Omega -~ A DATA FLOW ANALYSIS TOOL
FOR THE C PROGRAMMING LANGUAGE

by
Cindy Wilson* and Leon J. Osterweil**
*Bell Laboratories, Denver, Colorado
**Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 84349

CU-CS-217-82 May 3, 1982

This research was supported, in part, by NSF grant MCS 7702194
and NSF grant MCS 8000817.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS

OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

THIS MATERIAL IS BASED UPON WORK SUPPORTED
BY THE NATIONAL SCIENCE FOUNDATION UNDER
GRANT NO. MCS 79-03838.

Omega -- A DATA FLOW ANALYSIS TOOL FOR THE
C PROGRAMMING LANGUAGE

Cindy Wilson
Bell Laboratories
Denver, Colorado
Leon J. Osterweil
Department of Computer Science

University of Colorado
Boulder, Colorado

1. Abstract

This paper describes Omega, a prototype system designed to
analyze data flow in C(programs. Omega is capable of
detecting certain types of common programming errors, or
assuring their absence. Omega also addresses the problems

of analyzing pointer variables.

2. Background

Within the past decade there has been considerable activity
in the area of developing tools to assist in the process of
testing, debugging, analyzing, editing, and documenting
programs. Most of the tool development work has been
language specific, and aimed primarily at such languages as
Fortran [Oste 76], [Stuc 75], [Rama 75] and Jovial [Gann
78]. In fact it has been suggested that the popularity of
these languages in the face of '"superior' newer languages
can be traced, at least in part, to their support by

superior tools. C is one such newer language [Kern 78]

which has attracted considerable attention and support. It
appears that its growing popularity is at least partially
due to the ready availability (within C’s surrounding UNIX*
environment) of superior support tools. Unfortunately few
of these tools are C specific, and fewer still (e.g. LINT
[John 781) are designed to support the analysis,
documentation and debugging of C programs. This seems
unfortunate and paradoxical, as many of the analytic and
diagnostic capabilities developed in the last decade are
language independent. Hence we set out to develop a C-
specific analysis, documentation and verification tool based
upon principles first applied 1in developing a tool for

another language.

The analytic technique we chose to exploit is data flow
analysis. This term and analytic procedure were first
developed in the context of global program optimization
[Alle 76]. Later, however, it was shown that these
techniques are also valuable in error analysis [Fosd 76].
In particular the data flow analysis approach has been
applied to the analysis of Fortran programs by the DAVE tool
[Oste 76].

* UNIX is a Trademark of Bell Laboratories.

Data flow analysis is a form of static analysis —-— a term
generally wused to describe techniques used to study a
program without having to exercise it on sample test data.
Perhaps the most distinguishing and significant feature of
static analysis is that it is capable of assuring the
absence of certain kinds of errors in a program. Testing
approaches, on the other hand, are best at detecting the
presence of errors, by noting their occurrence in the course
of (a usually heavily monitored) execution of the program
with carefully selected test data. In general static
analysis entails careful examination of the details of a
program for the purpose of inferring its general structure
and nature. These inferred analytic results are typically
used as the basis for subsequent error checking procedures.
They are, however, also usually gquite useful as program
documentation. Hence static analysis techniques are best
thought of as verification and documentation aids. We shall
see that the tool described here does in fact provide both

of these kinds of benefits.

Data flow analysis is essentially a technique for studying
sequences of program events. Data flow analysis algorithms
are capable of documenting all sequences of certain types of
program events which might possibly occur in a program
execution. This is generally quite valuable and informative

documentation. 1In addition, however, when certain sequences

of events can be classified as erroneous or suspicious, this
analytic technique de facto becomes capable of detecting
errors or anomalies [Oste 76]. Because, moreover, all
possible execution sequences are inferred by data flow
analysis, if no erroneous or anomalous event sequences are
detected then the error or anomaly thereby defined has been

shown to be absent from the program under study.

The DAVE system focussed on three types of program events:
1. definition of a variable (a "d" event)
2. reference to a variable (an "r" event)

3. undefinition of a variable (a "u" event)*

Y

Three specific sequences of these everts were sought —-
undefined reference, dead definition and double definition.
Undefined reference was defined to be a "u" event followed
immediately by an '"r" event' without an intervening "4d"
event. Such a sequence usually results when a variable is
referenced after program execution begins and before the

variable has been defined. This was classified as an error.

