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Abstract

In synthetic biology, combinational circuits are used to program cells for various

new applications like biosensors, drug delivery systems, and biofuels. Similar to asyn-

chronous electronic circuits, some combinational genetic circuits may show unwanted

switching variations (glitches) caused by multiple input changes. Depending on the bi-

ological circuit, glitches can cause irreversible effects and jeopardize the circuit’s func-

tionality. This paper presents a stochastic analysis to predict glitch propensities for
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three implementations of a genetic circuit with known glitching behavior. The analysis

uses STochastic Approximate Model-checker for INfinite-state Analysis (STAMINA),

a tool for stochastic verification. The STAMINA results were validated by comparison

to stochastic simulation in iBioSim resulting in further improvements of STAMINA.

This paper demonstrates that stochastic verification can be utilized by genetic design-

ers to evaluate design choices and input restrictions to achieve a desired reliability of

operation.
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In recent years, digital logic theory has been applied to DNA to program living cells as

part of the research field of synthetic biology. Digital logic theory is a common and well-

established electrical engineering field that is fundamental to the design of digital electronic

systems, such as computers, smartphones, etc. Digital logic circuits are based on each signal

wire being in one of two binary states: a true/high state or a false/low state. A digital

circuit calculates the states of its outputs based on the states of its inputs. It is built of

different logic gates that perform different mathematical logic operations. For example, an

AND gate only shows a high output if both of the gate’s input signals are high. An OR

gate, however, shows a high output when either of its inputs is high. Examples of encoded

functions in synthetic biology include a genetic toggle switch,1 a repressilator,2 and other

functions, e.g., those presented by Nielsen et al.3

The order of operation of digital logic circuits can be performed either synchronously (i.e.,

using a clock signal to order events) or asynchronously (i.e, each event completion triggers

the next event). Genetic circuits have generally followed the asynchronous design paradigm,

since generating a precise biological timing reference needed by synchronous operation would

be quite difficult.4 Additionally, like their asynchronous electronic counterparts, some input
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changes can cause unwanted switching variations (glitches).5 A glitch is a transient, unex-

pected output from the circuit, for example, a circuit briefly expresses a high output when it

is supposed to remain in a stable low output state. If an input transition has the possibility

of causing a glitch, the transition is said to have a hazard .6,7 These unwanted variations can

have drastic effects if the output produces irreversible effects, e.g., apoptosis or an early drug

release in an off-target tissue.

In 2016, Nielsen et al. presented Cello,3 a genetic design automation (GDA) tool that

applies principles from electronic design automation (EDA) to genetic circuit design to accel-

erate and simplify the genetic design process. The user specifies the desired circuit function

using the Verilog hardware description language (HDL), which Cello automatically encodes

into a DNA sequence. Cello was used to automate the design of 60 combinational genetic

circuits that were tested in Escherichia coli. The generated 0x8E circuit showed a glitching

behavior in the laboratory under a specific set of input transitions.

Fontanarrosa et al. 5 investigated the cause of this glitching behavior. In this work,

the authors demonstrated that an in-depth analysis of hazards is necessary to guide the

design towards robust genetic circuits.5 Using dynamic ordinary differential equation (ODE)

models, this work identified input transitions that result in glitching behavior for a genetic

circuit. Additionally, they presented two modified implementations of the circuit’s function

to reduce the magnitude of the circuit’s typical glitching behavior. Although genetic circuits

share similarities with their asynchronous electrical counterparts, they also display unique

properties. The behavior of genetic circuits is highly unpredictable compared to the binary

behavior of digital circuits. The low molecule counts of genetic circuits lead to stochastic and

noisy behavior.8–12 This stochasticity means that ODE analysis, such as that used in,5 cannot

predict the likelihood of glitching behavior, but rather whether or not a glitch occurs in a

typical response of the circuit. Therefore, stochastic analysis is more suitable for predicting

the robustness of genetic circuits. The likelihood of a glitch is crucial information that can

help designers not only think of the states for each input combination, but also specify
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the desired sequence of input and output changes of the circuit, or which input transitions

must be avoided. Finally, this analysis can help designers understand what are the risks of

applying certain input changes, and decide whether the probability is critical or not for the

intended purpose of their designed system.

This paper builds upon this work by performing a stochastic analysis of these circuits to

evaluate the robustness of these designs. These analyses include both stochastic simulations

performed by the iBioSim GDA tool13 and stochastic model checking using the STAMINA

model checker.14 These results indicate that stochastic simulation and stochastic model

checking are suitable to determine the likelihood of glitches. Although stochastic simulation

can return results quickly, stochastic model verification returns a probability range that

includes the true probability, and has the potential to analyze more difficult properties.

