A Classical Technique to Prove the h-Cobordism Theorem
by
Masaya Sato

B.A. Mathematics, San José State University, 2007

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Arts
Department of Mathematics

2011



This thesis entitled:
A Classical Technique to Prove the h-Cobordism Theorem
written by Masaya Sato
has been approved for the Department of Mathematics

Carla Farsi

Prof. Martin Walter

Prof. Markus Pflaum

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above
mentioned discipline.



iii
Sato, Masaya (M.A. Mathematics)
A Classical Technique to Prove the h-Cobordism Theorem
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Let W be an m dimensional compact smooth manifold with boundary OW = 0_W U 0. W,
where submanifolds 0_-W and 0, W are closed and disjoint. Then suppose that W, 9_W, and 04+ W
are all simply connected, dim W > 6, and H,(W,0_W) = 0. The h-Cobordism Theorem states that
W is diffeormorphic to a product cobordism.

In this paper we will follow a classical technique developed by John Milnor in his “Lectures

on the h-Cobordism Theorem” half a century ago.
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Chapter 1

Introduction

1.1 Differential Manifolds

We will start with preliminary definitions which are used throughout this paper.

Definition 1 (Manifolds). A topological manifold M of dimension m > 0 is a second countable

Hausdorff topological space so that the following properties are satisfied:
(1) A family of open sets {Uq}ach covers M, where A is an indez set,

2) For each a € A, (Uy, ¢o) is called a coordinate chart, where ¢p,U, — R™ is a homeomor-
( ) ) ) 4

phism, and

(8) For all a and B in A, there is a homeomorphism called a transition map qﬁaoqﬁ/gl :p(Ug) —

R™ whenever Uy, NUg # 0.

Note that if each transition map is in CP(R™,R™) for a nonnegative integer p > 0 or in
C>®(R™,R™), then M is called a CP-manifold or smooth manifold, respectively. Throughout this
paper we assume that manifolds are equipped with a smooth structure. See Milnor[6] for the detail.

Note also that an atlas A, the set of coordinate charts A = {(Uy, d0) taca is called mazimal
if one adds an extra chart to A, then the property (3) fails. Now let us observe that we can always
determine a maximal atlas M. For if we define a partial ordering on A by the set inclusion, then
the Zorn’s Lemma guarantees that a maximal atlas M is determined. Therefore, without loss of

generality, we always suppose that a manifold M is equipped with a maximal atlas M.



For two smooth manifolds M and N of dimension m and n, respectively, we say that a map
f i+ M — N is smooth if 1), o f o gbgl 1 03(Ug) — ¥a(Uy) is a smooth map, where {(Uq, %)} and

{(Us, ¢3)} are charts for N and M, respectively.

M
R Uy .-~
(ba Oé/ \\
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N Rmfl Uﬁ
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Figure 1.1: A smooth manifold M with boundary oM.

For an upper half m-dimensional Euclidean space H™ = {(z1,...,zn) € R™|z, > 0}, one
defines a (smooth) manifold with boundary by allowing charts homeomorphic to H™. And the set
of points € M, where each m-th coordinate of ¢g(x) is 0, is called the boundary of M and denoted
by OM. And the boundary OM is of dimension m — 1. On the other hand, a manifold without a

boundary is called closed.

Definition 2 (Tangent Spaces and Tangent Bundles). The tangent space T,M to M at p is the

set of all germs at p X, : C*°(M,R) — R such that for all o, € R and all f,g € C*°(M,R)
(1) Xp(af + Bg) = aX,f + X9 (linearity),

(2) Xp(fg) = (Xpf)a(p) + f(p)(Xpg) (Leibnitz rule),



with the operations in T,M defined by

(Xp +Yp)f = Xpf + Y5 f (1.1)

(aXp)f = a(Xpf). (1.2)
Then a tangent bundle is defined to be a collection of all tangent spaces, i.e.

TM ={X, e T,Mlpe M} = | ] T,M. (1.3)
peEM

Moreover a smooth map X : M — TM such that w(X) = id, where m and id denote the projection
and identity map respectively, is called a vector field on M. And the push-forward of a vector field X

on M by some diffeomorphism f : M — N is the vector field f. X, on N defined by Ty f(Xp).

For a smooth manifold M of dimension m, recall that M is orientable if the determinants
of the Jacobian of all transition maps ¢4 o gbgl are posititve whenever U, N Upg # 0 for any charts

(Uas o) and (Ug, ¢pg). Or equivalently, the orientation (M) of M is given by an m-frame of vector

fields ((1,y .-+, Gn)-
1.2 Cobordisms

Definition 3 (Cobordisms). For a smooth compact m-dimensional manifold W with a boundary
OW = 0_W U0 W, where both O_W and 0+ W are closed submanifolds, W is called a cobordism

from O_W to O+ W and denoted by a triple (W;0_W,0LW).

A compact manifold M with boundary 0M has a neighbohood V' of M with a diffeomor-
phism g : OM x [0,1) — V. Such a neighborhood V' is called a collar neighborhood of the boundary
oM.

For two cobordisms (W;0_-W,9,.W) and (W';0-W' 0, W'), if there is a diffeomorphism
h: 0, W — O0_W' defined, we can glue or attach those two cobordisms via the map h. In other

words, we have a new cobordism W Uy W' from d_W to 04 W', where

W Uy, W/:WUW// ~p (1.4)



with an equivalence relation ~j, generated by x ~j, h(z) for every x € M. Two boundaries 0_W
and 04 W are glued together via the diffeomorphism h along their collar neighborhoods.
Note that there exists a unique smooth structure B, which is compatible with the given

structures A and A’ on W and W', respectively. See Milnor [6] for the detail.



Chapter 2

Morse Functions

2.1 Morse Functions

Figure 2.1: A torus of genus 1.

Let us begin with an example as Figure 2.1 shows. For a torus 72 we can think of the height

function f as a Morse function.

Definition 4 (Critical Points of A Smooth Function). Let M be an m-dimensional manifold without

boundary and {(Uqa, ¢o) taca an atlas for M. Then for a smooth scalar function f : M — R, p e M



1s called a critical point of f if

Afodat)

o2, ———2 2 (pa(p)) =0 for i1=1,...,m, (2.1)

where (Uy, ¢o) 8 a coordinate chart that contains p.

Let us observe that a critical point p € M does not depend on the choice of a coordinate
system. For two distinct charts (Uq, ¢o) and (Ug, ¢g), assume that p € U, N Ug. Then ¢4 (p) =

(x1,...,2m) and ¢g(p) = (y1,. .., Ym) and thus

(fo % oz fo ¢a )
T ZEZ ayl- (¢ap)) = 0. (2.2)

-1
So for simplicity, from now on, we write 3 f to denote each partial derivative ol 5?; ),

Then we define a symmetric bilinear form of a smooth function f as follows.
Definition 5 (The Hessian Matrix). Let f : M — R be a smooth function defined on a smooth

manifold M equipped with an atlas {Uy, ¢o)}aca and p € M a critical point of f. Then the Hessian

Hy(p) of f at p is an m x m matriz whose entries are the second order partial derivatives, i.e.

2(f0 b1
1y(0) = [ )| 23)

Moreover, a critical point p is called non-degenerate if det(Hs(p)) # 0. Otherwise, it is called

degenerate.

Lemma 6. A non-degenerate critical point p € M does not depend on the choice of a coordinate

system at p.

Proof. Let (x1,...2m) and (y1,...Ym) be two local coordinate systems at p. Then

Z Ox;j ' ox; ' 0% f (2.4)

8%/ 8y] 8yl Oy Ox;0x;

B Z 8:6] 0% f . ox; (2.5)
52 Oy,r ﬁxiaxj dyjr '

This implies that

Hy(p) = J(p)" Hy(p)J (p), (2.6)
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where J(p) = [g;;] is the matrix of coordinate change, and Hy(p) and H}(p) are the Hessian

matrices with respect to coordinate systems (1, ..., %y, ) and (y1,. .., Ym), respectively. Since J(p)

is invertible, det (J(p)) # 0 and

det (Hj(p)) = det (J(p)" Hy(p)J (p)) = det (J(p)") - det (Hy(p)) - det (J (p)) (2.7)

= det (J(p))* - det (H(p))- (2.8)

So det (H } (p)) # 0 if and only if det (H¢(p)) # 0. Therefore any non-degenerate critical point p is

independent of the choice of coordinate systems. O

So from now on we write Hf(p) = (%Cafiaf%(p) for simplicity.

Definition 7 (Morse Functions). A function f : M — R is a Morse function if every critical point

of f is non-degenerate.

Next we observe that a Morse function is expressed as a quadratic form around small neigh-

borhood of a non-degenerate critical point.

Lemma 8 (Morse’s Lemma). If f : M — R is a Morse function with a non-degenerate critical
point p € M, then there exists a coordinate system r = (x1,...,z,) € R™ of p such that the

function f can be expressed as the form
fla)=—af - —af +ady +-+ap +c (2.9)

around a neighborhood U of p, where ¢ € R is a constant. Furthermore the uniquely determined

non-negative integer X is called the index of p.

