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Abstract: Aerosol vertical distributions impact both the direct and indirect radiative effects of aerosols.
High Spectra Resolution Lidar (HSRL) separates between atmospheric molecular signals and aerosol
particle signals and therefore can provide reliable measurements of aerosol properties. Six years of
HSRL measurements between 2014 and 2019 from the Department of Energy (DOE) Atmospheric
Radiation Measurement (ARM) North Slope of Alaska (NSA) atmospheric observatory at Utqiaġvik
are used to statistically analyze Arctic aerosol vertical distributions. The annual cycle of aerosol
vertical distributions in terms of aerosol particulate backscatter coefficient (βp), lidar scattering ratio
(SR), and aerosol particulate depolarization ratio (δp) profiles at the wavelength of 532 nm shows that
Arctic Haze events are prevalent in later winter and spring at the NSA site. Mineral dust is frequently
presented in strong aerosol layers in the spring, fall, and winter seasons. Over the summer season,
the NSA site has large aerosol loadings that are dominated by small spherical aerosol particles.

Keywords: aerosol vertical distribution; HSRL; arctic haze; transported dust

1. Introduction

Aerosols play an important role in the Arctic climate system [1–3]. The Arctic is
experiencing a faster warming rate than the global average based on both present-day
observations and model projections of future climate change—a phenomenon called Arctic
Amplification (AA) [4–6], which has significant impacts on Arctic ecosystem and global
climate [7]. However, controls on AA from different climate forcing factors are still under
debate [8]. Aerosols as a climate forcing factor play an important role in AA [9,10]. Aerosols
directly impact earth’s surface radiation by scattering or absorbing solar radiation (‘aerosol
direct effect’), and indirectly by altering cloud and precipitation micro- and macrophys-
ical properties by acting as cloud condensation nuclei (CCN) or ice nucleation particles
(INP) (‘aerosol indirect effect’) [11,12]. Changes in aerosol radiative forcing over the Arctic
could contribute as much as a quarter of the observed Arctic warming [13]. More impor-
tantly, aerosols as the source of CCN and INP play a critical role in cloud formation and
maintenance, cloud thermodynamic phase structure and precipitation efficiency, and there-
fore regulates Arctic cloud radiative properties and life cycles [14–18]. Persistent low-level
clouds are prevalent over the Arctic region and are often in the mixed-phase status in spring
and fall [19,20]. Mineral dust transported from low and middle latitudes could act as effi-
cient INPs and dramatically impacts cloud microphysical properties [21–23]. On the other
hand, low aerosol loading over the Arctic region may lead to a CCN-limited cloud-aerosol
regime, where a small increase of aerosol concentration will enhance cloudiness [16,24].

To better estimate aerosol radiative effect and to better understand aerosol-cloud
interactions, information on aerosol properties at cloud altitude levels and aerosol verti-
cal distributions are important [25,26]. Studies of Arctic aerosol physical properties and

Remote Sens. 2022, 14, 4638. https://doi.org/10.3390/rs14184638 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184638
https://doi.org/10.3390/rs14184638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3518-292X
https://doi.org/10.3390/rs14184638
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184638?type=check_update&version=2


Remote Sens. 2022, 14, 4638 2 of 15

chemical compositions have been performed at the surface by collecting aerosol samples
and analyzing them with in situ aerosol instruments [27,28]. However, there could be
dramatic differences in aerosol properties at the surface and at the cloud level [29]. Aerial
observatory facilities, such as aircraft and tethered balloon systems, could provide mea-
surements of aerosol vertical distributions that are invaluable for process-level studies of
aerosol-cloud interactions [30,31]. However, it is challenging to accumulate a large database
of aircraft in situ measurements for studying seasonal and interannual variations of aerosol
vertical distributions. Passive remote sensing instruments provide measurements that
can be used to retrieve column integrated or averaged aerosol properties, such as aerosol
optical depth (AOD) and column-mean aerosol size distribution [32,33] but are not able to
provide their vertical distributions. Active remote sensing, such as lidar measurements,
provide continuous observations of vertically resolved aerosol distributions. Especially,
spaceborne lidar, such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
on board the CALIPSO satellite, can provide aerosol vertical distributions as well as quan-
tify aerosol loadings on a global scale [34,35]. Over the Arctic region, Shibata et al. [36]
used 4 years of elastic scattering lidar measurements to examine free tropospheric aerosol
vertical structures and their seasonal variations at Ny-Ålesund (78.9◦N, 11.9◦E), Svalbard.

