner by which the maximum stress zone changes duringetprocess of
gravitational pluviation and collapse is also captured. 3IDEM simulations
illustrate the e ect of the following factors on stress digibution: pluviation
impact extent, boundary friction, interparticle friction, boundary constraint
conditions, and particle shape. Some of the factors, e.glupiation height
and particle shape, have important engineering implicaties and are worthy
of further study.

It is of great interest and importance to extend the average &lichy stress
tensor calculation in MPI parallel 3D DEM to include nite strain mea-
sures, and relevant objective-rate-forms such as Oldroydé Truesdell stress
rates (which involve the velocity gradient) utilizing the @mpute grids. They
will allow a complete mechanical upscaling framework fromrgn-scale to
continuum-scale for the study of stress-strain and stresgrain-rate-form con-
stitutive relations. In future work, a method will be preseted to calculate
strains, strain-rates, and objective stress-rates for Ige deformations within
granular materials based upon MPI parallel 3D DEM for non-dperical par-
ticles.
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