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CHAPTER I
INTRODUCTION

For many years electrical engineers have attempted to
mathematically simulate the currents and/or impedances of arrays
of finite length antennas in order to avoid building purely by
trial-and-error. For any number of dipole antennas of varied
length (such as shown in figure 1.1) there have been many methods
and approximations used to find the reflections caused by the
terminations of the wires, to find the effects of each of the wires
on each of the other wires, and to find the effects of various wire
diameter sizes.

A common starting point for these modeling techniques is
the integral equation for the current on one wire of radius a.

If we choose very thin (a << AO), perfectly conducting wires, the
electric field in the z direction (the tangential direction) is

the only important component. The resulting integral equation is

2
) = [y e] [ 1Kz (1.1)
%z " “surface
of wire

for z on the surface of the wire where Ez(z) is the tangential
electric field, I{z') is the current on the wire, K(z,z') is the
appropriate Green's function, and k0 is the free space wave
number. For thin wires the kernel K(z,z') ds given in the

cylindrical coordinate system by
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K(z,2') = -iuy exp(—ikOR)/4nkgR (1.2)

where R = ((z-z')2+a2)Lz and p is the permeability. This kernel
is approximate, assuming the current is at the center rather than
the surface of the wire (which is good for thin wires). On a
perfectly conducting wire the boundary condition requires the
tangential component of the electric field to vanish, so the
incident electric field along the wire equals the source field for

a voltage source at z =0
Ez(z) = -Voé(z) (1.3)

where &(z) 1is the Dirac delta function and Vo is a constant.
Difficulty arises in solving the integral equation since

the Green's function K(z,z') 1is not easily integrated analytically.

Since I{z') is unknown and may be a mathematically involved

expression, approximation techniques are utilized to derive I(z').
Probably the most commonly used technique to approximate

I(z') is the moment method. For the center-fed dipole antenna of

length 2h (see figure 1.2), the integral equation (1.1) becomes

2
£ (2) = [é-i . kg] f 1(z")K(z,2" )dz* (1.4)

32 h
for -h <z < h . This method assumes the current can be approxi-

mated by a finite series:

N
M) = 1 1)

where the I =~ are complex coefficients and the Fn(z') are



expansion functions. In one version of this method, equation (1.1)

becomes a system of simultaneous equations:

£, (z,) ~ {355 + kg] Ih EIInFn(z K(z, ;2" )dz' (1.6)

where 2 is a point on the mth

selecting an appropriate function for Fn(z'), the equation can be

segment on the antenna. By

solved. If Fn(z') js a step function, the equation is quickly
solved. However, often this Fn(z') does not match the physical
problem c]ose]y enough so a more complex function for Fn(z')
must be chosen. The resulting integral can then become very dif-
ficult to solve, even numerically. There are also N of these
integrals so that a numerical solution would be very cumbersome,
especially for long antennas needing many increments.!

Another method used to approximate the center-fed dipole
antenna integral equation (1.4) is that of King and Middieton.
Working with the vector potential component Az(z) version of
the integral equation, the King-Middleton method uses the approxi-
mation that the ratio of the vector potential component Az(z)
just outside the antenna to the current Iz(z) on the antenna is
for all practical purposes a constant value (except at the ends of
the antenna where the current vanishes but the vector potential
component is merely small). By approximating the current Iz(z)

by an appropriate function f(z}, then Iz(z') may be written as
1(z") = I(2)f{z")/f(z) = 1,(2)g(2,2") (1.7)

This will 1ead to the integral expression



h
J g({z,z"')K{z,z"')dz
“h (1.8)
v + v{(z)

H

4nh, (2)/u1,(2)

where ¢ is a constant and vy(z) ds the hopefully small dif-
ference between ¢ and the true ratio of Az(z) and Iz(z) .
Equation (1.8) can then be sclved by jteration, and with a good
initial approximation for the current, few iterations of glz,z")
in expression (1.8) would be necessary. This method does use the
thin wire approximation koa << 1 and the approximation h >> a.?
Approximations based on the Weiner-Hopf integral for the
current reflection coefficient have been done in many papers
including Chang, Lee, and Rispin;3 Rispin and Chang;“ and Shen,
Wu, and King.5 This method takes a higher level of mathematical
understanding than methods such as the moment method and is not
applicable if the lengths of the antennas involved are not identi-
cal. A useful result found using the Weiner-Hopf technique was
found by Shen. Shen demonstrates that the current of the center-
fed dipole (as shown in figure 1.2) can be represented as the sum
of the incident current (the infinitely Tong antenna current I.)
and the currents reflected at the ends 2z = th, which are propor-
tional to the incident current I _(h+#2z) so that the total current

Iz(z) on the dipole is
Iz(z) =1 {(z) + C(h)I_(h-z) + C{-h)I_(z+h) . (1.9}

Once the reflection coefficient is known, the coefficients C(h)

and C{-h) are determined using the end conditions on the dipole



antenna--that the currents into the ends of the antenna (z = th)
must equal the current out of the end of the antenna, so that
Iz(:h) = 0 .5 This means then that the current on a dipole antenna
or on an array of dipole antennas can be determined simply by
finding the current on an infinitely long set of wires of identical
characteristics to the dipoles and the reflection coefficient.

L. A. vainshtein pursued a double variational technique to
describe the current on an infinitely long thin wire antenna. We
Jook at his development of this technique in Chapter II for one and
two element arrays of infinitely long, parallel, thin wire antennas.
We develop a system mode approach to expand this technique to N
wires in Chapter I1I. Also in Chapter I1II we modify his functional
expression to yield a different, but still double variational,
functional expression for the reflected current of an array of
truncated thin wire antennas.

With these results and Shen's expression for total current
in equation (1.9) we also obtain expressions for the total current,
the reflection coefficients, and the admittances of parallel, thin
wire, dipole antennas in Chapter I1II. One and two element dipole
antennas and a three wire circular array of dipoles demonstrate
this method.

Finally in Chapter IV, we extend the double variational
technique to evaluate the current on a simple two element Yagi
antenna; something not possible with the current Weiner-Hopf

analysis.



We will see that the double variational approach to deter-
mine the current, the reflection coefficients and the input
admittances can be advantageous since it takes less computer time
and space than the moment method; it can be extended to physical
problems not possible with the Weiner-Hopf technique, and it works
well for longer wires where the King-Middleton approach becomes
inaccurate. It also has good agreement with results from other

methods.



CHAPTER 11

THE DOUBLE VARIATIONAL FORMULATION

Vainshtein developed a numerical technique based on double
variational principles to describe the current on a thin cylindrical
conductor of infinite length. The results of the infinitely long,
thin wire analysis are necessary for our later evaluation of dipole
antenna current and admittance expressions, so we will first review

Vainshtein's work for the infinitely long, thin wire.

2.1 Double Variational Principle

In general, the double variational technique Vainshtein
developed can be used on any integral or integral-differential

equation of the form

LI + €eource - 0 (2.1)

where L 1is a linear integral or integral-differential operator
operating on I , I is the unknown current function on the surface

of the object being studied, and Esource is the known electric

field source also on the surface. To develop the double variational
expression for this equation, Vainshtein uses two source functions

€, and eB for the same surface S , which correspond to currents

I, and IB respectively so that equation (2.1) becomes



L]
o

LI + € and
a o
(2.2)

LIB + EB

1l
o

Vainshtein stated that it is necessary (as we will see later) for

this formulation that the vector products

-<3ﬂ, IB> = <Iﬁ’ 8a> . (2.3)

{The vector notation for <€h, IB> for electromagnetics is given
by <8a, IB> flL(eh, IB)dS where (8a, IB) is a scalar product

of the vectors E; and Té at a given point on the surface S.)

It is also necessary that L be chosen so that there is symmetry

so that when the operator L operates on Ia and IB

<Iu, LIB> = <IB, LIa> (2.4)

for whatever functions Ia and IB are chosen.

If ¢ = -a(z-za) and similarly for &_ (the situation

8
encountered in antenna problems) using the expressions of equations

(2.3) and (2.4), a functional

FGB = <Il‘.‘l’ LIB>/{<8Q'.’ IB><EB: Iu>}

(2.5)

i

Y1 (z5) = -1/1,(z,)

is defined, where Iu and I_ are trial functions while Ia(zs)

8
and IB(za) are the currents being approximated. This functional

Fas takes on its exact value if either trial function Ia or I

js exact {i.e. solves equation (2.2)). Moreover, a small first-

B

order error ﬁlu or &8I, 1in both trial functions was shown by

B
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Vainshtein® to result only in a second-order error in FaB’
proportional roughly to (ala)(GIB). When Fae has these proper-

ties, we say it is double variational.