Advanced lidar systems are still needed to provide more accurate observations of
aerosol vertical distributions. Elastic lidar returned signals consist of contributions from
both atmospheric molecular scattering and aerosol particle scattering. A challenge of using
traditional elastic scattering lidars to study aerosol properties is that with the exception
of thick aerosol plumes and heavily polluted environments, the total light observed that
is scattered from molecules is often larger than the total light observed that is scattered
from aerosol particles. Therefore, a small calibration bias in molecular scattering could
cause a significant error in the aerosol backscatter coefficient estimation. Advanced lidar
systems, such as High Spectral Resolution Lidar (HSRL) and Raman Lidar (RL), can separate
molecular scattering and aerosol particulate scattering signals and therefore provide more
accurate measurements of aerosol properties over the polar regions [37–39].

In this study we use multiple years of HSRL measurements from the Department of
Energy (DOE) Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA)
atmospheric observatory at Utqiaġvik (formerly known as Barrow) (71.3◦N, 156.6◦W) to
study polar aerosol vertical structures and their characteristics. Section 2 gives a brief
introduction of atmospheric instruments focusing on HSRL at the ARM NSA observatory.
Section 3 shows statistical analyses of aerosol vertical distributions, their annual and
seasonal variations in terms of HSRL backscatter coefficient, lidar scattering ratio, and linear
depolarization ratio. Discussion of the results are presented in Section 4 and conclusions
are presented in Section 5.

2. Dataset and Methods

The DOE ARM NSA atmospheric observatory at Utqiaġvik is located on the northern
Alaskan coastline (Figure 1). The geolocation of the ARM NSA site was carefully selected
to enable observations of complex high-latitude ocean-atmosphere-ice interactions that are
poorly represented in climate models. Lacking local topographic obstacles, air masses from
local surface and the adjacent Arctic Ocean, and polluted air transported long-range from
low latitudes can all strongly influence aerosol physical properties and chemical composi-
tions, and their vertical structures at the NSA site [1,40]. The ARM NSA facility deployed a
comprehensive suite of advanced ground-based remote sensing and in situ instruments,
including lidars, radars, radiometers, the balloon-borne sounding system (SONDE), and
the aerosol observing system to measure aerosol, cloud, precipitation properties, and their
impact on atmospheric radiation budget [41,42]. The ARM NSA facility has been collecting
continuous data for almost 25 years since 1997, providing critical measurements to study
the rapidly changing atmosphere and climate of the Arctic.
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Figure 1. Geolocation of the DOE ARM NSA atmospheric observatory at Utqiaġvik (red star).

HSRL provides separated measurements of molecular and particle signals by taking
the advantage of distinct observed Doppler frequency shifts of scattered light caused by
molecular velocities and particle motions [43]. Particulate backscatter coefficient (βp) can
be absolutely calibrated by reference to the molecular scattering. The molecular scattering
profile at a given wavelength of the incident light can be calculated from temperature and
pressure profiles measured using SONDE. ARM HSRLs use a narrow field of view receiver
of 45 microradians and a narrow optical filter bandwidth of 6 GHz, which effectively
reduce the background noise due to scattered sunlight [44]. After careful calibrations, ARM
HSRLs provide continuous profiles of βp, lidar scattering ratio (SR), as well as particulate
linear depolarization ratio (δp) at 532 nm with a vertical resolution of 30 m from near
the surface to 30 km above the ground level (AGL) and with a temporal resolution of
30 s (https://www.arm.gov/capabilities/instruments/hsrl (accessed on 18 August 2022)).
Since at high altitudes lidar signals are usually dominated by background noise (especially
the detector noise), we only look at aerosol structures below 8 km. From just molecules
(βm(z)) at a given altitude z, SR(z) is the ratio of the total backscatter to the backscatter:

SR(z) =
[
βp(z) + βm(z)

]
/βm(z) (1)

Because using SR can easily identify signals that are larger than that expected from
clear air, SR usually is preferred to βp for the detection of aerosol layers [38]. The ratio of
the cross-polarization particulate signal (Sp⊥(z)) to the co-polarization particulate signal
(Sp‖(z)) at a given altitude z is: δp(z).

