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ABSTRACT

Although meant to be relatively stable, the architecture of a software system does, at
times, change. This simple yet important observation immediately raises the question
of how changes to an architecture should be captured. Current architecture description
languages are not well-suited for this purpose, but existing techniques from the discipline
of configuration management can be adapted to provide a solution. In particular, we
propose a novel representation, called configurable software architecture, that extends
the traditional notion of software architecture with the concepts of variants, options,
and evolution. We discuss the details of the representation, present an environment
that allows the specification of configurable software architectures, and highlight a few of
the opportunities that we believe arise once architectural configurability can be precisely
captured.

This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Defense Advanced
Research Projects Agency under Contract Numbers F30602-94-C-0253 and F30602-98-2-0163. The content of the
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1 Introduction

Rarely a software system has been constructed that, once delivered and in use, was never
modified. In fact, it is well-known that most successful software systems undergo a large number
of changes over time. Managing all these changes has almost exclusively been the domain of the
discipline of configuration management for quite some time now. In particular, advanced techniques
have been developed to address (among others) the following two problems: capturing the ever
constant state of flux that the source code of a software system appears to be in, and selecting a
particular system configuration out of the—potentially very large—set of available source code. In
essence, these techniques can be characterized as managing the configurability of a software system.

The mere existence of configurability can basically be attributed to three phenomena, namely
variability, optionality, and evolution. Although these three phenomena are closely related, it
should be understood that they represent three very distinct concepts. Variability refers to the
fact that a single software system can provide multiple, alternative ways of achieving the same
functionality. As an example, consider a numerical optimization system [6] that has been engineered
to operate either slow but very precise, or fast but only approximate. Depending on the desired
mode of operation, the selection of source files included in the actual system configuration can be
very different. Optionality means that a software system has one or more additional parts that
each may or may not be incorporated in the system. For example, consider the fact that the
numerical system can optionally gather statistics. The source files that implement the gathering
and analyzing of the statistics at run-time are only included in the system configuration if the
option to gather statistics is turned on. Finally, the term evolution is used to capture the notion
that a software system changes over time to provide a related yet different set of capabilities. Once
again, the numerical system provides an example in that it evolved from initially being capable
of only optimizing rather simple functions to now optimizing large and very complex functions.
Obviously, the system configuration has changed over time as the capabilities of the system have
increased.

With the emergence of the discipline of software architecture, a new challenge has arrived with
respect to managing configurability. It has been proposed to use the architecture of a software
system to support various activities in the software life cycle. In fact, some infrastructure has
already been developed to support this vision. In particular, a source code editor that is explicitly
based on architecture [5], a tool specifically designed to test architectures [30], and a number of
architecture-based activation systems [17, 22] have been constructed. With this kind of use of
architectures, though, the architectural structure of a software system becomes as important as
its source code; both are delivered and deployed. Moreover, both exist in multiple variants, both
exhibit optionality, and both evolve over time. Therefore, the need arises to manage configura-
bility in architectures analogous to the way configurability in source code is being managed [36].
Herein lies the aforementioned challenge: to investigate and develop techniques that are capable of
managing and supporting configurability at the architectural level. A key observation to be made
is that this challenge requires the management of the configurability of architectures themselves,
not of the documents that describe the architecture. In fact, it is not sufficient to simply version
an architectural description. Instead, to support some of the activities listed above, configurability
has to be modeled inside an architecture itself.

Some aspects of architectural configurability are starting to be addressed. For example, changes
at the architectural level have been used to dynamically reconfigure a software system at run
time [13, 22]. As another example, it has been recognized that the differences between architectural
configurations can be used as a basis for regression testing [25]. However, two problems persist in



the work carried out so far.
o Although certainly as important as evolution, neither variability nor optionality is supported.

o A suitable representation that captures architectural configurations and relates them to each
other is lacking.

This paper proposes a solution for these two problems by leveraging the modeling capabilities that
have been developed in the field of configuration management. In particular, we propose a novel
representation, called configurable software architecture, that integrates the traditional notion of
software architecture with the concepts of variants, options, and evolution. Although this work is
preliminary and we have not yet tested the use of the representation, we believe that the definition
of the representation is a first step towards the structured use of architecture-level configurability
in support of various software life cycle activities.

