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Mesoscale eddies are one of the dominant sources of variability in the world’s oceans. With eddy-

resolving global ocean models, it becomes important to assimilate observations of mesoscale

eddies to correctly represent the state of the mesoscale. Here, we investigate strategies for assimi-

lating a reduced number of sea-surface height observations by focusing on the coherent mesoscale

eddies. The study is carried out in an idealized perfect-model framework using two-layer forced

quasigeostrophic dynamics, which captures the dominant dynamics of ocean mesoscale eddies. We

study errors in state-estimation as well as error growth in forecasts and find that as fewer observa-

tions are assimilated, assimilating at vortex locations results in reduced state estimation and fore-

cast errors. Published by AIP Publishing. https://doi.org/10.1063/1.4986088

Atmosphere, ocean, and climate models incorporate

observations through the procedure of data assimilation.

Data assimilation serves to synchronize atmosphere,

ocean, and climate models with the chaotic climate sys-

tem and provides a best-guess estimate of the state of the

system. A ubiquitous feature of the world’s oceans is that

at any one time, they contain thousands of coherent meso-

scale eddies, vortices with sizes of tens to hundreds of

kilometers and lifetimes of weeks to years. Mesoscale

eddies can be identified from satellite altimetry observa-

tions of sea-surface height (SSH). As the resolution of

ocean models improves, it is increasingly important to

assimilate mesoscale eddies, but the amount of data in the

full SSH field renders this computationally expensive.

Here, we use an idealized model to investigate strategies

of assimilating reduced amounts of data and find that

assimilating observations at vortex locations improves

the estimation of the ocean state and leads to improved

forecasts.

I. INTRODUCTION

The world’s oceans are filled with mesoscale eddies,

coherent vortices with length scales on the order of 50 km

and lifetimes of weeks to years.1 The mesoscale eddies are

responsible for roughly half of the mesoscale kinetic

energy,1 and the total mesoscale kinetic energy is more than

an order of magnitude larger than the mean kinetic energy.2,3

By trapping water parcels in their interior, mesoscale eddies

play an important role in the global transport of heat,

momentum, and tracers such as salinity and carbon.

Mesoscale eddies can be identified from satellite altimetry

measurements of sea surface height (SSH). A census of

mesoscale eddies derived from SSH found over 35 000 long-

lived mesoscale eddies (lifetimes� 16 weeks) over a time-

span of 16 years.1 Global coupled atmosphere-ocean models

currently do not resolve mesoscale eddies, but the next

generation of global ocean models will resolve the largest

mesoscale eddies.4

Data assimilation is a procedure for incorporating infor-

mation about the detailed state of a system from observations

into numerical models that satisfy the system’s underlying

physical laws.5–7 Broadly speaking, data assimilation plays

two roles in atmosphere, ocean, and climate modeling. In

forecasting, the goal is to produce a best-guess initial state

which a model then uses to produce a forecast, and in state-

estimation or reanalysis, observations and models are com-

bined to produce an estimate of the time-evolving historical

state of the system. Data assimilation can be viewed as a pro-

cedure to synchronize the chaotic dynamics of an imperfect

model with the chaotic climate system.8–13

The turbulent mesoscale dynamics of the ocean is

largely in the quasigeostrophic (QG) regime, where rapid

rotation and strong stable stratification are the dominant

environmental influences. Quasigeostrophic turbulence self-

organizes into coherent vortices which carry the majority of

the potential vorticity and are responsible for the majority of

the kinetic energy.14,15 Furthermore, the chaotic nature of

such vortex-dominated turbulence is significantly controlled

by the chaotic motion of the vortices.16

As ocean models resolve mesoscale eddies, it will

become increasingly important to use a data assimilation

procedure that assimilates the properties of the eddies. Since

errors in coherent vortex properties, such as strength and

location, drive the error growth in vortex-dominated turbu-

lence, we expect that assimilating mesoscale eddies will lead

to improved estimates of the ocean state.