δp(z) = Sp⊥(z)/Sp‖(z) (2)

The depolarization observations allow for robust detection of the presence of irregular
particles, such as mineral dust and ice crystals. The ARM HSRL measures particulate
depolarizations using circular polarizations. In order to more readily compare our results
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with previous studies of Arctic aerosol depolarizations, HSRL circular depolarizations are
converted to linear depolarizations using the algorithms provided by Flynn et al. [45]. The
HSRL at the ARM NSA facility was deployed in April 2011. Because HSRL data between
2011 and 2013 are missing due to instrument issues, we use HSRL measurements from 2014
to 2019 for aerosol analysis in this study.

Table 1 lists the main instruments and their measurements used in this study for
analysis at the NSA Utqiaġvik site. An advantage of using the ARM atmospheric obser-
vatory facilities is the synergy of HSRL with other instruments. Coincident HSRL and
Ka-band ARM Zenith Radar (KAZR) measurements provide the most reliable detection
of cloud and precipitation vertical distribution and are used to identify cloud-free condi-
tions. Passive remote sensing instruments, such as the multifilter rotating shadowband
radiometer (MFRSR), provide measurements that can be used to retrieve column integrated
AODs at 5 narrowband channels of 415, 500, 615, 673, and 870 nm through the Aerosol
Optical Depth derived from MFRSR measurement (AOD-MFRSR) value-added product
(VAP) (https://www.arm.gov/capabilities/vaps/aod-mfrsr (accessed on 18 August 2022)).
Aerosol Ångström exponent (AE) is calculated using AOD (τaerosol) at the 415 and 870 nm
wavelength through the equation:

AE = −log
[

τaerosol(λ = 415 nm)

τaerosol(λ = 870 nm)

]
/log

(
415
870

)
(3)

In general, large AE values (e.g., greater than 2) indicate the dominance of small
particles in the column and vice versa [46]. It is noted that the up-looking MFRSR measures
transported global and diffuse solar irradiances, therefore, MFRSR AOD is only available
during the daytime. The SONDE system was launched twice daily, which provides at-
mospheric pressure, temperature, and humidity profiles. Details of ARM atmospheric
observatory instruments can be found on the ARM webpage (https://www.arm.gov/
capabilities/instruments (accessed on 18 August 2022)).

Table 1. Main instruments and measurements at the NSA Utqiaġvik site.

Instruments Wavelength/Frequency Temporal/Vertical Resolution Measured and/or Derived Quantities

HSRL 532 nm 30 s/30 m Lidar backscatter coefficient, scattering
ratio, and depolarization ratio [47]

KAZR 35 GHz 2 s/30 m Radar reflectivity factor and Doppler
velocity [48]

MFRSR 415, 500, 615, 673, 870, and 940 nm 20 s/column integrated
Aerosol optical depth at 415, 500, 615, 673,

and 870 nm; Ångström exponent of 415
and 870 nm

SONDE 2 times per day/~20 m Atmospheric pressure, temperature, and
moisture profiles

To eliminate cloud impacts on aerosol property analysis, cloudy profiles identified
from coincident lidar and radar measurements are removed. In this study, we directly use
the ARM Active Remote Sensing of Clouds product using Ka-band ARM zenith Radars
(KAZRARSCL) VAP (https://www.arm.gov/capabilities/vaps/kazrarscl (accessed on 18
August 2022)) to find cloudy profiles and remove them. In addition, cloud-free profiles that
are within 5 min of a cloudy profile are also removed to avoid aerosol wet growth at cloud
edges. If a day is too cloudy and cloud-free conditions are less than 10 min, all profiles in
the day are removed.