The remainder of this paper is organized as follows. We first, in Section 2, discuss a number of
myths with respect to architectural configurability that need to be addressed before we introduce
our representation in Section 3. We then discuss, in Section 4, an environment that we have created
to support the specification of configurable software architectures. Subsequently, in Section 5, we
present some of the potential uses of our representation. We discuss related work in Section 6 and
conclude in Section 7 with a summary of our contributions and an outlook at future work.

2 Myths

Before we discuss our representation for configurable software architecture, we need to discuss
a number of myths with respect to architectural configurability. Below, we introduce these myths
and present a short rebuttal for each one.

Architectures do not change. The architecture of a software system is indeed meant to be
relatively stable. However, during the life of a software system it is likely that changes occur
that do have an impact on its architecture. Perhaps the most convincing argument is provided
by Perry and Stieg, who showed that approximately 50 percent of all system changes are interface
changes [23]. Given that a typical architectural description captures interfaces, we can, thus, expect
an architecture to change.

Architectural configurability can be expressed in existing architecture description lan-
guages. It is certainly possible to capture aspects of configurability in some existing architecture
description languages (ADLs). In fact, certain ADLs, such as Rapide [15] or Darwin [16], are
even powerful enough to explicitly program configurability. However, ADLs lack specific constructs
for this purpose. In the face of a large number of variants, options, and evolutionary changes,
this quickly leads to a complicated and chaotic architectural description that is rather difficult to
understand.

Managing architectural configurability is simply applying a configuration management
system to an architectural description. At first sight, the use of a configuration management
tool (e.g., ClearCase [3], CVS [4], or Continuus [7]) to store and version architectural descriptions
is an attractive and simple solution to capturing architectural configurability. However, if a config-
uration management system were to be used, the configurability aspects of an architecture would
be stored as metadata separate from the architecture. Because the data is not an integral part of



the architecture, such a solution prohibits the use of configuration data by the architecture itself.
In particular, this becomes a problem in the case of dynamic, self-adaptive architectures, because
these need the configuration data to govern the changes they undergo. Moreover, the creation
of multi-version architectures, such as, for example, those required in Hercules [8] or the Simplex
method [27], is not supported by this type of solution.

Managing architectural configurability is simply adding a version number to the en-
tities in an architectural description. Adding version numbers to architectural entities is
certainly a step towards capturing architectural configurability. However, a complete solution is
more complicated. A version number is simply an identification mechanism that leaves the seman-
tics of versioning (and versioning relationships) implicit. The traditional version tree is one way of
capturing some of these semantics, but architecture has its own peculiarities that require the use of
a different mechanism. Optionality, for example, is not supported by the version tree. In addition,
the variant relationship needs to be extended because, in an architecture, independently developed
components can be variants of each other. Thus, we require a more advanced solution than just a
simple addition of a version number.

3 Configurable Software Architecture

As the name “configurable software architecture” already indicates, our representation for cap-
turing architectural configurability is based on a number of concepts adopted from the discipline
of configuration management. However, as discussed in the previous section, a straight adoption is
not necessarily our best option; the unique aspects of software architecture as compared to source
code require us to apply some of the traditional configuration management techniques in a rather
different way. In this section, we discuss these aspects and their influences on the design of our
representation for configurable software architecture. Before we do so, however, we first introduce
a number of general principles that guided the design and then introduce an example system that
we use throughout the remainder of the discussion.