Proof. Since p € M, ¢(p) = x = (x1,...,2Ty) for some coordinate chart ¢ : U — R™. And without

loss of generality, let us suppose that p corresponds to (0, ...,0) via ¢ and f(p) = (0,...,0). Then



by the Fundamental Theorem of Calculus (FTC),

L
@) = fle) = $0) = [ (e (210)
= /1 %(tazl, oy tTy)dt (2.11)
0

:/1i$i§§(tl’1,...,t$m)dt (212)

0 =1 ‘
Y s / 1 ggf(m, ot (2.13)

=1 70 @i

Now let g; : M — R be smooth functions defined by g;(x) = fol %(tm)dt. Then

where ¢;(0,. ..

f@)=f(zr,.. . am) = wigi(@1,...,2m), (2.14)
=1

,0) = g—i(o, ...,0) = 0. Moreover, by applying the FTC again, there are smooth

functions h;; : M — R so that

with hij (O, .

Now let Hz‘j =

and Hl'j(l‘l, .

gi(x) =Y wjhij(x) (2.15)
=1

.,0) = 2L (0). Then

 Ox;0zx;

f@)=fl@r,..oom) =Y mizjhi(r,.. . Tm). (2.16)

ij=1

2(hij + hj;), and we have

f(i[)) = f(iL‘l, ey xm) = Z ZCiiL‘jHij(fL‘l, ey l‘m) (217)
i,j=1
Tm) = Hji(z1,...,2m). Moreover,
0% f

= 2H;;(0,...,0). 2.1
G 0o 20) = 2H5(0,...,0) (2.18)

Now observe that the Hessian H¢(p) is a bilinear, symmetric, and non-degenerate form. So H¢(p)

is diagonalizable by the Gram-Schmidt orthonormalization process, and moreover the diagonalized

H¢(p) contains a negative definite maximal submatrix. The size of such a submatrix corresponds

to the index A of the critical point. O
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We can immediately show the following corollary since each partial derivative g—g{i of the
standard form of a Morse function f is either —2x; or 2z; on some open neighborhood U of a

non-degenerate critical point p.
Corollary 9. A non-degenerate critical point p € M of a Morse function f: M — R is isolated.

Observe also that every compact manifold M can be covered by finitely many charts {U;, qﬁi}le

and the following holds true.

Corollary 10. If M is a compact manifold, then a Morse function f : M — R has only finitely

many non-degenerate critical points.

For an open set U C R™, consider a smooth function f : U — R. Recall that the image
f(C) C R has Lebesgue measure zero, where C' is the set of critical points of f, by the Sard’s
Lemma. We will use the Sard’s Lemma to prove the follwoing lemma that constructs a Morse
function from an arbitrary smooth function f by perturbing f using an appropriate linear function

on R™,

Lemma 11. Let U C R™ be an open set and f : U — R™ a smooth function. Then there exist

some ai,...,a, € R so that
flx1,.. . xm) — (@1x1 + -+ am@m) (2.19)
1s a Morse function.

Proof. Define a map h: U — R™ by

[ of of \T
h(l‘l,“' ,l’m)— (87[,121’ ,%) . (220)
Then observe that the Jacobian Jj(p) of h at p € R™ is the Hessian H¢(p) of f at p, i.e.
0’ f
= = H . 2.21
) = |5y ®)] = Hrw) (2:21)

So det (Jx(p)) = det (H¢(p)) and p is a critical point of h if and only if det (H¢(p)) = 0. Now by

the Sard’s Lemma let us choose a = (a1,--- ,a,)?T € R™ such that a is not a critical value of h.
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Then define f : U — R™ by

fl@y, o zm) = f(o1, 0 om) — (@121 + - + am@m). (2.22)

We claim that f is a Morse function. So if p is a critical point of f, then

_of . _0f |
for ¢ =1,--- ,m. This implies that
h(p) = (a1, ,am)" (2.24)

and p is not the critical point of h. Therefore det (J(p)) # 0 and thus det (H 7(p)) = det (H¢(p)) #

0. Hence p is a non-degenerate critical point of f and f is a Morse function.

Definition 12. Let (W;0_-W,0.W) be a cobordism. A Morse function f : W — [0,1] on the

cobordism is a smooth function such that
(1) O-W = f~10) and 0. W = f~1(1), and
(2) Every non-degenerate critical point p of f exists in Int W =W — oW.

The following lemma lets us construct a smooth function without any critical points near
the boundary of W. Note that such a smooth function is constructed with the help of a partition
of unity. A partition of unity is a family of non-negative smooth functions {¢; : W — Rx>¢} such
that the closure V; of V; = {x € W|y;(x) > 0} form a locally finite cover of W, and such that

> ¢i(z) =1 for every x € W.

Lemma 13. There exists a smooth function f: W — [0,1] on a cobordism (W;0_W,0,W) such

that f has no critical points in any neighborhood of OW = 0_W U 0. W.

Proof. Let {U;, #;}%_, be an atlas for W so that no U; intersects with both 9_W and 04 W. Then
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define f; : U; — [0,1] by

Tm © ¢i(p) = T ifU;NO_W #£10
filp) =1 —mmodilp)=1—z, U NOLW #D (2.25)
! if Uy N oW =0,

where 7, : R™ — R is the projection onto the m-coordinate. Now choose a partition of unity
{4; + M — R}_, dominated by the open cover {U;}f_,, i.e. the V; C U;, where V; = 17 '((0,1]).

Then define a map f: W — [0, 1] by

F) = 1) filp) + -+ + Uu(p) fu(p), (2.26)

where each f; : W — [0,1] is the smooth extension of f; : U; — [0,1] such that f;|U; = f; and
filW —U; = 0. Observe that f is well-defined and smooth on W. Moreover f~1(0) = _W and
f~1(1) = 0,.W. Finally we claim that the derivative of f is non-zero on 9_W U 94 W. So let
q € O_W. Then ¢q € U; and ¢;(g) > 0 for some j. Also let ¢;(p) = (21, ,Zm) and consider the

coordinate system. Then

Of 0 N~z N~ 0 ¢
% - @ ;¢1fz - ; @(ﬁzfz (2'27)
LI, ¥Y of;
= (fiaf +¢iaxf )- (2.28)
i—1 m m

Since f;(¢) =0 and fj(¢) = 0 for j # i, the first summand is zero. So %(q) = Zle 6i(q) ofi (q).

OTm

Because of construction of f;, 0f; (q) =1 or 0 for ¢ € O_W. Therefore %(q) # 0. Similarly, if

OTm

q € 0+W, then %(q) # 0. Hence the derivative of f is non-zero on 0_W LI 0, W. O

Note that a polynomial of first and second order partial derivatives can be approximated by

another polynomial, and the following lemmas hold true.

Lemma 14. For an open set U C R™, a compact set K C U, and a smooth function f:U — R,

if f has only non-degenerate critical points in K, then there is some constant § > 0 such that if
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g : U — R is smooth on K with

of 9y 0% f 9%g
— d — 0 2.29
foralli,j=1,--- m then g has only non-degenerate critical points.

Lemma 15. Let U and U’ be open sets in R™ and h : U — U’ be a diffeomorphism such that
K'=h(K) C U for some compact set K C U. Then for every e > 0 there is some § > 0 such that

if f:U" — R is smooth with

of 0% f
2.
lfl <9, ‘6951- <4, and 6x,-83:j’<5 (2.30)
foralli,j=1,--- ,m on K' C U’, then
|foh| <e ‘8foh‘<e and ’ o foh’<e (2.31)
’ 8$1 ’ 8xlaxj '

on K CU.

Now let us define C*°-topology on the set of smooth functions C*°(M,R). So for a compact
and closed manifold M let us consider a finitely many charts {(U;, ¢;)}*_, and a compact refinement
{C;}F_, of the open cover {U;}¥_,, i.e. each compact C; is contained in U; and the refinement still

covers W. Then for every § > 0 define a neighborhood N (§) of C*°(M,R) by

N(8) = {g € C*(MR)| |g"] < 8} (2.32)
on ¢;(Cy), where g = go d)l_l, and gl(n) denotes the partial derivative of order n for all n > 0. In

other words, N(9) is an open neighborhood of the zero function.

Definition 16. The topology on C*°(M,R) generated by N(f,0) = f+N(0), where f € C°(M,R)

is called the C'°°-topology.
Theorem 17. On any cobordism (W;0_W,0L W), there exists a Morse function f: W — R

Proof. Let U be an open neighborhood of 0OW = 0_W 110, W. Since W is compact and Hausdorff,

there is an open set V such that O_W C V C U. Then let us take a finite open cover {Ui}i-“:1
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for W such that either U; C U or U C W — W, and consider its compact refinement {C;}¥_; of
{U}%_,. Now let

C= |J Cy suchthat CycCUyCU. (2.33)
ve{l, ,k}

By Lemma 14 and Lemma 15, for a small neighborhood N C C*°(W,R) of f, no function in N
has critical points in C. Observe also that 0 < f < 1 on W — V. Let N' C¢ C®(M,R) be a
neighborhood of f such that every g € N'is 0 < g < 1 on W — V. Then let Ny = NN N’ By
Lemma 14 and 15, there exists f; € Ny such that f; has only non-degenerate critical points on Cf,
and a neighborhood N1 C Ny of f; such that every g1 € Ni has only non-degenerate critical points
on (1. By repeating this recursive procedure, at the k-stage, there is fr € Np C Np_1 C --- C Ny

so that f has only non-degenerate critical points in
CuCiU---uCp =M. (2.34)

Since fr, € No C N', fx|V = f|V, fk_l(O) =0_W, fk_l(l) = 04 W, and f; has no critical points in

any neighborhood of OW. Therefore fj, is a Morse function on (W;0_-W,0,W). O

We can slightly perturb a Morse function f to get another Morse function with distinct

critical values as the following lemma states.

