Identification and characterization of regulators of GLUT4 trafficking

By
Daniel Richard Gulbranson

B. S., Saint Cloud State, 2008

A thesis submitted to the
Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Molecular, Cellular and Developmental Biology

This thesis entitled:
Identification and characterization of regulators of GLUT4 trafficking written by Daniel Richard Gulbranson
has been approved for the Department of Molecular, Cellular and Developmental Biology

Jingshi Shen
\qquad
Michael Stowell

Date \qquad

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Gulbranson, Daniel Richard (Ph.D. Molecular, Cellular and Developmental Biology) Identification and characterization of regulators of GLUT4 trafficking

Thesis directed by Associate Professor Jingshi Shen

Cargo proteins moving between organelles are transported by membrane-enclosed vesicles. Identifying the factors regulating vesicle-mediated transport remains a major challenge in mammalian cells. Here, we performed unbiased genome-wide CRISPR-Cas9 genetic screens to systematically dissect insulin-dependent translocation of glucose transporters (GLUTs), a classic vesicle transport pathway crucial to mammalian physiology. These screens identified known regulators of the pathway as well as a large number of unknown regulatory factors that we validated in secondary screens. The identified genes encode established or predicted factors involved in vesicle budding or fusion, cargo sorting, signal transduction, cell motility, and cellular metabolism, as well as proteins lacking annotated functions. Mechanistic analysis demonstrated that Rab-interacting factor (RABIF), a putative guanine nucleotide exchange factor (GEF), positively regulates GLUT translocation by stabilizing Rab GTPases, a new function independent of its GEF catalytic activity. Alpha- and gamma-adaptin binding protein (AAGAB), identified as a negative regulator of GLUT translocation, acts as a key regulator of AP2 adaptor formation in clathrin-mediated endocytosis. Mass spectrometry-based proteomic analysis showed that both AAGAB and RABIF regulate diverse cargo proteins, suggesting that the factors identified in our screens play broad roles in vesicle transport regulation. Our findings reveal new facets of vesicle-mediated cargo transport and suggest a general strategy for genetically dissecting complex membrane processes in mammalian cells.

ACKNOWLEDGEMENTS

I thank current and former members of the Shen laboratory for their support and discussions throughout this work. The MCDB department has been an excellent training environment, and I have benefitted greatly from discussions with researchers with a wide array of expertise. My thesis committee has provided critical guidance and support throughout graduate school. Jingshi has been a great mentor, taught me a lot, and provided the necessary support at critical junctures. Finally, I would like to thank Brittany for her unwavering support. It's been so much fun to go through graduate school with you!

TABLE OF CONTENTS:

CHAPTER 1: GLUT4 vesicle trafficking screens

Introduction 1
Live cell vesicle trafficking reporter. 2
Genetic library creation 4
Fluorescence activated cell sorting can be used for phenotypic selection 5
Secondary screens validate the candidate list 8
The screens identified known and novel regulators of GLUT4 localization. 11
Experimental procedures 33
CHAPTER 2: AAGAB regulates Adapter protein 2 complex formation on the plasma membrane
Introduction 40
Clathrin mediated endocytosis 40
$A A G A B$ mutation in human disease 42
$A A G A B \mathrm{KO}$ results in trafficking defect and acts downstream of insulin signaling 44
$A A G A B$ KO results in an endocytosis defect. 46
AAGAB regulates AP2 adaptor formation on the plasma membrane 47
Surface proteomics identifies many cargo similarly regulated by $A A G A B$ or $A P 2 S 1 \mathrm{KO}$ 51
Discussion 53
Experimental procedures 59
CHAPTER 3: RABIF regulates RAB10 expression
Introduction 64
RABIF KO results in defective insulin response 64
RABIF interacts with RAB10 and prevents RAB10 degradation 67
RABIF's role in GLUT4 trafficking is independent of its putative GEF domain 70
Whole cell proteomics show that RABIF regulates a small subset of RABs 75
Discussion 77
Experimental procedures 82
BIBLIOGRAPHY 88

TABLES:

Table 1.1: Summary of top ranking genes in either the translocation defective screens or the constitutive translocation screens18
Table 1.2: Illumina sequencing primers 38
Table 1.3 gRNAs used in individual CRISPR KO experiments 40
Table 2.1: Surface proteomics for either $A P 2 S 1$ or $A A G A B$ KO 55
Table 3.1. Proteomic analysis of WT and RABIF KO cells 78

FIGURES:

Figure 1.1: Diagram of the GFP-GLUT4-HA reporter used to monitor insulin-dependent GLUT
\qquadtrafficking3
Figure 1.2: GLUT4 regulation is conserved between HeLa cells and adipocytes. 4
Figure 1.3: Illustration of the genome-wide genetic screens of insulin-dependent GLUT
translocation 5
Figure 1.4: Flow cytometry selection for GLUT4 translocation mutants in genome-wide screen.. 6
Fig 1.5: Enrichment of sgRNA in selected populations 7
Figure 1.6: Flow cytometry selection for GLUT4 translocation mutants in secondary screen. 9
Figure 1.7: List of the genes identified in the genetic screens 10
Figure 1.8: Regulatory factors identified in the CRISPR screens form protein complexes or
functional modules. 11
Figure 1.9: Summary of genes validated by the secondary screens 12
Figure 1.10: Genes identified in the HeLa cell screen could be validated in adipocytes 15
Figure 1.11: Ranking of genes in the translocation defective screen based on p -value. 16
Figure 1.11: Ranking of genes in the constitutive translocation screen based on p -value. 17
Figure 2.1 Phenotype observed in patients with loss of function mutation in AAGAB. (Pohler et
al., 2012) 43
Figure 2.2 AAGAB knockout results in a trafficking defect and acts downstream of insulin
signaling 44
Figure 2.3: $A A G A B$ KO results in GLUT4 plasma membrane localization. 45
Figure 2.4: $A A K A B$ KO disrupts endocytosis 46
Figure 2.5: AAGAB regulates AP2 formation on the plasma membrane 48
Figure 2.6: AAGAB regulates total α-adaptin levels 49
Figure 2.7: α-adaptin overexpression partially rescues AAGAB KO. 49
Figure 2.8: AAGAB does not colocalize with α-adaptin 50
Figure 2.9: LAMP1 trafficking is intact in $A A G A B$ KO cells 50
Figure $2.10 A A G A B \mathrm{KO}$ effects the cellular localization of endogenous CME cargo 52
Figure 3.1: RABIF KO results in decreased insulin response 65
Figure 3.2: RABIF KO results in decreased insulin response 66
Figure 3.3: Rabif acts downstream of insulin signaling to regulate GLUT4 exocytosis 67
Figure 3.4: RABIF interacts with RAB10. 68
Figure 3.5: RABIF KO results in RAB10 degradation via proteasome 69
Figure 3.6: Catalytic domain mutants disrupt RABIF GEF activity 71
Figure 3.7: GEF catalytic domain mutation does not disrupt GLUT4 exocytosis activity.... 72
Figure 3.8: RAB10 overexpression rescues RABIF KO GLUT4 exocytosis 73
Figure 3.9: Overexpression of $D E N N D 4 C$ does not rescue GLUT translocation defects in RABIF
KO cells 74
Figure 3.10: RABIF regulates a small subset of RAB proteins 75
Figure 3.11: RABIF regulates a subset of RAB proteins. 76
Figure 3.12: RABIF regulates the expression of RAB10. 77