3.1 Design Principles

Our representation for configurable software architecture has been influenced by a number of
design principles. In the following, we enumerate these principles and discuss their impact on the
representation.

e (Completeness. Our representation needs to be able to capture all types of configurability to all
architectural elements. Although a trivial observation, it influences our design considerably.
In particular, it has been observed that the need to create a representation that involves
hierarchies (an integral part of architectural specifications), variants, and evolution already
brings forth a rather complicated design problem that is multi-dimensional in nature [33].
The addition of options further complicates this problem.

o Simplicity. Because we need to capture a large number of concepts in a single representation,
a focus on the essential aspects to be modeled is an absolute necessity. If too many concepts
are addressed via advanced modeling techniques, the representation becomes too complicated
to use. In that case, it is likely that only a subset is used and that the full power of the
representation is not taken advantage of.



e Orthogonality. The discipline of configuration management has traditionally addressed a
number of different concepts through a single formalism: the version tree. In [10] it is argued
that this is not a proper approach; instead, each concept should be handled in a separate
manner. In the design of our representation for configurable software architecture we follow
this advice and treat every concept orthogonally.

e Language independence. A large variety of architecture description languages exists [21].
We, obviously, would not like to tie our representation to a single language. Instead, our
representation should make it possible to capture configurability for a multitude of ADLs. As
demonstrated by Acme [11], this requires a careful design that reckons with the peculiarities
of the various ADLs.

3.2 Example

Figure 1 presents a simplified version of an existing system that is currently in use to carry out
research in the field of numerical analysis [6]. The purpose of the system is to globally optimize a
mathematical function, i.e., to find the point in the domain of the function that yields the absolute
lowest function value. The system consists of about 15,000 lines of Fortran and C code, and is
modularized into a set of components. In the figure, each solid box represents such a component
and each solid line indicates the existence of interaction between two components. For example,
each Optimizer component interacts with a single ComplexFunction component. The dashed
lines indicate a different kind of relationship among components, instantiation. As illustrated by
the dashed boxes, the Scheduler component instantiates new Optimizer and ComplexFunction
components in pairs.

In the system, the GlobalOptimization component manages the computation that takes place.
It uses the Scheduler to create new Optimizer and ComplexFunction components, and allocates
a particular interval of the domain to each Optimizer component. The Optimizer component
carries out an optimization algorithm on the interval that it has been allocated, and uses its
ComplexFunction component to evaluate the function at the particular points that the algorithm
requires. The net effect is that the function is optimized by optimizing multiple intervals in parallel.

Throughout its lifetime, the system has been highly variable. Initially, the ComplexFunction
component consisted of about 3,000 lines of Fortran code that were created at the local site, but
it has since been replaced with a separate system, CHARMM, that was created at an external
site. Also, alternative Optimization components exist that each exhibit unique characteristics
with respect to the encapsulated optimization algorithm; some are fast but produce less precise
results, whereas others are slow but very accurate. Moreover, the system is configurable to option-
ally generate statistics about its performance. Finally, new versions of the GlobalOptimization
component are created on a regular basis as new approaches are being tried to find better results.

3.3 Basic Architectural Skeleton

Figure 2 shows the basic architectural skeleton upon which we have constructed our repre-
sentation for configurable software architecture. Although syntactically different, the skeleton is
largely patterned after the semantics that were introduced by Acme [11] and Darwin [16]. It con-
tains the common architectural concepts of interfaces, components, and connections. Although the
skeleton is similar to some of the system models provided in traditional configuration management
systems (e.g., Adele [9], DSEE [14], and Jasmine [19]), some important differences exist. Since
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Figure 1: Example System.

these differences have been further elaborated upon in the existing software architecture litera-
ture [12, 24, 29, 34], we only briefly mention the core differences here: besides components and
their interfaces, connections are explicitly modeled as well; the behavior and constraints of compo-
nents and connections are explicitly modeled; both components and connections can have multiple
interfaces; and interfaces are directed.

Before we move on to our discussion on configurability, several words are in place about the
skeleton representation. First, we note that the representation is based on a type-instance mech-
anism. However, because instances define additional fields besides the ones defined in their types,
they also exhibit an inheritance relationship with respect to their types. Thus, our representation
does not reflect a type-instance system in the truest sense of the word. To indicate this difference,
we use the term exemplar as opposed to the term type.

The second observation we need to make is that, because of language independence reasons,
connections are not required to have interfaces. Some ADLs have what can be considered anony-
mous connections whose sole purpose is to connect components via component interfaces (consider
the buses used in C2 [31] or the use of the bind statement in Darwin [16]). Other ADLs raise
the level of connections to what are called connectors [2, 28]. In those ADLs, a connector has its
own interfaces and connects components by binding the interfaces of the components to its own
interfaces. To support both kinds of ADLs, the use of interfaces in connections is optional in our
representation.