Data assimilation is computationally expensive. The

SSH observations that are typically used to identify meso-

scale eddies represent a large amount of data to assimilate.

We thus investigate strategies where only a fraction of the

data is assimilated and look at how choosing observations

coincident with vortex locations affects the error. This is

broadly similar to the idea that it is necessary to observe

within the unstable manifold of the dynamics;17 a method

based on observing the unstable directions was developed bya)Electronic mail: jeffrey.weiss@colorado.edu
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Trevisan and Uboldi.18,19 Our approach is based on the idea

that since vortices dominate the dynamics, it should be possi-

ble to obtain good results at a fraction of the cost by only

assimilating observations of the vortices. Our approach is

also related to the coherent-structure-based approach of

Beechler et al.;20 in that approach, the structure of interest

was a jet rather than coherent vortices, and the assimilation

algorithm included an extra grid-warping step not used here.

We perform a set of numerical experiments assimilating

coherent vortices and investigate the effect on the error in

the assimilated state. We work in the perfect-model scenario,

where two companion simulations are run with identical

numerical models. One simulation is designated as “truth”

and is allowed to run freely. The second simulation is desig-

nated as the “model” and assimilates observations from the

“true” simulation. Errors are defined in terms of the differ-

ence between “truth” and “model.” In the perfect-model

framework, these errors are solely due to errors in the state

of chaotic systems with identical dynamics. Errors in an

ocean model with respect to the actual ocean will be com-

pounded by model errors. Model errors can be reduced by

means of effective parameterizations and accounted for

within the data assimilation framework.21–25

In Sec. II A, the numerical model is described. We use

an idealized two-layer quasigeostrophic (QG) model which

captures the most important features of the dynamics of

mesoscale eddies. In Sec. II B, we describe the vortex identi-

fication algorithm used to determine the location of the vorti-

ces. Section II C describes the data assimilation strategies we

investigate. In Sec. III, we describe the results of the experi-

ments in state-estimation and forecasting frameworks.

II. METHODS

A. Model and dynamics

The investigation is set in the context of a two-layer,

doubly periodic QG model on an f-plane forced by an

imposed mean shear. The nondimensional governing equa-

tions are

@tq1 þ u1 � rq1 ¼ ��4r4q1; (1)

@tq2þu2 �rq2¼�cd curl jðu2þ x̂Þjðu2þ x̂Þ½ ���4r4q2; (2)

q1 ¼ yþr2w1 þ
1

2
ðw2 � w1Þ; (3)

q2 ¼ �yþr2w1 þ
1

2
ðw1 � w2Þ; (4)

where qi and wi are the potential vorticity and streamfunc-

tion, respectively, in layer i. The components of q and w
which are linear in y are associated with an imposed uniform

zonal baroclinic shear. The velocity is orthogonal to the gra-

dient of the streamfunction: ui ¼ ð�@ywi; @xwiÞ. The term

multiplied by cd in Eq. (2) is a standard quadratic drag where

the imposed zonal velocity in the lower layer �x̂ has been

subtracted from u2 (which includes the mean flow) before

computing the drag. Hyperviscous dissipation is included

with identical hyperviscosity coefficients �4 in each layer.

The equations have been nondimensionalized using the

imposed zonal velocity as a velocity scale and the deforma-

tion radius as a length scale. We set cd¼ 0.1 and

�4¼ 0.08192. The domain is square and has nondimensional

width 32p. Approximate solutions are computed using

256� 256 nonzero Fourier modes and a fourth-order semi-

implicit Runge-Kutta method as described by Grooms and

Majda.26 The configuration is exactly as used recently by

Grooms and Zanna.27 The nondimensional grid size is 0.39,

so there are just more than two grid points per deformation

radius, which is sufficient for eddy-resolving computations of

this kind.28 The nondimensional time step is 0.01. Figure 1

shows a snapshot of the upper-layer relative vorticity r2w1

from the eddy-resolving simulation. One sees that the flow is

dominated by a population of self-organized coherent vorti-

ces, which are the analogue in the QG system of the meso-

scale eddies in the ocean.

