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Let W be an m dimensional compact smooth manifold with boundary ∂W = ∂−W t ∂+W ,

where submanifolds ∂−W and ∂+W are closed and disjoint. Then suppose that W , ∂−W , and ∂+W

are all simply connected, dimW ≥ 6, and H∗(W,∂−W ) = 0. The h-Cobordism Theorem states that

W is diffeormorphic to a product cobordism.

In this paper we will follow a classical technique developed by John Milnor in his “Lectures

on the h-Cobordism Theorem” half a century ago.
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Chapter 1

Introduction

1.1 Differential Manifolds

We will start with preliminary definitions which are used throughout this paper.

Definition 1 (Manifolds). A topological manifold M of dimension m ≥ 0 is a second countable

Hausdorff topological space so that the following properties are satisfied:

(1) A family of open sets {Uα}α∈Λ covers M , where Λ is an index set,

(2) For each α ∈ Λ, (Uα, φα) is called a coordinate chart, where φαUα → Rn is a homeomor-

phism, and

(3) For all α and β in Λ, there is a homeomorphism called a transition map φα◦φ−1
β : φ(Uβ)→

Rn whenever Uα ∩ Uβ 6= ∅.

Note that if each transition map is in Cp(Rm,Rm) for a nonnegative integer p ≥ 0 or in

C∞(Rm,Rm), then M is called a Cp-manifold or smooth manifold, respectively. Throughout this

paper we assume that manifolds are equipped with a smooth structure. See Milnor[6] for the detail.

Note also that an atlas A, the set of coordinate charts A = {(Uα, φα)}α∈Λ is called maximal

if one adds an extra chart to A, then the property (3) fails. Now let us observe that we can always

determine a maximal atlas M. For if we define a partial ordering on A by the set inclusion, then

the Zorn’s Lemma guarantees that a maximal atlas M is determined. Therefore, without loss of

generality, we always suppose that a manifold M is equipped with a maximal atlas M.
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For two smooth manifolds M and N of dimension m and n, respectively, we say that a map

f : M → N is smooth if ψα ◦ f ◦ φ−1
β : φβ(Uβ) → ψα(Uα) is a smooth map, where {(Uα, ψα)} and

{(Uβ, φβ)} are charts for N and M , respectively.

Rm−1

R

Uβ

Uα
φα

φβ

φ(Uβ)

φ(Uα)

M

Rm

Figure 1.1: A smooth manifold M with boundary ∂M .

For an upper half m-dimensional Euclidean space Hm = {(x1, ..., xm) ∈ Rm|xm ≥ 0}, one

defines a (smooth) manifold with boundary by allowing charts homeomorphic to Hm. And the set

of points x ∈M , where each m-th coordinate of φβ(x) is 0, is called the boundary of M and denoted

by ∂M . And the boundary ∂M is of dimension m − 1. On the other hand, a manifold without a

boundary is called closed.

Definition 2 (Tangent Spaces and Tangent Bundles). The tangent space TpM to M at p is the

set of all germs at p Xp : C∞(M,R)→ R such that for all α, β ∈ R and all f, g ∈ C∞(M,R)

(1) Xp(αf + βg) = αXpf + βXpg (linearity),

(2) Xp(fg) = (Xpf)g(p) + f(p)(Xpg) (Leibnitz rule),
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with the operations in TpM defined by

(Xp + Yp)f = Xpf + Ypf (1.1)

(αXp)f = α(Xpf). (1.2)

Then a tangent bundle is defined to be a collection of all tangent spaces, i.e.

TM = {Xp ∈ TpM |p ∈M} =
⋃
p∈M

TpM . (1.3)

Moreover a smooth map X : M → TM such that π(X) = id, where π and id denote the projection

and identity map respectively, is called a vector field on M . And the push-forward of a vector field X

on M by some diffeomorphism f : M → N is the vector field f∗Xf(p) on N defined by Tf(p)f(Xp).

For a smooth manifold M of dimension m, recall that M is orientable if the determinants

of the Jacobian of all transition maps φα ◦ φ−1
β are posititve whenever Uα ∩ Uβ 6= ∅ for any charts

(Uα, φα) and (Uβ, φβ). Or equivalently, the orientation 〈M〉 of M is given by an m-frame of vector

fields 〈ζ1, . . . , ζm〉.

1.2 Cobordisms

Definition 3 (Cobordisms). For a smooth compact m-dimensional manifold W with a boundary

∂W = ∂−W t ∂+W , where both ∂−W and ∂+W are closed submanifolds, W is called a cobordism

from ∂−W to ∂+W and denoted by a triple (W ; ∂−W,∂+W ).

A compact manifold M with boundary ∂M has a neighbohood V of ∂M with a diffeomor-

phism g : ∂M × [0, 1)→ V . Such a neighborhood V is called a collar neighborhood of the boundary

∂M .

For two cobordisms (W ; ∂−W,∂+W ) and (W ′; ∂−W ′, ∂+W
′), if there is a diffeomorphism

h : ∂+W → ∂−W
′ defined, we can glue or attach those two cobordisms via the map h. In other

words, we have a new cobordism W ∪hW ′ from ∂−W to ∂+W
′, where

W ∪hW ′ = W tW ′/ ∼h , (1.4)
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with an equivalence relation ∼h generated by x ∼h h(x) for every x ∈ M . Two boundaries ∂−W

and ∂+W are glued together via the diffeomorphism h along their collar neighborhoods.

Note that there exists a unique smooth structure B, which is compatible with the given

structures A and A′ on W and W ′, respectively. See Milnor [6] for the detail.



Chapter 2

Morse Functions

2.1 Morse Functions

R

p1

p2

p3

p4
f(p4)

f(p3)

f(p2)

f(p1)

f

Figure 2.1: A torus of genus 1.

Let us begin with an example as Figure 2.1 shows. For a torus T 2 we can think of the height

function f as a Morse function.

Definition 4 (Critical Points of A Smooth Function). Let M be an m-dimensional manifold without

boundary and {(Uα, φα)}α∈Λ an atlas for M . Then for a smooth scalar function f : M → R, p ∈M
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is called a critical point of f if

∂(f ◦ φ−1
α )

∂xi
(φα(p)) = 0 for i = 1, . . . ,m, (2.1)

where (Uα, φα) is a coordinate chart that contains p.

Let us observe that a critical point p ∈ M does not depend on the choice of a coordinate

system. For two distinct charts (Uα, φα) and (Uβ, φβ), assume that p ∈ Uα ∩ Uβ. Then φα(p) =

(x1, . . . , xm) and φβ(p) = (y1, . . . , ym) and thus

∂(f ◦ φ−1
β )

∂yi
(φβ(p)) =

m∑
j=1

∂xj
∂yi
· ∂(f ◦ φ−1

α )
∂xj

(φα(p)) = 0. (2.2)

So for simplicity, from now on, we write ∂f
∂xi

to denote each partial derivative ∂(f◦φ−1
α )

∂xi
.

Then we define a symmetric bilinear form of a smooth function f as follows.

Definition 5 (The Hessian Matrix). Let f : M → R be a smooth function defined on a smooth

manifold M equipped with an atlas {Uα, φα)}α∈Λ and p ∈M a critical point of f . Then the Hessian

Hf (p) of f at p is an m×m matrix whose entries are the second order partial derivatives, i.e.

Hf (p) =
[∂2(f ◦ φ−1

α )
∂xi∂xj

(φ(p))
]
. (2.3)

Moreover, a critical point p is called non-degenerate if det(Hf (p)) 6= 0. Otherwise, it is called

degenerate.

Lemma 6. A non-degenerate critical point p ∈ M does not depend on the choice of a coordinate

system at p.

Proof. Let (x1, . . . xm) and (y1, . . . ym) be two local coordinate systems at p. Then

∂2f

∂yi′∂yj′
=

m∑
i,j=1

∂xj
∂yi′
· ∂xi
∂yj′

· ∂2f

∂xi∂xj
(2.4)

=
m∑

i,j=1

∂xj
∂yi′
· ∂2f

∂xi∂xj
· ∂xi
∂yj′

. (2.5)

This implies that

H ′f (p) = J(p)THf (p)J(p), (2.6)
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where J(p) =
[
∂xi
∂yj

]
is the matrix of coordinate change, and Hf (p) and H ′f (p) are the Hessian

matrices with respect to coordinate systems (x1, . . . , xm) and (y1, . . . , ym), respectively. Since J(p)

is invertible, det (J(p)) 6= 0 and

det (H ′f (p)) = det (J(p)THf (p)J(p)) = det (J(p)T ) · det (Hf (p)) · det (J(p)) (2.7)

= det (J(p))2 · det (Hf (p)). (2.8)

So det (H ′f (p)) 6= 0 if and only if det (Hf (p)) 6= 0. Therefore any non-degenerate critical point p is

independent of the choice of coordinate systems.

So from now on we write Hf (p) = ∂2f
∂xi∂xj

(p) for simplicity.

Definition 7 (Morse Functions). A function f : M → R is a Morse function if every critical point

of f is non-degenerate.

Next we observe that a Morse function is expressed as a quadratic form around small neigh-

borhood of a non-degenerate critical point.

Lemma 8 (Morse’s Lemma). If f : M → R is a Morse function with a non-degenerate critical

point p ∈ M , then there exists a coordinate system x = (x1, . . . , xm) ∈ Rm of p such that the

function f can be expressed as the form

f(x) = −x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

m + c (2.9)

around a neighborhood U of p, where c ∈ R is a constant. Furthermore the uniquely determined

non-negative integer λ is called the index of p.

Proof. Since p ∈M , φ(p) = x = (x1, . . . , xm) for some coordinate chart φ : U → Rm. And without

loss of generality, let us suppose that p corresponds to (0, . . . , 0) via φ and f(p) = (0, . . . , 0). Then
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by the Fundamental Theorem of Calculus (FTC),

f(x) = f(x)− f(p) =
∫ 1

0

df

dt
(tx)dt (2.10)

=
∫ 1

0

df

dt
(tx1, . . . , txm)dt (2.11)

=
∫ 1

0

m∑
i=1

xi
∂f

∂xi
(tx1, . . . , txm)dt (2.12)

=
m∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx1, . . . , txm)dt. (2.13)

Now let gi : M → R be smooth functions defined by gi(x) =
∫ 1

0
∂f
∂xi

(tx)dt. Then

f(x) = f(x1, . . . , xm) =
m∑
i=1

xigi(x1, . . . , xm), (2.14)

where gi(0, . . . , 0) = ∂f
∂xi

(0, . . . , 0) = 0. Moreover, by applying the FTC again, there are smooth

functions hij : M → R so that

gi(x) =
m∑
i=1

xjhij(x) (2.15)

with hij(0, . . . , 0) = ∂2f
∂xi∂xj

(0). Then

f(x) = f(x1, . . . , xm) =
m∑

i,j=1

xixjhij(x1, . . . , xm). (2.16)

Now let Hij = 1
2(hij + hji), and we have

f(x) = f(x1, . . . , xm) =
m∑

i,j=1

xixjHij(x1, . . . , xm) (2.17)

and Hij(x1, . . . , xm) = Hji(x1, . . . , xm). Moreover,

∂2f

∂xi∂xj
(0, . . . , 0) = 2Hij(0, . . . , 0). (2.18)

Now observe that the Hessian Hf (p) is a bilinear, symmetric, and non-degenerate form. So Hf (p)

is diagonalizable by the Gram-Schmidt orthonormalization process, and moreover the diagonalized

Hf (p) contains a negative definite maximal submatrix. The size of such a submatrix corresponds

to the index λ of the critical point.
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We can immediately show the following corollary since each partial derivative ∂f
∂xi

of the

standard form of a Morse function f is either −2xi or 2xi on some open neighborhood U of a

non-degenerate critical point p.

