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Abstract. Localized persistent cortical neural activity is a validated neural substrate of para-
metric working memory. Such activity ‘bumps’ represent the continuous location of a cue over several
seconds. Pyramidal (excitatory) and interneuronal (inhibitory) subpopulations exhibit tuned bumps
of activity, linking neural dynamics to behavioral inaccuracies observed in memory recall. However,
many bump attractor models collapse these subpopulations into a single joint excitatory/inhibitory
(lateral inhibitory) population, and do not consider the role of interpopulation neural architecture
and noise correlations. Both factors have a high potential to impinge upon the stochastic dynamics
of these bumps, ultimately shaping behavioral response variance. In our study, we consider a neural
field model with separate excitatory/inhibitory (E/I) populations and leverage asymptotic analysis
to derive a nonlinear Langevin system describing E/I bump interactions. While the E bump attracts
the I bump, the I bump stabilizes but can also repel the E bump, which can result in prolonged re-
laxation dynamics when both bumps are perturbed. Furthermore, the structure of noise correlations
within and between subpopulations strongly shapes the variance in bump position. Surprisingly,
higher interpopulation correlations reduce variance.
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1. Introduction. Storing information ‘in mind’ for short periods of time is es-
sential for performance of daily tasks [24]. Parametric working memory (as used in
tasks requiring a delayed estimate of a continuous quantity) uses spatially localized
persistent neural activity in the prefrontal cortex, parietal cortex, and frontal eye
fields [16, 24] generated in neural circuits with strong local recurrent excitation and
broad inhibition [9, 31, 44]. Neurophysiological recordings from non-human primate
subjects performing visuospatial working memory tasks have shown that localized
bumps of persistent activity encode remembered parametric quantities for a few sec-
onds [9, 21, 24, 31]. For example, in the oculomotor delayed response task, a location
cue is momentarily presented on a circle displayed on a monitor, then a delay period
occurs during which the video is blank, and finally the subject is prompted to report
their memory of the cued location. During the delay period, neural recordings identify
cells tuned to specific cue locations around the circle and reveal that the strongest
(peak) firing neurons represent the encoded location [21,22,24]. Peaked and localized
activity wanders stochastically during the delay period, representing a time-dependent
degradation of cue location memory consistent with subsequent response errors [8,48].

Neural field and spiking models are capable of producing peaked, localized activ-
ity that wanders via spatially structured connectivity that weakens as the distance
between neural cue location preference increases with excitation having a narrower
spatial footprint [27,31,44,47]. Bumps can be defined as standing pulse solutions usu-
ally with two key dynamical properties important for encoding memories of continuum
variables: (1) they are self-sustained in the absence of stimulus (representing memory
over a delay period) and (2) they exhibit marginal stability, such that they can occur
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at any location in the network and integrate translational perturbations [27]. Such
solutions have garnered interest due to the rich dynamical features that arise when
varying the form of connectivity, introducing propagation delays, adding slow nega-
tive feedback, or considering stochasticity [4, 12, 19, 27, 31]. Response statistics and
neural activity during oculomotor delayed response tasks are also well characterized
by the output of bump attractor models with some form of stochasticity incorpo-
rated [3, 9, 48].

Previous psychophysical studies of delayed estimation of continuous quantities
show subject errors scale linearly with the delay period [43, 46]. Such behavior can
be accounted for by models whose low-dimensional dynamics evolve as Brownian mo-
tion, like a particle subject to diffusion. This is consistent with a bump attractor
stochastically perturbed by noise, wandering along a marginally stable ring attrac-
tor [8,31]. Extended models have also considered neural circuit mechanisms that help
stabilize the movement of bumps to noise perturbations by breaking the marginal sta-
bility of the ring attractor. For example, spatially heterogeneous recurrent excitation
leads to low-dimensional dynamics akin to a particle stochastically perturbed along a
washboard potential, slowing the rate of diffusion [32]. Likewise, short-term facilita-
tion locally potentiates synaptic excitation where the bump is instantiated, akin to a
slowly moving local potential well that traps the particle near the true location of the
original stimulus [30, 44]. In addition to stabilizing bumps within trials, short-term
facilitation also transfers memory of the previous trial stimulus to the next, creating
systematic errors referred to as serial dependence [7, 35].

Despite advancements in understanding how these modifications to bump at-
tractor models affect their stochastic dynamics, a detailed examination of the role
of separate excitatory and inhibitory (E and I) population dynamics has been over-
looked, and I-I interactions are often ignored entirely. Inhibition is often assumed to
be flat and global in stochastic bump attractor models [9], but we know prefrontal
cortical synaptic inhibition exhibits nontrivial preference-dependent interactions [24],
which could have yet unidentified effects on the dynamics of bumps and the fidelity
of memory systems that rely on them.

Here, we use a stochastic neural field model to investigate the wandering dynam-
ics and interactions of separate E and I activity bumps. We focus on how a separate
and spatially-extended I population shapes the variance of a bump attractor encod-
ing a remembered location along a continuum. First, we introduce the neural field
equations, notation conventions, and parameters whose effects on the variance of the
bumps’ final position will be analyzed (Section 2). We then review the existence and
stability of both E and I bump solutions [4,14,20,27,37,47]; paving the way for exam-
ining how deterministic and stochastic perturbations deform and shift the attractor
solution. We examine the impact of modifying both the amplitude and spatial extent
of neural architecture, as well as the firing rate thresholds on the stability of solutions
(Section 3). Stable and unstable branches of bumps annihilate at a discontinuous
saddle-node bifurcation given sufficiently high firing rate thresholds.

Our stochastic analysis involves two different methods of identifying the impact
of noise on the bump attractor, (1) a linear perturbative analysis (strongly coupled
limit between the E and I bumps) in the limit of weak noise and (2) an interface based
analysis where we track the threshold crossing points of the E/I bumps (Section 4).
Thus, we develop two corresponding theoretical predictions of bump position variance,
the second of which captures nonlinear interactions between the E/I bumps in a
Langevin system that is a better match to full model simulations. This higher-order
analysis starts by obtaining distinct and nonlinearly coupled equations for the bump
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interfaces. Bump position variance changes non-monotonically as a function of most
model parameters, so intermediate tuning of network architecture maximizes memory
degradation. Finally, we identify the impact of noise correlations between the E and
I populations; finding they actually serve to reduce bump position variance.

2. The model. To determine the effects of separately evolving excitatory (E)
and inhibitory (I) populations on bump attractor dynamics, we analyze a stochastic
neural field model: a coupled system of nonlinear integro-differential equations de-
scribing interactions of spatially-extended E and I neural sub-populations (Figure 1A
and [47]). Recurrent connectivity targeting position x from y at time t is described
by convolving (a(x) ∗ b(x) =

∫∞
−∞ a(x − y)b(y)dy) the synaptic kernel and the firing

rate output of the neurons from which synapses originate. Along with additive noise
terms, we obtain the stochastic neural field equations:

du(x, t) = [−u(x, t) + wee(x) ∗ f(u(x, t))− wei(x) ∗ f(v(x, t))] dt+ ε
1
2 dWe(2.1a)

τdv(x, t) = [−v(x, t) + wie(x) ∗ f(u(x, t))− wii(x) ∗ f(v(x, t))] dt+ ε
1
2 dWi.(2.1b)

where u(x, t) and v(x, t) denote the E and I synaptic input profiles at location x at
time t. We assume each unit of the time variable t is equivalent to 10ms, on the order
of typical E membrane and synaptic time constants [25]. The sigmoidal firing rate
function f(u) = 1

1+e−η(u−θ)
with threshold θ and gain η determines the strength of

the firing rate output based on the input u. Analytical results can be obtained in the
high gain limit (η →∞) such that

f(u) = H(u− θ) =

{
1 u− θ ≥ 0,

0 u− θ < 0,
(2.2)

is the Heaviside function. The E and I population firing rate thresholds, θu and θv, can
differ. Given a Heaviside firing rate nonlinearity, it is possible to exactly characterize
the dynamics of the model using interface equations that track the evolution of level
sets u = θu and v = θv in space and time [14,18]. The strength of synaptic connectivity
weakens with the spatial distance between positions x and y and is given by the
distance-dependent synaptic weight profile functions wab(x − y) (a, b ∈ {e, i}). For
explicit calculations, we take these to be symmetric exponentials

wab(x) = Aabe
− |x|σab ,(2.3)

where a, b ∈ {e, i} and Aab, σab ∈ R≥0 (non-negative constants). Commonly used
values throughout for the weight profiles are presented in Table 1. Parameters for
wee were chosen to non-dimensionalize the E to E connectivity (setting Aee = 0.5 and
σee = 1). Other parameters for the I to I and cross population synaptic profiles were
generally chosen to be broader than the synaptic footprint of E to E connections, and
we generally assume the commonly identified 80% E and 20% I neuron ratio [1] in turn
approximately determines the effective synaptic amplitude from those populations.