* This event occurs when execution leaves the scope of
definition of a variable, or in certain languages (e.g.
Fortran) when a loop iterator is exhausted. Most
commonly it occurs implicitly at the beginning of a
program or procedure’s execution, where it is assumed
that no variable is assigned an initial value.

Double definition was defined to be two consecutive
definition ("d") events for a variable without any
intermediate reference ("r") or undefinition ("u") events.
Dead definition was defined to be a definition (d) of a
variable followed immediately by an undefinition (u) of that
variable. In both cases the first definition is clearlyﬁ
superfluous. Neither was classified an error but rather

both are considered anomalies —- causes for concern.

It should be pointed out that papers have been written
describing the applicability of data flow analysis to other
events and corresponding errors and anomalies. In [Oste 82]
data flow analysis is shown to be wuseful in detecting
concurrency errors. In [Oste 82] it is also shown to be
applicable to the detection of certain file manipulation
errors. In this paper, and the tool described, however, we
focus only on undefined reference, dead definition and

double definition errors and anomalies.

One important and novel feature of this work is that it
addresses the ‘problems of analyzing pointer variables. An
important assumption of data flow analysis is that the
location of every r, d, and u event in a program be
detectable, and the identity of the variable being affected
also be determinable. In more straightforward languages
(such as Fortran) this is a reasonable assumption. In

languages which allow the use of pointer variables (e.g.

PL/I and C) this assumption is questionable. Some analytic
procedures for handling pointer variables are known [Aho 79]
[Harr 77], but appear to be of only limited applicability to
C. One of these has been applied in the work described
here, enabling us to begin to e&aluate its practicality for

C.

3. Definitions and Examples

We now briefly summarize some definitions which are
necessary in order to understand the work described here.
These definitions are somewhat cursory. A more complete

treatment can be found in [Fosd 76].

Of most basic importance is the notion of a graph. A graph
G is an ordered pair G = (V, E) where V is said to be the
vertex or node set, and E is said to be the edge set. The
edge set, E, consists of edges which are ordered pairs (vi,
vi) of vertices from the vertex set V. One specific type of
graph will be of particular interest to us -- the flowgraph.
The nodes of the flow graph correspond roughly to the
statements of a program. An edge appears in a flowgraph for

every ordered pair of vertices (vi , v.) for which the

i
statement represented by v, can be executed immediately
after the statement represented by vi- In order to do data
flow analysis, the nodes of the flowgraph must be annotated

according to actions which are to be performed on data at

that particular node. The three actions which may be
performed on data are: reference (r), definition (d), and
undefinition (u). When execution of an expression requires
that the value of a variable, say alpha, be retrieved, alpha
is said to be referenced within the expression. When
execution of an expression causes a value to be assigned to

alpha, alpha 1is said to be defined. In C, all local

variables ‘are undefined at the point of function invocation

and at the function exit node.

Thus the flowgraph of the function of Figure 1 would be as

shown in Figure 2.

extern int Z;
funcb()
{ int X, Y;

if (X ==2) Z = X++;
Y=Y ;
Z=1Y;

Figure 1

Function Containing Data Flow Anomalies

u: X, Y
r: X, 2 .j
r: Y
d: Y
r: Y
7 d: Z
u: X, Y
Figure 2

Annotated Flow Graph Corresponding to Figure 1

By inspection it is seen that the actions performed on X are
either wuru or urrdu (depending upon which execution path is
taken); the actions performed on Y are urdru; and the
actions performed on Z are either rd or rdd, where the left
to right order of the actions denotes the order in which the
actions are performed. We see that a dead definition
anomaly may occur for X due to the subsequence 'du". An
undefined reference error occurs for Y due to the
subsequence "ur". A double definition anomaly may occur for
Z due to the subsequence ''dd". Sequences of actions on a
variable such as we have just discussed are called 'path
expressions'. In general we say that path expressions of
the form purp’, pddp’, pdup’ (where p and p’ stand for
arbitrary sequences of r“s, d’s, and u’s) are indicative of

the three data flow anomalies we have discussed.

We now discuss the problem of determining the presence or
absence of these path expressions by analyzing annotated

flowgraphs.