2.2 pouble Variational Principle for an Infinitely Long,

Thin Wire Conductor

To write an integro-differential equation of (1.1) in the
form of (2.1) for an infinitely long, thin wire we must define the

operator L:

-]

[3_2?+ kg] J dz'Ia(z')K(z,Z‘)

LIu =
2z -
. {(2.6)
LI, = EE_ + k2 dz'I (2')x(z,z")
i 322 0 B *

= CO

and the source functions:

g = -V 8(z-2 ) and
a o [+ 4

(2.7)
58 = -Vsé(z-zs)

(we will choose Va = VB = 1 for this section since there is only
one wire) where K(z,z') is the kernel as defined in equation
(1.2). As stated in Chapter 1, for the thin wire (a << 1) only
the longitudinal current is significant. For the thin, perfectly
conducting cylindrical wire, good trial functions for the current

are

(Iu(z))0 = -exp(-ikyiz[)  and
(2.8)
(1,(2))g = -exp(-ikg|2-2,{)



1l

(assuming without loss of generality that z, = 0). Eguation (2.3)

is true for this Ea and I. since

B

<€ s IS? = - j 8{(z) exp(—k01z-zsl)ds = <Is’ea> .
S

Equation (2.4) for this wire is shown to be true in Appendix A.

The functional in equation (2.5) becomes

-] - -]

. 32 2 .
FaB = {J dz exp(—1kolz|)[;;? + kOJ J dz'exp(-1k0|z'-zBIK(z,z')}/
{|j dza(z)exp(-ik0|z-zsl)||J dzs(z+za)exp(-ik0|z[)]} .

The double integral in the numerator is evaluated in
Appendix A. Using the shifting property of the delta function, the

integrals in the denominator are easily integrated so that
. . - . .
FuB = -Cg exp(1koz)|E1(1k0r ) + exp(21koz)E1(1kr Y/2n {2.10)
and from (2.5}
I3(z) = 2n exp(-ikyz)/c4f(2) (2.11)

where f{z) = El(ikr') + exp(Zikoz)El(ikr+) (zB has been set to

z), rt= (zz+a2);i +z , and ¢ is the intrinsic impedance

(CD = (QO/EO)%) . Since V =1, the input conductance is simply
Y_(0) = I:(O) = (w/go)/El(ikOa) . Numerical calculations for I:(z)
when the source is at z = 0 are compared to those of Rispin and
Chang for koa = 0.1 1in figure 2.la. As can be seen the results
are very good for koz > 1.5. Some variation is seen for koz < 1.5

for the real part of the current. The input conductance is also
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compared with that of Rispin and Chang in figure 2.1b with good

comparison for kg < 1072,

2.3 Two Infinitely Long, Thin Wire Antennas Double

Variational Formulation

For two infinitely long, thin wire (a << AO), parallel
antennas {figure 2.2) the double variational develooment is very
similar to the development for the single wire case. The differ-
ence, of course, is that now there can be currents and voltages on
the wires either in phase for both wires {antenna mode) or 180°
out of phase (transmission Tine mode).

For the two wires, separated by a distance d and each

wire with diameter a , voltage equations can be written as

o = Zoolo * Zo1h

-
1

(2.12)

v 2, 1, + 1

10%0 I

1 11°1

where V0 and Vl are the voltages applied to conductors #0 and
#1 , respectively; I0 and 11 are the currents on conductor #0
and #1; and 200, 201, 210, and 211 are the various mutual and

self conductor impedances. By setting

VO = Va + vt (2.13a)

V1 = Va - Vt (2.13b}

I0 = 1a + It (2.13c)
and

11 = Ia - It . (2.13d)
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where Va’ Vt’ Ia’ and It are the antenna mode voltage, transmis-
sion line voltage, antenna mode current, and transmission line

mode current, respectively, we can write the voltage equations as

LR

(2.14)

Vp = L1y

where Za and Zt are independent of each other for two identical
wires (Z00 = le and 201 = 210).

Rppropriate kernels for these mode representations are
necessary. Since the antenna mode is produced when in phase

voltages are used, an appropriate K is
Ka(z,z') = -ig, {exp(-ikORO)/koR0 + exp(-ikoRl)/kORl}/4n. (2.152)

The transmission line mode is the result of voltages input 180°
out of phase, so that
Kt(z,z') = -igg {exp(-ikORo)/koRo- exp(-ikORl)/kURl)}/4n (2.15b)
is appropriate. The radii in (2.15) are defined by
Ry = ((z-z')2 + az);5 and
R, = ((z-2')? + d2y:
The next step in the analysis is to select appropriate trial

functions. Because we are still working with thin perfectly

conducting wires, we choose
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(Ia(z))0 -exp(-ik0|z|) and

(1,(z))g = -exp(-ikp|z-z})

as we did in section 2.2 for the single wire case, where now Ia
and IB_ represent either Ia or It as appropriate. We again
have the functional expression given in equation (2.9) where
K(z,z') ds either Ka(z,z') or Kt(z,z‘) as stated in equations
(2.15). Upon integrating the integrals in equation (2.9) for the
two wire case (as shown in Appendix A}, we find antenna mode and

transmission line mode currents:

I:(z) = 2n exp(-ikgz')/¢ f.(z) (2.9)
t t
where fa(z) = El(ikor;) + El(ikora) +
t
. Lt T
exp(21koz)[F1(1k0ra) + E1(1k0rdj]
and rz = (22_+a2)% +2z and rz = (zz-tdz)% +2Z .

For thin wires and for 2z in the far field, the transmis-

sion line mode current simplifies to (see Appendix A for details)
I:(z) = exp(-ikoz)/{gozn(d/a)/%] =V exp(-ikoz)/Zc
The characteristic impedance can be seen to be
ZC = go En(d/a)/‘ﬂ

which agrees with the characteristic impedance for a transmission

1ine where z2 > az,d2 .



CHAPTER III

SYSTEM MODE EVALUATION OF N THIN WIRE ANTENNA

For the one and two wire antennas it was easy to use a
physically simple, conductor to conductor approach to solving the
integral equation for the current, as was done in Chapter II. To
analyze finite length antennas with N elements, where N is
greater than two, the problems are easier to solve if we use a
set of voltage sequences and current Sequences with “black box"

terminations as appears in figure 3.1.

3.1 General System Mode Definitions

Defining such a set of sequences as a system, the system

current modes J can be written as

J = {;m= 0,1,...,N-1}

N-1 _
where Jm(z) = {0 Iu(z) exp(-i2pmm/N)/N (3.1)
=

th

where Iu(z) is the u"" conductor current so that

N-1
Iu(z) = mZO Jm(z) exp{i2umn/N) . (3.2)
Similarly the system voltage modes can be defined as

E = {E,m= 0,1,...,N-1} (3.3)



1¢

Figure 3.1 System mode analysis model
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where the individual voltage applied to each wire is
V= Vsmn= 0,1,...,N-1} (3.4)
for conductor field sources e&(z) = -Vpa(z-zp) so that
— =%k, ~]—
E=(S) "V (3.5)

where S s the conjugate of

will

and

[, 11]
n

Smn; m,n = 0,1,...4N-1

smn

exp(2rimn/N) .

As was mentioned in Chapter I, Shen found that the total
current can be found by summing the current incident at 2 (the
infinitely long wire current, I_(z)), the current reflected from
the z = h end of the wire, and the current reflected from the
7 = -h end of the wire (these reflected currents were found to
be proportional to I _(h+z) and I_(h-z)) so that the total

th

current on the vy conductor is

Itota](z) e

v Imw(lzl) + Bylw(h+z) + CYImY(h-z) (3.6)

where the coefficients BY and CY can be determined by using
the end conditions of the antennas once the reflection coefficients
are known. This similarly can be done for the system mode analysis

so that the total system mode current can be evaluated as
T(z) = ¥_(J2])EC0) + T _(n-z)E(h) + V(h+z)E(-h) (3.7)

for the model in fioure 3.1. In this expression 7w(z) is the
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transfer admittance matrix resulting from the mth

th

system mode
current at z due to the n” system mode voltage at z = 0; and
E(0). E(h) and E(-h) are system mode voltages at 0, h, and -h ,
respectively. The J(z), then, is the total system mode current
at z (fromall N wires); 7w(lz|)f10) is the current at 2z
from the input voltage: 7w(h-z)f1h) is the current at z due
to the voltage resulting from the "black box" termination at h;
and ?w(h+sz(-h) js the current at z due to the voltage
resulting from the "black box" termination at -h.