B. Eddy census and dimensionalization

A central component of the investigation involves iden-

tifying vortex locations in observations and in simulations.

We use an algorithm that we developed as a simplified

approximation to more complete methods, like the ones used

in Refs. 1 and 29. The algorithm is applied to a generic field,

either top-layer streamfunction w1 in the case of observa-

tional data or top-layer potential vorticity q1 in the case of

simulation data.

Vortex Identification Algorithm

1. Set a threshold equal to twice the RMS (root-mean-

square) value of the field.

2. Find all connected regions where the field magnitude is

above threshold.

3. For each region

(a) Find the extremum (max or min) of the field within

the region. If it lies on the boundary of the region,

discard the region.

(b) Find the area of the region. If it is larger than 300

grid points, discard the region.

FIG. 1. Snapshot of the upper layer vorticity, in units of 10–5=s. White

circles represent vortex locations identified by the algorithm described in

Sec. II B.
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4. The vortex locations are the locations of the extrema in

regions that were not discarded.

The algorithms in Refs. 1 and 29 are more complex;

e.g., they re-apply the above algorithm using a range of dif-

ferent thresholds in step 1, and they include conditions on

the shape of the region above the threshold.

The locations of eddies identified by this algorithm are

shown in Fig. 1. There are clearly vortices which have been

missed by the algorithm. This is in part due to the simplified

nature of the algorithm but is more closely tied to the fact

that the locations are identified using w1 rather than the vor-

ticity shown in Fig. 1; more vortices are identified when the

algorithm is applied to the latter. The more complex algo-

rithms are in practice applied to SSH (analogous to w1)

rather than vorticity because the differentiation needed to

compute vorticity amplifies any observation errors. There is

no such difficulty in the vorticity field obtained from the

model, so the vorticity field is used to obtain the locations of

vortices in the model data.

To examine the statistics of eddies in the simulation, the

above algorithm was applied to w1. Each identified vortex

was extracted, and the vortices were averaged. The averaged

vortex was approximately circular, with a maximum nondi-

mensional velocity of 18 at a radius of 5 grid points.

Reasonable agreement with the vortex statistics identified by

Chelton et al.1 in global observations of sea surface height

was obtained by assigning a dimensional value of 15 km to

the spatial grid and a dimensional value of 1 cm/s to the

velocity. The average dimensional vortex radius is thus

75 km, the dimensional deformation radius is 38.2 km, the

dimensional domain width is 3,840 km, and the dimensional

time scale is approximately 42 days (6 weeks). This approach

to assigning dimensional values to two-layer quasigeo-

strophic simulations, based on vortex statistics, is in contrast

to more ad hoc approaches based on bulk enstrophy.23,30 The

data assimilation described below is carried out using a

three-year simulation with data saved weekly.

C. Data assimilation

In this section, we describe details of the assimilation

system. The observation models mimicking sea surface

height (SSH) and sub-surface density observations are pre-

sented first. Next, we present the details of the assimilation

algorithm itself, which is based on a static background

covariance. Finally, we present the details of the coherent-

vortex-based assimilation algorithm, which chooses to

assimilate a subset of the SSH observations based on vortex

locations.

We consider the assimilation of satellite observations of

sea surface height (SSH) into eddy-resolving models. These

observations are plentiful, and the observations from a flock

of satellites are regularly processed to a weekly, gridded

SSH data product.31 Xu and Fu32 and Dufau et al.33 examine

the error statistics of along-track satellite SSH observations.

They find that the errors are approximately white, with an

amplitude level such that the error spectrum intersects the

SSH spectrum at a wavelength of 40–65 km, depending on

the satellite. We find that the spectrum of Gaussian white

noise with a variance of 0.252 (nondimensional) intersects

with the spectrum of w1 at a dimensional wavelength of

65 km.