4. Basic Data Flow Analysis Notions

Associated with every flow graph is a token set, tok , the
elements of which are those variables which are currently
active within the associated function. In C, this set would
consists of the local variables, external variables, and

those nonlocal variables whose addresses have been passed to

- 10 -

the function as parameters. With every node n are
associated three sets: gen(n), kill(n), and null(n), where
gen(n) U kill(n) U null(n) = tok. Membership of variables
in these sets at a particular node is determined by which of
the actions r,d, and u are performed on which variables at
the statement represented by that node.” The rules for
determining membership differ for each of the three problems

to be solved.

Hence, although the r, d, and u flowgraph annotations are
determined and fixed once by textual analysis, the sets
gen(n), kill(n), and null(n) will be initialized differently
for each error or anomaly to be studied. These
initializations are made in such a way as to make the
detection of erroneous or anomalous path expressions
expedient. The path expressions are not actually created
explicitly but are rather inferred implicitly with the aid
of two standard algorithms, LIVE and AVAIL [Hecht 75].
These algorithms associate with each node n the sets live(n)
and avail(n), subsets of tok. For each variable v in tok,

and each node n of the flow graph,

@ v is a member of live(n) if and only if on some
flowgraph path from n the first non- null set to which

v belongs is a gen set.

® Vv is a member of avail(n) if and only if on all paths

- 11 -

entering n, the last non- null set to which v belongs

is always a gen set.

Efficient LIVE and AVAIL algorithms are described in the
literature [e.g. Hech 75]. Our tool uses these algorithms
to detect the presence and assure the absence of the three

data flow anomalies of interest here.

For example, Figure 3 shows how the flowgraph of Figure 2
must be annotated to facilitate detection of those variable
references which always result in the wundefined variable
reference error. Specifically for a given node n gen(n) is
defined to be the set of all variables which are considered
to become undefined at node n, and kill(n) is defined to be
the set of all variables which become defined at node n.
After executing the AVAIL algorithm we see that a variable v
is avail(n) if and only if v has been undefined on all paths
leading up to n and has not been defined on any path
subsequent to the last undefinition. Hence if Qegggii(g) it
is certain that the path expression for v on any and all

paths leading to n is of the form "pu". Therefore if v is

"ot

also referenced at n (an "r" event for v occurs at n) we can
be sure that the reference results in the undefined

reference error for v at n.

In order to detect the impossibility of this error, a

different initialization of the gen and kill sets would be

- 12 -

necessary. In order to study the other two anomalies still

different initializations are necessary.

- 13 -

gen: X, Y

kill: ¢

null: Z

avail: @
gen: @ gen: §
kill: ¢ kill: X,Z

4 s

null: X,Y,Z j null: Y
avail: X, Y avail: X,Y

gen: @

kill: Y

null: X,Z

avail: Y

gen: ¢

7 kill: Z

null: X,Y

avail: @

gen: X,Y

kill: @

null: 2

avail: @

Figure 3

The flow graph of Figure 2 annotated to
facilitate detection of data flow anomalies

- 14 -

In order to properly annotate a flow graph, the identity of
every variable being affected by an r, d, or u event must be
determinable. For nodes at which actions occur on tﬁose
variables corresponding to a dereferenced pointer variable,
the set of variables to which the pointer may point must be
determined before we may annotate the flow graph. 1In order
to accomplish this, certain assumptions must be made as to

the effects of pointer assignments.

As an example, let PTRX and PTRY be pointer variables, let Z
be an elementary data type or an array of elementary data
types, and let K be a nonzero integer constant. Omega makes
the following assumptions concerning the effects of

assignments to PTRX:

An assignment statement of the form PTRX = address(Z) causes
PTRX to point to Z. If Z is an array, an assignment of the
form PTRX = address(Z) + K is also allowed. PTRX = PIRY
causes PTRX to point to anything currently pointed to by
PTRY. PTRX = PTRY + K causes PTRX to point to any array
currehtly pointed to by PTRY. All other pointer assignments
are deemed semantically meaningless or non-analyzable and

are ignored by Omega.