Chapter 1

GLUT4 vesicle trafficking screens

Introduction

A universal feature of eukaryotic cells is a compartmentalized cytoplasm filled with functionally specialized membrane-bound organelles (Palade, 1975). Maintenance and propagation of the organelles require constant inter-organelle transport of cargo proteins via membrane-enclosed vesicles (Schekman and Novick, 2004; Sudhof and Rothman, 2009). Vesicle-mediated cargo transport was first genetically dissected in yeasts, leading to the identification of vesicle transport mediators conserved in all eukaryotes (Schekman and Novick, 2004). Vesicle transport is substantially more complex in mammalian cells and is often tightly regulated by extracellular and intracellular stimuli such that the speed and direction of cargo flow can be adjusted according to physiological demands (Bonifacino and Glick, 2004; Bryant et al., 2002). Mammalian vesicle transport, however, has not been systematically characterized using genetic screens due to a lack of robust genetic tools. The recent advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system has revolutionized mammalian cell genetics by enabling efficient and complete ablation of target genes (Cong et al., 2013; Doudna and Charpentier, 2014; Gilbert et al., 2014; Mali et al., 2013). Pooled CRISPR libraries introduced into cultured cells generate mutant populations that can be subsequently selected
based on cellular phenotypes (Gilbert et al., 2014; Koike-Yusa et al., 2014; Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014).

One widespread regulated vesicle transport pathway is the insulin-dependent translocation of glucose transporters (GLUTs), which controls nutrient homeostasis in cell types ranging from adipocytes to neurons and tumors (Bryant et al., 2002; Huang and Czech, 2007; Simpson et al., 2008). Upon binding to its receptor, the anabolic hormone insulin facilitates glucose uptake by acutely relocating GLUTs (e.g., GLUT4) from intracellular organelles to the cell surface (Antonescu et al., 2014; Bryant et al., 2002; Saltiel and Kahn, 2001). To dissect insulindependent GLUT translocation, we took advantage of the newly introduced Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 genetic screens (Gilbert et al., 2014; Koike-Yusa et al., 2014; Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014).

Live cell vesicle trafficking reporter

Insulin-dependent GLUT translocation was monitored using a dual-tag GLUT reporter in which GFP was fused to a cytosolic domain of GLUT4 and a hemagglutinin (HA) epitope was inserted into an exoplasmic loop (Fig. 1.1a) (Muretta et al., 2008). Surface levels of the reporter were tracked by staining the HA tag using anti-HA antibodies and allophycocyanin (APC)-conjugated secondary antibodies. The total reporter levels were reflected by GFP fluorescence. The ratio of APC and GFP fluorescence was measured by flow cytometry to quantify the relative surface levels of the reporter in live cells (Fig. 1.1).

Insulin stimulation markedly increased the surface levels of the GLUT reporter in HeLa cells (Fig. 1.2a), consistent with the previously reported insulin responsiveness of these cells (Trefely et al., 2015). Insulin-triggered GLUT reporter translocation was abolished by wortmannin, a phosphoinositide-3 kinase inhibitor that interferes with insulin signaling (Fig. 1.2a). Knockout (KO) of RAB10, which encodes a known positive regulator (Sano et al., 2007), abrogated insulintriggered GLUT reporter translocation (Fig. 1.2). KO of TBC1D4, which encodes a known negative regulator (Eguez et al., 2005), resulted in constitutive surface translocation of the reporter (Fig. 1.2a). These data are reminiscent of the observations in other insulin-responsive tissues such as adipocytes (Fig. 1.2b) (Eguez et al., 2005; Sano et al., 2007), suggesting that the GLUT translocation pathway is governed by a conserved mechanism. Therefore, we chose to perform genome-wide CRISPR screens in the readily expandable HeLa cells and then extended the findings to other cell types and pathways.

Figure 1.2: GLUT4 regulation is conserved between HeLa cells and adipocytes. HeLa cells (a) or adipocytes (b) expressing the GFP-GLUT4-HA reporter were either untreated or treated with 100 nM insulin for 30 min before the surface reporters were stained with anti-HA antibodies and APC-conjugated secondary antibodies. To inhibit insulin signaling, the cells were incubated with 100 nM wortmannin for 10 minutes prior to insulin stimulation. The ratio of APC and GFP fluorescence was measured by flow cytometry and the mean fluorescence was normalized to that of untreated WT cells. Error bars indicate standard deviation. RAB10 and TBC1D4 KO cell lines were generated using CRISPR-Cas9 genome editing.

Genetic library creation

We first selected for HeLa cells with a large dynamic range in insulin response. Using a population of HeLa cells stably expressing the GLUT reporter we treated the cells with insulin and used cell sorting to enrich for cells with the largest fraction of GLUT reporter on the surface. Subsequently, after expanding the sorted population, we selected for cells with the lowest level of GLUT reporter on the surface in the absence of insulin. Finally, a third enrichment step was performed, again enriching for cells with the highest level of GLUT reporter on the surface after
insulin treatment. These highly responsive HeLa cells were subsequently cloned prior to building the mutant library. This clonal cell line was then mutagenized by a pooled lentiviral CRISPR library containing 123,411 independent single guide RNAs (sgRNAs) targeting 19,050 proteincoding genes and 1,864 miRNAs (Sanjana et al., 2014). Using this mutant collection, we performed two complementary genome-wide genetic screens (Figure 1.3).

Figure 1.3: Illustration of the genome-wide genetic screens of insulin-dependent GLUT translocation.

Fluorescence activated cell sorting can be used for phenotypic selection

In the translocation defective screen (Fig. 1.4a), which was designed to identify positive regulators of GLUT translocation, flow cytometry was used to isolate mutant cells exhibiting reduced insulin-triggered GLUT translocation. In the constitutive translocation screen (Fig. 1.4b)
we collected mutant cells with high surface GLUT reporter levels in the absence of insulin stimulation, aiming to identify negative regulators of GLUT translocation.

> a

b Sorting of Constitutive Translocation Mutants

Surface Reporter Levels

Surface Reporter Levels

Figure 1.4: Flow cytometry selection for GLUT4 translocation mutants in genome-wide screen. a, Flow cytometry analysis of starting mutant population and final sorted population (after three rounds of sorting) in the genome-wide translocation defective screen. Cells were treated with 100 nM insulin for 30 minutes before the cells were stained and analyzed by flow cytometry. b, Flow cytometry analysis of starting mutant population and final sorted population (after three rounds of sorting) in the genome-wide constitutive translocation screen. Cells were stained and analyzed without insulin stimulation.

To effectively enrich true positives, the mutagenized cells were successively sorted for three rounds (Fig. 1.3) before sgRNAs were recovered and analyzed by deep sequencing. The abundance of many sgRNAs in the sorted populations was substantially increased compared to the unsorted control population grown under the same condition. Among them, sgRNAs targeting SLC2A4, RABIF, $A P 2 S 1$ and $A A G A B$ were highly enriched (Fig. 1.5 a,b). By contrast, non-targeting control sgRNAs overall exhibited little enrichment (Fig. $1.5 \mathrm{a}, \mathrm{b}$). Genes were ranked based on the enrichment of their targeting sgRNAs using the MAGeCK algorithm (Li et al., 2014).

