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Chapter 1

Introduction

Completing large-scale phylogenetic analyses is becoming increasingly im-

portant as the number of biological sequences grows. In particular, datasets are

larger than ever before because of high-throughput sequencing technologies, such

as pyrosequencing [31], making analyses correspondingly more computationally

intensive. The evolutionary history of horizontal gene transfer (HGT) has impor-

tant implications for human and ecosystem health. Finding the most efficient and

accurate workflow for detecting HGT events is crucial to understanding the role

HGT has played in evolution. HGT detection using phylogenetic methods is ex-

tremely sensitive to the inference of the phylogenetic trees used for detection. The

tree inference itself is dependent on the parameters used and the dataset being

analyzed. To improve HGT detection we need to optimize the results of recon-

struction methods. Computational requirements for phylogenetic reconstruction

scale poorly as larger datasets are used.

1.1 Basic Biology Overview

The central dogma of biology is that information flows from DNA to RNA

to protein. HGT events occur at the DNA level. DNA, deoxyribonucleic acid, is
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a nucleic acid molecule containing the genetic information in all of our cells [50].

This genetic information provides instructions that determine our specific traits

that make us different from one another. The building blocks of DNA are the

four nucleotides adenine (A), cytosine (C), guanine (G) and thymine (T). In 1953

Watson and Crick proposed that DNA was structured as a double helix, which

looks similar to a spiral staircase. Each side of the double helix contains the same

set of repeating nucleotides, but they are in opposite directions from one another,

or anti-parallel. This occurs because of base pairing, A pairs with T and G pairs

with C. So if there is an A on one side of the double stranded DNA it pairs with

a T on the other strand.

Ribonucleic acid (RNA) is made from DNA by a process called transcription

[50]. RNA is also a carrier of genetic material. RNA is built from three of the

same nucleotides as DNA, but thymine is replaced by uracil (U). Most RNA is then

translated into proteins, but some remains as RNA. These proteins and functional

RNAs perform the tasks specified by our genes. A gene is a section of DNA that

encodes for a specific RNA or protein needed by the organism. As species evolve,

genetic material changes to code for this evolution. We refer to the change of a

nucleotide in DNA as a substitution or mutation.

1.2 Phylogenetics

Phylogenetics is the study of the relationships between organisms based on

their evolutionary history; phylogenetic reconstruction is a subset of phylogenetics.

Phylogenetic reconstruction methods are used to try and determine the historical

relationships among organisms given their biological sequences. The species are
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leaves of the tree while all the connecting branches show how those species are

related. An ongoing effort in biology is to reconstruct the “Tree of Life,” which is

an evolutionary tree relating all species on earth to one another. This obviously

requires methods that can reconstruct accurate phylogenies for a large number of

taxa in a reasonable amount of time. The two general categories of reconstruction

methods are distance-based and character-based [10].

Distance-based methods such as Neighbor-Joining [41] use a matrix of dis-

tances between pairs of taxa in a sequence alignment to build a tree. NJ methods

are apid, but since it is usually a fast method since it only examines the dis-

tances some of the information that is important in determining evolution is lost.

Maximum likelihood [14] and maximum parsimony [11] are both character-based

methods, these methods generate all possible topologies and statistically deter-

mine which topology is the best given each column of the sequence alignment.

Character-based methods are typically more accurate, but they are very slow

since all possible trees need to be considered.

1.3 Horizontal Gene Transfer

Horizontal gene transfer (HGT) is the movement of genetic material from

one strain or species to another. Bacteria are asexual, and it was thus once believed

that genes in bacteria were simply transferred vertically with each lineage, but

we now know they can also be transferred horizontally. In 1958 Joshua Lederberg

was awarded the Nobel Prize for discovering conjugation, a mechanism of bacterial

gene exchange that is a major cause of HGT. HGT is most common in bacteria

and archaea, but studies have shown that it also occurs in some eukaryotes [19].
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Over the years many researchers have attempted to determine the extent of HGT

throughout the “Tree of Life”, but these studies have yielded conflicting results,

leaving unanswered the question of how pervasive HGT is in biology. Although

the extent of HGT is not known, comparisons that have been done on genomes of

closely related species suggest an alternative to the “Tree of Life”. For example

the completely sequenced genomes of three strains of E. coli were compared and

shown to have only 39.2% of their combined sets of genes in common [51]. Ge

et al. [15] suggests that there is still the underlying “Tree of Life” representing

the vertical transfers, but it contains small “cobwebs” that represent all of the

horizontal gene transfers without changing the underlying tree.

HGT has profound implications on ecology, evolution, and medicine [36].

It has played an important role in bacterial evolution and diversity by allowing

species to acquire the necessary genes to adapt to new environments. HGT also

has important medical implications because it provides a means for bacteria to

acquire resistance to antibiotics. Since HGT has had a great impact on the world,

further study of HGT and its consequences is essential.

Developing new computational techniques to detect genes that have been

transferred among species will guide future biological experiments to understand

the diverse effects of HGT on biology. Having the ability to detect HGT events

accurately will improve our ability to infer the evolutionary history of species,

which is a major ongoing effort in biology. This research could have an ecological

impact by providing insight into new ways to adapt bacteria to new environments

in which they otherwise could not thrive, but where their presence would cause

improvement. Alternatively, if certain bacteria has invaded an environment and

caused problems, identifying and understanding HGT could help us find ways to
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rid the bacteria from the environment. HGT detection could also lead to new

testable predictions about the functions of genes in multiple species. Moreover,

new understandings of HGT that follow from research in this area could lead to

the identification of new drug targets, thereby advancing medical research. This

in turn will help with fighting infections that otherwise might not be cured due to

the vast problems resulting from bacterial resistance to current antibiotics. It is

apparent that there is significant motivation for the development of new methods

for HGT detection.

Detection of HGT events has been studied extensively, but no method can

accurately detect all transfers that have occurred [39, 40]. HGT detection meth-

ods can be split into two different categories: compositional and phylogenetic.

Compositional methods are those that examine the genomic sequence to look for

atypical regions. For example, assessing GC content to find genes that exhibit a

difference from the bulk of the genome [26]. Phylogenetic methods seek to find

disagreements within the topology of a phylogenetic tree by comparing several

gene trees with a species tree or with other gene trees. In doing so, these methods

attempt to find the HGT events that might have caused this disagreement to oc-

cur. When comparing a gene tree and species tree, if the gene tree has a different

topology than the species tree then it could mean that the gene was transferred

from one species to another at some point in time. However, inferring gene trees

correctly can be very challenging because fast-evolving genes have a poor signal

deep in the tree. Hence, there may be stochastic variation in gene trees due to

noise around this poor signal that can be mistaken for HGT. The species trees

are also imperfectly known, they are usually determined with inference methods

that use a sequence alignment to infer the tree; however, no inference method is

exact.
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The overall aim of this thesis is to provide additional insight into the ar-

eas of computational biology involving phylogenetics and HGT. More specifically,

benchmarking phylogenetic reconstruction methods, developing new tools for de-

tecting HGT, using existing methods of HGT detection, and putting together a

framework to help users of phylogenetic detection methods. The necessary first

step was to obtain a detailed characterization of the commonly used phylogenetic

reconstruction programs. This was important to give us an understanding of

how well tree inference methods perform, and which perform better overall. This

knowledge is important in deciding the appropriate reconstruction method to use

when building the trees for phylogenetic HGT detection.



Chapter 2

Benchmarking of Different Methods of Building Phylogenetic Trees

2.1 Motivation

The goal for this project was to discover what if any conditions yield high

quality phylogenies despite the limitations of the current inference methods. Specif-

ically, we were interested in how the sequence length, the representation of individ-

ual families, and total number of sequences affect the reconstruction methods. To

answer this question, we generated over 15,000 phylogenetic trees and simulated

about 200,000 sequence alignments from these trees. Then the alignments were

used to infer trees with three widely used inference methods producing around

2,100,000 results. The resulting trees were compared to the original trees by their

tip-to-tip distance as well as the ratio of the number of correctly recovered mono-

phyletic groups. This took approximately 2 months using 750,000 CPU hours

on Frost, a 8,192 processor BlueGene/L system at the National Center for At-

mospheric Research (NCAR). The project was done in collaboration with Norm

Pace’s lab in the Molecular, Cellular, and Developmental Biology Department and

Henry Tufo’s lab in the Computer Science Department. I specifically put together

the code to run the simulations and generate the graphs. I helped with code for

the metrics of comparison and the design of the database.
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2.2 Phylogentic Reconstruction Methods

The three applications used in this analysis were FastTree, ClearCut, and

RAxML [38, 45, 47]. FastTree and Clearcut use modified versions of the Neighbor-

Joining algorithm. Both of these programs have relatively light computational

requirements. Clearcut has a memory footprint of O(N2) while FastTree is only

O(NLa), where N is the number of sequences, L is the width of the alignment

and a is the size of the alphabet. RAxML is a maximum likelihood-based method

that is computationally heavy and also has large memory requirements, but it has

been known to produce high quality results.

