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 A semi-empirical model was developed in this study to predict 

the impact of effective stress state and hydraulic hysteresis on the 

small strain shear modulus of unsaturated, compacted soils. Unlike 

previous empirical relationships for the small-strain shear modulus, 

this model incorporates constitutive relationships between effective 

stress, void ratio, stress history, hardening, and soil consistency. The 

model incorporates a stress-dependent hysteretic soil water retention 

curve relationship and a definition of mean effective stress equal to the 

product of the degree of saturation and matric suction.  

 The model is experimentally validated by considering small 

strain shear modulus data for a variety of soil types in the literature as 

well as from an independent testing program with a fixed-free 

resonant column device modified for suction control with the axis-

translation technique. A flow pump was used to control the 

equilibrium matric suction and volumetric water content in a 

compacted silt specimen. The change in volume of the specimen was 

measured using a proximeter vertically mounted atop the soil 

specimen.  

 In both the model and experiments, for a constant net confining 

stress, the small strain shear modulus was observed to increase in a 

nonlinear fashion during drying, albeit at a reduced rate as the water 

occlusion conditions are reached. During subsequent wetting, the value 
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of Gmax does not follow the same trend as during drying, similar to the 

hysteresis observed in the Soil Water Retention Curve (SWRC). 

Different from the SWRC, the value of Gmax remains higher than that 

during drying. This hysteretic trend is attributed to hardening due to 

the effective stress changes associated with increased suction during 

drying. After calibration with parameters defined from the data 

available in the literature, the predictive model follows the 

experimental data.  
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CHAPTER I 

 

Introduction 

 

1.1 Introduction 

The shear modulus of soils is a key material property used in the 

evaluation of wave propagation through soil layers in dynamic response 

analyses for foundations, pavements, and embankments subjected to 

cyclic or earthquake loading. The shear modulus, G, is defined as the slope 

of the shear stress-strain hysteresis loop and is significantly influenced by 

the shear strain amplitude induced in a soil specimen. Of particular 

interest in geotechnical engineering is the value of shear modulus for 

strains less than 10-6 defined as the small strain shear modulus Gmax. In 

analysis of soil behavior under cyclic or random loading conditions, when 

soil behavior is expected to stay within the range of the small strain of 10-

6, the use of an elastic model is justified and the small strain shear 

modulus becomes a key parameter to properly model the soil behavior 

(Hardin and Richart 1963). This parameter is used as the key reference 

value in pedictive relationships for G as a function of shear strain 
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correlations between modulus and degree of saturation developed from 

tests with little consideration of unsaturated soil mechanics. Bringing 

these models to the next level will require an improvement to the 

prediction of Gmax for unsaturated soils. 

Studies on the shear modulus of soil at the small strain range of 10-6 

revealed the significant influence of several factors on the magnitude of 

Gmax of soils. Early involving measurement and prediction of Gmax for dry 

and water saturated soils emphasized the importance of considering the 

void ratio e and mean effective stress (Hardin and Black 1968; Hardin and 

Black 1969; Hardin and Drnevich 1972; Iwasaki et al. 1978; Stokoe et al. 

1995). Despite the significant body of work has been developed to evaluate 

the magnitude of Gmax for saturated and dry soils, the variables that 

impact the magnitude of Gmax for unsaturated soils are less well 

understood. Wu et al. (1984) and Qian et al. (1991; 1993) performed a 

careful series of resonant column studies on sands and silts compacted 

with different water contents under different total confining stresses to 

reveal strong nonlinear relationships between Gmax and degree of 

saturation Sr.  

Improvements in experimental unsaturated soil mechanics led to the 

definition of trends between Gmax with net normal stress pn (equal to the 

difference between the total mean stress p and pore air pressure ua, i.e., pn 

= p – ua) and matric suction  (equal to the difference between pore air 
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pressure and pore water pressure uw, i.e.,  = ua – uw) using bender 

elements (Cabarkapa et al. 1999; Inci et al. 2003; Marinho et al. 2005; 

Sawangsuriya et al. 2009, Ng et al. 2009) and resonant column tests 

(Mancuso et al. 2002; Kim et al. 2003; Mendoza et al. 2005; Vassallo et al. 

2007). However, except for the experimental studies by Sawangsuriya et 

al. (2009) and Ng et al. (2009), inter-relationships between Gmax, Sr and  

were not investigated. Concurrent measurement of Sr and  is not only 

necessary to interpret Gmax measurements in terms of effective stress (Lu 

and Likos 2006; Lu et al. 2010; Khalili and Zargarbashi 2010), but it is 

also necessary to rationally consider the effects of drying and wetting 

(hydraulic hysteresis).  

1.2 Objectives 

The main objective of this study is to characterize the impacts of 

effective stress and degree of saturation Sr on the small strain shear 

modulus Gmax of unsaturated, compacted soils during hydraulic hysteresis. 

Although recent studies have been performed in this area, this study 

compliments the measurement of matric suction with precise control of 

the degree of saturation. During hydraulic hysteresis, an element of soil 

may have different Sr values for the same value of  depending on 

whether the soil element is undergoing drying or wetting (Wheeler et al. 

2003; Tamagnini 2004; Khalili and Zargarbashi 2010). The value of Sr 

during hydraulic hysteresis will reflect the amount of water in the soil, 
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and thus the cumulative number of air-water menisci affecting inter-

particle connections, for a given matric suction (Wheeler et al. 2003). As a 

consequence, even though the suction may be the same magnitude upon 

drying and wetting, the different amounts of water in the soil will lead to 

different mechanical behavior (Wheeler et al. 2003; Tamagnini 2004; 

Khalili and Zargarbashi 2010). 

1.3 Approach 

The approach followed to reach the objective of this study is to develop 

a new constitutive modeling framework to consider the impact of 

hydraulic hysteresis on Gmax for unsaturated soils, and to validate the 

framework using results from a resonant column (RC) test device with 

suction-saturation control. Unlike previous empirical relationships for the 

small-strain shear modulus, the constitutive modeling framework 

developed in this study incorporates inter-relationships between effective 

stress, void ratio, stress history, hardening, and soil consistency. The 

framework incorporates a hysteretic soil water retention curve measured 

under different net confining stresses and mean effective stresses. 

The resonant column test device developed in this study incorporates 

the axis translation technique for suction control, a flow pump for degree 

of saturation control, and a vertically-oriented proximeter to infer changes 

in void ratio. A flow pump is essentially a syringe which can be moved to 

impose water flow rates on a specimen, and was originally used in 
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permeameter tests to measure the hydraulic conductivity of saturated 

clays (Olsen 1966).  

After validation, the framework for Gmax of unsaturated soils during 

hydraulic hysteresis is expected to be suitable for use in equivalent linear 

or nonlinear soil dynamics analyses that consider the effective stress state 

in unsaturated soils (i.e., matric suction and net confining stress). An 

improved understanding of the dynamic response of unsaturated soils is 

expected to lead to improved accuracy of design efforts for deformation 

prediction of geotechnical systems like pavements and machine 

foundations. More broadly, it will help provide tools to reveal linkages 

between moisture flow in unsaturated soils due to environmental 

fluctuations and their mechanical response. 

1.4 Scope of the Study 

The organization of this dissertation is arranged as follows. Chapter 2 

provides a detailed description of previous research work on the effective 

stress of unsaturated soils, small strain shear modulus of saturated and 

unsaturated soils (measurement techniques and to proposed theoretical 

approaches) and hydraulic hysteresis and its effect on Gmax of unsaturated 

soils. Material used for this study and its characterizations are described 

in Chapter 3. The semi-empirical framework proposed to analyze the 

impact of effective stress and hydraulic hysteresis on the small strain 

shear modulus of unsaturated, compacted soils is described in Chapter 4. 
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In this chapter, data from literature will be used to initially validate the 

proposed framework. The laboratory phase of this investigation containing 

the experimental equipment, the tests procedures and the results from 

various experiments is described in Chapter 5. A comparison of the results 

of the proposed framework to the test results are presented in Chapter 6. 

Then, Chapter 7 outlines a summary of the analyses and methods used in 

this study and gives general conclusions that may be drawn there from. 

Recommendations for future research into this subject are also provided. 

Chapter 8 contains a discussion on the definition of the effective stress of 

unsaturated compacted soil as an important parameter in predicting the 

small strain shear modulus, a mathematical relationship to define the air 

entry suction value of unsaturated soils, results obtained from flow pump 

during hysteresis changes of degree of saturation for specimens under 

different loading conditions and MATLAB programs which have been used 

to analyze the data.. 
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CHAPTER II 

 

Background 

  

2.1 Small Strain Shear Modulus of Dry and Saturated Soils   

Dynamic properties of soils have been studied theoretically and 

experimentally for several decades (Hardin and Black 1968, 1969; Hardin 

and Drnevich 1972; Hardin 1978; Iwasaki et al. 1978; Stokoe et al. 2004). 

Most of the work that has been performed on the dynamic shear modulus 

of soils has focused on either water-saturated or dry soil (Hardin and 

Black 1968, 1969; Hardin 1978; Iwasaki et al. 1978). Early experimental 

studies on the shear modulus of soils showed that G is highly dependent 

on different variables, such as shearing strain , mean effective stress p´, 

void ratio e, degree of saturation Sr, deviatoric stress , soil grain 

characteristics (shape, size, mineralogy), and gradation (Hardin and 

Richart 1963; Hardin and Drnevich 1972). However, further studies 

revealed that in elastic range of strain (shear strain amplitudes less than 

10-6), shear modulus of soil, defined as the maximum shear modulus Gmax, 
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is nearly independent of each of the variables except p´ and e (Hardin and 

Black 1969). 

In attempts to describe the stiffness of the soil in the small range of 

strain, Rowe (1963) proposed an expression between relevant variables for 

the maximum elastic Yang’s modulus Emax of soils:   

E୫ୟ୶ ൌ
1

ሺ1 െ nሻC
Eଵି୬pᇱ୬																																																																																							ሺ2.1ሻ 

where E is the Young’s modulus of the particle material to satisfy the 

dimensions of the equation, C is dimensionless elastic compressibility 

coefficients and n is a constant. This expression was developed using the 

Hertz theory for elastic spheres in contact and considering isotropic 

behavior for soils in the elastic range of strain. 

Later in 1963, due to difficulties in establishing the value of E for a 

given soil, Janbu (1963) found the atmospheric pressure Pa a better choice 

for satisfaction of the dimensions of the equation and defined the 

maximum Young’s modulus Emax under an applied isotropic mean effective 

stress of p´ as follows: 

E୫ୟ୶ ൌ K୉Pୟ
ଵି୬pᇱ୬																																																																																																		ሺ2.2ሻ 

where Pa is the atmospheric pressure, n is a constant and KE is a 

dimensionless elastic coefficient.  

In 1978, Hardin evaluated the experimental measurements of the 

small strain shear modulus from wave propagation velocities and the 

small strain amplitude cyclic simple shear tests and from his observations 
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extended Janbu’s expression to define an empirical relationship for Gmax of 

saturated and dry soils with a general form of:  

G୫ୟ୶ ൌ A	ሺOCRሻ୏݂ሺeሻPୟ
ଵି୬	pᇱ୬																																																																												ሺ2.3ሻ 

In this equation, A and n are fitting parameters, p´ is the mean 

effective stress, OCR is the over-consolidation ratio, Pa is the atmospheric 

pressure, K is the hardening parameter related to the plasticity of soils PI 

and f(e) is referred to the void ratio function which was defined to consider 

the effect of void ratio on  Gmax of the soils. Different approaches were 

proposed to define the void ratio function. In early works by Hardin and 

Richart (1963), the effect of void ratio on Gmax was expressed in the form 

of: 

݂ሺeሻ ൌ ሺଶ.ଽ଻ଷିୣሻమ

ଵାୣ
																																																																																																								ሺ2.4ሻ	                                   

However, by the implementation of Eq. (2.3) in fitting experimental 

Gmax data, later, Hardin (1978) proposed following relationship for f(e): 

݂ሺ݁ሻ ൌ ଵ

଴.ଷା	଴.଻௘మ
																																																																																																									 (2.5)	

Hardin and Richart (1963), Hardin and Black (1969), Hardin and 

Drnevich (1972), Seed et al. (1986), Ishihara (1996) also proposed similar 

expressions for the small strain shear modulus of saturated and dry soils. 

2.2 Effective Stress in Soils  

The principle of effective stress provides the most vital clue to 

understanding of dynamic behavior of soils and all experimental evidence 

supports the assertion that soil behavior is controlled by effective stress 
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and models which are intended for general application must be described 

in terms of history and changes of effective stresses. By considering the 

soil system as an equivalent continuum medium, Terzaghi (1936) defined 

the effective stress of saturated and dry soils as follows:   

p′ ൌ p െ u୵																																																																																																																	ሺ2.6ሻ					 

where p is the total stress applied to the system and uw is the pore water 

pressure between the particles. Use of Terzaghi’s effective stress 

definition permitted the development of rational numerical methods to 

solve the governing partial differential equations for stress equilibrium 

under static and dynamic conditions in saturated soils.  