The spatially-structured multiplicative noise terms dWe =
√
|u(x, t)|dWu(x, t)

and dWi =
√
|v(x, t)|dWv(x, t) are introduced with small amplitude 0 < ε � 1,

allowing asymptotic approximations of their stochastic effects. Multiplicative noise
is predicted in neural fields by linearly approximating noise arising in a system-size
expansion of a fully stochastic model [5]. Increments of spatially-extended Wiener
processes have zero mean 〈dWa(x, t)〉 = 0 (a ∈ {u, v}) and local spatial correla-
tions 〈dWa(x, t)dWa(y, s)〉 = Caa(x − y)δ(t − s)dtds. For simplicity, we start by
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Table 1
Model parameters for Eq. (2.1)

Parameter Aee Aei, Aie Aii σee σei, σie, σii τ
Definition E-E

strength
I-E
strength

I-I
strength

E-E
spatial
scale

other spatial
scales

I time
constant

Value 0.5 0.15 0 or 0.01 1 2 1

Parameter θu θv ε
Definition E firing threshold I firing threshold noise amplitude

Value [0,0.5] [0,0.5] 0.001 or 0.002

assuming there are no correlations between the noise to the E and I populations
〈dWu(x, t)dWv(y, s)〉 ≡ 0.

Based on prior studies of deterministic E/I population models [4, 8, 42] bump
(standing pulse) solutions emerge in parameter regions we can identify using an exis-
tence/stability analysis. Recurrent excitation sustains both the E and I populations
and inhibition prevents the spread of the E population activity. In the absence of
noise, we obtain bump profiles that are even symmetric and translation symmetric.
Using threshold-crossing conditions, we develop implicit formulas for the half-width
variable au (av) for the E (I) bump, which ensure existence, defined as the distance
from the bump’s center of mass to the interface (Figure 1B). The I bump’s half-width
av (Figure 1C) can vary non-monotonically along certain parameter axes, such as
increasing firing rate thresholds, θu and θv, simultaneously. When noise is applied to
stable E/I activity bumps, they ‘wander’ due to their neutral stability. In addition
to small deformations of the bump profile itself, a bump’s center of mass wanders
stochastically (Figure 1D and see Figure A.1 for an additional example). While past
asymptotic analyses assumed this wandering was roughly Brownian motion [8, 31],
we will show that by relaxing this assumption we can better characterize nonlinear
interactions between the bumps in the distinct E and I populations, and how this
shapes wandering dynamics.

Each bump has a region over which neural activity (u or v) is superthreshold
(above θu or θv). We define the corresponding E/I population active regions to be
[x1(t), x2(t)] and [x3(t), x4(t)] respectively [27]. These active regions are bounded by
the interfaces (threshold crossings), since u(x1,2(t), t) = θu and v(x3,4(t), t) = θv.
Note, large deviations could lead to multiple disjoint active region segments in each
layer, but we assume each bump’s active region is fully connected here (See [14,18,36]
for elaborations on this problem). In the absence of noise, the interfaces relate directly
to the half-widths in that au = (x2 − x1)/2 and av = (x4 − x3)/2.

Stochastic motion of the bumps will be tracked by estimating the center of mass
∆u(t) (∆v(t)) of the active region of the E (I) bump

∆u(t) =
x1(t) + x2(t)

2
, ∆v(t) =

x3(t) + x4(t)

2
.(2.4)

Overall, we are interested both in how network parameters shape the form and sta-
bility of bumps as well as how this translates into bump’s stochastic dynamics in
the presence of noise. Our ensuing analysis will initially rely on techniques in local
stability as well as weak perturbations, but a major advancement will be the use
of interface techniques to provide higher-order corrections to the effective nonlinear
equations describing stochastic bump motion.
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Fig. 1. Independence of excitatory and inhibitory bumps. (A) Model schematic with sepa-
rate E and I populations and the synaptic connections between them. Note the actual model Eq. (2.1)
lies on a continuum with noise posed directly at the continuum limit. (B) An example pair of E
and I bump profiles with firing rate thresholds θu = 0.35 and θv = 0.25 and Aii = 0. (C) Example
plot of solution half-widths as thresholds are varied, obtained by numerically solving the threshold
conditions, Eq. (3.4), for au and av. The particular half-width solution from panel B is identified
by the corresponding dots. (D) Example bumps from panel B wandering over time with noise am-
plitude ε = 0.002. Traces represent the center of mass (green) and the E/I interfaces (red/blue,
respectively). Colorscales represent the profile amplitude of u(x, t) and v(x, t). The centers of mass
∆u and ∆v are computed using the formula, Eq. (2.4), after the interfaces xj(t) (j = 1, 2, 3, 4) are
identified numerically. Other parameters are as in Table 1.

3. Deterministic analysis. Our estimates for expected bump wandering (vari-
ance of center of mass) utilizes linearization about stable stationary solutions. This
necessitates an analysis of stationary bump solutions’ (static bump solutions in the
absence of perturbations) existence and stability in varying parameter regimes for the
deterministic system. Using Eq. (2.1) without noise [4, 27], we demonstrate the exis-
tence of stationary solutions through direct construction. For proofs of uniqueness of
solutions with a Heaviside firing rate see [4, 10].

3.1. Stationary solutions. Assuming solutions are stationary (u(x, t) = U(x)
and v(x, t) = V (x)) and using the Heaviside firing rate function Eq. (2.2), Eq. (2.1)
becomes

U(x) =

∫
R
wee(x− y)H(U(y)− θu)dy −

∫
R
wei(x− y)H(V (y)− θv)dy(3.1a)

V (x) =

∫
R
wie(x− y)H(U(y)− θu)dy −

∫
R
wii(x− y)H(V (y)− θv)dy(3.1b)

We seek bumps with simply connected active regions (U > θu and V > θv) [−au, au]
and [−av, av]. Exploiting the solutions’ translational invariance along R (opting for
a center of mass at x = 0) and expected evenness (i.e. U(−x) = U(x) and V (−x) =
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V (x)) we obtain the system

U(x) =

∫ au

−au
wee(x− y)dy −

∫ av

−av
wei(x− y)dy(3.2a)

V (x) =

∫ au

−au
wie(x− y)dy −

∫ av

−av
wii(x− y)dy(3.2b)

Integrating our chosen exponential synaptic weight functions (wab(x) = Aabe
−|x|
σab ,

a, b ∈ {e, i}), we find the explicit formulas for c ∈ {au, av}:

∫ c

−c
wab(x− y)dy =


2Aabσabe

−x
σab sinh

(
c
σab

)
x > c,

2Aabσab

[
1− e

−c
σab cosh

(
x
σab

)]
|x| < c,

2Aabσabe
x
σab sinh

(
c
σab

)
x < −c.

(3.3)

Substituting Eq. (3.3) into Eq. (3.2) and utilizing the threshold crossing conditions
θu = U(±au) and θv = V (±av), we obtain an implicit set of equations for the half-
widths, which depends on whether the E or I bump is wider:

θu = 2Aeeσeee
−au
σee sinh

(
au
σee

)
−

2Aeiσeie
−au
σei sinh

(
av
σei

)
au ≥ av,

2Aeiσei

[
1− e

−av
σei cosh

(
au
σei

)]
au < av,

(3.4a)

θv = −2Aiiσiie
−av
σii sinh

(
av
σii

)
+

2Aieσiee
−av
σie sinh

(
au
σie

)
av ≥ au,

2Aieσie

[
1− e

−au
σie cosh

(
av
σie

)]
av < au.

(3.4b)

Eq. (3.4) is thus defined piecewise continuously (Figure 2A, gold circle indicates
where the change in cases occurs) and, as we will show, cusps appear at these case
switches in plots of eigenvalues and variance estimates.

Note, the above set of threshold conditions assume that both the E and I popu-
lation have nontrivial active regions. There is a second class of bump solutions where
there is no active region in the I population. As we will show, these bumps always
tend to be linearly unstable as there is no active inhibition to prevent the spread of
excitation upon perturbation. Applying this assumption to Eq. (3.2), we obtain the
simplified system,

U(x) =

∫ au

−au
wee(x− y)dy,(3.5a)

V (x) =

∫ au

−au
wie(x− y)dy,(3.5b)

with E bump half-width given by

θu = U(±au) =

∫ au

−au
wee(±au − y)dy

or (for our particular weight functions) the formula

(3.6) θu = 2Aeeσeee
−au
σee sinh

(
au
σee

)
.
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For such a solution to be self-consistent, we also must ensure that V < θv everywhere.
Assuming the peak of the subthreshold I bump occurs at x = 0, this is ensured by
the condition

V (0) =

∫ au

−au
wie(y)dy = 2Aieσie

[
1− e

−au
σie

]
< θv.