2.3 Simulations

Determining the optimal conditions for reconstructing phylogenies required

the use of simulated sequences over a controlled set of parameters defining their

generation. To do so required the construction of biological-like trees in which

sequences could be derived from. These sequences were then used for phylogenetic

reconstruction, the result of which could be directly compared to the original tree

from which the sequences were based on. Five datasets varying several parameters

were simulated (see Table 2.1). To begin we used sequences from the small subunit

rRNA alignment in the Greengenes database with about 125,000 sequences from

the Guerrero Negro(GN) microbial mat [27] added to the alignment. We also

used a phylogenetic tree from the ARB [29] database that is based on parsimony
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insertion of the GN sequences to the baseline tree that was released by Greengenes

[9]. The subtrees for all of the experimentally determined divisions with over

1,000 sequences were extracted from the tree. Only the species with over 1,250

nucleotides in the alignment were used for the study. The topologies of subtrees,

20 total, were then “grafted” onto varying backbone topologies providing many

simulated phylogenetic trees. The backbone tree topologies were star, comb, and

balanced as shown in Figure 2.1.

A) B)

C)

Figure 2.1: We“grafted” experimentally determined divisions on to. A) star, B)
comb, C) balanced.

We then varied the number of divisions “grafted” onto the backbone topol-

ogy using sampling with replacement. The number of species on the tree was

another parameter that we chose to look at; the species were sampled using both

random and balanced sampling. For random sampling, each of the divisions was

“grafted” onto the backbone once and n number of species was randomly cho-

sen from all the species on the tree and a subtree was formed containing only

those species. Balanced sampling was performed by randomly choosing the n/k

sequences from each of the divisions where n is the total number of species and k

is the number of divisions on the tree. The final parameter varied for the construc-

tion of simulated trees was the internal branch length on the backbone topology.
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Seven different internal branch lengths were used: 0.01, 0.02, 0.03, 0.04, 0.05,

0.075, 0.10.

After generating over 15,000 phylogenetic trees we used the PyCogent [25]

SeqSim module that utilizes an evolutionary model to simulate biological-like

sequences based on the phylogeny of each tree. The sequences were simulated

with different lengths, as the quality of inferred trees likely depends on the length

of the sequences; longer sequences means more data explaining the evolutionary

history. Additionally, we used different evolutionary rate-matrix strategies for

simulating the sequences. The strategies were: (i) a single empirically determined

matrix, propagated through the tree; (ii) a single empirically determined matrix

for each division and propagated through the division; (iii) a matrix at each tip

that is empirically determined from the division that tip is in, propagated back

through the tree; (iv) a randomly generated matrix at each node. Some of the

datasets also contained multiple replicate alignments for each tree. Since the

inference programs had difficulties with the names of the species in the sequences,

we remapped them to simple names and created a mapping file to relate the

species names on the simulated tree with the corresponding names on the inferred

trees. All of the parameter information is stored in the filename for the tree and

the filename for its alignment for easy parsing and file identification. Code was

written to automate the generation of the simulated trees and their alignments.

Table 2.1: Description of the parameters that were varied in each of the datasets.
cc= ClearCut, ft = FastTree, rx = RAxML

Dataset Sequence Length (nt) Number of Species Rooted Methods Number of Replicates
1 250, 400, 1250 128, 256 No cc, ft, rx 1
2 250, 400, 1250, 2500, 10000 512, 1024 No cc, ft 1
3 250, 400, 1250 128, 256 Yes cc, ft 50
4 250, 400, 1250 128,256 Yes rx 1
5 250, 400, 1250, 2500, 10000 512, 1024 Yes cc, ft 10
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2.4 Data Collection and Organization

2.4.1 Tree Inference

Next, the alignments generated for each simulated tree were used to obtain

an inferred tree. If the inference methods were perfect then we would observe

the inferred tree to be identical to the simulated tree that the alignments were

evolved from. However, the inference methods are not perfect, which leads to

discrepancies between the two trees. The reconstruction programs we used are:

RAxML, ClearCut, and FastTree. Each program also has different parameters

depending on the specific method you wish to use so we varied these as well. For

ClearCut we used 6 different parameters: Neighbor-Joining (NJ) and relaxed NJ

with no distance corrections, NJ and relaxed NJ with Jukes-Cantor correction,

NJ and relaxed NJ with Kimura correction. There were four parameters for

FastTree in the study: no distance correction and Jukes-Cantor correction for each

of regular NJ and BIONJ. Since RAxML has large memory and computational

requirements we only ran it with its default parameters using the GTRMIX model.

The alignments are then passed to each program for each parameter combination.

The result filenames contain the original tree filename plus the method used and

the method parameters.

2.4.2 Post Processing

Post-processing scripts were written to compare the original “true trees”

to the inferred trees and create friendly tab delimited files to be loaded into a

database. The inferred trees were compared to the simulated trees using two
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scoring metrics: Tip-to-Tip Distance and Monophyletic Recovery Ratio. The

Tip Distance Score is based on the Pearson correlation coefficient between the

two trees tip-to-tip distance matrices, the resulting correaltion is coerced into a

distance where 0 is idential and 1 is completely different. A lower score indicates

that the true branch lengths were recovered well. The Monophyletic Recovery

Ratio compares the monophyletic groups of both trees and represents the average

monophyletic recovery in the result tree. A monophyletic group, specifically, is

a subtree in which the tips are all of a common family. A high score indicates

that the monophyletic groups were recovered well. PyCogent contains code that

calculates the Tip Distance Score.

2.4.3 Data Management

Since the scale of this project is very large it would have been impossible to

look through all of the data by hand. For this reason, we created a database with

MySQL where all the data is stored in two tables. One of the tables contains all

of the information for the original trees and the other table stores the result trees

parameters and the different scoring metrics. These tables were then joined using

private keys and foreign keys for efficient searching of the database for results

matching any of the parameters in either table. After preparing and populating

the database we turned to the Python interface with MySQL to automate queries

so that they could easily be varied by all of the parameters. This helped explain

how each of the parameters affected the accuracy of each of the inference methods,

by allowing me to directly build graphs from the queries.
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2.5 Visualization and Interpretation of Results

From the analysis I observed that the method that performed the best at re-

covering branch lengths, the one with the lower Tip-Distance Scores, was RAxML

slightly, but FastTree performed similarly. Clearcut does not appear to recover

branch lengths well as the majority of its results fell above a Tip Distance Score

of 0.1, which seems to be the cut-off for both RAxML and FastTree. However,

when looking at ClearCut’s performance on monophyletic recovery, it did do bet-

ter than RAxML and FastTree. This leads to the conclusion that ClearCut does

not effectively recover tip-distances, but if only the topology of the phylogenetic

tree is important it might be the best choice for analysis. Although RAxML is

the best choice for recovering tip-distances and fairs well against the others on

recovering monophyletic groups, is has much greater computational requirements

than the other two. FastTree compared nicely to RAxML and ClearCut on both

scoring metrics and has light computational and memory requirements.

Both of the scoring metrics indicate that longer sequences improve the re-

construction across all methods (Figure 2.3). This is to be expected since longer

sequences allow for more data describing the evolutionary relationships between

the species. Unfortunately, RAxML’s computational requirements limited us to

sequences up to a length of 1250 nucleotides, but there is a significant enough

difference between the lengths we do have to suggest that the pattern would con-

tinue similarly to the other two methods. Although longer sequences clearly help

the inference methods, sequences as large as 10,000 are not possible right now.

Most sequencing techniques are providing many more sequences than they used

to, but the length of the sequences remains relatively short. The results show



14

        

      
Figure 2: Monophyletic scores by method. ft = FastTree, cc
= Clearcut, and rx = RAxML. RAxML and FastTree again
per- formed similarly. Clearcut performed the best at
recovering groups.