Corollary 9. A non-degenerate critical point p ∈M of a Morse function f : M → R is isolated.

Observe also that every compact manifoldM can be covered by finitely many charts {Ui, φi}ki=1

and the following holds true.

Corollary 10. If M is a compact manifold, then a Morse function f : M → R has only finitely

many non-degenerate critical points.

For an open set U ⊂ Rm, consider a smooth function f : U → R. Recall that the image

f(C) ⊂ R has Lebesgue measure zero, where C is the set of critical points of f , by the Sard’s

Lemma. We will use the Sard’s Lemma to prove the follwoing lemma that constructs a Morse

function from an arbitrary smooth function f by perturbing f using an appropriate linear function

on Rm.

Lemma 11. Let U ⊂ Rm be an open set and f : U → Rm a smooth function. Then there exist

some a1, . . . , am ∈ R so that

f(x1, . . . , xm)− (a1x1 + · · ·+ amxm) (2.19)

is a Morse function.

Proof. Define a map h : U → Rm by

h(x1, · · · , xm) =
( ∂f
∂x1

, · · · , ∂f
∂xm

)T
. (2.20)

Then observe that the Jacobian Jh(p) of h at p ∈ Rm is the Hessian Hf (p) of f at p, i.e.

Jh(p) =
[ ∂2f

∂xi∂xj
(p)
]

= Hf (p). (2.21)

So det (Jh(p)) = det (Hf (p)) and p is a critical point of h if and only if det (Hf (p)) = 0. Now by

the Sard’s Lemma let us choose a = (a1, · · · , am)T ∈ Rm such that a is not a critical value of h.
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Then define f̃ : U → Rm by

f̃(x1, · · · , xm) = f(x1, · · · , xm)− (a1x1 + · · ·+ amxm). (2.22)

We claim that f̃ is a Morse function. So if p is a critical point of f̃ , then

0 =
∂f̃

∂xi
(p) =

∂f

∂xi
(p)− ai (2.23)

for i = 1, · · · ,m. This implies that

h(p) = (a1, · · · , am)T (2.24)

and p is not the critical point of h. Therefore det (Jh(p)) 6= 0 and thus det (Hf̃ (p)) = det (Hf (p)) 6=

0. Hence p is a non-degenerate critical point of f̃ and f̃ is a Morse function.

Definition 12. Let (W ; ∂−W,∂+W ) be a cobordism. A Morse function f : W → [0, 1] on the

cobordism is a smooth function such that

(1) ∂−W = f−1(0) and ∂+W = f−1(1), and

(2) Every non-degenerate critical point p of f exists in Int W = W − ∂W .

The following lemma lets us construct a smooth function without any critical points near

the boundary of W . Note that such a smooth function is constructed with the help of a partition

of unity. A partition of unity is a family of non-negative smooth functions {ψi : W → R≥0} such

that the closure Vi of Vi = {x ∈ W |ψi(x) > 0} form a locally finite cover of W , and such that∑
i ψi(x) = 1 for every x ∈W .

Lemma 13. There exists a smooth function f : W → [0, 1] on a cobordism (W ; ∂−W,∂+W ) such

that f has no critical points in any neighborhood of ∂W = ∂−W t ∂+W .

Proof. Let {Ui, φi}ki=1 be an atlas for W so that no Ui intersects with both ∂−W and ∂+W . Then
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define fi : Ui → [0, 1] by

fi(p) =



πm ◦ φi(p) = xm if Ui ∩ ∂−W 6= ∅

1− πm ◦ φi(p) = 1− xm if Ui ∩ ∂+W 6= ∅

1
2 if Ui ∩ ∂W = ∅,

(2.25)

where πm : Rm → R is the projection onto the m-coordinate. Now choose a partition of unity

{ψi : M → R}ki=1 dominated by the open cover {Ui}ki=1, i.e. the Vi ⊂ Ui, where Vi = ψ−1
i ((0, 1]).

Then define a map f : W → [0, 1] by

f(p) = ψ1(p)f̃1(p) + · · ·+ ψk(p)f̃k(p), (2.26)

where each f̃i : W → [0, 1] is the smooth extension of fi : Ui → [0, 1] such that f̃i|Ui = fi and

f̃i|W − Ui = 0. Observe that f is well-defined and smooth on W . Moreover f−1(0) = ∂−W and

f−1(1) = ∂+W . Finally we claim that the derivative of f is non-zero on ∂−W t ∂+W . So let

q ∈ ∂−W . Then q ∈ Uj and φj(q) > 0 for some j. Also let φj(p) = (x1, · · · , xm) and consider the

coordinate system. Then

∂f

∂xm
=

∂

∂xm

k∑
i=1

φif̃i =
k∑
i=1

∂

∂xm
φif̃i (2.27)

=
k∑
i=1

(f̃i
∂φi
∂xm

+ φi
∂f̃i
∂xm

). (2.28)

Since fj(q) = 0 and fj(q) = 0 for j 6= i, the first summand is zero. So ∂f
∂xm

(q) =
∑k

i=1 φi(q)
∂f̃i
∂xm

(q).

Because of construction of f̃j ,
∂f̃j
∂xm

(q) = 1 or 0 for q ∈ ∂−W . Therefore ∂f
∂xm

(q) 6= 0. Similarly, if

q ∈ ∂+W , then ∂f
∂xm

(q) 6= 0. Hence the derivative of f is non-zero on ∂−W t ∂+W .

Note that a polynomial of first and second order partial derivatives can be approximated by

another polynomial, and the following lemmas hold true.

Lemma 14. For an open set U ⊂ Rm, a compact set K ⊂ U , and a smooth function f : U → R,

if f has only non-degenerate critical points in K, then there is some constant δ > 0 such that if
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g : U → R is smooth on K with

∣∣∣ ∂f
∂xi
− ∂g

∂xi

∣∣∣ < δ and
∣∣∣ ∂2f

∂xi∂xj
− ∂2g

∂xi∂xj

∣∣∣ < δ (2.29)

for all i, j = 1, · · · ,m then g has only non-degenerate critical points.

Lemma 15. Let U and U ′ be open sets in Rm and h : U → U ′ be a diffeomorphism such that

K ′ = h(K) ⊂ U for some compact set K ⊂ U . Then for every ε > 0 there is some δ > 0 such that

if f : U ′ → R is smooth with

|f | < δ,
∣∣∣ ∂f
∂xi

∣∣∣ < δ, and
∣∣∣ ∂2f

∂xi∂xj

∣∣∣< δ (2.30)

for all i, j = 1, · · · ,m on K ′ ⊂ U ′, then

|f ◦ h| < ε,
∣∣∣ ∂
∂xi

f ◦ h
∣∣∣ < ε, and

∣∣∣ ∂2

∂xi∂xj
f ◦ h

∣∣∣< ε (2.31)

on K ⊂ U .

Now let us define C∞-topology on the set of smooth functions C∞(M,R). So for a compact

and closed manifold M let us consider a finitely many charts {(Ui, φi)}ki=1 and a compact refinement

{Ci}ki=1 of the open cover {Ui}ki=1, i.e. each compact Ci is contained in Ui and the refinement still

covers W . Then for every δ > 0 define a neighborhood N(δ) of C∞(M,R) by

N(δ) = {g ∈ C∞(M,R)| |g(n)
l | < δ} (2.32)

on φl(Cl), where gl = g ◦ φ−1
l , and g

(n)
l denotes the partial derivative of order n for all n ≥ 0. In

other words, N(δ) is an open neighborhood of the zero function.

Definition 16. The topology on C∞(M,R) generated by N(f, δ) = f+N(δ), where f ∈ C∞(M,R)

is called the C∞-topology.

Theorem 17. On any cobordism (W ; ∂−W,∂+W ), there exists a Morse function f : W → R

Proof. Let U be an open neighborhood of ∂W = ∂−W t∂+W . Since W is compact and Hausdorff,

there is an open set V such that ∂−W ⊂ V ⊂ U . Then let us take a finite open cover {Ui}ki=1
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for W such that either Ui ⊂ U or U ⊂ W − ∂W , and consider its compact refinement {Ci}ki=1 of

{Ui}ki=1. Now let

C =
⋃

i′∈{1,··· ,k}

Ci′ such that Ci′ ⊂ Ui′ ⊂ U . (2.33)

By Lemma 14 and Lemma 15, for a small neighborhood N ⊂ C∞(W,R) of f , no function in N

has critical points in C. Observe also that 0 < f < 1 on W − V . Let N ′ ⊂ C∞(M,R) be a

neighborhood of f such that every g ∈ N ′ is 0 < g < 1 on W − V . Then let N0 = N ∩ N ′ By

Lemma 14 and 15, there exists f1 ∈ N0 such that f1 has only non-degenerate critical points on C1,

and a neighborhood N1 ⊂ N0 of f1 such that every g1 ∈ N1 has only non-degenerate critical points

on C1. By repeating this recursive procedure, at the k-stage, there is fk ∈ Nk ⊂ Nk−1 ⊂ · · · ⊂ N0

so that fk has only non-degenerate critical points in

C ∪ C1 ∪ · · · ∪ Ck = M . (2.34)

Since fk ∈ N0 ⊂ N ′, fk|V = f |V , f−1
k (0) = ∂−W , f−1

k (1) = ∂+W , and fk has no critical points in

any neighborhood of ∂W . Therefore fk is a Morse function on (W ; ∂−W,∂+W ).

We can slightly perturb a Morse function f to get another Morse function with distinct

critical values as the following lemma states.