To demonstrate the capability of HSRL for aerosol observations, Figure 2 shows an
example of HSRL measurements on 22 March 2016 at the NSA site. From the figure, we
can see that multiple aerosol layers are observed from the surface to 8 km. Near the
surface, a thin aerosol layer is presented within the boundary layer starting at the 5:00
Coordinated Universal Time (UTC) until the end of the day (Figure 2a,b). Figure 2c shows

https://www.arm.gov/capabilities/vaps/aod-mfrsr
https://www.arm.gov/capabilities/instruments
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that this aerosol layer has small δp, indicating non-depolarizing aerosols are prevalent in the
layer. Although there are many fine aerosol structures observed with HSRL measurements,
another distinct feature in Figure 2 is the strong elevated aerosol layer from ~2 to 3.5 km
between 10:00 and 20:00 UTC and a relatively weaker aerosol layer at ~4 km between
11:00 and 15:00 UTC. Both these two aerosol layers have δp larger than 0.1, indicating non-
spherical aerosol particles, such as mineral dust, dominate the two layers. Other noticeable
aerosol layers include the weak aerosol layer between 7 and 8 km from 0:00 to 8:00 UTC
and the aerosol layer at ~6 km after 20:00 UTC. Both of them have large δp, indicating that
they are transported dust layers from low-latitude regions. It is also noticed that there are
occasionally distinct vertical stripes in HSRL signals that show slightly lower values than
the surrounding profiles as can be seen in Figure 2a,b, which might be caused by issues of
spectral purity of the laser light or poor temperature control of the iodine cell of the HSRL
system. These vertical stripes are not expected to have a dramatic impact on our long-term
statistical analysis.
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Figure 2. An example of HSRL measurements on 22 March 2016 at the NSA site. (a) time-height
plot of HSRL particulate backscatter coefficient (βp); (b) scattering ratio (SR); (c) particulate linear
depolarization ratio (δp).

To get a closer look at the values of these variables, Figure 3 presents vertical profiles
of HSRL βp, aerosol SR, and δp at the 15:00 UTC on the same day. Even for distinct
aerosol layers near the surface and at altitudes between 2 and 4 km, βp is much smaller
than βm. This illustrates the importance of separating molecular and aerosol particulate
signals, and the necessity of deploying advanced lidar systems for aerosol observations.
SR ranges from 1.0 to 1.45 at different altitudes and the SR profile clearly shows aerosol
layers near the surface and at altitudes of ~1, 1.6, 2–3.5 and 3.8 km, while the δp profile
outlines dramatic differences in terms of particle shapes between aerosol layers above
and below 2 km. The HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT,
https://www.ready.noaa.gov/HYSPLIT.php (accessed on 18 August 2022)) model of the
U.S. National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory
was used to estimate the sources for the observed aerosol layers. Figure 4 shows the
HYSPLIT 20 days backward-trajectories starting at the three altitudes of 0.3, 2.3, and 3.8 km
(blue stars in Figure 3) at the NSA site on 22 March 2016, 15:00 UTC. The trajectories point
to Southeast Asia as the origin of the aerosol layers at 2.3 and 3.8 km, while Northern
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Europe was the origin of the aerosol layer at 0.3 km. Large δp values for aerosol layers at
2.3 and 3.8 km are probably related to prevalent dust events in Southeast Asia in spring [35].
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3. Results

Using 6 years of HSRL data between 2014 and 2019 at the NSA site, in total 490,140
clear sky HSRL profiles were selected for analysis. From the ARM data discovery webpage
(https://adc.arm.gov/discovery/#/results/s::nsa%20hsrl (accessed on 18 August 2022)),
the ARM HSRL at the NSA observatory was up to provide continuous measurements
except between 11 May 2017, and 7 September 2017. HSRL data between 22 November
2017 and 26 April 2018 are marked as ‘suspect’ due to the artifact caused by instrument
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double-pulsing and are not included in our analysis. Figure 5 shows monthly-mean clear
sky occurrences of frequency at the NSA site, which range from 0.13 in August and 0.43 in
April. The monthly-mean clear sky occurrence of frequency is derived as the ratio of the
number of cloud-free profiles to the number of all profiles at a given month using the ARM
KAZRARSCL VAP data. In general, the winter and early spring seasons have higher clear
sky occurrences than the summer and fall seasons because persistent low-level clouds are
prevalent in the summer and fall seasons [17,49,50].
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Figure 6 presents the probability distribution function of βp and βm, aerosol SR, and
δp between the surface and 8 km. βp (βm) has an averaged value of 1.6 × 10−7S−1

r m−1

(1.2 × 10−6S−1
r m−1) with a standard deviation of 8.7 × 10−7S−1

r m−1 (1.0 × 10−6S−1
r m−1).