Corollary 18 (Non-resonant Morse Functions). Let (W;0_-W,0.W) be a cobordim and f: W —
[0,1] a Morse function with finitely many critical points p1,- -+ ,px. Then there exists another Morse

function g : W — [0, 1] that approzimates f and

9(pi) # 9(p;) (2.35)

for i # j. And such a Morse function g is called non-resonant.

Corollary 19. For a Morse function f: W — [0,1] on a cobordism (W;0_-W,0.W), suppose that
c € (0,1) is not a critical value of f. Then f=1([0,c]) and f~'([c,1]) are both smooth compact

manifolds with boundary.
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Definition 20. The Morse number pu of a cobordism (W;0-W,0; W) is the minimum number of

critical points of all Morse functions f: W — [0, 1].

Moreover we have the following corollary since Corollary 18 lets us choose a Morse function

with distinct critical values.

Corollary 21. Any cobordism (W;0_-W, 0+ W) can be decomposed into a composition of cobordisms

with Morse number p = 1.

2.2 Gradient-like Vector Fields

In this section we define a vector field X : W — T'W with special properties as follows.

Definition 22 (Gradient-like Vector Fields). For a cobordism (W;0_-W,0, W), let f : W — R be
a Morse function with k critical points p1,--- ,pr. Then a vector field X : W — TW is called a

gradient-like vector field associated to f if
Xf>00n W —A{p1, - ,px}

and for each critical point p € W of index A there exists an open neighborhood U of p such that the

coordinate of the vector field X around U is given by

(_1717‘ T TN T, ;l‘n),

and such that X at p € W has the form

0 0
Xp=—2w1 57— =22 57— + 221

8.751 8@ " '

O0x )11 Orm
Recall that an integral curve ¢, : I — W of X on a compact manifold W is a C*°-

diffeomorphism such that for every t € I and p € M ¢,(0) = p and

d
(o) =X, (2.36)

where I = [0,1] denotes the unit interval. Then the lemma discussed below lets us construct a

gradient-like vector field X from an arbitrary Morse function f.
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Lemma 23. For every Morse function f : W — R there exists a gradient-like vector field X :

W — TW for f.

Proof. For simplicity we will show the case f has only one critical point p € W of index A. Using the
standard form of a Morse function f, there exists an open neighborhood Uy of p and the coordinate

system (x1,--- ,Zx,Tx+1," ", Tm) such that

fl@)y=f(p)—a}— - —a3+a23,, +...22 (2.37)

on Up. Now let U > p be an open set so that p € U C Up. Since each partial derivative is nonzero

on W — Uy, the Implicit Function Theorem guarantees that for every non-critical point p’ € W — Uy

there exits a coordinate system (z,---,2},) in an open neighborhood U’ C W — Up such that
f(z)=a1+Fk,

where k; is constant. Since W — Up is compact, it is covered by a finite open cover {Uy,..., U}

such that

(1) UnNnU; =0 fori=1,...,k, and

)
m

(2) U; has coordinates x* = (z¢,...,2%,) and f(z') = 2% + k;, where each k; is a constant, on

Us.

On the neighborhood Uy, there exists the gradient-like vector field X° : Uy — TW associated to

the Morse function f so that

o
e 22—

0 0 0
1 T + 3«">\+18%)\+1 R

8951 83:,\

Moreover on each U; there is a vector field X* : U; — TW such that

Xt = 6. fori=1,...k.
oz}

Now consider a partition of unity {¢; : W — R}fzo subordinate to the open cover {U;}%_,. There-

fore X : W — TW defined by

X =X+ 1 X+ XP



is a desired gradient-like vector field for f.

16



Chapter 3

Product and Elementary Cobordisms

3.1 Product Cobordisms

We first investigate the simplest cobordism called a product cobordism.

Definition 24 (Product Cobordisms). A cobordism (W;0_-W, 0, W) is called a product cobordism

if it is diffeomorphic to (0_-W x I;0_W,0_W), where I = [0, 1].

Theorem 25. If the Morse number  of (W;0_-W,0,W) is zero, then (W;0_-W, 0+ W) is a product

cobordism.

Proof. Note that every Morse function f : W — R has no critical points since g = 0. Also observe
that there is a gradient-like vector field Y : W — TW for f. So Y f > 0 on W. Then define another

gradient-like vector field X : W — T'W by rescaling

1
X ==Y.

X f is constant on W, i.e.

For p € OW = 0_W U9, W and an open neighborhood U of p, f|U : U — R extends to a smooth
map f ]U : U — R, where U is homeomorphic to an open set in R™. Then the gradient-like vector
field X|U : U — TW also extends to X : U — TW. Because X f =1 on a compact manifold W,

there is an integral curve ¢, : I — W such that fo,(t) =t+c, where ¢ is a constant. Now define
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a C°°-diffeomorphism v, : I — W by 1, = ¢,(t — ¢). Then
foyp(t)y=tVtel
and 1,(0) = p. Therefore h: 0_W x I — W defined by
Bp, 1) = y(t)

is a diffeomorphism with the inverse h=1(p) = (¥,(0), f(p))- O

3.2 Elementary Cobordisms and Surgery Theory

Definition 26 (Elementary Cobordisms). An elementary cobordism is a cobordism (W;0_W, 0. W)

that admits a Morse function f: W — R with exactly one critical point p € W.

Figure 3.1: An elementary cobordism with a critical point p.

For an (m — 1)-dimensional manifold M consider an embedding ¢ : S*~! x Int D™ * — M.

Let x(M, ) denote the manifold obtained by
M — (OD* x 0) UInt D* x S™ 271 = M — (dD* x 0) UInt D* x S™ 1/ ~, |

where ~, is the equivalence relation generated by u(u, 8v) ~, (fu,v) for u € S and v € S A1,

where 6 € (0,1). Then x(M, ) is obtained from M by surgery of type (A,m — X).
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Figure 3.2: An elementary cobordism with embedded disks and spheres.

Theorem 27. A cobordism (W;0_-W,0. W) with 0. W = x(0_-W, 1) is an elementary cobordism

and there exists a Morse function f: W — R with exactly one critical point p € W of index A.

Observe that ¢ : S2~! x (D™ * —0) — (int D* —0) x ™=~ that maps (u,fv) to (Au,v) is
a diffeomorphism. So x(M,¢) is a smooth manifold since the smooth structure is inherited by the
smooth structure of both M — ((S*~1 x 0) and D* x §™~*~1,

Now let us construct a cobordism whose boundary is M U x(M,¢). So consider

L={(z,y) e R* x R" | =1 < —lzf* + [ly[|* < 1}n

{(z,y) € R x R™|||z|| - ||| < cosh1l-sinh1}.

Because of being a subspace of R™, L is a smooth manifold whose boundary is given by 0_L =
{(2,y) € R < R™ |~ [z 2+ [y]l? = —1} and 0, L = {(z, ) € R xR™|— 2]+ [}y> = 1}. Now
observe that 9_ L is diffeomorphic to S* ! xint D™~ via correspondence between (u cosh #, v sinh 6)
and (u,0v) for @ € [0,1). Similarly, 04 L is diffeomorphic to int D* x S™~*~1 via correspondence
between (usinh @, v coshf) and (u,fv). Moreover, for the hypersurfaces —||z||? 4 ||y||?> = ¢ and the
map t — (e~txz, ely) gives orthogonal trajectories through these hypersurfaces. If z = 0 € R or
y =0 R™*, then they are straight line segments. Otherwise, the maps parametrize a hyperbola

from some (ucoshf,vsinhf) € 0_L to (usinh @, vcoshf) € 04 L.
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Next construct the manifold w(M, ) as follows. So, for v € S* 1, v € S™ A1 0 € (0,1),

and ¢ € [—1,1], consider the disjoint union
(M —o(S*1 % 0)) x [-1,1]UL/ ~,, (3.1)

where the equivalence relation ~, generated by identification of (¢(u,0v),c) with the unique point
(z,y) € L so that

— [l + lyll? = ¢
and

(x,y) is on the orthogonal trajectory through (u cosh 6, v sinh 6).

This correspondence defines a diffeomorphism
(S x (int D™ —0)) x [-1,1] — LN ((R* = 0) x (R™™* —0)),

and we get a differential manifold w(M,:) with boundary. So observe the following two cases,
c=—-1land c=1.

Case 1: (c = —1). If ¢ = —1, then we identify points of (:(S*! x (int D™ — 0))) x {1}
with the points of d_ L that corresponds to S* 1 x (int D™~*—0). So one boundary of the manifold
w(M,¢) is given by M.