We caﬁ also define two matrices 58 and ﬁc as the
junction impedance matrices for the "black box" terminations at

th reflected system mode

th

-h and h, respectively, which yield the n
voltage amplitude at the junctions due to the m™" system mode
incident current. These Q matrices are defined by the reflected
current equation for the semi-infinitely long wires, so that

I(2) = 7w(l2|)5ﬁdnc(0) for figure 3.2. E(h) and E(-h) can be
determined by multiplying the currents incident at h and -h,

respectively, by the respective ﬁc or ﬁB:
E(h) = Q17 (ME(0) + ¥, (2h)E(-h)) (3.8)
E(-h) = Be¥_()E(0) + ¥_(2n)E(h) } (3.9)

From equations (3.7), (3.8), and (3.9) we can also deter-
mine the input admittance matrix Y for the finite antenna case
where J(0) = YE(0) . First, however, it is necessary to deter-
mine Y for the infinitely long wire system and ﬁ for reflection

from an end.
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3.2 Infinitely Long N Wire System Mode Analysis

In addition to the discrete Fourier transform variables
given in equations (3.1) and (3.2) and the transform variables of
equations (3.3) to (3.5}, it is advantageous to define a system

kernel variable:

G = {Gmn; m’n = 0,1,---,”"1} (3-10)

so that 6 = ] K_(z-z') exp(i2nimg +np}/N)/N where K__ is

Pq
defined by

Kp (z,2') = -fuwu exp(- 1k R )/41rk0 "

a, if p=gq
where qu ((z-2 )2 + a2 )l , @ = {

Pq Pq ;

and dpq is the distance between conductor p and conductor q .

The phasing factor exp{i2n(mg+np)/N) allows excitation of
different modes.

Using the system mode variables given in (3.1), (3.2),
and (3.10), we can write Vainshtein's functional expression for
the double variational technique as

N-1
- a - o
Fog = "1/ (z,) = I <ds M

[+

38119 (2, )JB (2,)} (3.11)
8 mn=0 mn n B

th

where J: (zg) 1is the g mode current (resulting from an
B

excitation mode a) at Z, and M is the operator

anJB = (——— + kO) I G (z Z )JB(z Jdz' . The a« state of excita~

-00

tion is def1ned by
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N-1
D qZO J qu(z,z')Iq(z')dz' = -6(z-zu)exp(-12wpsa/N)/N (3.12)

where Sy is an integer associated with o that sets the phase
differences between conductors, and D = (32/322 +.kg) .
If the trial functions

J(z) = A; exp(-ikg(z[) 5 m=0,1,...,8-1 (3.13a)
and 98(z) = AB exp(-ikylz-21)s n = 0,1,...,N-1 (3.13b)

where Am and An are complex amplitudes constant with respect
to z , are used in equation {(3.11); the functional becomes
N-1

N-1
= 7 7 APA® exp(i2n(mq+np)/N)
@8 pg=0 mn=0 o'

-n

. dez exp(-ikolz—z8|)n f dz'exp(-ikolzl)qu(z,z')/

o 5B . :
{AssAsu EXP('Tk0|ZB|) exp(-1k0|-zB[)} (3.14)

The double integral in (3.14) is identical in form to that

evaluated in Appendix A. Using this result (3.14) becomes

N-1
- By a aB
FuB = -(CO/ZHN) mnzo AnAumn(zB)/(AsBAsu) (3.15)
where
N-1
Pmn(zs) = -(LO/ZHN) pqzo exp(2ni(mq +np)/N) exp(-ikozB)
SE; (k) + exp(2ikgz,)Ey (kr')} (3.16)

B Pq pq d_, if p#q

a, if p=gq
where ri= ((22+a% )% +2), a. = {
Pq
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and dpq is the distance between conductor p and conductor g .

The incident current now is

o 8 Bao
JSS(Z) ASBA a/mnzo AnAumn(Z) (3.17)

[H

~il

As stated above Y_([z|}E(0) = jiS(Z) , S0 7w([z|) can be
determined from (3.17).

The problem remaining is to determine the coefficients Am
and An . These coefficients must be determined using the physical
layout of the wires and the phasing of the input voltage. Two of
these coefficﬁents are usually set to one; the remaining coeffi-
cients fall out using the double variational property. To demon-

strate the determination of these coefficients, we look at the

simple two wire, infinitely long transmission line.

3.3 The Infinintely Longa, Two Wire Line Current

To demonstrate how to use equation (3.17) we again evaluate
the two wire, infinitely long case using the system mode approach.
For the infinitely long, parallel two thin wire line with the
diameter of the wire a and separated by a distance d (as shown
in figure 2.2), the system mode currents are JO (I +11)/2 and

Jd, = (I,- 11)/2 so that J, s the antenna mode current and J,

1 0

js the transmission line mode current. We can use equations (3.16)
and (3.17) to find that

32 (2) = A2 AB/ I APp (3.18)
sB o M0 Am n mn

where
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1
Pmn(z) = -(C0/4n) exp(-ikoz) ¥ 0 exp(ni{mp +nq))
Pq=

-{El(ikor') + exp(Zikoz)El(ikr+)}.

The individual Pmn terms are readily determined to be

Poolz) = ~(Cq/2n) (E;(ikgry) +Ey (ikgry) + exp(2ikga) € (ko)

+ El(ikr;):]}exp(ikoz) (3.193)
and
PLa(2) = (cq/2n(E (ikry) - g (Tkgrg) + exp(2ikg2) [ Ey (k)
- El(ikr:j]} exp(ikoz) (3.19¢c)
where r> = (224-a2);E +z and ro = (22+d‘2);i + 2.

a d

This reduces (3.15) and (3.17) to

= o _ 1B aaB B o
Fus = -lldss(z) = (AOAOP00 + A1A1P11)/(AsaAsB) (3.20)

Now we must determine the coefficients. The first case is

s =s5_=0. Assuming Ag = Ag =1 (since « and g are even),

= anf
Foo = [Poo * A1A1P11] :
Using the double variational property so that aFuB/aA? =0,

we see that

o _ _ aB
aFOD/aAl =0= AIP11 .



27

This implies that A? =0, since P11 is not identically zero.

The second case is sa =1 and SB =0 , so that

Jp(2)

8 = _nBpc/|actpB ap B
Jp(2z) = AIAO/[AOAOPOO + AlAlpll]

. B _ a0
setting AO = Al , then

n

g a = _pBaa;|ac Bp
Ji(2) = Jplz) = -AjAy/ [Aopoo*Alpn}

so that
2
Bsaa® - 0 = Brac B o a B
ady/aRg = 0 = '[Al(Aopoo*Afn) - Alepoo]/ [Aopoo‘“"lpu:[

so that A? = 0 . Therefore Jf(z) = Jg(z) =0 . Similarly

Jg(z) = J?(z) =0 for s =0 and s, =1.

For the remaining case S, = 5g 1,

- B on B Bact
Fip = (RAdPao * MAP1 /A

so that for A? = Af = 1 , the double variational property

aru/aAg = 0 gives
x _ aB _
3F;1/28g = AgPag = O

implying that F,, = P,, and Jl(z) = Jl(z) = —1/P11(z) . The

resulting transfer admittance matrix is

- -1/P 0
¥ (2) = { 00 } (3.21)
0 -1/P11

where Poo(z) and Pll(z) are given in equation (3.19) for the
infinitely long two wire line. This is identical to the result in

section 2.3.
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3.4 The Reflected Current Functional

In order to determine the junction impedance matrices 58
and 6C , we would 1ike a functional pertaining to the reflected
current rather than to the total current of Vainshtein's functional.
We will develop such a functional using the conductor currents, Ip,
of Chapter 1I. Since the system mode currents, Jm. are simply the
sum of Ip multiplied by constants, the system mode currents will
have a similar functional that is double variational.