There are thus, two branches of bump solutions. One branch of ‘broad’ bumps has
superthreshold active regions in both the E and I populations (au > 0 and av > 0).
For sufficiently high thresholds, we typically obtain marginally stable solutions, but
these destabilize through a Hopf bifurcation for sufficiently low firing rate thresholds
(See Figure 2A and subsequent stability analysis). In contrast, when the I bump
is subthreshold (V (0) < θv), we obtain unstable ‘narrow’ solutions that create a
separatrix between the broad solutions and the rest state (Figure 2A). Under each
set of assumptions we obtain two distinct systems that approach the same solution
defining a discontinuous saddle node bifurcation. The discontinuity arises from there
being either two or one threshold condition, and the peak of the I narrow bump
grazing the threshold θv. We derive these results in detail in the following subsection.

3.2. Eigenvalues and noiseless perturbations. Our stability analysis uti-
lizes linearization about stationary solutions and localizes the perturbation evolution
problem to the bump edges, as in several previous analyses of bump dynamics in neu-
ral fields [4,12,19,27,42]. Since there are four threshold crossing points, analysis of the
broad solution’s stability results in four corresponding eigenvalues and equations asso-
ciated with the degrees of freedom in the stability problem (Figure 2B). To derive our
linearized system whose spectrum defines the stability of bumps, we start by perturb-
ing with small smooth functions, u(x, t) ≈ U(x)+εψ(x, t) and v(x, t) ≈ V (x)+εφ(x, t).
Substituting into Eq. (3.1), expanding about the stationary solution, and simplifying
to first order we obtain the system:

ψt + ψ = wee(x) ∗ [H ′(U(x))ψ(x, t)]− wei(x) ∗ [H ′(V (x))φ(x, t)],(3.7a)

τφt + φ = wie(x) ∗ [H ′(U(x))ψ(x, t)]− wii(x) ∗ [H ′(V (x))φ(x, t)],(3.7b)

where the distributional derivatives are given

H ′(U(x)) =
1

|U ′(au)|
(δ(x− au) + δ(x+ au)),

H ′(V (x)) =
1

|V ′(av)|
(δ(x− av) + δ(x+ av)).

Assuming separability of our perturbations, ψ(x, t) = ψ(x)eλt and φ(x, t) = φ(x)eλt,
and substituting our exponential weight functions and H ′(U(x)) and H ′(V (x)), we
obtain the corresponding eigenvalue problem:

(λ+ 1)ψ(x) =
Aee
|U ′(au)|

[
e
−|x−au|
σee ψ(au) + e

−|x+au|
σee ψ(−au)

]
− Aei
|V ′(av)|

[
e
−|x−av|
σei φ(av) + e

−|x+av|
σei φ(−av)

]
,

(3.8a)

(τλ+ 1)φ(x) =
Aie
|U ′(au)|

[
e
−|x−au|
σie ψ(au) + e

−|x+au|
σie ψ(−au)

]
− Aii
|V ′(av)|

[
e
−|x−av|
σii φ(av) + e

−|x+av|
σii φ(−av)

]
.

(3.8b)
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Note, in the above, we have assumed ψ(±au) 6= 0 and φ(±av) 6= 0 to obtain an
equation for the point spectrum, but taking these values to vanish would give us an
equation for the essential spectrum which will not contribute to instabilities [13, 45].
We form a system of equations by evaluating the perturbation functions at the bump
edges x = ±au and x = ±av in Eq. (3.8). Values λ for which the resulting 4 × 4
system is singular correspond to the four distinct eigenvalues in the point spectrum.
Forming this system, taking the determinant, and factoring, we find the eigenvalues
are the roots of the following pair of quadratics:

τλ2 − (I + J + τB + τC)λ+ (I + J)(B + C)− (E +D)(F +G)(3.9a)

τλ2 − (I − J + τB − τC)λ+ (I − J)(B − C) + (E −D)(F −G)(3.9b)

where

B =
Aee
|U ′(au)|

− 1 C =
Aee
|U ′(au)|

e−
2au
σee

D = − Aei
|V ′(av)|

e
−|av−au|

σei E = − Aei
|V ′(av)|

e
−|av+au|

σei

F =
Aie
|U ′(au)|

e
−|av−au|

σie G =
Aie
|U ′(au)|

e
−|av+au|

σie

I = − Aii
|V ′(av)|

− 1 J = − Aii
|V ′(av)|

e
− 2av
σii

Each quadratic could also be obtained by restricting the form of perturbation (scaling
and shifting) at the interfaces (See Figure 2D for examples). Scaling perturbations
expand or contract the bump (ψ(au) = ψ(−au) and φ(av) = φ(−av)), and we obtain
Eq. (3.9a) resulting in the associated ‘scale’ eigenvalues (Figure 2B):

(3.10) λscale =
I + J + τ(B + C)

2τ
±
√

(I + J − τ(B + C))2 + 4τ(E +D)(F +G)

2τ
,

which are both nonzero in general. The sign of their real part determines the linear
stability of the bumps. For shifting perturbations (ψ(au) = −ψ(−au) and φ(av) =
−φ(−av)) we obtain Eq. (3.9b). A straightforward calculation shows (I − J)(B −
C) + (E −D)(F −G) = 0, resulting in the zero eigenvalue (green) corresponding to
the system’s translational invariance (Figure 2B). Correlated shifts in the E/I bumps’
center of mass simply translate the solution along the real line. Such perturbations
are integrated, and neither grow nor decay. The nonzero shift eigenvalue is given by
the simple formula

(3.11) λ =
I − J + τ(B − C)

τ

which is real and negative. Hence the bumps are stable with respect to shifts of the
E and I bump in the opposite direction.

Eigenvalues of the narrow solutions are obtained by following the same process,
which is greatly simplified since the I population is subthreshold and perturbations of
this part do not contribute to instabilities or enter into the point spectrum equations.
We therefore investigate the effect of small smooth perturbations to the E population,
with nonzero part along the bump edges, u(x, t) ≈ U(x) + εψ(x, t). The resulting
two eigenvalues are λ1 = 0 (corresponding to the marginal stability of shifts) and
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Fig. 2. Half-widths of bump solutions and linear stability. (A) Broad/narrow half-width
solutions au and av as a function of firing rate threshold θu = θv = θ. There is a subcritical
Hopf bifurcation (HB, green dots) in the broad solutions and a semi-stable discontinuous saddle
node bifurcation (SN, white dots) where the narrow and broad solutions meet. The gold circle
identifies where the E/I bump half-widths exchange size ordering, Eq. (3.5). Eigenvalues are plotted
in association with stability of the (B) broad and (C) narrow solutions. (D) Examples of four
perturbation types related to the scale and shift broad solution eigenvalues. (E) An example of an
unstable broad solution destabilized via the oscillatory instability emerging from the subcritical Hopf
bifurcation. θu = θv = 0.1. The left panels represent the E bump and the right panels the I bump.
(F) A perturbed narrow (unstable) bump collapsing near the SN, where the E bump of the broad and
narrow solutions have nearly the same width. Threshold parameters were set near the discontinuous
SN, θu = θv = 0.4996, and a small perturbation was applied to the initial bump-like solutions causing
solutions to become unstable. The left panels represent the E bump and the right panels the I bump.
The I-I connectivity Aii = 0 in all. Other parameters are as in Table 1.