Results and Discussion

Background. As mentioned in the introduction, genetic circuits follow the asynchronous

design paradigm and share their glitching behavior with their electronic counterparts. A

digital circuit’s behavior is defined by a Boolean function, which can be represented as a

truth table. Figure 1(a) shows the truth table of the circuit 0x8E originally presented by

Nielsen et al..3 The circuit reacts to the presence of the three inducer molecules Arabinose

(Ara, ChEBI = 17535), Isopropyl-beta-D-thiogalactopyranoside (IPTG, ChEBI=61448) and

Acetylcholine (aTc, ChEBI=15355) with four of the eight input combinations producing a

high output indicated by the production of yellow fluorescent protein (YFP). For example,

if only Ara and IPTG are present, as shown in the second to the last row of the truth table,

the circuit will produce a high output indicated by YFP production, whereas if all three

inducers are present no YFP will be produced.

Figure 1(b) shows a Karnaugh map for the circuit 0x8E, a different way to visualize a

circuit function that helps identifying hazards. The rows of the table indicate the presence of
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Inputs Output
Ara IPTG aTc YFP

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

(a)

Ara
IPTG aTc

0 0 0 1 1 1 1 0

0 1 0 0 0
1 1 1 0 1

(b)

(c)

Figure 1: (a) The function of the circuit 0x8E published in3 shown as a truth table. The
output YFP is matched to the different inputs of the inducers Ara, IPTG and aTc. A 0
represents a low input/output and a 1 represents a high input/output. (b) Another visual-
ization of the function of circuit 0x8E as a Karnaugh map. The rows indicate the presence of
Ara, and the columns indicate the presence of IPTG and aTc, respectively, with the entries
indicating a high (1) or low (0) output. (c) The logic of the original circuit 0x8E as published
in.3 The OR gate is represented by and the NOR gate by . The three inducer
molecules are IPTG, aTc and Ara and the output is YFP.
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Ara, and the columns the presence of IPTG and aTc, respectively, with the entries indicating

a high (1) or low (0) output. For example, in the upper left corner, if no inducer is present,

the circuit produces a high output shown as a one, the same state shown in the first row of

the table in Figure 1(a).

The red and blue arrows in Figure 1(b) show the different paths that the system can take

when moving from the input transition Ara, IPTG, aTc = (0, 0, 0) to (1, 0, 1). In the case

shown by the red arrow, the system detects the change of concentration of the inducer Ara

first, transitioning momentarily to the state Ara, IPTG, aTc = (1, 0, 0) before detecting the

change of concentration of aTc and ultimately moving to the final state Ara, IPTG, aTc =

(1, 0, 1). Since the transition state Ara, IPTG, aTc = (1, 0, 0) also produces a high output,

the output stays high during the transition. During the transition shown by the blue arrow,

the system detects the change of aTc before the change of Ara. In this case, the system

briefly transitions to the state Ara, IPTG, aTc = (0, 0, 1) before reaching the final state

Ara, IPTG, aTc = (1, 0, 1). However, the state Ara, IPTG, aTc = (0, 0, 1) produces a low

output. If the system transitions in this way, the output briefly drops from a high output

to a low output before returning back to high when reaching the final state. Therefore, this

input transition has a hazard. The likelihood of the hazard is determined by the likelihood

of the system taking the different paths. This hazard is called a static 1-hazard, since the

output should remain stable high throughout the transition. On the other hand, a hazard

where the output should remain low but briefly glitches high is called a static 0-hazard. In

their experiments on this circuit, Nielsen et al. detected the circuits glitching behavior.3

Finally, Figure 1(c) shows the logic or layout of the circuit as originally implemented by

Nielsen et al..3 A circuit function is implemented using a combination of different logic gates,

called the logic implementation of the circuit. As shown later in the paper, a function can be

constructed in multiple ways, using alternative logic implementations composed of different

gate combinations. A hazard can be due to the function of a circuit, called a function hazard,

or due to its logic implementation, called a logic hazard. Function hazards are a property of
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the circuit’s mathematical function and, therefore, unavoidable. Logic hazards, however, can

be avoided by redesigning the circuit’s logic implementation using hazard-free logic design

methods.7

Results. The analysis in this paper is run on three implementations of one of the

Cello circuits published in3 labeled 0x8E. Figure 2(a) shows the original implementation

of the circuit.3 Figure 2(b) and (c) show two additional implementations of the circuit

presented in.5 All three circuits implement the same logic function represented by the truth

table shown in Figure 1(a), but use different networks of logic gates. The circuit shown

in Figure 2(b) has two added NOT gates that add an extra delay to the IPTG path. The

added delay is supposed to impact the glitching behavior of the circuit positively. The third

implementation of the circuit shown in Figure 2(c) is a logic hazard-free version of the circuit.