Fig 1.5: Enrichment of sgRNA in selected populations.
\mathbf{a}, Relative abundance of sgRNAs in the genome-wide translocation defective screen. \mathbf{b}, Relative abundance of sgRNAs in the genome-wide constitutive translocation screen. Data in a and bare shown as $\log _{2}$ of sgRNA abundance.

Secondary screens validate the candidate list

To identify true regulators, we performed deeper secondary screens by building a pooled CRISPR library targeting the top 1,170 candidate genes from the two genome-wide screens with 10 new sgRNAs for each gene. HeLa cells expressing the GLUT reporter were mutagenized by the secondary CRISPR library and sorted by flow cytometry (Fig. 1.6). Enrichment of sgRNAs in the sorted populations was then determined. A gene is considered significant only if its corresponding sgRNAs were enriched in both the primary and secondary screens. Altogether, 329 significant genes were identified in the translocation defective screens and 235 in the constitutive translocation screens (Fig 1.7).
a

b Sorting of Constitutive Translocation Mutants

Figure 1.6: Flow cytometry selection for GLUT4 translocation mutants in secondary screen. a, Flow cytometry analysis of starting mutant population and final sorted population (after two rounds of sorting) in the secondary translocation defective screen. Cells were treated with 100 nM insulin for 30 minutes before the cells were stained and analyzed by flow cytometry. b, Flow cytometry analysis of starting mutant population and final sorted population (after three rounds of sorting) in the secondary constitutive translocation screen. Cells were stained and analyzed without insulin stimulation.

Translocation Defective Screen

LIAS	CRTC3	NEO1	NDUFAF7	INSR	KCTD9
RAB10	MRPS35	CDIP1	TRMT10B	MTMR9	PXK
DLD	COQ2	CGGBP1	MFAP3	G3BP2	TBCEL
SDHD	IRF1	GRSF1	COX16	SAFB	ZNF292
EXOC7	EXOC1	LRRC20	STK17A	TFDP2	USP31
LIPT1	MDH2	FH	MRPS16	PIK3R4	NDUFA11
NDUFB2	NDUFA3	UBL3	ENPP2	SIKE1	STX3
FOXRED1	PYROXD1	TMED2	NDUFS1	C21orf2	MPP5
EXOC8	NDUFB10	ZNF251	LNPEP	GTPBP1	HMOX1
MRPS18A	TARBP1	NDUFS7	HAUS7	BZW2	C6orf62
NDUFB9	HLA-DPB1	MRPS31	CRLF3	SUMF2	PPIL3
NDUFA2	PNKD	AIF1L	NDUFAF4	C5orf28	KIAA2018
NDUFC1	AP4S1	PDXDC1	ING2	FKBP9	AES
ASPH	ZNF254	NDUFA1	MORN4	PKP4	TTC12
NDUFAF1	MSRB1	SERINC5	PACRGL	TMEM135	FLI1
NDUFB3	IFT81	RAB4A	TTC4	SUMO1	ANKZF1
NDUFAF3	C8orf82	PIK3CB	NGFRAP1	MAFB	HGS
ZNF263	PLEKHG1	ABR	SORT1	GRB2	SNAP29
DNAAF2	PEX12	MMADHC	ITCH	APOL1	C6orf136
PDHA1	CDH13	ATP1B3	PAAF1	COQ7	HDHD1
RPRD1A	VPS35	PHLDB2	NDUFB4	ALG3	PSEN1
CS	IFNAR2	NDUFS2	IRAK4	BTG1	AAED1
CCSER2	KIF3A	EZH1	ZBTB14	GGA1	PELI1
CAMTA1	RABIF	COQ4	ALS2	MTERF	DNAJB2
TRUB1	PLEKHF2	IRS2	TUBA1A	SLC25A36	ENG
					USP38
MUC4	VN1R2	CYP2J2	PNMT	CST9L	ZNF138
CLVS2	TAS2R39	SLC2A4	PF4	FAM217A	ZNF737
ARPP21	DEFB125	MTNR1A	CABP1	MAGEB2	C9orf172
GPC2	FAM78B	SLCO4C1	PGM2L1	SLCO6A1	ZNF221
MEP1A	SOD3	EVA1A	ASB3	SLC22A14	ZNF708
HEPACAM2	RTBDN	NPNT	GABRG2	ODF3	ZNF845
ACY1	AOX1	ST8SIA6	SYN1	ZCWPW1	PDSS1
C15orf62	C19orf38	TMEM125	IL1RAPL1	TSKS	PREX2
GPR157	FAM46A	PRX	GABRB1	PRR23C	ZNF234
RSPH9	NUSAP1	TCF7	NIM1	PIAS2	ZNF709
MAK	ARHGDIG	TESPA1	TMEM132D	VCX3B	WNT2B
CCDC147	LAMP5	CD84	C8orf46	PDZD9	CD300C
APOBEC4	BEST3	GREB1	ACTL6B	ZNF683	FKBP1B
MDH1B	GOLGA7B	DIO3	GRIN2A	SSMEM1	TMEM261
FHL2	GALNTL6	AREG	FGFBP1	RAD9B	NOSTRIN
DCUN1D2	PCSK1	CLEC12B	NPPB	MAGEA6	PUS7L
ACSM2B	KIAA2022	OCA2	ANKRD1	LEMD1	ZNF879
UGT2B7	RASGEF1A	IGSF6	INHBC	USP26	XYLT1
CLCNKB	STAC2	BACE2	ANGPTL3	TRIML1	PTCHD4
SLC5A12	SSTR2	SALL4	GCKR	ZNF816	HYKK
SOX14	RHBDL3	CEP19	APOA2	FGF13	PLEKHA8
VSIG8	GRIA3	DDX3Y	SLC34A2	ZBTB12	CACHD1
PDILT	SMIM22	ZNF732	PRH2	APBB1IP	EML4
MRGPRG	FOLR1	UTS2B	ACHE	LIPT2	GRAMD1C
CST9	NPHP1	DDHD1	LCE2A	RANBP17	DACT3
KRTAP19-2	PLCH1	SENP8	POU3F1	CENPH	DNAJC17
SIX6	HOXB5	ZNF19	COL17A1	DMXL2	PPIC
DEFB116	CXorf64	CLDN11	TMEM45A	C1orf210	FCER1A
KRT38	LIF	FAM53A	PRKACG	TNIK	ARHGEF19
ASCL5	OGN	FABP4	KIF4B		

Constitutive Translocation Screen

AP2S1	TTC7B	TMUB2	DCUN1D5	GOT1	ANGEL2
AAGAB	SLC35A2	IL16	DPCD	ACSS1	RALGAPA2
B3GNT2	CCDC91	GTF2A1	SESN1	RNF14	TGS1
FAM3A	SCAF8	ADNP	FAM122B	LAPTM5	OGT
ANKRD13D	C19orf66	HLA-DRA	RNF5	PARP6	DNAJB14
AP2M1	RBM43	VWA9	RNF7	COG3	COG6
HSD17B11	STIM1	AAED1	JMJD4	NFIX	ELMSAN1
COG2	LARP4	MLH3	SERBP1	PACS2	NUMBL
CBX7	TBC1D4	C12orf43	SLC39A9	ROCK2	GALE
CIC	FARP1	RND3	DPY19L1	CNOT7	SIN3B
UBTD2	RECK	HNRNPA3	MSL1	TAX1BP3	UBE3C
MGAT1	SLAIN1	LTBR	GOLIM4	COG7	RAB24
OSBPL8	ABHD12	HERC3	GALK1	FCHO2	IMPDH1
NDUFAF6	VHL	NCKAP5L	SIAH1	PEBP1	NCF4
SDCBP	LGALS3	MLLT3	SERINC1	ATXN2L	C16orf13
ZNF362	ZNF222	CDKN2AIPNL	ACCS	CNN3	ZNF202