However, it has become clear in recent years that improved solutions of 

many stress-related geotechnical engineering problems require not only 

sustained activities along the continuum based solid mechanics approach 

but also new theories along the discontinuous approach for describing 

effective stress under multiphase conditions. It has been recognized that 

theories describing the state of stress in unsaturated soil require 

consideration of the thermodynamic properties of the pore water in terms 

of soil suction, material variables such as grain size and grain size 

distribution, state variables such as degree of saturation, and inter-

particle forces arising from matric suction (Lu and Likos 2006).  

Different approaches have been recognized by researchers to describe 

the stress state of unsaturated soils. One approach that has been proposed 
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is the use of two independent stress-state variables, the net confining 

stress pn (defined as the difference between total mean stress and pore air 

pressure pn = p – ua) and matric suction  (equal to the difference between 

the pore air pressure and pore water pressure = ua – uw). This approach 

has been supported by observations that indicate volume change can occur 

due to either stress state variable (Fredlund and Morgenstern 1977). 

Several researchers have provided argued against using two stress state 

variables as it is not a natural extension of classical soil mechanics for 

saturated soils (Khalili et al. 2004; Lu 2008; Khalili and Zargarbashi 

2010). Khalili et al. (2004) argued the concept proposed by Fredlund and 

Morgenstern (1977) requires a mixing of scales that is inconsistent with 

the continuum mechanics framework for multiphase systems. Lu (2008) 

argued that when matric suction and net confining stress are both 

selected as stress state variables to describe the state of stress in 

unsaturated soil, a transfer function is necessary to link the volumetric 

quantity of soil water with ψ and pn.  

Another approach was proposed by Bishop (1959) which describes the 

effective stress in unsaturated soils as a single stress state variable, as 

follows: 

pᇱ ൌ p୬ ൅ χ																																																																																																														ሺ2.7ሻ 

where pn  is the net confining stress, is the effective stress parameter, 

ranging from 0 (for dry soils) to 1 (for saturated soils) and  is the matric 
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suction. Bishop’s approach permits the straightforward use of Eq. (2.7) in 

engineering analyses developed using Terzaghi’s definition of effective 

stress for saturated soils. Lu and Likos (2006) referred to the second term 

in Eq. (2.7) as the mean suction stress ps, and indicated that it can be 

treated as a material relationship which depends on matric suction or 

degree of saturation Sr. They described the suction stress ps as a 

macroscopic stress that collectively incorporates the effects of capillarity, 

as well as soil- and pore fluid-specific forces such as van der Waals forces, 

electrical double-layer repulsion forces, and net attraction forces arising 

from chemical cementation at the grain contacts (Lu and Likos 2006). 

They indicated that relationships between ps and  can be defined for 

unsaturated soils for mechanical analyses in a similar manner to how soil-

water retention curves (SWRCs) are defined for unsaturated soils in 

hydraulic analyses. 

Different approaches are used to define the effective stress parameter 

in the definition of suction stressSome studies have found that a value 

of  equal to the degree of saturation Sr provides a successful 

representation of the mean effective stress when interpreting shear 

strength and deformation data (Gallipoli et al. 2003; Wheeler et al. 2003; 

Tamagnini 2004; Nuth and Laloui 2008). This definition of the effective stress 

parameter that is the basis of numerous recent constitutive stress 

frameworks includes a direct dependency of the overall behaviour of the 
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Using van Genuchten’s (1980) SWRC model, following expression may be 

proposed to define the Se of soils (Lu et al. 2010):  

Sୣ ൌ
1

ሺ1 ൅ ሺሻ୒ሻቀଵି
ଵ
୒ቁ
																																																																																										ሺ2.9ሻ 

where  and n are fitting parameters with “” being the inverse of air 

entry suction for the soil and “N” being the pore size distribution 

parameter.   

An issue encountered in implementing such an experimental 

methodology proposed by Lu and Likos (2006) is the effort and cost 

required to perform shear tests on multiple soil specimens. Previous 

round-robin tests on compacted soils for D18 revealed significant 

variability in compaction conditions, indicating that it may be difficult to 

obtain consistent samples for multiple triaxial tests. Also, if compression 

tests are to be carried out on intact field samples, the odds of recovering 

identical intact samples are low.  In this regard, the use of drained 

multistage triaxial testing to determine the strength properties of 

unsaturated soils has been investigated by researchers for both 

eliminating variability in soils between tests and extracting the maximum 

amount of information from a single test (Ho and Fredlund 1982; 

Raharadjo et al. 1995; Khalili and Zargarbashi 2010). Several studies on 

saturated soils demonstrate the economic feasibility of performing 

multistage triaxial tests under saturated conditions (Saeedy and Mollah 

1988; Soranzo 1988). By performing a series of multistage drained 
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Rahardjo et al. (1995) highlighting this feature are shown in Figure 2.3. 

Ho and Fredlund (1982) concluded that multistage testing is appropriate 

when soil specimens do not deform excessively during earlier stages of 

loading. 

Recently, Khalili and Zargarbashi (2010) performed multistage triaxial 

tests on different soils to probe the critical state line (CSL) for different 

suction increments, with the goal of evaluating the variation of the 

effective stress parameter during hydraulic hysteresis (drying then 

wetting). A similar hysteretic trend observed in the SWRC was observed 

in relationships between  and  for non-cohesive soils. Although Khalili 

and Zargarbashi (2010) observed that the degree of saturation may not 

provide representative values for the effective stress parameter, their 

results indicate that the SWRC and effective stress parameter are related. 

Their approach to define the CSL using multiple stages during drying was 

to apply increments of suction after shearing to the CSL, which increases 

the mean effective stress and departs away from the CSL. They defined 

points on the CSL during wetting by unloading the specimen through a 

reduction of matric suction, while maintaining constant net stress and 

axial strain. Based on observations from this study and observations by 

Khalili and Khabbaz (1998), the authors developed a semi-empirical 

expression to relate the effective stress parameter to the matric suction  

and ψe which is defined as the suction value marking the transition 
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between saturated and unsaturated conditions (Khalili and Khabbaz 

1998) for the main drying and wetting paths: 

χ ൌ ቐ
1																																				 ൑ ୣ

ሺ

ୣ
ሻି଴.ହହ																						 ൒ ୣ

																																																																						ሺ2.10ሻ 

in which for the main wetting path e=ex and for the main drying path 

e=ae whereex is the air expulsion value and ae is the air entry value.  

2.3 Small Strain Shear Modulus of Unsaturated Soils  

By a theoretical study on the wave propagation of the soils in a fluid 

saturated porous medium, Biot (1956) reported that the presence of fluid 

between the voids produced only a minor effect on the shear wave velocity 

of the soil. Based on this observation, the difference between the curves 

for the dry and saturated conditions was accounted for by the effect of the 

weight of the water through the unit weight and effective stress of the soil 

(Richart et al. 1970). However, observations by Wu et al. (1984) and Qian 

et al. (1991; 1993) revealed the strong nonlinear relationships between 

Gmax and degree of saturation Sr of the soils. Wu et al. (1984) performed 

one of the first studies to determine the difference in dynamic properties 

between unsaturated and saturated soils.  

In their study, the effects of the degree of saturation, confining 

pressure, void ratio, and grain size distribution of the soil particles on the 

dynamic shear modulus of unsaturated soils were measured using a 

resonant column test device. Unsaturated soil specimens were prepared 
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while the water pressure was kept constant at the atmospheric pressure 

during the test. The volume of water passing through the specimen was 

monitored by a burette connected to the bottom of the high air entry 

porous stone. Based on this study, an increase in shear modulus was 

observed due to the increase in matric suction at the whole strain range 

applied to the specimen while an increase in degree of saturation resulted 

in the Gmax decrease. Due to the method of testing, specimens tested in 

this study were not fully saturated at the beginning of the drying process 

but they were at the degree of saturation related to their compaction 

water content [Figure 2.6(a)].  

Mancuso et al. (2002) performed an experimental study on the small 

strain shear modulus using a modified resonant column-torsional shear 

cell with the axis translation technique (Hilf 1956). Authors investigated 

the small strain behavior of an unsaturated, compacted silty sand under 

different net normal stresses, matric suctions and compaction water 

content. In this study, backpressure saturation was used to initially 

saturate the specimen by dissolving entrapped air bubbles (Schuurman 

1966).  Results in this study indicated the significant influence of net 

confining stress and matric suction on the Gmax measurements of 

unsaturated soils.  
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steeper gradient, which led to a greater increase in Gmax with increasing 

matric suction. As the soil approached residual saturation conditions, Gmax 

was observed to tend asymptotically toward a limiting value. Same 

observations are reported by Marinho et al. 1995; Inci et al. 2003; 

Mendoza et al. 2005; Vassallo et al. 2007; Sawangsuriya et al. 2009 and 

Vanapalli et al. 2009.  

Trends in this study were also significantly affected by the initial 

compaction water content. Initial compaction water content, through its 

control of soil fabric, was observed to cause significant differences in the 

variation of Gmax with matric suction. Specimens compacted wet of 

optimum water content had lower Gmax and tended to exhibit a weaker 

soil fabric with respect to the specimen compacted dry of optimum. 

Increasing net confining stress applied to the soil was also observed to 

result in a considerable increase in Gmax. However, specimens under 

higher net confining stress were observed to be less sensitive to the 

changes of matric suction. A limitation in the study by Mancuso et al. 

(2002) was that the variation of the degree of saturation of the soil 

specimen during the application of loading ( and pn) was not monitored. 

From the observation by Ng et al. (2009), soil specimens subjected to 

higher net confining stresses were observed to have a better water 

retention ability and their rates of desorption and adsorption of the 

specimen were smaller. 
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The overall layout of this system is presented in Figure 2.9. The 

relationship between small-strain shear modulus and effective stress was 

evaluated for unsaturated sand specimens under different net confining 

stresses.  

 

Figure 2.9: Cross-section of the suction-controlled resonant 
column apparatus 

 
Especially, in this study, the effective stress was defined using the 

concept of the suction stress characteristic curve (SSCC) proposed by Lu 

and Likos (2006). The small-strain shear modulus was observed to follow 

a cane-shaped trend with matric suction, and reached a maximum value 

at a degree of saturation close to residual conditions (a matric suction 

approximately 5 kPa) after which it started decreasing to a value close to 

the value of small strain shear modulus at saturated conditions. This 
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observation is similar to the results by Wu et al. (1984) and Qian et al 

(1993) (Figure 2.10).  

Comparing results for unsaturated non-cohesive (Figures 2.10 and 2.4) 

and cohesive soils (Figure 2.7), different trends in the small strain shear 

modulus are observed as suction increases beyond its residual value. 

Clayey soils are observed to tend toward a constant value with increasing 

suction while a decreasing trend for sandy specimens is observed. This 

difference in behavior may be due to differences in the interparticle forces 

concentrated at or near the interparticle contacts. Lu and Likos (2006) 

described the interparticle contacts as the combination of van der Waals 

attraction, electrical double-layer repulsion, and the net attraction arising 

from chemical cementation at the grain contacts referred as 

physicochemical forces as well as additional attractive forces arising from 

surface tension at air-water interfaces and attractive forces arising from 

negative pore water pressure in unsaturated sandy and clayey soils. As 

the suction applied to the system goes beyond its residual value, large 

increases in matric suction result in only very small changes in water 

content. In this stage, the capillary stress and double-layer stress 

significantly decrease or cease to exist, while van der Waals stress 

approaches a constant value. As a result, the interparticle forces may 

diminish to zero for sandy soils but could reach several hundred kPa for 

clayey soils. 
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2.4 Relationships for the Small Strain Shear Modulus of 

Unsaturated Soils 

In general, based on the definition of stress state considered for 

analysis and from the interpretation of Gmax results measured using 

bender elements (Cabarkapa et al. 1999; Inci et al. 2003; Marinho et al. 

2005; Sawangsuriya et al. 2009, Ng et al. 2009) and resonant column tests 

(Mancuso et al. 2002; Kim et al. 2003; Mendoza et al. 2005; Vassallo et al. 

2007), two different types of relationships can be recognized for the small 

strain shear modulus of unsaturated soils. One type of relationship is 

based on the use of independent stress state variables (Fredlund and 

Morgenstern 1977) as the stress state of unsaturated soils. For example, 

using this concept and the evaluation of experimental measurements of 

Gmax for unsaturated, compacted soils, Sawangsuriya et al. (2009) 

proposed an empirical relationship for Gmax along the drying path of the 

SWRC that relied on the physical soil properties and the SWRC of the soil 

as follows: 

௠௔௫ܩ ൌ ሺ݁ሻp௡௡݂ܣ ൅  ሺ2.11ሻ																																																																																									߰ܤ

where n and A are parameters defined by fitting Eq. (2.11) to a set of Gmax 

data under a constant value of pn and f(e) is a void ratio function. Mancuso 

et al. (2002); Mendoza et al. (2005); Oh and Vanapalli (2009); and Ng et al. 