Corollary 18 (Non-resonant Morse Functions). Let (W ; ∂−W,∂+W ) be a cobordim and f : W →

[0, 1] a Morse function with finitely many critical points p1, · · · , pk. Then there exists another Morse

function g : W → [0, 1] that approximates f and

g(pi) 6= g(pj) (2.35)

for i 6= j. And such a Morse function g is called non-resonant.

Corollary 19. For a Morse function f : W → [0, 1] on a cobordism (W ; ∂−W,∂+W ), suppose that

c ∈ (0, 1) is not a critical value of f . Then f−1([0, c]) and f−1([c, 1]) are both smooth compact

manifolds with boundary.
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Definition 20. The Morse number µ of a cobordism (W ; ∂−W,∂+W ) is the minimum number of

critical points of all Morse functions f : W → [0, 1].

Moreover we have the following corollary since Corollary 18 lets us choose a Morse function

with distinct critical values.

Corollary 21. Any cobordism (W ; ∂−W,∂+W ) can be decomposed into a composition of cobordisms

with Morse number µ = 1.

2.2 Gradient-like Vector Fields

In this section we define a vector field X : W → TW with special properties as follows.

Definition 22 (Gradient-like Vector Fields). For a cobordism (W ; ∂−W,∂+W ), let f : W → R be

a Morse function with k critical points p1, · · · , pk. Then a vector field X : W → TW is called a

gradient-like vector field associated to f if

Xf > 0 on W − {p1, · · · , pk}

and for each critical point p ∈W of index λ there exists an open neighborhood U of p such that the

coordinate of the vector field X around U is given by

(−x1, · · · ,−xλ, xλ+1, · · · , xn),

and such that X at p ∈W has the form

Xp = −2x1
∂

∂x1
· · · − 2xλ

∂

∂xλ
+ 2xλ+1

∂

∂xλ+1
· · ·+ 2xm

∂

∂xm
.

Recall that an integral curve ϕp : I → W of X on a compact manifold W is a C∞-

diffeomorphism such that for every t ∈ I and p ∈M ϕp(0) = p and

d

dt
(f ◦ ϕp) = Xf , (2.36)

where I = [0, 1] denotes the unit interval. Then the lemma discussed below lets us construct a

gradient-like vector field X from an arbitrary Morse function f .
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Lemma 23. For every Morse function f : W → R there exists a gradient-like vector field X :

W → TW for f .

Proof. For simplicity we will show the case f has only one critical point p ∈W of index λ. Using the

standard form of a Morse function f , there exists an open neighborhood U0 of p and the coordinate

system (x1, · · · , xλ, xλ+1, · · · , xm) such that

f(x) = f(p)− x2
1 − · · · − x2

λ + x2
λ+1 + . . . x2

m (2.37)

on U0. Now let U 3 p be an open set so that p ∈ U ⊂ U0. Since each partial derivative is nonzero

on W −U0, the Implicit Function Theorem guarantees that for every non-critical point p′ ∈W −U0

there exits a coordinate system (x′1, · · · , x′m) in an open neighborhood U ′ ⊂W − U0 such that

f(x) = x′1 + k,

where ki is constant. Since W − U0 is compact, it is covered by a finite open cover {U1, . . . , Uk}

such that

(1) U0 ∩ Ui = ∅ for i = 1, . . . , k, and

(2) Ui has coordinates xi = (xi1, . . . , x
i
m) and f(xi) = xi1 + ki, where each ki is a constant, on

Ui.

On the neighborhood U0, there exists the gradient-like vector field X0 : U0 → TW associated to

the Morse function f so that

X0 = −2x1
∂

∂x1
· · · − 2xλ

∂

∂xλ
+ 2xλ+1

∂

∂xλ+1
· · ·+ 2xm

∂

∂xm
.

Moreover on each Ui there is a vector field Xi : Ui → TW such that

Xi =
∂

∂xi1
for i = 1, . . . k.

Now consider a partition of unity {ψi : W → R}ki=0 subordinate to the open cover {Ui}ki=0. There-

fore X : W → TW defined by

X = ψ0X
0 + ψ1X

1 + · · ·+ ψkX
k
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is a desired gradient-like vector field for f .



Chapter 3

Product and Elementary Cobordisms

3.1 Product Cobordisms

We first investigate the simplest cobordism called a product cobordism.

Definition 24 (Product Cobordisms). A cobordism (W ; ∂−W,∂+W ) is called a product cobordism

if it is diffeomorphic to (∂−W × I; ∂−W,∂−W ), where I = [0, 1].

Theorem 25. If the Morse number µ of (W ; ∂−W,∂+W ) is zero, then (W ; ∂−W,∂+W ) is a product

cobordism.

Proof. Note that every Morse function f : W → R has no critical points since µ = 0. Also observe

that there is a gradient-like vector field Y : W → TW for f . So Y f > 0 on W . Then define another

gradient-like vector field X : W → TW by rescaling

X =
1
Y f

Y .

Xf is constant on W , i.e.

Xf =
1
Y f

Y f = 1.

For p ∈ ∂W = ∂−W t ∂+W and an open neighborhood U of p, f |U : U → R extends to a smooth

map f̃ |Ũ : Ũ → R, where Ũ is homeomorphic to an open set in Rm. Then the gradient-like vector

field X|U : U → TW also extends to X̃ : Ũ → TW . Because Xf = 1 on a compact manifold W ,

there is an integral curve ϕp : I →W such that f ◦ϕp(t) = t+ c, where c is a constant. Now define
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a C∞-diffeomorphism ψp : I →W by ψp = ϕp(t− c). Then

f ◦ ψp(t) = t ∀t ∈ I

and ψp(0) = p. Therefore h : ∂−W × I →W defined by

h(p, t) = ψp(t)

is a diffeomorphism with the inverse h−1(p) = (ψp(0), f(p)).

3.2 Elementary Cobordisms and Surgery Theory

Definition 26 (Elementary Cobordisms). An elementary cobordism is a cobordism (W ; ∂−W,∂+W )

that admits a Morse function f : W → R with exactly one critical point p ∈W .

p

Figure 3.1: An elementary cobordism with a critical point p.

For an (m− 1)-dimensional manifold M consider an embedding ι : Sλ−1 × Int Dm−λ → M .

Let χ(M, ι) denote the manifold obtained by

M − ι(∂Dλ × 0) t Int Dλ × Sm−λ−1 = M − ι(∂Dλ × 0) ∪ Int Dλ × Sm−λ−1/ ∼ι ,

where ∼ι is the equivalence relation generated by ι(u, θv) ∼ι (θu, v) for u ∈ Sλ−1 and v ∈ Sm−λ−1,

where θ ∈ (0, 1). Then χ(M, ι) is obtained from M by surgery of type (λ,m− λ).
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p

Sr(p)

Dl(p)

Dr(p)

Sl(p)

Figure 3.2: An elementary cobordism with embedded disks and spheres.

Theorem 27. A cobordism (W ; ∂−W,∂+W ) with ∂+W = χ(∂−W, ι) is an elementary cobordism

and there exists a Morse function f : W → R with exactly one critical point p ∈W of index λ.

Observe that φ : Sλ−1× (Dm−λ−0)→ (int Dλ−0)×Sm−λ−1 that maps (u, θv) to (θu, v) is

a diffeomorphism. So χ(M, ι) is a smooth manifold since the smooth structure is inherited by the

smooth structure of both M − ι(Sλ−1 × 0) and Dλ × Sm−λ−1.

Now let us construct a cobordism whose boundary is M t χ(M, ι). So consider

L = {(x, y) ∈ Rλ × Rm−λ| − 1 ≤ −‖x‖2 + ‖y‖2 ≤ 1}∩

{(x, y) ∈ Rλ × Rm−λ|‖x‖ · ‖y‖ ≤ cosh 1 · sinh 1}.

Because of being a subspace of Rm, L is a smooth manifold whose boundary is given by ∂−L =

{(x, y) ∈ Rλ×Rm−λ|−‖x‖2+‖y‖2 = −1} and ∂+L = {(x, y) ∈ Rλ×Rm−λ|−‖x‖2+‖y‖2 = 1}. Now

observe that ∂−L is diffeomorphic to Sλ−1×int Dm−λ via correspondence between (u cosh θ, v sinh θ)

and (u, θv) for θ ∈ [0, 1). Similarly, ∂+L is diffeomorphic to int Dλ × Sm−λ−1 via correspondence

between (u sinh θ, v cosh θ) and (u, θv). Moreover, for the hypersurfaces −‖x‖2 + ‖y‖2 = c and the

map t 7→ (e−tx, ety) gives orthogonal trajectories through these hypersurfaces. If x = 0 ∈ Rλ or

y = 0 ∈ Rm−λ, then they are straight line segments. Otherwise, the maps parametrize a hyperbola

from some (u cosh θ, v sinh θ) ∈ ∂−L to (u sinh θ, v cosh θ) ∈ ∂+L.
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Next construct the manifold ω(M, ι) as follows. So, for u ∈ Sλ−1, v ∈ Sm−λ−1, θ ∈ (0, 1),

and c ∈ [−1, 1], consider the disjoint union

(M − ι(Sλ−1 × 0))× [−1, 1] t L/ ∼ι, (3.1)

where the equivalence relation ∼ι generated by identification of (ι(u, θv), c) with the unique point

(x, y) ∈ L so that

−‖x‖2 + ‖y‖2 = c

and

(x, y) is on the orthogonal trajectory through (u cosh θ, v sinh θ).

This correspondence defines a diffeomorphism

ι(Sλ−1 × (int Dm−λ − 0))× [−1, 1]→ L ∩ ((Rλ − 0)× (Rm−λ − 0)),

and we get a differential manifold ω(M, ι) with boundary. So observe the following two cases,

c = −1 and c = 1.

Case 1: (c = −1). If c = −1, then we identify points of (ι(Sλ−1 × (int Dm−λ − 0)))× {−1}

with the points of ∂−L that corresponds to Sλ−1×(int Dm−λ−0). So one boundary of the manifold

ω(M, ι) is given by M .

Case 2: (c = 1). If c = 1, then we identify the points of (ι(Sλ−1 × (int Dm−λ − 0))) × {1}

with the points of ∂+L that corresponds to (int Dλ−0)×Sm−λ−1. So another boundary of ω(M, ι)

is χ(M, ι).

Therefore ω(M, ι) is a cobordism whose boundary is M t χ(M, ι).

Proposition 28. There exists a Morse function f : ω(M, ι)→ [−1, 1] with f−1(−1) = M , f−1(1) =

χ(M, ι), and there is exactly one critical point of index λ in the interior of ω(M, ι).