Case 2: (¢ = 1). If ¢ = 1, then we identify the points of (:(S*! x (int D™~ — 0))) x {1}
with the points of 04 L that corresponds to (int D* —0) x S™~*~1. So another boundary of w(M, )
is x(M,¢).

Therefore w(M, ) is a cobordism whose boundary is M LI x(M,¢).

Proposition 28. There exists a Morse function f : w(M, 1) — [—1,1] with f~Y(=1) = M, f~}(1) =
X(M, 1), and there is exactly one critical point of index X\ in the interior of w(M,t).
Proof. Define a map f: w(M,t) — [—1,1] by

c if u=(z,c) € (M —(SM1! x0)) x[-1,1]

fu) =
—l® + llylP* ifueL
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By construction of the manifold w(M, ), f agrees on the overlap and thus the map is well-defined
on w(M, ). Moreover observe that 2 € R* and y € R™™*. So f is a Morse function with only one

critical point of index A as desired. O

Theorem 29. Let (W;0_W,0,.W) be an elementary cobordism with an embedding v : S*' x

Int D™ — O_W. Then (W;0_W,0.W) is diffeomorphic to (w(0_W,1); O_W, x(0_W,1)).

Proof. For simplicity we assume f(p) = 0, where p is the critical point of the Morse function f. By

Morse Lemma, there is a small neighborhood U around p so that f can be written as

fla,y) = —llzl® + [lyll*,
where z € R* and y € R™™*. Now let € > 0 such that

Le = {(z,y) € B* x R" —e < —[a]* + y]* < e}

{(z,y) € R* x R™|||z|| - [|y|| < ecosh1-sinh1}.

satisfying L. C U’, where ¢ : U — U’ C R™ is the local coordinate chart near p. Then i :=
¢ NO_Le : O_L. — f~(—¢) is an embedding, and W, = f~!([—¢,¢]) is a cobordism that is
identified as w(f~(—€), ¢ 1|0_Lc). Moreover f~1(—e¢) and f~!(¢) are diffeomorphic to O_W and

0+ W, respectively. 0

For a topological space X and its subspace A with the inclusion i : A <— X, recall that A is

called a deformation retract of X if there exists some continuous map 7 : X — A such that
roi=1idy and ior ~idy. (3.2)

Observe by definition above that A and X have the same homotopy type if A is a deformation
retract of X. Moreover if A and X have the same homotopy type, then the homology group H,(A)

is isomorphic to Hy(X).

Theorem 30. For a cobordism (W;0_-W,0.W) and a Morse function f: W — R with one critical
point p € W of index A\, let Di(p) denote the left-hand \-disk associated to a gradient-like vector

field X - W — TW for f. Then O_-W U Dy(p) is a deformation retract of W.



Figure 3.3: The first retraction r from W to 9_W U C.
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Proof. By Theorem 29, observe that (W;d_W, 0, W) is diffeomorphic to
(W(O-W,1); O-W, x(0-W, 1)) (3.3)

for some embedding ¢ : S*~! x Int D™* — §_W. Also there is a Morse function f : w(0_W, 1) —
[—1,1] on w(O_W,). For L in ??, let Dy(p) = {(x,y) € L|||ly|ll = 0} denote an embedded disk Also
let C = {(z,y) € Ll|ly|| < 15} denote an open neighborhood of D;(p). Now define a retraction

rew(0-W,1) = 0_W U C as follows. Recall from the equation 29 above that
(O-W —1(S* 1 x 0)) x [-1,1] U, L.
So for (u,c) € O-W — 1(S*! x 0)) x [~1,1] define
ri(u,c) = (u,c —t(c+ 1)) Vt € [0,1] (3.4)

and for (z,y) € L define

(z,y) if |yl < 15
7,t(x?y) = ’ (35)

(2, 09) if llyll = 15
where p = p(x,y,t) = max {m, ¢} and (¢ is the unique positive real solution of the equation

22
—7+C2HyH2 = (=l + ly*)(1 = ) - . (3.6)
So if ||y|| > % then p determines a trajectory from (z,y) to some point in _W.

Next construct another retraction r; : O-W U C — J_W U D,(p) as follows. For (z,y) € C
define

(e, (1= 1)y) if 2] < 1
ri(x,y) = , (3.7)
(o, ) 1 < 2l < 1+

where p' = p/(x,y,t) = (1 —1t) +t7VH’;2”§1. Since (, (1 —t)y) and (=, p'y) coincide when ||z|? = 1, r}
is well-defined and thus a retraction of O_W UC to 0_W U D;(p). Therefore r; or; is a deformation

retract of W to O_W U Dy(p). O

Corollary 31. H,(W,0_-W) = Z if n = X\. Otherwise H,(W,0_-W) 0.
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Proof. By Theorem 30, there is an embedding
j (DY SYh) = (W,0-W) (3:8)
such that ;=1 (0_W) = S* 1 and 0_W U j(D") is a deformation retract of W. So
H,(W,0_W) = H,(0_W U j(D*),0_W). (3.9)

Moreover j : S*~1 — O_W extends to an embedding j : S*~!xInt D™ * — §_W and let U = im .

Therefore
H,(W,0_W) = H,(0_W U j(D*),0_W) (3.10)

~ H(O_W U (DN = (0_W —U),0_-W — (0_-W —U)) (3.11)

~ H,(U Uj(D"),U) (3.12)

= H.(j (U U (DY), V) (3.13)

~ [,.(D* S$*71) (3.14)

because of excision and homotopy invariance. Hence

Zifn =\
H,(W,0_W) = H,(D*, 1) = : (3.15)

0ifn # A\

O]

Now we can generalize Theorem 30 and Corollary 31 as follows. Suppose that a cobordism
(W;0-W,0LW) admits a Morse function f : W — R with k critical points pi, ..., px of indices
A1, ..., A\, respectively. Moreover suppose that those critical points have the same critical value,
i.e. f(p1) = -+ = f(pr). By perturbing the Morse function f and the associated gradient-
like vector field X, obtain k embeddings ¢; : S~ ! x Int D™ — V and construct the smooth
manifold w(V;¢1,..., ) as given above for each i = 1,..., k. This manifold w(O0_-W;t1,..., ) is
diffeomorphic to W and moreover O_W U D;(p1) U --- U D;(pg) is a deformation retract of W.

Therefore if \y = --- = A\ = A, then H,(W,0_-W) = Z & --- & Z (k summands) for n = A.

Otherwise H,(W,0_-W) = 0 for n # .



Chapter 4

Rearrangement of Cobordisms

4.1 Rearrangement of Critical Values

In this section we will consider a cobordism (W;0_W, 9, W). with exactly two critical points
p and p’ of indices A and )\, respectively. However their indices are not necessarily same or
consecutive.

Let ¢ : W x R — W denote a flow of the vector field X. For a critical point p € W of a

Morse function f : W — R define

We(p; X) = {z € W] lim o(x,1) = p}

and

W (p; X) = {w € W| lim _o(x,t) = p}

the stable and unstable manifold of p with respect to X. Observe that the stable manifold W*(p; X)
is equivalent to the left-hand disk D;(p) of the critical point p. Similarly, W*(p; X) is equivalent
to the right-hand disk D, (p).

The following theorem states that we can perturb a Morse function f by an isotopy so that
two critical points of f change their critical values in some small neighborhoods of those two critical

points.

Theorem 32 (Preliminary Rearrangement Theorem). For a cobordism (W;0_W,0,W) let f :

W — [0,1] be a non-resonant Morse function with exactly two critical points p,p’ € W. Suppose
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for simplicity that f(W) = [0,1] and f(p) < f(p'). Moreover, for some gradient-like vector field X

for f, suppose that

K, = W*(p; X) UW"(p; X) (4.1)
and

Ky =W X)uw*(p’; X). (4.2)

are disjoint. Then there exists another Morse function g : W — [0, 1] satisfying the following

properties:
(1) X is a gradient-like vector field for g,
(2) g(p) =a and g(p') = d for some a,a’ € [0,1],
(8) f — g is a constant function in an open neighborhood of {p,p'}, and

(4) g coincides with f near O-W U0 W.

Figure 4.1: Rearrangement of critical values.
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Proof. Note first that O_W = f~1(0) and 0, W = f~1(1), and let
Si(p) = 0_-W NW?*(p; X) and Si(p') = 0-W N W?*(p'; X) (4.3)

denote the left-hand spheres of p and p/, respectively.
Observe that all integral curves outside K = K}, U K,y proceed from 0_W to 0, W. For each

x € W — K consider the uniquely determined integral curve ¢ : W x [0, 1] — W such that
o(z,0) = x. (4.4)

Then let 7 : M — R so that ¢(x,7(z)) € O-W. So, by the Immersion Theorem the map 7 :
W — K — 0_W that assigns z € W — K the unique point ¢(x,7(z)) is well-defined and smooth.
Moreover, if x is near K, then 7(z) is near K as well.

Now let p: O_-W — [0,1] be a smooth function defined by

0if x € Uy
() = (15)
1if x € Uy,

where Uy and U; are small open neighborhoods of x such that Uy N S;(p') # @ and Uy N Si(p) # 0.