(2009) also proposed similar empirical relationships for Gmax. Although 

these relationships provide a good prediction of Gmax with stress state 
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during drainage-path tests for a given initial void ratio, they have not 

been evaluated for hydraulic hysteresis.  

Accordingly, Inci et al. 2003; Sawangsuriya et al. 2009; Khosravi and 

McCartney 2009; Khosravi et al. 2010 have incorporated the single-value 

mean effective stress definition proposed by Bishop (1959) for unsaturated 

soils into the expression of Gmax proposed by Hardin and Black (1968) , as 

follows:   

௠௔௫ܩ ൌ  ሺ2.12ሻ																																																																																																				௡	′݌ሺ݁ሻ݂ܣ

where A and n are fitting parameters and p´ is  the effective stress of 

unsaturated soils defined as Eq.(2.7). In the definition of Eq. (2.12), 

different approaches for the effective stress parameter were considered. 

Sawangsuriya et al. (2009) used following expression for the effective 

stress parameter: 

߯ ൌ ௄߆ ൌ ൬
ߠ
௦௔௧ߠ

൰
௄

																																																																																																						ሺ2.13ሻ 

while Inci et al. (2003), Kawajiri et al. (2009) and Khosravi et al. (2010) 

used an effective stress parameter of 1 in their analysis. 

As observed in Eqs. (2.11) and (2.12), implementation of both equations 

in fitting experimental Gmax data almost always incorporates a 

relationship for f(e) defined by Hardin and Black (1969) (Eq. 2.4) and 

Hardin (1978) (Eq. 2.5). In both equations, definition of f(e) was developed 

assuming that e and p´ are uncoupled and Gmax is proportional to the 

square root of p´. Other studies (Stokoe et al. 1999; Tatsuoka et al. 1996; 
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pulse wave (i.e., bender element) tests combined with a hydraulic 

permeameter modified with the axis translation technique (Hilf 1956). 

Axis translation permits the control of the suction in the specimen by 

applying (or measuring) a difference in air and water pressure across a 

soil specimen resting atop a high air-entry ceramic disk or porous 

membrane. The high air-entry ceramic disk permits independent control 

of the pore water pressure on the boundary of the specimen as only water 

is transmitted through the ceramic disk for suction values less than the 

air-entry suction of the ceramic disk. The pore water pressure in the axis 

translation technique needs not be zero as the suction is equal to the 

difference in the air and water pressure. Accordingly, backpressure 

saturation can be used to initially saturate the specimen by dissolving 

entrapped air bubbles (Schuurman 1966). The axis translation technique 

with backpressure permits improved accuracy of outflow measurements 

from unsaturated materials. However, water flow from or into the 

specimen during the application of increments of  values in most of 

available technique is typically measured using visual observation of the 

water level in a graduated burette connected to the water drying line from 

the specimen. Although this water flow measurement approach may yield 

appropriate results at equilibrium, it is particularly difficult to ascertain 

whether or not equilibrium has been reached and the temporal resolution 

of water flow can be difficult to assess for small flow volumes.  
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This shortcoming of the conventional axis translation technique makes 

it difficult to ensure that a uniform value of suction has been reached in 

the specimen, especially during wetting. Partially due to difficulties in 

tracking outflow during suction control with the conventional axis 

translation technique, most studies on Gmax of unsaturated soils presented 

results of only the primary drying path of the SWRC and did not report 

trends with degree of saturation (Cabarkapa et al. 1999; Mancuso et al. 

2002; Inci et al. 2003; Mendoza et al. 2005; Vassallo et al. 2007). The value 

of Sr is critical to measure in unsaturated soils experiencing hydraulic 

hysteresis, as an element of soil may have different Sr values for the same 

value of  depending on whether the soil element is undergoing drying or 

wetting (Wheeler et al. 2003; Tamagnini 2004; Khalili and Zargarbashi 

2010).  

The value of Sr during hydraulic hysteresis will reflect the amount of 

water in the soil, and thus the cumulative number of air-water menisci 

affecting inter-particle connections, for a given matric suction (Wheeler et 

al. 2003). As a consequence, even though the suction may be the same 

magnitude upon drying and wetting, the different amounts of water in the 

soil will lead to different mechanical behavior (Wheeler et al. 2003; 

Tamagnini 2004; Khalili and Zargarbashi 2010).  

Khoury and Zaman (2004) conducted a comprehensive study on the 

variation of resilient modulus MR as a soil stiffness parameter with water 
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content and matric suction upon drying and wetting. Their results 

indicated that MR-moisture content relationships exhibited a hysteretic 

behavior due to wetting and drying. Same observation was reported by 

Khoury (2010) on silt specimens. Ng et al. (2009) investigated the effects 

of wetting–drying and stress ratio on anisotropic shear stiffness of an 

unsaturated completely decomposed tuff (CDT) at small strains using a 

modified triaxial testing system equipped with three pairs of bender 

elements. During drying, the measured small strain shear moduli 

increased in a nonlinear fashion. A sharp increase in Gmax first occurred in 

the soil. The Gmax was then observed to increase at a reduced rate as the 

matric suction increased. During wetting, at the same suction level, the 

measured small strain shear moduli were observed to be consistently 

higher compared to those measured during drying. Ng et al. (2009) 

interpreted this observation as the direct influence of degree of saturation 

on Gmax, in addition to any influence of matric suction and net confining 

stress (Figure 2.12). 
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CHAPTER III 

 

Material Properties 

 

3.1 Introduction 

A silt obtained from the Bonny dam near the Colorado-Kansas border 

(Figure 3.1) was used to demonstrate the capabilities of the new suction-

saturation controlled resonant column setup and to validate the 

framework for the prediction of Gmax of unsaturated soils during hydraulic 

hysteresis. The information gained through the use of low plasticity clay 

will facilitate interpretation of the impact of unsaturated stress state 

because they vary in moisture content over a wide range of suction with 

negligible volume change during SWRC testing. These materials are 

expected to be straightforward to test in the resonant column and triaxial 

setups without significant scale effects. The liquid and plastic limits of the 

soil measured according to ASTM D 4318 are 26 and 24 and the soil has a 

specific gravity Gs of 2.6. The grain size distribution of the soil is shown in 

Figure 3.2. Based on this information, the soil classifies as a ML according 

to the Unified Soil Classification System (USCS). 
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confining stress, the soil specimen was de-saturated by maintaining a 

constant air pressure at the top of the specimen and drawing water from 

the bottom of the soil specimen using the flow pump. The pump is 

operated in the withdrawal mode which caused pore water reduction at 

the bottom of the specimen.  

A differential pressure transducer connected to the air pressure (top of 

the specimen) and water pressure (bottom of the specimen) lines is used to 

measure the matric suction during the test. The flow pump withdraws 

water from the specimen at a constant rate until the differential pressure 

transducer indicates that a target suction (i.e., a difference between the 

pore air on the top of the soil specimen and the pore water on the bottom 

of the saturated porous disc) has been reached at the boundary of the 

specimen. However, this suction level is only representative of the 

boundary. In order to gain a uniform suction through the specimen, a 

feedback control loop in the flow pump stepper-motor is used to continue 

drawing water from the specimen in increments until the matric suction 

(ua – uw) is stabilized for a desired period of time.  

After reaching the suction equilibrium at the specimen for a specific 

matric suction, this step will be repeated for several values of matric 

suction to obtain the SWRC. The degree of saturation for a corresponding 

matric suction is measured by calculating the volumetric moisture content 

from the outflow data after each stable suction value has been reached. 
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CHAPTER IV 

 

Prediction of the Small Strain Shear Modulus of Unsaturated 

Soils during Hydraulic Hysteresis 

 

4.1 Introduction  

In this chapter, a semi-empirical framework for Gmax of unsaturated 

soils incorporating recent advances in the definition of the effective stress 

state in unsaturated soils, relationships for hydraulic hysteresis in the soil 

water retention curve (SWRC), and established constitutive relationships 

for unsaturated soils is proposed. From the interpretation of the small 

strain shear modulus results, different definition of trends between Gmax 

with the stress state of the soils (net confining stress pn and matric 

suction ) and material properties (void ratio e and over consolidation 

ratio OCR) were proposed (Cabarkapa et al. 1999; Mancuso et al. 2002; 

Inci et al. 2003; Kim et al. 2003; Marinho et al. 2005; Mendoza et al. 2005; 

Vassallo et al. 2007; Sawangsuriya et al. 2009, Ng et al. 2009; Ng et al. 

2009). However, in these trends, an empirical manner between the stress 

state and void ratio is considered. Besides, except for the experimental 
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studies by Sawangsuriya et al. (2009) and Ng et al. (2009), inter-

relationships between Gmax, Sr and  were not investigated. Although 

these trends may work well for saturated soils (Hardin and Black 1968; 

Hardin and Black 1969; Hardin and Drnevich 1972; Hardin 1978), it is 

not likely to work for unsaturated soils, where the behavior may change 

upon wetting and drying due to hydraulic hysteresis.  

4.2 Model Description 

Similar to the approach of Hardin (1978), a multiplicative relationship 

between the relevant variables is used as the starting point to define Gmax 

for unsaturated soils, as follows: 

௠௔௫ܩ ൌ 	ሻ௄ܴܥሺܱ	ܣ ௔ܲ
ଵି௡	݌′	௡																																																																																ሺ4.1ሻ 

where A and n are fitting parameters, Pa is the atmospheric pressure used 

for normalization, OCR is the over-consolidation ratio, p´ is the mean 

effective stress, and K is referred to as the consistency constant which is 

sensitive to the plasticity index of the soil. The OCR is defined as:   

ܴܥܱ ൌ
	′଴݌
	′݌

																																																																																	`																													ሺ4.2ሻ 

where p0´ is the apparent mean preconsolidation stress of the soil 

specimen and p´ is the current mean effective stress.  

The mean effective stress employed in the proposed framework was 

defined using an approach similar to Wheeler et al. (2003), Tamagnini 

(2004), and Nuth and Laloui (2008):  

′݌ ൌ ௡݌ ൅ ܵ௥																																																																																																												ሺ4.3ሻ	 
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where pn is the net confining stress equal to (p-ua) and  is the matric 

suction equal to (ua-uw). This equation is similar to Bishop’s (1959) single 

value effective stress variable with an effective stress parameter  equal 

to Sr. As presented in Appendix A, this definition of effective stress was 

found acceptable over the initial drying paths of the SWRC for compacted 

soils. Khalili and Zargarbashi (2010) also showed that using Sr as the 

effective stress parameter over the initial drying and wetting paths of 

hysteresis cycle for non-cohesive soils is deemed acceptable. 

The concept of the double-hardening mechanism experienced by 

unsaturated soils during hydro-mechanical hysteresis (Wheeler et al. 

2003; Tamagnini 2004) is used in this framework. Based on this concept, 

hydraulic hysteresis and mechanical behavior of soils are linked in a 

single framework to describe changes in stiffness of a soil during two 

coupled physical processes. The first process is the mechanical process of 

displacement of the soil skeleton under changes of applied effective 

stresses, with elastic displacements attributed to the elastic deformation 

of soil particles, and plastic compression related to the slippage between 

the particles.  

Plastic compression, arising from slippage between the particles, 

causes a new arrangement of the particles with lower void ratio. In this 

new arrangement, the soil skeleton will experience a hardening process as 

it shows a more stabilized state against yielding under subsequent loading 
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and unloading. Employing the extended Cam-Clay model, following 

expression can be used to describe the evolution of yield function (e.g. 

hardening) produced by the plastic changes in volume of the soil specimen 

during isotropic loading (Wheeler et al. 2003, Tamagnini 2004):   

′଴݌݀
	′଴݌

ൌ
ሺ1 ൅ ݁଴ሻ݀ߝ௩

௣	
ሺߣ െ 		ሻߢ

																																																																																																ሺ4.4ሻ 

where  and  are the slopes of the  normal compression curves and the 

elastic swelling line on the e-lnp´ diagram for saturated soils, respectively 

[Figure 4.2(a)] and eo is the initial void ratio of the soil specimen.  

The second physical phenomenon is the hydraulic process of water flow 

during wetting and drying. In this regard, hydraulic hysteresis in the soil 

water retention curve (SWRC) is modeled as an “elasto-plastic” process 

with plastic changes in Sr as the soil state is moving along a primary 

drying curve or primary wetting curve and elastic changes in Sr as long as 

the soil state remains between the primary drying and primary wetting 

curves (Wheeler et al. 2003). This process may be clearly explained by 

tracking changes of air-water interface with matric suction changes 

(Figure 4.1). As suction increases from zero suction during drying, the air-

water interface between the particles moves from position A to B as shown 

in Figure 4.1. This movement of the interface during drying is modeled as 

a reversible process and changes in the degree of saturation during this 

stage are considered as the elastic changes of Sr. However, increasing 

suction beyond the air entry suction, air will break through into the voids 
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where s is the slope of the plastic portions of the SWRC. This type of 

elasto-plastic modeling of the SWRC was suggested previously by Dangla 

et al. (1997) and Wheeler et al. (2003). The main difference between the 

SWRC defined by Wheeler et al. (2003) and that used in this study is that 

the piece-wise log-linear curves are arranged to consider the effect of 

entrapped air on the shape of the wetting SWRC (i.e., the wetting SWRC 

does not return to Sr = 1). Strict evaluation of the SWRC model indicates 

that it is incorrect as Sr changes before reaching the air entry suction. 