Once the effects of the pointer assignments at a given
program node have been established, this information must be

propagated to the other nodes in the flow graph. This 1is

- 15 -

done by Omega in the following manner:

Let x = any pointer variable

S(Kx) = the set of objects to which variable x
points at node K

Then the set of objects to which x points at node N
may be computed as follows:

S(Nx) = U S(Kx) if S(Nx) =0
all K,
immediate

predecessors
of N

S(Nx) if S(Nx) # 0

This propagation rule, when applied iteratively, effects the
annotation of the flow graph to reflect any indirect
references or definitions of wvariables which may occur

through pointer variable manipulation.

Since the scope of a variable may extend across procedure
boundaries, Omega must be capable of examining
intraprocedural data flow. Fosdick and Osterweil [Fosd 76]
have given algorithms to detect anomalous data flow on paths
crossing procedure boundaries. These algorithms are used by
Omega to provide data flow information for any variables
whose addresses are passed as function arguments and for
globally defined variables wused within functions. These
algorithms require that each function be analyzed only once.

However, a loss of analytical accuracy results.

- 16 -

The loss of accuracy is compounded when pointers must be
analyzed, as is the case in most C programs. For this
reason, we have chosen to modify the algorithmic procedures
presented in [Fosd 76]. These modifications essentially
entail having to re-scan procedures in order to properly and
adequately capture the behavior of pointer variables used as

arguments.

The following example illustrates that the analytic results
obtained by the algorithms in [Fosd 76] can yield
unacceptably imprecise analytic results even for a simple
sequence of statements dealing with pointer arguments.
Because such coding sequences are common in C programs we
elected to reanalyze procedures in the context of each

invocation.

Consider the function in Figure 4.

In order to derive path set information not bound to
particular pointer references, we would have to generate
generalized information similar to the following:

e at node 2: reference all variables pointed to by ptrx
reference all variables pointed to by ptrx

® at node 3: adjust ptry to point to everything pointed
to by ptrx

e at node 4: define all variables to which ptry
possibly points

Without extensive bookkeeping, we could not derive a

generalization such as '"the last thing that happens to all

- 17 -

node number

1 func(ptrx, ptry) int *ptrx, *ptry;
/* 'ptrx" and "ptry" are pointers to */
/* wvariables of type integer */
{ 0
2 if (*ptry == *ptrx)
/* 1if the contents of what */
/* ptry points to equals the */
/* contents of what ptrx */
/* points to . . . */
{
3 ptry = ptrx;
/* Set ptry to point to */
/* everything ptrx points to.*/
/* This statement does not */
/* alter the set of possible */
/* pointer references for */
/* the actual parameter */
/* corresponding to ptry. */
4 *ptry = 0;
/* set the contents of what */
/* ptry points to equal to 0 */
}
5 }

Figure 4
Sample function which illustrates

difficulties involved with pointer
variable analysis.

variables pointed to by ptry on path 1-2-3-4-5 is “d’" due
to the fact that the set of variables to which ptry points
at node 4 is changed to the set of variables pointed to by

ptrx. The proper detection and characterization of this

- 18 -

entails considerable data flow analysis. at node 3. Any
additional adjustments to ptrx and/or ptry would complicate
matters further. Application of the techniques described in
[Fosd 76] unfortunately result in obtaining an overly
general characterization of what this function does that

serves to weaken the analytic results obtainable.

If a function is called from several locations, and at each
of them only one variable is bound to each pointer argument,
we would like to obtain specific, precise diagnostic
information about each single variable. This is the case if
the invoked function is reanalyzed in the context of each
invocation. If the function is analyzed only once, however,
the analytic reports must be weakened by inability to
distinguish precisely which data flows must happen.
Instead, numerous reports of what may happen are produced.
In general, this problem will arise for any function which
Has a pointer parameter which appears in the function in
non-dereferenced form as part of an assignment statement.
Requiring that each call to a function of this type invokes
the re-computation of path expressions, with the actual
parameters substituted for the formal parameters, eliminates
these complications at the expense of greatly decreased time

efficiency.

In addition, for any function which employs pointer type

input parameters, the set of all variables to which pointer

- 19 -

parameters may point must be known before the function is
processed. Therefore, the <calling function must have
propagated pointer information throughout the flow graph

before the subfunction analysis may begin.

Thus, the overall design of Omega is heavily influenced by
pointer variable processing requirements. The algorithm of
Figure 5 1is wused by Omega as the driver routine for
processing the functions. Figure 6 illustrates the overall

design of Omega.