Two additional observations need to be made about the skeleton representation. The first is that
the hierarchical composition of architectures is supported through the construction of exemplars
out of instances of other exemplars. That is, an exemplar is defined as a set of interfaces that
it exposes, a set of components that it consists of, and a set of connections that (internally)
connect the contained components and the exposed interfaces. The second observation to be made
is that, even though connection exemplars are semantically different from component exemplars,
they are syntactically identical. This follows the traditional notion that connections are nothing
but components, but need to be recognized as separate entities.

To illustrate the basic skeleton, Figure 3 shows a partial specification of the global optimization
system. We first notice the exemplar Point, which defines an interface exemplar that represents a
geographical location. As described previously, the representation of an exemplar is ADL-specific.



Component Exemplar

name
{interface}*

{ component} *
{ connection}*
behavior
constraints
representation

Connection Exemplar

componentExemplar

Interface Exemplar

name
representation
Component Connection
name name
componentExemplar {'sourcel nterface [, myDestinationlnterface]} *
{[mySourcelnterface,] destinationlnterface}*
connectionExemplar
Interface
name
direction

interfaceExemplar

Figure 2: Basic Software Architecture Representation.

In this particular case, we have chosen Darwin as the language to use. An instance of the exemplar
Point is given by the interface result, which is an in interface, indicating it consumes a result
that is produced by some other component.

Hierarchical composition is demonstrated by the component exemplar GlobalOptimization.
It contains the interface result, as well as two components, opt and eval, and two connections,
bus1 and pipel. For brevity, we do not show the definitions of these components and connections,
but only note that they are defined in terms of other exemplars. The only instance we do describe,
though, is bus1. This connection illustrates how the instances contained by an exemplar can be
connected. In this particular case, the connection connects the interface result of the exemplar
GlobalOptimization to the interface minimum of the component opt. The behavior, constraints,
and representation of the exemplar GlobalOptimization are, once again, language dependent and
not further defined here.



InterfaceExemplar Interface

name = Point; name = result;
representation = { direction = in;
integer x; interfaceExemplar = Point;
}
ComponentExemplar Connection
name = GlobalOptimization; name = busl;
interfaces = result; sourcelnterfaces = minimum;
components = opt, eval; destinationInterfaces = result;
connections = busl, pipel; connectionExemplar = Bus;

Figure 3: Basic Software Architecture Representation Example.

3.4 Representation

Figure 4 shows our representation for configurable software architecture as an extension to the
basic architectural skeleton that we introduced in Figure 2. Below, we discuss one by one how this
extended representation addresses the problems of capturing evolution, optionality, and variability.

3.4.1 Evolution

Our first step towards building a representation for configurable software architecture is the
addition of a revision number to each of the exemplars. To capture the evolution of an exemplar,
the revision numbers of subsequent editions of the exemplar are related to each other in a version
tree. This scheme follows the practice of many standard configuration management solutions.
However, our solution deviates in two important ways. First of all, we note the intentional use of
the term revision number as opposed to the more conventional term version number. In traditional
CM systems, the version tree captured both evolution and variability. In our representation, we
separate these two and only support evolution through the version tree. In essence, we expect the
version tree to evolve linearly. To indicate this expectation, we use the more specific term revision
number. Of course, branches are still allowed in the version tree, but only to represent parallel
work. We expect such parallel work to be temporarily and eventually be merged in with the main
line of development.

The second deviation also concerns branches. A different kind of branch from the branch
for parallel work is the one where a separate line of development starts (e.g., a new baseline).
Traditionally, such a branch is labeled in the version tree as a special branch by using some kind
of attribute mechanism. In our representation, we separate out this kind of branching and adopt
the solution used in Perforce, namely inter-file branching [26]. When a new baseline is created for
an exemplar, the exemplar is copied to a new name space with a new version tree. Thus, the new
baseline can evolve separately from the old baseline. Of course, we track the ascendant/descendant
relationship among the old and new baselines in our representation.