However, this gradual decrease in Sr represents the gradual entry of air 

into pores with different sizes on the air-water interface at the border of 

the soil specimen. The piece-wise log-linear model has been observed to fit 

the experimental SWRCs of different soils. However, if this feature is not 

desired in an analysis, a very small value of s can be used to define the 

SWRC. 

During plastic changes of Sr during drying or wetting of the soil, 

Wheeler et al. (2003) proposed that there is a difference in the distribution 

and quantity of water menisci throughout the soil, and consequently in 

the magnitude of interparticle contact stresses and thus the mechanical 

properties of the soil. Based on the definition of the SWRC shown in 

Figure 4.2(a), Wheeler et al. (2003) proposed the following expression to 

describe the evolution of the yield surface (i.e., hardening) produced by 

“plastic” changes in Sr:   
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	′଴݌݀
	′଴݌

ൌ െܾ
݀ܵ௥

௣

ሺߣ௦ െ ௦ሻߢ
																																																																																																ሺ4.7ሻ 

where b is a constitutive constant referred to as the double-hardening 

constant controlling the rate of changes in hardening of the soil caused by 

changes in Sr. 

Combining Eq. (4.7) with Eq. (4.4) gives the general equation that 

represents the movement of the yield surface under the hydro-mechanical 

loading, as follows:  

	′଴݌݀
	′଴݌

ൌ െܾ
݀ܵ௥

௣

ሺߣ௦ െ ௦ሻߢ
൅
ሺ1 ൅ ݁଴ሻ݀ߝ௩

௣

ߣ െ ߢ
																																																																			ሺ4.8ሻ 

Integration of Eq. (4.8) leads to following expression for p0´:  

න ′଴݌݀
௣బ′೘శభ

௣బ′೘

ൌ න ଴݌
′ ቆെܾ

݀ܵ௥
௣

ሺߣ௦ െ ௦ሻߢ
െ

݀݁௣

ߣ െ ߢ
	ቇ

	

∆ௌೝ
೛,∆௘೛

→		

଴′௠ାଵ݌ ൌ ሺെܾ݌ݔ଴′௠݁݌
∆ܵ௥

௣

௦ߣ െ ௦ߢ
െ

∆݁௣

ߣ െ ߢ
	ሻ																																																											ሺ4.9ሻ 

where the subscripts m and m+1 denote the old and new values of po′ after 

a change in Sr or e. Substituting Eq. (4.9) into Eq. (4.2) permits definition 

of changes in the OCR during changes in Sr or e, as follows:     

ሺܱܴܥሻ௠ାଵ ൌ
଴′௠݌
௠ାଵ′݌

݌ݔ݁ ቆെܾ
∆ܵ௥

௣

௦ߣ െ ௦ߢ
െ ሺ1 ൅ ݁଴ሻ

௩ߝ∆
௣

ߣ െ ߢ
		ቇ																													ሺ4.10ሻ 

where p´m+1 is the (m+1)th term of mean effective stress, which changes 

with Sr. Assuming negligible changes in e during changes in Sr, Eq. (4.10) 

can be split in two terms, as follows:  

௠ାଵܴܥܱ ൌ
଴′௦௔௧݌
௡݌

݌ݔ݁ ൭ሺ1 ൅ ݁଴ሻ
௩ߝ∆

௣

ߣ െ ߢ
൱ ൅

଴′௠݌௡݌
௠ାଵ′݌଴′௦௔௧݌

݌ݔ݁ ቆെܾ
∆ܵ௥

௣

௦ߣ െ ௦ߢ
		ቇ ሺ4.11ሻ 
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where the first term represents changes in OCR due to changes in e 

during mechanical loading, while the second term represents changes in 

OCR due to changes in Sr. During changes in Sr, the terms po’sat, which 

represents the mean consolidation pressure due to mechanical loading of 

saturated soil, and pn, the net normal stress, are assumed constant. 

Substituting Eq. (4.11) into Eq. (4.1), the new value of Gmax after a change 

in Sr or e can be obtained as follows:  

ሺܩ௠௔௫ሻ௠ାଵ ൌ ቌܣ
଴′௦௔௧݌
௡݌

݌ݔ݁ ൭ሺ1 ൅ ݁଴ሻ
௩ߝ∆

௣

ߣ െ ߢ
		൱ቍ

௄

 

൭
௡݌଴′௠݌

݌଴′௦௔௧݌
′
௠ାଵ

݌ݔ݁ ቆെܾ
∆ܵ௥

௣

௦ߣ െ ௦ߢ
		ቇ൱

௄ᇲ

௔ܲ
ଵି௡݌′௠ାଵ

௡
																																													ሺ4.12ሻ				 

where K´ and K are the parameters to control the rate of changes in Gmax 

with hardening due to changes in Sr and e, respectively.   

The parameters required to solve the evolution of Gmax during 

hysteretic hydro-mechanical loading include those from elasto-plastic 

compression curve (, ), the SWRC (s, s), the coupling parameter (b), 

hardening parameters (K and K´), and empirically fitting parameters 

specific to a given soil (A, n). The value of K for a given soil is typically 

defined using guidance from Hardin (1978) and the fitting parameters, A 

and n, are determined from fitting a curve to Gmax data at zero matric 

suction (saturation condition) under different net confining stresses. In 

the definition of Gmax in Eq. (4.12), it is assumed that there is a negligible 
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change in void ratio during Sr changes. Therefore, the proposed model is 

only suitable to represent the behavior of non-expansive or non-collapsible 

soils. 

4.3 Parametric Evaluation of the Model 

A parametric evaluation was performed in order to demonstrate the 

capabilities of the model during hydraulic hysteresis. The evaluation 

considers the following initial values of the state variables: pn = 100 kPa, 

= 0 kPa, e = 0.6 and Sr = 1, p´ = 100 kPa and po´ = 200 kPa. Based on 

the initial po´ and the initial stress state conditions, this hypothetical soil 

is considered over-consolidated. During the initial drying process from 

points A to B along the SWRC in Figure 4.2(a) (i.e., before the air entry 

suction), a small change in Sr is predicted by the model.  

During this stage, po´ predicted using Eq. (4.9) remains constant 

[Figure 4.3(b)] and p´ defined using Eq. (4.3) increases slightly [Figure 

4.3(c)]. These changes lead to a small increase in Gmax as the suction 

changes from A to B [Figures 4.4(b) and 4.4(c)]. In this stage, both 

mechanical and hydraulic behaviors could be considered elastic as 

described by Wheeler et al. (2003).  After reaching the air entry suction at 

point B (plastic regime), Sr decreases at a faster rate with increasing 

suction from B to C.  
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During movement along this portion of the curve, both po´ [Figure 

4.3(b)] and p´ [Figure 4.3(c)] experience a considerable increase with . 

Accordingly, Gmax increases at a greater rate with  before tending toward 

a threshold value as water begins to become occluded [Figures 4.4(b) and 

4.4(c)]. The wetting process from a suction of 100 to 1 kPa is shown as 

path C-D-E-F in Figure 4.3(a). During the decrease in suction from C to D, 

only a small change in Sr is observed and po´ remains with no change. In 

this stage, the most significant change would be the considerable 

reduction in p´, which results in a slight reduction in Gmax from C to D. At 

point D, water will start breaking through the middle-size voids of 

compacted soils, resulting in a plastic increase in Sr. After this point, po´ 

decreases linearly with a slope of b due to changes in Sr while p´ is still 

decreasing as the suction decreases from D to E. This causes a sharp 

decrease in Gmax. Point E is considered as the air expulsion suction 

defined as the point of separation between the saturated and unsaturated 

conditions during wetting of SWRC. After this point, only small changes 

in Sr are observed and Gmax will follow the same slope as observed in path 

A-B. The influence of the hardening parameter K´ and the coupling 

parameter b on Gmax during drying and wetting are shown in Figures 

4.5(a) and 4.5(b) respectively. In all of the curves, Gmax has a greater 

magnitude upon wetting than it does during drying, following a similar 

trend to that noted in po´ curve shown in Figure 4.3(b).  
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Gmax on the drying path after reaching the air entry suction (path B-C). 

The results of the parametric evaluation indicate that p´ and Sr have the 

most significant impact on Gmax for a constant value of pn. This effect is 

especially significant during the wetting process of SWRC. As the change 

of Sr during wetting is less than that during drying, Gmax during wetting is 

larger than that during drying. 

4.4 Verification of the Model with Gmax data from the Literature 

Results from unsaturated small strain shear modulus tests reported in 

the literature may be used to validate the proposed model. Figures 4.6 to 

4.8 present experimental small strain shear modulus data in the space of 

matric suction and degree of saturation for SW (Kim et al. 2003), SC, ML 

and CH (Sawangsuriya et al. 2009) and ML (Ng et al. 2009) at matric 

suction ranging from 0 (saturated) up to 1000 kPa. In this study, the 

initial po´ was assumed for the materials and the SWRC parameters (s, 

s) were defined using the SWRC data reported in literature as shown in 

Figures 4.6(a), 4.7(a) and 4.8(a). The parameters A, n, K, K´ and b were 

found by fitting the best-fitted curves to the measured Gmax data (Table 

4.1). 

As it is observed in all cases, the trend between Gmax and  during 

drying was observed to have three distinct zones. The first zone, a slight 

increase in Gmax with  was noted as the suction changed from zero to the 

air entry suction. A greater increase in Gmax was observed for values of  
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greater than the air-entry suction, after which Gmax approached an 

asymptotic value as the water occlusion condition was reached. 

Table 4.1: Material properties of the soils used for analysis 

 

 

 

 

 

 

 

 

 
Upon wetting, a hysteretic behavior was noted in Gmax. For the same 

values of suction, the Gmax values of wetting path of the SWRC were 

consistently higher than those obtained during drying. During wetting, a 

small reduction in the Gmax with decreasing  was observed. A greater 

reduction in Gmax was noted for lower suctions during wetting, where a 

greater amount of water was absorbed by the specimen. The model was 

then compared against the trends in Gmax with Sr [Figures 4.6(b), 4.7(b) 

and 4.8(b)]. The data in these figures indicate that the model shows a good 

fit with the data for the particular fitting values shown in Figures 4.6 to 

4.8.   

Researcher Sawangsuriya et al. 
(2009) 

Kim et al. 
(2003) 

Ng and Yung 
(2009) 

Material ML CH SC SW ML 
K 0.3 0.6 0.6 0.33 0.1 0.1 
K' 0.4 0.2 0.8 0.2 0.45 0.45 
b 0.5 0.8 0.4 2 0.55 0.55 

s 0.14 0.12 0.18 0.12 0.35 0.35 

s 0.01 0.001 0.001 0.002 0.001 0.001 

p0´ 300 400 100 300 400 400 

e 10 200 60 10 45 45 

pnet 34.5 34.5 34.5 41 110 300 
n 0.6 0.7 0.8 0.6 0.8 0.8 
A 0.5 0.1 0.5 0.62 0.65 0.65 
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CHAPTER V 

 

Experimental Measurement of the Small Strain Shear Modulus of 

Unsaturated Soils 

  

5.1 Introduction 

This chapter describes the details and typical results from a test 

method to measure the path-dependent changes in Gmax during hydraulic 

hysteresis. Specifically, the axis translation technique for suction control, 

a flow pump for degree of saturation control, and a vertically-oriented 

proximeter to infer changes in void ratio are incorporated into a fixed-free 

resonant column setup. A flow pump is essentially a syringe which can be 

moved to impose water flow rates on a specimen, and was originally used 

in permeameter tests to measure the hydraulic conductivity of saturated 

clays (Olsen 1966). The waterflow rate is later used to determine the 

volume of water inserted into or extracted from the specimen and 

consequently the water content of the soil during the matric suction 

changes. Flow pumps have been used to impose transient water flow 

processes on unsaturated soils in order to infer the soil-water retention 
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curve (SWRC; also referred as the soil-water characteristic curve, SWCC) 

and hydraulic conductivity of unsaturated soils using inverse analyses 

(Znidarcic et al. 1991, Abu-Hejleh et al. 1993; Bicalho et al. 2000; 

Znidarcic et al. 2002). However, because Gmax is particularly sensitive to 

degree of saturation and matric suction, transient flow is not appropriate 

as part of a measurement program for Gmax for unsaturated soils. 

Accordingly, the flow pump is operated with suction feedback 

measurements to reach equilibrium conditions for Gmax measurement.   