By defining on a given conductor

18 = 9T 4 qof (3.22)

Ia,i

where I% s the total current, is the incident current, and

1%*7  is the reflected current, we can write

L1%7 = (L++-L_)I“=i =D f 1%:7 (21 )K(z,2' )dz'

-0

e (z) (3.23)

3

where L 1% =D J 17 (2')K(z,2')dz and L_1%°7 =

0 . 0 -
D f 1%1(2')K(z,2' )dz . Because of the reciprocity of K(z,z')
= K(z',z) and because K is a function of (z-z')2 only, it can
be seen that aK(z,z')/sz = aK(z',z)/az , so that (details in

Appendix B)

ST GRS LR LI N (3.24)
0
(where <A,B>_ = J ABdz) and that
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VI Tz ) = - L% <8, 1%
_ _sB 0
= <i", Li™> (3.25)
A BT z<0
where the scattered currents are defined by 1" = :
-18’1, z>0.

pefining 157 = 1527 + o187 and 17 = 137 + 21" (where
518" and 21%" are small changes in the I®*T and 1%7
respectively), while the Green's function, K, remains unchanged;
IB’r(—za) can be shown to be stationary (see Appendix B for
details). Siﬁce IB’r(-zu) is stationary and because L1® = &g s

Is'r(—za) js double variational as written in equation (3.25).

3.5 The Semi-infinitely Long N Wire Reflected Current Analysis

For the N wire semi-infinitely long array of figure 3.3,

with the wires all ending at z = 0 , with each wire of diameter a,

and with the 1th th

and j~ wires separated by a distance dij’ the
system mode expression for the reflected current from equation
(3.25) is

0B T(z) = T <iptz), M (2,2)in(2')> (3.26)
o mn=0
I(z), z<0
where jm(z) = Jm(z) is the reflected current,

-J;(z) , z>0,
J;(z) js the incident current, and an is described in equation

(3.11). As was done for the infinitely long case, we must select

B

trial functions for j% and j5 . Choosing
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j;(z) = -J;(za) exp(-ikglz]) (3.28a)
382} = -38(z,) exp(-ikplzl) (3.28b)

where J;(za) and Jg(zs) are incident currents as described by
equation (3.17)
Using the trial functions in (3.26) and integrating as in

Appendix A, the reflected current becomes

0BTz ) = Nil 3%z 198(z.)q (3.29)
Sq B qn=0 ™ &' N g’ mn )
N-1
where Q. = -(;O/vN) quO exp (2ni [mp+nq:|/N)[E1(1kOapq)}
a if p=gq th
where a__ = This an is the mn~ term of the
PA )4  if p#aq.

pq
junction impedance matrix.

As an example of equation (3.29), we examine two, semi-
infinitely long wires truncated at z = 0 of figure 3.4. The
incident currents Jg(z) and J?(z) are given by equation (3.21)
when multiplied by E(0) so that Jg(z) = -1/Pyy(z) and J?(z) =
-1/P11(z) where P00 and P11 are given in equations (3.19).

From equation (3.29), we find that Qp = Qlo = 0, showing
that there is no mode conversion in reflection. This means then
that a reflection coefficient matrix with the only nonzero terms
being diagonal terms (R00 and Rll) can be found. Since these
diagonal terms are independent of each other, we can write expres-
sions for these in terms of scalar equations. Rewriting (3.29) we

have
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Figure 3.4 Two wire truncated antenna
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Figure 3.5 Single wire, finite length antenna
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1 _
3E(z,) - 1 92,9502 )y (3.30)

¢
since an =0 if m#n . Inorder to find a reflection coeffi-
cient, it is necessary to examine the reflected current at a 2
far from z = 0 --the discontinuity from truncation. Looking at
the reflected current in terms of the incident current at the end
(J“(za)), the reflection coefficient Rmm’ and an impedance transfer

m

function exp(-ikozs); the transmission 1ine mode reflected current

is (since Jg(za) = 0)

3T (ezg) = 9z 900

o .
Jl(zu)R11 exp(-1sz)
so that the reflection coefficient is found from

R11

» B,T‘ » U-
lim Jq (—zB) exp(1kozB)/Jlxzu)
Z —ro

g
. B .
1im Jl(zB)Q11 exp(1kozB)

Z

B
z]iﬂ [Ym(zs):\11 exp(ikozB)On . (3.31)

(details in Appendix B), the transmission 1ine mode reflection

coefficient for the truncated two lines is

Ryy = —exp(-ikodlan(d/a))-exp{-(kod)2(1-2/zn(d/a))/(4 wn(d/a))}

(3.32)

11

In her 1970 paper, N.I. Shameyeva determined a transmission line
mode current reflection coefficient for the thin, truncated, two

wires of figure 3.4. For a time convention of exp(-iwt), her
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reflection coefficient was
R = -|R| exp(zika)

where |R] = exp{-(kod)z[l-z zn(d/a)]/[li zn(d/a.)]} and the open
end correction a was o = d/[? nn(d/a)].7 Since our time con-

vention is exp(+iwt), it is easily seen that we are in aareement.

3.6 Single Dipole Antenna System Mode Analysis

As a_simp]e example of the system mode analysis for a
finite length antenna, we first look at a simple dipole antenna
of length 2h , with wire diameter a , and being center-fed as
shown in figure 3.5. The system mode current of equation (3.1)

is simply J = Iy = Ips and the system voltage is E = Ej

= 1. Equation (3.4) becomes a Tinear equation:
3(z) = ¥_ (|z]DEg(0) +Y, (h-2)Eq(h) + ¥, (mz)En(-h)
0 0 0
where En(zh) = Qa[Y_ (h)EL(D) + ¥ (2h)E(*h)].
0 C =0 0 =0
B

The incident current (and equivalently the transfer admittance

Y_ (z)) from equation (3.17) is seen to be
0

Blay =y, (@) = -RSAB (ABASP 10 (2)) = ~1/Pgg(2)

0
where Poo(z) = -(;0/2n)exp(-ikoz)[?1(ikor')4-exp(21koz)E1(ik0r+j}

and r = (zz+-a2) + 7z from equation {3.16). From equation (3.29),
the junction impedance matrix can be found so that QOO =

-(gn/7)Eq(iksa) . Due to the symmetry of the problem Q = Q0 »
0 1V'70 BOO COO
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so the system mode voltages E(h) and E{-h) are quickly deter-

mined to be

E(h) = E(-h) = Qgqt,(h}/[1- QgpY,(20)] (3.39)

This results in a total current expression of

3z) = Y_(Jz2]) + [Ym(h-z) R Yw(h+z)}Q00Yw(h)/ [I-QOOYw(Zh)}
(3/35)

so that the input conductance is simply
2
(o) = Y _(0) + Z[Yw_(h)] QOO/[l-qoovm(zh)] . (3.36)

The results for equation (3.36) for the single dipole antenna are
compared with the results of the King Middieton method? for various

values of koh in figure 3.6 with good agreement.

3.7 Two Dipole Antennas System Mode Analysis

Since we determined the system mode transfer admittance
matrix (for the infinitely long wires) in section 3.3 and the
junction impedance matrix in section 3.5, we need only determine
the system mode voltages E(h) and E(-h) to determine the two
dipole antenna current for the antenna of figure 3.7. Since there
is no coupling between the antenna mode and transmission Tine mode
(Q01 = Qg = 0 as shown in section 3.5), equation (3.6), the

linear equivalent of equation (3.7) can be used:

32} = (301210 *+ Cold (h-2))g + Byl twzd)g  (3:37)
1 1 1 1 1 1
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Figure 3.6a Single wire antenna input conductance vs koh
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Figure 3.6b Single wire antenna input susceptance vs koh
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Figure 3.7 Two wire, finite length, center-fed antenna
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(where the coefficients B0 and Co are determined as E(h) and
1 1
E(-h) were for the single dipole case in section 3.6, from

equations (3.8) and (3.9)). The "0" subscripted variables are for
the antenna mode and the "1" subscripted variables are for the
transmission line mode.

The coefficients CO, BO’ C1 and B1 are determined in

Appendix B so that Co = By = Qqo[d.(h)]o/ [1- Qgp(d.(20)g ] -
1 1 11 1 11 1
Knowing this, equation (3.37) becomes

Jof2) = (012D + [3,(h2) + 3, (m2)| o0, (h)g/
1 1 111 1
[1 - oggto.(2n)g) (3.38)
11 1
The resulting input admittance is then found to be

2
v.(0) = 3,(0)] - Z[Jm(h)lo] Qo [l-QOOJw(Zh)[O] (3.39)
t 0 gt 11 ]

Ya and Yt are compared with King's second order approxi-
mations® for various kod in figures 3.8. The results are in good
agreement for o = 2 an(2h/a) = 15. Figures 3.9 show Ya and Yt
for varied koh ,with d=.5h and d=h . As would be expected,
for the antenna mode the admittance resonance peaks are greater

for greater separation; for the transmission line mode, the admit-
tance resonance peaks are smaller for greater separation. The

slight variances in the resonances for d = .5 h and d = h are

caused by end effects (differences in end capacitances).
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Figure 3.8a Two parallel dipole antennas antenna mode conductance
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Figure 3.8c Two dipole antennas transmission line mode conduc-
tance vs kod
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3.8 Circular Array of Three Dipole Antennas System

Mode Evaluation

As another example of a finite length antenna array, we
examine the three dipole antenna circular array (each element is
of equal length and is center fed} shown in figure 3.10. The
development for this geometry is identical to that for the antennas

in a plane, except that the kernal is defined by

Kpg{z-2") = (igo/am) exp(~ikgRy )/Ryo

Pa d if p#q.