Figure 3: Tip distances by method.  ft = FastTree, cc =
Clearcut, and rx = RAxML. RAxML and FastTree tended to
perform similarly over the tip distance metric. Clearcut was
not able to recover branch lengths well.

A) B)

Figure 2.2: A) Monophyletic scores by method. ft = FastTree, cc= ClearCut, and
rx = RAxML. RAxML and FastTree performed similarly. ClearCut performed the
best at recovering monophyletic groups. B) Tip-to-tip scores by method. RAxML
and FastTree tended to perform similarly over the metric, while ClearCut was not
able to recover branch lengths well.
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how important the length of the sequence really is to inferring phylogenies and

how the current lengths of sequences limit our ability to effectively reconstruct

phylogenetic trees.

        

       

Figure 2.3: Effect of sequence length on tip-to-tip distance. As the length in-
creases, the quality of the resulting tree improves across all methods.

I also found that independent of the method used, the number of sequences

does not affect the reconstruction of the phylogenetic tree. This finding is contrary

to popular belief, it is thought that an increase in sequences causes not only longer

running times in a program, but also decreased accuracy. Figure 2.4 is only a

subset of all of the data, to prevent bias since not all of the numbers of taxa

are present in the variations of sequence length. The sequence lengths that are

present are 150, 400, and 1250. We see that the number of sequences added to

the tree does not appear to affect the results of these methods. Since RAxML

has large memory requirements and due to memory constraints on Frost we were
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unable to run RAxML on trees larger than 256 taxa, but we plan to use other

computational resources to complete these results.
Tip Distances of ClearCut by Number of Sequences

Tip Distances Less Than 0.1 of RAxML by Number of Sequences

Tip Distances Less of ClearCut by Number of Sequences

Figure 2.4: Effect of the number of taxa on tip-to-tip distance. As the number of
taxa increases, the ability to correctly infer branch lengths does not change.

From the current results it seems that un-rooted trees produce higher quality

phylogenetic trees, which is counter to expectations. We see that un-rooted trees

recovered branch lengths better than rooted trees for both FastTree and Clearcut,

but there is not a significant difference between the two in the RAxML results. The

same pattern was observed with the Monophyletic Recovery Ratio. Rooting the

simulated trees was thought to improve the inference since it defines the direction

of change. This allows us to make better predictions about monophyletic groups

so that a group does not appear to be split simply because the root is not defined.

Closer examination of this finding is needed to understand why it is being seen.

When simulating the trees I varied the rate matrices that are used for evolv-
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Figure 2.5: Effect of rooted vs. un-rooted trees on tip-to-tip distance. Rooting
the tree did not impact the ability to correctly infer branch lengths.
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ing sequences using a Markov model. I used some rate-matrices that were em-

pirically determined and others that were random. Both the Tip Distance Score

and the Monophyletic Recovery Ratio show the four strategies do not affect the

reconstruction, which is a surprise. The expectation was that the empirical ma-

trices would increase the accuracy of the inference methods when compared with

random matrices.

        

       

Figure 2.6: Effect of the rate matrix strategy on the tip-to-tip distance score.
There is not a noticeable difference in the strategies regardless of the method.

We looked at the effect of each of the methods own parameters on the

Tip Distance Score since each of the methods have parameters that use distance

corrections. It was thought that there would be a significant advantage for the

parameters with distance corrections to perform well in comparison to those with-

out corrections because this score is based off of distances. FastTree’s BIONJ and

regular NJ with Jukes-Cantor correction produced superior results to BIONJ and
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NJ with no corrections. Looking at ClearCut’s parameters all of the methods that

used NJ exceeded those that used relaxed NJ performed. This is due to the fact

that relaxed NJ takes shortcuts in the NJ algorithm to speed up tree inference.

The distance correction methods showed improvement over their corresponding

parameters without the corrections.
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Figure 9. FastTree parameters affect on branch length
recovery. nt = BIONJ with jukes-cantor correction,
nt_nj = Neighbor-joining(NJ) with jukes-cantor
correction, nt_nj_rawdist = BIONJ with no correction,
and nt_rawdist = NJ with no correction.

Figure 8. ClearCut parameters affect on branch length
recovery. defaults = relaxed Neighbor-joining(NJ) with no
distance corrections, N = NJ with no distance corrections,
j =  relaxed NJ with Jukes-Cantor correction, jN = NJ with
Jukes-Cantor correction, k = relaxed NJ with Kimura
correction, and kN = NJ with Kimura correction.

A) B)

Figure 2.7: A) ClearCut parameters affect on branch length recovery. defaults
= relaxed Neighbor-joining (NJ) with no distance corrections, N = NJ with no
distance corrections, j = relaxed NJ with Jukes-Cantor correction, jN = NJ with
Jukes-Cantor correction, k = relaxed NJ with Kimura correction, and kN = NJ
with Kimura correction. B) FastTree parameters affect on branch length recov-
ery. nt = BIONJ with Jukes-Cantor correction, nt nj = NJ with Jukes-Cantor
correction, nt nj rawdist = BIONJ with no correction, and nt rawdist = NJ with
no correction.



Chapter 3

Building a Seven Level Taxonomy

3.1 Motivation

After performing the phylogenetic reconstruction benchmark, we were pre-

sented with an additional project involving the greengenes and Guerrero Negro

tree. We wanted to apply the knowledge we gained from the results of the phyloge-

netic reconstruction benchmark to further analyze the Guerrero Negro biological

system. The samples that were collected from the Guerrero Negro microbial mat,

the most diverse microbial community known on earth, produced about 100,000

16S rRNA sequences. From the reconstruction analysis we found that the re-

construction program FastTree gives equally good or better results and has less

memory and time requirements than the other programs in the comparison. So

the Guerrero Negro sequences along with the greengenes sequences were aligned

using Infernal [35], and a phylogenetic tree was built using FastTree. Then our

aim was to develop an algorithm with the ability to decorate the seven level tax-

onomy onto any tree given a mapping of taxonomic classification for each of the

tips. Daniel McDonald and I worked on this project together and in collaboration

with Phil Hugenholtz at DOE Joint Genome Institute.
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3.2 NCBI Taxonomy

The first step in decorating a seven level taxonomy onto a given tree is to

use a taxonomy classification to assign a taxonomy to each of the tips on the tree.

The seven levels of taxonomy in order from the most general to most specific are:

Kingdom, Phylum, Class, Order, Family, Genus, Species (Figure 3.1). The tips on

the greengenes tree are all named with their prokMSA ID (prokaryotic multiple

sequence alignment), this ID is simply an identifier for a 16S rRNA sequence that

can be found in the prokMSA database, a database of prokaryotic 16S rRNA.

Greengenes provides a mapping from this ID to the NCBI (National Center for

Biotechnology Information) taxonomy ID, allowing the taxonomy to be easily

retrieved from NCBI. Each NCBI taxonomy is given as a simple string separating

each level with a semicolon, i.e. Bacteria; Firmicutes; Clostridia; Clostridiales;

Veillonellaceae; Selenomonas; Selenomonas genomosp. C2.

3.3 Designed Objects

Since the overall expectation of this research was to decorate the seven level

taxonomy onto a tree, there were some objects we developed to aid in efficiency.

We developed a taxonomy tree object that subclasses PyCogent’s RangeNode

object to store essential properties, and perform functions that the base object

is unable to do. The taxonomy node object is a single node of a tree that has

knowledge of its parent and children in the tree. This node is aware of all of the tips

that descend from it, and provides many of the functions needed for assigning the

taxonomy, such as iterating over all the tips and storing their NCBI taxonomy
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KINGDOM

PHYLUM

CLASS

ORDER

SPECIES

GENUS

FAMILY

Figure 3.1: Starting from the top we have the kingdom level, which is the most
general level, meaning that many organisms belong to the same kingdom, less
belong to the same phylum, and species is the most specific of the seven levels.
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for later use. We are also dealing with many taxonomy consensus strings, so

we created an object to effectively store these strings to allow for easy retrieval

of names at specific ranks as well as other basic abstract functionality such as

determining the number of ranks present. This object is essentially a list, but is

more suited to our application than just a list. It has knowledge of the levels,

allowing for easy mapping between indices and taxonomic levels. It also has the

ability to convert to and from an NCBI consensus string. Another object that

was important to the overall program is a distribution object that contains the

tip-to-tip distributions for the seven levels. This object can then return a z-score

per rank for a given branch length. The z-score for a number gives an indication

of how far it deviates from the mean of a distribution.