λ2 = 2e
−2au
σee /(1− e

−2au
σee ), which is clearly positive, confirming that narrow solutions

are always unstable (Figure 2C).
We identify bifurcations in the bump solutions by checking the signs of the real

parts of each solution branch’s eigenvalues. We find two types of bifurcations. The first
is a Hopf bifurcation (green dot, HB in Figure 2A,B) occurring as the firing threshold
is reduced, destabilizing bumps in a pattern-destroying oscillation (Figure 2E) [42].
This Hopf bifurcation boundary occurs when Re(λscale) = 0, which is given by the
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𝜽

𝝉

𝝈 𝒊
𝒆

𝝈𝒆𝒊 = 𝝈𝒊𝒊

𝑨𝒆𝒊

𝑨 𝒊
𝒆

■ Stable           ■Unstable          □No Solution

𝜽𝒖

𝜽 𝒗
A B

C D

Fig. 3. Bump stability/instability across parameter space. Main panels take Aii = 0 and
insets take Aii = 0.01. In all plots, blue regions indicate parameters for which a stable bump exists,
red regions are where all bumps are unstable. Black boundaries identify where Hopf bifurcations
occur. White regions are where no bump solutions exist. (A) Stability as the firing rate thresholds θ
are varied. (B) Stability regions with varied E/I interaction amplitude Aei and Aie. θu = θv = 0.25.
(C) Stability regions with varied inhibition timescale τ and firing thresholds θu = θv = θ. (D)
Stability regions with varied E/I interaction spatial extent σei = σii and σie. θu = θv = 0.15. Other
parameters are as in Table 1.

implicit formula

(3.12)
τAee
|U ′(au)|

(1− e
−2au
σee ) = τ + 1 +

Aii
|V ′(av)|

(1 + e
−2av
σii ).

The second bifurcation observed is a discontinuous saddle node bifurcation (SN in
Figure 2A) [15, 39] where the unstable narrow and marginally stable broad solutions
meet. The peak of the narrow I population bump rises to meet the firing threshold and
the broad I bump active region shrinks to a single point at threshold. The meeting of
two linearizations of different discrete dimension (4 for broad, 2 for narrow) results in
a discontinuous change in the corresponding Jacobian matrices yielding a nonsmooth
saddle node bifurcation where the solution branches annihilate one another (labelled
“contraction instability” in Figure 2F).

3.3. Bounding stability regions in parameter space. To identify how noise
degrades stable representations of parametric working memory, we focus on the effect
of stochastic perturbations on bumps along the broad branch. Given that varying
certain parameters can stabilize the deterministic system Eq. (2.1), we identify how
the bifurcation boundaries change and stable solution regions expand/contract as
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parameters are varied (Figure 3). As discussed above, stable solutions only exist if
broad bumps have non-positive eigenvalues associated with their linear stability.

When varying the firing rate thresholds, we find larger I thresholds, θv, expand the
range of stable solutions (Figure 3A). We speculate that setting the I population firing
rate threshold too low makes it strongly responsive to network activity perturbations,
as shown in oscillatory instability simulations (Figure 2E). Varying the strengths of
synapses from E to I and I to E populations, we also observed bumps destabilize if E to
I coupling (Aie) is sufficiently strong (Figure 3B). Such changes increase the sensitivity
of the E drive to the I population as bumps are expanded, leading to potential I bump
overcompensation as E bumps widen, eventually silencing both bumps.

Setting firing rate thresholds equal (θu = θv = θ) and varying them along with
changing the I timescale, τ , results in a narrowing of the range of stable bumps as
firing rate thresholds are decreased (Figure 3C). Specifically, as the timescale of the
I population is increased, the system reacts more slowly to being out of equilibrium,
so the E and I bump do not restabilize once perturbed. For instantaneous inhibition
(τ → 0), such oscillatory (Hopf) instabilities never occur.

We also quantified the parameter ranges of stable bumps when varying the spatial
scale of interpopulation synaptic footprints (Figure 3D). Stability is again largely
dependent on the profile of E to I population synaptic connectivity; wider connectivity
(high σie) yields an unstable region. Similar to our previous findings, broadening the
E to I profile leads to overcompensation of the I population in response to dynamical
increases in the E population width.

The main panels of Figure 3 assume Aii = 0, common in studies of Eq. (2.1)
due to the small amplitude of such connections. We also examined small, nonzero
amplitude I to I connections (Aii = 0.01, See insets in Figure 3) and found stable
regions expand likely due to dampening of I population reactions.

4. Analysis of stochastic bump motion. Considering stochasticity emerging
from neural and synaptic variability [17], multiplicative noise in the neural field model
Eq. (2.1) (taking ε > 0) causes stable bumps to wander like a particle subject to
Brownian motion. The extent of this wandering has been linked to subject response
errors on delayed estimation tasks [8, 48]. We are primarily interested in identifying
how architectural features of the E/I neural circuit impact wandering [30–32, 44] as
described by the time-dependent variance of bumps’ center of mass. We can estimate
this variance analytically using two different approaches. The first we refer to as the
‘strongly coupled limit’ approximation, motivated by work from [31], which assumes
the E/I bump has a single position (the E and I bump do not stray too far from one
another). To first order, this approximation treats the bump as wandering by pure
diffusion, and so its stochastic motion is only characterized by a diffusion coefficient.
However, the resulting formulas have limitations for certain parameter regimes on
the timescale of interest, since they do not consider that the bumps can drift apart.
While we typically do expect the bump positions to separate from one another, we
assume this separation is small. As we will show when deriving a complementary
interface approximation, this separation is substantial enough to significantly affect
the variance. One exception would be the limit in which the I population responds
infinitely rapidly (τ → 0) and so its bump’s position precisely tracks that of the
E bump. Our second approach, the ‘interface based approximation,’ tracks bump
interfaces (following threshold crossing points) [14,27,36]. Pairing this together with a
weak coupling assumption as in [28] allows us to estimate the time-dependent changes
in the distinct E and I bump centers of mass.
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4.1. Strongly coupled limit approximation. In the strongly coupled limit,
we assume solutions to Eq. (2.1) take the form of stable bumps both with position
weakly perturbed by the same amount (U(x−∆u) and V (x−∆v)) with ∆u = ∆v = ∆.
Thus, the E and I bumps are assumed to move together, and we have

u(x, t) = U(x−∆(t)) + ε1/2Φ(x−∆(t), t) + εΦ1(x−∆(t), t) . . . ,(4.1a)

v(x, t) = V (x−∆(t)) + ε1/2Ψ(x−∆(t), t) + εΨ1(x−∆(t), t) . . . ,(4.1b)

where ∆(t) is the O(ε1/2) position perturbation (with d∆ = O(ε1/2)), Φ and Ψ are
respectively the leading order profile perturbations, and Φ1 and Ψ1 are respectively
the higher order profile perturbations to the E and I bump. Substituting Eq. (4.1)
and truncating Eq. (2.1) to first order and taking averages, we find that the stationary
solutions remain the same as before. Moving to O(ε1/2), we find(

dΦ
τ · dΨ

)
= L

(
Φ
Ψ

)
dt+ ε−1/2d∆(t)

(
U ′(x)
τ · V ′(x)

)
+

( √
|U(x)|dWu√
|V (x)|dWv

)
,(4.2)

where we define the linear operator

L
(
p
q

)
=

(
−p+ wee ∗ [f ′(U)p]− wei ∗ [f ′(V )q]
−q + wie ∗ [f ′(U)p]− wii ∗ [f ′(V )q]

)
.

Note that due to translation symmetry of the noise-free system, the null space of the
linear operator N (L) (any vector of functions v such that Lv = 0) is spanned by
{U ′, V ′}. To briefly show this, recall the stationary solutions take the form

U(x) =

∫
R
wee(x− y)f(U(y))dy −

∫
R
wei(x− y)f(V (y))dy

V (x) =

∫
R
wie(x− y)f(U(y))dy −

∫
R
wii(x− y)f(V (y))dy.

Differentiating with respect to x and applying integration by parts yields

U ′(x) =

∫
R
wee(x− y)f ′(U(y))U ′(y)dy −

∫
R
wei(x− y)f ′(V (y))V ′(y)dy

V ′(x) =

∫
R
wie(x− y)f ′(U(y))U ′(y)dy −

∫
R
wii(x− y)f ′(V (y))V ′(y)dy,

exactly the form of the functions p and q spanning the N (L).
We ensure a bounded solution to Eq. (4.2) by requiring the inhomogeneous part to

be orthogonal to the null space of the adjoint of the linear operator N (L∗). There ex-
ists a single vector spanning N (L∗), denoted (ϕ1(x), ϕ2(x)). Enforcing our conditions
for bounded solutions via requiring the inner product of the nullspace (ϕ1(x), ϕ2(x))
and inhomogeneity (h1(x), h2(x)) vanishes

∫
R ϕ1(x)h1(x) + ϕ2(x)h2(x)dx = 0, we

isolate the bump position increment:

d∆(t) = −ε1/2
∫
R[ϕ1(x)

√
|U(x)|dWu(x, t) + ϕ2(x)

√
|V (x)|dWv(x, t)]dx∫

R[ϕ1(x)U ′(x) + τV ′(x)ϕ2(x)]dx
.