To use equations (3.1) and (3.17), we first determine the Pmn

. if p=gq
= _'2 21& = :
where R ((z-2") +apq) and apq {

coefficients from (3.16):

POO 0 0
P(z) = |0 0 P12
0 P21 0

where Poo(z) = -(g0/2n) exp(-ikoz) {El(ikor;) + 2E1(ik0ra) +
X .+ L+
exp(21koz)[E1(1kr'a) N 2E1(1krd):l} (3.40a)
and PIZ(Z) = P21(z) = -(§0/2w) exp(-ikoz)

{El(ikr;) - El(ikra) + exp(Zikoz)[kl(ikr;) - El(ikr;)]}
(3.40b)
The next step is to determine the coefficients Am and An in

Fas and J: (z) . These are done as the coefficients were found
g
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Figure 3.10 Three dipole circular array antenna
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in section 3.3; details are in Appendix B. The resulting incident

current is

_ T
J.(z,) = TJ‘;B(zB) = =(1/Pygs 1P s 1/Py) (3,41

Since there again is no coupling between the antenna mode (J_ )
00

and the transmission 1line modes (Jm and J_ }, is is possible to
12 21

use the scalar equation (3.6) as we did for the two dipole case in

section 3.7:
u - -
Jy(z) = Juy(lz[) + er(h+z)BY + CYJwY(h z) (3.42)

form=n=0 or mn=12 or 21. The subscript y refers to
either antenna mode (y = a for m=n = 0} or transmission line
modes {y =t for mn = 12 or 21).
The transfer admittance matrix is found using eguation
(3.29) and is just Q=P(0). Now BY and CT can be deter-
mined as they were in section 3.7 so that
c =8, = QYJmY(h)/[l- QmeY(Z-h)] (3.44)

Equation (3.42) becomes now
a _ o _ @ a e g
B(2) = 92 (2]) - 8, (1), [32w2) + 32 (2 ]/
I:I-Q J° (2h):| (3.45)
Y oy
and the input admittance is

2
Y, =13, (0) - Z[Jw(h)} QY/[I-deW(Zh)} . (3.46)
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King states that the input admittance for the transmission
line mode of the three wire antenna is identical to the transmission
line mode of the two wire finite length done in section 3.7.3
Equation (3.46) for y =t 1is identical to the transmission Tine

mode admittance for the finite length two wire given in equation

(3.39).



CHAPTER IV
UNEVEN LENGTH, TWO ELEMENT DIPOLE ANTENNA

In the previous examples of the double variational analysis
of parallel dipole antennas, the antennas were of identical length.
The total current and the input admittance derived from equation
(3.7) are therefore simply evaluated without matrix arithmetic
since the Q matrices reduce to simple matrices with only one nonzero

element per row. When the wires are not truncated at the same z,
however, mutual impedance terms make 5 more complicated.

For the two wire, unevenly truncated, finite length antenna
shown in figure 4.1, the matrix equation {(3.7) becomes necessary.
The '7w is gotten from the infinitely long, two wire antenna
analysis of section 3.3; the junction impedance 53 and 6C
however, must include terms to compensate for the extra length

of wire #1.

4,1 The Reflected Current Double Variational Expression

The first step in the determination of the junction
impedance matrix for the antenna shown in figure 4.1, is to deter-
mine the variational expression for the reflected currents. Since
the reflected currents on each conductor is affected by the uneven

termination, we will first examine the wire to wire current



Vo #0
T L D) D
d 20
| i y
C
ot
h-4 ~-h 0 h h+t

Figure 4.1 Two wire, unevenly truncated, finite length antenna
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53



54

expressions and then determine the system mode currents for use in

(3.7).

To start with, the electric field on the pth

wire is
defined by
1 Zq
gz (z) =D } J I (z')K_(z,z')dz’' ; p=0,l (4.1)
p 0! 9 pa
T L3 - _‘2
where qu(z,z) (1;0/4nk0qu) exp 1k0qu) . qu ((z-2')° +

agq)%, D= (azlazzi-kg) , and Iq(z') is the current on the qth

conductor. By defining

qulq =D J Iq(z‘)qu(z,z')dz (4.2)

-

where Iq(z) =0 if z> zq we can then write the vector electric

field on the conductors as
e
Zp 1 =
ez(z) = = Z LIq (4.3)

We consider two different states of excitation, o and g , whose

Yo
-( a)ah+za) (4.4a)

for the source at z = -z_ , and

electric field sources are

g (2)

Vo
)5(z+zs) (4.4b)

™|
N o
-
~N
S
0}
1
—

for the source at 2z = -Z, . The two possible states we examine are

Vo = V=1 (the even state) and Vg = V=1 (the odd state).
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Rs we did in section 3.4, we define scattered currents

1% (), z<2
i%(z) = P P (4.5)

P -I;’i(Z) 227

where again I;’r is the reflected current and 13’1 is the
jncident current (pr(z)) on conductor p ; and similarly for

iB(z) . We also define

N
¢ = (4.6a)

"
and I%’i
11 =( (4.6b)
o, i
so that for all 2z
=T+ T (4.7)

Now by following the procedure of section 3.4 except using
the offset from z =0 to z = zp , we get a double variational

expression for the reflected current similar to that of equation

(3.25):
Be,r I R —
Vlt® (-2g) = pi’s’ Li> (4.8)
where ?é is defined by (4.5) and L is defined by (3.23). This

will be true, if only one of Vg and V? , namely Vg , is not

equal to 0.
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4.2 Trial Functions for the Uneven Length Dipoles

Now that a double variational expression for the reflected
current (wire to wire expression) for the antenna of figure 4.1
has been found, it is necessary to select trial functions. Since

the two wires do not end at the same 2z , approximate trial func-

tions are

is = -181(2 +-z } exp(- 1k0|z z |) (4.9a)
and

o _ _qai i _

i Iq (zu4-zq) exp( 1k0!z qu) (4.9b)

ol + Bi + .
where Iq (z, zq) and Ip (zB zp) are the amplitudes of the

th th

incident current at the end of the q and p conductors,

respectively. Substituting equations (4.9) into (4.8) gives

VEIS T (~2,) = - (igg/Arko) )

© rBi .
q q A J dzI®'(z +z ) exp(-i U!z zpl)

p 8 P

i _' l-
D(z) J dz' qu(z 2! (zai-zq) exp{ 1k0|z zq|)
- (4.10)
where qu(z,z') and D are as defined in equation (4.1). The

integrals in (4.10) are integrated in Appendix A so that

vBI® Tz ) = % 181z 42 319z +2 ) (4.11)
qq Bp=1p6qt1aqpq .
where
. +
Toq = '(CO/ZH) {exp(-ikyz pq)E (1k0r ) + exp(ikg2 pq)E1(1k0rpq)} ,
(4.12)
o %, =7 -
"nq (pq ) Zpg * Zpg " %p " % and

a, 1f P=q
a =
d, if p#q.
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Since all 2z distances are relative distances, without

Toss of generality, we can change the zero reference to that shown

IB'I

in figure 4.2. Now a logical choice for the functions (z tzy )

and IS‘(za-rzq) since we are working with thin wires is

IST(z +z ) = 131“6(2 ) exp(-iknz, ) (4.13a)
P "8 0%p
ai - ainc _3
Iq (zu4-zq) = Iq (za) exp( 1kozq) (4.13b)
where Isinc(zs) and :1"C(z } are currents incident on the p th
and qth wires (respectively) at z = 0 position (the reference
point). Substituting equations (4.13) into (4.11) gives
1
313’"( zg) = ] 17 inc(, )I“”"C(z Jexp(-iky(z)+2,))r
p=0
(4.14)

4.3 Transforming I®'" to the System Mode Reflection Currents

q

In order to determine the relation between the system mode
currents and the conductor to conductor currents used so far in
this chapter, we use the discrete Fourier transform expression for
the system mode current, equation (3.1) for N = 2:

Jm(z) (1/2) {0 I (z) exp(-iumnm)
u_

so that

Jg(z) = [Ig(z) + Ig(z)]/z (4.15a)

and i) = [130) - 1302 (4.15b)
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for both reflected and incident currents. Using these expressions

for Ig’r and I?’r given in equations (4.14), this gives

JQ,Y'(

(1/2) Z {181"c( ) u1nc(z Yexp(- 1k0(z +2 ))r
p=0

ging ainc i
+ Ip (.zB)I1 (zu)exp(-1k0(zl-+zp))rp1} (4.16a)

_ZB)

for VS = Vf =1 (8, even) and

a,r _ B1nc ainc i
Jq (-zB) = (1/2) pIO{I (z )I (z,)exp{ 1k0(zo+zp))1‘pO
+ Is1nc1?1nc(za)ex9('iko(zl'+Zp))rp1} (4.16b)

for vg = -vf =1 (g, odd).