MCF2L2	MYB	CRIP3	SALL4	ALPP	NTPCR
BRINP2	S100P	TRPV4	FAM53A	CHAT	NUAK2
POU3F3	KIF21B	ABCA4	KATNAL2	LGALS13	CYP4X1
KCTD4	UNC5D	SLCO4C1	CAPRIN2	PRR4	PRTFDC1
DDX25	FAM169A	A1CF	SDK2	CCL28	DLGAP5
MOGAT3	GNAZ	DNAJC25	GLB1L	KLHL33	PCDHB10
ATOH1	RORB	CYP4B1	SALL1	KCNJ12	TMED8
PCK2	FAM171B	CETP	NTRK1	IL37	CDC14B
TMEM40	SORCS3	KLRG1	NETO1	TFF2	C8orf44
GLTP	MAP1B	VIT	PTPN5	TCP10	TLR1
C14orf105	CDR1	MCC	BRSK1	LIPJ	ATXN7L2
IGF2BP1	TRABD2A	ADAMTSL4	MAS1	PTCHD3	ARHGAP29
TGM7	B3GNT7	SLC15A2	TMEM235	SPANXN3	CYSLTR1
IFNA5	HKDC1	GCNT2	DYNAP	FOXR2	ZFP14
HOXB1	LMX1A	SPDEF	MOGAT1	DCAF8L1	VASN
C9orf170	RSPO1	CAPN9	CAPN12	RFPL4B	FLT3LG
ERVW-1	DUOXA1	KCNN4	TNNI3	HSPB9	SAPCD2
PTX3	C2orf54	KLHL30	ANKRD1	OTOS	BAIAP2L1
KCNA4	FBXL13	ESPN	UMOD	MGAT2	TMEM194B
CNGB1	TTC26	NXPH4	SLC17A1	KIAA1462	GLIPR1
SULT2A1	CFTR	DPYSL3	TMEM27	CHKB	EFS
SIGLEC10	LIF	KLRD1	CLDN16	IRAK2	GDAP2
EMR3	RBM24	FAM177B	CDH16	OSBPL10	DDO
					SLC5A7

Figure 1.7: List of the genes identified in the genetic screens. These genes were identified in the genome-wide genetic screens and validated in the secondary screens. Genes with ubiquitous expression are highlighted in blue whereas genes with tissue-specific expression are highlighted in red. The tissue distribution of a gene is based on RNA expression data in Human Protein Atlas (www.proteinatlas.org). Genes associated with human diseases are indicated with boxes. A gene is included if its disease connections are shown in both MalaCards (www.malacards.org) and UniProtKB (www.uniprot.org).

The screens identified known and novel regulators of GLUT4 localization

The top-ranking gene in the translocation defective screen is $S L C 2 A 4$, which encodes GLUT4 itself (the GFP-GLUT4-HA reporter is also targeted by SLC2A4 sgRNAs), highlighting the quantitative nature of the screens. The screens identified known regulators of insulin-dependent GLUT translocation including RAB10, TBC1D4, sortilin-1, AP2 adaptor, and insulin signaling molecules (Fig 1.8). Recovery of these known regulators indicates that the screens were sensitive and specific. The vast majority of the identified genes, however, have not previously been linked to the GLUT translocation pathway, including 92 genes lacking annotated functions (Fig. 1.9 a,b). These findings highlight that we are still at the early stage of understanding the regulatory networks of GLUT translocation.

Figure 1.8: Regulatory factors identified in the CRISPR screens form protein complexes or functional modules. Only selected complexes or modules related to insulin signaling or vesicle transport are shown. The genes are colored according to the screen in which they were identified.

Translocation Defective Screen

Figure 1.9: Summary of genes validated by the secondary screens. a, Translocation defective screen. b, Constitutive translocation screen.

The genes were classified as either positive or negative regulators of GLUT translocation according to the screen in which they were identified (Fig 1.9). From these two functional groups, genes were further characterized according to their known or predicted biological function (Fig $1.9 \mathrm{a}, \mathrm{b})$. Approximately half of the identified genes have been implicated in various aspects of vesicle transport regulation such as vesicle budding/fusion, cargo sorting, cell motility, and signal transduction (Fig. 1.9 a,b). Other genes encode enzymes involved in lipid/carbohydrate metabolism, mediators of gene expression, and solute transporters (Fig 1.9). A significant portion of the identified genes may indirectly impact GLUT translocation by controlling the expression or localization of a direct regulator. Nevertheless, these genes constitute critical components of the regulatory networks because their deficiency leads to dysregulation of GLUT translocation. Identification of these diverse genes indicates that the GLUT translocation pathway is considerably more complex than previously thought, and its exploitation of cellular processes is extensive.

Many identified factors form protein complexes or functional modules such as exocyst, conserved oligomeric Golgi complex, AP2 adaptor, and insulin signaling (Fig 1.8). Recovery of these functionally linked genes suggests that the screens were exhaustive. Missing components of a complex or module are likely due to functional redundancy, rather than incompleteness of the mutant library, because their corresponding sgRNAs were present in the control mutant population (Supplementary Table 1). For example, the translocation defective screen identified the entire insulin signaling pathway except AKT (Fig 1.8). The absence of AKT is readily explained by the known redundancy of AKT isoforms (Dummler et al., 2006). The constitutive translocation screen isolated the $\mu 2$ and $\sigma 2$ subunits of the tetrameric AP2 adaptor involved in
endocytosis (Fig 1.8) (Brodsky, 2012). The α and $\beta 2$ subunits of the A2P adaptor, however, were not recovered. This finding is in full agreement with the known redundancy of the genes encoding the α subunit (AP2A1 and AP2A2) or the $\beta 2$ subunit (AP2B1 and AP1B1) (Traub and Bonifacino, 2013). We anticipate that our screens will facilitate the identification of previously unrecognized gene redundancy.

A large fraction of the regulatory factors exhibit ubiquitous tissue distributions and/or disease connections (Fig 1.7), underscoring their importance in physiology. We next examined whether the new genes identified in the screens also regulate GLUT translocation in other insulinresponsive cell types. Deletion of $V P S 35$, which encodes a subunit of the retromer complex, abrogated insulin-triggered GLUT translocation in adipocytes (Fig 1.10a,). Similarly, deletion of RABIF, a putative Rab GEF, diminished GLUT translocation in adipocytes (Fig 1.10a). Deletion of $A A G A B$, which was identified in the constitutive translocation screen, dramatically increased the basal surface levels of GLUT reporter in adipocytes (Fig 1.10b). To examine the dynamic range of the genes; we also tested lower-ranking (still above the cutoff) genes from the screens. KO of OSBPL8 or OSBPL10, which encode putative lipid transfer proteins, resulted in about twofold increases in the basal surface levels of GLUT reporter in adipocytes (Fig 1.10b). Similarly, KO of $A N K R D 13 D$, a poorly characterized ubiquitin-binding factor, doubled the basal surface levels of GLUT reporter in adipocytes (Fig 1.10b). These results suggest that the findings of our HeLa screens are applicable to other cell types (Fig 1.11, Fig 1.12, Table 1.1).