In general, βp is approximately an order of magnitude smaller than βm at the wavelength
of 532 nm. Consistently, SR has an averaged value of 1.13 with a standard deviation of 0.11.
The SR distribution shows two peaks at 1.05 and 1.17. From Equation (2), when particulate
signals are weak, δp will be noisy, causing misleading information about aerosol particle
shapes. Therefore, we only use δp of relatively stronger particulate signals for analysis.
Considering the two peaks in the SR distribution, we use a threshold value of 1.15 (the
dashed line in Figure 5) to separate weak vs. strong particulate signals (referred as ‘weak
aerosol layer’ and ‘strong aerosol layer’ correspondingly hereafter) and only include δp for
analysis when SR is above 1.15 through the study. In addition, δp with negative values or
greater than 1 are removed for the δp analysis. Approximately 28.3% of HSRL pixels have
SR above the threshold between the surface and 8 km. δp has an averaged value of 0.05
with a standard of 0.10.

Continuous HSRL observations provide a good opportunity to examine the annual
cycle of aerosol vertical distributions. Figure 7 provides daily averaged vertical profiles of
βp, SR, and δp from the surface to 8 km and their annual cycles. Above 8 km, HSRL signals
are much nosier, especially during daytime. We therefore limit our analysis below 8 km. If
no cloud-free profiles are found in a given day, the daily-averaged vertical profiles are set
to be missing and are shown to be black in the plots. Similarly, if no strong aerosol layers
with SR greater than the threshold of 1.15 are found at a given altitude in a day, the daily
averaged profiles at the altitude are set to be missing. From Figure 7a,b there is a clear
increase of free troposphere aerosol loadings starting in mid-February until May, indicating
the prevalence of Arctic Haze in late winter and spring [51]. Interestingly, the Arctic Haze
top height also increases from near the surface in mid-February up to 8 km in April and
May, as can be seen from Figure 7b. Such variations of Arctic Haze vertical distributions
have dramatic impacts on Arctic surface radiative budget and cloud radiative forcing [52].
There are also large aerosol loadings in July and August from the surface up to 8 km with
small δp from Figure 7, which are probably transported marine aerosols from the adjacent
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Artic Ocean during the summer open-water period [53]. From September to December, free
troposphere aerosol loadings are generally low. Figure 7c shows that large δp are presented
above 2 km from January to April and from October to December, indicating the presence of
transported mineral dust at the NSA site. Observations of transported dust layers and their
impacts on Arctic clouds especially mixed-phase cloud have been investigated by previous
studies, e.g., [22,23]. It should be noted that δp analysis is only applied to strong aerosol
layers, therefore, dust embedded in weak aerosol layers are not included in the analysis.
Probably because dust particles are mixed with other spherical particles during the long-
range transportation, δp of the Arctic Haze observed in later winter and spring have values
generally smaller than 0.1, and δp are generally small through the whole vertical column
from May to September, indicating the dominance of spheric aerosol particles, such as
smoke and marine aerosols during this period.
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To analyze aerosol variations more quantitatively, Figure 8 shows seasonal mean
profiles of βp, SR, and δp. From Figure 8a,b, in general both βp and SR decrease with the
altitude. The spring and summer indeed have larger βp and SR in the free troposphere than
the fall and winter seasons. Within the lowest troposphere (e.g., below 1 km), however,
summer has the smallest βp and SR, compared to other seasons. Elevated aerosol layers
are occasionally observed above 6 km during the fall season, as shown in both Figure 7a,b
and Figure 8a. Figure 8c shows that spring, fall, and winter have larger δp than the summer
season, indicating that mineral dust is frequently presented in strong aerosol layers in these
seasons at the NSA site. On the other hand, whether mineral dust is present in weak aerosol
layers, is unknown due to the limit of using δp. The fall δp profile has larger values in the
mid-troposphere between 2 and 4 km, while the winter and spring seasons have larger δp
values at the upper troposphere above 4 km, suggesting mineral dust aerosol layers come
from different origins for different seasons.
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Figure 8. Seasonal mean profiles of (a) βp; (b) SR; (c) δp. MAM (March-April-May) represents the
spring season, JJA (June-July-August) for summer, SON (September-October-November) for fall, and
DJF (December-January-February) for winter.