3.4 Assignment of Ranks and Common Names

First, we map the prokMSA ID for each tip to their NCBI taxonomy con-

sensus string, and add a consensus object for this string as a property to each

tip. Now that all of the tips have their Consensus property set, we perform a

postorder traversal on the tree to cache the descending consensus objects for all

nodes. Next, we do another postorder traversal to set the maximum tip-to-tip dis-

tance for each node. The maximum tip-to-tip distance is simply the longest path

of all paths from one tip to another tip that descends from the node in question.

For example, in Figure 3.2 node X has descendants B, C, D, E, and F. To find the

maximum tip-to-tip distance we examine the paths between every pair of these

nodes. Doing this we find that the longest path is the path from node C to node

D, which is 0.7. Performing this calculation over and over for our large tree gets

very computationally and time intensive, therefore it is important to provide a
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method to cache this information. This was done in one postorder traversal where

we keep track of the longest node-to-tip path at each node, and then calculate the

maximum tip-to-tip distance using this information from its children nodes. This

eliminates the need to re-examine paths during caching, which is another large

speed up to the algorithm.

A       B       C         D  E        F

X
.1

.1

.2.1

.2.2 .1

.2

Figure 3.2: This is a simple tree that has its branch lengths labeled. Node X has
a maximum tip-to-tip distance of .7, which is the distance from node C to node
E.

After caching necessary information on each node of the tree we now do a

preorder traversal of the tree to assign a rank to the nodes based on the taxonomy

rank distributions. A node is assigned a certain rank determined by calculating

z-scores. A z-score is calculated at each rank using the distribution of maximum

tip-to-tip distances at that rank and the maximum tip-to-tip distance of the tips

descending from that node. The rank that has the smallest of these z-scores, is the

distribution that best fits the maximum tip-to-tip distance and is therefore used

as the rank at that given node. This calculation is performed for every internal

node in the tree.

Using the ranks and descending consensus objects assigned at each node,

a common name is chosen for it. The first step is to find the highest supported
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common name at the nodes rank. Given the three consensus strings: (A; B; C;

D; E; F; G), (A; B; C; W; X; Y; Z), (A; B; C; D; S; T; U). If we are looking at

the order level we get that the highest supported name at that rank is D with a

support of 66%. The threshold of support that we used was 95%, so this node

would be left without a common name. We have now set a rank on every node

and a common name on nodes where the name has a support greater than or

equal to 95%.

3.5 Cleanup of Missing Ranks

Now that every node has been assigned a rank based on the maximum tip-

to-tip distributions, we need to check that for any path from a tip to the root of

the tree every level is on the tree. This is done using a preorder traversal that

examines each node except the root. If the current node has a rank that is over

one rank more specific than the rank of its parent, then there are missing ranks

between these nodes. For instance, if the node has the rank family and the nodes

parent has the rank class then the order level is missing.

After we identified the missing ranks we needed to decide how to add them

to the tree. This was done by first using the maximum tip-to-tip distance of the

descendant node to calculate the z-score at all of the missing ranks. Then the

list of missing ranks was split according to the rank that is closest in tip-to-tip

distance, which is the rank with the lowest z-score. Next, the descendant node is

given the rank that has the closest fit, and dummy nodes with a branch length

of zero are created for the other ranks. The dummy nodes with more specific

ranks than the descendant node are placed below it and the node with the most
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specific rank contains the descendant nodes children. The dummy nodes with

more general ranks than the descendant node are placed below the ancestor node.

Figure 3.3 illustrates this process of adding dummy nodes. The ancestor node has

the Kingdom (K) rank and the descendant node has the rank genus (G), so the

missing ranks are phylum (P), class (C), order (O), and family (F). If we say that

the descendant node fits the order tip-to-tip distribution the best, then we will

observe the addition of dummy nodes seen in the figure.

A               B                 C         D  E        F        G

K

G

A       B       C         D  E        F       G

K

G

P
C

O
F

Figure 3.3: These trees demonstrate the addition of dummy nodes to include
missing ranks in the design of the seven level taxonomy.

Applying this procedure alone leaves the possibility of more specific ranks

being put above more general ranks, to prevent this case a check is performed

before splitting the list of missing ranks. If the most general rank of the ancestor

nodes children is greater than the rank identified as the closest match for the

descendant rank, then that rank is used as the splitting rank. Figure 3.4 gives an

example of this case. We see a problem if we are adding missing ranks between

the node with the kingdom rank and the node with the genus rank, and the rank

that fits the descendent nodes tip-to-tip distribution best is order. The problem

is that splitting at the order rank will create a situation where ranks are out of
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order. Therefore we split at the phylum level instead since it is the highest rank

that we can split at without creating this problem.

A           B             C      D        E   F       G        H

K

G

A         B          C     D        E        F         G        H

K

G

P
C

O
F

P
P

Figure 3.4: Here we show a problem that can occur when adding missing ranks.
There is a possibility of adding a rank out of order into the tree, when the z-score
is used to determine the proper split of ranks. The tree on the right shows that
you need to look at rank order before splitting the ranks.

3.6 Cleanup of Missing Names

At this point we have a tree that has a rank on every node, and any path

from a tip to the root of the tree will contain all of the seven levels. There are also

common names on some nodes of the tree, but we now need to add a common

name to all of the nodes. We do this by finding the next named node descending

from the unnamed node that has the most leaves. This name is then used as the

common name for that node, and the rank remains the same. After this step we

have a fully named and ranked tree containing duplicate ranks.
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3.7 Choose from Duplicate Ranks

Since on the path from any tip to the root of the tree there may be duplicate

ranks, meaning one node has the rank order and its parent also contains the rank

order, we must define methods for choosing the rank and name to keep. For this

step the same rules apply as for the other steps. We must make sure that any

node has a more general rank than any of its descendants, and a more specific

rank than any of its ancestors. Another constraint is that all seven levels must

remain present from the tips to the root. A few methods were developed to choose

from these duplicate ranks. The first is to simply choose the rank that is found

deepest in the tree, which is the node that is closest to the root. A second method

is to choose the shallowest node possible without breaking any of the rules stated

above. The third method is to choose the node that has the best z-score for its

tip-to-tip distance relative to the empirical distribution of tip-to-tip distances for

that rank. The last method is to choose the node with the longest branch length.

Any of these methods would be possible for the user to choose from.

3.8 String Representation of Tree

Now that we have a tree object containing all of the information we want,

we need an effective way of showing this information in a string format that is

readable by many of the available tree visualization programs. This is done by

naming the internal nodes with the information about the ranks and the common

names. Each node has its rank prepended as the first letter, e.g. s for species, g

for genus, etc. Then the rank and the name are separated by ‘ ’, so each node
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that has a name and rank will be printed as ‘r CommonName’ where r is the rank

and CommonName is the name the node was given from the consensus string. If

the taxon was already used in the tree a number is appended onto the name, e.g.

‘r CommonName 1’, ‘r CommonName 2’, etc. The number is determined based

on the confidence value at each node, the node with the greatest confidence has

‘ 1’ appended to it the next has ‘ 2’ continuing until the node with the lowest

confidence. The final Newick string, which is the format uses in phylogenetics to

represent a tree as a string, will contain these names as the internal node names,

the tips will still be named with their prokMSA ID, and the confidence values and

branch lengths will remain on the tree.



Chapter 4

Review of Phylogenetic Algorithms for Detecting Horizontal Gene

Transfer

The phylogenetic HGT detection methods use different algorithms to at-

tempt to explain the discrepancies between a species tree and a gene tree. Most

of the algorithms that are used for detecting HGT are also those used to calculate

distance scores for comparing how similar one tree is to another. The methods that

are often used for tree comparison are Subtree Prune and Regraft (SPR), Maxi-

mum Agreement SubTree (MAST), and Nearest Neighbor Interchange (NNI). Of

these comparison metrics the one that is most commonly used for the detection

of HGT is SPR. Other algorithms that have been used for detecting HGT events

include maximum likelihood and maximum parsimony.