Proof. Define a map f : ω(M, ι)→ [−1, 1] by

f(u) =


c if u = (z, c) ∈ (M − ι(Sλ−1 × 0))× [−1, 1]

−‖x‖2 + ‖y‖2 if u ∈ L
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By construction of the manifold ω(M, ι), f agrees on the overlap and thus the map is well-defined

on ω(M, ι). Moreover observe that x ∈ Rλ and y ∈ Rm−λ. So f is a Morse function with only one

critical point of index λ as desired.

Theorem 29. Let (W ; ∂−W,∂+W ) be an elementary cobordism with an embedding ι : Sλ−1 ×

Int Dm−λ → ∂−W . Then (W ; ∂−W,∂+W ) is diffeomorphic to (ω(∂−W, ι); ∂−W,χ(∂−W, ι)).

Proof. For simplicity we assume f(p) = 0, where p is the critical point of the Morse function f . By

Morse Lemma, there is a small neighborhood U around p so that f can be written as

f(x, y) = −‖x‖2 + ‖y‖2,

where x ∈ Rλ and y ∈ Rm−λ. Now let ε > 0 such that

Lε = {(x, y) ∈ Rλ × Rm−λ| − ε ≤ −‖x‖2 + ‖y‖2 ≤ ε}∩

{(x, y) ∈ Rλ × Rm−λ|‖x‖ · ‖y‖ ≤ ε cosh 1 · sinh 1}.

satisfying Lε ⊂ U ′, where φ : U → U ′ ⊂ Rm is the local coordinate chart near p. Then i :=

φ−1|∂−Lε : ∂−Lε → f−1(−ε) is an embedding, and Wε = f−1([−ε, ε]) is a cobordism that is

identified as ω(f−1(−ε), φ−1|∂−Lε). Moreover f−1(−ε) and f−1(ε) are diffeomorphic to ∂−W and

∂+W , respectively.

For a topological space X and its subspace A with the inclusion i : A ↪→ X, recall that A is

called a deformation retract of X if there exists some continuous map r : X → A such that

r ◦ i = idA and i ◦ r ' idX . (3.2)

Observe by definition above that A and X have the same homotopy type if A is a deformation

retract of X. Moreover if A and X have the same homotopy type, then the homology group Hn(A)

is isomorphic to Hn(X).

Theorem 30. For a cobordism (W ; ∂−W,∂+W ) and a Morse function f : W → R with one critical

point p ∈ W of index λ, let Dl(p) denote the left-hand λ-disk associated to a gradient-like vector

field X : W → TW for f . Then ∂−W ∪Dl(p) is a deformation retract of W .
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Rλ

Rm−λ

Sl(p)Sl(p)

Sr(p)

Sr(p)

p

∂−W

∂−W

∂+W

∂+W

Figure 3.3: The first retraction r from W to ∂−W ∪ C.

Rλ

Rm−λ

Sl(p)Sl(p) p

∂−W

∂−W

Figure 3.4: The second retraction r′ from ∂−W ∪ C to ∂−W ∪Dl(p).
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Proof. By Theorem 29, observe that (W ; ∂−W,∂+W ) is diffeomorphic to

(ω(∂−W, ι); ∂−W,χ(∂−W, ι)) (3.3)

for some embedding ι : Sλ−1 × Int Dm−λ → ∂−W . Also there is a Morse function f : ω(∂−W, ι)→

[−1, 1] on ω(∂−W, ι). For L in ??, let Dl(p) = {(x, y) ∈ L|‖y‖ = 0} denote an embedded disk Also

let C = {(x, y) ∈ L|‖y‖ ≤ 1
10} denote an open neighborhood of Dl(p). Now define a retraction

rt : ω(∂−W, ι)→ ∂−W ∪ C as follows. Recall from the equation 29 above that

(∂−W − ι(Sλ−1 × 0))× [−1, 1] ∪ι L.

So for (u, c) ∈ ∂−W − ι(Sλ−1 × 0))× [−1, 1] define

rt(u, c) = (u, c− t(c+ 1)) ∀t ∈ [0, 1] (3.4)

and for (x, y) ∈ L define

rt(x, y) =


(x, y) if ‖y‖ ≤ 1

10

(xρ , ρy) if ‖y‖ ≥ 1
10

, (3.5)

where ρ = ρ(x, y, t) = max { 1
10‖y‖ , ζ} and ζ is the unique positive real solution of the equation

−‖x‖
2

ζ2
+ ζ2‖y‖2 = (−‖x‖2 + ‖y‖2)(1− t)− t. (3.6)

So if ‖y‖ ≥ 1
10 then ρ determines a trajectory from (x, y) to some point in ∂−W .

Next construct another retraction r′t : ∂−W ∪ C ↪→ ∂−W ∪Dl(p) as follows. For (x, y) ∈ C

define

r′t(x, y) =


(x, (1− t)y) if ‖x‖2 ≤ 1

(x, ρ′y) if 1 ≤ ‖x‖2 ≤ 1 + 1
100

, (3.7)

where ρ′ = ρ′(x, y, t) = (1− t) + t
√
x2−1
‖y‖2 . Since (x, (1− t)y) and (x, ρ′y) coincide when ‖x‖2 = 1, r′t

is well-defined and thus a retraction of ∂−W ∪C to ∂−W ∪Dl(p). Therefore r′t ◦ rt is a deformation

retract of W to ∂−W ∪Dl(p).

Corollary 31. Hn(W,∂−W ) ∼= Z if n = λ. Otherwise Hn(W,∂−W ) ∼= 0.
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Proof. By Theorem 30, there is an embedding

j : (Dλ, Sλ−1)→ (W,∂−W ) (3.8)

such that j−1(∂−W ) = Sλ−1 and ∂−W ∪ j(Dλ) is a deformation retract of W . So

H∗(W,∂−W ) ∼= H∗(∂−W ∪ j(Dλ), ∂−W ). (3.9)

Moreover j : Sλ−1 → ∂−W extends to an embedding j̃ : Sλ−1×Int Dm−λ → ∂−W and let U = im j̃.

Therefore

H∗(W,∂−W ) ∼= H∗(∂−W ∪ j(Dλ), ∂−W ) (3.10)

∼= H∗(∂−W ∪ j(Dλ)− (∂−W − U), ∂−W − (∂−W − U)) (3.11)

∼= H∗(U ∪ j(Dλ), U) (3.12)

∼= H∗(j−1(U ∪ j(Dλ)), j−1(U)) (3.13)

∼= H∗(Dλ, Sλ−1) (3.14)

because of excision and homotopy invariance. Hence

Hn(W,∂−W ) ∼= Hn(Dλ, Sλ−1) ∼=


Z if n = λ

0 if n 6= λ

. (3.15)

Now we can generalize Theorem 30 and Corollary 31 as follows. Suppose that a cobordism

(W ; ∂−W,∂+W ) admits a Morse function f : W → R with k critical points p1, . . . , pk of indices

λ1, . . . , λk, respectively. Moreover suppose that those critical points have the same critical value,

i.e. f(p1) = · · · = f(pk). By perturbing the Morse function f and the associated gradient-

like vector field X, obtain k embeddings ιi : Sλi−1 × Int Dm−λi → V and construct the smooth

manifold ω(V ; ι1, . . . , ιk) as given above for each i = 1, . . . , k. This manifold ω(∂−W ; ι1, . . . , ιk) is

diffeomorphic to W and moreover ∂−W ∪Dl(p1) ∪ · · · ∪Dl(pk) is a deformation retract of W .

Therefore if λ1 = · · · = λk = λ, then Hn(W,∂−W ) ∼= Z ⊕ · · · ⊕ Z (k summands) for n = λ.

Otherwise Hn(W,∂−W ) ∼= 0 for n 6= λ.



Chapter 4

Rearrangement of Cobordisms

4.1 Rearrangement of Critical Values

In this section we will consider a cobordism (W ; ∂−W,∂+W ). with exactly two critical points

p and p′ of indices λ and λ′, respectively. However their indices are not necessarily same or

consecutive.

Let ϕ : W × R → W denote a flow of the vector field X. For a critical point p ∈ W of a

Morse function f : W → R define

W s(p;X) =
{
x ∈W | lim

t→+∞
ϕ(x, t) = p

}
and

W u(p;X) =
{
x ∈W | lim

t→−∞
ϕ(x, t) = p

}
the stable and unstable manifold of p with respect to X. Observe that the stable manifold W s(p;X)

is equivalent to the left-hand disk Dl(p) of the critical point p. Similarly, W u(p;X) is equivalent

to the right-hand disk Dr(p).

The following theorem states that we can perturb a Morse function f by an isotopy so that

two critical points of f change their critical values in some small neighborhoods of those two critical

points.

Theorem 32 (Preliminary Rearrangement Theorem). For a cobordism (W ; ∂−W,∂+W ) let f :

W → [0, 1] be a non-resonant Morse function with exactly two critical points p, p′ ∈ W . Suppose



26

for simplicity that f(W ) = [0, 1] and f(p) < f(p′). Moreover, for some gradient-like vector field X

for f , suppose that

Kp = W s(p;X) ∪W u(p;X) (4.1)

and

Kp′ = W s(p′;X) ∪W u(p′;X). (4.2)

are disjoint. Then there exists another Morse function g : W → [0, 1] satisfying the following

properties:

(1) X is a gradient-like vector field for g,

(2) g(p) = a and g(p′) = a′ for some a, a′ ∈ [0, 1],

(3) f − g is a constant function in an open neighborhood of {p, p′}, and

(4) g coincides with f near ∂−W ∪ ∂+W .

R

∂−W ∂+W

p

Kp

p′

Kp′

f(p) f(p′)

Figure 4.1: Rearrangement of critical values.
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Proof. Note first that ∂−W = f−1(0) and ∂+W = f−1(1), and let

Sl(p) = ∂−W ∩W s(p;X) and Sl(p′) = ∂−W ∩W s(p′;X) (4.3)

denote the left-hand spheres of p and p′, respectively.

Observe that all integral curves outside K = Kp ∪Kp′ proceed from ∂−W to ∂+W . For each

x ∈W −K consider the uniquely determined integral curve ϕ : W × [0, 1]→W such that

ϕ(x, 0) = x. (4.4)

Then let τ : M → R so that ϕ(x, τ(x)) ∈ ∂−W . So, by the Immersion Theorem the map π :

W −K → ∂−W that assigns x ∈ W −K the unique point ϕ(x, τ(x)) is well-defined and smooth.

Moreover, if x is near K, then π(x) is near K as well.

Now let µ : ∂−W → [0, 1] be a smooth function defined by

µ(x) =


0 if x ∈ U0

1 if x ∈ U1,

(4.5)

where U0 and U1 are small open neighborhoods of x such that U0 ∩ Sl(p′) 6= ∅ and U1 ∩ Sl(p) 6= ∅.