Using m: W — K — 0_W, u extends to a smooth function fi : W — [0, 1] defined by

Oifﬂj'Gﬁo

fix)=q1ifz e 0, (4.6)

k elsewhere ,

where k € R is a constant, and Uy and U, are small open neighborhoods of z such that Uy ﬂK}’, # 0
and Uy N K, # 0.

Now define a smooth function G : [0, 1] x [0, 1] — [0, 1] with the following properties:

(1) For all z and v, %—f > 0 and G increases from 0 to 1 as z increases from 0 to 1.

(2) G(f(p),0) = a and G(f(p'), 1) = a,
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(3) G(z,y) = x for x near 0 and 1 and for all y,
(4) %—S(aﬁ, 0) =1 for x near f(p), and

(5) %—g(x, 1) =1 for x near f(p).

R
‘
G(x,0) |
/ 3 Glz,1) |
a r-—-—-79---- il ‘ !
0 W @) 1 K

Figure 4.2: The graph of G.

Define a smooth function g by g(z) = G(f(x), i(z)). Observe that f — g is constant near p
and p’ by properties (4) and (5). Thus X is also a gradient-like vector field for g as well near the
critical points p and p’. By property (1) X is a gradient-like vector field for g away from critical
points. Property (2) shows that g(p) = a and g(p’) = a’. Moreover by property (3) g = f near the

boundaries W and 0, W. Therefore g is a Morse function with the desired property. O

Corollary 33. Suppose that the Morse function f has k critical points p1,...,pr such that

{plv oo 7pl} C f_l(b)
and

{pl-‘rla .. 7pk‘} C f_l(b/)z
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where {p1,...,p} and {pis1,-..,pk} have indices X\ and N, respectively. Let p = {p1,...,p} and

p ={pis1,---,pk} for simplicity. Then the Theorem 32 is still valid.

4.2 Rearrangement of Spheres

Definition 34 (Product Neighborhoods). Let M be an m dimensional manifold and N an r
dimensional submanifold of M. Then an open neighborhood U of N, which is diffeomorphic to

N x R™ ™ 4s called a product neighborhood of N in M.

Lemma 35. Let N and N’ be n and n' dimensional submanifolds of a manifold M of dimension
m, respectively. Suppose that N has a product neighborhood in M and that n +n’ < m. Then
there exists some diffeomorphism h : M — M such that h is smoothly isotopic to the identity

idys : M — M and h(N) N N’ = ().

Proof. Let k: N x R™™™ — U C M be a diffcomorphism so that k(N x 0) = N for 0 € R ".
Moreover let Ng = UNN, 7 : N x R™™™ — R™ " a canonical projection, and g = 7 o k= | Np :
No — R™™ ™. Observe that k(N x ) N N’ # () if and only if x € g(Ny). And if Ny is nonempty,
then dim Ny = n < m — n/. By Sard’s Lemma ¢(Ny) has the Lesbegue measure 0. So choose
u € R™™™ — g(Np).

Now we construct a diffeomorphism h of M onto itself such that h is isotopic to the identity
idy : M — M and h(N) to k(N x u). So define a smooth vector field X : R™™"™ — R™™" such

that

wif |z] < |u]
X = (4.7)

0 if |z| > 2|u|
for every x € R"™". By construction of the vector field, X has a compact support. Furthermore
OR™™ ™ £ (). This implies that the integral curves v (z,t) are defined for all ¢ € [0,1]. Then
Y(x,0) =z =idy(x), ¥(z, 1) is a diffeomorphism that carries 0 to u, and thus ¢ : R™~" x [0, 1] —

R™~™ is an isotopy from idj; to the diffeomorphism v (z,1). This isotopy leaves all points fixed
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outside a bounded set U in R™ ™", so define an isotopy hy : M — M by

k(q, ¢ (z,t)) if w=k(q,x) €U
hi(w) = : (4.8)

wifw=M-U

Therefore h = hy is the desired diffeomorphism such that h(N) N N’ = (. O

Theorem 36. Suppose that A > X and let h : W — W be a diffeomorphism with the property given
in Lemma 35. Then there exists a gradient-line vector field X for f so that h(S,(p)) is disjoint

from Sy(p') in some open neighborhood U of V = f~1(3) and X coincides with X outside U.

Proof. Observe first that S,(p) has a product neighborhood in V. By Lemma 35 there exists a
diffeomorphism h : V' — V such that h is smoothly isotopic to the identity idy : V — V and

h(S,(p)) N S;(p') = 0. We use this diffeomorphism to construct new gradient-like vector field X.

So choose a < 3 so that f~!([a,3]) does not contain p. Then the integral curves of Y = )%fX

determine a diffeomorphism ¢ : [a, 3] — f~!([a, 1]) such that f(p(q,t)) =t and ¢(3,q) =g € V.

Now define a diffeomorphism H : [a,4] x V — [a, 3] x V by H(t,q) = (t,h(q)), where h; is a

smooth map from |[a, %] x V to V and isotopy from idy; to h such that

ids for ¢ near a
he = . (4.9)

1

h for t near 5

Then Y = (p o H o ¢~ 1),Y is a smooth vector filed defined on f~!([a, 3]), which coincides with ¥

near f~1(a) and V. Moreover Y f = 1 identically. Finally the vector field X on W defined by

N (Xf)Y on f~*([a, 5])
X = (4.10)

X elsewhere

is a new gradient-like vector field for f.
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Figure 4.3: Construction of an isotopy to make S, (p) disjoint from S;(p’).

Now for every fixed ¢ € V o(t,hs(q)) is an integral curve of X from ¢(a,q) € f~'(a) to
©(2,h(q)) = h(q) € V. It follows that the right-hand sphere ¢(a x Sy(p)) in f~!(a) is carried to

R(S,(p)) in V. Thus h(S,(p)) N Si(p’) = 0. O

Observe that Theorem 36 is generalized as follows. If ¢ denotes a cobordism that admits a
Morse function f with k critical points pq,...,pr of index X, and ¢ a cobordism with [ critical
points p/,...p; of index X of f, then the new gradient-like vector field X is constructed from X
on a small open neighborhood of V' such that right-hand spheres S, (p;) and S (p;) are disjoint by

some isotopy of V.

Corollary 37. If {p1,...,pi} and {pj+1,-..,pr} are the sets of critical points of indices X\ and N,
respectively, then the gradient-like vector field X can be changed so that h(S:(p;)) N Si(pj) = 0 for

i=1,....0andj=1+1,... k.

By Theorem 32 and 36, we should be able to construct a various types of isotopies to make
two critical points have the same critical values, and to make spheres disjoint. So we can state the

following theorem as a result.
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Theorem 38 (Final Rearrangement Theorem). Any cobordism ¢ = (W;0-W,0+W) factors into
a composition

€ =0¢oC1 " Cm, (4.11)

where m = dim W, and each c\ admits a Morse function f possessing critical points of index A

with the same critical value.



Chapter 5

First Cancellation Theorem

In this section we assume that a cobordism (W;d_W, 0, W) has exactly two critical points
p* and p*M?!in W of indices A and A + 1.
Next consider embedded submanifolds N and N’ of M whose dimensions are n and n’,

respectively. Recall that N and N’ intersect transversely if
T,M =T,N +T,N’

for every p € N N N’. In other words, two submanifolds N and N’ intersect transversely if the
tangent spaces at each point of the intersection span the tangent space of M.

Let N and N’ be orientable submanifolds of M with dimensions r and s, respectively, so
that m = r 4+ s. Furthermore let f be a non-resonant Morse function defined on a cobordism
(W;0_W, 0, W) with two critical points p* and p**' of indices X and A+ 1, respectively, such that
o) < % < f(pMMh). In the f-fiber V = f_l(%), a gradient-like vector field X associated with f

A+1

)\—l—l) of p

determines a right-hand sphere S, (p*) of p* and a left-hand sphere S;(p
At the end of Chapter 4, Lemma 35 and 36 let us construct an isotopy of V to make two
spheres S,.(p) and Sj(p’) disjoint. In the similar way, we can define a isotopy of V so that those

spheres have transverse intersection in V. Then we have the following theorem.

Theorem 39. The gradient-like vector field X can be changed to another gradient-like vector field

X so that S,(p*) and Sy(p*t1) intersect transversely in V.
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Now observe that V' is compact and
dim S, (p*) + dim S;(PM ) =(m —A—1)+A=m—1=dimV. (5.1)

So for each g € S,(p*) NSy (p* 1) there exists some local coordinate system (1, ..., Z,,) on an open

neighborhood U of ¢ in V' such that ¢ corresponds to (0,...,0) € R™~! and that

(5.2)

Ty41 == Tm_1 = 0 on U N S;(p*1).
By this construction ¢ a unique point contained in S,.(p*) N S;(p**1) N U. Therefore we should be

able to assume that the intersection S,.(p*) N S;(p**1) consists of finitely many points.