4.1 Subtree Prune and Regraft

The subtree prune and regraft algorithm has applications for HGT detection

as well as tree comparison [53]. The SPR distance that is used for tree comparison

is calculated by finding the minimum number of subtree prune and regrafts it takes

to change one tree into the same topology as the tree it is being compared to. This

minimum number of movements is the SPR distance, the lower the number the
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closer the two trees are to having the same topology. Or thinking about it in

terms of HGT, the SPR distance is the minimum amount of transfers that could

have occurred to cause discrepancies between a gene tree and a species tree if the

transfers are thought of as the movement of a subtree from one branch of the tree

to another. Figure 4.1 shows an illustration of a single SPR move. Determining

SPR distance has been shown to be NP-hard, and as a result many heuristics have

been developed.

A       B       C         D  E        F       G A       B      E          F   C        D     G

Figure 4.1: The subtree containing nodes C and D is pruned from its connection
on the tree. This subtree is then grafted onto the branch between the root of the
tree and the node G. This can also be thought of as a single HGT event, where
the ancestor of C and D experienced an HGT event for the gene represented by
this tree.

4.2 Maximum Agreement Subtree

To define the maximum agreement subtree we will start with two trees T1

and T2 [48]. We define L1 as a subset of the leaves in T1 and L2 as a subset of the

leaves in T2. Now T1′ is the subtree of T1 that contains only the leaves in L1 and
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T2′ is the subtree of T2 that contains only the leaves in L2. Another definition

we need is the definition of isomorphic. A tree T1′ is isomorphic to a tree T2′ if

there exists a rearrangement of T1′ such that it has the same topology and order

of leaves as T2′. If L1 and L2 contain the same leaf labels and T1′ and T2′ are

isomorphic, this is an agreement subtree. The maximum agreement subtree is an

agreement subtree where L1 and L2 are the largest subsets of all possible subsets

that make up an agreement subtree. Figure 4.2 shows the maximum agreement

subtree between two trees. Finding the maximum agreement subtree for two trees

is another NP-hard problem for which there exists many heuristics.

A       B      E          F             C       D   G        H A       B      E          F    C             G        H       D

Figure 4.2: The maximum agreement subtree between these two trees is the sub-
tree colored in red.

4.3 Maximum Likelihood and Maximum Parsimony

In phylogenetics, maximum likelihood and maximum parsimony are com-

monly used as methods for inferring phylogenetic trees. The maximum likelihood

algorithm searches for the tree that maximizes the probability of having a certain
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set of species on the tree given a set of sequences [14]. Maximum parsimony is a

character-based method that looks at the possible substitutions that can be made

to link all of the species together in a phylogenetic tree [11]. This method searches

for the simplest way to explain the set of sequences, or that with the least amount

of evolutionary change. In other words this will be the tree with the smallest

length, and therefore the least number of substitutions. Finding the minimum is

done by searching all possible tree topologies, and then choosing the smallest tree.

4.4 Available Methods

The HGT detection software Phylonet uses a polynomial-time heuristic for

the SPR problem along with maximum agreement subtree to detect transfers [49].

They achieve this by solving the relaxed problem not the exact problem, therefore

they do not guarantee that they find the smallest set of HGT events that describe

the incongruence between trees. EEEP also uses an SPR heuristic, and it includes

parameters for adjustment of how strict the method is [2]. The idea behind their

algorithm is to use methods to discontinue searching for HGT events down a path

that seems unfavorable. Horizstory implements an approximation of SPR [30].

They use efficient methods to collapse subtrees with identical topologies, thereby

reducing the search size before performing SPR. Lattrans is another method using

an SPR heuristic; it provides parameters for algorithm time constraint, and checks

for time violations when considering a set of HGT events [1]. Nepal implements a

maximum likelihood method and a maximum parsimony method. Both methods

try to augment a species tree into a phylogenetic network so it fits the evolution

of the gene sequence data [21, 22].



Chapter 5

Double Birth-Death Model

5.1 Importance

The double birth-death model is an algorithm that simulates phylogenetic

trees with evolutionary histories that are biologically relevant to the study of

horizontal gene transfer. A simple birth-death model simulates a single tree by

modeling the births and deaths that species undergo through time, simulating the

evolutionary history relating all of the species that exist at the final iteration. The

double birth-death model is a model that simultaneously simulates a species tree

and multiple gene trees. This model also allows for the simulation of trees with

known horizontal gene transfer events. These simulated trees can then be used

to benchmark phylogenetic HGT detection methods, because of their ability to

produce datasets where we know the correct answer. Another way commonly used

to assess the accuracy of phylogenetic HGT detection methods is to start with a

single simulated tree and generate the gene trees by simply moving subtrees from

the branch they reside on to another branch in the tree. This method, however,

does not account for the births and deaths that can occur in both the gene trees

and the species during evolution, leading to a more incomplete biological model. It

is therefore important to use the double birth-death model to effectively compare

the HGT detection methods.
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5.2 Algorithm Implementation

The current implementation in PyCogent, which I implemented a significant

section of, allows the user to simulate a species tree, gene trees and horizontal

transfer events given their specific parameters. The user has the ability to set

parameters such as the number of gene trees, the number of species found on the

species tree, the rate of transfer, and several others. The model starts with a

root node for the species tree and a root node for each gene tree. Then, at each

time-step (iteration) all of the species nodes at that current time-step are given

the chance to either live, die, or split (birth). The gene trees also evolve at each

iteration. If a species node splits then the corresponding nodes in the gene tree

will also split, and if a species node is deleted then the corresponding nodes in

the gene tree will also be deleted. However, all of the current gene nodes are

also given the opportunity to live, die, split, or be transferred to another species

at each time-step. If every current gene node only lives, meaning there are no

transferred, duplicated, or deleted genes at any iteration of simulation, then the

gene trees will all be identical to each other and the species tree. As each iteration

is performed, the current number of time-steps determines the branch length of

each node. The user specifies the amount of branch length that is added at each

time-step. Figure 5.1 gives an example of the double birth-death algorithm using

two gene trees.

· At time step 0 we start with a root node for the species tree and a root

node for each of the two gene trees. (Figure 5.1 A)

· At time step 0 gene tree 1 node 0 has a birth. (Figure 5.1 B)

· At time step 0 species node 0 has a birth. (Figure 5.1 C)

· At time step 1 gene 1 node 2(on right) dies. (Figure 5.1 D)

· At time step 1 species node 1 and 2 both have births. (Figure 5.1 E)
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· At time step 2 gene 2 node 4 transfers to node 6 (transfer of gene 2 from

species 4 to 6). (Figure 5.1 F)
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Timestep 0:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

Timestep 1:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

0 00 0

Timestep 1:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

0 0
1 2

1 2 1 2

1 2

Timestep 1:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

0
1 2

1 2

1 2

1

Timestep 1:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

0
1 2

1 2

1 2

13 4 5 6

3 4

5 63 4

3 4 5 6 

Timestep 2:

Species: Gene 1: Gene 2:

0 (root) 0 (root) 0 (root)

0
1 2

1 2

1 2

1

3 4 5 6 3 4 33 4 5 6 4  6 5  6 

A) B)

D) C)

E) F)

Figure 5.1: This is an example of how the double birth-death model works. Branch
length is not represented in the figure.



Chapter 6

Infrastructure for Running High Throughput Tests

Designing an efficient way for performing high throughput tests is necessary

for success of my research. Without planning the method of running the tests there

is often time and resources wasted. Another advantage to designing the method

for running these tests is that after the benchmark is complete, the design can be

easily turned into a pipeline for users of the software being tested. In this case

both the phylogenetic reconstruction study and the benchmark of phylogenetic

horizontal gene transfer detection methods can be easily hooked up together to

aid in the detection of HGT. There are some important steps that need to be

taken which I have applied to my HGT benchmark, the first of which is get to

know the system you are performing the tests on.

6.1 Gaining Knowledge of the System

Before even trying to start running tests or gathering data, we need to un-

derstand the best way to design the test based on the capabilities and limitations

of the computer system we are using. For the HGT detection benchmark all tests

are being run on the Steele cluster at Purdue, which has 893 dual quad-core Intel

E5410 processor compute nodes, and is part of the TeraGrid scientific research

infrastructure. After working with Steele for a short amount of time, I determined
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that there are five queues that are available for my use. The five queues go by the

names: standby, standby-8, steele hold, tg short, and tg workq. Table 6.1 shows

the five queues. Although steele hold has unlimited wall time the jobs must be

approved before running, and from experience, this can take upwards of a few

days. Since I am aware that as the size of my trees grow the HGT detection

methods slow down considerably, I can optimize my time. I can run the smaller

trees in the standby and standby-8 queues, while the larger trees will have to be

run on tg short or tg workq. Something else I discovered while using Steele is the

file and memory limits put on the scratch directory where I keep all of the data

collected. There is a 10,000-file limit, which seems like a lot until you are running

high throughput tests. To get around this I sectioned the data based on the size

of the trees, and when a dataset was not running it was tarred up.