Figure 1.10: Genes identified in the HeLa cell screen could be validated in adipocytes.
a, Selected genes from the translocation defective screen were individually mutated in mouse adipocytes using CRISPR-Cas9. Effects of the mutations on insulin-dependent GLUT translocation were measured by flow cytometry. b, Selected genes from the constitutive translocation screen were individually mutated in mouse adipocytes using CRISPR-Cas9. Effects of the mutations on surface reporter levels were measured by flow cytometry (without insulin treatment). The dashed line indicates the surface GLUT reporter level in WT cells without insulin stimulation. Error bars in e and f indicate standard deviation. $* P<0.05$; ${ }^{* *} P<0.01 ; ~ * * * P<0.001$.

Gene Number
Figure 1.12: Ranking of genes in the constitutive translocation scr dot represents a gene. Genes above the horizontal line were tested in the secondary screen. A gene is shown as a large dot if it was validated in the secondary screen. Genes regulating GLUT trafficking in both HeLa and adipocytes are shown in red, and genes validated in figure 1.10 are shown in bold

Table 1.1: Summary of top ranking genes in either the translocation defective screens or the constitutive translocation screens. (Genes enriched in both primary and secondary screens are highlighted)							
Ranking of genes enriched in the genome-wide translocation defective screen				Ranking of genes enriched in the genome-wide constitutive translocation screen			
Rank in primary screen	Gene ID	p-value	Rank in secondary screen	Rank in primary screen	Gene ID	p-value	Rank in secondary screen
1	SLC2A4	$1.50 \mathrm{E}-11$	33	1	AP2S1	$2.66 \mathrm{E}-16$	2
2	LIAS	$1.12 \mathrm{E}-08$	46	2	$A A G A B$	$2.11 \mathrm{E}-07$	12
3	RAB10	$1.19 \mathrm{E}-07$	13	3	B3GNT2	$1.43 \mathrm{E}-06$	17
4	DLD	$6.02 \mathrm{E}-07$	34	4	MGAT2	7.17E-06	3
5	IMPAI	$3.71 \mathrm{E}-06$	632	5	DUOXAI	$8.61 \mathrm{E}-06$	260
6	SDHD	$4.90 \mathrm{E}-06$	275	6	FAM3A	$1.55 \mathrm{E}-05$	7
7	EXOC7	$7.79 \mathrm{E}-06$	3	7	ANKRD13D	$2.60 \mathrm{E}-05$	428
8	FGF13	$9.90 \mathrm{E}-06$	384	8	FAM53A	$3.40 \mathrm{E}-05$	293
9	LIPT1	$1.44 \mathrm{E}-05$	318	9	AP2M1	$6.95 \mathrm{E}-05$	4
10	LCE2A	$2.16 \mathrm{E}-05$	478	10	CELSR1	$8.72 \mathrm{E}-05$	911
11	NDUFB2	$2.61 \mathrm{E}-05$	11	11	SCPEPI	$9.87 \mathrm{E}-05$	838
12	C10orf68	$3.68 \mathrm{E}-05$	639	12	CDC42EP5	0.00011191	636
13	FOXRED1	$3.80 \mathrm{E}-05$	5	13	RPRML	0.00011878	644
14	SMIM22	$4.00 \mathrm{E}-05$	497	14	KIAA1462	0.00013866	487
15	PRKACG	$4.65 \mathrm{E}-05$	431	15	ZNF74	0.00015641	NA
16	OR4F5	$7.29 \mathrm{E}-05$	NA	16	CHKB	0.00021099	54
17	EXOC8	$7.72 \mathrm{E}-05$	301	17	HS3ST6	0.00022209	548
18	MRPS18A	$8.63 \mathrm{E}-05$	524	18	WDR52	0.00028559	789
19	NDUFB9	$9.30 \mathrm{E}-05$	21	19	TCP10	0.00041319	344
20	NDUFA2	0.00011274	12	20	ZIK1	0.00042649	555
21	LUC7L3	0.00012981	1062	21	KCNU1	0.00043059	682
22	CEP19	0.00014179	220	22	ARAPI	0.00044134	912
23	PSRC1	0.00016294	629	23	GNAZ	0.00049154	117
24	SNRPE	0.0001698	1110	24	KCTD4	0.00049325	512
25	SLC34A2	0.00018174	78	25	SLC5A5	0.00054254	1054
26	NPHP1	0.00018849	515	26	IRAK2	0.00054516	524
27	CABP1	0.00019187	402	27	HSD17B11	0.00054716	74
28	DIO3	0.00020332	310	28	COG2	0.00058712	5
29	PCSK1	0.00020921	38	29	DENR	0.00059706	667
30	NDUFC1	0.00021771	19	30	LCA5L	0.00059897	595
31	ASPH	0.00021875	62	31	TEX13B	0.00063693	731
32	OCLM	0.00022501	NA	32	EED	0.00064897	699
33	HLTF	0.00022967	737	33	$C B X 7$	0.00067059	249
34	SYNCRIP	0.00023366	781	34	OR52M1	0.00067435	NA

35	FLYWCH1	0.00024217	1134	35	CNGA2	0.00068602	729
36	NDUFAF1	0.00024262	24	36	SLC16A14	0.00070087	1053
37	OPA1	0.00024917	1107	37	ATP1A4	0.00070686	NA
38	SERPINB2	0.00026364	890	38	DYNAP	0.00074515	484
39	KIF4B	0.00028006	50	39	CMTM7	0.00075277	585
40	PGM2L1	0.00028027	313	40	CIC	0.0007896	472
41	SCN2B	0.00028557	590	41	TMEM105	0.00079329	1039
42	ZBTB12	0.00029872	492	42	PHAX	0.00080467	1020
43	SMARCA2	0.00030094	720	43	UBTD2	0.00083834	101
44	TXNDC5	0.000301	1049	44	MGAT1	0.00084451	11
45	NDUFB3	0.000308	23	45	CCL21	0.000846	NA
46	MRGPRG	0.00031648	414	46	ROBO1	0.00085656	740
47	ST8SIA6	0.00031923	453	47	CARD17	0.00092906	629
48	TGFBI	0.00032308	668	48	DFNB31	0.00095528	831
49	FHOD3	0.00033378	925	49	SULT2A1	0.00097053	400
50	NDUFAF3	0.00033878	17	50	POU3F3	0.00098695	129
51	CST9L	0.00035348	403	51	BTF3L4	0.0010122	1094
52	KRTAP9-6	0.00035507	867	52	AHDC1	0.0010202	NA
53	ZNF263	0.00037987	178	53	UNC5D	0.0010641	392
54	DNAAF2	0.00038258	405	54	ESR1	0.0010782	687
55	APBB1IP	0.00038388	181	55	SLC12A4	0.0010818	728
56	C19orf38	0.0003894	381	56	PCTP	0.0010969	908
57	KCNK9	0.0004035	909	57	OSBPL8	0.001116	540
58	PPIAL4F	0.00042404	NA	58	ARHGEF11	0.0011371	1086
59	PDHA1	0.00042611	199	59	OSBPL10	0.0011679	221
60	BLM	0.00044131	704	60	EPHA8	0.0012093	793
61	LIPT2	0.00044234	14	61	THAP9	0.0012198	NA
62	SPCS2	0.00047995	1065	62	ITGB2	0.0012716	781
63	CCDC64B	0.00048354	1019	63	NDUFAF6	0.0013235	18
64	RPRD1A	0.0004843	585	64	LCE2B	0.0013455	NA
65	CYP2J2	0.0004956	156	65	SLC5A7	0.0013754	108
66	RANBP17	0.00052583	212	66	TSHR	0.0013764	619
67	CAPZA1	0.00054513	821	67	POLR3B	0.001441	965
68	AKR1C2	0.00055808	736	68	SDCBP	0.0014791	495
69	INHBC	0.00056875	260	69	NCF1	0.0014972	645
70	DDX3Y	0.0005755	359	70	ZNF362	0.0015136	198
71	GOLGA7B	0.00059573	58	71	TTC7B	0.001531	353
72	FAM217A	0.00059703	556	72	WDR5B	0.0015478	NA
73	ASB3	0.00060926	352	73	S100P	0.0015829	209
74	FAM46A	0.00061011	158	74	OR5B2	0.0016039	NA
75	CS	0.00061706	29	75	TRIM15	0.0016347	543
76	CDK19	0.00062547	1021	76	HMGA1	0.0017154	NA
77	MEP1A	0.00062703	378	77	OSBPL7	0.0017286	950

