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ABSTRACT
With near-ubiquitous availability of smartphones equipped
with a wide variety of sensors, research in building context-
aware services has been growing. However, despite a large
number of services proposed and developed as research pro-
totypes, the number of truly context-aware applications avail-
able in smartphone applications market is quite limited. A
major barrier for the large-scale proliferation of context aware
applications is poor accuracy. This paper addresses one of
the key reasons for this poor accuracy, which is the impact
of smartphone positions. Users carry their smartphones in
different positions such as holding in their hand, keeping in-
side their pants or jacket pocket, keeping in their purse, and
so on. This paper addresses the issue of poor application ac-
curacy due to varying smartphone positions. It first shows
that smartphone positions significantly affect the values of
the sensor data being collected by a context aware applica-
tion, and this in turn has a significant impact on the accuracy
of the application. Next, it describes the design and proto-
type development of a smartphone position discovery ser-
vice that accurately detects a smartphone position. This ser-
vice is based on the sensor data collected from carefully cho-
sen sensors and runs orthogonal to any other context aware
application or service. Finally, the paper demonstrates that
the accuracy of an existing context aware service or applica-
tion is significantly enhanced when run in conjunction with
the proposed smartphone position discovery service.
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1. INTRODUCTION
Modern smartphones embody a large set of sensors that

can be utilized to learn a wealth of information about a user’s
surrounding environment. Researchers view the availability
of such sensors as an opportunity for developing context-
aware applications that can provide services tailored for each
user’s context. Context-aware mobile computing is not a
new research topic, for example, a survey paper [7] cover-
ing advances in this field was published more than a decade

ago. Despite the concept being there for a while, a break-
through for the number of context-aware applications of-
fered in smartphones application markets (e.g., App Store
for Apple iOS or Google Play for Android OS) is yet to hap-
pen. For the most part, the current context-aware applica-
tions do not meet users’ high expectations from technology.

A key problem with current context aware applications is
that they typically provide low level of accuracy, particu-
larly when used in an environment different from what was
conceived at the application development stage. The issue
of achieving high accuracy in context-aware applications is
complex by nature. It can be attributed to the large num-
ber of factors such as the complexity of the context being
discovered, number of diverse sensors involved, differences
in the analysis techniques used for each type of sensor, and
the required level of accuracy imposed by the context-aware
application.

A major factor leading to low accuracy in mobile context-
aware applications is the wide variety of ways a user may
carry his/her smartphone, henceforth referred to as smart-
phone position. Different users may carry their smartphones
in hand, in purse, in pants pocket, in shirt pocket, etc. Some-
times, their smartphones are in covered positions such as
in purse or pockets while uncovered at other times such as
while watching a video or talking on the phone. Sensor val-
ues of different sensors naturally vary based on smartphone
position, which in turn impacts the accuracy of the context
derived from these values. In this paper, we focus on devel-
oping a generic solution to address this issue.

Current context-aware applications can be divided into
three categories in regards to the way they address the smart-
phone position problem. The first category ignores the pres-
ence of the problem, assuming a fixed position [22]. The
second category requires the users to place the smartphone
in a certain position to achieve the proposed level of accu-
racy [20, 31]. For example, a solution that automatically
determines a user’s current physical activity such as walk-
ing, jogging, standing, etc. [20], asked the participants in
the experiment to place the smartphone in the front pocket
of their pants. We believe that such assumption can limit the
practicality of the developed solution. It is unrealistic to re-



quire users to refrain from certain smartphone positions to
get good results. The third category of applications is de-
signed to produce good results regardless of the smartphone
position [17]. However, we believe that the techniques used
in these applications are application-specific and can’t be
generalized.

We take a bottom-up approach to tackle the smartphone
position problem. First, to motivate the problem, we exam-
ined a fall detection application proposed in [3] in two differ-
ent ways, first without knowing the smartphone position and
second with the smartphone position known. We show that
the accuracy of the application is significantly improved in
the latter case. Section 2 provides the details of this motivat-
ing example. Next, we analyze the impact of the smartphone
position on raw sensor data. This is important since context
derivation algorithms start from raw sensor data collected
from smartphone sensors. To do this, we conducted a range
of experiments that involved collecting sensor data from sev-
eral different users carrying their smartphones in several dif-
ferent positions. Analysis of the raw sensor values collected
from different smartphone position shows that the level of
smartphone position impact on raw sensors data ranges from
no impact at all for the case of GPS to a considerably high
impact as in the case of gyroscope and accelerometer. The
details of the analysis can be found in Section 3 of the paper.

Based on the analysis of the impact of smartphone po-
sition on raw sensor data, we have designed, implemented
and evaluated a smartphone position discovery service. This
service utilizes the sensor values collected from some care-
fully chosen sensors and detects the smartphone position
with very high accuracy. It runs orthogonal to any other
context aware service or application. Sections 4 and 5 de-
scribe the design, implementation and a detailed evaluation
of this service. The key motivation for the smartphone posi-
tion discovery service is that it can aid in improving the ac-
curacy of any other context-aware application by informing
the other application about the smartphone position so that it
may process its sensor information more accurately. In gen-
eral, we anticipate the following benefits from offering the
smartphone position service to context-aware applications:

• Context-aware applications can provide more accurate
results by processing their sensor data more accurately,
or avoiding taking decision in disadvantageous smart-
phone positions.

• Context-aware applications that utilize energy demand-
ing sensors or multiple sensors can take a proactive
role that helps in saving energy by not triggering these
sensors in case the smartphone position is found to be
inappropriate.

• Collaborative sensing applications, where the context
discovered by a single smartphone can be shared among
a group, can enhance their accuracy by eliminating par-
ticipants with noisy data due to disadvantageous smart-
phone positions.

Section 6 demonstrates that the accuracy of a context aware
application is improved in this way. There are three impor-
tant contributions of this paper:

1. A thorough study of the impact of smartphone position
on all sensors that are currently prevalent in commer-
cial smartphones is provided.

2. Based on the results of this study, a new smartphone
position discovery service is proposed. This service
detects the smartphone position very accurately and
runs orthogonal to any other context-aware applica-
tion.

3. Finally, the paper demonstrates that the accuracy of an
existing context aware application is improved when
run in conjunction with the proposed smartphone posi-
tion discovery service.