Since the above is simply a weighted integral over the spatiotemporal noises, to first or-
der, we have a Brownian stochastic differential equation (SDE) for the bump position.
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Given noise is white in time, we find that the mean over realizations is 〈∆(t)〉 = 0,
and the variance is:

〈∆(t)2〉 = ε

∫
R ϕ1(x)

√
|U(x)| · [Nu(x) + 2Nc(x)] + ϕ2(x)

√
|V (x)| · [Nv(x)] dx[∫

R ϕ1(x)U ′(x) + τV ′(x)ϕ2(x)dx
]2 t(4.3)

where

Nu(x) = Cu(x) ∗ ϕ1(x)
√
|U(x)|,

Nc(x) = Cc(x) ∗ ϕ2(x)
√
|V (x)|,

Nv(x) = Cv(x) ∗ ϕ2(x)
√
|V (x)|,

and the spatial correlation functions are defined: 〈Wu(x, t)Wu(y, t)〉 = Cu(x − y)t,
〈Wv(x, t)Wv(y, t)〉 = Cv(x− y)t, and 〈Wu(x, t)Wv(y, t)〉 = Cc(x− y)t. Note, there is
a weighted contribution to the linear scaling variance from both the noise of the E
and I populations.

To calculate the nullspace of the adjoint linear operator L∗, we must first derive
the adjoint using the definition based on the L2 inner product 〈Lv,u〉 = 〈v,L∗u〉, by
which we find

L∗
(
p
q

)
=

(
−p+ f ′(U) [wee ∗ [p]− wie ∗ [q]]
−q − f ′(V ) [wei ∗ [p]− wii ∗ [q]]

)
.

We rearrange the equation L∗ (ϕ1(x), ϕ2(x))
T

= 0, so

ϕ1(x) = f ′(U)

∫
R

[wee(x− y)ϕ1(y) + wie(x− y)ϕ2(y)]dy,(4.4a)

ϕ2(x) = −f ′(V )

∫
R

[wei(x− y)ϕ1(y) + wii(x− y)ϕ2(y)]dy.(4.4b)

In the case of the Heaviside firing rate function we again can determine the distribu-
tional derivative of the Heaviside acting on the bump solution and obtain(

ϕ1(x)
ϕ2(x)

)
=

(
δ(x+ au) +Aδ(x− au)
−Bδ(x+ av) + Cδ(x− av)

)
.(4.5)

Plugging Eq. (4.5) into Eq. (4.4) and solving for the constants, we find A = −1,

C = B, and B = wei(au−av)−wei(au+av)
wie(au−av)−wie(au+av) . Thus we find that(

ϕ1(x)
ϕ2(x)

)
=

(
δ(x+ au)− δ(x− au)
−B[δ(x+ av)− δ(x− av)]

)
.(4.6)

Finally, substituting Eq. (4.6) into Eq. (4.3), we have

〈∆(t)2〉 = ε
D1 −D2 +D3

2 [|U ′(au)|+ Bτ |V ′(av)|]2
t(4.7)

where

D1 = θu[Cu(0)− Cu(2au)],

D2 = 2B
√
θuθv[Cc(au − av)− Cc(au + av)],

D3 = θvB2[Cv(0)− Cv(2av)].
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The contributions arising due to noise correlations within the E and I populations, D1

and D3, are positive. In contrast, the diffusion contribution from the cross-population
correlation term Cc is negative assuming the correlation function is monotone de-
creasing. Thus, noise correlations between the E and I populations reduce wandering.
Here, we assume Cc ≡ 0. Later, we discuss the effects of nonzero correlated noise
components across the E and I populations and compare these theoretical results to
numerical simulations.

4.2. Interface based approximation theory. Complementing our strongly
coupled limit approximation of bump wandering, we also derive interface equations
that approximate the stochastic dynamics of the bump in response to multiplicative
noise in Eq. (2.1). While the strongly coupled limit approximation assumes the E
and I bump move as one, numerical simulations reveal that this is not the case (See
Figure 4A and C). For instance, the I bump tends to be more susceptible to profile
deformations and may wander more, making the strongly coupled limit less valid.
Higher-order corrections of the variance estimate can be obtained using interface
theory to develop nonlinearly coupled Langevin equations for estimating the E and I
bumps’ coupled centers of mass.

Interface theory for bumps in neural fields tracks the level sets of neural activ-
ity variables where firing rate thresholds are crossed. This approach was originally
pioneered in the case of noiseless single-bump neural field models [27] and then sub-
sequently for traveling fronts in inhomogeneous neural fields [11] as well as solutions
in planar neural fields [14]. More recently, these approaches were adapted to obtain
higher-order approximations for the timescale of front initiation [18] as well as the
stochastic motion of multiple interacting bumps [36]. Here, we further adapt this
work [36] to account for the motion of separate bumps in the E and I neural popula-
tions of Eq. (2.1).

As defined previously, the active regions of the E and I bump are [x1(t), x2(t)]
and [x3(t), x4(t)] respectively. Without noise perturbations, we would expect these
interfaces to remain constant for the equilibrium bump solution, but noise perturbs
these values so they wander over time. However, unlike in the strongly coupled limit,
we do not expect this wandering to be pure Brownian motion, but rather the result
of a nonlinearly coupled system of SDEs. To obtain these SDEs, we start by writing
the level set condition for the interfaces in each neural population (E and I):

u(x1(t), t) = u(x2(t), t) = θu v(x3(t), t) = v(x4(t), t) = θv,(4.8)

where θu and θv are the firing rate thresholds of the E and I populations. For a
Heaviside firing rate, we substitute Eq. (4.8) into Eq. (2.1) and obtain

du =

[
−u+

∫ x2(t)

x1(t)

wee(x− y)dy −
∫ x4(t)

x3(t)

wei(x− y)dy

]
dt+ ε

1
2 dWe(4.9a)

τdv =

[
−v +

∫ x2(t)

x1(t)

wie(x− y)dy −
∫ x4(t)

x3(t)

wii(x− y)dy

]
dt+ ε

1
2 dWi(4.9b)

Differentiating Eq. (4.8), we obtain consistency equations for the interfaces xj(t):

∂xu(xj(t), t)dxj + du(xj(t), t) = 0, j = 1, 2;

∂xv(xj(t), t)dxj + dv(xj(t), t) = 0, j = 3, 4.
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We then approximate the above exact evolution equations by assuming the spatial
gradients at the interfaces remain constant and odd symmetric throughout the evo-
lution motivated by the form of the strongly coupled limit expansion:

|U ′(au)| ≡ αu(t) ≈ ∂u(x1(t), t)

∂x
= −∂u(x2(t), t)

∂x
,

|V ′(av)| ≡ αv(t) ≈
∂v(x3(t), t)

∂x
= −∂v(x4(t), t)

∂x
.

Subsequently, we drop O(ε) terms to obtain the relations

du(x1(t), t) = −αudx1(t),(4.10a)

du(x2(t), t) = αudx2(t),(4.10b)

dv(x3(t), t) = −αvdx3(t),(4.10c)

dv(x4(t), t) = αvdx4(t).(4.10d)

Plugging the formulas in Eq. (4.10) into (4.9), we obtain the following system of
nonlinear Langevin equations describing the stochastic evolution of the interfaces:

dx1 = − 1

αu

(
[−θu +Wee(x1;x1, x2)−Wei(x1;x3, x4)] dt+ ε

1
2 dWe(x1, t)

)
(4.11a)

dx2 =
1

αu

(
[−θu +Wee(x2;x1, x2)−Wei(x2;x3, x4)] dt+ ε

1
2 dWe(x2, t)

)
(4.11b)

τdx3 = − 1

αv

(
[−θv +Wie(x3;x1, x2)−Wii(x3;x3, x4)] dt+ ε

1
2 dWi(x3, t)

)
(4.11c)

τdx4 =
1

αv

(
[−θv +Wie(x4;x1, x2)−Wii(x4;x3, x4)] dt+ ε

1
2 dWi(x4, t)

)
,(4.11d)

where the coupling functions are given by the integrals over the active regions

Wjk(x;xa, xb) =

∫ xb

xa

wjk(x− y)dy.

To derive estimates for the evolution of the centers of mass of the E and I bump,
we apply the definitions ∆u = (x1 + x2)/2 and ∆v = (x3 + x4)/2 from Eq. (2.4) to
Eq. (4.11) and combine equations to obtain

d∆u =
1

2αu
([−2Wee(x1;x1, x2) +Wei(x1;x3, x4)−Wei(x2;x3, x4)] dt

+
√
εθu[dWu(x2, t)− dWu(x1, t)]

)
,

(4.12a)

d∆v =
1

2ταv
([2Wii(x3;x3, x4) +Wie(x4;x1, x2)−Wie(x3;x1, x2)] dt

+
√
εθv[dWv(x4, t)− dWv(x3, t)]

)
.