Now it is necessary to use equations (4.15) for the 8

incident currents. For g even , VS = Vf =1 so that Ig1nc(z)
= Ifinctz) , then
@) = 1) « 18] < 1 e
and 981(2) = (U218 () - 1802 = 0 (4.17b)
Similarly, if & isodd , V8= -vE =1 so that 181 = _1BInc(y)
then
ngc( ) = (1/2)[13‘““(:) + If"‘c(z)} =0 (4.18a)
() = (21" (a) - 181n¢()] = 181"C(2) (4.18b)

Using equation (4.15) on IETnc(z ) and I?lnc(za) , knowing that

2g=0 and 23 =2, using equations (4.17) on {4.16a) and equa-
tions (4.18) on (4.16b) we get
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Jp' (-zg) = Bz G (2 )0pg # 95"z, )0p,}  (4.19)

and  I"(-z,) = Jf‘"c(zs){dg‘“c(zu)qlo +97"%(2. )0, (4.19b)

where Qp = Qpq = roo(l-exp(-Zikz))lz (4.20a)
Qoo = r00(14-exp(-21kz))/2 + Ty exp(~-ikz) (4.20b)
and 011 = r00(1-+exp(-2ik£))/2 - Tg exp(-ike) - (4.20c)

for Too and To1 given in equation (4.12). (Details given in
Appendix C.) It can readily be seen that if 2 = 0, this Q
reduces to the 5 for the evenly truncated two dipole antenna

given in section 3.5.

4.4 Using the System Mode Reflected Current Expression (3.7)

Since the transfer admittance matrix, 7w, and the junction
impedance matrix have been determined, all that remains to be done
is to determine the system mode voltage E(0), since we will
calculate E(h) and E(-h) in our computer calculations from
equations (3.8} and (3.9). From equation (3.5) we have that

E= ()1, so we must find (§°)"! before we can determine

E(0). We also have from {3.5) that

Son = exp(nimn) so that
500 = exp(0) = 1
So1 = 510 = 1

and S;y =-1.
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1_%2.

for this case (S*)'

For the two element Yagi antenna of figure 4.3 where
conductor #1 is the parasitic element, we have E(0) = (.5,.5)T ]
Figures 4.4 and 4.5 show the total current, IO(O) , on conductor #0
and the total current, 11(0) , on conductor #l--the parasite,
respectively, for & varied between -0.15 meters and 0.15 meters.
It is interesting to note the relative phases of I0 and I1 when
the parasite is longer (2 > 0) or shorter (& < 0) than the driven
element. When the parasite (#1) is longer, say ¢ = .05m for
d=.4h, then I,/Iy=0.5exp(2.4 radians). However, where I
is shorter, say & = -.10 meters again for d = .4 h, then
11/10 = 0.5 exp(-2.1 radians). The elements are therefore phased
nearly oppositely for the two cases. From antenna array theory,
the radiation pattern for these two cases can be drastically
different.l0 This is consistent with the behavior of the "director®
and "reflector" elements of yagi arrays with larger numbers of
elements. 1!

Figures 4.6 show the total currents on conductor #0 and
conductor #1 for g constant at .09 meters but for varied fre-
quency. There is a pronounced primary resonance peak near koh =
1.45 for both I0 and I1 which corresponds to the resonance of
the shorter driven element. However, in I0 a small secondary
resonance near 1.25 can also be seen. This lower frequency

resonance results from weak coupling with the longer parasitic

element (#1).
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Figure 4.3 Two element Yagi antenna
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f = 100Mhz
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[ l l I I |
-0.15 -0.10 -0.05 0 0.05 C.10 0.5 2>

Figure 4.4a Two element Yagi antenna of figure 4.3 real part of
the driven element current, 10(0), vs varied dif-

ferential lenath, 2
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35 Im (1 (0)),mA

Figure 4.4b Two element Yagi antenna imaginary part of the driven
element current, IO(O), vs varied length differential,

£
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Figure 4.5a Two element Yagi antenna real part of the parasitic
element current, 11(0), vs varied length differ-

ential, %
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Figure 4.5b Two element Yagi antenna imaginary part of the
parasitic element current, 11(0), vs varied length

differential, ¢
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Figure 4.6a Two element Yagi antenna driven element current, IO(O),
Vs koh for constant % but varied frequency
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Figure 4.6b Two element Yagi antenna parasitic element current,
11(0), VS koh for constant 2 but varied frequency



CHAPTER V
CONCLUSIONS

We have seen that Vainshtein's double variatienal technique
can be extended from the single infinitely long, thin wire to the
N element dipole antenna array with good comparison for the one
element case to the method of Rispin and Chang, and for the two
element case to the method of King-Middleton. We have also
extended this technique to a two element Yagi antenna, something
not possible with the current Wiener Hopf work. We also used much
less computer time and space than would have been necessary for
the moment method.

Using a straightforward extension of our procedure followed
in Chapter IV, the double variational method could furthermore be
extended to solve an N element Yagi antenna using computer calcu-
lations to determine the terms for the junction impedance, the 5 .
and the conversion from wire to wire currents to system mode
currents. The double variational procedure could also readily
be used to find currents on other devices such as microstrip
resonators and junctions if good trial functions for the currents
were used.

We could improve the results gotten from this procedure
by going to a second order approximation using the results from

the first approximation for the incident and reflected currents



as trial functions. The integration required for the second
order approximation would be more difficult than the first order

approximation integration, however.
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APPENDIX A

A.1 Equality of <Iu, LIB> = <IB, LIu>

One equality that is necessary for the manipulations of
expressions for the incident current (the current for the infinitely

long wires) is that of equation (2.4) in Chapter II:

<Iu’ LIB> = <] LIa> (A.1)

B’
where L, I, and the expression < , > are as defined in equations

(2.6), (2.8), and {2.3). Substituting these equations into the

right hand side of equation (A.1) gives

o - .}

32

ap g = [ @] [ areke) . ()

¥4

- -

Assuming by reciprocity that K{z,z') = K(z',z) and knowing that
the kernel K (as defined by equation (1.2)) is a function of

(z-z')2 only so that 3K/3z = -3K/»z' equation (A.2) becomes

2
<IB,LIG>-J dz'I (z ) [——T§+-k2] f dzIB(z)K(z,z')

- -0

= <Iu, LIB> .

thereby demonstrating equation (A.1).
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A.2 Integration of the integral g(z) =

-]

oo | 2
I dz exp(-ik0|z-c1|){§;§ + kg] J dz' exp(-ikO[z'_c2|)qu(z,z-)

- -ci

An integral of this form is used in Chapters II-IV where

1.
. . pa 2 ¢

"y = - - = 7! +
qu(z,z } ieg exp{ 1k0qu)/(qu4n) and qu ((z-2") apq) .

To evaluate it we first substitute

o0

qu = J dz' exp(-1k0|z'-c2|)qu(z,z') (A.3)

The integral now becomes

o

' 2
8z} = [ dz EXP(-ik0|Z'CIl){§-§ + kg}qu (A.4)
z -

Using integration by parts
I fledx = f¢l - J fo'dx

(Gradshtyn and Ryzhik, equation 2.02.5), we reduce

J dz exp(-ikolz-c1|)(aszq/azz) to

-0

<o

o oF
_m + iko J {gzﬂg}H(z) exp(-ikolz-cll)dz

= (A.5)

aF
{5529 exp(-ikolz-cll)

1, z-¢¢< 0
Using integration by parts

where H(z) =
-1, z-¢> 0

again on the second term in (A.5) gives

Banq/az)exp(-ikolz-cli)*'1k0H(Z)quEXP(-ik0|Z'Cll)

o«

]

- iko I szpq[(—ikU) + 26(z-c1)]exp(-ik0|z-c1|) .