2. MOTIVATION
Consider three different context-aware applications each

utilizing different sensor(s). SurroundSense [4] performs
logical localization such as detecting if the user is currently
having coffee at Starbucks, partying, shopping at Wal-Mart,
etc. The application is able to achieve logical localization by
harnessing online sensor data from camera, microphone, and
accelerometer sensors and comparing them with previous
knowledge about the place. Smartphone position is a major
obstacle for SurroundSense. For instance, if the smartphone
is in a covered position, e.g. Hip Pocket, Pants Pocket, or
Jacket Pocket, the system will not be able to take the required
image to perform the color fingerprinting for the location.
We believe that applications like SurroundSense can consult
the smartphone position discovery service in order to take
the required image when the phone is in reliable positions.
We also believe that the sensor data from microphone and
accelerometer would benefit from smartphone position by
excluding the disadvantageous positions for the correspond-
ing measured context.

Next, lets consider a an application that uses the micro-
phone sensor. Researchers in [21] have developed an audio-
based cough counting system running on a smartphone to
monitor the health of patients with respiratory diseases. The
application requires the patient to place the smartphone ei-
ther in the shirt pocket or attached to a neck strap. In fact,
the authors acknowledge that the chosen two positions do
not represent an optimum choice in terms of patient com-
fort. However, the application needed to stick to these posi-
tions to achieve acceptable accuracy. We believe that smart-
phone position discovery service can play an important role
if integrated with the cough counting system. Users can
be given the chance to carry their smartphones freely and
coughs will only be counted in suitable positions, i.e. when
the smartphone is in the upper body region. In the data usage
statistics of smartphones reported in [11], it was shown that
user-smartphone interaction durations can be as high as 500



minutes a day. We believe that with such long interaction
durations between the user and the smartphone, the cough
system would still have enough opportunity to capture au-
dio in favored positions without restricting the users to place
their smartphones in specific positions.

Finally, we take an example for a context-aware applica-
tion that is based on the accelerometer sensor. Here the ben-
efit of smartphone position knowledge is not just bound to
taking a go/no-go decision to capture contexts as in the pre-
vious two examples. Some applications provide better accu-
racy if trained for a single position. The fall classification
application in [3] detects the type of fall from four different
fall categories namely forward trips, backward slips, left lat-
eral falls, and right laterals. The output of this application
can be used by experts in the field of elderly care to develop
fall prevention mechanisms and to assist first responders in
providing more customized emergency procedures. In or-
der to detect the type of fall, the application uses supervised
machine-learning classifier with training data collected be-
forehand. Despite the fact that the experiment used a smart-
phone for data collection, users were not given the chance
to carry the smartphone freely. Rather, the used smartphone
was attached to the backside of a belt and users were asked
to wear this belt and simulate the different categories of falls.
Restricting the smartphone position in the experiment surely
results in higher accuracy since the unification of position in
both training and test data reduces the variability in the data,
thereby, putting fewer burdens on the classifier. Neverthe-
less, we believe that such restriction in terms of smartphone
position limits the practicality of the application.

To overcome the problem caused by arbitrary smartphone
positions, we propose a two steps approach for such context-
aware applications. First, the offline training for the classi-
fier can be done with different smartphone positions to gen-
erate a classifier trained for each position. Second, with the
presence of the smartphone position discovery service, the
application will know in advance the current smartphone po-
sition and choose the classifier corresponding to that specific
position during the classification process. To demonstrate
the potential improvement in accuracy that this approach can
achieve, we have conducted two experiments to detect the
above-mentioned four types of falls (similar to [3]). In the
first experiment, both the training data and the test data were
collected at arbitrary smartphone positions by allowing the
user to put the smartphone either in pants pocket, hip pocket
or jacket pocket. The confusion matrix for this experiment
is shown in Table 1. In the second experiment, three training
files, each containing the four types of falls, were collected
for three mentioned smartphone positions. Afterwards, the
user was asked to simulate the required four types of falls
and the classifier was pointed to the training file correspond-
ing to the smartphone position, assuming the smartphone
position is known in advance. The confusion matrix of the
second experiment is shown in Table 2.

We notice that with arbitrary position (Table 1), the classi-

Prediction Percentage
1 2 3 4

Fa
ll

Ty
pe

1 77.8 0 0 22.2
2 11.1 88.9 0 0
3 0 0 33.3 66.7
4 0 0 11.1 88.9

Table 1: Fall classification accuracy with arbitrary smart-
phone position using SMO classifier.
(1) Slips, (2) Trips, (3) Left Lateral, (4) Right Lateral.

Prediction Percentage
1 2 3 4

Fa
ll

Ty
pe

1 93.3 0 6.7 0
2 0 100 0 0
3 6.7 0 93.3 0
4 7.1 0 0 92.2

Table 2: Fall classification accuracy with arbitrary smart-
phone position using SMO classifier.
(1) Slips, (2) Trips, (3) Left Lateral, (4) Right Lateral.

fier fails significantly to distinguish the left lateral fall from
the right lateral fall. Also, slips are being confused with right
lateral falls in many occasions. The overall accuracy for the
arbitrary positions experiment is 72.22%. We now turn into
evaluating the ideal solution of assuming a smartphone po-
sition known in advance (Table 2). The results show a sig-
nificant improvement for all fall categories with an overall
accuracy of 94.8%. We conclude from these two experi-
ments that with the knowledge of the smartphone position,
the accuracy of fall classification improves dramatically, and
in general the accuracy of any context aware application is
likely to improve. However, the assumption of a complete
knowledge of smartphone position is not a valid one. Any
service that provides smartphone position information to a
context aware application will most likely be not 100% ac-
curate. So, given that a smartphone position discovery ser-
vice is not 100% accurate, the question we hope to answer
is whether the accuracy of a context aware application based
on that position discovery service would still be higher than
when that application does not use the position discovery
service. We address this for the same experiment in section
6 after presenting the implementation details for the smart-
phone position discovery service.