To crudely approximate the smoothing effect that the

processing from along-track to weekly gridded data product

has on the error, we first add white noise with a standard

deviation of 0.25 to w1 and then apply a moving-average

convolution. The convolution is implemented by tapering

the Fourier coefficients: coefficients of modes with wave-

lengths smaller than 30 km are set to zero, modeling the 1=4
�

grid resolution of the gridded data product. Coefficients of

modes with wavelengths larger than 364 km are left

unchanged, modeling the effective resolution of the data

product estimated by Chelton et al.1 Coefficients of modes

with wavelengths between 30 and 364 km are multiplied by

a linear function of wavenumber. SSH observations are

assimilated weekly, i.e., every 1/6 nondimensional time

units.

In summary, synthetic SSH observations are generated

by first adding white noise to w1 and then smoothing the

result so that wavelengths larger than 364 km are unchanged

while wavelengths down to 30 km are reduced. The observa-

tion errors are the difference between the true w1 and the

synthetic observations. Because of the smoothing, the obser-

vations have no information at the smallest scales.

The above approach generates synthetic gridded SSH

observations whose errors are analogous to the errors in the

gridded ocean SSH observations. The errors are spatially

correlated with a variance of 0.083 greater than the nominal

value of 0.252. Our data assimilation algorithm takes the spa-

tial correlation of the observation errors into account, so we

estimated the spatial covariance structure using the three-

year long weekly dataset.

The ARGO array is the primary source of sub-surface

observational data.34 The ARGO array consists of floats that,

approximately every 10 days, observe density along a verti-

cal profile in the top two kilometers of the ocean. The typical

distance between floats is on the order of 300 km. We model

ARGO profiles by observing the difference in streamfunction

between the two layers, w1 – w2, on an equispaced grid with

a spacing of 240 km. Unlike the real ARGO floats, the grid is

fixed—it does not move according to the model dynamics.

ARGO observations have very small errors (nondimensional

variance: 2.5� 10–5), and the errors are uncorrelated in

space. As with the SSH data, our synthetic ARGO data are

assimilated weekly. While these idealized floats do not cap-

ture all the features of the actual ARGO observing system,

they allow us to include a realistic amount of sub-surface

data and thus provide a balance to the surface SSH

observations.

A single set of observations is generated for every week

of the three year assimilation cycle. All of the assimilation

experiments presented here use the same set of observations.

We use optimal interpolation as the data assimilation

method.7 Optimal interpolation is used because it is less

computationally costly than ensemble methods. Eddy-

resolving ocean models are computationally expensive

enough that it is difficult to run even modestly sized ensem-

bles for data assimilation; optimal interpolation is less
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expensive and balances the high cost of model simulations.

The methods described below could equally well be imple-

mented in a 3D-Var framework.

Let xk denote the model state variable w on the compu-

tational grid at assimilation cycle k, and let yk denote the

vector of observations used in the assimilation at assimila-

tion cycle k. The state and observations are related by an

observation matrix Hk, and the observation errors are

described above. The data assimilation algorithm proceeds

as follows. First, a one-week forecast is made, denoted by

x�k . Then, the observations yk are assimilated as follows:

xk ¼ x�k þKkðyk �Hkx�k Þ: (5)

This creates xk, which is the “analysis,” and is used as the

initial condition for the next one week forecast. The first ini-

tial condition is provided by the true state at the end of the

three year assimilation window, making the initial condition

completely decorrelated from the true state at the beginning

of the window. The matrix Kk is the Kalman gain matrix

Kk ¼ CHT
k HkCHT

k þ Rk

� ��1
; (6)

where Rk is the covariance matrix of the observation errors

associated with yk.

The time-independent “background” covariance C

describes the forecast uncertainty. The background covariance

is modeled as a homogeneous, isotropic random field with

“square exponential” correlation function:35 the correlation

between points separated by a distance d is e�jjdjj
2=L2

c where

the correlation length Lc¼ 105 km.36 The upper-layer variance

is 1.62 (nondimensional), and the lower layer variance is 1.12.