(4.12b)

Assuming position perturbations remain small we approximate x1 = ∆u − au, x2 =
∆u + au, x3 = ∆v − av, and x4 = ∆v + av with ∆u,∆v = O(ε1/2). Plugging in these
approximations, linearizing about the stationary solutions, and simplifying yields the
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multivariate Ornstein-Uhlenbeck (OU) process:

d∆u(t) =
1

αu
((∆u −∆v) · [wei(au − av)− wei(au + av)] dt

+
√
εθu[dWu(∆u + au, t)− dWu(∆u − au, t)]

)(4.13a)

τd∆v(t) =
1

αv
((∆v −∆u) · [wie(au + av)− wie(au − av)] dt

+
√
εθv[dWv(∆v + av, t)− dWv(∆v − av, t)]

)
.

(4.13b)

Note, wei and wie are even and monotonic in distance, so we define the positive
quantities

Mu = α−1u · [wei(au − av)− wei(au + av)] > 0,

Mv = τ−1α−1v · [wie(au − av)− wie(au + av)] > 0.

Then we have the matrix-vector representation of the multivariate OU process, d∆ =

K∆dt+ dW , where ∆ =

(
∆u

∆v

)
, K =

(
Mu −Mu

Mv −Mv

)
is the coupling matrix, and

dW =

(√
εθu

2αu
[dWu(∆u + au, t)− dWu(∆u − au, t)]√

εθv
2ταv

[dWv(∆v + av, t)− dWv(∆v − av, t)]

)

is the correlated Wiener process noise. Following methods for solving linear SDEs [23],
we can determine the mean and variance of ∆u and ∆v to obtain estimates of the
diffusion of each population. First we diagonalize K:

K =
1

Mv −Mu

(
1 Mu

1 Mv

)(
0 0
0 −(Mv −Mu)

)(
−Mv Mu

−1 1

)

Thus our eigenvalues are λ1,2 = 0,−(Mv −Mu) and the eigenvectors are v1 = (1, 1)T

and v2 = (Mu,Mv)
T respectively. Note, this implies that there is a marginally stable

direction along perturbations of the bump that move both the E and I bump the same
amount, and there is an attractive (stable) direction for perturbations that move the
E and I bump differently. Similar results have been found for coupled lateral I layers
for which each layer individually supports a self-sustaining bump in the absence of
cross-population coupling [6, 20,28]. The mean is given by 〈∆〉 = eKt∆(0), and so(
〈∆u〉
〈∆v〉

)
=

1

Mv −Mu

(
Mv∆v(0)−Mu∆u(0)−Mu[∆u(0)−∆v(0)]e−(Mv−Mu)t

Mv∆v(0)−Mu∆u(0) +Mv[∆v(0)−∆u(0)]e−(Mv−Mu)t

)

Next we seek the covariance 〈∆(t)∆T (t)〉 =
∫ t
0
eK(t−s)DeK

T (t−s)ds where the covari-
ance matrix of the noise term, D is found to be:

D =

(
Du Dc

Dc Dv

)
(4.14)



DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 17

with

Du =
εθu
2α2

u

[Cu(0)− Cu(2au)]

Dv =
εθv

2τ2α2
v

[Cv(0)− Cv(2av)]

Dc =
ε
√
θuθv

4ταuαv
[Cc(∆u −∆v + au − av)− Cc(∆u −∆v + au + av)

−Cc(∆u −∆v − au − av) + Cc(∆u −∆v − au + av)].

Multiplying out eK(t−s)DeK
T (t−s) and then integrating yields our predictions of E

and I bump center of mass variance:

〈∆u(t)2〉 =
DvM

2
u − 2DcMuMv +DuM

2
v

(Mv −Mu)2
t

− 2
e−(Mv−Mu)t − 1

(Mv −Mu)3
[DcM

2
u −DvM

2
u +DcMuMv −DuMuMv]

−M2
u

e−2(Mv−Mu)t − 1

2(Mv −Mu)3
[Du +Dv − 2Dc],

(4.15a)

〈∆v(t)
2〉 =

DvM
2
u − 2DcMuMv +DuM

2
v

(Mv −Mu)2
t

− 2
e−(Mv−Mu)t − 1

(Mv −Mu)3
[DcM

2
v −DuM

2
v +DcMuMv −DvMuMv]

−M2
v

e−2(Mv−Mu)t − 1

2(Mv −Mu)3
[Du +Dv − 2Dc].

(4.15b)

In the limit as t→∞ we find that both variances are dominated by the term:

〈∆u(t)2〉 = 〈∆v(t)
2〉 =

DvM
2
u − 2DcMuMv +DuM

2
v

(Mv −Mu)2
t,

which is essentially an estimate of the variance derived from assuming the E and I
bump are co-located as in the strongly coupled limit approximation. Relating these
two routes to one another, we find

B =
wei(au − av)− wei(au + av)

wie(au − av)− wie(au + av)
=

αuMu

ταvMv
.

Using this relation and plugging in the expressions for Du, Dv, and Dc we find that
we obtain the diffusion coefficient expression from the strongly coupled limit predic-
tion, Eq. (4.7). At short times, the interface based approximation, Eq. (4.15), has
contributions based on the interactions of the E and I bumps, which decay over time.

The main difference between the strongly coupled limit and interface based meth-
ods is that the bumps are allowed to drift apart in the interface based method, which
allows us to separately estimate the I bump’s variance. The most general form of the
approximation can further describe stochastic widening and contraction of the bumps,
described by a full four-dimensional and nonlinear approximation. Even collapsing to
centers of mass approximations, using the interface based interactions as a starting
point is more accurate than the strongly coupled limit, as we will subsequently show.



18 H.L. CIHAK, T.L. EISSA, AND Z.P. KILPATRICK

On the other hand, the strongly coupled limit is more straightforward to obtain, and
there are fewer arbitrary assumptions we must make (e.g., the static gradient approx-
imation). Yet, the interface based method allows us to obtain greater precision by
using the fully nonlinear approximation over all the interfaces, xj , making it a better
metric for variance predictions.

4.3. Variance predictions and simulations comparison. To validate our
strongly coupled limit and interface based predictions of bump variance, we ran sto-
chastic simulations of Eq. (2.1) using spatiotemporal noises to the E and I populations
that are not correlated between populations; Cc(x) ≡ 0. As firing rate thresholds are
increased (Figure 4A-B), both our theoretical predictions and the averaged numerical
simulations suggest that variance changes non-monotonically. This stands in stark
contrast to results from previous studies, which found that the effective diffusion of
bumps generally tends to increase monotonically with the firing threshold for single-
population lateral I networks [31]. Interestingly, we find that the variance peaks at
the precise point in parameter space where the noise-free E and I bump have the same
width (gold circles, Figure 4A,B).

Moreover, we see that the strongly coupled limit approximation adequately cap-
tures the effective motion of the E bump, but not the I bump, which tends to stray
further (Figure 4A). In contrast, the interface based approximation is able to capture
both the distinct I and E bumps’ variance by accounting for the stochastic dynamics
of the I bump being perturbed away from the E bump center of mass (Figure 4B).

The dynamics of the I bump vary with firing rate thresholds and timescales. At
higher firing rate thresholds, the I bump wanders more than the E bump, and the
two bumps tend to be more weakly coupled. As the timescale increases, the I bump
center of mass relaxes to wander slightly away from that of the E bump, while the
E bump variance scales linearly in time like pure diffusion (Figure 4C,D). Since the
I bump is sustained by the E population, the I bump appears to weakly track the E
bump’s position (See Figure A.1 for single simulation of such activity), which can be
estimated by OU processes [6,31]. Hence, the I bump position variance can be higher
than that of the E population.

To further analyze how the variance in bump position depends on changes in pa-
rameters, we determined how it changes along several different parameter axes (Fig-
ure 5). For simplicity, we studied the variations in the E bump’s position variance
and compared to the interface based approximation. We started by varying the am-
plitude of inter-population connectivity, either E → I or I → E. Weakening either of
these projection amplitudes tended to increase bump variance (Figure 5A,B). Weaken-
ing cross-population connectivity leads to less common movement of the E/I bumps.
Thus, the bumps are more weakly stable to noise perturbations and re-equilibrate
more slowly, ultimately leading to more wandering.