Combined HSRL and passive remote sensing measurements could provide complimen-
tary information on aerosol properties. Figure 9 shows boxplots of monthly distributions
of mean βp between the surface and 2 km (βp_0−2) and mean βp between 2 and 8 km
(βp_2−8), MFRSR AOD at the wavelength of 500 nm (AOD500nm), and MFRSR aerosol AE.
Considering the challenge to obtain accurate boundary layer height at the NSA site [54],
we use a height threshold of 2 km to roughly separate βp for the lower troposphere and the
upper troposphere. From Figure 9a, βp_0−2 is smaller in June and September but shows
little variations among other months. βp_2−8, on the other hand, shows clear monthly
variations with larger values in MAM and JJA and smaller values in SON and DJF, which
is consistent with Figures 7 and 8. Figure 9b shows that AOD500nm has larger values in
March, July, and October and smaller values in September, a similar monthly variation as
βp_0−2, suggesting that low altitude aerosol loadings dominate the AOD at the NSA site.
Unfortunately, MFRSR retrievals are not available during the polar night from November
to February at the NSA site. Figure 9c shows that AE has a clear monthly variation with
larger values in June, July, and August and smaller values in March and October, indicating
the dominance of smaller aerosol particles in the summer season and the dominance of
large aerosol particles in March and October.
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4. Discussion

In this study, analyses using multiple years of HSRL measurements provide an im-
proved understanding of aerosol vertical distributions at the ARM NSA observatory. By
effectively separating molecular signals and aerosol particulate signals, HSRL measure-
ments provide unprecedented observations of Arctic aerosol fine structures, as shown in
Figure 1. Shibata et al. [36] conducted a similar analysis of Arctic tropospheric aerosol over
Ny-Ålesund, Svalbard using two-wavelength elastic scattering lidar at the wavelength of
532 and 1064 nm. In the study, they assumed an extinction-to-backscatter ratio (lidar ratio)
of 40 sr to invert lidar signals to get an aerosol backscatter coefficient and a particulate
depolarization ratio using the Fernald method [55], which brings an additional uncertainty
in Arctic aerosol property analysis. HSRL observed Arctic Haze structures and their annual
cycle and the presence of dust particles in strong aerosol layers in the spring, fall, and
winter seasons are consistent with previous studies but with higher temporal and vertical
resolutions [56–58].

The dataset and analyses presented in this study can be readily used to validate
model simulations of Arctic aerosol distributions, especially for those with lidar simu-
lators. Climate models have difficulty reproducing seasonal variations of Artic aerosol
distributions due to the lack of observational constraints on aerosol wet and dry removal
processes [59]. Ground-based and spaceborne lidar observations have been used to validate
simulated aerosol concentrations over the Arctic region by comparing lidar-observed βp
with calculated βp from model outputs together with a lidar simulator [60]. The annual
cycle and seasonal variations of βp presented in this study can be directly used to compare
with model simulations. The analyses of aerosol vertical distribution can also be used
to improve the understanding of complex cloud-aerosol interactions over the Arctic re-
gion [17]. Aerosol layers presented at different altitudes could exert different impacts on
Arctic clouds [61]. The vertical structures of Arctic Haze and dust-containing aerosol layers
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from HSRL measurements provide a good dataset that can be used to study aerosol impact
on long-persistent mixed-phase clouds at the NSA site [62,63].