Using π : W −K → ∂−W , µ extends to a smooth function µ̃ : W → [0, 1] defined by

µ̃(x) =



0 if x ∈ Ũ0

1 if x ∈ Ũ1

k elsewhere ,

(4.6)

where k ∈ R is a constant, and Ũ0 and Ũ1 are small open neighborhoods of x such that Ũ0∩K ′p 6= ∅

and Ũ1 ∩Kp 6= ∅.

Now define a smooth function G : [0, 1]× [0, 1]→ [0, 1] with the following properties:

(1) For all x and y, ∂G
∂x > 0 and G increases from 0 to 1 as x increases from 0 to 1.

(2) G(f(p), 0) = a and G(f(p′), 1) = a′,



28

(3) G(x, y) = x for x near 0 and 1 and for all y,

(4) ∂G
∂x (x, 0) = 1 for x near f(p), and

(5) ∂G
∂x (x, 1) = 1 for x near f(p′).

R

R

1

10 f(p′)f(p)

a′

a

G(x, 0)

G(x, 1)

Figure 4.2: The graph of G.

Define a smooth function g by g(x) = G(f(x), µ̃(x)). Observe that f − g is constant near p

and p′ by properties (4) and (5). Thus X is also a gradient-like vector field for g as well near the

critical points p and p′. By property (1) X is a gradient-like vector field for g away from critical

points. Property (2) shows that g(p) = a and g(p′) = a′. Moreover by property (3) g = f near the

boundaries ∂−W and ∂+W . Therefore g is a Morse function with the desired property.

Corollary 33. Suppose that the Morse function f has k critical points p1, . . . , pk such that

{p1, . . . , pl} ⊂ f−1(b)

and

{pl+1, . . . , pk} ⊂ f−1(b′),
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where {p1, . . . , pl} and {pl+1, . . . , pk} have indices λ and λ′, respectively. Let p = {p1, . . . , pl} and

p′ = {pl+1, . . . , pk} for simplicity. Then the Theorem 32 is still valid.

4.2 Rearrangement of Spheres

Definition 34 (Product Neighborhoods). Let M be an m dimensional manifold and N an r

dimensional submanifold of M . Then an open neighborhood U of N , which is diffeomorphic to

N × Rm−n, is called a product neighborhood of N in M .

Lemma 35. Let N and N ′ be n and n′ dimensional submanifolds of a manifold M of dimension

m, respectively. Suppose that N has a product neighborhood in M and that n + n′ < m. Then

there exists some diffeomorphism h : M → M such that h is smoothly isotopic to the identity

idM : M →M and h(N) ∩N ′ = ∅.

Proof. Let k : N × Rm−n → U ⊂ M be a diffeomorphism so that k(N × 0) = N for 0 ∈ Rm−n.

Moreover let N0 = U ∩ N , π : N × Rm−n → Rm−n a canonical projection, and g = π ◦ k−1|N0 :

N0 → Rm−n. Observe that k(N × x) ∩ N ′ 6= ∅ if and only if x ∈ g(N0). And if N0 is nonempty,

then dimN0 = n < m − n′. By Sard’s Lemma g(N0) has the Lesbegue measure 0. So choose

u ∈ Rm−n − g(N0).

Now we construct a diffeomorphism h of M onto itself such that h is isotopic to the identity

idM : M → M and h(N) to k(N × u). So define a smooth vector field X : Rm−n → Rm−n such

that

X =


u if |x| ≤ |u|

0 if |x| ≥ 2|u|
(4.7)

for every x ∈ Rn−m. By construction of the vector field, X has a compact support. Furthermore

∂Rn−m 6= ∅. This implies that the integral curves ψ(x, t) are defined for all t ∈ [0, 1]. Then

ψ(x, 0) = x = idM (x), ψ(x, 1) is a diffeomorphism that carries 0 to u, and thus φ : Rm−n× [0, 1]→

Rm−n is an isotopy from idM to the diffeomorphism ψ(x, 1). This isotopy leaves all points fixed
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outside a bounded set U in Rm−n, so define an isotopy ht : M →M by

ht(w) =


k(q, ψ(x, t)) if w = k(q, x) ∈ U

w if w = M − U
. (4.8)

Therefore h = h1 is the desired diffeomorphism such that h(N) ∩N ′ = ∅.

Theorem 36. Suppose that λ ≥ λ′ and let h : W →W be a diffeomorphism with the property given

in Lemma 35. Then there exists a gradient-line vector field X̃ for f so that h(Sr(p)) is disjoint

from Sl(p′) in some open neighborhood U of V = f−1(1
2) and X̃ coincides with X outside U .

Proof. Observe first that Sr(p) has a product neighborhood in V . By Lemma 35 there exists a

diffeomorphism h : V → V such that h is smoothly isotopic to the identity idV : V → V and

h(Sr(p)) ∩ Sl(p′) = ∅. We use this diffeomorphism to construct new gradient-like vector field X̃.

So choose a < 1
2 so that f−1([a, 1

2 ]) does not contain p. Then the integral curves of Y = 1
XfX

determine a diffeomorphism ϕ : [a, 1
2 ]→ f−1([a, 1

2 ]) such that f(ϕ(q, t)) = t and ϕ(1
2 , q) = q ∈ V .

Now define a diffeomorphism H : [a, 1
2 ] × V → [a, 1

2 ] × V by H(t, q) = (t, ht(q)), where ht is a

smooth map from [a, 1
2 ]× V to V and isotopy from idM to h such that

ht =


idM for t near a

h for t near 1
2

. (4.9)

Then Ỹ = (ϕ ◦H ◦ ϕ−1)∗Y is a smooth vector filed defined on f−1([a, 1
2 ]), which coincides with Y

near f−1(a) and V . Moreover Ỹ f = 1 identically. Finally the vector field X̃ on W defined by

X̃ =


(Xf)Ỹ on f−1([a, 1

2 ])

X elsewhere

(4.10)

is a new gradient-like vector field for f .
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∂−W ∂+W

p

p′

Vf−1(a)

Sl(p)
h(Sr(p))

Sl(p′) Sr(p′)

Figure 4.3: Construction of an isotopy to make Sr(p) disjoint from Sl(p′).

Now for every fixed q ∈ V ϕ(t, ht(q)) is an integral curve of X̃ from ϕ(a, q) ∈ f−1(a) to

ϕ(1
2 , h(q)) = h(q) ∈ V . It follows that the right-hand sphere ϕ(a × Sr(p)) in f−1(a) is carried to

h(Sr(p)) in V . Thus h(Sr(p)) ∩ Sl(p′) = ∅.

Observe that Theorem 36 is generalized as follows. If c denotes a cobordism that admits a

Morse function f with k critical points p1, . . . , pk of index λ, and c′ a cobordism with l critical

points p′1, . . . p
′
l of index λ′ of f , then the new gradient-like vector field X̃ is constructed from X

on a small open neighborhood of V such that right-hand spheres Sr(pi) and Sl(p′j) are disjoint by

some isotopy of V .

Corollary 37. If {p1, . . . , pl} and {pl+1, . . . , pk} are the sets of critical points of indices λ and λ′,

respectively, then the gradient-like vector field X can be changed so that h(Sr(pi)) ∩ Sl(p′j) = ∅ for

i = 1, . . . , l and j = l + 1, . . . , k.

By Theorem 32 and 36, we should be able to construct a various types of isotopies to make

two critical points have the same critical values, and to make spheres disjoint. So we can state the

following theorem as a result.
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Theorem 38 (Final Rearrangement Theorem). Any cobordism c = (W ; ∂−W,∂+W ) factors into

a composition

c = c0c1 · · · cm, (4.11)

where m = dimW , and each cλ admits a Morse function f possessing critical points of index λ

with the same critical value.



Chapter 5

First Cancellation Theorem

In this section we assume that a cobordism (W ; ∂−W,∂+W ) has exactly two critical points

pλ and pλ+1 in W of indices λ and λ+ 1.

Next consider embedded submanifolds N and N ′ of M whose dimensions are n and n′,

respectively. Recall that N and N ′ intersect transversely if

TpM = TpN + TpN
′

for every p ∈ N ∩ N ′. In other words, two submanifolds N and N ′ intersect transversely if the

tangent spaces at each point of the intersection span the tangent space of M .

Let N and N ′ be orientable submanifolds of M with dimensions r and s, respectively, so

that m = r + s. Furthermore let f be a non-resonant Morse function defined on a cobordism

(W ; ∂−W,∂+W ) with two critical points pλ and pλ+1 of indices λ and λ+ 1, respectively, such that

f(pλ) < 1
2 < f(pλ+1). In the f -fiber V = f−1(1

2), a gradient-like vector field X associated with f

determines a right-hand sphere Sr(pλ) of pλ and a left-hand sphere Sl(pλ+1) of pλ+1.

At the end of Chapter 4, Lemma 35 and 36 let us construct an isotopy of V to make two

spheres Sr(p) and Sl(p′) disjoint. In the similar way, we can define a isotopy of V so that those

spheres have transverse intersection in V . Then we have the following theorem.

Theorem 39. The gradient-like vector field X can be changed to another gradient-like vector field

X̃ so that Sr(pλ) and Sl(pλ+1) intersect transversely in V .
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Now observe that V is compact and

dimSr(pλ) + dimSl(pλ+1) = (m− λ− 1) + λ = m− 1 = dimV . (5.1)

So for each q ∈ Sr(pλ)∩Sl(pλ+1) there exists some local coordinate system (x1, . . . , xm) on an open

neighborhood U of q in V such that q corresponds to (0, . . . , 0) ∈ Rm−1 and that
x1 = · · · = xλ = 0 on U ∩ Sr(pλ)

xλ+1 = · · · = xm−1 = 0 on U ∩ Sl(pλ+1).

(5.2)

By this construction q a unique point contained in Sr(pλ) ∩ Sl(pλ+1) ∩ U . Therefore we should be

able to assume that the intersection Sr(pλ) ∩ Sl(pλ+1) consists of finitely many points.

Theorem 40 (First Cancellation Theorem). Assume that Sr(pλ) and Sl(pλ+1) intersect trans-

versely in V and Sr(pλ)∩Sl(pλ+1) is a single point, {q} = Sr(pλ)∩Sl(pλ+1). On an arbitrary small

neighborhood U of the single integral curve ϕq : R→W from pλ to pλ+1, a gradient-like vector field

X can be altered to a nowhere zero vector field X ′ so that all integral curves proceed from ∂−W

to ∂+W . Furthermore X ′ is a gradient-like vector field for another Morse function f ′ such that f ′

coincides with f near ∂−W ∪ ∂+W .