The cross-correlation between the upper and lower layers is

also “square exponential” with a correlation coefficient of

0.78. This background covariance is an infinitely smooth limit

of the multivariate Mat�ern model,37 which is appropriate to

fields like w that have a rapidly decaying spectrum.

We compare three assimilation strategies: grid-based,

vortex-based, and hybrid. All strategies assimilate all of the

ARGO data; the strategies are distinguished by the way SSH

observations are used. The grid-based assimilation uses an

equispaced grid of observations. We approximate the obser-

vation error covariance matrix Rk as diagonal; this is a good

approximation for coarse observing grids and is driven by

convenience for fine grids.

The vortex-based strategy assimilates observations only

near vortices. At each assimilation cycle, the vortex-

identification algorithm is applied to both the observations

and the model forecast. The vortex locations are identified

directly from the SSH observations, while for the model

forecast, the identification is based on potential vorticity

rather than w1. This results in two lists of vortex locations,

which contain some overlap. To eliminate duplicates, any

forecast location that is less than 5 grid points (75 km) from

an observation location is eliminated. Having thus created a

single list of vortex locations, a subset of SSH observations

is selected to be used in the assimilation.

We compared four different vortex observation configu-

rations. The first uses only the SSH observation at the center

of each vortex. The next uses 5 SSH observations per vortex:

the center point plus points 4 grid points (75 km) north, south,

east, and west of the center. The next uses 9 SSH observations

per vortex: all the 5-point locations plus the four corner points.

The fourth uses 16 SSH observations per vortex: a 4� 4 grid

with a spacing of 60 km, centered on the vortex location.

These four configurations are shown in Fig. 2.

Since the observation locations over a single vortex are

close enough that their errors are not uncorrelated, we use an

estimate of the observation error covariance within the

assimilation over a single vortex; observation errors for dif-

ferent vortices are assumed uncorrelated. As a result, Rk is

block-diagonal, with diagonal blocks corresponding to dif-

ferent vortices. The estimate of observation error correlation

over a single vortex is obtained by a Monte-Carlo estimate:

synthetic observations are generated over vortices and sub-

tracted from the true field to obtain samples of the observa-

tion error. Many such samples are generated and are used to

estimate the observation error covariance matrix associated

with a single vortex.

The final strategy is a hybrid between the grid-based and

vortex-based strategies. There can be large gaps where no

vortices exist, and it is helpful to assimilate observations at

locations within these regions. The hybrid strategy thus aug-

ments the list of vortex locations with the locations of points

on a 16� 16 grid of points with a spacing of 240 km.

Duplicate locations are eliminated so that points on the grid

are not assimilated if they are near vortex locations.

III. RESULTS

Subsections III A and III B present results for state esti-

mation and forecasting for the three assimilation strategies:

grid, vortex, and hybrid. A key aspect of the comparison is

the number of SSH observations used in each strategy (since

all methods use the same ARGO data). The number of SSH

FIG. 2. Four vortex observation grids. The colorscale shows the amplitude

of surface velocity ju1j for a typical eddy (nondimensional, equiv. cm/s).

The circle at the center shows the identified center of the vortex. Locations

marked withþ are the 5-point assimilation grid. Locations marked with-

� are the 9-point assimilation grid, and locations marked with a square are

the 16-point grid.
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observations assimilated per one-week assimilation cycle is

constant in the grid-based approach, while in the vortex-

based and hybrid approaches, the number of observations

assimilated per cycle depends on the number of vortices

identified per cycle. Thus, we compare the methods on the

basis of the average number of SSH observations assimilated

per cycle over the three-year window, which is main driver

of the computational cost. Note that the domain is a 3840 km

square, so the number of observations can be converted to an

observation density; e.g., 512 observations become approxi-

mately one observation per 1702 km2. Before presenting the

results, we briefly note that assimilating only ARGO data

(without SSH) leads to poor results, which is not surprising

given the coarse spatial resolution of the ARGO data.