78	TGIF1	0.00063634	943	78	DIXDC1	0.0017384	NA
79	MRPL33	0.00064893	670	79	ATP6AP1	0.0017419	1134
80	SLC7A11	0.00066712	870	80	SLC35A2	0.0017485	15
81	CCSER2	0.00067477	338	81	ELFN2	0.0017805	883
82	ANKS3	0.0006846	621	82	TBC1D25	0.0017903	NA
83	PRM1	0.00068685	970	83	RORB	0.0017915	476
84	CAMTA1	0.00070083	420	84	CCDC91	0.0018025	51
85	TRUB1	0.00070721	436	85	SCAF8	0.0018249	91
86	CRTC3	0.00071792	297	86	C19orf66	0.0018415	328
87	HSD3B2	0.00072561	624	87	CLIC4	0.0018421	NA
88	CENPH	0.0007398	429	88	TENM3	0.0018455	NA
89	MRPS35	0.00076023	60	89	NTPCR	0.0018666	292
90	COCH	0.00077358	745	90	ANKRD61	0.001894	NA
91	CLUAP1	0.00077604	1100	91	TBKBP1	0.0019458	876
92	ZCCHC12	0.00078031	1032	92	RBM43	0.0019518	107
93	HSPA12A	0.00078842	747	93	BRAT1	0.0019977	1041
94	FAS	0.00078868	916	94	SALL1	0.0020359	431
95	COQ2	0.00079675	30	95	STIM1	0.0020495	373
96	FABP4	0.00081272	274	96	FRAT1	0.0020816	704
97	IRF1	0.00082423	204	97	KATNAL2	0.0021014	135
98	EXOC1	0.0008265	16	98	FLOT1	0.0021092	894
99	PARP3	0.00082913	1042	99	TNNI3	0.0021532	210
100	ANKLE2	0.00085652	1139	100	TCEAL1	0.0021907	1100
101	FAM64A	0.000893	818	101	GPATCH4	0.0021926	783
102	CCDC167	0.00089819	801	102	RAMP1	0.0022124	NA
103	LEPROTLI	0.00090017	835	103	SLC23A1	0.0022569	854
104	RALYL	0.00090841	885	104	STBD1	0.0022574	NA
105	MAGEB2	0.00092676	417	105	TTLL7	0.0022788	NA
106	FCRL3	0.00093184	698	106	RPL29	0.002281	974
107	MDH2	0.00093674	489	107	SUN1	0.0023087	648
108	NDUFA3	0.00095939	8	108	LIPJ	0.0023606	53
109	PYROXD1	0.0009603	574	109	SLC15A2	0.0023795	339
110	PDILT	0.00097467	159	110	OTOS	0.0023801	531
111	NDUFB10	0.00098271	27	111	KRT84	0.0023888	792
112	TARBP1	0.00098584	262	112	FAM168B	0.0024124	630
113	CST9	0.00099485	512	113	ERVW-1	0.0024215	112
114	RSPH9	0.00099498	397	114	HDAC9	0.0024497	NA
115	SPHAR	0.00099963	NA	115	HMGB1	0.0024642	1143
116	SOX14	0.0010122	147	116	GSDMB	0.0025093	NA
117	HLA-DPB1	0.0010138	123	117	LRRC46	0.002516	570
118	GPC2	0.0010198	145	118	ZNF83	0.0025394	NA
119	OR5V1	0.0010213	NA	119	ZNF425	0.0025552	NA
120	MGRN1	0.0010363	982	120	GLTP	0.0025734	36

121	ZNF732	0.0010641	474	121	$C 4 B _2$	0.0025799	NA
122	PNKD	0.0010727	163	122	CD86	0.0025918	1030
123	AGAP9	0.0010816	949	123	LARP4	0.0026197	177
124	AP4S1	0.0011012	68	124	RPS4Y1	0.0026626	NA
125	SMAD5	0.0011159	NA	125	ZNF234	0.0026715	556
126	ZNF254	0.0011249	567	126	ZNF559	0.0026827	NA
127	MSRB1	0.0011305	566	127	ABCA4	0.0027061	532
128	SLC5A12	0.0011532	66	128	TBC1D4	0.0027162	13
129	UTS2	0.0011639	1082	129	FARP1	0.0027233	273
130	IFT81	0.0011678	105	130	NAT6	0.0027534	787
131	DMXL2	0.0011713	406	131	RECK	0.0027619	231
132	ANGPTL3	0.0011852	110	132	ENPP7	0.0027746	904
133	C8orf82	0.0011853	333	133	PGRMC2	0.0028787	653
134	SLCO6A1	0.0012037	191	134	CAPN1	0.002886	NA
135	FHL3	0.0012079	810	135	ERO1L	0.0029305	NA
136	CEBPD	0.0012107	719	136	TMEM219	0.0029534	873
137	KIAA2022	0.0012197	82	137	NDUFAB1	0.0029815	1109
138	AREG	0.0012259	155	138	SLAIN1	0.0029823	197
139	PLEKHG1	0.0012492	299	139	VIT	0.0030341	258
140	MAK	0.0012734	466	140	ABHD 12	0.0030748	417
141	GRINA	0.0012838	966	141	ALXI	0.0030859	NA
142	PEX12	0.0012987	271	142	KPNA3	0.003094	1011
143	OGT	0.0013023	964	143	VHL	0.003116	31
144	CDH13	0.0013194	129	144	CCNDBP1	0.0031377	932
145	TMEM125	0.0013235	311	145	LGALS3	0.0031384	61
146	FAM115A	0.0013243	843	146	OPALIN	0.0031436	NA
147	Clorf210	0.0013245	95	147	ZNF281	0.0031658	NA
148	INPP5K	0.0013301	625	148	TRAPPC4	0.0031895	1059
149	RASGRP3	0.0013602	753	149	METTL25	0.0032413	986
150	MYF6	0.0013753	649	150	SPNS3	0.0032844	842
151	ARHGAP28	0.0013939	608	151	NYAP2	0.0032931	1106
152	HMGCS2	0.0014041	884	152	NUAK2	0.0033028	465
153	PRKCB	0.0014105	832	153	PDGFRA	0.0033385	NA
154	FAM21A	0.001421	752	154	SNRPN	0.0033399	NA
155	CMPK1	0.0014284	647	155	ZNF222	0.0033739	281
156	FOLR1	0.0014569	578	156	STRADB	0.0033967	589
157	NEXN	0.0014595	861	157	UMOD	0.0034022	303
158	GOLGA6L4	0.0014705	NA	158	PTCHD3	0.0034373	477
159	ZNF581	0.0014938	944	159	TMUB2	0.003494	442
160	VPS35	0.0014987	18	160	IL16	0.0035003	499
161	EOGT	0.0015046	994	161	MED10	0.0035021	NA
162	IFNAR2	0.0015309	165	162	GAR1	0.003552	NA
163	KIF3A	0.0015369	569	163	DIO2	0.0035843	NA