3. IMPACT OF SMARTPHONE POSITION
We have conducted a series of experiments to study the

impact of smartphone positions on raw sensor values. The
objective of the study is to answer two questions. First, what
sensors are most influenced by smartphone positions? Sec-
ond, for those sensors, what are the features that can best
reveal the differences in the raw data corresponding to the
smartphone position? These features can then be utilized by
our proposed smartphone position discovery service. We fo-



Figure 1: Inspected positions from left to right, Hand Hold-
ing, Talking on Phone, Watching a Video, Pants Pocket, Hip
Pocket, Jacket Pocket and On-table.

cused on the sensors that are commonplace in current smart-
phones: accelerometer, gyroscope, light sensor, microphone,
GPS and magnetometer. We collected data for each type of
sensor at six different smartphone positions [9]. Since our
goal is to cover the common scenarios in the daily life of
a user, we added an extra position covering the typical sit-
uation of a smartphone placed on a table. Figure 1 illus-
trates these smartphone positions. Overall, ten users partic-
ipated in these experiments. The analysis covered the phys-
ical contexts of idle, walking, and running. Following sec-
tions demonstrates the results of the experiments of walking
users. A seperate section is devoted for the other physical
contexts due to the challenge they impose on the position
discovery service. The on table position is also analyzed
separately due to its specific nature of being the only off-
body position from the positions under analysis.

3.1 Accelerometer
Accelerometer, whether embedded in a smartphone or as a

wearable sensor, has been widely used to analyze the phys-
ical activities of human beings [28, 20, 5, 10, 30, 22] as
well as to detect other contextual information linked to the
physical activities in the surrounding environment [34]. A
single accelerometer reading provides three values in x-axis,
y-axis, and z-axis. It is typical to use the magnitude as a sin-
gle value to reflect on the three values. We logged the data
for the accelerometer at the rate of 10Hz (i.e. 10 readings
per second), which appeared to be sufficient to capture po-
tential repetitive behavior. Figure 2 compares accelerometer
magnitude values for two positions, hand holding and pants
pocket. The plot reveals that the pants pocket position mag-
nitude values exceed 15 m/s2 very frequently and reaches 20
m/s2 in many data points. Whereas, for the case of the hand
holding position, the accelerometer magnitude spikes hardly
reach the value of 15 m/s2. The reason for this difference is
that if the smartphone is in the lower body part region (i.e.
pants pocket and hip pocket), it is going to be subject to more
vibrations than if it is in the upper body part region. This
observation is in harmony with many accelerometer analysis
techniques in other research that required the smartphone to
be placed near the pelvic region to better detect user physical
activity [28, 20].

Next, we are interested in comparing two positions from
the lower body part namely the pants pocket and the hip
pocket positions. Unlike the previous case, we did not ob-
serve any big gap in the peak values for the two positions.
Hence, we resorted to statistical analysis to reveal the poten-

Figure 2: Accelerometer readings magnitude for hand hold-
ing and pants pocket positions.

tial differences. The mean, variance and standard deviation
have been widely used in prior work with the accelerometer
sensor [28, 20, 5]. In order to calculate these statistical fea-
tures, we begin by dividing the data into time frames. Our
chosen time frame size is five seconds, as this period of time
is enough to capture any likely repetitive behavior influenced
by the smartphone position. We then calculated the mean,
variance, and standard deviation for each time frame. Figure
3 provides plots for the standard deviation of four partici-
pants for the pants pocket and hip pocket positions. Notice
that the standard deviation of the pants pocket position is
higher than the standard deviation for hip pocket positions
for the first three users. However, for user no. 4 the opposite
is true for most of the time frames except time frame num-
bers 4 and 6. We attribute such differences to the diversity in
body movements’ styles, different clothing (e.g. pocket size
or design) and other measures related to the experimental
environment. Nonetheless, we believe that the similarities
found in first three users represent an opportunity that can
be exploited by the smartphone position discovery service.

3.2 Microphone
In the microphone experiment, our goal is to identify any

differences in the sound recorded that can be linked to the
smartphone position. The focus of a prior work with the mi-
crophone [25] was limited to determining whether the smart-
phone is inside or outside the user’s pocket. Analyzing the
friction noise generated as a result of the smartphone be-
ing inside a pocket can be used to unveil such information.
We requested users to record a sound file using the smart-
phone with different smartphone positions under analysis.
The recording was made in a quiet room to avoid any back-
ground noise interference. We recorded each audio clip at
a rate of 44.1 kHz. The audio clips were split into five sec-
onds frame segments to detect potential repetitive behaviors.
We then carried out amplitude analysis, nearly similar to the



Figure 3: Accelerometer values standard deviation for pants
pocket and hip pocket positions.

Figure 4: Sound signatures for different smartphone posi-
tions.

analysis done in [4], on the sound frame segments to gener-
ate sound fingerprints related to each smartphone position.
The fingerprints are generated as follows. First, the ampli-
tude range between -1 and 1 is divided into 200 equal in-
tervals with one hundred intervals in the negative range and
another one hundred in the positive range. Second, by count-
ing the number of occurrences of amplitude values within
each range we develop a histogram. Finally, the values cor-
responding to each interval in the histogram are divided by
the total number of samples, which generates the percentage
of amplitude occurrences within each interval. The acoustic
fingerprints for different smartphone positions for a single
user are illustrated in Figure 4.

By looking at the resultant fingerprints, one can notice
that the upper body positions of hand holding, watching a
video, talking on phone and inside jacket pocket have al-
most similar fingerprints with the biggest percentage of am-

Figure 5: Gyroscope readings magnitude for hand holding
and pants pocket positions.

plitudes concentrated near the zero amplitude value. Since
the recordings were done in a quiet room, this result indi-
cates that the friction noise for these positions was minimal.
In contrast, the sound fingerprints for the pants pocket and
hip pocket positions have amplitude values scattered in the
range of -0.5 and 0.5. Therefore, we can conclude that the
sound signatures divide the positions into two groups that
are distinguishable from each other. However, the signatures
within each group share common theme making the task of
differentiating among them quite hard.

3.3 Gyroscope
Similar to accelerometer, gyroscope has sensitivity to mo-

tion, and has been used in many context aware applications
[16, 18, 15]. Gyroscope reading also consists of three com-
ponents in the x-axis, y-axis, and z-axis. The three values
represent instantaneous angular velocity of the smartphone
in each direction. Our application for logging accelerome-
ter values was also used to log gyroscope values at the same
rate as that of accelerometer, 10 Hz. We conducted the same
analysis that we did with accelerometer data to uncover any
potential repetitive behavior of gyroscope raw data that can
be attributed to the smartphone position. Figure 5 depicts the
magnitude of gyroscope raw values for a user for two differ-
ent smartphone positions, hand holding and pants pocket for
one minute.