Once exemplars evolve, the question arises as to how particular revisions of instances are se-
lected during hierarchical composition. In our representation we have chosen a rather simple
scheme: instances are instances of particular revisions of exemplars, and exemplars are hierarchi-
cally constructed based on these instances. This implies that exemplars are constructed in terms
of specific revisions. Although more complicated schemes based on advanced selection rules are



Component Exemplar Variant Component Exemplar

name name
revision revision
{interface [, optional PropertyName, optional PropertyVaue]} * {interface [, optional PropertyName, optional PropertyVaue]} *
{ component [, optional PropertyName, optional PropertyValue]}* variantPropertyName
{ connection [, optional PropertyName, optional PropertyValue]} * { component, variantPropertyValue} *
behavior representation
constraints { propertyName, propertyValue} *
representation ascendant
{ propertyName, propertyValue} * { descendant} *
ascendant
{ descendant} *
Connection Exemplar Variant Connection Exemplar
componentExemplar variantComponentExemplar

Interface Exemplar

name
revision
representation
ascendant
{ descendant} *
Component Connection
name name
componentExemplar | variantComponentExemplar {'sourcel nterface [, myDestinationl nterface]} *
{[mySourcelnterface,] destinationlnterface}*
connectionExemplar | variantConnectionExemplar
Interface
name
direction

interfaceExemplar

Figure 4: Configurable Software Architecture Representation.

certainly a possibility, for simplicity we have chosen to not incorporate such a scheme yet.

Figure 5 illustrates how the addition of evolution influences our example. We first note that
each exemplar is versioned and identified by a name and a revision number. In the example, we are
defining revision 3 of the exemplar GlobalOptimization. Additionally, we note that each instance
is defined in terms of a specific revision of its exemplar. For example, the interface instance result
is based on the exemplar Point revision 2. The last observation we make is that the exemplar
GlobalOptimization has a descendant, namely ComplexGlobalOptimization revision 1. The
descendant indicates the beginning of a separate baseline, that is branched off from revision 3 of
the exemplar GlobalOptimization.

3.4.2 Optionality

Optionality is an underdeveloped area in both the disciplines of software architecture and config-
uration management. The sole architecture description language that explicitly supports optionality
is Koala [37]. Even so, only the optionality of interfaces can be specified, and the optional primitive
does not extend to components or connections. With respect to configuration management, none



InterfaceExemplar Interface

name = Point; name = result
revision = 2; direction = in
representation = { interfaceExemplar = Point(2);
integer x;

}

ComponentExemplar ComponentExemplar
name = GlobalOptimization; name = ComplexGlobalOptimization;
revision = 3; revision = 1;
interfaces = result; interfaces = result;
components = opt, eval; components = complexOpt, eval;
connections = busl, pipel; connections = fastBusl, pipel;
ascendant = (none); ascendant = GlobalOptimization(3);
descendant = descendant = (none);

ComplexGlobalOptimization(1);

Figure 5: Architectural Evolution Example.

of the system modeling languages developed to date explicitly supports optionality. The attribute
mechanism used for selection purposes can be leveraged to provide a rudimentary way of supporting
optionality, but the optionality aspects of the system model are relatively hidden this way.

In our representation, we explicitly model optionality through the use of properties. As shown
in Figure 4, each interface, component, or connection instance that is used in the hierarchical
construction of an exemplar can be guarded with an optional property name/value pair. The
property name specifies the name of the property that the inclusion of an instance depends on,
whereas the property value specifies the exact value that the property should have to actually
include the instance in the specification.

To determine which options are included in a (partial) system, an exemplar sets the values for
the properties that it desires to use. These values are propagated down the hierarchical chain of
inclusion to properly select all parts of the system. Currently, an exact match is required between
the optional property value and the selected value to include the optional interface, component,
or connection. Of course, more powerful logic-based schemes can be devised, but we have not
implemented any of these yet.