The state errors are defined in terms of three different

error norms: the RMS streamfunction, velocity, and relative

vorticity errors. These three quantities all have the same

information content, but because velocity is a derivative of

streamfunction and relative vorticity is a derivative of veloc-

ity, the three norms provide measures of the error that

emphasize different length scales: streamfunction is sensitive

to the larger scales, velocity is sensitive to intermediate

scales, and vorticity is sensitive to the smaller scales. One

measure that quantifies this scale-sensitivity is the integral

scale of the field. (The “integral” scale is defined in terms of

the power spectrum of a field P(k), where k is the magnitude

of the wavenumber; the integral scale is
Ð

PðkÞ dk=
Ð

kPðkÞ
dk.) The integral scale for streamfunction is 114 km, for

velocity, it is 60 km, and for vorticity, it is 31 km.

A. State estimation

In this section, we present the state estimation perfor-

mance, i.e., we present measures of the error between the

true system state and the data-assimilated estimated state

averaged over the time evolving state trajectory. The initial

condition for the estimated state is taken to be the “true”

state at the end of the three year assimilation window. This

provides an initial state for the assimilation that has the same

statistics as the “true” state but is completely decorrelated

from the true state at the beginning of the window.

Figure 3 shows the errors in streamfunction, velocity,

and vorticity as a function of the average number of observa-

tions assimilated per week. In Fig. 3, the errors are squared

and averaged across the domain, across the two layers, and

across the last year of the simulation; the square root of this

average is displayed as the RMS (root mean square) error.

The average number of observations assimilated per

week in the vortex and hybrid methods depends on the

number of observations assimilated per vortex. The results

for the vortex-based method with a single observation per

vortex are quite poor and are not shown. For the vortex-

based method, the first data point on the line in Fig. 3 is for

the 5-point vortex observation grid, the second point on the

line is for the 9-point grid, and the third point is for the 16-

point grid. For the hybrid method, the points refer to the 1-

point, 5-point, 9-point, and 16-point vortex observation

grids.

As the number of grid points increases, the errors decrease,

and for the largest number of observations per week (�1000),

the grid-based method is clearly the best. On the other hand, for

less than about 500 observations per cycle, the vortex-based and

hybrid methods are superior. In particular, when using a small

number of observations, the vortex-based method does the best

job of estimating the vorticity field, i.e., the smallest scales of

the flow, the vortex-based and hybrid methods have similar

errors for the velocity, i.e., intermediate scales, while the hybrid

method is best for the streamfunction, i.e., the larger scales. As

the number of observations increases (by increasing the number

of observations per vortex), the performance of the vortex-based

method reaches a plateau. This is presumably because the 9-

point vortex observation grid is sufficient to resolve the vortex

and the extra observations in the 16-point vortex grid are redun-

dant; the cost of these observations would be more effectively

spent observing regions without vortices. This behavior was the

motivation for the development of the hybrid approach.

Given the clear superiority of the vortex/hybrid vs. grid-

based methods for small vs. large numbers of observations,

we focus in what follows on the region where the results are

similar. We thus present results for the grid-based method

with 212¼ 484 points and a spacing of 165 km, for the

vortex-based method with 9 points per vortex which has an

average of 528 observations per week, and for the hybrid

method with a grid spacing of 240 km and 5 points per vortex

for an average total of 474 observations per week.

We next investigate the rate at which the error is

reduced by the three assimilation strategies after starting

from a model state which is uncorrelated with the “truth.”