5.2 Sample Preparation 

To prepare the soil specimen, Bonny silt was first mixed at a 

gravimetric water content of 14% (the optimum water content 

corresponding to standard Proctor compaction conditions) and placed in a 

sealed plastic bag for 24 hours for the water content to homogenize. Static 

compaction (i.e., compression under a static load) was then used to form 

soil specimen with different void ratios. Compaction was performed in 

three 23.7 mm-thick lifts in a 35.6 mm diameter split mold. The static 

compaction approach was observed to lead to uniform specimen density 

and repeatable conditions. The interfaces between the layers were 

scarified to minimize formation of weak zones in the compacted soil 

specimen.  

5.3 Experimental Setup 
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short-circuiting past the high air entry ceramic, and a fixed bottom 

boundary condition during resonant column testing. 

For additional security under low confining pressures, an “O”-ring was 

placed around the latex membrane on the ceramic disk. Although the 

slight stretch in the latex membrane may produce a stress concentration 

at the bottom of the specimen, this approach was observed to show 

consistent resonant frequency results even under relatively low confining 

pressures. 

A high permeability water distribution disk is placed within the 

extension collar beneath the ceramic disk to ensure a uniform distribution 

of water across the ceramic disk and to prevent stress concentrations 

which may cause the ceramic to crack. A water bath surrounding the 

specimen within the resonant column chamber is used minimize diffusion 

of air from the cell through the membrane and into the specimen during 

long-term tests. Flexible 3.175 mm Tygon® tubing with Swagelok® 

connectors were used to connect the backpressure air/water supply lines 

to the top cap of the specimen in order to minimize interference with 

measurement of the resonant frequency of the soil specimen. Similar 

resonant frequency measurements were obtained in tests with and 

without the tubing connected to the top cap.  
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5.3.2 Dynamic Loading System 

Torsional vibration of the cylindrical soil specimen was used in the 

fixed-free resonant column test to identify the first-mode of resonance. 

Specifically, a torsional force is applied through a non-contact 

electromagnetic drive plate resting on top of the specimen. The drive plate 

consists of a cross-shaped disk with four rectangular permanent magnets 

mounted at the end of each arm of the cross. A pair of copper coils having 

opposing polarities is mounted to a separate pedestal, with a coil 

surrounding each end of the rectangular magnets. Application of an 

electrical current through the coils generates a magnetic field which 

imposes a force on the magnet, inducing a torque on the specimen through 

the drive plate. 

A swept sine signal with constant amplitude is supplied to the copper 

coils using a Quattro® dynamic signal analyzer from DataPhysics. The 

Quattro dynamic signal generator provides over 120 dB dynamic range 

with up to 40 kHz real-time rate and facilitates high-resolution 

measurements to 25,600 lines. The range of frequency provided by this 

system is significantly larger than the range that is needed for the 

resonant column test (A frequency range up to 1 kHz). This signal 

analyzer is capable of both dynamic signal analysis and signal generation.  
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to the copper coils. The frequency of the imposed current was swept to 

identify the angular frequency at which the specimen reaches resonance. 

The angular frequency response is measured using a pair of PCB 

Piezotronics miniature ceramic shear ICP accelerometers (Model 352C67) 

connected to the drive plate which is mounted on top of the specimen. 

This shear mode accelerometer is characterized by having a seismic 

mass mounted on the side of a piezoelectric material. Application of 

acceleration to the mass causes a shear stress on the face of the crystal 

and, consequently, a proportional electric signal. This signal generated is 

very small but is then amplified by the internal signal conditioning of the 

ICP, or ”Integrated Circuit - Piezoelectric,” after which it becomes an 

actual usable signal. This particular model of accelerometer has fixed 

voltage sensitivity, a force measurement range up to 50g peak, and a 

frequency range from 0.5 to 10,000 Hz, which made them a suitable choice 

for this particular application. In addition, they are small and lightweight 

so any mass loading effect on the test article is negligible.  

Using the measured resonant frequency, the shear wave velocity of the 

soil specimen Vs is calculated for fixed-free boundary conditions as follows 

(Richart et al. 1970): 

I
I଴
ൌ ൬

ω୰L
Vୱ

൰ tan ൬
ω୰L
Vୱ

൰																																																																																ሺ5.2ሻ	 

where I is the polar mass moment of inertia of the specimen, I0 is the polar 

mass moment of inertia of top cap and drive plate, L is the length of the 
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“O”-ring bushing is used to provide a pressure seal between the circular 

piston and the water reservoir. A stepper motor is used to move the piston 

by turning a fixed threaded rod into the piston whose alignment is 

maintained using a pair of low friction guide bearings. The stepper motor 

records the rotational position of the threaded rod, permitting accurate 

measurement of the flow volume into or out of the specimen. The flow 

pump is capable of moving at velocities ranging from 5 to 0.00001 mm/s, 

which correspond to the flow rates ranging from 3.96×10-6 to 7.92×10-12 

m3/s. The flow pump is connected to the bottom platen of the resonant 

column device as shown in Figure 5.8(b). Operation of the pump will cause 

water to flow out or into the soil specimen through the ceramic disk.  

During testing, the port connecting the bottom of the specimen to the 

back-pressure reservoir is closed, which means that pump operation will 

lead to a change in the water pressure at the bottom of the specimen. The 

difference between the water pressure at the base of the specimen and the 

air pressure applied to the top of the specimen is measured using a 

Validyne® wet-wet differential pressure transducer. Accordingly, the 

differential pressure transducer is used to monitor the matric suction at 

the bottom boundary of the specimen. The differential pressure 

transducer is incorporated into a suction-feedback control loop used by 

McCartney and Znidarcic (2010) to reach different equilibrium values of 

suction and degree of saturation in the soil specimen.  



 

Figure 5.8

 

8: (a) Sche
flow pum

ematic of 
mp for de

77 

 the hydra
egree of sa

aulic cont
aturation 

trol system
 control 

m (b) The

 

e 



78 
 

As suction imposed by flow pump operation is only representative of 

the suction at the boundary of the specimen, the feedback loop is needed 

to control the flow of water to or from the specimen until the matric 

suction at the boundary equilibrates with the suction in the rest of the 

specimen. 

5.4 Experimental Procedures 

To demonstrate the suction-saturation control procedures used to 

measure the effects of hydraulic hysteresis on Gmax of unsaturated soils, 

drying-wetting tests under different confining net stresses were performed 

on compacted silt specimens with initial void ratios of 0.53 and 0.69. After 

the soil specimen was prepared within the resonant column setup and the 

drive plate was been properly aligned and leveled, a high vacuum pump 

was used to apply a vacuum with a magnitude of -80 kPa to the inside of 

the specimen. The specimen and all plumbing lines on top and bottom of 

the specimen are then permitted to de-air for approximately one hour. 

During this time, the cell was assembled around the specimen. An air 

pressure of 20 kPa was applied to the cell as a seating confining pressure. 

De-aired water from the backpressure reservoirs was then introduced into 

the bottom platen to saturate the ceramic disk, soil specimen, top platen, 

and all supply lines from the bottom up. During this upward flow of water, 

de-aired water was flushed through both chambers of the pressure 

transducer, all valves, tubing, and the flow pump in order to ensure that 
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the system is fully water-saturated. The cell pressure was then increased 

to 90 kPa and the backpressure was increased to 20 kPa, corresponding to 

an initial mean effective stress of 70 kPa. After ensuring that the volume 

of the specimen is constant, the cell pressure and backpressure were 

increased in stages to 520 kPa and 450 kPa, respectively, maintaining the 

effective stress equal to 70 kPa. Skempton’s B-value parameter was 

checked during this process to evaluate the initial saturation of the 

specimen. A B-value of 0.98 was observed for the test presented in this 

study. After this point, the confining pressure was increased to reach the 

desired net confining stress. After a 24 hour consolidation period, a 

resonant column test was performed on the specimen to determine the 

value of Gmax corresponding to saturated conditions.  

After conducting the resonant column test under water-saturated 

conditions, the line connecting the bottom of the specimen to the 

backpressure water reservoir was closed for the remainder of the test, 

while the hydraulic connections leading to the flow pump and one side of 

the differential pressure transducer remain open. The air was then 

flushed from the top platen of the specimen while maintaining an air 

pressure of 450 kPa. Air was also flushed from the line connecting the top 

platen to the other side of the differential pressure transducer. While 

water is flushed from the top platen and associated tubing, the soil 

specimen will not desaturate because the pore air and water pressures are 
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in desaturation of the specimen. The approach used to impose the first 

target suction value of 17 kPa for the specimen prepared with an initial 

void ratio of 0.53 is shown in terms of the volume of water withdrawn 

from the specimen in Figure 5.9(a) and the measured matric suction at 

the bottom boundary of the specimen in Figure 5.9(b) for the specimen 

under a confining nets stress of 100 kPa. During drying of the specimen, 

the flow pump is used to withdraw water from the bottom of the specimen 

(through the ceramic disk) at a constant rate until a target suction value 

at the boundary of the specimen measured using the differential pressure 

transducer [Point A in Figure 5.9(b)]. After reaching the target suction 

value, the flow pump is stopped, and the suction imposed at the bottom 

boundary of the specimen is permitted to equilibrate with the suction 

within the rest of the specimen [Point B in Figure 5.9(b)]. If the suction at 

the boundary decays to a threshold suction value [Point C in Figure 

5.9(b)], the pump is restarted until the suction at the boundary reaches 

the target value again [Point D in Figure 5.9(b)]. 

The threshold suction used in this study was 3 kPa below the target 

suction. This value can be adjusted by the test user depending on the soil 

type and the time required for equilibration. The time required for the 

suction to reduce from the target value to the threshold value is defined as 

the decay period. As equilibrium signifies no-flow conditions, the decay 

period will increase during each successive operation of the pump. The 
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decay period can be used as an indicator of whether the soil is at 

equilibrium. A target decay period of 5000 second was used to signify 

equilibrium conditions for low suctions in this study. This value 

represents a compromise between practical testing times and the 

equilibration of flow in the specimen; longer equilibration times were used 

in preliminary tests and similar results were obtained. The iterative 

operation of the pump is repeated until the suction remains above the 

threshold suction value for a decay period equal to the target value. The 

entire time required for equilibration is defined as the equilibration 

period. Point E in Figure 5.9(b) shows the case when the soil specimen has 

maintained a suction above the threshold suction for the target decay 

period, and is defined as being at hydraulic equilibrium. A resonant 

column test was then performed immediately on the soil specimen to 

measure Gmax of the soil specimen at the equilibrium suction value. The 

volume of water withdrawn from the specimen to reach equilibrium (no 

flow) conditions can be obtained from the flow pump data shown in Figure 

5.9(b). This process can be repeated to define multiple points on the 

SWRC and the relationship between Gmax, , and Sr for different net 

confining stresses. Point F in Figure 5.9(b) shows when the pump was 

operated to reach the second target suction. After defining the drying path 

of the SWRC, definition of the wetting process involves reversing the 
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direction of movement of the pump piston to supply water to the specimen 

in controlled increments.   

The flow pump speed has a significant effect on the accuracy of the 

feedback control loop and consequently on the resolution of suction values 

which can be imposed on the specimen. If the pump operates too fast, it 

will be difficult for the feedback control loop to stop the pump after 

reaching the threshold suction, resulting in “overshooting” of the target 

suction before the feedback-loop tells the pump to stop. To avoid 

overshooting, the pump speed can be adjusted throughout the test as the 

hydraulic conductivity of the specimen decreases. A pump speed of 0.0009 

mm/s was used for all of the suctions applied in this study. This speed is 

more suited for the higher suctions applied in this study than to the low 

suctions, which only means that the test may have had a longer duration 

than it needed.  

5.5 Results 

5.5.1 SWRC of the Soil Specimens Subjected to Different Net 

Confining Stresses  

To illustrate the interpretation of results obtained from the flow pump, 

the volume of water withdrawn from the specimen by the flow pump 

during the test and the measured suction at the bottom boundary of the 

specimen for the case of specimen with an initial void ratio of 0.53 

subjected to a net confining stress of 100 kPa, are shown in Figures 
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5.10(a) and 5.10(b), respectively. Results for other cases are presented in 

Appendix A. The vertical dashed lines in these figures separate the test 

results into stages in which different target suction values were applied. 

In this case, the first stage of the test [shown in detail in Figures 5.10(a) 

and 5.10(b)] involved application of a target suction value of 15 kPa. 

Comparison of this first stage to later stages shows that a small amount of 

water was needed to reach equilibrium through the soil specimen, 

indicating that this first target suction was less than or near the air entry 

suction of the soil. Equilibration of the specimen under the second target 

suction of 25 kPa required a longer time, which means that a greater 

amount of water had to be withdrawn from the specimen before the 

suction remained above the threshold suction for a decay period longer 

than 5000 seconds. The duration of this second stage is also associated 

with the water withdrawn from the soil; the greater amount indicates that 

the second target suction value was greater than the air entry suction of 

the soil. 