Figure 6 demonstrates the use of optionality in our representation. We have extended the
example of Figure 5 with an optional part that gathers statistics. A component stat and a
connection bus2 are now included in the exemplar GlobalOptimization, but it should be noted
that both are guarded by a property called statistics that has to have the value true for either
to be included. Inside the definition of the exemplar Optimizer, the interface stat is optional as
well, depending on the same property statistics as the other optional parts of the architecture.
Whether or not the optional parts are included in the architecture depends on the value of the
property statistics. In this case, the exemplar GlobalOptimization defines the property to be
true, which results in the inclusion of all optional parts.



ComponentExemplar ComponentExemplar

name = GlobalOptimization; name = Optimizer;
revision = 3; revision = 1;
interfaces = result; interfaces = stat(statistics == true);
components = opt, eval, components = (none);
stat(statistics == true); connections = (none);
connections = busl, pipel,
bus2(statistics == true);

properties = {
statistics = true;

}

Figure 6: Architectural Optionality Example.

3.4.3 Variability

Rather than following an implicit approach in which variability is locally defined inside a com-
ponent (such as, for example, required in PCL [32]), our representation derives from the approach
taken by Adele [9] and explicitly defines variability as a separate entity inside a specification. In
particular, we define two new types of exemplars: a variant component exemplar and a variant
connection exemplar. Given that, analogous to the way a connection exemplar is syntactically
equivalent to a component exemplar, the syntax of a variant connection exemplar is identical to
the syntax of a variant component exemplar, we only discuss the specifics of a variant component
exemplar here.

Our decision to define a variant component exemplar as a separate entity in our representation
stems from the following three requirements.

e The representation must support the ability to define independently developed component
exemplars as variants of each other.

e The representation must support the ability to evolve the definition of a variant just like any
other regular component exemplar or interface exemplar can evolve.

e The representation must be able to define a variant once and use its definition many times.

To satisfy these requirements, a variant component exemplar is a separate entity that can evolve
and contain optional interfaces just like a regular component exemplar. However, its hierarchical
containment is defined rather differently. As opposed to being hierarchically constructed in terms
of components and connections, a variant component exemplar is defined by a number of com-
ponents that each have the same interfaces as the variant component exemplar. In addition, the
variant component exemplar specifies a property name for which each contained component has
an associated property value. Based on the value of the property as defined in a “higher-level”
component exemplar, the variant component selects one of the contained components as the one
that is selected to be included in the system.

To account for the existence of both component exemplars and variant component exemplars, a
component instance is now either an instance of a component exemplar or an instance of a variant
component exemplar. Because instances, when used in hierarchical composition, are only connected
through interfaces, and both regular and variant component exemplars are defined in terms of their
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ComponentExemplar VariantComponentExemplar

name = GlobalOptimization; name = Optimizer;
revision = 3; revision = 1;
interfaces = result; interfaces = stat(statistics == true);
components = opt, eval, optionalProperty = speed;
stat(statistics == true); components = slowOpt(slow),
connections = busl, pipel, fastOpt(fast);
bus2(statistics == true);

properties = {
statistics = true;
speed = fast;

}
Figure 7: Architectural Variability Example.

interfaces, component instances can be used in the same way regardless of whether they represent
a regular or a variant component exemplar.

To illustrate variability in our example, we take a look at the exemplar Optimizer. Figure 7
illustrates how this exemplar is defined in terms of two variant components: an instance of the
exemplar FastOptimizer, called fastOpt and an instance of the exemplar SlowOptimizer, called
slowOpt. Selection of one of the two instances depends on the property speed, which can have the
values slow and fast. In this particular case, the exemplar GlobalOptimization sets the value
of the property to fast, which through hierarchical propagation causes the fastOpt component
instance to be included in the architecture.