Notice that for the hand holding position, gyroscope mag-
nitude values can hardly reach the 3 rad/sec, whereas, for
the pants pocket position the magnitude values pass the 3
rad/sec a lot of times and reach 5 rad/sec on some occasions.
This clearly indicates that the gyroscope sensor is analogous
to accelerometer in having sensitivity to the smartphone po-
sition. In addition, Figure 5 reveals the difference between
the upper body part positions and the lower body part posi-
tions. We now turn into another experiment aiming at identi-
fying the potential differences between smartphone positions



Figure 6: Gyroscope values standard deviation for pants
pocket and hip pocket positions.

within the same body part. Figure 6 plots the standard de-
viation of the gyroscope data for four users in two different
smartphone positions, pants pocket and hip pocket.

It is clear that similar to the accelerometer, the standard
deviation values of pants pocket position are always higher
than the hip pocket position. This is true for all users ex-
cept user 4 who had the same behavior in the accelerometer
standard deviation values.

3.4 GPS
The GPS is well known of not being able to work in-

doors due to blocking of microwave signals by buildings.
However, our outdoor experiments have shown that differ-
ent smartphone positions have no impact on the GPS loca-
tion readings of latitude, longitude and altitude. Actually,
this observation conforms to the results of [27].

3.5 Magnetometer
The magnetic field sensor measures the strength of earth

magnetic field in the three directions of x, y, and z. It has
been used in indoor localization techniques in the absence
of GPS signals [18, 16, 8]. Figure 7 displays two plots of
magnetometer readings magnitudes related to the positions
of hand holding and pants pocket. We have used the magni-
tude to fuse the three directions values into a single reading
for simpler comparison.

We would like to pinpoint two facts from the plot. First,
the magnitude values for both positions are experiencing the
similar cycle that starts with the peak before 20 seconds and
ends with the peak before 40 seconds. Second, the hand
holding position curve is smoother than the pants pocket
curve. This can be noticed from the more frequent small
spikes in the pants pocket curve. The first point can be at-
tributed to the fact that while performing the experiment, our
users were repeating the same circular path. Therefore, we
can see the same impact of direction changes on the two

Figure 7: Magnetometer readings magnitude for hand hold-
ing and pants pocket positions.

Figure 8: Magnetometer values standard deviation for pants
pocket and hip pocket positions.

curves. The second point is actually related to the smart-
phone position. In the hand holding case, smartphone expe-
rienced fewer vibrations due to body movements making the
curve smoother. In contrast, for the pants pocket position,
the vibrations were high resulting in the spikes. We also
look at the standard deviation of four of the users in Figure
8 to decide on the statistical features that can be used by the
smartphone position discovery service.

One can notice from the figures that the standard devi-
ations for the two body positions of pants pocket and hip
pocket don’t experience any pattern for the four users. This
is due to the fact that the influence of direction changes is
much higher than the influence of the smartphone positions
vibrations. Since direction changes can be done arbitrarily,
the smartphone position discovery service can’t depend on
magnetometer to perform the required distinction.

3.6 Light Sensor



Figure 9: Light sensor readings for hand holding and pants
pocket positions.

Light sensor provides a single reading in lumen (lm) rep-
resenting the measured luminous flux. As expected, through-
out our experiments, we have seen that the measured light
intensity values are influenced by whether the smartphone is
in covered or uncovered position. However, no patterns have
been noticed that can be attributed to the specific smartphone
position. Covered positions have average values nearly equal
to the lowest light intensity value the smartphone can give.
In contrast, uncovered positions produce much higher values
that are dependent on the light intensity of the environment.
This observation can be clearly spotted from Figure 9, which
depicts the light intensity raw data for the two smartphone
positions of hand holding and pants pocket.

3.7 Physical Contexts
All our experiments so far have been done for a walking

user. Though walking context is popular, a user could be
in other physical contexts such as idle and running. Notice
that in the idle context, sensor values of accelerometer, gyro-
scope, magnetometer and GPS are unaffected by the smart-
phone position. On the other hand, all the sensors that are
impacted by smartphone positions in walking context will
also be impacted by smartphone positions in running con-
text, although the nature and magnitude of the impact may
be different. Since accelerometer demonstrated sensitivity to
smartphone positions, we recorded accelerometer values for
a running user. Figure 10 illustrates accelerometer standard
deviation of four running users for hand holding and pants
pocket positions.

Unlike the walking context, the raw data for the running
context doesn’t reveal any patterns that can be exploited by
the smartphone position service to distinguish between the
smartphone positions. By looking at Figure 10, we see that
for user nos.1 and 4, the hand holding position has higher
standard deviations for all frames when compared to the pants

Figure 10: Accelerometer values standard deviation for hand
holding and pants pocket positions for running users.

pocket position, whereas, the opposite is true for user no. 2.
Also, for user no. 3, the standard deviation doesn’t follow
any pattern. We attribute this chaotic behavior to the range
of different paces a running context might exhibit. When the
user is asked to run, on some occasions the user would run
very fast, while in others the same user would run relatively
slower. Therefore, running context represents a challenging
environment for the smartphone position discovery service.

3.8 On-table Position
A distinguishing factor between a smartphone on the table

and another smartphone in an on-body position in the case
of a non-moving user is the orientation. As can be seen in
Figure 11, the gravity effect of 9.8 m/s2 will appear in the
z-axis for a smartphone placed on the table. This value will
appear as positive if the smartphone is placed normally and
as negative if the smartphone is flipped upside down. The
x-axis and y-axis will have a value of nearly 0 for the same
situation. Figure 11 also shows light intensity which can be
used to discover if the smartphone is in a drawer.

3.9 Discussion
It is clear that the sensor values of accelerometer, gyro-

scope, microphone, magnetometer and light sensor are af-
fected by smartphone position. Thus, context aware appli-
cations that depend on one or more of these sensors have
the potential to benefit from a smartphone position discov-
ery service. On the other hand, GPS sensor values remain
largely unaffected by smartphone positions. Sensor values
of accelerometer, gyroscope and magnetometer are affected
by the differences in vibrations at different smartphone posi-
tions while microphone values are affected by friction noise
and light sensor values are affected by whether the phone is
covered or uncovered. So, a context aware application that
is based on accelerometer, gyroscope and/or magnetometer
sensor values is likely to benefit from the knowledge of ac-



Figure 11: Accelerometer z-axis and light intesnity for a
smartphone placed on a table with normal and flipped sce-
narios.

tual smartphone position such as hand holding, pants pocket,
jacket pocket, hip pocket, etc. On the other hand, a con-
text aware application that is based on light sensor values is
likely to benefit from the knowledge of whether the phone
is covered or uncovered. Finally, a context aware applica-
tion that is based on microphone sensor values is likely to
benefit from the knowledge of whether the phone is in the
upper body position (hand holding, jacket pocket, talking on
the phone, or watching video) or lower body position (hip
pocket or pants pocket).