Idea of Proof. Observe first by existence and uniqueness of the ODEs, there is a unique integral

curve ϕq : R → W such that ϕq(0) = q. Then ϕq has the following property: limt→−∞ ϕq(t) = pλ

and limt→+∞ ϕq(t) = pλ+1. Since the index of pλ is λ by assumption, the gradient-like vector field

X at pλ is of the form

Xpλ = −2x1
∂

∂x1
· · · − 2xλ

∂

∂xλ
+ 2xλ+1

∂

∂xλ+1
· · ·+ 2xm

∂

∂xm
(5.3)

on some open neighborhood Uλp of pλ with a coordinate system (x1, . . . , xm). Now consider the

appropriate coordinate change

(x1, . . . , xλ, xλ+1, . . . , xn) 7→ (xλ+1, . . . , xλ, x1, . . . , xn). (5.4)

Then X can be rewritten as

X = 2x1
∂

∂x1
· · · − 2xλ

∂

∂xλ
− 2xλ+1

∂

∂xλ+1
· · ·+ 2xm

∂

∂xm
. (5.5)
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Similarly, on some neighborhood Upλ+1 of pλ+1, there is a coordinate system (x′1, . . . , x
′
m) and X

at pλ+1 has the form

X = −2x′1
∂

∂x′1
· · · − 2x′λ

∂

∂x′λ
− 2x′λ+1

∂

∂x′λ+1

· · ·+ 2x′m
∂

∂x′m
. (5.6)

Then find a local coordinate system (x1, . . . , xm) in a neighborhood U with the following two

properties:

(1) The coordinates of pλ and pλ+1 correspond to (0, 0, . . . , 0) and (1, 0, . . . , 0), respectively,

and

(2) X has the form

X = 2v1(x1)
∂

∂x1
· · · − 2xλ

∂

∂xλ
− 2xλ+1

∂

∂xλ+1
+ 2xλ+2

∂

∂xλ+2
+ · · ·+ 2xm

∂

∂xm
(5.7)

on U , where v1 : [−2δ, 1 + 2δ]→ R is a smooth scalar function defined as follows. For some

small δ > 0, v1 is defined by

v1(x1) =


x1 if x1 ∈ U0,

1− x1 if x1 ∈ U1 ,

(5.8)

where U0 and U1 are small open neighborhoods of 0 and 1, respectively. Also v1(x1) > 0

for 0 < x1 < 1.

R

R

v1

−2δ 1 + 2δ10

Figure 5.1: The graph of v1.
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By construction of the vector field, X in 5.7 coincides with 5.5 and 5.6 in open neighborhoods

U0 and U1, respectively. Finally perturb the vector field X to construct a nowhere zero vector field

X̃ in U . To do this consider the family of smooth scalar functions {v1−t : [−2δ, 1 + 2δ]→ R}t∈[0,1]

with the following properties:

(1) {v1−t}t∈[0,1] depends smoothly on t,

(2) v1 is the function defined in Definition 5.8,

(3) v0 < 0 on [−2δ, 1 + 2δ], and

(4) v0(x1) = v1(x1) if x1 <
δ
2 or x1 > 1 + δ

2 .

R

R

v1

v0

−2δ 1 + 2δ10

Figure 5.2: Deformation of v1 to v0.

This deforms v1 to v0 smoothly and the values of v0 are all negative on [−2δ, 1 + 2δ]. Then

define a vector field X̃ : W → TW by

X̃ = 2vρ(x1)
∂

∂x1
· · · − 2xλ

∂

∂xλ
− 2xλ+1

∂

∂xλ+1
+ 2xλ+2

∂

∂xλ+2
+ · · ·+ 2xm

∂

∂xm
, (5.9)

where ρ = x2
2 + · · ·+x2

n. By its construction X̃ is a nowhere zero vector field on U , which coincides

wtih X in 5.7 outside U . Moreover every integral curve ϕ proceeds from ∂−W to ∂+W . Hence

X̃ and ϕ determine a smooth function f̃ : W → R such that f̃ coincides with f outside U and

df̃
dt (ϕ) = X̃f̃ . Thus f̃ is a Morse function with no critical points in W .
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pλ
pλ+1

Figure 5.3: The two critical points pλ and pλ+1 in the vector field X̃.

Figure 5.4: Cancellation of critical points pλ and pλ.



Chapter 6

Second Cancellation Theorem

Recall first from the Whitney embedding theorem that every compact smooth manifold M

can be embedded in some Euclidean space Rn. See Milnor [?, Milnor1997]or the proof.

Definition 41 (Normal Bundles). Suppose that an m-dimensional manifold M is embedded in Rn

for some n. Then v ∈ Rn is called perpendicular to M at p ∈ M if Xp · v = 0 for all Xp ∈ TpM ,

where · is the inner product defined on Rn. Moreover the normal bundle ν(M) of M in Rn is

defined by

ν(M) = {(p, v) ∈M × Rn−m|v is perpendicular to M at p}. (6.1)

For an m-dimensional smooth manifold M , let N and N ′ be submanifolds of dimension r

and s, respectively, such that r + s = m. Suppose that N and N ′ intersect in finitely many points

p1, . . . , pk ∈ M , transversely. Suppose also that M and the normal bundle ν(N ′) of N ′ in M are

both oriented. Because

TpiM = TpiN ⊕ TpiN ′

at each pi, where TpiN has a positively oriented r-frame 〈ζ1, . . . , ζr〉 of linearly independent vectors

generating TpiN , 〈ζ1, . . . , ζr〉 is a basis for the fiber at pi of ν(N ′).

Definition 42 (Intersection Numbers). The sign of intersection ε(pi) at each pi is defined to be

either +1 or −1 according to a positively or negatively oriented basis for the fiber at pi of ν(N ′).
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And the intersection number 〈N〉 · 〈N ′〉 is defined by

〈N〉 ·
〈
N ′
〉

=
k∑
i=1

ε(pi).

Note that for an orientable manifold M every submanifold N of M is orientable if and only

if ν(N) of N is orientable. Moreover, given an orientation for N , we have a canonical way to orient

ν(N) and vice versa.

Lemma 43. Let a manifold M and its submanifold N ′ be both compact and connected without

boundary. Then there exists a isomorphism

ψ : H0(N ′)→ Hr(M,M −N ′).

We will use the lemma above without proof since it is easy to verify. Then the following

theorem is based on the Thom Isomorphism Theorem and Tubular Neighborhood Theorem. Readers

are encouraged to consult Kosinski [9] for the detail.

Lemma 44. For the sequence

Hr(N) i∗−→ Hr(M)
j∗−→ Hr(M,M −N ′), (6.2)

where j∗ and i∗ are both induced by the inclusion map, i∗ ◦ j∗(〈M〉) = 〈N ′〉 · 〈N〉ψ(α).

Theorem 45. Let N and N ′ be smooth closed submanifolds of dimensions r and s, respectively,

such that N and N ′ intersect transversely in the smooth closed (r + s)-dimensional manifold M .

Suppose that N and the normal bundle ν(N ′) in M are both oriented. Moreover suppose that

r + s ≥ 5, r ≥ 3, and suppose that the inclusion i : M − N ↪→ M induces the injective map

i∗ : π1(M −N)→ π1(M) if s = 1 or s = 2.

Let p, q ∈ N ∩N ′ be a pair of intersection points with opposite intersection numbers such that there

exists some loop γ connecting p and q so that γ is contractible in M . Suppose that γ does not

contain any other intersection points in N ∩N ′ − {p, q}.

Under the assumption given above, there exists some isotopy ht : M → M , where t ∈ [0, 1], such

that
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(1) h0 = idM : M →M ,

(2) ht fixes idM near N ∩N ′ − {p, q}, and

(3) h1(N) ∩N ′ = N ∩N ′ − {p, q}.

Theorem 45 lets us construct an isotopy of M such that a pair of intersection points with

opposite intersection numbers is cancelled. See Milnor[6] for the detail construction of such an

isotopy.

Theorem 46 (Second Cancellation Theorem). For a cobordism (W ; ∂−W,∂+W ), suppose W ,

∂−W , and ∂+W are simply connected, λ ≥ 2, and λ + 1 ≤ n − 3. If 〈Sr(pλ)〉 · 〈Sl(pλ+1)〉 = ±1,

then X can be altered near the fiber V so that Sr(pλ) and Sl(pλ+1) in V intersect at a single point,

transversely. Then the First Cancellation Theorem applies and W is therefore diffeomorphic to

∂−W × [0, 1].

Proof. Observe first that dimSr(pλ) = n − λ − 1, dimSl(pλ+1) = λ, and dimV = n − 1. So

dimSr(pλ) ≥ 3 and dimV = λ − 1. Moreover π1(V ) = 0 by the Seifert-van Kampen Theorem.

Then consider the following two cases.

Case 1: λ ≥ 3. Then dimSl(pλ+1) ≥ 3 and dimV ≥ 6. Then the assumptions of Theorem 45 are

satisfied.

Case 2: λ = 2. Then dimSl(pλ+1) = 2 and dimV ≥ 5. Since {x ∈ W |a < f(x) < b}, where

a = f(∂−W − Sl(pλ+1)) and b = f(V − Sr(pλ)), does not contain any critical points, the gradient-

like vector field X for f determines a diffeomorphism between ∂−W − Sl(pλ+1) and V − Sr(pλ).

Thus π1(V −Sr(pλ)) ∼= π1(∂−W −Sl(pλ+1)). Now let U be a product neighborhood of Sl in ∂−W .

Since dimSl(pλ+1) = n − λ − 1 ≥ 3, π1(U − Sl(pλ+1)) ∼= Z. Moreover there is a diagram for the

fundamental groups given below. Thus i∗ : π1(V − Sr(pλ)) → π1(V ) induced by the inclusion

i : V − Sr(pλ) ↪→ V is injective.

So for both cases the assumptions of Theorem 45 are satisfied. Then the First Cancellation

Theorem directly applies if Sr(pλ) ∩ Sl(pλ+1) consists of a single point, for Sr(pλ) and Sl(pλ+1)
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intersect transversely at a singleton in V . So suppose that Sr(pλ) ∩ Sl(pλ+1) is not a single point.

Since 〈Sr(pλ)〉 · 〈Sl(pλ+1)〉 = ±1, the number of intersection points is odd, say 2k + 1. Then there

are pairs of intersection points {p1, q1}, . . . , and {pk, qk} so that ε(pi) = +1 and ε(qi) = −1 for

i = 1, . . . , k. By Theorem 45, each pair {pi, qi} can be eliminated by isotopies of W . Thus W can

be deformed so that Sr(pλ) and Sl(pλ+1) have a transverse intersection at a single point in V . This

completes the proof.

