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Abstract

A genenal theory fon theating the coupling between two
non-parallel dielectrnic waveguides s developed using the coupled
mode assumption. This theory is wsed %o anaﬂyze.dinectianaﬂ
couplerns conbibiing o0f two c{né&ﬁaﬂﬂy curved, éingﬁe mode
dielectrnic sfab waveguides. By assuming continuous coupling
between the two waveguides rather than only between adjacent
segments on the two waveguides, the present theory avoids the
awkwardness of having Lo specify in a somewhat arbitrhary manneir
the separation between these segments as 45 the case gorn existing
theonies neponted in the Literature. 1t 45 shown that thLA ovesr-
simpligication nesults often {n an overn estimate of the power
thansgen in a directional couplen by 10-20% compared to this

theony.
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1. Introduction

The coupling between dielectric waveguides has received much attention
[1-6] in the last decade in light of the development of fibek optics and
more recently, integrated circuits in the optical and millimeter wave bands.
Devices needed for future systems such as directional couplers require that
the coupling between waveguides be understood so performancé can be opti-
mized and cut and try deve]épment minimized. Although coupling between
parallel guides has been well understood for some time [7,8], coupling
between nonparallel guides is still not clearly understood even though
any physically realizable device must have nonparallel connecting sections
where coupling takes place.

Making the coupled mode assumption, many authors use the results of
the parallel case (i.e., the amount of coupling is dependent bn guide
separation and other parameters describing each guide in isolation), and
postulate that in a nonparallel configuration, there exists a one-to-one
correspondence between segments on each guide with some function giving
a "separation" to use in the parallel results.

Matsuhara and Watanabe [4] assume this distance 1sgiveh along a line that
intersects the guides at equal angles (Fig.1 a). Abouzahra andLewin [3]for the
symmetric case give the distance separating the guides along a line normal
to the plane of symmetry (Fig. 1 b) while Trinh and Mittra [2] use the
length of an arc intersecting both guides at right angles (Fig. 1c ).

By trying to stretch the results of the parallel case we find not
only this problem of determining the "correct" separation, but we over-
look the real physical process of interacting time dependent fields.

In the parallel case, any 2z cross section will have fields with constant
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Fig. 1. Various definitions for separation between
individual segments of two parallel guides



phase, while in the nonparallel situation, the phase will not be constant and
will change as the configuration on either side of the cross section is
changed. Considerihg only some type of separation between the guides will
not completely describe the coupling because the effect one guide has on
another will depend very strongly on the phase as well as the strength of
the overlapping fields.

In this paper, coupled mode theory is developed to describe any con-
figuration where the coupled mode approximation is valid. Approximate coupling
coefficients for circularly bend, lossless, single TE mode slab waveguides
are worked out allowing éna]ysis of directional couplers composed of straight

and circularly bent slab waveguides.

2. Coupled Mode Theory of TwoANonpara11e1 Waveguides

The configuration to be analyzed is shown in Fié. 2. The two
guides can have different cross section A, and A, and dielectric constants
ey and e, but the permeability (u) is uniform; E], A], EZ’ HZ are the
two surface-wave mode fields each guide supports if the other guide is not
there; E and H are the time fields we are 1nterested in, that of botn
guides together. We then define the functions € (x;y,z), and ez(x,y,z) to
represent the variation in the relative permittivities when only guide 1
and guide 2, respecfive]y, is presented, i.e.

e when X ¢ A

1,2 1,2

€ o(X,y,2) =
’ e3 otherwise

Note that e](x,y,z) =€, (not 52) in the region guide 2 occupies and vice

versa. E(X,y,z) is the relative permittivity when both guides are togehter.

The vectors F] and Fz can then be defined[]]
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Fig. 2.