The stage involving a target suction value of 70 kPa had a relatively 

smaller equilibration time than the previous stages. Other tests 

performed by the authors indicate that application of suctions above 70 

kPa for this compacted silt resulted in equilibration of flow after a single 

iteration. This indicates that the water phase in the soil was approaching 

occluded conditions, and the water at the top of the specimen was not 
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hydraulically connected to the water at the bottom of the specimen. This 

observation of the point of water occlusion is consistent with other tests 

performed on this soil by Bicalho (1999) and Hwang (2002). Accordingly, 

after reaching equilibrium under a suction of 70 kPa, the direction of the pump was 

reversed to evaluate the SWRC and Gmax along an imbibition scanning path. During 

the wetting process, desired suction values were obtained comparatively quickly to 

the drainage stages. During wetting, it was observed that only a small 

amount of water entered the specimen before equilibrium of suction 

occurred, although more water entered the specimen during application of 

target suction less than 20 kPa. The same amount of water that was 

withdrawn from the specimen was not reabsorbed for a target suction of 3 

kPa, likely due to occlusion of air in the specimen during wetting. The 

SWRC of the soil specimen was then defined by plotting the measured 

values of  [Figure 5.10(b)] against the values of Sr calculated from the 

water flow measurements [Figure 5.11(a)], and identifying the points of 

equilibrium. The van Genuchten (1980) SWRC model was also fitted to 

the points of equilibrium to define the primary drying path and the 

wetting scanning curve of the SWRC. The primary drying path measured 

using this approach is consistent with data defined by other authors as 

shown in Figure 5.12). In the case of soil specimen with e=0.53 under the 

net confining stress of 100 kPa, the air entry suction was approximately 

21 kPa and water occlusion occurred at approximately a Sr of 0.63. During 

wetting from this point, the soil returned to a degree of saturation of 0.83.  
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appropriate for use in measuring suction values beyond the point at which 

water flow is negligible. Nonetheless, the information in obtained over a 

degree of saturation from 0.63 to 1.00 attained with this testing method is 

suitable to evaluate the behavior of soils in the range of conditions 

affected by liquid water flow in the field.    

Figure 5.12 shows the hysteretic SWRCs obtained from the drying and 

wetting tests for specimens subjected to different net confining stresses. 

As it is observed in both Figures 5.12 (a) and 5.12 (b), there is a significant 

difference between the SWRC of the soil specimens under different net 

confining stresses, suggesting that net confining stress has a great 

influence on the soil water retention curve. In the case of specimens 

prepared at an initial void ratio of 0.53, the air-entry values of the 

specimens are estimated to be 18 to 21 kPa as the net confining stress 

increases from 100 to 200 kPa. Besides, soil specimen with higher net 

confining stress is shown to have a better retention ability (lower 

desorption rate) compared to that under lower net confining stress, 

resulting in a shift to right in the measured SWRC. This observation may 

be due to a new arrangement between the particles in a smaller average 

pore-size distribution in the soil specimen due to a higher applied net 

confining stress (Ng and Pang 2000a). The size of the hysteresis loop also 

appears to be affected by the net confining stress with smaller loop at a 

higher net confining stress. This is likely due to the presence of a smaller 
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(2) entrapped air, which refers to the formation of occluded air bubbles in 

‘‘dead-end’’ pores during wetting, (3) swelling and shrinkage, which may 

alter the pore fabric of fine-grained soil differently during wetting and 

drying processes, and (4) contact angle hysteresis, which is related to the 

intrinsic difference between drying and wetting contact angles at the soil 

particle–pore water interface. Contact angle is an intrinsic property of any 

two contacting phases in a solid-liquid-gas system. For unsaturated soil 

systems, contact angle may be defined as the angle between a line tangent 

to the air-water interface and a line defined by the water-solid interface 

(Lu and Likos 2006). When the average pore-size distribution is smaller, 

the effects of these mechanisms on the SWRC will be smaller (Ng and 

Pang 2000a) and consequently, the hysteresis loops of the SWRC for the 

specimens subjected to the higher net confining stresses are smaller. As 

shown in Figure 5.12, the end point of the wetting curve is back to a 

degree of saturation of 0.96 under an applied net confining stress of 200 

kPa, while the degree of saturation at zero suction during wetting with a 

net confining stress of 100 kPa is a lower degree of saturation of 0.88. 

 Specimen with a higher initial void ratio of 0.69 [Figure 5.12(b)] tends 

to have a lower air-entry suction value. In this case, for the range of net 

confining stresses of 125 to 225 kPa applied to the specimen, the air entry 

suction changes from 12 (for cases with lower net confining stress) to 16 

kPa (for higher net confining stress). In the specimen prepared at a higher 



91 
 

initial void ratio, the effect of net confining stress is more pronounced 

compared to that prepared at a lower void ratio. In this case, since the size 

of the pores between the particles is larger, a higher energy is required 

during the hydraulic hysteresis to displace air trapped in the large pores 

of the soil specimens and the hysteresis loop will be larger compared to 

that prepared at a lower initial void ratio (Ng and Pang 2000a).  

5.5.2 Variation in Axial Displacement during the Hydraulic 

Hysteresis and application of pn 

The axial displacements for specimens under different loading 

conditions prepared at initial void ratios of 0.53 and 0.69 are shown in 

Figure 5.13(b) and 5.14(b), respectively. These measurements were 

obtained from the proximeter readings [Figure 5.10(c)] mounted on top of 

the specimen. As observed in the figures, distinct decrease in height was 

noted during drying, and a rebound in height was noted during wetting. 

During the first stage of drying, the height of the specimen decreases only 

slightly with an increase in matric suction, because the first target suction 

is less than the air entry suction. After this stage, the height of the 

specimen decreases in a faster rate with increasing suction. During the 

wetting process, at either net confining stress, the specimen expands 

slightly with a decrease in matric suction becoming constant at low 

suction values. A smaller change in the height of the specimen was 

measured during the wetting process.  
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The void ratio changes during hydraulic hysteresis for different cases 

calculated from the axial displacement measurements are shown in 

Figures 5.15(a) and 5.15(b). Only minor changes in void ratio are noted 

during the hydraulic hysteresis. Although the changes in void ratio were 

then used to adjust the value of Sr in the calculation of the SWRC, these 

changes had a negligible effect on the measured SWRC and Gmax 

relationships for the compacted silt. Accordingly, the value of vp in Eq. 

(4.12) was assumed to be zero. The change in volume may be a more 

important variable to measure for other types of soils evaluated using this 

testing method. 

5.5.3 Small Strain Shear Modulus of Unsaturated Compacted 

Silt 

The values of Gmax measured after reaching equilibrium during each 

stage of the drying and wetting tests for specimens with the initial void 

ratios of 0.53 and 0.69 are shown in Figures 5.14(b) and 5.15(b), 

respectively. During drying, regardless of the initial void ratio, Gmax 

followed an S-shaped curve complying with the S-shaped of the SWRC. In 

all cases, during the drying process from saturated condition, Gmax is 

initially observed to have a slight increase in magnitude with suction or Sr 

when below or near the air entry suction. However, a greater increase in 

Gmax is measured for suctions greater than the air entry suction, although 

the trends started to flatten out for higher values of suction.  
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Zargarbashi 2010). Increasing the net confining stress, as observed in 

Figures 5.16 and 5.17, decreases the effect of matric suction on the small 

strain shear modulus. 

Changes in the small strain shear modulus through the scanning 

curves of the SWRC were also examined by performing a series of 

resonant column tests on a specimen with an initial void ratio of 0.69 

through the scanning loop. As it is observed in Figure 5.18, due to the 

small change in the degree of saturation of the soil specimen with matric 

suction, a small change in the small strain shear modulus through this 

part of the SWRC is observed.   
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CHAPTER VI 

 

Model Validation 

 

6.1 Model Validation 

To validate the model and parameter selection methodology, the values 

of Gmax predicted from the model were compared with those measured 

using the modified resonant column with suction-saturation control. The 

SWRCs of the silt specimen prepared at initial void ratios of 0.53 and 0.69 

defined under different net confining stresses are shown in Figures 6.3 (a) 

and 6.4(a). The piece-wise linear SWRC model was fit to this set of data to 

define the values of s and s, which are reported in the figures. Since the 

SWRCs for different net confining stresses differ, soil specimens subjected 

to a higher net confining stress were found to have greater water 

retention ability with smaller rates of desorption and adsorption, which 

means a smaller slope of the plastic portions of the SWRC, s.  

The measured Gmax data at zero suction (saturation conditions) for 

specimens was used to define values of A and n [Figures 6.1(a) and 6.1(b)]. 

Similar to the literature results, the value of K was predicted using 

guidance in Hardin (1978) (Table 6.1). The parameters K´ and b were 
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defined using the trend lines in Figures 6.2(a) and 6.2(b), respectively. 

Using these parameters, the model provided a good fit to the Gmax data 

plotted as a function of Sr in Figures 6.3(b) and 6.4(b) and  in Figures 

6.3(c) and 6.4(c) for specimens with initial void ratio of 0.53 and 0.69, 

respectively. The trends observed in the experimental data and the model 

predictions are consistent with those observed in the data from the 

literature by Ng et al. (2009). Specifically, the value of Gmax was observed 

to decrease at a different rate during wetting than during drying due to 

the suction-induced hardening.  

Table6.1: A guidance for the determination of hardening 
parameter K from plasticity index, PI (Hardin 1978) 

K PI 
0 0 

0.18 20 
0.3 40 
0.41 60 
0.48 80 
0.5 100 

0.125 13.7 
 

The results in Figures 6.3 and 6.4 are re-plotted in Figure 6.5 in terms 

of the single-value effective stress. Although the Gmax results followed an 

approximately linear trend with p’, hysteresis is still observed. A 

difference in magnitude of Gmax of up to 10 MPa is noted from the wetting 

and dying paths. This highlights the importance of using a model such as 

the one in Eq. (4.12) to capture the effect of hydraulic hysteresis instead of 
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CHAPTER VII 

 

Conclusion and Recommendation 

 

7.1 Summary of Contribution 

1. As a part of modeling the small strain shear modulus, the 

consideration of degree of saturation as the effective stress parameter 

in the definition of effective stress was evaluated using a multistage 

testing method for unsaturated soils. Based on results from the 

multistage drying shearing, the degree of saturation was found to be a 

good approximation of the effective stress parameter of unsaturated 

soils during the test. Results indicated differences in the SWRC of soil 

specimens subjected to different net confining stresses emphasizes the 

importance of using soil-specific tests to define the relationships 

between suction stress and matric suction. 

2. A new framework was presented in this study to represent the impact 

of hydraulic hysteresis on the small strain shear modulus Gmax of 

unsaturated soils. Different from previous empirical frameworks, 

coupling between effective stress and void ratio was incorporated using 
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a double-hardening constitutive relationship. The double-hardening 

mechanism was found to suitably model the different trends in Gmax of 

unsaturated soils during wetting after a dying phase.  

3. In an attempt to predict changes in Gmax with matric suction, a 

rational approach was described to estimate the parameters for the 

framework, involving use of the compression curve, SWRC, Gmax data 

for tests on saturated soils under different mean effective stress 

values, and empirical trends between hardening parameters and the 

plasticity index.  

4. A new resonant column with suction-saturation control testing 

apparatus and experimental procedures was presented in this study to 

evaluate changes in the small strain shear modulus Gmax of 

unsaturated soils during hydraulic hysteresis and validate the 

proposed approach for the Gmax of unsaturated soils. The combination 

of suction control using the axis translation technique, saturation 

control using an automated flow pump, and volume change 

measurements with a proximeter was found to permit investigation of 

coupling between hydraulic hysteresis, volume change, and Gmax of 

unsaturated soils.  

5. The framework for Gmax was then validated using experimental data 

reported in literature as well as data obtained from the proposed test 
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procedure on compacted soil tested in a fixed-free resonant column 

setup with suction-saturation control. 

7.2 Conclusion 

1. For compacted silt tested under different net confining stresses and 

prepared at different initial void ratios, Gmax was found to increase 

during drying for the range of matric suction applied to the specimen 

with trends starting to flatten out for higher values of suction close to 

the water occlusion conditions. During wetting, a small reduction in 

Gmax with decreasing  was observed. A greater reduction in Gmax was 

noted for low suctions during wetting, where a greater amount of water 

was absorbed by the specimen. The hysteretic behavior in Gmax was 

found to be due to drying-induced hardening that is not fully recovered 

during wetting, as well as due to the different distributions in water 

throughout the specimen during the wetting process. Net confining 

stress was observed to reduce the effect of matric suction on Gmax while 

in specimens with higher initial void ratio, the effect of matric suction 

on the small strain shear modulus was more pronounced. 

2. One of the aspects of the new experimental approach is the 

measurement of the SWRC during the application of loading. Results 

indicated a significant difference between the SWRCs of the soil 

specimens under different net confining stresses, suggesting that net 

confining stress has a great influence on the soil water retention curve. 
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Soil specimen with higher net confining stress was observed to have a 

better retention ability (lower desorption rate) compared to that under 

lower net confining stress, resulting in a shift to right in the measured 

SWRC. This observation may be due to a new arrangement between 

the particles in a smaller average pore-size distribution in the soil 

specimen due to a higher applied net confining stress.   