-]
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Assuming k, has a small lossy part, exp(-1k0|z-c1|) goes to zero

for the 1imits -« and « so that this reduces to

ooy

2
--k0 f dzF

pqexp(-ikolz-cll) - Zikonq(cl) exp(-ikolcl-cll) .

Putting this back into 8(z) of equation (A.4) gives
s(z) = dzkzex (-ikn|z=C |)F_ _ + (-k2 dzF
e 0 1'""pq 0

- -0

21k0qu(c1) .

pqexp(-ikolz-cll))
This simplifies to

8(z) = 21k0qu( 1)

-Ziko J dz' exp(—ikolz'-czl)qu(cl,z') .
Using the substitution u= 2z' - Cy » this becomes

[--}

) . . 2, 27"
3(z) = €4 J du exP(-1k0|U|)EXP(-1k0[Fc1-u—c2) talo| )/

-0 ;’

2 2 |*
([(CI'U‘CZ) + apq] 2TI').
By setting ¢, - ¢y = ¢, g{(z) becomes

o

8(z) = -(gg/2m) duexp(-TROU)exp(-iko[(u+t:)2+a2q] )/l:wc)2 EJ

+ J du exp(—ikou)exp(-iko[‘u-c)2+ .] [(u c)2 24} } .
0
Considering first
3(z) = i dz exp(- 1k0|z+c| Yexp(-ik (+c))exp( ik [tz+c) p;1)/

( [2£c] 24 agq)
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i

i . . _ 2 24\
with the substitutions t = ([z2¢c]” + apq) + (z+c) and

2, 27"
dt = tdz/[kz:c) + q} , we get

%
;(z) = f dt exp(-ikot)exp(lciko)/t
to

2 2 % + . . .
= + t¢= . A
where to E: apél tc rpq bramowitz and Segun in their
equation 5.1.1 state

ad

E (z) = J {exp(-t)/t)dt ,

so that z
~ - . i
a(z) = exp(+ik0c) E1(1k0rpq) .
Therefore,
8(z) = -(Ey/2n) {exp(-ikoicz-cll)El(ikorpq)

+ exp(-ikglcpmcy DE; (kgry )} (A.6)

+ _ 2.2 -
where Foq = (c -+apq) tc, and c=cp+Cp.

A.3 I:(z) for Two Infinitely Long, Thin Wires

Far Field Approximations

To determine the far field expression for the transmission
1ine mode current for the infinitely long, twe thin wire antenna

of section 2.3, we begin with equation (2.9)
I:(z) = 2n exp(-ikoz)lcoft(z) (A.7)

where ft(z) = El(ikor;) - El(ikora) + exp(Zikoz)[Fl(ikUr;)
- El(ikor;):l where r: = (22+a2);E + 2z and ré = (z?'-niz)Lé + 7.
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Far from the source we can assume that z2 >> a2 . 22 > d2 and

(koz) >> 1 . This implies then that r; e r; = 2z and

-

r

X
2
a )

z(1+a2/z

-2

1

z(1-+a2/(222)) -z

a2/22 .

Similarly ra = d2/22 . The series expansion for the exponential
integral El(z) is
E(z)=-v-2tmz- ] (-1)%"/(nl)
n=1
where y 1is Euler's constant. Using this series expansion for

El(ikr;) and El(ikr;) gives

Ey(ikr]) = - v - en{ika/2z)
and

E (ikrg) = - v - gn{ikdl/2z) . (A.8)

Using the asymptotic expansion for the exponential integral:

El(z) = (exp(-2)/z)}{1-n/z + n(n+1)/z2 - . (Abramowitz and
n=1

Segun equation (5.1.51)) for El(ikor;) and El(ikr;) gives

ot
E1(1kra)

exp(-ikZZ){l-l/iZkz}/ikOZZ

exp(-ikZz)/ikOZZ =0,

H

Similarly El(ikr;) 0 . Substituting this and (A.8) back into

the expression for ft(z) in (A.7) gives



14

,(2) = -an(ikga?r2z) + snlikge"/22)

en(d2/a%) = 2 n d/a

which means that

14

15(2) = exp(-1kyz)/(og n{d/a)/m)

n

exp(-ikoz)lzc
where Zc js the characteristic impedance:

Zc = pozn(d/a)/w .
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APPENDIX B

. i - i
B.1 Equality of <IB, LL> =<l LIB>_

One equality that is necessary for manipulations of the

equations for reflected current is
LI>=<I, Ll (B.1)

where LI , LI, , <>, and <->_ areas defined in equations

8 ]
(3.23), (2.3), and (3.24). By definition

-]

i _ i
<l LI = f 1L 1.dz

-0

pes 0
- | riena) [RACDICRSR (8.2)

where D(z) = (s%/32% + KB) .
Now assuming by reciprocity that K(z,z') = K(z',z) and knowing
that K dis a function of (z—z')2 only so that aK(z,z')/sz =

-3K(z,z')/5z' equation (B.2) becomes

'i - 1 f .i - 1.
al, L1 - j dz'1 (2')D(2') J dz1(2)K(z,2') = <l LI
~ - (8.3)
thereby demonstrating equation (B.1).

B.2 Development of VIE‘r(-za) = -<1B, L+I“’1> + <iB, L_I“’r>

To develop a functional for the reflected current we begin

with the functional <IB, L.1>
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o 1] ol r i
<IB, L_Ia>_ <IB, L_Ia> <IB, L_Im>+ + <IB, L-Ia>_
+ <If, L10> (B.4)

since Ix = Ii + I; and <> = <e> ® <> Using equation (B.1)
on <I;, LI> knowing that LI = € = -Vaﬁ(z+za) . that

<1;, L1)> = <1;, -V §(z+z,)>, = 0 and that af, 1> =
<IE"Va5(Z+Za)>- = -VGIE(-ZG) , we obtain

- - - re. i i, _ o r
<Igs L_Ia:"_ = Val:lu( ZB) + IB( za)] t <lps LI - <Ip L1,

r i r r
- <IB, L+Ia>_ + <IB’ L_Iu>_ . (B.5}
But <IB, L_Ia>_ =<l s LIB>_ = <Iu, 8B> = 'VBIa('ZB) . Substi-

tuting this into (B.5) gives

r s i . roo_ s . _
VmIS(-zu) = -<ig, LI> * <l LI> = <ips Li > (B.6)
IE , 2<0
vhere iB = j are the scattered currents.
-IB Y > 0

B.3 Demonstrating that the Reflected Current Functional is

Stationary

To see if I; and 17 are actually double variational it
is necessary to add a small perturbance to both I; and 1 and

use this in equation (B.6); therefore we set

=17 + 81" and
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Substituting these into the terms of the right-hand side of (B.6),

the reflected current expression yields

<Ir, L Ii> <Ir . L I > + <81" L I >
B” +a-

By B*
SURETR I LTS RS RT LR SRR VAP S M
¢ 0 %0 %0 0 %0
+ <517, L 17>
g 'ﬁo'
and
i r_ i r i r
<IB, L_Ia>+ = <IB, L 1 0> + <I L_GIG>_

Assuming the double & terms are approximately zero, using the
equality LIB = VBG(z+zB) , and knowing (similar to equation (B.1))

<Igs LI> =<l ,LIp> , these terms reduce, respectively, to

8
<I0,L, 1 > = <1” L, 1 >+ <6I,L 1” (B.7)
B 8o B’
S LN LIS LA LESIE T LS LSRR MR A
B -a By’ =% % - B -
(B.8)
and
JiLhs, - I‘ LIT >, + <oIT,L 105 (B.9)
' ="a +
0 0
Substituting equations (B.7)-(B.9) into (B.6)
. - r i g S
<1B’Gla> = IB,L I > - <IB L+I > <IB’L-Ia> + <IB,L I>
o 1 i _ T - r -
= <IB,L+Iu> <IBO oL, I > = <8l ,L_Iu>_ B’L-I 0
r r r roT
- <&l L_IBO + <IBO,L_Ia0>_ + <61s,L_Iu0>_
+ <aI WL Ir

Bo
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The & terms cancel each other, in so doing only the steady-state

terms remain so that 8, BIE('Za) = 0. Thereby it is seen that
»

Ir

8 is stationary.