As mentioned in the background, logic hazards are based on the circuit’s logic and not its

function. Unlike function hazards, logic hazards can be avoided using hazard preserving

optimizations while simplifying the circuit’s function. More details about the circuit and its

different implementations can be found in.5

The original implementation and the two modified versions from Fontanarrosa et al.

were modeled using the GDA tool iBioSim.13 iBioSim is a software tool for designing, mod-

eling, and analyzing genetic circuits. It is driven by community standards, not limited to

genetic logic circuits, and allows for sharing the designs via data repositories like SynBio-

Hub.15 iBioSim has many analysis methods, including stochastic simulation methods based

on Gillespie’s algorithm.16 Our initial analysis results were obtained using iBioSim’s stochas-

tic simulator.

The designs were then exported as Systems Biology Markup Language (SBML) models17

and translated into PRISM models18 using PRISM’s SBML-to-PRISM translator. Fur-

ther analysis was carried out using the STochastic Approximate Model-checker for INfinite-

state Analysis (STAMINA).14 STAMINA is an infinite-state stochastic model checking tool.

Stochastic model checking is a formal verification technique for modelling and analyzing
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(a) Original Version (b) Two-Inverter Version

(c) Logic-Hazard-Free Version

Figure 2: Three different logic layouts for the circuit 0x8E. The three inducer molecules are
IPTG, aTc and Ara and the output is YFP. The OR gate is represented by and the
NOR gate by . (a) is the original layout as published in.3 Version (b) has two added
NOT gates that add an extra delay to the IPTG pathway. The NOT gate is represented
by . Version (c) is a logic-hazard-free implementation of the circuit’s function. More
details on the implementations (b) and (c) can be found in.5
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systems that exhibit stochastic behaviors. Specifically, it provides provable guarantees for

probabilistic properties of a system model. The underlying stochastic models for the genetic

circuits analyzed in this paper are continuous time Markov chain (CTMC) models.19 Al-

though stochastic model checking can establish the correctness of probabilistic properties,

real-world applications usually have a vast or infinite state space resulting in a scalability

problem. STAMINA reduces these infinite state CTMC models to finite-state representa-

tions using state-space approximation methods. These reduced models are then manageable

by existing stochastic model checkers like PRISM18 and STORM.20

Fontanarrosa et al. identified twelve input transitions of the circuit that have a function

hazard.5 Using iBioSim for simulation, Figure 3(b) shows the probability of a glitch over

time for 100,000 Monte Carlo runs for four selected input transitions with known hazards

for the original layout of the circuit. For the analysis, the molecular counts are defined as

follows: a high input signal equals 60 molecules. The output constraint is chosen to be 10

molecules for 0-hazards. This means that if the output is supposed to stay low during an

input transition, the run counts as a glitch if YFP surpasses the threshold of 10 molecules.

For example, the red curve in Figure 3(b) shows the inducer transition from IPTG, aTc,

Ara = (1, 1, 1) to (1, 0, 0). The output signal is supposed to remain low during this input

change, but after 1000 seconds, in 92 percent of the runs the circuits output YFP glitches to

a high state (i.e., exceeds 10 molecules). For input transitions where the output is supposed

to remain high, the run is counted as a glitch if YFP drops below a molecule count of 30.

For example, the cyan curve shows the inducer transition from IPTG, aTc, Ara = (0, 1,

1) to (0, 0, 0). In 86 percent of the runs, YFP drops below the threshold of 30 molecules,

even though it is supposed to remain high. More information about the selection of the

thresholds can be found in the methods section. It should be noted that circuits can also

have a steady-state failure over time that is unrelated to the hazard. This is simply due

to noise where a random set of reactions leads to an erroneous change in the YFP level.

For example, consider the green graph in Figure 3(b), the graph shows a sharp increase to
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over 90 percent in the first 300 seconds. After that, the probability increases linearly with a

small slope. If the simulation is run indefinitely, the probability will reach 100 percent due

to the noisy behavior, which eventually will let the system fail. This analysis was limited to

the first 1000 seconds to ensure that we separated these types of failures from those due to

hazards.

The table in Figure 3(a) shows the glitch probabilities of all input transitions with known

glitching behavior for the circuit’s original implementation. The three columns of the table

are the input transition, the probability of the glitch simulated in iBioSim, and the proba-

bility of the glitch calculated with STAMINA. For example, for the input transition IPTG,

aTc, Ara = (1, 1, 1) to (1, 0, 0), iBioSim predicts a 92.5 percent chance of a glitch, while

STAMINA verifies that the likelihood of a glitch in this case is between 91.1 and 99.7 percent.