4. SMARTPHONE POSITION DISCOVERY
Based on our observations, we have designed, implemented

and evaluated a smartphone position discovery service that
provides four types of information: (1) Is the user idle, walk-
ing or running? (2) Is the phone covered or uncovered? (3) Is
the phone placed in upper body or lower body? (4) What is
the actual smartphone position? This service is designed to
be configurable, so that an application can choose to receive
only one or two or all types of information. The challenge
in building the proposed service is that it utilizes sensor data
from specific sensors (e.g. accelerometer and gyroscope),
whose values are dependent on the physical contexts of the
user. It is possible that the data from a particular sensor
under one smartphone position and user activity is indistin-
guishable from the data from the same sensor under a differ-
ent smartphone position and user activity. We address this
challenge by detecting user’s physical context (idle, walking
or running) and utilizing data from multiple sensors. The
key idea is that different sensors are affected differently by
various user contexts, and we exploit these differences to ac-
curately detect smartphone positions.

To detect whether the smartphone is in covered or uncov-
ered position, the service compares the online captured light

intensity data with a predefined threshold. The situation is
more complex when it comes to the other finer granular-
ity information. For both the upper-body/lower-body and
the exact smartphone position decisions, the service uses
machine-learning libraries to compare knowledge obtained
from online sensor data with knowledge from labeled train-
ing data prepared offline. This classification process involves
accelerometer or gyroscope or both sensors based on the
preference of the serviced context-aware application. Figure
13 illustrates this design. It is worth noting that the complete
solution runs on the smartphone. The smartphone position
service can be utilized locally by other applications running
on the same smartphone or remotely by collaborative sens-
ing applications running on other smartphones.

Figure 12: System Design for the Smartphone Position Dis-
covery Service.

4.1 Offline Components
There are three offline components: Framing, Feature ex-

traction and Frame labeling. The Framing component aims
at capturing the repetitive patterns in the raw sensor data
by dividing the data stream, from accelerometer and gyro-
scope, into five-second frames. Our choice of five-second
frame size is based on analysis presented in [9] on the ef-
fect of frame size on step detection accuracy. Their analysis
revealed that a frame size larger than 3 seconds is sufficient
enough to provide good step detection accuracy and favored
the five-second frame as it gives more accurate results.



The features extraction component calculates statistical
features for each frame. Frame features must be chosen
smartly to reveal the different patterns induced by each smart-
phone position. Our frame features are subset from the fea-
tures presented in [20]. Based on our observations in Section
3, we have chosen the mean, variance, and standard devia-
tion over 50 data points (10 data points per second) for each
frame to capture the variations in accelerometer and gyro-
scope data. We have also included two other features (av-
erage for each axis and average absolute difference of each
axis) related to each axis so as to capture the different ori-
entations a smartphone can take for each position. This is
because we noticed that each position has a common orien-
tation that occurs quite frequently. Average of each axis cap-
tures the variation in the data due to body motion at the axis
level. In addition, it reveals the nature of the orientation the
smartphone is experiencing for each body position. Average
absolute difference of each axis is the sum of the differences
between each axis data point and the mean of that axis di-
vided by the number of data points. We include the average
absolute difference to enhance the solution accuracy in cap-
turing the information revealed by axis data points.

Finally, the frame labeling component labels each frame
with the corresponding smartphone position before loading
the data to the training database. The labeling process was
done manually. We asked our users to capture the data for
the different smartphone positions while walking and labeled
resultant frame segments with the practiced smartphone po-
sition during the experiment. Each frame record carries two
labels: upper-body/lower-body position and the exact smart-
phone position.

4.2 Online Components
There are six online components: Training data, Machine

learning libraries, Sensor values from accelerometer, gyro-
scope and/or light sensor, Framing, Feature extraction, Posi-
tion classifier and Upload optimizer. The training data is the
output from the offline components. Sensor data from ten
users performing the same experiment for different smart-
phone positions was collected offline. After performing the
(offline) framing and feature extraction processes, the re-
sultant frame records constitute the knowledge database to
be utilized for automatic discovery of smartphone position.
Once ready, the training data is placed on the external mem-
ory card of the smartphone to be utilized by the smartphone
position service.

We utilized Java language machine-learning libraries pro-
vided by the WEKA tool [1]. Specifically, for the implemen-
tation of the smartphone position discovery service, we used
WEKA for Android [2], which is a version from WEKA
libraries ported to Android platform. The correctness of
used classifiers was tested by performing a test experiment
with the same training and test data on a desktop by nor-
mal WEKA and on Android device by WEKA for Android.
Same results were obtained for the two experiments.

We chose three sensors (accelerometer, gyroscope and light
sensor) based on the analysis done in Section 3. Accelerom-
eter is used for detecting physical context, accelerometer
and/or gyroscope are used for detecting the actual phone
position, and light sensor is used for detecting whether the
phone is covered or uncovered. The use of two sensors for
detecting actual phone position is subject to a tradeoff be-
tween energy consumption and smartphone position detec-
tion accuracy. The framing and features extraction compo-
nents have the same functionalities as in the offline case.
The only addition is the capture of average light intensity
per frame, which is not required for training the classifier.

The position classifier component receives the gathered
online frame data and uses it in three ways. First, it compares
the standard deviation of accelerometer magnitude with pre-
defined thresholds to determine idle/walking/running con-
texts.Second, it consults the machine learning classifier to
detect smartphone position information. Third, it compares
the light intensity average of the frame with a predefined
threshold to determine covered/uncovered position. In the
case of idle or running contexts, the position service provides
the latest smartphone position discovered under proper phys-
ical context along with a timestamp and leave it to the con-
suming context-aware application to use this cached smart-
phone position based on its accuracy preferences. Our goal
here is to exploit the fact that, in some situations the user
might change their physical context but maintain the same
smartphone position.