3. Similar to the small strain shear modulus, a hysteretic behavior in the 

void ratio measurements of the specimens during the hydraulic 

hysteresis was observed. Changes in void ratio with matric suction 

during drying were observed to be higher than that during wetting. 

Results indicated that for the range of conditions evaluated in this 

study, the void ratio did not play a major role in the SWRC or the 

magnitude of Gmax.  

7.3 Recommendation 

1. In the development of the proposed framework for the small strain 

shear modulus of unsaturated soils, using concepts of single variable 

effective stress (Bishop 1959) and double hardening for unsaturated 

soils, the conventional concepts of soil dynamics for saturated soils was 

extended for unsaturated soils. It is believed that available approaches 

for the strain dependent shear modulus of saturated soils may be also 

applicable for the prediction of shear modulus of unsaturated soils at 

different shear strain levels. This idea is needed to be validated by 
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using some dynamic tests for different ranges of shear strain. For this 

purpose, the Stokoe-type resonant column used in this study can be 

modified for performing the torsional shear tests by mounting two 

proximeters on top of the drive platen of the system.  

2. In this study, based on results reported in literature, preliminary 

guidance was presented for the determination of parameters for the 

proposed framework for the small strain shear modulus of unsaturated 

soils. Although using this guidance, a good determination of the 

parameters for this type of soil was obtained, to have a better 

understanding of the parameters involving in the prediction of the 

small strain shear modulus of unsaturated soils, further studies on 

different types of soils with the consideration of different parameters 

(e.g. plastic limit, initial void ratio, compaction water content, …) is 

desired. 
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APPENDIX A 

 

Validation of the Effective Stress Concept for Unsaturated 

Compacted Soils 

 

A.1 Introduction 

This Appendix summarizes an experimental methodology to define 

relationships between ps and  using drained multistage triaxial tests on 

a single soil specimen under a net confining pressure. Results from this 

testing methodology are used to evaluate the application of the degree of 

saturation of the soil as the effective stress parameter  in the definition 

of suction stress. This definition of  was selected because the value of Sr 

is not only known at the beginning of each shearing stage, but any 

changes in Sr during shearing can be estimated from any changes in the 

measured water levels in the burettes. Multistage shearing tests have 

been used with some success to define the shear strength of unsaturated 

residual soils in triaxial tests (Ho and Fredlund 1982; Rahardjo et al. 

1995) and in direct shear tests (Gan and Fredlund 1988). Triaxial tests 

are particularly suitable for compacted soils under unsaturated conditions 
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as they typically reach peak strength values before significant distortion 

of the specimen.  

 A.2 Material Properties and Sample Preparation  

In order to validate the effective stress concept in compacted soils, a 

mix of mortar sand and Bonny silt was used to define the relationship for 

the effective stress of unsaturated compacted soils. Mortar sand is a 

commonly used sand in geotechnical testing (Morrison 2006; Lee 2010), 

while Bonny silt is obtained from the borrow source for the Bonny Dam on 

the Colorado-Kansas border. The reason for using a soil mixture in this 

chapter was to increase the hydraulic conductivity of the Bonny silt to 

expedite the validation tests. A higher hydraulic conductivity expedites 

the process of multistage shearing for unsaturated soils. The grain size 

distribution of the soil mixture used in this chapter is shown in Figure 

A.1.  

The soil of sand and silt used classifies as SM according to the USCS 

classification scheme. Prior to compaction, the sand and silt were mixed 

at a gravimetric water content of 12% representing the optimum ater 

content of the soil specimen and placed in a sealed plastic bag for 24 hours 

to allow the water content to homogenize. Static compaction was then 

used to prepare 142.2 mm-tall specimens to a target dry density of 18.1 

kN/m3 (a void ratio of 0.44). 
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still having a sufficiently high air entry suction investigate the behavior 

of the soil specimen above and below its air entry suction. An approach 

was used in this study to implement the axis-translation in a conventional 

triaxial cell without major modification. Specifically, a bottom platen 

having a diameter of 76 mm, slightly greater than that of the soil 

specimen, was first installed in the triaxial cell. A piece of thin steel mesh 

having high permeability was then placed atop the platen, which was 

used to ensure a uniform distribution of water from the bottom platen to 

the overlying ceramic disk and to prevent stress concentrations near the 

ports in the bottom platen which may cause the overlying ceramic to 

crack. 

Next, the high air-entry ceramic disk, also having a diameter of 76 

mm, was placed atop the water distribution disk. The soil specimen 

having a diameter of 71.1 mm was then placed directly atop the ceramic 

disk. When a latex membrane was placed around the soil specimen, 

ceramic disk, and bottom platen, and a confining pressure was applied to 

the cell, a hydraulic seal was obtained between the membrane and the top 

of the disk. Specifically, the overlap in diameters was found to prevent air 

from short-circuiting past the ceramic disk during axis translation 

techniques. For additional security under low confining pressures, an “O”-

ring was placed around the latex membrane on the ceramic disk. 
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were performed under backpressure saturation, which permits accurate 

outflow measurements using visual observations.  

A Brainard-Kilman Model S-600 triaxial load frame was used to apply 

axial loads to the triaxial cell piston. This frame is appropriate for 

performing constant displacement rate test, but does not have force-

displacement feedback capabilities. Although a constant displacement 

rate was used, the axial displacement during shearing was also measured 

using an LVDT and a load cell was used to record axial loads applied to 

the specimen during shearing.  In the case of saturated shear strength 

tests or constant water content tests, a pore water pressure transducer 

connected to the bottom of the specimen was used to track changes in the 

water pressure of the specimen during the application of loading.  

A.4 Experimental Procedure 

The testing methodology in this study involves loading-unloading 

multistage tests on soils under successively higher suction increments 

(i.e., drying tests). Two values of net confining pressure 3n of 100 and 150 

kPa were used to demonstrate the difference in behavior for different 

stress levels.  After the soil specimen was prepared within the triaxial 

cell, a high vacuum pump was used to apply a vacuum with a magnitude 

of -80 kPa to the soil specimen and all plumbing lines for approximately 

one hour to void the specimen of air. During this time, the cell was 

assembled around the specimen. A cell pressure 3 of 20 kPa was applied 



132 
 

to the cell as a seating pressure. De-aired water from the backpressure 

reservoirs was then introduced into the bottom platen to saturate the 

ceramic disk, soil specimen, top platen, and all supply lines from the 

bottom up. During this upward flow of water, de-aired water was flushed 

through both chambers of the pressure transducer as well as all valves 

and tubes to ensure that the system is fully water-saturated. The cell 

pressure was then increased to 70 kPa and the backpressure was 

increased to 40 kPa, corresponding to an initial mean effective stress of 30 

kPa. After ensuring that the volume of the specimen inferred from the 

water level in the burette connected to the cell remained constant, the cell 

pressure and backpressure were increased in stages to 520 kPa and 490 

kPa, respectively, maintaining an effective stress equal to 30 kPa. 

Skempton’s (1961) B-value parameter was checked during this process to 

evaluate the initial saturation of the specimen. A minimum B-value of 

0.95 observed for the tests presented in this study.  

After this initial saturation process, the cell pressure was increased to 

reach a desired initial effective confining pressure. When consolidation of 

the soil specimen under the desired effective confining pressure was 

finished, air under the same pressure as the water backpressure (490 

kPa) was then flushed through the top platen and all drainage lines 

connected to the top of the specimen. At this point, the initial effective 

confining pressure is equal to the net confining pressure n, and this 
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value is held constant through the rest of the test (i.e., the cell pressure 3 

and the pore air pressure ua are held constant throughout all stages of the 

multistage test).  

A series of unsaturated multistage consolidated drained (CD) tests 

were then conducted at different net confining pressures and matric 

suctions. The matric suction was then increased to a value of 7 kPa by 

lowering the pore water pressure uw applied to the bottom of the 

specimen. Water outflow from the specimen during application of this and 

subsequent increments of matric suction was measured through the 

graduated burettes, and sufficient time was permitted to reach hydraulic 

equilibrium throughout the height of the specimen (i.e., when outflow 

from the specimen ceased). The first stage of shearing was then started by 

imposing a constant displacement rate of 0.005 inches per minute to the 

piston. This value was selected based on the value of t50 for this soil 

calculated from the outflow data from the consolidation data. Monitoring 

of the pore water pressure generated in the specimen during shearing 

indicates that this rate of strain was low enough to a constant rate of 

dissipation of extra pore water pressure generated during shearing 

(Gibson and Henkel 1954). At each stage of shearing, drainage of both air 

and water was permitted and volume change of the specimen was 

measured by recording the water outflow from the bottom of the specimen 

and from the cell (i.e., redundant measures).  
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One of the important contributions of the multistage testing 

methodology in this study is the criterion for stopping a shearing stage. 

While it is important to reach stress path tangency to ensure that each 

point is representative of failure, it is also undesirable to accumulate too 

much strain in the specimen. Most previous multistage testing programs 

relied primarily on observations of the maximum principal stress 

difference during testing. In this study, the criterion for stopping the test 

was the point at which the maximum principal stress difference reaches a 

value corresponding to an intersection between the effective stress path 

and the critical state line (CSL). If shearing were continued after reaching 

the CSL, plastic strains would accumulate during each stage, while 

reversing too soon would produce lower than actual strengths. Because 

the slope of a drained triaxial compression test is known, the only two 

pieces of information needed to define this intersection point are the slope 

of the CSL and the initial effective stress in the soil specimen. This study 

assumes that the CSL is unique, and is the same for both saturated and 

unsaturated soils, an assumption which has been well validated (Khalili 

et al. 2004; Khalili and Zargarbashi 2010). Although the CSL was 

measured for saturated specimens of the soil mixture used in this study, 

the slope of the CSL can also be estimated from empirical relationships 

based on the index properties of a soil.  
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The other variable needed for the stopping criterion is the value of the 

mean effective stress p’ at the beginning of a drained triaxial compression 

stage. Because the degree of saturation is known at all stages in this 

triaxial test, it was used to estimate the effective stress parameter . The 

residual volumetric water content was not known for this soil mixture, so 

the approach of Lu et al. (2010) using the effective saturation could not be 

used, and the air-entry suction was also not known a-priori (i.e., the 

SWRC of the soil mixture was not known prior to the shear strength test), 

so the empirical equation for of Khalili and Khabbaz (1998) could not be 

used. Accordingly, by assuming that  = Sr, the maximum principal stress 

at which the specimen should be on the CSL can be estimated. One issue 

with using  = Sr in a stopping criterion is that changes in the degree of 

saturation due to outflow of water will lead to a change in the degree of 

saturation, even though the test is in drained conditions. However, it was 

observed that the volume of water flowing out of the specimen during the 

shearing stages did not lead to a significant enough change in the degree 

of saturation to lead to a deviation in the stress path. 

Using this criterion, the specimens were unloaded after reaching the 

intersection points corresponding to the CSL and the initial effective 

stress. During unloading, water outflow and displacement were 

continuously monitored. After reaching a principal stress difference of 10 

kPa, unloading was stopped in order to prevent the piston from losing 
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contact with the specimen. After ensuring that the specimen had reached 

equilibrium, a higher increment of matric suction was applied to the 

specimen to start the next stage of loading. Through all stages of the 

multistage shearing tests, the volume of water withdrawn from the 

specimen to reach equilibrium (no flow) conditions was recorded to define 

changes in volumetric water content (and degree of saturation) of the soil 

specimen. The outflow data was also used to define points on the SWRC. 

A.5 Results  

The SWRC data obtained from the multistage triaxial tests on two soil 

specimens under net confining pressures of 100 and 150 kPa are shown in 

Figure A.5. The van Genuchten (1980) SWRC model was fit to each set of 

data, with the fitting parameters vG and NvG reported in the figure. The 

SWRCs for different net confining pressures were observed to differ in 

shape, with the soil specimens subjected to a higher net confining 

pressure having a higher air entry suction.  This observation may be due 

to the effect of 3n on the pore size distribution of the soil specimens 

subjected to higher 3n. Ng and Pang (2000) and Ng et al. (2009) observed 

a shift in the pore-size distribution of soils during application of higher 

stresses, leading to a similar change in the shape of the SWRC. Although 

the two specimens under 3n values of 100 and 150 kPa in this study only 

had a small difference in porosity, the first shearing stage in each test 

may have changed the pore size distribution in different ways. The 
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A plot of the principal stress differences measured at the end of each 

stage of the unsaturated multistage triaxial tests versus the value of p’ at 

failure calculated using Eq. (2.7) with  = Sr is shown in Figure A.9, along 

with the points of stress-path tangency for saturated soils obtained from 

the saturated CU stress paths in Figure A.3. 