Figure 3(d) shows the probability of a glitch over time for 100,000 Monte Carlo runs for

the two-inverter version of the circuit shown in Figure 2(b) for the same four input transitions

presented in Figure 3(b) for the original implementation. The results of the stochastic

analysis using STAMINA for this version of the the circuit are shown in Table 3(c). The

two-inverters were added to positively influence the input transition (0,0,0) to (1,0,1) shown

as the green curve in Figure 3(b) and 3(d). Comparing the iBioSim simulation results from

the original implementation in Table 3(a) with the modified model results in Table 3(c), it

shows that the probability for this input transition was improved from 99 to 81 percent.

Therefore, adding the two-inverters to the circuit results in an improvement of 18 percent

while also adding stress to the host cell due to the larger size of the circuit.21 On the contrary,

the input transition (0,1,0) to (1,1,1) shown as the blue curve in Figure 3(b) and (d) has a

probability of less than 30.5 percent for the original circuit compared to almost 44 percent

for the two-inverter circuit, an increase of 13.5 percent. While adding two inverters results

in a reduction in glitching for the green curve, the trade-off is an increase for the blue curve.

The influence of the two inverters on the probabilities for the input transitions (0,1,1) to

(0,0,0) (cyan curve) and (1,1,1) to (1,0,0) (red curve) are negligible.
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Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.30544 MIR
(0, 1, 0)→ (1, 0, 0) 0.72446 0.7134 - 0.7435
(1, 1, 1)→ (1, 0, 0) 0.92451 0.9108 - 0.9969
(1, 1, 1)→ (0, 1, 0) 0.90585 0.8969 - 0.9819
(1, 0, 0)→ (0, 1, 0) 0.76282 0.7673 - 0.7884
(1, 0, 0)→ (1, 1, 1) 0.30281 0.3033 - 0.3386

(0, 1, 1)→ (1, 0, 1) 0.98978 0.9882 - 0.9919
(0, 0, 0)→ (0, 1, 1) 0.82713 0.8226 - 0.8312
(0, 0, 0)→ (1, 0, 1) 0.99075 0.9882 - 0.9935
(1, 0, 1)→ (0, 1, 1) 0.98918 0.9876 - 0.9926
(0, 1, 1)→ (0, 0, 0) 0.86400 0.8566 - 0.8587
(1, 0, 1)→ (0, 0, 0) 0.86409 0.8607 - 0.8706

(a) Original Version

(b)

Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.75999 *†0.2770 - 1.0
(0, 1, 0)→ (1, 0, 0) 0.79609 0.7854 - 0.8534
(1, 1, 1)→ (1, 0, 0) 0.92703 0.9149 - 0.9834
(1, 1, 1)→ (0, 1, 0) 0.54285 0.5381 - 0.5710
(1, 0, 0)→ (0, 1, 0) 0.42337 0.4316 - 0.4529
(1, 0, 0)→ (1, 1, 1) 0.32885 OOM

(0, 1, 1)→ (1, 0, 1) 0.80690 *†0.3633 - 1.0
(0, 0, 0)→ (0, 1, 1) 0.82647 †0.6424 - 0.9695
(0, 0, 0)→ (1, 0, 1) 0.80761 *†0.4409 - 1.0
(1, 0, 1)→ (0, 1, 1) 0.99970 0.9159 - 1.0
(0, 1, 1)→ (0, 0, 0) 0.86894 0.8448 - 0.8766
(1, 0, 1)→ (0, 0, 0) 0.95759 0.8963 - 0.9927

(c) Two-Inverter Version

(d)

Figure 3: (a), (c), (e): Glitch probabilities of input transitions of the circuit simulated
with iBioSim13 and verified in STAMINA.14 The order of the inputs is IPTG, aTc, Ara.
The stochastic simulation in iBioSim was based on 100,000 stochastic runs. STAMINA was
run with a target probability window width of 0.1 or 0.5(†). Models marked with the *
were unable to achieve their target probability bound due to memory constraints. Out-of-
Memory (OOM) indicates that STAMINA was not able to achieve probability window width
of less than 0.8 before the host machine ran out of memory, while Max-Iterations-Reached
(MIR) indicates the the maximum iterations (default 10) were reached, an indication that
the convergence was too slow. (b), (d), (f): Probability of a glitch occurring over time for
input changes known to have hazards calculated from 100,000 stochastic simulation runs in
iBioSim. The legend shows the state transition of the three inputs IPTG, aTc, Ara.
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Input Transition iBioSim STAMINA

(0, 1, 0)→ (1, 1, 1) 0.28909 0.2729 - 0.3677
(0, 1, 0)→ (1, 0, 0) 0.24651 0.2384 - 0.2570
(1, 1, 1)→ (1, 0, 0) 0.90566 0.8948 - 0.9757
(1, 1, 1)→ (0, 1, 0) 0.90247 0.9002 - 0.9430
(1, 0, 0)→ (0, 1, 0) 0.73500 0.7348 - 0.7540
(1, 0, 0)→ (1, 1, 1) 0.29970 0.2996 - 0.3598

(0, 1, 1)→ (1, 0, 1) 0.98935 0.9870 - 0.9938
(0, 0, 0)→ (0, 1, 1) 0.82057 0.8242 - 0.8289
(0, 0, 0)→ (1, 0, 1) 0.98961 0.9865 - 0.9953
(1, 0, 1)→ (0, 1, 1) 0.99035 *0.9817 - 0.9972
(0, 1, 1)→ (0, 0, 0) 0.77063 0.7653 - 0.7703
(1, 0, 1)→ (0, 0, 0) 0.73697 0.7345 - 0.7353

(e) Logic Hazard Free Version

(f)

Figure 3: Cont.