Finally, the upload optimizer is utilized only in case the
position is required to be relayed over the network as part
of a collaborative sensing solution. We developed this com-
ponent because we envision the smartphone position discov-
ery service to be an important part of collaborative sensing
applications. The upload optimizer logic is based on opti-
mization techniques discussed in [26]. The optimizer im-
plements three alternative techniques for upload optimiza-
tion: (1) Upload whenever a position change occurs; (2)
Upload when a position change persists for some period of
time; and (3) Upload the position with the highest number
of occurrences within a window of given size. While the
first technique is simple and provides most accurate results,
it is subject to noise due to momentary smartphone position
changes. The second technique eliminates this noise and re-
ports only more permanent position changes. Finally, the
third technique is suitable when there are frequent smart-
phone position changes. This technique tries to report the
most commonly occurring smartphone position.

4.3 Use Case Scenario
Assume a context-aware application that is interested in

the exact position. The flow diagram in Figure 13 demon-
strates the flow of execution for the position service to pro-
vide this information. In the beginning, the service will use
the variance of the accelerometer for the captured window to
detect the physical context. If the smartphone is idle, the ser-



vice will detect if it is placed on table or any other position.
In case the smartphone is idle and not on table, the exact po-
sition is difficult to provide and a cached recent value along
with the activity is returned instead. Also, a running context
means that position can’t be detected and a cached value is
returned. If the user is walking, the service will utilize the
online features extracted from the accelerometer and gyro-
scope to provide the exact position.

Figure 13: Position service execution flow for a request for
an exact position.

5. IMPLEMENTATION AND EVALUATION
We implemented the smartphone position discovery ser-

vice on Samsung Galaxy Note device running Android ver-
sion 4.0.3 (Ice Cream Sandwich). The device has a Dual-
core 1.4 GHz ARM Cortex-A9 processor and 1GB of RAM
and is equipped with the accelerometer, gyroscope and light
sensors required for the service. We collected data from ten
different participants to train the smartphone position dis-
covery classifier. Before conducting the experiment, an ap-
proval was obtained from the Institutional Review Board at
CU Boulder. We asked each participant to carry the smart-
phone in the six smartphone positions. The experiment setup
was kept as natural as possible. Participants were free to
move at their own pace and place their smartphones at any
orientation they liked.

5.1 Physical Contexts
The physical contexts of idle or running is quite straight

forward to detect as these contexts represent the two ex-
tremes of no movements (for idle) and drastic movements
(for running), which make them easily distinguishable from
the normal walking context.The two physical contexts can be
distinguished by looking at the accelerometer standard devi-

Percentage Accuracy of Position Discovery

Naive Bayes Simple Logistic
Regression J48

Upper-Body 89.2 91.2 92.8
Lower-Body 77.2 90.5 83.9

Total Accuracy 84.6 90.9 89.4

Table 3: Upper-body vs lower-body detection accuracy
based on accelerometer features using different classifiers.

ation of the frame and comparing it to predefined threshold
values. The threshold values we used were 0.5 m/s2 and
5 m/s2 to detect idle and running contexts respectively. In
both cases, the position service responds with the physical
context detected and the latest cached smartphone position.
In our experiments, these thresholds achieved near-perfect
accuracy.

5.2 Covered vs. Uncovered
This information is typically important for context-aware

applications consuming the camera input, e.g. [4, 6]. Such
applications can save energy by avoiding the cost of taking a
picture in case the smartphone is in covered position. We no-
ticed that the least light sensor reading from our smartphone
is around 2.5 lm. This reading is produced when there is
no light in the surrounding environment or when the smart-
phone is in covered position. Therefore, we used the value of
3 lm as a threshold to distinguish between a covered and un-
covered position. If the average light intensity for the online
captured frame is less than 3 lm, we conclude that the smart-
phone is in covered position, and vice versa. This choice
worked almost perfectly except in two rare cases. First, in
a dark environment, the reading would always indicate cov-
ered position. Second, if the smartphone is in covered posi-
tion, however, the user clothing happened to have a degree
of transparency.

5.3 Smartphone Position: Accuracy

5.3.1 Upper-Body vs Lower-Body
Smartphone positions covered in this research can be di-

vided into two groups: upper-body group, including hand
holding, talking on phone, watching a video, and jacket pocket;
and lower-body group, including pants pocket and hip pocket.
To detect the group that a smartphone is in, we trained the
classifier with accelerometer data from 10 users and carried
a 10-folds cross-validation test. The results of the classifica-
tion process with different classifiers are shown in Table 3.
The achieved accuracy using accelerometer is fairly high for
the simple logistic regression and J48 classifiers. Therefore,
we conclude that the accelerometer is the best candidate to
perform this classification task and exclude gyroscope from
our analysis.

5.3.2 Exact Smartphone Position
Both accelerometer and gyroscope have shown sensitivity

to smartphone positions. Our goal here is to compare be-



Percentage Accuracy of Position Discovery
Naive
Bayes

Multilayer
Perceptron

Logistic
Regression J48

Handholding 75.9 83.8 94.5 97.8
Watching a Video 91.8 93.2 96.0 97.0
Talking on Phone 79.4 89.7 91.7 91.3

Pants Pocket 65.4 67.9 58.0 78.2
Hip Pocket 57.6 78.8 71.6 90.7

Jacket Pocket 27.6 67.1 73.2 75.3
Total Accuracy 66.7 80 80 88.5

Table 4: Smartphone position detection accuracy based on
accelerometer features using different classifiers.

tween the two sensors. In the beginning, we conducted a test
experiment with the six smartphone positions and collected
the data for both the accelerometer and gyroscope. Then, to
evaluate a single sensor, we kept the data for that sensor and
deleted the data for the other sensor. By doing so, we ensure
fair comparison since the three results we show next are ba-
sically for the same experiment, but, with different sensors
included. Here we also used data from 10 users and per-
formed a 10-folds cross-validation test. Table 4 illustrates
the results of smartphone position classification using only
accelerometer. We note that the J48 decision tree classifier
achieves good accuracy of 88.5% with the accelerometer as
the only input. On the other hand, the Naive Bayes classi-
fier had the lowest accuracy of 66.7%. We also note that the
source of confusion varies from one classifier to another for
the same experiment. For example, in the multilayer per-
ceptron experiment, the jacket-pocket position produced the
lowest accuracy. On the other hand, with the Logistic Re-
gression in use, the pants pocket position was the hardest
position to classify.

Next, we evaluate the service when gyroscope is in use.
Table 4 illustrates the results of smartphone position classi-
fication using only gyroscope. We note that all classifiers
achieved lower total accuracy when compared to the use of
accelerometer. This shows that the gyroscope is less sen-
sitive to smartphone positions than accelerometer. Never-
theless, the accuracy achieved by the gyroscope is still at
acceptable levels making the sensor worth considering for
some cases. For example, some positions achieved accuracy
level of above 80% for some classifiers. However, the over-
all accuracy remains less than the values achieved when the
accelerometer is in use.