Theorem 40 (First Cancellation Theorem). Assume that S,(p*) and S;(p**') intersect trans-
versely in V and S,(p*)NSy(p*T1) is a single point, {q} = S, (p*) NSy (p**1). On an arbitrary small
neighborhood U of the single integral curve 4 : R — W from p* to pML, a gradient-like vector field
X can be altered to a mnowhere zero vector field X' so that all integral curves proceed from O_W
to 0L W. Furthermore X' is a gradient-like vector field for another Morse function f' such that f

coincides with f near O_-W U 0L W.

Idea of Proof. Observe first by existence and uniqueness of the ODEs, there is a unique integral
curve ¢, : R — W such that ¢,(0) = g. Then ¢, has the following property: lim;_, o, 4(t) = p*
and limy o g (t) = pM1. Since the index of p* is A by assumption, the gradient-like vector field

X at p is of the form

0 0
Xar=—-2x1— - —2z\—+2 — 2T — 5.3
pA T 8.7,‘1 T\ &m + TA+1 8x,\+1 + Im 8xm ( )
on some open neighborhood Uz;\ of p* with a coordinate system (z1,...,2,,). Now consider the
appropriate coordinate change
(T1y ey TNy TAgTy ooy Tp) o (TAd1y e ey Ty Ty e vy Ty)e (5.4)
Then X can be rewritten as
0 0 0
X =2r1— - —2x)\— — 21 2T —. (5.5)

1 ..
oxy o + 0% )41 0z m
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Similarly, on some neighborhood U1 of pM1 there is a coordinate system (),...,x},) and X

at p*1 has the form

0 0 0
Then find a local coordinate system (xi,...,Z;) in a neighborhood U with the following two

properties:

A+1

(1) The coordinates of p* and p correspond to (0,0,...,0) and (1,0,...,0), respectively,

and

(2) X has the form

0 0
X =2 — =20 — — 2 — 42 s 2 — 5.7
111(561)8961 R S I +2Z42 I + o+ 2T, . (5.7)
on U, where v; : [—20,1+ 20] — R is a smooth scalar function defined as follows. For some
small § > 0, v is defined by
x1 if 1 € Uy,
1)1(.%'1) = (5.8)

11—z ifxy €Uy,
where Uy and U; are small open neighborhoods of 0 and 1, respectively. Also vi(z1) > 0

for 0 <z < 1.

U1

—20 0 1 1426

Figure 5.1: The graph of v;.
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By construction of the vector field, X in 5.7 coincides with 5.5 and 5.6 in open neighborhoods
Uy and Uq, respectively. Finally perturb the vector field X to construct a nowhere zero vector field
X in U. To do this consider the family of smooth scalar functions {v1_; : [—26, 1 4+ 2] — R}icpo,

with the following properties:
(1) {v1-t}tefo,1) depends smoothly on ¢,
(2) vy is the function defined in Definition 5.8,
(3) vo < 0 on [—2§,1+ 24], and
(4) vo(z1) =vi(x1) if 21 < g orxz; >1+ g.

R

U1

1 1+20
R

Vo

—20 0

Figure 5.2: Deformation of vy to vg.

This deforms v to vy smoothly and the values of vy are all negative on [—2§,1 + 25]. Then

define a vector field X : W — TW by

0 0
2 —+ -+ 2, — 5.9
G + 2Zx42 D2re + -+ 22, oz, (5.9)

=200
A

where p = 23 4 - - - +x2. By its construction X is a nowhere zero vector field on U, which coincides
wtih X in 5.7 outside U. Moreover every integral curve ¢ proceeds from 0_W to 94 W. Hence
X and ¢ determine a smooth function f : W — R such that f coincides with f outside U and

Z—{(gp) = Xf. Thus f is a Morse function with no critical points in W. O



A+1

Figure 5.3: The two critical points p* and p*! in the vector field X.

Figure 5.4: Cancellation of critical points p* and p*.

37



Chapter 6

Second Cancellation Theorem

Recall first from the Whitney embedding theorem that every compact smooth manifold M

can be embedded in some Euclidean space R". See Milnor [?, Milnor1997]or the proof.

Definition 41 (Normal Bundles). Suppose that an m-dimensional manifold M is embedded in R™
for some n. Then v € R" is called perpendicular to M at p € M if X,,-v =0 for all X, € T,M,
where - is the inner product defined on R™. Moreover the normal bundle v(M) of M in R™ is
defined by

v(M) ={(p,v) € M x R""™|v is perpendicular to M at p}. (6.1)

For an m-dimensional smooth manifold M, let N and N’ be submanifolds of dimension r
and s, respectively, such that r + s = m. Suppose that N and N’ intersect in finitely many points
P1,.--,Dk € M, transversely. Suppose also that M and the normal bundle v(N') of N” in M are
both oriented. Because

TPz’M = Tpva ¥ TPiN/

at each p;, where T}, N has a positively oriented r-frame ((1, ..., () of linearly independent vectors

generating T, N, (C1,...,¢) is a basis for the fiber at p; of v(N’).

Definition 42 (Intersection Numbers). The sign of intersection €(p;) at each p; is defined to be

either +1 or —1 according to a positively or negatively oriented basis for the fiber at p; of v(N').
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And the intersection number (N) - (N') is defined by

k

(N) - (N") = elps)-

=1

Note that for an orientable manifold M every submanifold N of M is orientable if and only
if v(IN) of N is orientable. Moreover, given an orientation for N, we have a canonical way to orient

v(N) and vice versa.

Lemma 43. Let a manifold M and its submanifold N’ be both compact and connected without

boundary. Then there exists a isomorphism
W Hy(N') — H.(M,M — N’).

We will use the lemma above without proof since it is easy to verify. Then the following
theorem is based on the Thom Isomorphism Theorem and Tubular Neighborhood Theorem. Readers

are encouraged to consult Kosinski [9] for the detail.

Lemma 44. For the sequence
H, (N) 5 Hy(M) % H(M.M = N'), (6:2)
where j, and i, are both induced by the inclusion map, i, o j.((M)) = (N') - (N)¢(c).

Theorem 45. Let N and N’ be smooth closed submanifolds of dimensions r and s, respectively,
such that N and N’ intersect transversely in the smooth closed (r + s)-dimensional manifold M.
Suppose that N and the normal bundle v(N') in M are both oriented. Moreover suppose that
r+s > 5, r >3, and suppose that the inclusion i : M — N — M induces the injective map
ix :m(M—=N)—m(M)ifs=1ors=2.

Let p,qg € NN N’ be a pair of intersection points with opposite intersection numbers such that there
exists some loop v connecting p and q so that v is contractible in M. Suppose that v does not
contain any other intersection points in N NN’ — {p, q}.

Under the assumption given above, there exists some isotopy hy : M — M, where t € [0,1], such

that
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(1) h():idMZM—>M,
(2) hy fizes idp near NN N' —{p,q}, and
(3) (N)AN"=NNON' —{p,q}.

Theorem 45 lets us construct an isotopy of M such that a pair of intersection points with
opposite intersection numbers is cancelled. See Milnor[6] for the detail construction of such an

isotopy.

Theorem 46 (Second Cancellation Theorem). For a cobordism (W;0_-W,0.W), suppose W,
O_W, and O, W are simply connected, X > 2, and A\ +1 < n — 3. If (S.(p*)) - (S;(p*T1)) = +1,
then X can be altered near the fiber V so that S,(p*) and Sy(p**') in V intersect at a single point,

transversely. Then the First Cancellation Theorem applies and W is therefore diffeomorphic to

0_W x [0,1].

Proof. Observe first that dim S,(p*) = n — A — 1, dim S;(p***!) = A, and dimV = n — 1. So
dim S, (p*) > 3 and dimV = X\ — 1. Moreover m;(V) = 0 by the Seifert-van Kampen Theorem.
Then consider the following two cases.
Case 1: A > 3. Then dim S (p)‘H) > 3 and dim V' > 6. Then the assumptions of Theorem 45 are
satisfied.
Case 2. A\ = 2. Then dim Sy(p**!) = 2 and dimV > 5. Since {z € Wla < f(z) < b}, where
a= f(O_W — S;(p**1)) and b = f(V — S,.(p*)), does not contain any critical points, the gradient-
like vector field X for f determines a diffeomorphism between _W — S;(p**!) and V — S,.(p?).
Thus 71 (V — S,.(p*)) = 71 (0_W — S;(p**1)). Now let U be a product neighborhood of S; in 9_W.
Since dim S;(p*!) =n — A —1 > 3, m (U — Si(p**')) = Z. Moreover there is a diagram for the
fundamental groups given below. Thus i, : m (V — S.(p*)) — 71(V) induced by the inclusion
i:V —S.(p)) = V is injective.

So for both cases the assumptions of Theorem 45 are satisfied. Then the First Cancellation

Theorem directly applies if S,.(p*) N S;(p**T!) consists of a single point, for S,(p*) and S;(p**!)
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intersect transversely at a singleton in V. So suppose that S,.(p*) N S;(p**1!) is not a single point.
Since (S, (pM)) - (S;(p**t1)) = %1, the number of intersection points is odd, say 2k + 1. Then there
are pairs of intersection points {pi,qi1},...,and {pk,qr} so that e(p;) = +1 and €(¢;) = —1 for
i=1,...,k. By Theorem 45, each pair {p;,¢;} can be eliminated by isotopies of W. Thus W can
be deformed so that S,.(p*) and S;(p**!) have a transverse intersection at a single point in V. This

completes the proof.