Figure 4 shows the RMS error as a function of time (here,

the errors are squared and averaged over space and over the

layers), for the three physical fields and for the three meth-

ods. Some point of reference is useful for understanding the

magnitude of the errors. If there were no data assimilation,

the squared error would be twice the climatological variance;

similarly, if the state estimate were simply equal to the cli-

matological mean (which is zero here), then the squared

error would be equal to the climatological variance. In each

FIG. 3. The RMS (root mean square)

assimilation error for streamfunction

(left, Sv), velocity (center, cm/s), and

relative vorticity (right, 10–6/s) as a

function of the average number of SSH

observations assimilated per week. The

units of streamfunction are Sverdrups;

1 Sv¼ 106 m3/s.
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panel of Fig. 4, the black line shows the square root of the

climatological variance.

The streamfunction error decreases very rapidly with

time for all three methods and equilibrates at similar levels

after three to six months. The velocity and vorticity errors

also decrease rapidly and then perhaps show signs of further

slow improvement. It is worth noting that the initial rate of

decrease of velocity and vorticity error is faster in the vortex

and hybrid methods than in the grid-based method; although

the final error levels are similar, the vortex and hybrid meth-

ods synchronize more quickly. Also, at this density of obser-

vations, it takes the grid-based method almost two years to

achieve the same level of vorticity errors as would be

achieved by simply replacing the state estimate with the cli-

matological mean (which is zero).

B. Forecasting

While the RMS errors in state estimation are important,

they do not give a complete picture of the accuracy of fore-

casts made using the state estimate as an initial condition. To

measure forecast accuracy, we ran 8-week forecasts starting

from each of the weekly state estimates. Figure 5 shows as a

solid black line the RMS velocity errors in the hybrid state

estimate as a function of time; the dashed black lines show the

RMS errors in 8-week forecasts initialized every 13 weeks

from the state estimate. These forecast errors grow approxi-

mately exponentially as expected for a chaotic system.

We averaged the forecast errors starting from weekly

state estimates over the last year of the assimilation window

for the three methods. Figure 6 shows the average growth of

the forecast error for the three physical fields and for the

three strategies.

The behavior of the forecast error for streamfunction is

an excellent example of the differences between the strate-

gies. Although the initial (state-estimate) error is lower for

the grid-based method than for the vortex-based method, the

forecasts from the vortex-method become more accurate

than those from the grid-based method for lead times longer

than 4 weeks. The fact that the error grows more slowly in

the vortex-based method shows that the initial, state-estimate

error in the unstable subspace is smaller for the vortex-based

method than for the grid-based method.

In velocity forecasting, all three methods have similar

error growth rates, and differences in forecast error seem to

be primarily due to differences in the initial, state-estimate

error, which is governed by the method and the number of

observations.

The grid-based method does a poor job of forecasting

vorticity, with an initial error level near the climatological

error. The error then grows slowly towards the error level

that would be expected for a simulation with no data assimi-

lation, i.e., the climatological error multiplied by
ffiffiffi
2
p

. The

vortex-based method does the best job of forecasting vortic-

ity, slightly better than the hybrid method. The growth of

vorticity errors in the forecast for the vortex-based and

hybrid methods is similar, and the forecasts reach climato-

logical error levels after about 5 weeks.

IV. DISCUSSION AND CONCLUSION

Motivated by the problem of data assimilation in ocean

models which resolve mesoscale eddies, we investigated

FIG. 4. The RMS error in streamfunction (left, Sv), velocity (center, cm/s), and relative vorticity (right, 10–6/s) as a function of time for the three methods with

three specific configurations: grid-based with 484 observations per week, vortex-based with an average of 528 observations per week (9 per vortex), and hybrid

with an average of 474 observations per week (5 per vortex plus a 240 km grid). The black line shows the square root of the climatological variance.

FIG. 5. The solid black line shows the RMS velocity errors (cm/s) in the

state estimate of the hybrid method as a function of time. The dashed lines

show the growth of the RMS errors in 8-week forecasts initialized from the

state estimate.
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strategies to assimilate the flow in two-layer forced quasi-

geostrophic vortex turbulence. The observational strategy is

designed to be analogous to ARGO floats and satellite SSH

observations. Naturally, excellent results are achieved when

a very dense set of observations are assimilated. This, how-

ever, is computationally expensive, and we focus on whether

good results can be achieved by assimilating only a judi-

ciously chosen subset of observations. We find that an

approach that simply assimilates a subset of observations on

a regular grid is less effective than methods that assimilate

observations taken over coherent mesoscale vortices.