Two non-parallel dielectric waveguides.
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_ ik ~e = )
Fr2 = By XH +E X H 5 (1)

By using Maxwell's equations and vector identities it can be shown that

= Jjue, (€-e. ) E, ,oF* (2)

Vo F 1.2 1,2

1,2

Making the usual couple-mode assumption that the total field of a system
of two waveguides can be approximated in any given cross section by a Tinear

combination of the individual mode fields

m2e
1}

m](z) F% + m2(z) EZ (3)

H = m](z) H} + mz(z) ﬁé | | (4)

where m, ‘and m, are the amplitudes of the two modes at z. Using the

vector identity [1] over an infinite cross section A,

T —_a. Fo 5 . |
J Vol dA = 57 J FozdA (5)

A A (2)

we get a set of coupled differential equations for m, and mz(z).

ilmy (2) Ay H(2) + my(2) By ,(2)]

b

. . (6)
= TEa_[m](Z)fJ]’z(Z) +my(2) Dy ,(z)]
where A,B,C,D are cross-sectional integrals relating the two individual
mode fields:
= = £ i o E*
Ay o(2) = [ J (e(xsy52) - &y H(x,¥52))E; 5 o By dx dy (7)
By ,(2) [ [ Glxyaa) - & pixya2)E, 5o ax oy (8)

(o]
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C],Z(Z) —w——eo f [E]’2 xHY + E] * H],Z] z dx dy (9)
_ 1 ” = Tk, T -

D],Z(Z) = GE_'I f [E],2>< Hy + E; x H],Z] Z dx dy (10)

In general, the coupling coefficients are complex functions of =z |
except for C] and 02 which are real normalization parameters. (C] and 02
are constants for guides that don't radidte energy to infinity.)

If the 2z dependence of each guide in isolation is exp[—,]'B],2 21’2],
the coupling coefficients of parallel configurations will have simple
exp[-jB'z] z dependence (B' = constant, possibly zero). In the nonpara]]e]
case the integration on x at constant z includes a new term of the form
exp[-jB'[z]jzz)] wherez1 -z, now is a function of x. This phase term
accounts for the interference of the modal fields which, in the parallel case,
doesn't exist because all phase fronts are parallel.

Theories currently in the Titerature either assume the coupling
_coefficients are the same as the parallel case except now the separation is
changing in some arbitrary manner [3,4], or the amount of power transferred
depends on the spacing as in the parallel case and define some "equivalent”
separation to use at each z cross section [2]. Both approaches neglect
field interference in the coupling coefficients which, as shown later, can
lead to significant errors. |
case, the use of variational methods to find the propagation constant of the system
modes [8] would appear to give different results. However, we have shown
in [10] that coupled mode assumption actually leads to identical expressions

for these approaches.



3. Analysis of Couplers Formed with Circularly

Curved Slab Wavequides

Figure 3 shows the two lossless, single TE mode, éircu]ar]y bend slab
waveguides and the relationship between the diffefent coordinate systems. We
assume that the radius of curvature of the slabs is large enough so that the
field of the bent guide in iso]ation‘fs approximately that of a straight guide
curved about a point. The fields of each guide in isolation are given in
Appendix A. To evaluate the coupling coefficients A1,2’ B],Z’ C1,2 and
D]’2 in (6), we have to relate the coordinate system for the guides, (x ,z])

1
and (XZ’ZZ)’ to the globe coordinate system as follows:

2 2
X, . = [\ﬁ+ PR R Z)] (1)
1,2 1 2 2R] Z R 2 R],2

Zy 5 = R]’2 tan”! (12)

sin 0

1,2 .
JQR] >t g—+ x)2 + z2

fl

cos 91 2 (14)

| lﬁRm*% )

Simplifying the expression for the coupling coefficients, we note that the

major contribution to the coupling coefficient integrals comes mainly from
areas near the guides. Also, to avoid radiation losses, the radius of curvature
of the bent slab waveguide inherently must be large. These two facts allow us

to expand equations linearly in x about each of the guides [10] and find ana]yt1c
solutions for the integrals in (7) - (10) (Appendix C). For example,
x. = 4511(2) + T17(z) + x x>0 (near guide 1) (15)
S]Z(z)‘+ T]Z(Z) * X X < 0 (near guide 2)
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Fig. 3. Global and local coordinate systems
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where S]j and T]j are given in Appendix B. To solve the remaining
coup]ed‘differential equations, a second order Runge Kutta [11] algorithm
was used. The approximate coupling coefficients were compared with "exact"
numerical integration of these integrals and found to be with 5% of the
true values for the cases shown here. Seven seconds on a Cyber 6400 was
required for analysis of a configuration carrying all the coupling coeffi-

cients.