The failure points were observed to all fall on a single CSL indicating 

the efficiency of the use of degree of saturation for the definition of the 

effective stress parameter for unsaturated soils. The slope of the CSL, M, 

was used to back-calculate the suction stress ps of the soil at the different 

values of  for each stage of the test, as follows:  

௦݌ ൌ
ቀ1 െܯ

3ቁ ݍ െܯଷ௡
ܯ

																																																																																												ሺܣ. 1ሻ 

where q is the principal stress difference at failure and 3n is the net 

confining pressure defined as 3n = 3 - ua. The relationships between ps 

and  for the soil mixture under net confining pressures of 100 and 150 

kPa are shown in Figure A.10.  

Based on the value of ps inferred from Eq. (2.7), the relationships 

between ps and  are different for the soil under the two net confining 

pressures.  

This observation is likely due to the difference in the shapes of the 

SWRC of the specimens under different net confining stresses. As 

mentioned before, specimens under higher net confining stress show a 

greater water retention, which corresponds to a greater number of water 
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APPENDIX B 

 

Calibration of the Resonant Column Test Device 

 

B.1 Introduction 

The Stokoe-type resonant column test apparatus because of its 

simplicity, relatively high available torque and access to the base of the 

specimen for ducting to allow isotropic effective stress has been found 

very advantageous especially for the purposes of testing stiff and hard 

geomaterials. In this test, the specimen is assumed to be elastic, 

homogeneous and isotropic with a fixed base pedestal and a drive system 

assumed as a lumped mass. Based on these assumptions, the shear wave 

velocity of the soil can be determined from the geometry of the soil 

specimen, measured resonant frequency and geometry of drive plate as 

follows (Richard et al. 1970): 

ܫ
௢ܫ
ൌ ൬

߱௥ܮ

௦ܸ
൰ ݊ܽݐ ൬

߱௥ܮ

௦ܸ
൰																																																																																												ሺܤ. 1ሻ	 

where I is the mass polar moment of inertia of the specimen; Io is the 

mass polar moment of inertia of the components mounted on top of the 

specimen (drive mechanism, accelerometer and counterweight masses and 
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and the calibration bar is the torsional spring. With this assumption, the 

mass polar moment of inertia of the added masses is calculated as follows: 

ܫ  ൌ ௞

ఠమ െ  ௢                                                                                           (B.2)ܫ

where  is the circular frequency of the system I is the mass polar 

moment of inertia of the added masses, k is the stiffness of the bar and Io 

is the mass polar moment of inertia of the components mounted on top of 

the specimen (drive mechanism, accelerometer and counterweight masses 

and top platen). By plotting the values of I as a function of		 ଵ
ఠమ, Io is defined 

by the y axis intercept and k is represented by the gradient of the line. In 

this method, the polar inertia of the calibration rod stem is assumed to be 

negligible. As reported by Clayton et al. (2009) Io for the calibration rods 

with a stem diameter less than 18 mm is almost constant. 

B.2 Tests Results 

In the University of Colorado at Boulder, the mass polar moment of 

inertia of the drive system of the Stokoe resonant column was measured 

using a calibration bar with the dimensions presented in Figure B.2. 

These dimensions have been chosen based on the observations by Clayton 

et al. (2009). The properties of the added masses are shown in Table B.1. 
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considered as an added mass and then Eq. B.2 is used to measure the 

mass polar moment of inertia of the top cap ( Itc=2.12e-5). By defining I 

value for the drive plate and top cap, the mass polar moment of inertia of 

the drive system attached to the top of the specimen is obtained (I= 

I0+Itc=1.36e-3). A summary of the results are given in Table B.3. 

Table B.3: Summary of calibration results for the Stokoe resonant 
column test device 

Part I (kg. m2) 

Drive plate 1.34E-03 

top cap 2.12E-05 

drive system 1.36E-03 
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APPENDIX C 

 

A Predictive Relationship for the Air-Entry Suction of  

Unsaturated Soils 

 

C.1 Introduction  

Air entry value has been observed to play an important role in 

describing the behavior of unsaturated soils. The air entry value is 

usually selected from visual inspection of the SWRC and consequently, 

considerable error may occur in this process. In this part, using the 

methodology described by Vanapalli et al. (1998) (Figure C.1), a procedure 

for defining the air entry suction from the fitted van Genuchten (1980) 

SWRC. The procedure consists of the following steps: 

Step 1. Fit the van Genuchten model (1980) to a set of experimental 

SWRC. The model is given by the following equation: 

ߠ ൌ ௥ߠ ൅ ሺߠ௦ െ ௥ሻሺ1ߠ ൅ ሺ߰ߙሻேሻିቀଵି
భ
ಿ
ቁ																																					                   (C.1)  

In this equation, it can be assumed that θr = 0. Therefore, the 

volumetric water content can be defined as: 

ߠ ൌ ௦ሺ1ߠ ൅ ሺܽߖሻ௡ሻିቀଵି
భ
೙
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where m=dθ(sinf)/ds is the first derivation of Eq.(C.2) at the inflection 

point and θinf and ψinf are the volumetric water content and suction value 

at the inflection point, respectively, defined as: 

௜௡௙ߠ ൌ
ఏೞ

ቀమಿషభ
ಿషభ

ቁ
భష

భ
ಿ
																																																																															                       (C.6) 
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Step 3. A horizontal line defined as Eq. (B.8) through the maximum 

volumetric water content can be drawn, having the equation: 

ߠ ൌ   (C.8)																																																																																																																											௦ߠ

Step 4. The intersection of the lines drawn in Steps 3 and 4 can be used 

as an estimate of the air-entry value.  

Following these steps, an analytical expression for the air-entry 

suction can be defined as: 
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where ߙ and N are the fitting parameters from the van Genuchten (1980) 

model.  

C.2 Model Validation  

Values of	߰௕, reported in the technical literature (Brooks and Corey 

1964; Leong and Rahardjo 1997; and Vanapalli et al. 1998) were used to 

validate the predicted value of ψb from Eq. (C.9). Tables C.1 and C.2 

summarize the van Genuchten (1980) SWRC parameters of soil specimens 
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Table C.1: The van Genuchten (1980) SWRC parameters and a 
comparison between the air-entry values reported by Vanapalli et 

al. (1997) and Leong (1997) with those from the proposed model  

Researcher a n Sr(sat) Sr(res) 
ψb (Exp.) 

(kPa) 
ψb (Model) 

(kPa) 

Vanapalli 
et al.(1997) 

0.42 2.70 0.37 0.14 1.08 0.99 
0.07 1.82 0.45 0.30 4.76 3.67 
0.22 1.67 0.43 0.49 1.77 1.14 
0.05 1.45 0.41 0.16 5.30 4.23 

Leong et al. 
(1997) 

0.05 4.20 0.40 0.07 10.90 11.65 
0.10 4.30 1.00 0.30 5.90 5.60 

 

Table C.2: The van Genuchten (1980) SWRC parameters and a 
comparison between the air-entry values reported by Brooks and 

Corey (1964) and the proposed model  

Researcher a n Sr(sat) Sr(res) 
hb(Exp.) 

(cm) 
hb(Model) 

(cm) 

Brooks and 
Corey 
(1964) 

0.01 6.90 1.00 0.40 75.00 72.99 

0.02 6.10 1.00 0.18 41.00 33.23 
0.03 13.00 1.00 0.08 29.00 28.38 
0.05 6.67 1.00 0.16 16.00 15.85 
0.02 9.56 1.00 0.60 54.00 51.01 
0.02 9.00 1.00 0.33 43.00 40.97 
0.04 7.08 1.00 0.30 17.20 15.84 

 
The comparison between the predicted and measured air entry values 

shown in Figure C.3 follows a 1:1 relationship, indicating the validity of 

the proposed predictive relationship in Eq. C.9.  
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APPENDIX E 

 

MATLAB programs for data analysis 

 

E.1 Program for the analysis of flow pump data   

clc 
clear all, close all; 
[filename, pathname ] = uigetfile('*.lvm', 'Pick a data file') 
fid = fopen([pathname, filename]) 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
  
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
blank = fgetl(fid); 
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tempdata = fscanf(fid,'%g',[4,inf]); 
tempdata=tempdata'; 
W= input('Enter the Weight:'); 
h= 2.84*2.54; 
d= 1.4*2.54; 
gs= 2.6; 
w= .14; 
V= h*3.14*d*d/4*1e3; 
Ro= W/V*1e3; 
e=  (gs*(1+w)/Ro)-1; 
n= e/(1+e); 
P0= -2.545; 
Dis0= -0.0128*tempdata(1,3)*tempdata(1,3)-.2789*tempdata(1,3)+ 

.0085; 
Dis= -0.0128*tempdata(:,3).*tempdata(:,3)-.2789*tempdata(:,3)+ 

.0085-Dis0; 
pp0= tempdata(1,4); 
PP= tempdata(:,4)-pp0; 
Pdif=2.063+(tempdata(:,2)-P0)*55.56; 
vp=792*(-PP)/10^9; 
vd=vp-vp(1,1); 
vw0=n*V/1e9; 
vw=vw0-vp; 
sr=vw/vw0; 
teta=vw/V*10^9; 
t= tempdata(:,1); 
output=[Pdif sr]; 
figure; 
plot(t,Pdif) 
figure; 
plot(t,Dis) 
figure; 
plot(t,vw) 
figure; 
plot(Pdif,sr) 

 

E.2 Program for the analysis of flow pump data   

clc 
clc 
    %-------------------------------------------------------% 
    %         input the properties of the samples           % 
    %-------------------------------------------------------% 
nf=input(' the number of file to process = '); 
fr=zeros(1,nf); 
f1=zeros(1,nf); 
f2=zeros(1,nf); 
Vs=zeros(1,nf); 
G=zeros(1,nf); 
Ip=.00136; 
% Define the output matrix 
output{1,1} = 'confining pressure'; 
output{1,2} = 'matric sution'; 
output{1,3} = 'resonant frequency'; 
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output{1,4} = 'shear velocity'; 
output{1,5} = 'shear modulus'; 
[filename, pathname ] = uigetfile('*.xlsx', ' pick a data 
file'); 
A = xlsread(filename,'A2:F2'); 
figure 
for kk=1:nf 
    CS=A(kk,1); 
    MS=A(kk,2); 
    ro=A(kk,3); 
    m=A(kk,4); 
    di=A(kk,5); 
    L=A(kk,6); 
    r=di/2; 
    I(1,kk)=m*r^2/2; 
    Fr=I(1,kk)/Ip; 
    [filename1, pathname1 ] = uigetfile('*.xlsx', ' pick a 
data file'); 
    num = xlsread(filename1, 'A20:C3200'); 
    freq=num(:,1); 
    freqmax=max(freq(:,1)); 
    g1=num(:,2); 
    gmax1=max(g1); 
    g2=num(:,3); 
    gmax2=max(g2); 
    %-------------------------------------------------------% 
    %             Filtering for channel 1&2                 % 
    %-------------------------------------------------------% 
    xy1=g1; 
    [x1,y1]=size(g1); 
    x11=zeros(x1,5); 
    xy2=g2; 
    [x2,y2]=size(g2); 
    x22=zeros(x2,5); 
    %figure 
    for h=1:2 
        y1=fft(xy1); 
        g11=fix(y1/gmax1)*gmax1; 
        g12=ifft(g11); 
        y11=abs(g12); 
        xy1=y11; 
        x11(:,h)=y11(:,1); 
        y2=fft(xy2); 
        g21=fix(y2/gmax2)*gmax2; 
        g22=ifft(g21); 
        y21=abs(g22); 
        xy2=y21; 
        x22(:,h)=y21(:,1); 
        g=(xy2); 
        plot(freq,g) 
        hold on; 
    end 
 
    %-------------------------------------------------------% 
    %                   Gmax calculation                    % 
    %-------------------------------------------------------% 
    g=(xy2); 
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    gmax=max(g); 
    gdes=.707*gmax; 
    j=1; 
    while g(j)<gdes 
        j=j+1; 
    end 
    j; 
    g(j); 
    gdes; 
    l=1; 
    while g(l)<gmax 
        l=l+1; 
    end 
    l; 
    gmax; 
    g(l); 
    k=l+2; 
    while (g(k)>gdes) 
        k=k+1; 
    end 
    k; 
    g(k); 
    gdes; 
    fr(1,kk)=freq(l); 
    if (g(j)==gdes) 
        f1(1,kk)=freq(j); 
    else 
        f1(1,kk)=(freq(j)+freq(j-1))/2; 
    end 
    if (g(k)==gdes) 
        f2(1,kk)=freq(k); 
    else 
        f2(1,kk)=(freq(k)+freq(k+1))/2; 
    end 
    wr(1,kk)=2*pi()*fr(1,kk); 
    Vs=sqrt((L*wr(1,kk))^2/Fr); 
    G=ro*Vs^2; 
    output{kk+1,1} = CS; 
    output{kk+1,2} = MS; 
    output{kk+1,3} = wr(1,kk); 
    output{kk+1,4} = Vs; 
    output{kk+1,5} = G; 
    x=[0:.000001:gmax]; 
    plot(freq,g) 
    hold on; 
end 
fr=fr; 
f1=f1; 
f2=f2; 
wr=wr; 
xlswrite( [ 'Summary Data', '.xls' ], output ) 

 
 

 