Aside from non-monotonicity arising as a function of the firing rate threshold, we
also observe that narrowing the I bump synaptic profile (varying the spatial extent of
the I projections) yields a peak in variance (Figure 5C) which may be due to a greater
susceptibility to noise perturbations when the width of I to E projections σei = σii is
decreased, resulting in a peak of variance. For smaller σei = σii, we speculate that
the equilibrium E bump width is narrower and can be more easily stabilized by I
feedback. Note that the simulations do not match the peaks as well as in other panels
likely due to approximations made in the interface based approach, though the trends
are still largely captured.

We also observe that lower I firing rate thresholds lead to bumps that are more



DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 19
𝑽𝒂
𝒓𝒊
𝒂𝒏
𝒄𝒆

𝑽𝒂
𝒓𝒊
𝒂𝒏
𝒄𝒆

𝑽𝒂
𝒓𝒊
𝒂𝒏
𝒄𝒆

𝑽𝒂
𝒓𝒊
𝒂𝒏
𝒄𝒆

Strongly Coupled Limit Interface Based Approximation 

◼E Theory
◼I Theory
★E Simulation
● I Simulation

◼E Theory
★E Simulation

◼I Theory
● I Simulation

◼E/I Theory
★E Simulation
● I Simulation

◼E/I Theory
★E Simulation
● I Simulation

𝒕𝒊𝒎𝒆		(𝒔𝒆𝒄𝒐𝒏𝒅𝒔) 𝒕𝒊𝒎𝒆	(𝒔𝒆𝒄𝒐𝒏𝒅𝒔)

A B

DC

𝜽							(𝜃! = 𝜃" + 0.05 = 𝜃) 𝜽							(𝜃! = 𝜃" + 0.05 = 𝜃)

Fig. 4. Variance predictions and simulations. Numerical simulations of Eq. (2.1) were run
using an approximate version of the interface equations derived from Eq. (4.9). Euler-Maruyama was
used for time-stepping with noise amplitude ε = 0.001, the spatial interval was truncated to [−3π, 3π]
with steps dx = 3π

1000
, timesteps are dt = 1ms, and variances were calculated by marginalizing over

104 realizations per point. (A) The strongly coupled limit prediction and corresponding simulations
over 1 second. Although this prediction works reasonably well for small thresholds θ, it breaks down
for higher thresholds where the I bump center of mass differs considerably, e.g., θu+0.05 = θv = 0.45.
Note the kink and change in the variance trend when θ passes through a value at which the half-
widths au, av exchange order (gold circle). Insets show single E (top panel) and I (lower panel)
bump simulations at indicated threshold values. x is the horizontal axis and t in seconds is the
vertical axis. The E(I) bump interfaces at each step are shown by the red(blue) lines and the bump
centers are represented by the green lines. (B) When comparing to estimates of variance made
using the interface based approach, the theory more closely tracks the simulation results at higher
firing rate threshold θ. (C) The strongly coupled limit predicts pure diffusion and linearly scaling
variance, which underestimates variance calculated from simulations at θu + 0.05 = θv = 0.45. (D)
The interface based estimate tracks the drifting apart of the E and I bump, leading to more accurate
variance predictions when θu + 0.05 = θv = 0.45. All other parameters are as in Table 1.
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Fig. 5. Excitatory bump position variances as a function of network connectivity, spatial extent,
and firing rate threshold. Noise amplitude ε = 0.001 throughout. (A) Bump position variance mostly
decreases as connectivity amplitude Aei is increased. Other parameters are Aii = 0, τ = 1, and
θu = θv = θ. Inset zooms in on the plot at lower Aei values. (B) Bump position variance mostly
decreases as Aie is increased. Other parameters are Aii = 0, τ = 1. θu = θv = θ. (C) Bump
position variance changes non-monotonically as the spatial extent of the I projections (σei = σii)
are increased. Other parameters are Aii = 0, θu = θv = 0.3 and τ = 1. σie is varied. Inset zooms
in on variance peaks. (D) Bump position variance primarily increases with I population threshold
θv. Other parameters are Aii = 0 and τ = 1. We also vary firing threshold θu. Other parameters
are as in Table 1.

stabilized to noise perturbations (Figure 5D). However, the largest peaks in bump
position variance occur where E and I bump half-widths are most similar, i.e., where
E (I) threshold crossing gradients are the lowest (highest) (Figure A.2).

These results assumed I to I connections are non-existent Aii = 0. However, we
found that even low amounts of I → I connectivity, Aii = 0.01, decreased bump
variance (Figure A.3).

4.4. Correlated versus uncorrelated noise. The impact of noise correlations
on neural circuit codes for delayed estimates are varied. Correlated noise within a
neural subpopulation can improve working memory coding [38], but cross-population
noise correlations can lead to an increase in bump attractor wandering that degrades
memory [28]. We find in the subsequent investigation that cross-population noise cor-
relations between E and I populations lead to less bump wandering than uncorrelated
noise.

Our aim is to explore the system when there is cross-population noise (corre-
sponding to the case where Cc 6= 0). To obtain greater control over the extent of
correlated noise we opt to express our spatiotemporal noise sources in the E and I
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Fig. 6. Effects of inter-population noise correlations. (A) Bump position variance as a
function of firing rate threshold θu = θv = θ for a network with completely uncorrelated (c = 0)
or completely correlated (c = 1) inter-population noise. interface based theory (solid and dashed
lines) agrees well with numerical simulations. (B) Bump position variance for fixed firing rate
threshold θu = θv = 0.45 as a function of inter-population noise correlations c. (C) Bump profile
evolution in absence of noise for firing rate threshold θu = θv = 0.25 given a correlated center shift
perturbation at t = 0. (D) Bump profile evolution in absence of noise over 1 second for firing rate
threshold θu = θv = 0.25 given an uncorrelated center shift perturbation at t = 0. (E) Bump profile
evolution for firing threshold θu = θv = 0.25 given two correlated ‘kicks’ (0.1 amplitude Gaussian
bumps shifted by random amount) applied to each population. Insets show each kick profile (black)
applied to the E(red) and I(blue) bump profiles, with the left and right insets being the first and
second kicks respectively. (F) Bump profile evolution for firing rate threshold θu = θv = 0.25 with
two uncorrelated kicks (0.1 amplitude Gaussian bumps shifted by random amount) applied to each
population. Insets show each E kick (dark red) and I kick (dark blue) profile applied to the E(red)
and I(blue) bump profiles, with the left and right insets being the first and second kicks respectively.
Other parameters are Aii = 0, ε = 0.001 and otherwise as in Table 1.
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populations as

(4.16) dWu,v(x, t)→
√

1− c2dWu,v(x, t) + cdWc(x, t),

where the independent spatially correlated and temporally white noise process dWc

represents a correlated stochastic component in system Eq. (2.1). We define these
three noise terms the same as before though now we have nonzero cross popula-
tion spatial correlation Cc(x − y)t = 〈Wc(x, t)Wc(y, t)〉. The correlation parameter
c ∈ [0, 1] such that c = 0 implies uncorrelated noise, and c = 1 fully correlated noise.
Correlating noise across the E and I populations drastically alters our variance pre-
dictions (Figure 6A and Figure A.4), with increased correlated noise decreasing the
predicted and simulated bump variances (Figure 6B).

We analyze the response of the E/I bump structure to correlated as opposed to
uncorrelated shifts. Correlated shifts translated both bumps centers, due to trans-
lational invariance of the system (Figure 6C). Uncorrelated shifts move the E and I
bumps in opposite directions, but then show an attraction of the I bump to the E
bump, while the E bump is repulsed by the I bump leading the I bump to ‘catch
up’ to the shifted E bump and the E bump moves further away from its original
position (Figure 6D). Thus, uncorrelated shifts lead to additional drift of the bump
and higher variance. This stands in stark contrast to the uncorrelated/correlated per-
turbation analysis carried out for two coupled identical lateral I layers [28], in which
opposing perturbations of two weakly connected bumps are effectively canceled by
the attractive force between the bumps.

We also considered the effects of two small additive Gaussian inputs, more akin to
the noisy kicks arising in stochastic simulations. When the position of these kicks was
strongly correlated (Figure 6E; i.e. the same application to each population), the E
and I bumps stayed together and relaxed back to their original position. Uncorrelated
kicks led to different perturbations in the position and profile of the E and I bumps
(e.g., Figure 6F), with a relaxation where the I bump was attracted the E bump, but
the E bump was repelled by the I bump.