4. Numerical Results

| Figures 4 and 5 show that the final power in guide 1 vs. vd (unit
power in Guide 1 and none in‘Guide 2 initially) for the present theory,
Abouzahra-Lewin [3] and Trinh-Mittra [2].TL Both symmetric and nonsymmetric
cases show the reduced amount of coupling the present theory predicts com-

pared with other theories.

It is seen that the further assumption of one-to-one correspondence of
the coupling depending on the separatioh of the two nonparallel guides, as
was true in the parallel case, can lead to significant errors when the minimum
normalized separation between the two guides, Ad, is smaller. To further
demonstrate this point, we have included in Fig. 6 the coupling coefficient
B] for a symmetrically,curved,degenerate coupler normalized by the constant
C]. In the paraliel degenerate case, B]/C] would be a real constant with
exponential dependence on guide separation. In all the conventional theories

for nonparallel guides which don't account for the phase term, B]/C] would

+Compam‘son with Yariv [12] on a coupler with long paraliel section and
negligible coupling in the curved sections shows Trinh and Mittra's (k)
is missing a factor of 1/(1 +1/ya). With this correction, we let the
factor (v) be equal to 1 for all cases here.
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be a real function that exponentially decayed on either side of z =0
(minimum guide separation). This type of difference exists in the other
coupling coefficients and leads to the discrepancies of the theories.

It is of interest to note that we found the total power was not
conserved along the coupler for two very closely-spaced guides where Ad
is much smaller than 1, or the physical separation is less than the
penetration depth. This likely indicates a breakdowﬁ in the coupled
mode approximation that includes only one surface-wave mode on each
guide. This means, as it stands, none of the existing théories really

is adequate in designing a circular coupler that provides a complete

transfer of power.
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APPENDIX A

Field of Each Guide in Isolation

’

Each guide in isolation 1is a lossless slab structure supporting
a single TE mode. The two guides have the same cross-section, the
same uniform permittivity and are excited at the same frequency. With these

assumptions, the field of either guide in ifolation will be [8]

-JBz,
"E. = cos px; e
Y 1
: -JBz,
= - _E.’_ 1 1 >
Hy, = = o sin px; e x| < a (A1)
i 0
. -jBz.
HX = - aé—-cos pxi e !
i Ho : J
—jBZ. ~
E. =cos pae®exp(-y|x;|)e
Y3 1
Xin Ya _ _jBZi
M = Tx T cos pa e * expl-y|x.|)e f Ix;| >a  (A.2)
i i o
| -jBz;
B8 Ya i
H = ————cos pa e'® exp[-v|x.]|]e
X]- (UUO i J
2 _ 2 2
p - ko g.i - B
2 _ 2 _ 2
Y = g = kO €3 (A.3)

t =X,
an pa o
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APPENDIX B

LINEAR APPROXIMATION OF X,

S]](z) + T]](z) X x > 0 (near guide 1)
Xy = (B.1)

512(2) + T]Z(z) X x < 0 (near guide 2)

D
Al(R] 5 - AL)

X ‘ +
_ D 2 2 J
S.. =R, -y(R, + = -A.)" + z“ - (B.2)
13 1 J 1 2 J b 2 2
D
R. + = - A. :
T = 1 D2 32 2 (B.3)
Jm1+?'Aﬁ +z
where
_ D _[,2 _ .2
A] = R] + 5 R] z (B.4)
- D 2 2
AZ - (R2 + 7" R2 -2z) (B.5)
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APPENDIX C

APPROXIMATE COUPLING COEFFICIENTS

By use of the linear approximations similar to those of Appendix B
and the isolated field equations, Appendix A, the coupling coefficients
(7)-(10) for lossless, degenerate but not necessarily symmetric configur-
ations can now be directly integrated with the following comments.

Equations (7)-(10) calls for the vector fields in the XsYsZ

coordinate system. For the TE case, the following is easily shown:

E. = (0,E ,0 C.1
= (0, 0) (c.1)
H] = (Hx] cos & + Hz] sin o, 0, -HX] sin 8, +Hz] cos e]) (C.2)
H2 = (HX cos 0, - HZ sin o,, 0, HX sin 6, * HZ cos ez) (C.3)
2 2 2 2

where H , H , H  and H_ are part of the isolated field equations in
X170 Xy Tz z,

Appendix A.