B.4 Truncated Two Wire Reflection Coefficient Thin Wire

Approximations

In section 3.5 we used thin wire approximations (a << d)
to arrive at a simplified expression for the transmission 1ine mode
current reflection coefficient. Here we show further mathematical
details of this approximation.
Starting with equation (3.31)
Ryy = 1im [Ym(zs)]nexp(ikozs)on (5.14)
we substitute in equation (3.21) for [%m(zgilll so0 that
R11 = Qll 2112 {—exp(ikozs)/Pll(zB)} (B.15)
where Pll(zs) = -{co/zn)exp(-ikozﬁ)[?1(ik0r;) - El(ikor;)
+ exp(i2kozB){E1(ik0r;) - El(ikor;){} and rﬁ = (z% + dZ)% tz,
and r: = (z% + 32)% + z, - Using the thin wire far field result
for {%a(zi} found in Appendix A, section A.3 and using equation
(3.29) for éil’ R11 becomes

Rll = “011/{';0 En(d/a)}

-[ey taige) - £, (ikgd) | /an(e/a) - (B.16)

Now using the series expansion for the exponential integral
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El(z) = -y=2N2Z- E (-1)"2"/ (nn!)
n=1

where y is Euler's constant, equation (B.16) becomes

Ry = (an(d/a) + [-ikgd+ ikga - (kgd)2/a+ (kgd®)/4] /an(d/a)y
(B.17)

We would like to get the right hand side of (B.17) into
the form of exp(-ikodK1 - (kod)sz) so that we can write R.l1 in
terms of exponential functions, so we use the series expansion for

the exponential function

l+x+ x2/2 + ...

exp X

1+x+ x2/2 for small x .

We can now see that we need R11 in the form of
. 2 1 2,2 3

Rewriting equation (B.17)} intc this form we have

R11 = ={1 - [’Ikod + (kod)2/4:|/£n(d/a) +o[(k0a)]} . Now assuming
that a << d , it can be seen that Kl = 1/zn({d/a) so that

1/4 g¢n{d/a) or K, = [? - 2/2n(d/a)}/4 an(d/a) so
-exp{-ikod/nn(d/a)}exp{-i(kod)z[}-Z/ﬁn(d/ai]/4 en(d/a)}.

2
K2 + K1/2
that R
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B.5 Three Wire Circular Array Antenna of Finite Length

JINC coefficient Derivation

In equation (3.17) we saw that

N-1
P2y =-yF = -AR R 0T AP 3
Sg aB Sy Sg mn=0 AnPnPrn
With P as stated in equations {3.16) this becomes

aB 8

To correctly select the A; and Aﬁ to equal one, it is

necessary to remember the physical problem. We have a voltage

sequence phased as

Vaireso = /3
Vwire#l = exp(-iZnsa/3)/3
and Vwire#z = exp(-i4nsa/3)/3

while we have currents (due to the definition of the discrete

Fourier transform) of

Lyiresg = 1/3

This means the phase of the current and voltage on each wire is

= o = _(p%aP o 4B o, B B po
Fog = = 105 (2)=-{RghgP + Ay Ay Ppp ¥ A2A1P12}’(AsaAsB)
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as shown in Figure B.1. The most direct method to get the correct

A% and AS to set to 1 is to use

e =a8 = (B.13)

N-s N-s
[+

to avoid phase errors.
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Figure B.1 Phasing differences for three dipole circular array
antenna voltages and currents
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For the case s =5s_ =20,
a B

F
w8lg Lo oo o000 M1"2"12

o B
Using equation (B.13) we set Ag = Ag =1, so that

= (P + A%ASp., + A%Bp

F 0o * MAPra + AAP)

The variational property gives

u— —-—
aFaslwlaA1 = AP, =0

So that Ag = 0 . Using the variational property again on Fuﬁ

gives

B _ a0 -
aFaB/aA1 = A2P11 ]

resulting in F s POO’ and (Ym)00 = -1/P,

gl

Now for s =0 and s_=1
a B
o _ pOaB, p0pB onB a,B
3 (2)] = -AJAy/ {AGRGPag + ATAZP1, + RpATPy )

B 01
1 ici a = A% = =B =B
We want the coefficients A; = Aj=1 As1 = Ay

equation (B.13) so that
o = _n%B,raB o
Jg, | ArAg/ {AgPoo *+ ArP12

g 01

The double variational property gives

oy B
+ AATPy 5]

o B _ aopB P a
aJsB/aAo ARaPoo’ tRgPoo * 1Pz

@B _ . o = =
so that AjAp = 0, therefore J | = (Yo)gy = 0 .

™

01
2

For the S =0 and s
o B

= [(a%pB o B oy B o, B

according to

a,B 2 _
+ AZAIPIZ} =0
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Table B.1

Three dipole antenna circular array coefficients

¢ S Ap = Aﬁ - J:B th

0 0 A AS Py ~1/Pyy
0 1 A A 0 0

0 2 A A 0 0

1 0 A AS 0 0
11 AS A 0 0
12 A AP SRy, -1/P,
2 0 AT Ay 0 0

2 1 AT A} P, -l/P,
2 2 A% AP 0 0
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APPENDIX C

€.1 Calculations for Converting Wire to Wire Current to System

Mode Current for the Two Element Dipole Antenna

To use equation (3.7) we need to convert the conductor to
conductor reflected currents of equation (4.14) to system mode
reflected currents. Here we show the details of obtaining equation

(4.19) from equations (4.16):
02 (-25) = () z (1B (-2 ) 15" (2 exp (~Tky (z5+2,) )Ty
+ I§1nc(z )Ia1nc(z )exp(-ik0(21+zp))rpl} {C.1a)
and JT’r(-zB) = (%J { {IB1nC( Zq gmc(za)exp(-iko(zoﬂp))1"pO +
Iginc(za)I?mc(za)exp(-iko(zfzp))I‘pl} (C.1b)

Equation (C.la) was gotten for g even (VO =V, = 1) and equation
(C.1b) was gotten for B8 odd (VO = -V = 1). For B8 even we also
found in equations (4.17a) that Iginc(z) = I?inc(z) = Jg1nc(z)
but JBinc(z) = 0 . Using this in (C.1a) results in

_ (1Binc a1nc ainc
M(zg) = (BB1(z,1/2) pgo{[ (2,) + (2, )]
-exp(-iko(zl-zp))l‘po + [9ginc(za) - Jginc(za)}

-exp(-ikg(zl-zp))rpl}
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where equation {3.1) was used on I%inc(za) and I?inc(za) .

Using the fact that Tgg = Typ and Ty =Ty (from equation
(4.12)), and that z5=0 and 2z, = £ we get

. 1 .
Jg’r(-zs) = (%JJ81HC(ZB) pzo {Jg1nc(zu)[?poexp(-iko(zo+zp)) +

plexp( iky(z,+2 )] + Ja1nc(z )[ exp(-ik0(20+zp))
plexp( -ik (zl+zp))]}

so that
Jﬂ’,r(- )=lJBinC( ) {J 1bC( )[ (1 + ex ('Zikz) +
o (-2g) = 29y T(z5) Wy Tz, ) {Tpgll + exp
zrloexp(-ikz)] + JTinc(za)[%o(l - exp(-Zikzﬂ (c.2)

For B odd we found in equation (4.17b) that
1B31¢(z) = -1817C(z) = 3B¥C(z) but 9BT"C = 0 . Equation (C.1b)

can now be written as

JT:Y’(_ZB) (%) {IB1NC(Z )ICﬂnC(Za)roo + I§1HC(ZB)Ig1nC(Za)r10
-exp(-ike) - Iginc(z )I"mc(za)r10

- 1§12 )1z Dexp(-2ikadry )

00" Igmc(za)exp(-ikz)r01

_+1,,Binc ainc
+ I?1nc(za)exp(-ik£)r10 - I?’"c(za)exp(—zikz)ril}

= (PIEC(2g) (G2, + 95 " (2,)) (T -
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+ (9310(z ) - 97 "C(z ) (exp(~ike)ryg
- exp(-2ika)ryy)} -

J?ﬂ'(_zﬁ) = %_ J§1nC(ZB){J%1nC(ZQ)[I'oo(l - exp(-Zikz)):l

+ Jc;inc(za)[poo(l+exp(-21k£)) -2 exp(ikﬂ.)TOl]}
' (C.2)