Finally, Figure 3(f) shows the analysis on the same four input transitions for the logic

hazard-free version of the circuit shown in 2(c). Table 3(e) shows iBioSim and STAMINA’s

results for the glitch probability of all input transitions with known glitching behavior for

the logic hazard-free implementation. This analysis focuses on function hazards exclusively.

Therefore, the results show that using hazard preserving optimizations may eliminate logic

hazards, while influencing the probability of function hazards, in this case positively. Com-

paring the results of this version of the circuit with the results from the original implementa-

tion shows that redesigning the circuit using hazard preserving optimization also influences

function hazards, highlighting the importance of this type of analysis.

Comparing iBioSim’s results with STAMINA’s shows that in some cases the estimated

probability of iBioSim lies within or close to the bounds given by STAMINA. For example,

for the results of the input transition IPTG, aTc, Ara = (0, 0, 0) to (0, 1, 1) from the

original circuit (Table 3(a)), iBioSim simulates a probability of 82.713 percent. STAMINA

calculates for the same input transition a probability window of 82.26 percent to 83.12

percent. However, in a few other cases STAMINA fails to provide a reasonably tight bound

for the calculated probabilities. STAMINA’s result for the input transition IPTG, aTc, Ara
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= (0, 1, 0) to (1, 1, 1) for the two-inverter circuit (Table 3(c)) is 27 to 100 percent when

it runs out-of-memory, providing no helpful information to the designer. In other cases,

STAMINA provides large bounds like for the input transition IPTG, aTc, Ara = (1, 0, 1)

to (0, 1, 1) for the two-inverter circuit (Figure 3(c)) with a bound of 91.59 percent to 100

percent. Although the bound is not very tight, it still provides enough information to inform

the designer that the glitch probability is likely too high.

Comparing the iBioSim stochastic simulation results and the STAMINA verification re-

sults demonstrates that stochastic model checking is appropriate to analyze genetic circuits

and produces guaranteed probability bounds that are consistent with simulation. However,

compared to running stochastic simulations, stochastic model checking is memory and run-

time intensive. All stochastic simulation and the model checking tasks were carried out on

a computer with an AMD Ryzen Threadripper 12-Core 3.5 GHz Processor and 132 GB of

RAM, running Ubuntu Linux (v18.04.3). The run-times for the stochastic simulation and

model verification for all input transitions and circuit versions are given in Table 1.

The stochastic simulation of the transition IPTG, aTc, Ara = (1, 0, 0) to (1, 1, 1)

on the two-inverter circuit had the longest run-time with a duration of 10 minutes and 12

seconds for 100,000 simulation runs. STAMINA was not able to compute an adequately

tight probability window for the same input transition. The transitions IPTG, aTc, Ara =

(1, 1, 1) to (1, 0, 0) and IPTG, aTc, Ara = (0, 0, 0) to (1, 0, 1) on the original circuit were

the fastest stochastic simulations taking 1 minute and 31 seconds each. The same transition

checked by STAMINA took only 49 seconds which is 54 percent of the time it took iBioSim.

The longest run-time for stochastic model checking (not including MIR or OOM models)

was for the input transition IPTG, aTc, Ara = (0, 1, 1) to (1, 0, 1) of the logic hazard

free circuit, which was 6 hours 58 minutes and 33 seconds. State space generation took 1

hour 11 minutes and 1 second and the analysis took 5 hours 47 minutes and 32 seconds. All

stochastic model checking runs marked with an asterisk in Figure 3(a),(c), and (e) report the

run-time to obtain the provided result, and do not include the run-time between obtaining

13



Table 1: Run-time comparison of the stochastic simulations in iBioSim13 and model verifi-
cation in STAMINA.14 The first column shows the input transition with the order of inputs
being IPTG, aTc, Ara. The stochastic simulation in iBioSim was based on 100,000 Gillespie
runs. The columns labeld iBioSim and STAMINA are split into three colums containing
the run-times for the (OG) original layout (Figure 2 (a)), for the (TI) two-inverter layout
(Figure 2 (b)), and the (LHF) logic hazard free layout (Figure 2 (c)) of the circuit. All
stochastic simulation and the model checking tasks were carried out on a computer with an
AMD Ryzen Threadripper 12-Core 3.5 GHz Processor and 132 GB of RAM, running Ubuntu
Linux (v18.04.3).