164	HSPA4	0.0015423	782	164	ZSCAN4	0.0035994	NA
165	ZSCAN32	0.0015434	968	165	IL37	0.0036038	140
166	RABIF	0.0015451	6	166	HS3ST4	0.0036266	NA
167	ZNF213	0.0015527	859	167	ZFP57	0.0036438	613
168	PLEKHF2	0.0015698	81	168	IL18BP	0.0036476	NA
169	NEO1	0.0015777	303	169	FBXL13	0.0036556	421
170	CLCNKB	0.0015931	467	170	CRYL1	0.0036716	NA
171	SLC22A14	0.0015938	72	171	CRP	0.0036907	546
172	TNIK	0.00161	114	172	RIOK3	0.0037074	1046
173	CBLB	0.001617	749	173	CYP4XI	0.0037591	539
174	TCF7	0.001618	264	174	LHFPL5	0.0037925	866
175	EDA2R	0.0016261	597	175	GTF2A1	0.0038109	436
176	CDIP1	0.0016346	457	176	COL4A2	0.0038123	NA
177	C17orf75	0.0016456	598	177	TMEM44	0.0038627	1006
178	$\begin{aligned} & \text { CGGBP1 } \\ & \text { ZNF816- } \end{aligned}$	0.0016528	339	178	KIF2A	0.0038824	NA
179	ZNF321P	0.0016606	473	179	KLHL30	0.0038847	376
180	KRTAP19-2	0.0016615	251	180	DDX60	0.0039144	726
181	ZNF138	0.0016774	150	181	NSUN5	0.00392	958
182	Clorf100	0.0016796	911	182	RRP15	0.0039662	771
183	AKT1S1	0.0016865	869	183	PLAA	0.0039845	NA
184	AOXI	0.0016992	401	184	ADNP	0.0040179	277
185	IMMT	0.0017015	651	185	ZNF185	0.0040428	NA
186	GCKR	0.0017166	83	186	TLXINB	0.0040541	NA
187	SMARCE1	0.0017288	724	187	CRMP1	0.0040697	574
188	GRSF1	0.0017454	1	188	ARIH2	0.0041146	832
189	DISC1	0.0017471	653	189	HLA-DRA	0.0041327	190
190	SIX6	0.0017509	336	190	VWA9	0.0041479	62
191	LRRC20	0.0017537	361	191	SPANXN3	0.0041757	269
192	DLEC1	0.0017902	945	192	SEL1L3	0.0041857	NA
193	EPB42	0.0017968	773	193	KCNH5	0.0041906	935
194	FH	0.0018158	558	194	KCND3	0.0041989	NA
195	NMNAT2	0.0018301	858	195	CASK	0.0042023	NA
196	ODF3	0.0018421	184	196	LAMA1	0.0042223	991
197	LONP2	0.0018656	735	197	FAM169A	0.004225	535
198	ZNF737	0.001902	64	198	COMMD6	0.0042642	559
199	UBL3	0.0019083	75	199	HOMEZ	0.0042767	819
200	ACY1	0.00191	426	200	L1TD1	0.0042934	582
201	C9orfl72	0.0019217	291	201	CTH	0.0043284	678
202	C8orf31	0.0019223	677	202	PRTFDC1	0.0043334	208
203	C2orf9 1	0.0019254	951	203	SAP30L	0.0043504	NA
204	TMED2	0.0019311	579	204	НОХС6	0.0043802	1061
205	ZNF221	0.0019446	560	205	NDFIP2	0.0043896	NA

206	CRISP3	0.0019457	839	206	FAM171B	0.0044085	352
207	SLC9A3R2	0.0019483	589	207	KLF9	0.0044102	NA
208	EPAS1	0.0019867	874	208	AAED1	0.0044837	475
209	ASB8	0.0019976	1023	209	PRPF40B	0.0045261	NA
210	C16orf58	0.0020199	850	210	YTHDC2	0.0045354	656
211	RASGEF1A	0.0020238	107	211	MLH3	0.0045743	67
212	GABRG2	0.002028	136	212	ZNF418	0.004583	803
213	CD84	0.0020282	316	213	HOXC10	0.0045871	937
214	ZCWPW1	0.0020426	463	214	IFNA5	0.0046389	518
215	MUC4	0.0020455	419	215	TMEM199	0.0046906	872
216	ZNF251	0.0020475	309	216	AFAP1	0.0047048	981
217	WDR12	0.0020612	1105	217	PRMT3	0.0047399	NA
218	ACSM2B	0.0020689	121	218	SEC63	0.0047423	1105
219	KHDC1L	0.0020782	626	219	UBE2L6	0.004743	NA
220	ZNF708	0.0021013	84	220	MSS51	0.0047529	NA
221	STAC2	0.0021034	465	221	C12orf43	0.0047941	259
222	NDUFS7	0.0021065	26	222	ZNF765	0.0048209	NA
223	RNF151	0.0021307	930	223	$E M B$	0.0048342	NA
224	FCHO2	0.0021448	772	224	ARL8A	0.0048361	1095
225	ZNF845	0.0021455	131	225	GPSI	0.0048458	895
226	C2CD4A	0.0021531	1090	226	OR2Z1	0.0048597	NA
227	MRPS31	0.0021574	35	227	PIP5KL1	0.0048975	948
228	AIF1L	0.002158	221	228	DLGAP5	0.0049112	510
229	OIP5	0.0021787	1033	229	PSPH	0.004946	823
230	BEST3	0.00219	85	230	DCSTAMP	0.0049492	893
231	FBXW11	0.0021908	929	231	CAP2	0.004957	NA
232	PDXDC1	0.0022004	428	232	METRN	0.0049607	NA
233	DCAF17	0.0022103	760	233	PRRC2A	0.004971	NA
234	SREBF2	0.002229	703	234	RAB31	0.0049845	717
235	NDUFA1	0.0022313	9	235	KLRD1	0.0050526	299
236	SERINC5	0.0022364	528	236	ACER3	0.0051022	NA
237	ARHGEF15	0.0022568	928	237	SLFNL1	0.0051044	694
238	SYN1	0.0022646	450	238	PEA15	0.0051113	NA
239	RAB4A	0.0022806	519	239	SIRPB2	0.0051561	1073
240	PIK3CB	0.0022922	194	240	EMC7	0.0052078	1083
241	SMIM18	0.0023031	825	241	OR11G2	0.0052166	NA
242	KLHL6	0.0023085	657	242	OR2W1	0.0052199	NA
243	STATH	0.0023086	853	243	USP17L8	0.0052534	NA
244	ROCK2	0.0023144	710	244	VASP	0.0052595	565
245	HMOX2	0.0023163	793	245	FRMD7	0.005295	761
246	SLC22A13	0.002317	955	246	NUDT7	0.0053112	541
247	PKD1L3	0.0023273	NA	247	SLC17A1	0.0053629	201
248	RGS9BP	0.0023604	1063	248	WBSCR27	0.0054146	706