Now, let’s move on to the situation where we use both
accelerometer and gyroscope to detect the smartphone posi-
tion. Table 6 provides the position discovery results for both
sensors. As expected, all the classifiers achieved a gain in
accuracy when compared to the previous two single-sensor
configurations. We also note that three out of the four classi-
fiers achieved very high accuracy levels (above 80%). How-
ever, this improved accuracy comes at the cost of increased
energy demands by continuously sensing two sensors and
performing the features extraction calculations twice.

Percentage Accuracy of Position Discovery
Naive
Bayes

Multilayer
Perceptron

Logistic
Regression J48

Handholding 72.2 78.4 85.4 63.6
Watching a Video 64.7 81.8 84.8 84.2
Talking on Phone 48.4 64.8 72.3 75.6

Pants Pocket 60.6 82.0 75.5 55.2
Hip Pocket 52.4 72.6 64.1 52.3

Jacket Pocket 46.7 62.0 52.9 47.6
Total Accuracy 57.6 74.0 72.7 62.9

Table 5: Smartphone position detection accuracy based on
gyroscope features using different classifiers.

Percentage Accuracy of Position Discovery
Naive
Bayes

Multilayer
Perceptron

Logistic
Regression J48

Handholding 76.6 86.4 98.9 92.6
Watching a Video 92.4 91.3 98.0 95.8
Talking on Phone 76.9 91.9 96.8 93.1

Pants Pocket 73.2 85.8 78.8 75.9
Hip Pocket 66.2 93.5 88.3 83.5

Jacket Pocket 51.4 80.8 75.6 68.6
Total Accuracy 73.0 88.6 89.3 84.9

Table 6: Smartphone position detection accuracy based on
both accelerometer and gyroscope using different classifiers.

5.3.3 Smartphone Position: On-Table Position
Due to its special nature, the on table position is handled

separately. We directly use the window features of average
x-axis, average y-axis, and average z-axis to detect this posi-
tion. The z-axis value will be nearly equal to the gravity pull
value of 9.8 m/s2 whereas the x-axis and y-axis will have
the value of near zero. We also use the light to detect if the
smartphone is placed on a table or is actually inside a drawer.
By detecting this position separately we avoid the cost of the
classification while still achieving a good detection accuracy.

5.3.4 Smartphone Position: Energy Consumption
To analyze the energy demands of the proposed smart-

phone position deiscovery service, we measured the battery
drain when each of the three configurations is employed.
The results are shown in Figure 14.

Battery consumption measurements suggest that the use
of the gyroscope sensor adds a considerable energy con-
sumption overhead. With ten hours of operation based on
accelerometer only, the smartphone position service drained
less than 10% of the smartphone battery. However, when
both sensors are employed, the battery drain for ten hours
surpasses 50% of battery lifetime. On the other hand, using
light sensor only drained 40% over the same period. This
clearly indicates that there is a tradeoff between accuracy
and energy consumption. We believe that there is still space
to enhance the energy consumption of our solution by em-
ploying efficient continuous sensing techniques proposed in
[23, 33]. In addition, an important point that we would like
to highlight is the possibility of sharing sensor data between
the smartphone position service and the context-aware ap-



Figure 14: Battery consumption for the three sensor config-
urations.

Percentage Accuracy of Position Discovery
Naive
Bayes

Multilayer
Perceptron

Logistic
Regression J48

Handholding 100 100 100 66.67
Watching a Video 92.30 100 100 92.31
Talking on Phone 100 100 100 100

Pants Pocket 100 94.44 100 83.33
Hip Pocket 100 100 93.33 100

Jacket Pocket 100 100 100 100
Total Accuracy 98.71 99.07 98.88 90.38

Table 7: Smartphone position accuracy using different clas-
sifiers and custom-trained data.

plication, which occurs when there is a match between the
sensors required for the two. In such scenarios, the smart-
phone position service would just intercept the sensor data
that is already being gathered by the application, thereby,
eliminating the need for extra sensing.

5.3.5 Group Training vs Custom Training
A smartphone is typically a personal device owned by a

single user. Therefore the idea of each user (custom) train-
ing his/her position discovery classifier is worthwhile. We
experimented with this idea, where a user trained his smart-
phone by performing the above-mentioned classifier train-
ing experiments. Next day, we collected sensor data from
the same user and ran our smartphone position discovery
service using the custom-trained classifier from the previ-
ous day. Table 7 shows the accuracy of smartphone position
detection when both accelerometer and gyroscope data were
used.

We can see that the total accuracy for each classification
algorithm has improved dramatically (compare the results
with Table 6). One point to not is that the user wore similar
clothing on both days in this experiment. We expect that the
detection accuracy may be slightly lower for different style
of clothing. One way to address this is to train the classifier

with different clothing styles. The idea of training a clas-
sifier on smartphone by the user before application use has
been used in [24]. However, the authors tried to keep the
training period as minimum as possible as they believed that
users might refrain from using applications requiring train-
ing beforehand. We share the same concern and believe that
our application can be installed with multiple users training
data, which has shown acceptable accuracy levels, and the
user is then given a choice for custom training.

6. APPLICATIONS
In Section 2, we observed that there is a significant overall

improvement in the accuracy of fall detection if the smart-
phone position is known (72.2% to 94.7%). However, we
noted that the assumption of a complete knowledge of smart-
phone position is not a valid one. Results in Sections 5
showed that our smartphone position service does not pro-
vide 100% accuracy. To understand the impact of a smart-
phone position discovery service that is not 100% accurate,
we implemented the fall classification application [3] and in-
tegrated it with our smartphone position discovery service to
provide the smartphone position information to the applica-
tion. We used the two-steps approach of first performing on-
line detection for the current smartphone position, and then
choosing a classifier trained for the same smartphone posi-
tion to detect the type of fall.