Overall, we found that the separate E/I network model shows parametrically-
dependent bump wandering. First, bump position variance depends strongly on the
relative widths of the E and I bumps, and relaxation dynamics from noise pertur-
bations can cause the I bump to stray from the E bump. Second, non-monotonic
variance trends arise with respect to network connectivity amplitude and spatial scale
parameters. Lastly, increases in inter-population noise correlations reduce bump wan-
dering by eliminating the relaxation effects that would otherwise extend the effects of
stochastic perturbations on the E and I bumps.

5. Discussion. Stochastic bump attractor models have become a useful tool for
characterizing variability of systems that code for memory-based estimates of continu-
ous variables [3,8,34,48]. As we show here, it is important to appreciate the nuances of
E/I architecture and noise correlations [24] when making predictions about continuous
variable estimates. Our study has provided a suite of new predictions concerning how
inter-population connectivity amplitude and spatial profiles impact bump wandering.
To obtain tractable expressions for bump position variance predictions, one form of
our approximations relied upon the marginal stability of solutions to the noise-free
system. Prior to performing our variance estimates, we observed that along several
parameter axes, we obtain non-monotonic changes in half-widths and two types of
instabilities: an oscillatory (Hopf) instability located in the red unstable regions, and
a contraction instability located at discontinuous saddle nodes (Figure 3). Partial
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versions of the results have been observed previously in E/I population models [4].
We also found that stability of solutions was significantly affected by nonzero I→I
synaptic strength (compare Figure 3 and insets). Thus, even ‘weak’ I→I connectivity
can strongly affect the linearized dynamics of stationary bump solutions.

Our asymptotic analysis aimed at predicting the stochastic motion of bumps
subject to noise moved beyond the standard single center-of-mass approximation often
used to estimate the stochastic motion of bumps [8, 31, 37]. While a single center-of-
mass approximation works reasonably well across some parts of parameter space, at
high firing rate threshold, close to the discontinuous saddle-node bifurcation, we find
this breaks down and is better captured by a stochastic interface based approximation
previously developed in [36]. In particular, the I bump diffuses more than the E
bump, which is well captured by the nonlinear Langevin approximation derived by
approximating the motion of bump interfaces. The amplitude of bump wandering
changes non-monotonically in most network parameters, due to the change in bump
half-width amplitudes, well captured by our interface based approximation. Notably,
inter-population noise correlations reduced bump wandering. Uncoordinated E and
I bump motion, arising in networks with uncorrelated inter-population noise, lead
to additional bump drift during relaxation periods while the I bump ‘chased’ the E
bump.

Note, our variance approximations are relatively accurate over the wide range of
parameters we chose to analyze, but there are features of the full nonlinear system
that can depart significantly from our basic assumptions, especially those involving
linearizations. One rare but possible source of discrepancy between our asymptotic
approximations and the full system could arise from the emergence of multiple distinct
active regions in the E and/or I populations. Such a situation could emerge from (a)
large and rare noise perturbations that activate a distinct region of the E and/or I
population away from the bump and (b) large and rare noise perturbations that split
bumps. While both are possible, they are extremely rare and so do not have a sub-
stantial impact on the numerically estimated variance. However, we could account for
such splitting, nucleation, and annihilation events by extending our approximations
to incorporate the appearance and merging of interfaces as in [18, 36]. Moreover, we
could account for such events in our numerical estimates with a more flexible defi-
nition of bumps which accounts for these transient events. Another approximation
made in both the strong coupling limit and interface approximation is to assume the
gradient of the activity variables at the interfaces is constant, though this is likely
not true as shown in [18]. Nevertheless, we typically expect any deviation from this
constant gradient value to be small and to not substantially impact the stochastic
dynamics of the bump.

There are several other possible extensions of our analysis of bump stochastic
motion in the E/I network. It is important to note that we made multiple approx-
imations to collapse our stochastically evolving bump interface equations to a pair
of SDEs describing the coupling between the E and I bump. Alternatively, we could
have retained a higher order approximation of the bump interface gradients in order
to obtain a more accurate approximation [18]. Recall, the interface based approxi-
mation begins as a fully nonlinear description and can be used to describe dynamics
near the oscillatory (Hopf) bifurcation or the discontinuous saddle node. Alterna-
tively, such near-bifurcation approximations could also be determined by choosing a
scaling for a bifurcation parameter similar to the weak noise amplitude as in [29,33].
Such approaches could also describe the stochastic dynamics of traveling pulses that
emerge beyond bifurcations whereby bumps begin to drift at a constant speed due to
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the negative feedback brought about by the I population.
Our analysis of bump position variance across multiple parametric axes helped

identify a number of ways to reduce bump wandering via network architectural tuning.
We largely chose parameters roughly assuming 80% E and 20% I neurons present in
the prefrontal cortex [1], but we could certainly explore broader ranges of parameter
space beyond this typical fraction. Another natural extension for this work would
be to consider more complex mechanisms for synaptic tuning, such as short term
plasticity in the E and I populations, to reduce the propensity for bumps to wander.
Recent studies in mean field reductions of spiking networks have demonstrated that
short term facilitation (depression) on the E population with global inhibition tends
to decrease (increase) bump drift and diffusion [44], ultimately improving parametric
working memory. Extensions of our model and present analysis could be used to
further investigate how the introduction of different forms of short term plasticity
into either the E or I population would impact bump wandering. Not only could
short term plasticity reduce the effect of stochastic perturbations on bumps, but also
make them more robust to distraction inputs [40].

Finally, our investigation into the role of cross-population noise correlations raises
questions regarding the coding advantages brought about by noise correlations. Noise
correlations can increase, decrease, or not affect the amount of information encoded
by a neural circuit [2]. Most such results have been derived in network models
devoid of spatial structure. However, recently work has demonstrated how disrup-
tive broadly correlated spatiotemporal noise can be to information transmission in
spatially-organized neural circuits [26]. Our work adds to this ongoing line of inquiry
by demonstrating variability-reducing mechanisms possible via increased correlation
in noise between E and I populations. Our bump position variance predictions and
model are sensitive to changes in the structure of noise. An improved understanding of
the precise form and structure of noise in prefrontal cortex and other areas [41] could
help further constrain neural circuit models of memory-encoding persistent activity.
Mechanistic models that connect synaptic architecture, psychophysical performance,
stochastic and spatiotemporal dynamics, as well as the rich structure of internal and
external noise can help us further understand the dynamical principles underlying
information coding in the brain.
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Appendix A. Additional figures.
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Fig. A.1. Single simulation of E and I bump wandering. The noise amplitude is ε =
0.001. The I bump wanders much further in certain parameter regimes. Synaptic weight strength
Aii = 0; and firing rate thresholds θu = 0.42, and θv = 0.47. (A) Initial and final profiles of
E and I bumps. (B) E and I center of mass positions evolving over time. The I bump generally
follows E wandering, but also additionally wanders more wildly about E. (C) Bumps wandering over
time. Traces represent the center of mass (green) and the E/I interfaces (red/blue, respectively).
Colorscales represent the profile amplitude of u(x, t) and v(x, t). Other parameters are as in Table 1.
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Fig. A.2. Isolating factors affecting variance of bumps’ wandering. Synaptic strength
Aii = 0.01. (A) Colorscale represents the difference in relative E and I halfwidths for varying θu
and θv. Bump position variances are maximized when au = av. (B) Colorscale of E bump position
variance for ε = 0.001 amplitude noise. Black line bounds unstable region. (C,D) E,I bump threshold
crossing gradient (|U ′(au)| and |V ′(av)|) as a function of firing rate thresholds. Note, the E variance
is largest when the threshold crossing gradient for E (I) is low (high). Slices further taken through
these plots correspond to predictions shown in Figure 5D.
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Fig. A.3. Predicted and simulated center of mass variances. Here, we take I to I con-
nectivity Aii = 0.01 and noise amplitude ε = 0.001. (A) Bump position variance as a function of
Aei = A vary and θu = θv = θ are varied. The inset is a closer view of the variance peaks. (B)
Variance as a function of Aie = A as θu = θv = θ are also varied. (C) Variance as a function
of spatial scale σei = σii and varying σie. We fix θu = θv = 0.3.The inset is a closer view of the
variance peaks. (D) Variance as a function of θv as θu is varied. Parameters not mentioned are as
defined in Table 1.
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Fig. A.4. Predicted bump position variances for correlated and uncorrelated noise. Noise
amplitude is set to ε = 0.001 and we take Aii = 0. (A)Bump position variance as a function of
θu = θv = θ. (B) Bump position variance as a function Aei = A with θu = θv = 0.25. (C)
θu = θv = 0.2 and σie = 3. Bump position variance as a function of σei = σii. (D) Bump position
variance as a function of θv. We take θu = 0.2. Other parameters are as in Table 1.
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