π1(V ) = Z

π1(V − Sl(pλ+1)) π1(N) = Z

π1((V − Sl(pλ+1))) ∩N) = Z

Figure 6.1: A diagram of fundamental groups induced by inclusions.



Chapter 7

Cancellation of Critical Points of Indices λ with 2 ≤ λ ≤ m− 2

7.1 A Chain Complex and Homology of Manifolds

We focus our attention on homology groups with integer coefficients. So suppose first that

M is an m dimensional compact smooth and orientable manifold with boundary ∂M . Observe

that the orientation of M given by an orientation of its tangent bundle TM corresponds to an

orientation of M specified its orientation generator 〈M〉 of Hn(M).

Lemma 47. Let M be an oriented closed smooth manifold of dimension λ embedded in ∂−W and

〈M〉 ∈ Hλ(M) the orientation generator. Let i∗ : Hλ(M) → Hλ(W,∂+W ) be the map induced by

the inclusion h :. Then

i∗(〈M〉) = (〈Sr(p1)〉 · 〈M〉)〈Dl(p1)〉+ · · ·+ (〈Sr(pl)〉 · 〈M〉)〈Dl(pl)〉. (7.1)

Corollary 48. With respect to the basis {〈Dl(p1)〉, . . . , 〈Dl(pl)〉}, the boundary map ∂ : Hλ+1(W ∪

W ′,W )→ Hλ(W,∂−W ) for the triple ∂−W ⊂ W ⊂ W ∪W ′ is a linear map, i.e. ∂ is represented

by the k × l matrix A whose entries are aij = 〈Sr(pi)〉 · 〈Sl(p′j)〉.
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Hλ(Sl(p′j))

Hλ+1(W ∪W ′,W ) Hλ+1(W ′, ∂+W ) Hλ(∂+W )

Hλ(W )

Hλ(W,∂−W )

∂

i∗

By Theorem 38 any cobordism c = (W ; ∂−W,∂+W ) decomposes into a composition of cλ,

i.e.

c = c0c1 · · · cm

such that each cλ has a Morse function f with critical points of index λ on the fiber f−1(a) for

some a ∈ R. Or equivalently, we can think of a Morse function f : W → R with the property called

self-indexing, i.e. f(pλ) = λ ∈ Z≥0 for every critical point pλ of index λ. Let Wk = f−1([−1
2 , k+ 1

2 ])

and Vk+ = f−1(k + 1
2) for a non-negative integer k. So setting W−1 = ∂−W , we have the sequence

∂−W = W−1 ⊂W0 ⊂W1 ⊂ · · · ⊂Wm = W .

Now let Cλ = Hλ(Wλ,Wλ−1) and ∂ : Cλ → Cλ−1 the boundary homomorphism defined in Corollary

48, and consider the long exact sequence of the triple (Wλ+1,Wλ,Wλ−2)

· · · → Hλ+1(Wλ+1,Wλ)→ Hλ(Wλ,Wλ−2)→ Hλ(Wλ+1,Wλ−2)→ 0

and another exact sequence of the triple (Wλ,Wλ−1,Wλ−2)

0→ Hλ(Wλ,Wλ−2)→ Hλ(Wλ,Wλ−1)→ Hλ−1(Wλ−1,Wλ−2)→ · · · .

Observe that there is a commutative diagram of pairs of spaces given by two triples given above.

Then define a λ-th homology group by

Hλ(Wλ,Wλ−1) = ker ∂/im ∂, (7.2)
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and it is well known that C∗ = (Cλ, ∂) is a chain complex and Hλ(C∗) = Hλ(W,∂−W ) for every λ

with 0 ≤ λ ≤ m.

0

Cλ+ = Hλ+1(Wλ+1,Wλ) Hλ(Wλ,Wλ−2) Hλ(Wλ+1,Wλ−2) 0

Cλ = Hλ(Wλ,Wλ−1)

Cλ−1 = Hλ−1(Wλ−1,Wλ−2)

∂

∂

7.2 Cancellation of Critical Points in the Middle Dimensions

Construct a Morse function f̃ as follows. Using Theorem 32 perturb the Morse function f

so that f̃ coincides with f outside a small open neighborhood U1 of p1, f̃(p1) > f(p1), and f̃ has

the same critical points p1, . . . , pk and the gradient-like vector field as f . Now let t ∈ R such that

f̃(p1) > t > f(p1), and let V = f̃−1(t).

The left-hand (λ−1)-sphere Sl(p1) and the right-hand (m−λ−1)-spheres Sr(pi) for 2 ≤ i ≤ k

in V are disjoint. Let a ∈ Sl(p1) and b ∈ Sr(p2). Then since W is connected, V is connected and

hence there exists some embedding ι : (0, 3) → V such that the image ι(0, 3) intersects with

Sl(p1) and Sr(p2) exactly once, transversely, in a = ι(1) and b = ι(2) respectively, and such that

ι(0, 3) ∩ Sr(pi) = ∅ for i = 3, . . . , k. Then extend the embedding ι as follows. See Milnor [6] for

details.

Lemma 49. There is an embedding ι̃ : (0, 3)× Rλ−1 × Rm−λ−1 → V such that

(1) ι̃(t, 0, 0) = ι(t) ∀t ∈ (0, 3),

(2) ι̃−1(Sl(p1)) = 1× Rλ−1 × 0, ι−1(Sr(p2)) = 2× 0× Rm−λ−1, and
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(3) im ι̃ ∩ Sr(pi) = ∅ for i = 3, . . . , k. Moreover ι maps 1× Rλ−1 × 0 into Sl(p1) with positive

orientation and ι((0, 3) × Rλ−1 × 0) intersects Sr(p2) at ι(2, 0, 0) = b with intersection

number +1.

Theorem 50 (Basis Theorem). On a cobordism (W ; ∂−W,∂+W ) of dimenstion m, let f : W → R

be a Morse function with k critical points p1, . . . , and pk such that

f(p1) = · · · = f(pk), (7.3)

and let X be a gradient-like vector field for f . Suppose that all critical points are of the same

index λ with 2 ≤ λ ≤ m − 2. Moreover suppose that W is connected. Then for every basis for

Hλ(W,∂−W ) there exists another Morse function f ′ and another gradient-like vector field X ′ for

f ′ with the following properties:

(1) f ′ and X ′ both coincide with f and X respectively in some open neighborhood U of ∂−W ∪

∂+W ,

(2) f ′ has the same critical points p1, . . . , pk with f ′(p1) = · · · = f ′(pk), and

(3) the suitably oriented left-hand disks Dl(p1), . . . , Dl(pk) forms a basis for Hλ(W,∂−W ).

Proof. Let {b1, . . . , bk} be a basis for Hλ(W,∂−W ) ∼= Z⊕· · ·⊕Z (k summands), where each bj is ho-

mologous to the left-hand diskDl(pj) with some fixed orientation. Then let ν(Dr(p1)), . . . , ν(Dr(pk))

denote the normal bundles so that

〈Dr(pi)〉 · 〈Dl(pj)〉 = δij , (7.4)

where δij denotes the Kronecker delta sign. So for every λ-disk D embedded in W such that

D ⊂ ∂−W its representation is given by

α1b1 + · · ·+ αkbk ∈ Hλ(W,∂−W ) (7.5)
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for some integers α1, . . . , αk. So D is homologous to α1Dl(p1) + · · ·+ αkDl(pk) and

〈Dr(pi)〉 · 〈D〉 = 〈Dr(pi)〉 · (α1〈Dl(p1)〉+ · · ·+ αk〈Dl(pk)〉) (7.6)

= α1〈Dr(pi)〉 · 〈Dl(p1)〉+ · · ·+ αk〈Dl(pk)〉 · 〈Dl(pk)〉 (7.7)

=
k∑
j=1

αj〈Dr(pi)〉 · 〈Dl(pj)〉 (7.8)

=
k∑
j=1

αjδij (7.9)

= αi. (7.10)

So D = (〈Dr(pi)〉 · 〈D〉)b1 + · · ·+ (〈Dr(pk)〉 · 〈D〉)bk.

Now construct a Morse function f ′ and a gradient-like vector field X ′ such that D′l(p1),

Dl(p2), . . . , and Dl(pk) are the new left-hand disks with

〈Dr(p1)〉 · 〈D′l(p1)〉 = 1, 〈Dr(p2)〉 · 〈D′l(p1)〉 = 1, (7.11)

and

〈Dr(pi)〉 · 〈D′l(p1)〉 = 0 (7.12)

for i = 3, . . . , k. This implies that {b1 +b2, b2, . . . , bk} is the new basis for Hλ(W,∂−W ). In order to

verify this elementary row operation of the basis, we will need to construct an isotopy as followos.

For some fixed δ > 0 let α : R→ [1, 3
2 ] be a smooth function such that

α(x) =


9
4 if x ≤ δ

1 if if x ≥ 2δ.

(7.13)
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R

R

α

9
4

1

δ 2δ

Figure 7.1: The graph of α.

Then construct a smooth isotopy Ht : (0, 3) × Rλ−1 × Rm−λ−1 → (0, 3) × Rλ−1 × Rm−λ−1

such that

(1) Ht = id outside some compact set, where 0 ≤ t ≤ 1.

(2) Ht(1, x, 0) = (tα(‖x‖2) + (1− t), x, 0) for x ∈ Rλ−1.

Now define a new isotopy Ft of V by

Ft(v) =


ι̃ ◦Ht ◦ ι̃−1(v) for v ∈ im ι̃

v otherwise

. (7.14)

0 1 2 3

1× Rλ−1 × 0

2× 0× Rn−λ−1

H1(1× Rλ−1 × 0)

Figure 7.2: The graph of Ht.
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a

b

Sr(p2)

Sl(p1) = F0(Sl(p1))

F1(Sl(p1))

Figure 7.3: Deformation by the isotopy Ft.

Theorem 51. For a cobordism (W ; ∂−W,∂+W ) of dimension m ≥ 6, let f be a Morse function

without any critical points of indices 0, 1,m − 1, or m. Suppose that W , ∂−W , and ∂+W are all

simply connected. Moreover suppose that H∗(W,∂−W ) is trivial. Then (W ; ∂−W,∂+W ) is a product

cobordism.

Proof. Let c denote the cobordism (W ; ∂−W,∂+W ). By the Final Rearrangement Theorem it

follows that c decomposes into the factors c = c2c3 · · · cm−2, and there exists a Morse function f on

c such that each restriction f |cλ contains all critical points of index λ with the same critical value.