(V Sl >\+1

\

(V=S (p*

\
+1/

Figure 6.1: A diagram of fundamental groups induced by inclusions.



Chapter 7

Cancellation of Critical Points of Indices A with 2 < XA <m —2

7.1 A Chain Complex and Homology of Manifolds

We focus our attention on homology groups with integer coefficients. So suppose first that
M is an m dimensional compact smooth and orientable manifold with boundary M. Observe
that the orientation of M given by an orientation of its tangent bundle T'M corresponds to an

orientation of M specified its orientation generator (M) of H,(M).

Lemma 47. Let M be an oriented closed smooth manifold of dimension A embedded in O_W and
(M) € H\(M) the orientation generator. Let i, : Hx(M) — Hy(W,0+W) be the map induced by

the inclusion h :. Then

ix((M)) = ((Sr(p1)) - (M) (Di(p1)) + -+ + ((Se (1)) - (M)){Di(pr))- (7.1)

Corollary 48. With respect to the basis {{(D;(p1)),- .., (Di(p))}, the boundary map 0 : Hx41(W U
W' W) — H\x(W,0_-W) for the triple 0-W C W C W UW’ is a linear map, i.e. O is represented

by the k x | matriz A whose entries are a;; = (Sy(pi)) - (Si1(p}))-
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Hy\(S:(p}))

Hyp(WUW', W)

Hy1(W!, 04 W) —— Hx\(04+W)

By Theorem 38 any cobordism ¢ = (W;0_W,0+W) decomposes into a composition of ¢y,
1.€.

C = CoC1 """ Cm

such that each c) has a Morse function f with critical points of index A on the fiber f~!(a) for
some a € R. Or equivalently, we can think of a Morse function f : W — R with the property called
self-indexing, i.e. f(p) = \ € Z>¢ for every critical point p* of index \. Let W, = ffl([—%, k-+ %])

and Vi = f1(k + %) for a non-negative integer k. So setting W_1 = 0_W, we have the sequence
OW=W_CWoCcWi C---CWp,=W.

Now let C\ = H)(Wy,Wx_1) and 0 : Cy — C)_1 the boundary homomorphism defined in Corollary

48, and consider the long exact sequence of the triple (W11, Wy, W)_2)
o= Hyx 1 (W1, W) — Hx(Wx, Wy—2) — Hx(Wxy1, Wa—2) — 0
and another exact sequence of the triple (W, Wx_1, W)_2)
0 — Hx(Wx,Wx_a) = Hx(Wx,Wx_1) = Hxo1(Wi_1, Wy_g) — - --.

Observe that there is a commutative diagram of pairs of spaces given by two triples given above.

Then define a A-th homology group by

Hy(Wy,Wx_1) = ker 9/im 0, (7.2)
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and it is well known that C, = (C), ) is a chain complex and H)(C,) = H\(W,0_-W) for every A

with 0 <\ < m.

Cry = Hyx1(Wagr, W)

Hy\(Wx, Wx_2)

Hy\(Wx41,Wx_2) —— 0

Cy = Hx(Wx, Wi_1)

Cro1 = Hyx_1(Wy_1, Wx_2)

7.2 Cancellation of Critical Points in the Middle Dimensions

Construct a Morse function f as follows. Using Theorem 32 perturb the Morse function f
so that f coincides with f outside a small open neighborhood U; of p1, f(pl) > f(p1), and f has
the same critical points p1,...,pr and the gradient-like vector field as f. Now let ¢ € R such that
f(p1) >t > f(p1), and let V = f~1(¢).

The left-hand (A—1)-sphere S;(p1) and the right-hand (m —A—1)-spheres S, (p;) for 2 <i < k
in V are disjoint. Let a € Sj(p1) and b € S,(p2). Then since W is connected, V' is connected and
hence there exists some embedding ¢ : (0,3) — V such that the image ¢(0,3) intersects with
Si(p1) and S, (p2) exactly once, transversely, in a = +(1) and b = «(2) respectively, and such that
1(0,3) NS, (p;) = 0 for i = 3,..., k. Then extend the embedding ¢ as follows. See Milnor [6] for

details.
Lemma 49. There is an embedding i : (0,3) x R*1 x R™=2~1 - V' such that
(1) 7(1,0,0) = u(t) ¥t € (0,3),

(2) T (Si(p1)) =1 x R} x 0, 71 (Sp(p2)) = 2 x 0 x R™A71, and
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(8) im iN S.(p;) =0 fori=3,...,k. Moreover  maps 1 x R*™1 x 0 into Sj(p) with positive
orientation and 1((0,3) x R 1 x 0) intersects Sy(p2) at 1(2,0,0) = b with intersection

number +1.

Theorem 50 (Basis Theorem). On a cobordism (W;0_-W,0.W) of dimenstion m, let f: W — R

be a Morse function with k critical points p1, ..., and py such that

f(p1) == f(p), (7.3)

and let X be a gradient-like vector field for f. Suppose that all critical points are of the same
index A with 2 < A < m — 2. Moreover suppose that W is connected. Then for every basis for
H\(W,0_W) there exists another Morse function f' and another gradient-like vector field X' for

f" with the following properties:

(1) f" and X' both coincide with f and X respectively in some open neighborhood U of 0_-W U

0+ W,
(2) f' has the same critical points p1,...,px with f'(p1) =--- = f'(pr), and
(3) the suitably oriented left-hand disks Di(p1), ..., Di(pr) forms a basis for Hx(W,0_-W).

Proof. Let {b1,...,b;} be a basis for Hy(W,0_-W) = Z&---®Z (k summands), where each b; is ho-
mologous to the left-hand disk D;(p;) with some fixed orientation. Thenlet v(D,(p1)),...,v(Dr(pk))

denote the normal bundles so that

(Dr(pi)) - (Di(pj)) = bij, (7.4)

where d;; denotes the Kronecker delta sign. So for every A-disk D embedded in W such that

D C O0_W its representation is given by

arby + -+ -+ agb € Hy\(W,0_-W) (7.5)
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for some integers ayq,...,ax. So D is homologous to a1 Dy(p1) + - - - + axDy(px) and
(Dr(pi)) - (D) = (Dr(pi)) - (a1(Di(p1)) + -+ - + ar(Di(pk))) (7.6)
= o1 (Dr(pi)) - (Di(p1)) + - -+ + a(Di(pr)) - (Di(pk)) (7.7)
k
= ai(Di(p) - (Dilp))) (7.8)
j=1
k
= Z 04]67;]' (7 9)
j=1

So D = ((Dy(p:)) - (D)b1 + - + ((Dr(pk)) - (D))bg.

Now construct a Morse function f’ and a gradient-like vector field X’ such that Dj(p1),

Dy(p2), ..., and D;(py) are the new left-hand disks with
(Dr(p1)) - (Dy(p1)) = 1, (Dr(p2)) - (Di(p1)) =1, (7.11)
and
(Dr(pi)) - (Di(p1)) =0 (7.12)

for i = 3,...,k. This implies that {b; +ba, ba, ..., b} is the new basis for Hy(W,0_W). In order to
verify this elementary row operation of the basis, we will need to construct an isotopy as followos.
For some fixed § > 0 let o : R — [1, 3] be a smooth function such that

ifx<é
afz) = (7.13)

1if if x > 26.

|
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o

Figure 7.1: The graph of a.

Then construct a smooth isotopy Hy : (0,3) x RA1 x R™ A1 — (0,3) x RA1 x RmA~1
such that
(1) H; = id outside some compact set, where 0 <¢ < 1.
(2) Hy(1,2,0) = (ta(||z]|?) + (1 —t),z,0) for z € R*1L,
Now define a new isotopy F; of V by
ioHioi Y(v) forve€imi

Fy(v) = . (7.14)

v otherwise

1 xRM™Lx0

Hi(1 x RM1 x0)

,
N

2 x 0 x Rr—A-1

Figure 7.2: The graph of Hy.
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Si(p1) = Fo(Si(p1))

Figure 7.3: Deformation by the isotopy F;.

O]

Theorem 51. For a cobordism (W;0_-W,0,:W) of dimension m > 6, let f be a Morse function
without any critical points of indices 0,1, m — 1, or m. Suppose that W, 0_W , and 0+ W are all
simply connected. Moreover suppose that H.(W,0_W) is trivial. Then (W;0_-W,04+W) is a product

cobordism.

Proof. Let ¢ denote the cobordism (W;0_W,0,W). By the Final Rearrangement Theorem it
follows that ¢ decomposes into the factors ¢ = cac3 - - - &2, and there exists a Morse function f on
¢ such that each restriction f|cy contains all critical points of index \ with the same critical value.

Then consider the sequence of the following chain complex

O BCrsd o Lo Zans . 2o, (7.15)

A1
1

For each A\ choose a basis {z ,...,z,i‘:fl} for the cycle kerd of 9 : Chy1 — C). Because

H,(W,0_W) is trivial by assumption, the sequence given above is exact and there exist k) el-

ements bi‘“, ..., and bzil in Cy such that a(bf‘ﬂ) = 2} in O\ for i = 1,...ky. Thus
A+1 AFL AL A1 :
{#] ""’ka+1’b1 ;.- b }is a basis for Chyq.