iBioSim STAMINA
Input Transition OG TI LHF OG TI LHF

(0, 1, 0)→ (1, 1, 1) 00:08:45 00:05:36 00:08:06 MIR 05:55:28 03:50:45
(0, 1, 0)→ (1, 0, 0) 00:01:43 00:02:00 00:03:08 00:00:12 00:24:42 00:01:06
(1, 1, 1)→ (1, 0, 0) 00:01:31 00:02:01 00:01:35 00:00:49 01:40:26 00:06:27
(1, 1, 1)→ (0, 1, 0) 00:01:48 00:03:43 00:01:44 00:01:43 03:21:48 00:38:27
(1, 0, 0)→ (0, 1, 0) 00:01:47 00:03:36 00:02:01 00:00:35 00:52:50 00:01:55
(1, 0, 0)→ (1, 1, 1) 00:08:54 00:10:12 00:08:01 00:23:13 OOM 02:53:42

(0, 1, 1)→ (1, 0, 1) 00:01:51 00:05:38 00:01:46 00:41:40 05:49:56 06:58:33
(0, 0, 0)→ (0, 1, 1) 00:04:51 00:05:51 00:04:35 00:26:32 06:17:22 06:30:08
(0, 0, 0)→ (1, 0, 1) 00:01:31 00:05:13 00:01:36 00:39:42 06:50:17 01:07:43
(1, 0, 1)→ (0, 1, 1) 00:01:56 00:02:05 00:01:50 00:40:47 02:44:57 06:01:4
(0, 1, 1)→ (0, 0, 0) 00:01:44 00:02:24 00:01:58 00:05:45 02:49:01 00:17:04
(1, 0, 1)→ (0, 0, 0) 00:01:43 00:02:01 00:02:13 00:02:13 01:03:09 00:13:57
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this result and running out of memory in the next iteration, as this is not reported by the

tool.

Discussion. As mentioned in the introduction, the inherent noisy and stochastic behav-

ior of genetic circuits requires stochastic analysis. This paper presents hazard analysis results

using both stochastic simulation with iBioSim and infinite state stochastic model checking

using STAMINA. These results show that both simulation and model checking provide con-

sistent results on the likelihood of static function hazards. While stochastic simulation can

be faster depending on the number of runs required to obtain a high confidence result, model

checking provides probability bounds that are guaranteed to include the actual probability

of the event. This work only considers static function hazards. Model checking however,

has the potential to verify more complicated error conditions, such as dynamic hazards .6

In dynamic hazards, the output switches from one state to the other in a non-monotonic

manner.

The predicted glitch probabilities discovered by the analysis methods presented in this

paper can be applied to restrict the behavior of genetic circuits to produce more robust

operation. In particular, a designer can avoid input transitions that exceed a minimum

glitch probability threshold. For example, considering the original circuit results shown in

Table 3(a), we can group the input transitions by their probability to glitch. For example,

the transition IPTG, aTc, Ara = (0, 0, 0) to (1, 0, 1) has a high probability to glitch (over

98 percent) suggesting that this input transition must be avoided. On the other hand, the

input transition IPTG, aTc, Ara = (1, 0, 0) to (1, 1, 1) has a lower probability to glitch of

30 percent, which might be acceptable for the intended use.

The predicted glitch probabilities can also be applied to design more robust genetic

circuits. For example, the results for the original circuit shown in Table 3(a) indicate that

the input transition IPTG, aTc, Ara = (1, 1, 1) to (0, 1, 0) glitches about 91 percent of

the time. Contrary, the results for the two-inverter circuit shown in Table 3(c) indicate that

this input transition only results in a glitch about 54 percent of the time. On the other
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hand, for the input transition IPTG, aTc, Ara = (0, 1, 0) to (1, 1, 1) the original circuit

glitches 30 percent of the time compared to the 76 percent of the time for the two-inverter

circuit. Therefore, there is a trade-off to consider depending on which input transition is

more critical for the application. Using the analysis presented in this paper allows a genetic

designer to evaluate alternative designs in silico before building and testing them in vivo.

While STAMINA can sometimes produce wide probability bounds or take too much time

or memory to produce a tight bound, precise bounds are not always necessary to guide design

decisions. Namely, it may only be necessary to know if the probability of glitch is high or

low. For example, determining if a glitch probability is higher than some threshold is often

much easier than calculating the exact probability.

There are several additional areas of future work. While this paper has focused on the

analysis of static functions hazards, we plan to perform further analysis of other hazards,

such as dynamic and logic hazards. Also, this work uses a generic model with default

parameters produced as described in,4 and we are planning to extend this work to use a

characterized dynamic model22 in the future. This would enable the user to not only predict

glitch probabilities, but also guide the selection of different specific parts to reduce these

probabilities. Finally, we would like to verify these glitch probabilities in vivo.