HSRL measurements can also be used to derive particulate extinction coefficient
profiles from the measured molecular signals [43]. However, HSRL photon counting
noise and imprecise overlap function corrections at the near range could cause large
uncertainties in the derived particulate extinction coefficient when the signal-to-noise
ratio is small. Eloranta [43] suggested that HSRL provides useful particulate extinction
coefficient estimation when the extinction exceeds ~10−4 m−1. Considering that Arctic
aerosol loadings are often lower than this threshold and large uncertainties in particulate
extinction coefficient estimations could dramatically impact statistical analysis results,
we did not include particulate extinction coefficient in our analysis in this study. It is
also noted that single-wavelength lidars have their limits and are not able to provide
aerosol microphysical property retrievals. Multi-wavelength lidar measurements using
three backscatter channels plus two extinction channels could be used to provide retrievals
of aerosol microphysical property profiles including aerosol effective radius, total number
concentration, and complex refractive index [64,65]. Deployment of advanced multi-
wavelength lidar systems at polar regions is needed to further improve the understanding
of aerosol processes and their impacts on cloud properties.

A limitation of ground-based remote sensing measurements at a given observatory is
that they only cover a small region. There could be large spatial variations of aerosol vertical
distributions across the entire Arctic region. Mobile facilities carrying advanced remote
sensing instruments could alleviate this limitation. Recently, two advanced lidars, including
RL and HSRL, were onboard the drifting Polarstern during the Multidisciplinary drifting
Observatory for the Study of Arctic Climate expedition (MOSAiC), providing explicit
aerosol vertical distribution measurements over the Central Arctic [59,66]. Spaceborne
lidars onboard a polar-orbiting satellite, such as the Lidar In-space Technology Experiment
(LITE) and CALIOP, provide aerosol three dimensional distributions on a global scale [67].
In the near future, the first space-borne HSRL will be launched during the Cloud, Aerosol,
and Radiation Explorer (EarthCARE) mission, which will provide more reliable atmospheric
aerosol distributions over the polar regions [68].

5. Conclusions

Aerosol vertical distributions dramatically impact both aerosol direct and indirect
radiative effects. Advanced lidar systems, such as the High Spectra Resolution Lidar (HSRL)
and Raman Lidar (RL), can effectively separate atmospheric molecular signals and aerosol
particle signals, which provide reliable measurements of aerosol properties over the Arctic
regions. We use 6 years of HSRL measurements from the Department of Energy (DOE)
Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) atmospheric
observatory at Utqiaġvik to analyze Arctic aerosol vertical distributions. We focus our
analysis on aerosol particulate backscatter coefficient (βp), lidar scattering ratio (SR), and
aerosol particulate depolarization ratio (δp) profiles. The main findings are listed below.

(1) A case study on 22 March 2016 at the NSA site shows that HSRL is able to observe
fine aerosol vertical distributions. Aerosol layers at different altitudes have different
origins according to the National Oceanic and Atmospheric Administration (NOAA)
HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory
model simulations;

(2) Probability Distribution Functions (PDFs) of βp, SR, and δp from 6 years of HSRL
data confirm that βp is generally one order of magnitude smaller than atmospheric
molecular scatter (βm). Considering that δp is noisy when lidar signals are weak, we
use a SR threshold value of 1.15 to separate weak aerosol layers and strong aerosol
layers; δp is only analyzed when SR is above 1.15 through the study;

(3) The annual cycle of aerosol vertical distributions shows that Arctic Haze events are
frequently observed in later winter and spring at the NSA site. Top heights of the
Arctic Haze increase from near the surface in February to 8 km in April and May.



Remote Sens. 2022, 14, 4638 12 of 15

Large aerosol loadings with small δp are observed in July and August, which could
be caused by transported marine aerosols from the adjacent Artic Ocean during the
open-water period. In addition, mineral dust is frequently presented in strong aerosol
layers in the spring, fall, and winter seasons at the NSA site;

(4) Combined HSRL and multifilter rotating shadowband radiometer (MFRSR) data show
that aerosol optical depth (AOD) at the wavelength of 500 nm have similar monthly
variations with low altitude aerosol loading. MFRSR derived aerosol Ångström
exponent (AE) between the 415 and 870 nm shows larger values in June, July, and
August, and smaller values in March and October, indicating the dominance of smaller
aerosol particles in the summer season and the dominance of large aerosol particles in
March and October.
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