Since 2 < A < A+ 1 < m — 2 by assumption, by Basis Theorem there exist a Morse function
f" and gradient-like vector field X’ defined on ¢ such that the left-hand disks contained in ¢y and

cx+1 are the bases for C) and C)41, respectively.
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Now let p € ¢y and ¢ € cy4+1 be the critical points that correspond to the basis elements z{‘

and bi\H. Perturb f’ in open neighborhoods U, of p and Uy of ¢ so that

Fo) < fp) < f@) < F(pED), (7.16)

where pf‘A and pt1

T are the critical points of indices A and A 4 1, respectively. Then cycy41 factors

into ¢\ cpeqch 41> Where both ¢, and ¢, are elementary cobordisms containing critical points p and
g, respectively. Let ¢ € R such that f(p) < t < f(¢) and let W’ = ¢p¢q. Then consider the fiber
V = f~1(t). Observe that all W', 9_W’ and 0, W' are simply connected. Since z; = 9(b}) by
construction of 9, S,(p) and Sj(¢) have the intersection number £1, i.e. (S.(p)) - (Si(¢q)) = *1.
By the Second Cancellation Theorem, the critical points p and ¢ in ¢,c, are eliminated and c,c, is
a product cobordism. Repeating this process and hence all critical points in the cobordism c are

eliminated. Thus (W;0_W, 0, W) is a product cobordism. O



Chapter 8

Cancellation of Critical Points of index 0 and 1

8.1 Index 0 Cancellation

We first eliminate all critical points of 0 from a cobordism. The idea is to find out a trans-
verse intersection between right-hand and left-hand spheres of critical points of indices 0 and 1,

respectively, so that the First Cancellation Theorem applies.

Theorem 52. Suppose that Hy(W,0_-W) = 0. Then the critical points of index 0 are cancelled

against the same number critical points of index 1.

Proof. Consider the homology groups with coefficients from Zy = {0,1}. Since Ho(W,0_-W) = 0,
the boundary homomorphism 0 : Hy (W1, Wy) — Ho(Wp,0_W) is surjective. Observe that 0 is

given by the matrix whose (4, 7)-th entries are

(Sr(p)) - (Si(pj)) mod 2, (8.1)

where p? and pjl- denote critical points of indices 0 and 1, respectively. Observe that every right-hand
(m — 1)-sphere S,(p?) has at least one left-hand 0-sphere S (pjl) such that (S, (p9)) - (S, (pjl)> 20
under modulo 2 because 9 is surjective. S,(p?) NS (p]l) cannot contain more than two points and
thus it consists of an odd number of points. Therefore S, (p?) and S, (p]l) intersects transversely in

a single point and the First Cancellation Theorem applies. O
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8.2 Index 1 Cancellation

We will need the two lemmas introduces below to prove Theorem 56, which eliminates critical

points of index 1.
Lemma 53. For 0 < A < m, there exists a smooth function f :R™ — R such that

(1) f(x1,...,xm) = x1 outside of a compact set, and

A+1

(2) f has exactly two non-degenerate critical points p* and p of indices A and A+ 1 respec-

tively with f(p*) < f(pM1).

Proof. Identify R™ with R x R* x R™~*~1 and let (x,y, z) be a point in the product. For simplicity
let y? and 22 denote ||y||?> and ||z||?, respectively. Moreover let s : R — R be a smooth function

with compact support such that s(x) + x has exactly two non-degenerate critical points a; and as.

R s(x) +x

Figure 8.1: The graph of s(z) + x.

Next construct smooth functions «, 3,7 : R — R>o with compact supports so that



(1) a(x)=1if |z| <1,

(2) |/ (x)] < oy for all z,

(3) Ax) = 1if a(z) £0,
(4) v(z) =1if §'(z) # 0, and

(5) V(@) < s @y

Figure 8.2: The graphs of a and .

Figure 8.3: The graphs of s and ~.

52
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Define f : R™ — R by f(z,y,2) = = + s(x)a(y? + 22) + (—y? + 22)v(z) B(—y? + 2?). Observe

by construction of f that
(1) f(x) — x has compact support,
(2) On the open interval such that & =1 and v = 1, f corresponds to s(z) + .

Observe also that

gi =1+ (@)aly’ +2°) + (=g + 227 (@) B(—y* + 2%) £ 0 (8.2)

if s'(x) # 0 or 7/(x) # 0. Observe also that the gradient of f vanishes only if y =0 and z = 0. In

this case @ = 1, and therefore f(x) reduces to s(z) + x. O

Lemma 54. If S™~2 is a right-hand sphere in Vi, then there exits a 1-sphere embedded in Vi,
such that it intersects with S™~2 transversely but does not meet with any other right-hand spheres

m V+1 .

Proof. Choose a sufficiently imbedded 1-disk D' C V;, so that D! intersects with S™~2 at the
midpoint g of D! and that D! does not intersect with any other right-spheres in Vi. Then translate
the end points a and b of D' left along the integral curves ¢ and ¢’ of the gradient-like vector field
X to ¢(a) and ¢'(b) in Voy. Vor = O_W is connected and of dimension m — 1 < 2, there exists
a smooth path ~ so that v joins p(a) and ¢'(b), and that « does not intersect with any left-hand

1

0-spheres in Vy4. Then =" o~ is a smooth path joining a and b in Vp and avoids all right-hand

spheres. Note that dim Vo, = m — 1 > 3, and by Theorem define a smooth function g : S* — V;,

by the following properties:

(1) g7'(q) = a € S* and g embeds smoothly a closed set A containing a onto some neighbor-

hood of ¢ in D.
(2) g(S* — a) does not intersect with any right-hand (m — 2)-spheres.

This completes the proof of theorem. O
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Theorem 55. Let M and N be smooth manifolds of dimension m and n such that n < 2m+ 3. If

two smooth embeddings i and j of M into N are homotopic, then i and j are smoothly isotopic.
See Whitney [14] for the proof of the theorem.

Theorem 56. Suppose that W and O_-W are simply connected, and m > 5. Moreover suppose
that (W;0_-W,0,W) has no critical points of index 0. Then for each critical point p1 of index 1
there exist a pair of critical points qo of auziliary index 2 and ps of index 8 such that py is cancelled

against qa.

Proof. Note first that Va4 is simply connected, i.e. m(Vay) = m (W) = 0. Note also from

generalization of Theorem 30 that
D luDm U Ve, UDPUD) - UDT, (8.3)

where D and Dl’\ denote the collection of A-disks attached to Vo, is a deformation retract of W.

p
Si(p?) ><: Sr(p?)

Vot Vig Vot Vay

Figure 8.4: Auxiliary critical points p? and p?.

Now for every critical point p! construct an 1-sphere S(p') embedded in V4, by Lemma 54.

Moreover by Theorems 36 the gradient-like vector field X can be adjusted so that S(p') does not
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intersect with any left-hand spheres in V. So we can translate S(p') right to Vo, . Extend a collar
neighborhood to the right of V5. Apply the Implicit Function Theorem to choose an embedded
open set U C R™ and some coordinate system (z1, ..., &) such that f(xi,...,2,)|U = @m,. Then
by Lemma 53 construct another Morse function f such that f coincides with f outside U with

extra non-degenerate critical points p? and p? of indices 2 and 3, respectively.

Si(p?) Sr(p?)

Vo+ Viy Voy Vay

Figure 8.5: Auxiliary critical points p? and p3.

Denote by S;(p?) the left-hand sphere of p? in V5, and construct a smooth isotopy h : Vo —
Vay such that h(S;(p?)) = S(p'). Then adjust X so that S;(p?) and S(p') coincide. Observe by
construction that Sj(p?) intersects with S(p) in a single point transversely. Therefore the First
Cancellation Theorem applies and two critical points p' and p? are eliminated. Then perturb f so

that p? is on the fiber f~1(3) C V34, and this completes the proof of the theorem. O



Chapter 9

The h-Cobordism Theorem

In Chapter 5, 6, and 7, we studied how to eliminate pairs of critical points of consecutive
indices. Moreover Chapter 8 made us cancel critical points of indices 0 and 1. Finally we should

claim that the following main theorem so called the h-Cobordism Theorem holds true.
Theorem 57 (The h-Cobordism Theorem). Let (W;0_W, 0. W) be a cobordism such that
(1) AUW, 0_W, and O+ W are simply connected.
(2) H,(W,V)=0.
(3) dim W > 6.
Then W is diffeomorphic to O_-W x [0,1] and thus a product cobordism.

Proof. Let a Morse function f : W — R be self-indexing, i.e. f(p*) = A € Z for each non-
degenerate critical point p* € W. By Theorem 52 and 56 all critical points of indices 0 and 1 are
eliminated. Then consider the function —f. It is easy to observe that —f is also a Morse function
that contains the exactly same critical points with opposite indices. In other words a critical point
p* of index X of f is of index m — X of —f. So all critical points of indices m and m — 1 are also

cancelled. Finally apply Theorem 51 and other critical points are all eliminated. 0
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