- 20 -

process(this_func, nprime) :

{ , ;
do until (the set of all possible pointer references
for all pointers does not change)

{

propagate pointer information to all nodes;
make any necessary adjustments;

if (this_func calls that_func at node n)
and (that_func is not a system function)

{ :
substitute the actual parameter references
for the formal parameter references in
that_func;
process(that_func, n);
}

determine the path sets for this_func;

export path information to nprime;

determine and report local anomalies for this_func;

}

Figure 5

Omega Driver Routine for Analyzing Functions

- 21 -

Parse the source program, generating flow
graph and calling graph information;

Construct the flow graphs and call graph;

Starting with the main function, apply
the algorithm of Figure 5.

Figure 6

Overall Design of Omega
5. Example

As an example of Oméga’s analytic power, consider the

program in Figure 7, which is intended to do the following:

® for each row of a given matrix, compute the sum of the

absolute values of the elements
e print the largest sum computed

In line 8, "matrixptr" is referenced without being
previously defined, a undefined reference. The function
 "readmatrix" expects a pointer to an N by N matrix. Perhaps
the programmer meant to set "matrixptr' equal to the address
of '"matrix" before the subroutine invocation. Or the
programmer may have meant to pass the parameter "matrix,"

but confused the variable names. Due to this error, the

OO~ W —

f#define N 5
main()
{

int matr
int *mat
int rowm

readmatr
rowmax =

printf("

}
readmatrix(ptr)

int i, j

for (i =

getmax(ptr) in
{
int row,

for (row

return(m

}

rowsum(vecptr) i

{ .

- 22

ix[N][N];
rixptr;
ax;

ix(matrixptr);
getmax(matrixptr);

Maximum row sum is: %d0, rowmax);

int ptr[N][N];
0; i < N3 i++)
{
for (j = 0; j < N; j++)
{

scanf("%d", &ptr[illjl);
3

t ptr[N][NI;

temp, max;

= 0; row < N; row++)

iemp = rowsum(ptr[row]);

if (temp > max) max = temp;

ax);

nt *vecptr;

int column, sum;

while (¢

column =

olumn < N)

{

sum = sum + abs(*(vecptr++);)
column++;

}

sum = 0;

- 23 -

52 return(sum);
53 }
54
55 abs(value) int value;
56 {
57 if (value »>= 0) return (value);
58 else return (-value);
59
60 }
Figure 7

Program containing data flow anomalies

function "readmatrix" will silently initialize the (N * N)
locations starting at whatever location "matrixptr" is

pointing to.

Likewise, in line 37, a undefined reference occurs for the

1

variable "max,'" which should have been initialized to zero.

In the function "rowsum," the statement "row = sum = 0" was
accidentally placed at line 51 when it should have been at
line 45. This results in a undefined reference for "column"
at line 46, double definitions for "sum" and "column" at
line 51, and a dead definition anomaly for '"column" at line

53.

The annotated flow graphs and call graph corresponding to
this program are given in Figures 8 and 9. Figure 10

demonstrates the diagnostic capabilities of Omega.

- 24 -

T matrixptr

e T matrixpir
d: rowmax

(&)

(v

Figure 8

Anhotated flow graphs corresponding to
the example program of Figure 7:
(2) main, (b) readmatrix, (c) rowsum, (d) getmax, (e) abs

- 25 —

Figure 8, continued

" (e)

- 26 -

Fried

scan’

€9
abs

Figure 9

Call graph corresponding to the
example program given in Figure 7

dedesk

Jede

e
HHEW

sk
fhk
ek
F*kk
ek
Fekk
Kok
ek
Feded
Fedk
%k
Yk
Fkdk
F*dkk
Ffekk
%k
ek ke
ekt

- 27 -

Variable with name "sum" local to function "rowsum"

is assigned a value, then reassigned another value

before the first value is used.

This occurs on some path(s) emanating from line number: 48
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

48
49
46
50
51

Variable with name "column" local to function "rowsum"
is assigned a value which is never used.

This occurs on all paths emanating from line number: 51
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

51
52
53

Variable with name "column' local to function "rowsum"
is referenced before it is assigned a value.

This occurs on all paths emanating from line number: 43
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

43
46

Variable with name "sum" local to function '"rowsum"

is referenced before it is assigned a value.