Figure 15(a) and (b) show the “per-fall“ and “overall ac-
curacies“ for this case. We also included the results from
the other two earlier experiments (Tables 1 and 2) of ar-
bitrary smartphone position and complete smartphone po-
sition knowledge to make it easier for the reader to grasp
the effect of introducing the smartphone position discovery
service. Notice from Fig. 14(a) that the accuracies of trips
and left lateral falls detection have been improved. For the
other two types of falls, introducing the position service to
the scene didn’t improve the results but didn’t negatively im-
pact them. We would like to stress on two facts. First, we
used a three-way classifier in this experiment to detect the
positions of pants pocket, hip pocket and jacket pocket. This
choice has made the job of the classifier easier. However,
these choices are the ones relevant to the fall classification
experiment since the other three positions include the user
carrying the smartphone in hand. During a fall, a hand can
wave chaotically and it is difficult to capture this behavior in
a classifier. The second fact is that we anticipate that each
context-aware application will be interested in its own set
of positions just as the fall classification is only interested
on those covered body-positions, which justifies our choice
of positions. For example, a wide range of applications de-
pending on the camera sensor will be interested in positions
where the smartphone is not covered.

Fig.14(b) reflects the overall accuracy improvement. The
improvement in the case of “known-position“ proves the fact
that by introducing the position service, context-aware appli-
cations will achieve better results. We also saw an improve-



ment for the case of with-the-position service. However, the
improvement was not as significant as in the optimal situa-
tion. We noticed that our position service provided the cor-
rect position in most situations, but it was the fall classifi-
cation that is difficult to achieve due to arbitrary after fall
behaviors.

The accuracy gain from using the position service intro-
duces three sources of cost. First, the addition of the gyro-
scope sensor placing more demands on the smartphone bat-
tery as shown in Section 5.2. We would like to point here
that since the fall classification application is already col-
lecting accelerometer data, the user might choose to operate
only on the accelerometer data, thereby, eliminating the ex-
tra sensing cost, though with lower accuracy gain. Second,
the additional memory required for training five classifiers -
one for position and four for fall types - compared to a single
classifier. In our experiment, memory consumption shows
an increase of less than 1MB of RAM usage for the case
of using the two-steps approach with the additional training
files, one for each smartphone position, loaded in memory.
Current smartphones - similar to the galaxy note used in the
experiment - come with a 1GB of RAM, making this addi-
tional cost acceptable. The third cost is related to the more
CPU overhead incurred by performing two classification op-
erations - one for position and another for fall classification-
rather than a single classification for the fall detection. How-
ever, we didn’t see any noticeable increase by introducing
the second classification operation.

7. RELATED WORK
Many researchers have studied the problem of smartphone

body-position. We focus on studies aimed at providing generic
solution for the problem. The work in [19] anticipated the
importance of body-position knowledge even before popu-
larity of sensor equipped smartphones. The provided anal-
ysis utilized wearable accelerometer sensor to differentiate
between four body-positions. However, a valid note raised
by the authors was that, as opposed to the built-in smart-
phone accelerometers, the wearable sensor has the advan-
tage of being firmly attached to the body position, which
will certainly lead to better accuracy in position detection.

[13] is another early work addressing the smartphone po-
sition problem in general. However, the covered positions
were limited to on-table, in-hand, and inside-pocket. The
authors implemented a prototype to automatically adjust the
current ringing profile based on the discovered position. The
solution augmented the smartphone with a 2D accelerome-
ter and demonstrated an accuracy of 87% in discriminating
between the mentioned positions. The authors in [25] pre-
sented some preliminary work to distinguish between the in-
pocket and out-of-pocket body-positions for a smartphone
based on the microphone sensor. Good accuracy level of
80% was acheived. However, the positions covered in this
solution remain limited and we believe that more precise
body-position solution is required.

(a) Per-Fall Accuracy

(b) Overall Accuracy

Figure 15: Fall detection accuracy for the three situations
of arbitrary smartphone position, with smartphone position
service, and assuming known smartphone position.

The work in [12] utilizes accelerometer to distinguish be-
tween five body-positions. According to the offline eval-
uation in the paper, 72.3% accuracy is achieved for data
collected from 10 users with the use of multilayer percep-
tron classification algorithm. The work in [29] suggested
the use of a rotation-based approach to recognize four body-
positions. The presented solution is based on accelerometer
and gyroscope. Achieved accuracy using SVM classification
was 91.69%. Our solution achieves comparable accuracy
with a fully working solution on a smartphone. The work
in [32] targets body-position localization of wearable sen-
sors used for health monitoring applications. Authors used
SVM to achieve a localization accuracy of 87% when dis-
tinguishing between 6 body-positions. The studied positions
are typical for health sensors and are not applicable to smart-
phones.

Finally, authors in [14] have taken a completely different
approach by utilizing multispectral material sensor - exter-
nal to the smartphone - to distinguish between the differ-
ent smartphone positions (including body-positions). The
solution is based on the idea that smartphone positions are
typically correlated with surrounding material with specific
features, which the sensor they used is able to detect.

8. CONCLUSION AND FUTURE WORK
This paper presented an automatic solution for smartphone



position discovery implemented entirely on a smartphone.
The proposed solution can act as a service provider to context-
aware applications running on the same smartphone by pro-
viding them with smartphone position information. The ser-
vice can answer the following four questions. (1) Is the
user idle, walking or running: (2) Is the smartphone cov-
ered or uncovered? (3) Is the smartphone attached to upper-
body or lower-body? (4) What is the actual position of the
smartphone? In order to answer each question, the service
utilizes specific sensor(s) chosen carefully based on a thor-
ough analysis presented in the paper. The paper also pre-
sented analysis for the accuracy and energy consumption of
the solution. Context-aware application developers can use
the smartphone position service to enhance the accuracy of
their applications where each application can choose among
the different information offered based on their accuracy re-
quirements and energy constraints.

Our solution requires continuous sensing since a transi-
tion from one smartphone position to another can occur at an
arbitrary time, and we need to discover this transition spon-
taneously. In our future work, we are planning to overcome
this problem by employing techniques similar to the hierar-
chical sensing technique presented in [33], which perform
discovery only if a position state change occurred. We pro-
pose to use the accelerometer at a minimum sampling rate
needed for state transition detection. Once a state transition
is found, the more expensive sensors of gyroscope and light,
will be called as needed to detect the new smartphone posi-
tion.

One popular position that we did not include is inside bag
position. This position is difficult to detect due to arbitrary
orientations a smartphone can take and the chaotic move-
ment patterns it can experience inside a bag. We believe
that the sound and light sensors can help detect this position.
From the light sensor we can conclude that the position is
a covered position. Then, in order to distinguish among the
set of covered position (i.e. inside pocket and inside bag),
we can utilize the microphone. This is another area of future
work.
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