Table 6.1: Here is an overview of the queues available to me on the Steele cluster
at Purdue.

Queue Walltime
standby 4:00:00
standby-8 8:00:00
tg short 72:00:00
tg workq 720:00:00
steele hold unlimited

6.2 Simulating Appropriate Datasets

The next step to running high throughput tests is to obtain the data nec-

essary for the tests. Often this is a simulated dataset, or a well-studied and

well-known dataset. I used simulated data because it provides a “true” set of

transfers for artificial data, which will allow me to test the accuracy of each of the
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detection methods. This gives the ability to evaluate the power of each method

by comparing the true set of transfers with the detected set of transfers for that

method. For the HGT tests I first decided which parameters to vary when sim-

ulating trees, such as the number of taxa, so that we have significant changes in

trees, but a realistic number considering computation time. I used the double-

birth-death model implemented in PyCogent [25] to simulate random gene trees

and a species tree with HGT histories. I also used SeqSim in PyCogent to simu-

late sequences for the gene trees and species trees. To start I simulated sequences

of length 1250 for the species tree, and random lengths for the gene trees since

not every gene is of the same size. As a complete dataset I have many species

trees, each with sequence alignments, a series of gene trees each with a sequence

alignment, and a set of simulated HGT events. I wrote code to automate the

generation of the simulated trees and their corresponding alignments.

6.3 Running Detection Programs on Datasets

After spending some time installing all of the software on Steele and running

test datasets, I was set up to begin using the programs on my simulated data.

To make this process easier and more efficient I developed program application

controllers for the software that implements the detection methods to allow for

easy adjustment to the different types of data input of the methods. The programs

are currently being run on the simulated data. I also wrote parsers for the different

formats of output from the programs so that the data is more easily readable. The

reason for doing this is that trying to manually go through all of the output, which

can sometimes be millions of lines, would take days or weeks, whereas by applying

a standardized and automated framework for collating and processing results, the
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output is parsed quickly and returned in a way that is easy to understand. This

also gives one common output style for all the programs so that it is easier to

compare them with one another. In addition, I wrote code to completely automate

the process, which will only need small revisions to adapt to a user interface for

HGT detection.

6.4 Data Management and Analysis

The next step when all of my simulated data is finished running and parsed,

is to have an effective plan for organizing all of the data to allow for easy analysis.

Since the scale of this project is very large it would be impossible to look through

all of the data by hand. For this reason, I will create a database with MySQL,

where all the data will be stored in tables and parameters separated by columns.

This will allow me to easily and efficiently store the parameters used to simulate

the data, the method used, the percentage of the simulated transfers that were

detected and the percentage of false positives (transfers detected by the method

that are not actually transfers). We can then generate plots for each of the varied

parameters where each method is a separate point with one axis being the number

of correct transfers detected and the other axis the number of false positives given

by that method. This will give us a good indication of the power each method

has at detecting HGT events.

6.5 HGT Visualization

Now that I have written application controllers and parsers for these HGT
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detection methods, it makes it much easier to design a pipeline for detection.

Another important tool for HGT analysis is a visualization tool, which can also

be connected to this pipeline. Figure 6.1 is a screenshot from an HGT visualization

software that I developed along with three members from a User Interface Design

class. The user interface for the visualization program was created using QT [13].

The underlying code that builds the trees and adds the HGT events to them

was written using the Python bindings for QT, and the parsers and tree objects

implemented in PyCogent[8].

Figure 6.1: This is a screenshot from an HGT visualization tool developed by
myself and three other students.



Chapter 7

A New Network Based Method for Detecting Horizontal Gene

Transfer

The aim of this research was to develop a method for detecting HGT events

using network statistics and a phylogenetic species tree. The program requires

as input a file containing all of the gene sequences in Fasta format and labeled

with the species they belong to, and a species tree containing all or a subset of

the species represented in the sequence file. The output is the detected horizontal

transfer events that have occurred between the species. I implemented the algo-

rithm myself, and the some of the data collection and analysis was aided by three

others.

7.1 Data Collection

Since we need to effectively test the reliability of the detection method we

used simulated data. Simulated data is used because it provides a “true” set

of transfers for artificial data, which will allow us to evaluate our method by

comparing the true set of transfers with the detected set of transfers. We simulated

random gene trees and a species tree with HGT histories using double birth-death

model in PyCogent. Then we used a Markovian evolutionary model implemented
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in the PyCogent SeqSim Module to simulate sequences for the gene trees and the

species tree. We then labeled the sequences with an identification of the gene tree

that they were in and the genome that they belong to. We then combined all of

the gene sequences into one file, giving us the required input. We randomly varied

the lengths of the alignments for the gene trees since it is more biologically correct

to have genes of different sizes in the genome. To start we used a small dataset

of 20 species each with about 10 genes (can be more or less due to gene death).

We also hoped to apply the detection method on biological data to see how

the method works on a large and real dataset. We gathered the bacterial gene

sequences from KEGG (Kyoto Encyclopedia of genes and genomes) using the

KEGG ftp [23]. We isolated the nucleotide sequences of the complete genomes of

908 bacterial species and combined all of the genomes into one file. We removed

sequences that are smaller or larger than a certain threshold so that they don’t

bias the results. The script used to combine the gene sequences also built a file

containing all 16S rRNA based on the labels of the sequences given by KEGG.

These sequences were then run through the alignment software MUSCLE [12].

After obtaining this alignment we built a phylogenetic tree with the reconstruction

software FastTree.

7.2 Clustering

We used CD-Hit to perform the clustering of the sequences by similarity

[28]. The workflow that we created allows the user to identify the parameters

they want to use with CD-Hit, otherwise we use default parameters. We used

some of the scripts in the software QIIME (Quantitative Insights Into Microbial
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Ecology) for our workflow [6]. To begin we used a script called pick otus.py that

is able to take the combined sequence file and run CD-hit on it given the users

parameters. It returns a table in the format of a number identifying the cluster

followed by a list of sequences that belong to the given cluster. This output is

then fed into another script called make otu table.py. This script just formats the

cluster data in another way so that is can later be used in a different script.

7.3 Building the Network

This is done using the script make otu network.py, which is also in QIIME,

and written by me. It takes as input the otu table output by make otu table.py,

and it outputs a file that is easily readable by Cytoscape, a network visualization

software [43]. This file is then loaded into Cytoscape, which immediately loads

networks into a grid layout, this layout is not a useful way for visualizing our

data. The layout we chose to look at was called BiLayout, this layout allowed us

to view the cluster nodes separately from the species nodes giving a better view

for interpreting the data.

7.4 Interesting Results

In our simulated dataset from the double-birth death model we have an

output of transfers that have occurred, Table 7.1 shows these transfers. Figure

7.2 shows the ancestral evolutionary relationship between each of the species in

the simulated data. The nodes in the tree are labeled and the transfers in Table

7.1 correspond to the nodes on this species tree. From looking at the species
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     Figure 7.1: The network we obtained from clustering the gene sequences simulated
along the gene trees from the double birth-death model
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tree we can see the vertical relationship between species and differentiate these

relationships from HGT events when we look at the network. Lets examine the

network in Figure 7.1, look at the node in the network that has the label s-13,

which corresponds to the tip numbered s-13 in the species tree. This has many of

the same connections to clusters as the nodes labeled s-11 and s-12. If you look at

the species tree in Figure 7.2,you expect to see many connections between these

nodes because of the close ancestral connections between these species. If you look

closer there are a couple connections with clusters that are also connected to the

node labeled s-22. When you look at the species tree for these nodes, there is no

close connection between species s-22 and s-13, so we call this an HGT event, now

if we refer back to Table 7.1 we see that there is an HGT event between species

s-22 and species s-13. Our method correctly identified this transfer. Now that

we have been able to observe a relationship between the HGT events and these

abnormal connections in the network, we need to think of a way to automate this

process.

Table 7.1: HGT events from the double birth-death model.