The integrals for A], AZ’ B] and 82 are only over guide 1 or guide 2
since

. 0 elsewhere
e(X,y,2z) - e]’z(x,y,z) = (C.4)

(83 - & ]) in guide 2,1

b

A1l the coefficients have been divided by the half width of the guide (a).

A1l lengths are in terms of the guide half width.

' T12
2va [1+s -—522] 712
(e, -53)cosz(pa)e 12 T sinh{2ya

Ya 'T]2

Ay = (C.5)
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T S
valS), - 7= S, ] ~i8alv,-u, 2]
B1 = (82 - 63)cos(pa)eYa e 22 e 22
2 s [Ba
(pa T22)2 +(B'a)2 [} a sinh [Tzz] cos pa
B'al| _.
+pa-T h | 2= C.6
pa +T,, COS [Tzz] sin p{} (C.6)
where
B'a = yva T]2 - JjBa Up
_ 2Ba 1
Dy = Dy + D} + Dy + D;" (C.8)
4 B(i)
0 = I | expl63(1)xIL(T) +0(i)xlax (c.9)
A
M(T1) = N(1) = N(2) = N(3) =1 (C.10)
M(2) = M(3) = M(4) = N(4) = -1 (C.11)
P(i) = =25P2 exp[ga(2 -N(i)s, - M(i)s, - jgaV] (c.12)
ka
Q(i) = P(i)[Baldy + J5) - vaj[M(i)F; + N(i)F,)] (C.13)
0(1) = P(i)[Ba(K; + Ky) - ya3(M(1)6, + N(1)G,] (c.14)
63(i) = -ya[M(i)T; + N(i)T,] - jyal (C.15)
B(1) = = ALY = (1 - s/,
B(2) = (1 - 5,)/T, A(2) = 0
(C.16)
B(3) = A@3) = (1 - S,)/T,

B(4) = (-1 - S,)/T, A(4) = - »
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where in (C.12) through (C.16), if i = 1 or 2, the linear approximations (S,T,d,K,..

around guide 1 should be used while if i = 3 or 4, the approximations about

guide 2 should be used.

1
Q(i) f exp[G3(i)x]sin[pa x]dx (C.17)
21

(]
—
1}
I ~~1PN0
ey

63(1) = valT, /T, - iBa Up/T,,] (c.18)

G3(2) = -ya[Tz]/T]] - jpa U]/T (C.19)

22:I
- 2y
Q(1) = -cos(pa)exp(ya)pa/ka (F22 + GZZAZ)/TZZ

sexplya(Sy, - Ty, - 5,,/T,)) - GBa(v, - U, S,0/T55)1  (€.20)

Q(2) = COS(pa)exp(Ya)pa/kaz(F]] * Gyq8 ])/T
©expl- alSyy - T5,8,0/Tq;) - dsa(vy -y, $47/T1)1 (c.21)
*
mo_ Ba [( ) 2
Dy = = (dy7 * d,q + A (Kiq + K o)
1 Kal 11 21 1M1 21 €] - &
B] .]
(U Jgp * By (K, + Ky)) & %, (c.22)
un m ( ) B ( ) A; ] ( )
D, = [ F., + A.G - (F,, + A,G .23
1 ka2 12 2712 €y ~€3 21 1721 € - &3

T 511
vaf-Sp1 + 5111 JBa[ -V1 ++=— U]
A, = (e, -e3)cos(pa)e™ e T Tl

22 ) [B'a sinh [TB ‘i’ Cos pa
(pa Ty7)" +(8'a) 11

+ pa T cosh J» sin pé] (C.24)

)
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where
B'a = -va T21 + jRa U]
B, = -(g, -€,) 99§EE§——- exp[2ya(1 -S,, + IZl. S.1)]
2 1773 ya 1, PLEYARE =3,y T, N
| T2
sinh [}27a T——{] (C.25)
T
C2 = Df (by inspection of equations (9) and (10)) (C.26)
D, = C; (by symmetry) (c.27)