Then consider the sequence of the following chain complex

Cm−2
∂−→ Cm−3

∂−→ · · · ∂−→ Cλ+1
∂−→ Cλ

∂−→ · · · ∂−→ C2. (7.15)

For each λ choose a basis {zλ+1
1 , . . . , zλ+1

kλ+1
} for the cycle ker ∂ of ∂ : Cλ+1 → Cλ. Because

H∗(W,∂−W ) is trivial by assumption, the sequence given above is exact and there exist kλ el-

ements bλ+1
1 , . . . , and bλ+1

kλ
in Cλ such that ∂(bλ+1

i ) = zλi in Cλ+1 for i = 1, . . . kλ. Thus

{zλ+1
1 , . . . , zλ+1

kλ+1
, bλ+1

1 , . . . , bλ+1
kλ
} is a basis for Cλ+1.

Since 2 ≤ λ ≤ λ+ 1 ≤ m− 2 by assumption, by Basis Theorem there exist a Morse function

f ′ and gradient-like vector field X ′ defined on c such that the left-hand disks contained in cλ and

cλ+1 are the bases for Cλ and Cλ+1, respectively.
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Now let p ∈ cλ and q ∈ cλ+1 be the critical points that correspond to the basis elements zλ1

and bλ+1
1 . Perturb f ′ in open neighborhoods Up of p and Uq of q so that

f(pλiλ) < f(p) < f(q) < f(pλ+1
iλ+1

), (7.16)

where pλiλ and pλ+1
iλ+1

are the critical points of indices λ and λ+ 1, respectively. Then cλcλ+1 factors

into c′λcpcqc
′
λ+1, where both cp and cq are elementary cobordisms containing critical points p and

q, respectively. Let t ∈ R such that f(p) < t < f(q) and let W ′ = cpcq. Then consider the fiber

V = f−1(t). Observe that all W ′, ∂−W ′, and ∂+W
′ are simply connected. Since zλ1 = ∂(bλ1) by

construction of ∂, Sr(p) and Sl(q) have the intersection number ±1, i.e. 〈Sr(p)〉 · 〈Sl(q)〉 = ±1.

By the Second Cancellation Theorem, the critical points p and q in cpcq are eliminated and cpcq is

a product cobordism. Repeating this process and hence all critical points in the cobordism c are

eliminated. Thus (W ; ∂−W,∂+W ) is a product cobordism.



Chapter 8

Cancellation of Critical Points of index 0 and 1

8.1 Index 0 Cancellation

We first eliminate all critical points of 0 from a cobordism. The idea is to find out a trans-

verse intersection between right-hand and left-hand spheres of critical points of indices 0 and 1,

respectively, so that the First Cancellation Theorem applies.

Theorem 52. Suppose that H0(W,∂−W ) = 0. Then the critical points of index 0 are cancelled

against the same number critical points of index 1.

Proof. Consider the homology groups with coefficients from Z2 = {0, 1}. Since H0(W,∂−W ) = 0,

the boundary homomorphism ∂ : H1(W1,W0) → H0(W0, ∂−W ) is surjective. Observe that ∂ is

given by the matrix whose (i, j)-th entries are

〈Sr(p0
i )〉 · 〈Sl(p1

j )〉 mod 2, (8.1)

where p0
i and p1

j denote critical points of indices 0 and 1, respectively. Observe that every right-hand

(m − 1)-sphere Sr(p0
i ) has at least one left-hand 0-sphere Sl(p1

j ) such that 〈Sr(p0
i )〉 · 〈Sl(p1

j )〉 6∼= 0

under modulo 2 because ∂ is surjective. Sr(p0
i ) ∩ Sl(p1

j ) cannot contain more than two points and

thus it consists of an odd number of points. Therefore Sr(p0
i ) and Sl(p1

j ) intersects transversely in

a single point and the First Cancellation Theorem applies.
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8.2 Index 1 Cancellation

We will need the two lemmas introduces below to prove Theorem 56, which eliminates critical

points of index 1.

Lemma 53. For 0 ≤ λ < m, there exists a smooth function f : Rm → R such that

(1) f(x1, . . . , xm) = x1 outside of a compact set, and

(2) f has exactly two non-degenerate critical points pλ and pλ+1 of indices λ and λ+ 1 respec-

tively with f(pλ) < f(pλ+1).

Proof. Identify Rn with R×Rλ×Rm−λ−1 and let (x, y, z) be a point in the product. For simplicity

let y2 and z2 denote ‖y‖2 and ‖z‖2, respectively. Moreover let s : R → R be a smooth function

with compact support such that s(x) + x has exactly two non-degenerate critical points a1 and a2.

R

R s(x) + x

a1

a2

Figure 8.1: The graph of s(x) + x.

Next construct smooth functions α, β, γ : R→ R≥0 with compact supports so that
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(1) α(x) = 1 if |x| ≤ 1,

(2) |α′(x)| < 1
sup |s(x)| for all x,

(3) β(x) = 1 if α(x) 6= 0,

(4) γ(x) = 1 if s′(x) 6= 0, and

(5) |γ′(x)| < 1
sup (xβ(x)) .

R

R

βα

1

Figure 8.2: The graphs of α and β.

R

R

s

γ1

1

Figure 8.3: The graphs of s and γ.
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Define f : Rm → R by f(x, y, z) = x+ s(x)α(y2 + z2) + (−y2 + z2)γ(x)β(−y2 + z2). Observe

by construction of f that

(1) f(x)− x has compact support,

(2) On the open interval such that α = 1 and γ = 1, f corresponds to s(x) + x.

Observe also that

∂f

∂x
= 1 + s′(x)α(y2 + z2) + (−y2 + z2)γ′(x)β(−y2 + z2) 6= 0 (8.2)

if s′(x) 6= 0 or γ′(x) 6= 0. Observe also that the gradient of f vanishes only if y = 0 and z = 0. In

this case α = 1, and therefore f(x) reduces to s(x) + x.

Lemma 54. If Sm−2
r is a right-hand sphere in V1+, then there exits a 1-sphere embedded in V1+

such that it intersects with Sm−2
r transversely but does not meet with any other right-hand spheres

in V+1.

Proof. Choose a sufficiently imbedded 1-disk D1 ⊂ V1+ so that D1 intersects with Sm−2
r at the

midpoint q of D1 and that D1 does not intersect with any other right-spheres in V1+. Then translate

the end points a and b of D1 left along the integral curves ϕ and ϕ′ of the gradient-like vector field

X to ϕ(a) and ϕ′(b) in V0+. V0+ = ∂−W is connected and of dimension m − 1 ≤ 2, there exists

a smooth path γ so that γ joins ϕ(a) and ϕ′(b), and that γ does not intersect with any left-hand

0-spheres in V0+. Then ϕ−1 ◦ γ is a smooth path joining a and b in V0+ and avoids all right-hand

spheres. Note that dimV0+ = m− 1 ≥ 3, and by Theorem define a smooth function g : S1 → V1+

by the following properties:

(1) g−1(q) = a ∈ S1 and g embeds smoothly a closed set A containing a onto some neighbor-

hood of q in D.

(2) g(S1 − a) does not intersect with any right-hand (m− 2)-spheres.

This completes the proof of theorem.
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Theorem 55. Let M and N be smooth manifolds of dimension m and n such that n ≤ 2m+ 3. If

two smooth embeddings i and j of M into N are homotopic, then i and j are smoothly isotopic.

See Whitney [14] for the proof of the theorem.

Theorem 56. Suppose that W and ∂−W are simply connected, and m ≥ 5. Moreover suppose

that (W ; ∂−W,∂+W ) has no critical points of index 0. Then for each critical point p1 of index 1

there exist a pair of critical points q2 of auxiliary index 2 and p3 of index 3 such that p1 is cancelled

against q2.

Proof. Note first that V2+ is simply connected, i.e. π1(V2+) = π1(W ) = 0. Note also from

generalization of Theorem 30 that

Dm−1
r ∪ Dm−2

r ∪ V2+ ∪ D3
l ∪ D4

l · · · ∪ Dml , (8.3)

where Dλr and Dλl denote the collection of λ-disks attached to V2+, is a deformation retract of W .

V0+ V1+ V2+ V3+

p1Sl(p1) Sr(p1)

p2

Sl(p2) Sr(p2)

p3

Figure 8.4: Auxiliary critical points p2 and p3.

Now for every critical point p1 construct an 1-sphere S(p1) embedded in V1+ by Lemma 54.

Moreover by Theorems 36 the gradient-like vector field X can be adjusted so that S(p1) does not
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intersect with any left-hand spheres in V1+. So we can translate S(p1) right to V2+. Extend a collar

neighborhood to the right of V2. Apply the Implicit Function Theorem to choose an embedded

open set U ⊂ Rm and some coordinate system (x1, . . . , xm) such that f(x1, . . . , xm)|U = xm. Then

by Lemma 53 construct another Morse function f̃ such that f̃ coincides with f outside U with

extra non-degenerate critical points p2 and p3 of indices 2 and 3, respectively.

V0+ V1+ V2+ V3+

p1Sl(p1) Sr(p1)

p2

Sl(p2) Sr(p2)

p3

Figure 8.5: Auxiliary critical points p2 and p3.

Denote by Sl(p2) the left-hand sphere of p2 in V2+, and construct a smooth isotopy h : V2+ →

V2+ such that h(Sl(p2)) = S(p1). Then adjust X so that Sl(p2) and S(p1) coincide. Observe by

construction that Sl(p2) intersects with S(p) in a single point transversely. Therefore the First

Cancellation Theorem applies and two critical points p1 and p2 are eliminated. Then perturb f so

that p3 is on the fiber f−1(3) ⊂ V3+, and this completes the proof of the theorem.



Chapter 9

The h-Cobordism Theorem

In Chapter 5, 6, and 7, we studied how to eliminate pairs of critical points of consecutive

indices. Moreover Chapter 8 made us cancel critical points of indices 0 and 1. Finally we should

claim that the following main theorem so called the h-Cobordism Theorem holds true.

Theorem 57 (The h-Cobordism Theorem). Let (W ; ∂−W,∂+W ) be a cobordism such that

(1) All W , ∂−W , and ∂+W are simply connected.

(2) H∗(W,V ) = 0.

(3) dimW ≥ 6.

Then W is diffeomorphic to ∂−W × [0, 1] and thus a product cobordism.

Proof. Let a Morse function f : W → R be self-indexing, i.e. f(pλ) = λ ∈ Z for each non-

degenerate critical point pλ ∈ W . By Theorem 52 and 56 all critical points of indices 0 and 1 are

eliminated. Then consider the function −f . It is easy to observe that −f is also a Morse function

that contains the exactly same critical points with opposite indices. In other words a critical point

pλ of index λ of f is of index m − λ of −f . So all critical points of indices m and m − 1 are also

cancelled. Finally apply Theorem 51 and other critical points are all eliminated.
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