This occurs on some path(s) emanating from line number: 43
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

43
46
48

A

e s o

*

..
%
ot
b

%
Seskde
dedk
dedesk
oot
Jedkde
ek

oo oto o,
<

ek
Yededk
Kk
Fedee
Feded
Fek
sk
sedkst
sk
dedok
ot
dedksk
sk
ek
sk
etk
sk
*hk
Yok
kKo
Kkt
Kok
Jedk e
Ytk
desksk
ek
Fedesk
sk

- 28 -

Variable with name "max" local to function "getmax"

is referenced before it is assigned a value.

This occurs on all paths emanating from line number: 31
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

and also the same initial path as above,
with the following path after line 34:

36
37

Variable with name "matrixpt'" local to function "main"
is referenced before it is assigned a value.

This occurs on all paths emanating from line number: 3
Path(s) (indicated by one or more line numbers)

in which this anomaly was detected are:

Figure 10

Actual Omega Output for the example program
of Figure 7

- 29 -

6. Conclusion

Omega currently is implementedéyin prototype form and is
being wused experimentally at Bell Telephone Laboratories,
Denver, Colorado. An important goal of this experimental
use is to determine whether the decision to perform
reanalysis of every function at the point of its invocation
was a good one. We have observed earlier that this decision
enables us to obtain sharper analytic results at the expense
of increased execution time. In the worst case, where a
subject program’s procedure invocation structure is
sufficiently intricate, our analytic procedure may require
an amount of time which is exponential in the number of
functions rather than linear, as 1is the case for the

procedure in [Fosd 76].

Our hypothesis is that for most actual programs in need of
data flow analysis, the penalty in running time will be far
less severe, and will be amply justified by the greatly
sharpened analytic results and the thorough documentation of
the actual usage of pqinters which are obtained. This

hypothesis is to be explored by our experimentation.

- 30 -

REFERENCES

[Aho 79] Aho, A. V.; and Ullman, J. D. Principles of
compiler design, Addison - Wesley Publishing
Company, Reading, Mass., 1979,

[Boll 79] Bollacker, L. A., "Detecting Unexecutable
Paths Through Program Flow Graphs,' unpublished
Master’s thesis, Department of Computer Science,
University of Colorado, Boulder, CO, 1979.

[Fosd 76] Fosdick, L. D.; and Osterweil, L. J.
"Data flow analysis in software reliability,"
Computing Surveys Vol. 8, No. 3 [Sept. 1976],
305 - 330.

[Gann 78] Gannon, C., "JAVS: A JOVIAL Automated Verification
System," Proc. COMPSAC ‘78, November 1978, pp. 539-544.

[Harr 77] Harrison, William H., "Compiler Analysis of the Value
Ranges for Variables," JIEEE Trans. Software Eng.,
SE-3, no. 3 (May 1977), 243-250.

[Hech 75] Hecht, M. S.; and Ullman, J. D. "A Simple algorithm
for global data flow analysis problems,"
SIAM J. Computing 4 [Dec. 1975], 519 - 532.

[John 78] Johnson, S. C. "Lint, a C Program Checker,"
Computer Science Tech. Report, Bell Laboratories,
Murray Hill, New Jersey (July 1978).

[Kern 78] Kernighan, Brian W.; and Ritchie, Dennis M.

The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978.

[Oste

[Oste

[Rama

[Stuc

761

82]

75]

75]

- 31 =

Osterweil, L. J.; and Fosdick, L. D. '"DAVE —

a validation, error detection and documentation
system for FORTRAN programs,' Software Practice

and Experience, 6, no. 4 (September 1976), 473-486.

Osterweil, L. J., Fosdick, L. D., and Taylor, R. N.,
"Error and Anomaly Diagnosis Through Data Flow
Analysis," in Program Test Methods (Chandrasekaran
and Radicchi, editors), North Holland, 1982.

Ramamoorthy, C. V., and Ho, S. B. F., "Testing Large

Software With Automated Software Evaluation Systems,"
IEEE Trans. Software Eng., SE-1, no. 1 (March 1975),

46-58.

Stucki, L. G., and Foshee, G. L., '"New Assertion
Concepts for Self-Metric Software Validation,"
Proc. 1975 Int. Conf. Reliable Software, Los
Angeles, CA (April 1975), pp. 59-71.