4 Environment

Maintaining a configurable software architecture by writing specifications by hand is, of course,
a difficult and error-prone task. Therefore, we have constructed a simple environment, called
Ménage, that supports the graphical construction of configurable software architectures. Shown in
Figure 8, the environment is divided into three separate areas. The first area, displayed on the
left, contains lists of available component, connection, and interface exemplars. These exemplars
have been previously created, and can be used in the hierarchical construction of new exemplars.
The largest available area of the environment is used exactly for this purpose; i.e., it allows new
exemplars to be specified. These exemplars can be completely new exemplars, or exemplars that are
new revisions of existing ones. As an example, the Figure displays the specification of revision 3
of the component exemplar GlobalOptimization, which is constructed out of instances of an
Optimizer, a FunctionEvalation, and a Statistics exemplar. The interfaces of the components
are connected via connections of two kinds: buses and pipes. It should be noted that the component
stat, the connection bus2, and the interface stats on the component opt are highlighted with
a white border to indicate their optionality. Depending on the value of the optional property
statistics, these instances are included in the architecture or not.

The third area of the environment shows the evolution of the exemplar that is currently be-
ing defined. In the version tree displayed at the top of the figure, we see that the exemplar has
evolved through three generations. New revisions are created via a traditional check-out/check-
in mechanism that is supported by the environment. Change comments are associated with
each check-in, and a history of changes can be obtained. The special mark on revision 3 indi-

11
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Figure 8: Ménage Configurable Software Architecture Environment.

cates that this revision serves as a branching point for a new baseline . In this case, the ex-
emplar ComplexGlobalOptimization evolved out of the (immutable) revision 3 of the exemplar
GlobalOptimization.

Figure 9 shows how the environment supports variability. A variant component exemplar,
Optimizer, is being defined in terms of instances of two other component exemplars that each have
the exact same interfaces as the Optimizer exemplar. The variant property is speed, and one of the
contained component instances, slowOpt, is a slow optimizer (as indicated by the variant property
value slow that is associated with the component), whereas the other instance, fast0Opt, is a fast
optimizer (as indicated by the variant property value fast that is associated with the component).
Depending on the value of the property speed as given to it by a higher-level exemplar in the
architecture, the Optimizer selects either the slowOpt or the fastOpt component to be included
in the architecture.

Of course, configurable software architectures that are specified in the environment need to be
verified for correctness. Two types of verification processes are supported. The first is incorporated
in the environment itself and is able to verify the correct use of properties and variants; conflict-
ing properties in different parts of the architecture can be detected, undefined properties can be
uncovered, and improper variant specifications can be discovered. The second verification process
is based on a reduction to a specification in a “native” ADL. A configurable software architecture
in our specification is reduced to a specification in a particular ADL (such as, for example, C2 or

12
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Figure 9: Specifying Variability in Ménage.

Darwin) and the verifier of the particular ADL is invoked to determine whether the specification
is sound.

5 Opportunities

As already stated in the introduction, the development of our representation is preliminary in
terms of experience. We have not been able to put the representation in actual use just yet, but
we do have identified some of the opportunities that we believe can benefit from the availability of
a representation for configurable software architecture. In this section, we briefly discuss three of
those opportunities.

5.1 Active Patches

One of the activities that is currently supported by some of the architectural approaches is
architectural reconfigurability. In C2, for example, wizard scripts contain algorithms to update the
architecture of a system at run time [22]. Until now, these wizard scripts had to be created by hand;
a designer has to study the differences between the actual architecture and the architecture that
is desired. Obviously, this can be a rather laborious and potentially error-prone process. Given a
representation for configurable software architecture, the differences between the actual and desired
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architecture can be calculated using a difference algorithm. It should be noted that the result of
the difference algorithm can be rather distinct from the classical output of a difference between
two source files. Whereas in the latter case the output is a simple listing of textual differences,
the structural nature of an architecture facilitates a semantic interpretation of the differences. In
particular, it seems to be possible to generate active patches that, rather than being a listing of
differences, are much like a wizard script; the active patch contains an algorithm, that, if applied
to a particular architecture, transforms that architecture into a different architecture [35].

5.2 Dynamic, Multi-Version Systems

Highly reliable and fault-tolerant applications are often constructed as self-configuring, multi-
version systems in which critical functionality is implemented in alternative ways in different com-
ponents. In these applications, an arbitrator typically determines which component are active and
which results are used. Depending on the quality of the results from the various components, the
arbitrator has the ability to reconfigure the application to include new components, remove com-
ponents, activate or deactivate components, and sometimes even to rewire how the components
are connected. Obviously, a strong relationship exists between these types of applications and our
representation. In particular, the variant relationship that is captured by our representation, com-
bined with our property-based optionality mechanism, could be used to support the definition and
reconfiguration of these types of applications.