Chaotic synchronization is effected by providing infor-

mation about the state of the system along the unstable mani-

fold of the chaotic dynamics. Studies of vortex dominated

turbulence suggest that the chaotic motion of the vortices

drives the chaotic error growth (e.g., Ref. 16). The success of

assimilating vortex locations indicates that the vortex loca-

tions provide important information about the unstable mani-

fold in vortex dominated turbulence.

The vortex-based methods improve as the number of

observations per vortex increases; however, the improvement

slows once a vortex is sufficiently observed. Assimilating 9

observations in a 150 km square centered on each vortex has a

better ratio of accuracy to cost than assimilating 16 points per

vortex or 5 points per vortex. Also, since there are large

regions without vortices, a hybrid approach that assimilates

both over vortices and on a sparse 240 km grid leads to

improvements compared to a purely vortex-based approach.

We investigated how the error in state estimation

depends on the number of observations. If the observations

are dense enough, then assimilating on a grid is the best

method. For sparse observations, the hybrid method gener-

ally performs better, although for very few observations, the

vortex method does a better job in estimating the vorticity

field. Thus, if it is computationally too expensive to assimi-

late SSH on a fine grid, then it is advantageous to use the

hybrid method.

The vortex-based approaches are more efficient than

assimilating on a 240 km grid and less efficient than

assimilating on a 120 km grid (which has 4 times more obser-

vations and therefore costs significantly more). At an interme-

diate grid density, the state-estimation errors of the grid-based

and vortex-based errors are comparable.

We then compared how long it takes the error to con-

verge following weekly assimilation using the number of

observations that result in similar converged errors. All scales

converge similarly for the vortex and hybrid methods. The

larger scales, as indicated by the streamfunction error, con-

verge similarly for the three methods. The intermediate and

smaller scales show significantly more rapid convergence for

the vortex and hybrid methods compared to the grid method.

Finally, we investigated the error growth in forecasts

begun with initial states created by the three assimilation

methods using the number of observations where the errors

are roughly the same size. Forecasts initialized from the state

estimates from the vortex-based methods had slower error

growth in the rms streamfunction error than forecasts initial-

ized from the grid-based method. The rms velocity errors

had similar growth rates while the rms vorticity errors grew

slower for the grid-based method, but for the grid-based

method, these errors were significantly larger at all times.

This indirectly demonstrates that the vortex-based methods

result in state estimates with less error in the unstable sub-

space than the grid-based method.

By restricting ourselves to QG flow in a perfect-model

scenario, we have focused on the scenario where state errors

are dominated by the chaotic motion of the vortices. The

ocean has other flow features that are not captured by the

QG approximation and the particular domain and forcing we

use, such as mean gyres, western boundary currents, and sub-

mesoscale dynamics. These will lead to additional errors in

assimilating ocean observations. Model error in ocean mod-

els leads to another source of error in ocean data assimila-

tion. Yet given the important role that mesoscale eddies play

in the ocean kinetic energy, we expect that our results will

carry over and that assimilating mesoscale eddies will lead

to improvements in assimilating observations into eddy-

resolved ocean models.

FIG. 6. RMS Forecast errors in streamfunction (left, Sv), velocity (center, cm/s), and relative vorticity (right, 10–6/s) as a function of forecast lead time. The

black line in the right panel shows the square root of the climatological vorticity variance. The three methods are the grid-based method with 484¼ 222 obser-

vations per week, the vortex-based method with an average of 528 observations per week (9 per vortex), and the hybrid method with an average of 474 obser-

vations per week (5 per vortex plus a 240 km grid).
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