Donor Recipient Gene Tree
41 0 8
5 2 9
1 29 7
0 22 1
10 1 2
10 20 9
14 2 8
13 22 9

7.5 Algorithm to Automate HGT Detection
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Figure 7.2: Species tree from double birth-death model
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Our next step is to devise an algorithm that will take us away from needing

to visualize the data in cytoscape every time. First, since clustering at different

similarity levels can provide us with information relating to different levels of

the species tree, it would be useful to look at multiple similarity levels. This is

done by iterating through the similarity levels in CD-Hit, the user specifies the

lowest similarity level and the number of levels they wish to iterate over. At each

iteration CD-Hit gives a file where each line in the file is a list of the species that

are in a cluster. The algorithm looks at the species tree and finds the last common

ancestor of the species in this cluster. We expect that a transferred species will not

be in the same subtree as the other species in the cluster because these species are

clustering together due to their close ancestral relationship, while the transferred

species is clustering due to the horizontal gene transfer. Figure 7.3 illustrates this

step.

Figure 7.3: Say we have a cluster that is [A, B, E]. On this tree the last common
ancestor of these tips is the root. The root has tips A,B,C,D,E, and F while the
cluster only has three of these five tips, so there is a high likelihood that there is
a transfer here. Further investigation is used to determine the actual transfer.

During this iteration we also determine the tip-to-tip distance for each pair
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of nodes in the cluster. As the clustering similarity decreases we see larger clusters

that correspond to deeper nodes in the species tree. Using this knowledge and

the tip-to-tip distance, we expect that nodes that have smaller tip-to-tip distances

will cluster together because they are more closely related. This idea is shown in

Figure 7.4.

Figure 7.4: If we have the above tree as the species tree, and we have two clusters:
cluster 0: [A, B] and cluster 1: [A, E], we expect A and B to cluster together, but
there is a good chance that a transfer event occurred between A and E.

In order to decide the direction of transfer, meaning which species is the

donor and which is the recipient, the algorithm keeps track of the transfers de-

tected at the higher similarity. Then if a cluster at a lower similarity contains all

of the nodes that clustered for the transfer detected at the higher similarity, and

the species descending from the transfer node you can infer direction as seen in

Figure 7.5.

Using my method on the same dataset that was put into Cytoscape we

obtain the output in Figure 7.6. We see that the method detected five of the eight
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Figure 7.5: If we have the above species tree and a cluster at 98% similarity: [A,E],
and a cluster at 95% similarity: [A,B,E]. We can say that a transfer most likely
occurred from A to E because A and B are clustering with E so E has a sequence
similar to both A and B. If a transfer occurred the other way you wouldnt expect
to see clustering like this.
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transfers, with no false positives. I also ran Horizstory, Phylonet, and EEEP on

this dataset. Horizstory identified six of the eight transfers and no false positives

at their strict consensus, and six of the eight transfers and two false positives at

their majority consensus. Horizstory also took about four times as long to run as

my method. Phylonet was the fastest of the methods, but it only identified two of

the transfers and returned one false positive. EEEP ran about the same time as

my method, and identified two of the transfers with two false positives. Another

trait that my program has that EEEP and Phylonet do not have, is the ability to

handle paralogs (gene duplications). EEEP just has a segmentation fault when a

tree contains paralogs; while Phylonet fails and tells the user there is a duplicate

node. Horizstory seems to allow paralogs and does not seem to fail, but I do not

know how it handles them. I am also interested in applying this method to more

simulated datasets, and biological datasets in the future.

        

Figure 7.6: This is the output from the automated HGT detection program, the
method detected five of the eight transfers



Chapter 8

Compositional Methods for Detecting Horizontal Gene Transfer:

Stand Alone Version of CodonExplorer

8.1 Codon Explorer

CodonExplorer is an online tool that has the capability to connect to the

KEGG (Kyoto Encyclopedia of Genes and Genomes) or NCBI databases, allowing

the user to choose either entire genomes or specific genes from these databases

[18, 54, 52]. CodonExplorer then provides the user with the ability to analyze

codon usage and sequence composition using tables of codon usage and visual-

izations such as histograms, heatmaps and scatter plots. Analyses like this have

importance in determining mutational effects on codon usage, finding possible

highly expressed genes, and identification of horizontal gene transfer (HGT). Since

CodonExplorer has the ability to examine the differences that specific genes ex-

hibit from the remainder of the genome, it can be used as a compositional method

of detecting HGT.

Although this web interface exists, the database has not been updated in a

year or more. This version therefore does not give a user the ability to use any

dataset they wish, it only allows them to use the datasets in the current status of

the database. Since this is not always a desired feature, I have developed a stand



55

alone version of CodonExplorer. I used many of the statistical and graphing

methods available in PyCogent to put together this version. In addition, parts

of the graphing code needed to be updated for compatibility with more current

versions of Matplotlib. Now the user has the ability to use any one genome or

multiple genomes for comparison. They can also name specific genes to compare

against the whole genome. The development of this stand alone version was

important for this research work and will be useful for others in the future. I

made the change over to the stand alone version; the analysis was done by myself

and Ryan Walters.

8.2 Rationale

For over 100 years Enterococcus faecalis has been a well established cause of

endocarditis and more recently has been shown to be a significant source of nosoco-

mial infections [34, 16]. Although normally part of the intestinal flora, increasing

medical concerns over Enterococcus faecalis infections stems from their innate and

acquired resistance to various antimicrobial agents [33, 46]. Moreover, evidence

supports the notion that Enterococci are able to transfer genes providing antimi-

crobial resistance between both themselves and bacteria going through the colon

[42]. Enterococcus faecalis have the ability to acquire resistance to vancomycin,

an antibiotic often considered the last line of defense, making these pathogens

extremely difficult to treat clinically [7]. Enterococcus faecalis ATCC 29200 and

other clinically isolated strains have been chosen for genomic sequencing largely

to provide insight as to how Enterococci acquire resistance to antimicrobial agents

[37].
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Our overall goal was to use CodonExplorer to examine the genomic se-

quence of Enterococcus faecalis ATCC 29200 and look for atypical regions. Using

the knowledge that codon usage is non-random, tends to be consistent across a

genome, and varies considerable among organisms we can infer the reasons behind

the areas of the genome that differ [17]. For example, looking at GC content or

codon usage to find genes that exhibit a difference from the bulk of the genome

[36]. Finding these regions of differing composition can provide us with insight

about which genes in Enterococcus faecalis ATCC 29200 may have been horizon-

tally transferred or are highly expressed [24, 20].

To begin our analysis we used code in PyCogent to generate Monte Carlo

histograms comparing every gene in the genome to the genome as a whole [25].

This is to determine which genes show significantly different Codon Adaptation

Index (CAI) values than the majority of the genome [44]. CAI values are deter-

mined using a representative set of genes known to be highly expressed and gives

a value that predicts the expression level of a gene. The CAI values are calculated

using the formula below; we used a function in PyCogent that implements this

equation and used genes that encode ribosomal proteins as the representative set

of highly expressed genes. Highly expressed genes typically have high CAI values.

CAI = (ΠL
k=1RSCUk)

1
L

(ΠL
k=1RSCUkmax)

1
L

In this equation RSCU is relative synonymous codon usage, this table is

built using the reference set of highly expressed genes in the organism. RSCUk is

the RSCU value for the kth codon and RSCUkmax is the max RSCU value.
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A one-tailed t-test is used to compare the Monte Carlo histograms and

provide us with a probability that the difference between the histograms is more

than what we would expect to see by mere chance. We now identify all of the

genes with a p-value less than .05 on the CAI Monte Carlo histograms and generate

scatter plots, heat maps, and codon usage tables for each of them. The scatter

plots and heatmaps are plots of CAI vs. P3 where P3 is the GC content at the

third codon position. One change we added to our code that varied from the

CodonExplorer functionality was to include a distinct blue dot on the scatter plot

and heatmaps that corresponds to the given gene. This is to let us visualize the

difference of that specific gene from the rest of the genes in the genome that are

on the plot. The scatter plot is useful to see exactly where there are points on the

plot, but in areas of many overlapping points it is easier to visualize the areas of

concentration by using a heat map. From further analysis of these plots and tables

we identify possible horizontal gene transfer events or highly expressed genes.