Methods

The design of the genetic circuit and the generation of its model was achieved using the

software tool iBioSim.13,23,24 iBioSim is open-source genetic design automation (GDA) tool

for the modeling, analysis, and design of genetic circuits that is being actively developed.

This tool is intended to promote model-based design of genetic circuits using community-

developed data standards such as the synthetic biology open language (SBOL),25–28 the sys-

tems biology markup language (SBML),29 and the simulation experiment description markup

language (SED-ML).30 iBioSim also allows for designs, models, and analysis results to be
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shared via the SynBioHub data repository.15 The following is a high-level description of the

key features of iBioSim used in this project:

• Genetic Circuit Design

1. The genetic circuits described in this paper were constructed using the sequence

editor GDA tool SBOLDesigner.31 This tool allows for the creation and editing

of hierarchical genetic designs represented using the SBOL data standard and

depicted using the SBOL Visual standard.32–34

2. Parts for these designs were fetched from a collection stored in the Living Comput-

ing instance of SynBioHub15 (https://synbiohub.programmingbiology.org).

• Model Generation

1. The Virtual Parts Repository (VPR) model generator35,36 is used to enrich the

SBOL representation with non-DNA components and interactions between the

components as described in.4 For example, VPR adds the proteins produced by

the genetic circuits and the interactions that indicate which coding sequence they

are produced from, as well as the inhibition interactions between these proteins

and promoters within the design. Finally, the small molecule used as inputs and

their interactions are added.

2. The computational model is produced using the SBOL to SBML converter in-

tegrated into iBioSim.37 This converter is used to translate structural and func-

tional information in SBOL to create a quantitative model expressed represented

in SBML using generic or user-defined parameters.

3. Finally, the iBioSim graphical user interface (GUI) was used to edit and refine

the model.

• Analysis
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1. iBioSim includes a variety of simulation methods to analyze SBML models such as

ordinary differential equations (ODEs) and stochastic simulation. The simulations

performed are encoded using SED-ML to allow exchange to other simulators. This

project utilized the stochastic simulation written in the C-language.

2. Finally, iBioSim was used to view simulation results plotted in a graphical form.

For this paper, the models were further refined to reduce their vast state space. Instead

of modeling the input molecules IPTG, aTc, and Ara, their corresponding internal molecules

and complexes were used to reduce the number of species in the circuit. As an example,

instead of modeling Ara and its complex formation to AraAraC that regulates the circuit, just

the complex AraAraC was modeled. Additionally, instead of allowing protein production and

degradation in steps of one, the model was adjusted to only allow molecules to be produced

or degraded in steps of ten with a ten times reduction in reaction propensity.

For the stochastic simulation in this work, 60 molecules were chosen as a high input. This

value is arbitrary since any input value above 60 molecules yields the same output molecular

count. To identify thresholds that can be used to determine 0-hazards and 1-hazards, ODE

analysis to characterize the sensitivity of a NOT gate was run. Figure 4 shows the number

of molecules of the output over a sweep of the input molecular count.

Figure 4 shows that an input of ten molecules results in a decrease of over 40 molecules

in the output. This suggests that a 0-hazard, a hazard where the output is supposed to stay

low, can already be critical if the output briefly passes a molecular count of 10. Therefore,

the threshold for a 0-hazard was set to 10. On the other hand, the threshold for a 1-hazard

was set to 30, since even a high signal of 30 molecules still results in a low output of under 10

molecules. This method is a simplified version of the more sophisticated approach by Baig

and Madsen in.38 Future work could utilize the tool D-VASim38,39 to increase precision of

the threshold analysis.

The stochastic simulation is based on 100,000 runs of the Gillespie’s algorithm.16 The

number of runs was chosen to achieve reasonable confidence in the results. In statistics, the
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Figure 4: The output in molecular counts of a logical NOT gate over the number of molecules
selected as input. The analysis helps selecting the threshold for 0-hazards and 1-hazards.
The graph shows that an input signal of 10 molecules results in a decrease of the output of
over 40 molecules. Contrary, a high input signal of 30 molecules and above results in a low
output of under 10 molecules. The threshold to detect a 0-hazards was selected to be 10 and
the threshold for a 1-hazards to be 30.

19



95 percent confidence interval is defined by X̄±1.96 σ√
n

with X̄ being the mean of the random

variable, σ being the standard deviation of the population, and n being the number of runs.

Therefore, the confidence interval tightens with an increasing number of runs. After running

the stochastic simulations in iBioSim, the model was exported as an SBML file and converted

to a PRISM model using the SBML-to-PRISM translator implemented in PRISM.18 Finally,

the PRISM model was passed to STAMINA for stochastic model checking.