An alternative way of improving the reliability of an application is described in [8]. Rather than
using variants, the approach is based on the incremental inclusion of multiple revisions of the same
component. Once again, an arbitrator is used to determine which results from which component
revisions are used in the application. Of course, our representation could serve the same role in
this scenario as it does in the above: because the evolution of a component is precisely captured,
the representation could be used to support the definition, evolution, and reconfiguration of these
types of multi-version applications.

5.3 Architectural Erosion

One of the main problems identified in the software architecture literature is architectural
erosion: once the conceptual architecture of a system has been created, it becomes out of date with
respect to the actual architecture that is embedded in the implementation of the system [24]. To
remedy this situation, it is often attempted to organize the structure of the source code of a system
along its architectural components. However, this turns out to be a rather difficult exercise that
is not very well supported by the current configuration management tools; these tools are geared
towards managing the structure of the source code, not the structure of the system itself.

Our representation offers a unique opportunity to approach the problem of architectural erosion.
In particular, the representation not only captures the structure of a system, but also its evolution
over time. This complements the functionality of traditional configuration management systems
which only capture the structure and evolution of the system implementation. We believe it is pos-
sible to build a configuration management system that utilities our representation for configurable
software architecture to support its activities. In particular, we believe it is possible to organize
these activities in terms of the architecture of the system that is being managed. This makes the
architecture a first-class citizen in the configuration management system, thereby allowing it to be
managed and evolved at the same time as the implementation. This, in turn, allows the architecture
and implementation to be kept in sync over time.
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6 Related Work

Perhaps most surprising is the limited amount of attention that has been paid by the discipline
of software architecture to properly capturing configurability. Despite all the work in architectural
reconfigurability that could obviously benefit from the availability of such a representation (e.g., [1,
18, 22, 27]), Unicon [28] and Koala [37] are the only two ADLs that have explicitly addressed part of
the problem. Unicon incorporates a mechanism to specify variant implementations of components,
whereas Koala allows the specification of components that have optional interfaces. However, in
both cases only a small part of the larger problem of capturing configurability is addressed, and
our work subsumes either solution.

One additional architectural effort to support evolution should be mentioned. DRADEL [20]
is an environment and language that supports evolution through subtyping. Although different in
nature from our solution, it does provide an alternative mechanism to capture evolution. However,
neither optionality nor variability is addressed by DRADEL.

From a configuration management perspective, much work is (of course) related to our efforts
of capturing architectural configurability. As previously described, we have borrowed and adapted
a variety of concepts that have been established in the discipline for quite some time now. Still,
our representation differs considerably from most system modeling languages developed to date.
Perhaps the one system modeling language that is closest to ours in terms of expressive capabilities
is Adele [9]. However, compared to its capabilities, our representation supports optionality, allows
the definition of variability in terms of multiple interfaces as opposed to just one, facilitates the
evolution of variable components just like regular components, and incorporates the notion of
connections.

7 Conclusions

In this paper, we have discussed a rather different topic: the application of configuration man-
agement techniques to software architecture. We have developed the abstraction of configurable
software architecture and created a representation that captures the variability, optionality, and
evolution of architectures. In addition, we have described an environment that can be used to
graphically specify configurable software architectures. Although the research is still in its pre-
liminary stages, we believe the work presented here does make a number of contributions. The
most important contribution is a precise representation for capturing configurability as an inte-
gral part of software architecture. Not only has such a representation been lacking until now, but
our representation explicitly recognizes the concepts of variability, optionality, and evolution as
equally important entities in the representation. A secondary contribution is the fact that we have
successfully applied and adapted configuration management techniques to operate outside of the
traditional domain of managing source code.

Much work still remains to be done. Our immediate concerns are to put our representation
in actual use. In particular, our plans are to build a configuration management and software
deployment system that are explicitly based on configurable software architecture.
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