8.3 Challenges

When beginning analysis using CodonExplorer we attempted to use the web

interface (http://bmf.colorado.edu/codonexplorer/) to download our genome from

the NCBI database. We tried to search for our genome, but the search returned

an error, leading us to believe that the database underlying the interface has not

been maintained. Another setback of this tool is that it can only be used through

this web interface; there currently is no standalone version for CodonExplorer. We

found out that the majority of the functions that are performed by the webapp

are actually current PyCogent Modules. So we used the PyCogent modules to

do exactly what CodonExplorer does. Most of the functionality that we needed
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is in cogent.draw.codon usage and cogent.core.usage. We also discovered that we

needed to use some of the modules in cogent.maths.stats to calculate the CAI

values and the one-tailed t-test. Some modifications had to be made to allow

for compatibility with Matplotlib, which is the software used by PyCogent to

generate plots. For the Monte Carlo histograms we obtained the code used by

CodonExplorer and created a standalone version that is disconnected from any

databases. The user just passes in the GenBank file or the genome accession

number so that the GenBank file can be downloaded from NCBI[4]. Since the

GenBank file for this genome is actually empty we built the GenBank file using

IMG/M and then downloaded it[32]. We were then able to use the GenBank

parser in PyCogent to load the genes into CodonUsage objects, which were used

to calculate the values needed for the various plots and tables that we generated.

8.4 Results

A codon usage table of the entire genome was generated ( 8.1 A) and re-

vealed a low average CG content. In particular, the third position of the codon

had a CG content of 30.44%. Of the approximately 3000 genes analyzed, 71 genes

were identified with a p-value less than .05 on the CAI Monte Carlo histograms.

20 of the genes identified were tRNAs and ribosomal RNAs. It is not surprising

that these structural RNAs were identified given their higher CG content required

for structural stability. Ribosomal proteins (rpmL rplU, rpmF-3, rplK, rplA, rplJ,

rplL, rpsB) and translational elongation factors (efp, tsf, tig) were identified as

being highly expressed (Figure 8.2). The Monte Carlo histogram and codon us-

age table are shown for 50S ribosomal protein L21 (RplU) as representative gene

from this set. An additional subset of genes were identified as being involved in
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the glycolysis pathway. These genes include endo-1,4-beta-glucanase (CelA-4),

glyceraldehyde-3-phosphate dehydrogenase (GAP-2), and polyphosphate glucok-

inase (pgk) (Figure 8.3). Interestingly, a gene belonging to the merR family of

transcriptional regulators was also identified (Figure 8.4). This gene shows dra-

matically different codon usage, primarily in the third position.

Although sequence composition and codon usage provide insight into po-

tential HGT events, there are some disadvantages to using this computational

approach. Primarily, as shown in the results section, ribosomal proteins are of-

ten identified as having been potentially horizontally transferred. This however

is an artifact due to the sequence composition of this class of gene [54]. Addi-

tionally, ancient genes that may have been horizontally transferred are unlikely to

be detected as their sequence will eventually reflect the sequence composition of

the host [26]. It is also possible that species undergoing the transfer share enough

similarity in codon usage and sequence composition that the HGT cannot be com-

putationally detected. However, we were able to identify a couple of genes whose

composition is abnormal relative to that of the genome and whose functions pro-

vide information on the lifestyle of Enterococcus Faecalis. For example, the gene

Cel4-A is endo-1,4-beta-glucanase. These enzymes are able to break down 1,4-

beta-glucans, which are structural components of plant cells walls, primarily in

barley and oats. Since Enterococcus Faecalis is found in the intestine this could

serve as a mechanism for nutrient availability.

We also identified a merR family transcriptional regulator which is intrigu-

ing since the merR family has been implicated in multidrug as well as mercury
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Figure 8.1: A) Codon usage table of 877,285 codons for 3010 genes in E. Faecalis.
Fields: [codon triplet] [Frequency: per thousand] ([number]). Coding GC content:
38.09%;1st letter GC: 48.98%; 2nd letter GC: 34.85%; 3rd letter GC: 30.44%. B)
Heat map plot of CAI vs P3 for all genes identified with a p-value less than .05
on the CAI Monte Carlo histograms.
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Figure 8.2: Monte Carlo histogram plot (B) and codon usage table (A) for 50S
ribosomal protein L21. Coding GC content: 39.81%;1st letter GC: 58.25%; 2nd
letter GC: 32.04%; 3rd letter GC: 29.13%. (C) Heat map plot of CAI vs P3. 50S
ribosomal protein L21 is shown in green, addition ribosomal proteins and transla-
tional elongation factors shown in blue. (D) Scatter plot of CAI vs P3, ribosomal
and translational elongation factors are shown in blue. Ribosomal proteins and
elongation factors include: rpmL rplU, rpmF-3, rplK, rplA, rplJ, rplL, rpsB, efp,
tsf, and tig.
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Figure 8.3: Monte Carlo histogram plot (A) and codon usage table (B) for CelA-4,
an endo-1,4-beta-glucanase. Coding GC content: 35.22%;1st letter GC: 48.11%;
2nd letter GC: 32.08%; 3rd letter GC: 25.47%. (C) Heat map plot of CAI vs P3.
CelA-4 is shown in green, 5 other genes involved in glycolysis are shown in blue.
(D) Scatter plot of CAI vs P3.
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Figure 8.4: Monte Carlo histogram plot (A) and codon usage table (B) for a merR
family of transcriptional regulators. Coding GC content: 61.60%; 1st letter GC:
69.62%; 2nd letter GC: 41.77%; 3rd letter GC: 73.42%. (C) Heat map plot of CAI
vs P3. A merR family of transcriptional regulators shown in blue. (D) Scatter
plot of CAI vs P3.
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resistance [5]. These helix-turn-helix DNA binding proteins respond to various

environmental stresses which can range from antibiotics to oxidative stress. Some

of the merR genes are also found on transposable elements which could be the

underlying reason why this gene shows dramatically different codon usage and CG

content.



Chapter 9

Conclusions and Future Directions

In this thesis, I have presented many analyses and algorithms dealing with

phylogenetics and horizontal gene transfer. The phylogenetic reconstruction project

was a large step in understanding the power of the available tree inference meth-

ods. Most importantly the comparison of the methods identified that the software

FastTree performed better or equivalently to the other methods. FastTree also

has significantly less memory and time requirements then the other two methods.

This finding led to building the greengenes and Guerrero Negro phylogenetic tree

with FastTree and then the development of an algorithm for decorating this tree

with a seven level taxonomy.

It has become increasingly important to gain an understanding of HGT be-

cause of its impact on evolution, ecology, and medicine. The results I provided

in this thesis suggest a number of avenues for attacking this problem and a path

forward for benchmarking and integration efforts. I have shown the importance

of using simulated data to effectively benchmark HGT detection methods as well

as phylogenetic reconstruction methods. I took part in the implementation of

the double birth-death model, which simulates data with known HGT histories.

This model allowed me to simulate datasets with varying parameters for the phy-

logenetic HGT detection comparison, and can be useful in the further analysis
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of available compositional HGT detection methods. This general comparison of

HGT detection methods will be very important for understanding drug resistance,

pathogenicity, and ecological diversity.

Through the research I did for this thesis I gained an understanding of the

significant impact computational methods have on answering biological questions.

In addition I am walking away with the knowledge that even tasks that seem

trivial should be well planned out. For example, I thought it would be simple to

use Steele for high throughput tests, but then I discovered the file limit, which

forced me to plan out the most efficient way to store files. Another problem I ran

into was the naming of the files for the tree reconstruction benchmark. It was

important to be able to map the simulated trees with the simulated alignments as

well as mapping those to the inferred trees. The file names also needed to contain

information about the many parameters that were varied, and stay consistent

between all of the datasets. It did not seem like a difficult problem until a little

while into the analysis, when I had to run those simulations again simply because

of the file names.

In this work I have also presented a new HGT detection method that shows

promising results. To further this research, I can compare it with the other phy-

logenetic and compositional detection methods. Since I have simulated datasets

for the phylogenetic methods, these same datasets can be used to test my method

and benchmark it against the other methods. My development of a stand-alone

version of CodonExplorer gives users more power to analyze their datasets. They

no longer need to use only the data found in the database that is hooked up to the

web interface and has not been maintained. This implementation also adds to the

online version by letting the user specify the titles of their graphs. It also gives
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them the ability to visualize certain genes that they specify in a separate color

from the rest of the dataset. Overall, the research explained in this thesis has an-

swered many questions involving phylogenetics and horizontal gene transfer, and

in doing so has also opened up many additional questions for further study.
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