While simulation can usually provide accurate results for complex systems, it cannot

provide provable guarantees as to the true probabilities in question. Genetic circuit models,

such as the ones used in this paper, are continuous-time Markov chains (CTMCs), which

can be analyzed by probabilistic model checking tools such as PRISM.18 Using these tools,

the true probability associated with the CTMC model can be obtained. Such probabilistic

analysis often suffers from state-space explosion due to the exponential increase in the state

space needed to represent a system model’s behavior over time. In fact, state explosion

is guaranteed to occur in unbounded models, such as a genetic circuit without arbitrarily

enforced molecule count limits. STAMINA14 is a tool designed to use on-the-fly predictions

to reduce very large or infinite state-spaces to a subset that is more tractable and can be

analyzed by PRISM. STAMINA preserves the true probability by outputting a probability

window with lower- and upper-bound probabilities that enclose the true probability. The

true probability is guaranteed to be within the outputted bound.40 Thus, STAMINA can be

used to model check genetic circuits with unbounded molecule counts.

STAMINA truncates the state space in the following way: as each state is explored, it

estimates the state reachability probability, which is the likelihood of reaching a state from

the initial state of a model. States whose reachability probability falls below some small

threshold κ are not explored, i.e., truncating the state space; instead, outgoing transitions

of these states are directed toward an artificially created absorbing state A. Note that

transitions to an existing state are preserved rather than directed toward A. The state

reachability probability is estimated as follows. From a state s, each next state s′ is obtained
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by executing an enabled transition in s. The transition probability of each such transition

is obtained from r/E(s), where r is the reaction rate, a function of reactants, and E(s) is

the sum of all outgoing reaction rates from s. Let n be the number of incoming transitions

into a state s′, pi be the transition probability of the i-th incoming transition from state si

into s′, and π(si) be the state reachability probability for si. Then, π(s′) =
∑n

i=0 pi · π(si).

Once STAMINA completes the state space generation and truncation, it passes it to

PRISM for Markov chain analysis. When the PRISM analysis is complete, the probabil-

ity accumulated in the absorbing state A, PA, is the reachability probability for states not

explored by STAMINA. It follows that the true probability of a the property φ under veri-

fication lies between the probability of φ being satisfied in the existing state space, Pφ, and

Pφ + PA. Thus the probability bound is [Pφ, Pφ + PA].

Originally, the version of STAMINA described in earlier papers,14 was used to attempt

to gather results. This version of STAMINA operated by running with a chosen κ value,

model checking the state space in PRISM, and if the calculated bounds did not meet a

desired level of precision, then reducing κ by some reduction factor and continuing state

expansion. The genetic circuit models presented in this paper represent the most intensive

models STAMINA has been tested on thus far, and it quickly became obvious that STAMINA

could not obtain adequately tight probability bounds given the memory constraints of the

machine used to run it. As a result, STAMINA was evaluated for possible optimizations,

during which evaluation a number of issues and inefficiencies were discovered. One of these

issues affected the accuracy of the bound output, while the remaining did not affect accuracy,

but heavily affected efficiency and success at finding the most reachable states. In addition to

fixing these issues, the main STAMINA algorithm was also restructured to allow for a more

accurate estimation of the most reachable states. A full explanation of the new STAMINA

algorithm and various fixes will be given in future work. For the scope of this work, it is

adequate to note that the new algorithm starts with a fixed κ of 1, and repeatedly halves κ,

starting from the initial state each iteration in order to re-calculate reachability probabilities,
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but not passing to PRISM for checking each time. The repeated re-calculation of reachable

states allows for a more accurate representation of how reachability behaves in the presence

of cycles within the state graph. This process is repeated until the estimated reachability

of the absorbing state drops below a proportion p of the desired probability window width.

The state space is then passed to PRISM to be checked. If the obtained bounds are not

tight enough, p is reduced and state-generation continues. Results shown in this paper were

obtained with this newer algorithm implemented in STAMINA.

Associated Content

Additional Information

The latest version of iBioSim with the dynamic model generator, including source code, in-

structions, and related files, can be found online at https://github.com/MyersResearchGroup/

iBioSim.

The current version of the software tool STAMINA used for state space reduction can

be found online at https://github.com/fluentverification/stamina and the model

PRISM checker used for the analysis at https://www.prismmodelchecker.org.

Information about the SBML-to-PRISM translator can be found at the following web

page: https://www.prismmodelchecker.org/manual/RunningPRISM/SupportForSBML

All models created in this work are accessible at https://github.com/fluentverification/

stamina/tree/master/case-studies/HazardCct. It includes the model designs encoded

in both SBML and PRISM.

Special Issue Paper

Invited contribution from the 12th International Workshop on Bio-Design Automation.
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