249	PDSS1	0.0023707	15	249	ASCC2	0.0054254	874
250	PF4	0.0023778	265	250	RND3	0.0054663	193
251	KRTAP3-2	0.0023778	617	251	DUSP7	0.0054959	661
252	SPATA19	0.0023844	738	252	SOX9	0.005518	665
253	C2orf54	0.0023845	671	253	C19orf60	0.0055242	NA
254	GALNTL6	0.0023942	371	254	COLEC12	0.0055697	580
255	FHL2	0.0024123	185	255	PCDHB10	0.0056191	283
256	TMEM192	0.002448	721	256	HNRNPA3	0.0056213	286
257	C12orf39	0.0024641	691	257	ADAM28	0.0056286	1043
258	NPAS3	0.0024678	917	258	DPYSL3	0.005673	294
259	DBC1	0.0024735	NA	259	MOGAT3	0.0057247	379
260	COLGALT2	0.0025106	891	260	POSTN	0.0057764	NA
261	GREB1	0.0025154	341	261	NPFFR2	0.0058281	700
262	$A B R$	0.0025159	304	262	MPZ	0.0058305	NA
263	SH3GL2	0.0025366	812	263	R3HCC1	0.0058645	786
264	FEM1C	0.0025421	823	264	FOXR2	0.0058798	361
265	NPNT	0.0025525	176	265	C9orf64	0.0058839	NA
266	AQP11	0.0025566	705	266	KIF21B	0.0059831	467
267	MAB21L3	0.0025665	638	267	ALPP	0.0060348	78
268	TSKS	0.0025686	461	268	KCNN4	0.0060555	155
269	ZNF670	0.0025829	838	269	ALMS1	0.0060653	767
270	MMADHC	0.0026312	160	270	GCNT2	0.0061346	10
271	PREX2	0.0026334	146	271	MYB	0.0061898	297
272	ATP1B3	0.0026456	261	272	PPP2R5A	0.0061993	NA
273	$N P P B$	0.0026553	186	273	RBM15	0.0062043	1102
274	SLCO4C1	0.002669	236	274	MXD 3	0.0062414	1098
275	OR5K1	0.0026714	NA	275	WASF3	0.0062543	884
276	HOXB5	0.0026742	273	276	MRGPRD	0.0062744	1007
277	SSTR2	0.002678	477	277	CLU	0.0062931	862
278	Clorf226	0.002679	926	278	PMP22	0.0063398	615
279	DEFB116	0.0026868	112	279	FAM161A	0.0063448	914
280	GPATCH2L	0.002704	622	280	Clorf105	0.0063723	NA
281	PRKCDBP	0.002716	711	281	HKDC1	0.0063964	313
282	LOC200726	0.0027232	NA	282	TMED8	0.0064105	164
283	PHLDB2	0.0027271	501	283	DBNDD1	0.0064207	NA
284	FAM84A	0.0027521	972	284	WNT10B	0.0064308	NA
285	NDUFS2	0.0027743	25	285	LTBR	0.0064481	68
286	C15orf62	0.0027809	79	286	PPP1R15B	0.0064511	558
287	EZH1	0.0027815	37	287	HERC3	0.0064997	203
288	MTUS2	0.002801	688	288	CDC14B	0.0065583	199
289	ZNF234	0.0028042	98	289	NCKAP5L	0.0065839	278
290	COQ4	0.0028145	32	290	PRR4	0.006603	336
291	IRS2	0.0028219	45	291	FPR3	0.0066547	NA

292	ZNF207	0.0028282	989	292	GOPC	0.0066818	978
293	NDUFAF7	0.002835	10	293	CCL28	0.0066869	183
294	TRMT10B	0.0028398	399	294	STK39	0.0067063	848
295	MFAP3	0.0028488	209	295	COL1A2	0.0067283	NA
296	NR4A1	0.0028868	1031	296	SCAMP3	0.0067579	542
297	TBX5	0.0029172	750	297	EMC1	0.0068096	916
298	CLVS2	0.0029204	324	298	OR52I2	0.0068585	NA
299	LPHN2	0.0029304	715	299	ADAM11	0.0069057	889
300	ARHGDIG	0.0029784	202	300	FUT11	0.0069128	820
301	COX16	0.0029822	334	301	C18orf8	0.0069645	1144
302	NAGPA	0.0029824	1037	302	C8orf44	0.0069696	409
303	STK17A	0.003034	380	303	OR8H1	0.0070161	NA
304	MRPS16	0.0030556	59	304	ZNF664	0.007064	NA
305	PLCH1	0.0030839	485	305	CRIP3	0.0070677	306
306	TDP1	0.0030858	1127	306	COL4A5	0.0070956	754
307	ARHGAP8	0.003088	658	307	SORCS3	0.0071194	137
308	KRT38	0.0030894	494	308	PIGK	0.0071331	606
309	MACROD2	0.0031376	829	309	NXPH4	0.0071417	75
310	SNRPB2	0.0031411	787	310	SHKBP1	0.0072508	684
311	ZNF709	0.0031455	269	311	EXD2	0.0072723	909
312	PRKG2	0.0031631	789	312	CHAT	0.0072742	147
313	IL1RAPL1	0.003167	223	313	PCK2	0.0073423	44
314	MIS18BP1	0.0031888	809	314	ROSI	0.0074127	749
315	ASTN2	0.0031956	674	315	MLLT3	0.0074291	405
316	SBSPON	0.0031999	672	316	KCNK5	0.0074807	899
317	ACAD10	0.0032055	739	317	TOX2	0.0075543	892
318	ENPP2	0.0032401	292	318	TRABD2A	0.0075839	138
319	POU3F1	0.0032425	263	319	ATOH1	0.0075982	142
320	STK16	0.0032453	764	320	DCAF8L1	0.0076477	323
321	NDUFS1	0.0032757	7	321	CDRT15	0.0076532	1128
322	DNAJC16	0.0032929	1007	322	ECSIT	0.0076697	NA
323	LNPEP	0.0032934	472	323	NMUR1	0.0076862	545
324	PRR23C	0.0033085	189	324	TLR1	0.0076871	139
325	AGER	0.0033085	599	325	MRPS31	0.0077387	816
326	NUP160	0.0033138	1050	326	IRXI	0.0077903	961
327	RYR1	0.0033311	947	327	HIST1H2BG	0.0078419	602
328	CENPQ	0.0033328	636	328	GNA15	0.007945	907
329	ZNF322	0.0033447	813	329	ZNF154	0.0079813	660
330	HAUS7	0.0033503	247	330	TRIM77	0.0079966	NA
331	PION	0.0033537	NA	331	LSR	0.0079981	647
332	ITIH4	0.0033731	805	332	ITGB1BP2	0.0080206	NA
333	LCP2	0.0033959	729	333	TTC26	0.0080482	272
334	PIAS2	0.0033965	374	334	$H D G F$	0.0080998	810

335	TAF12	0.0034128	918	335	CSF1R	0.0081514	561
336	TGOLN2	0.0034257	718	336	MAP1B	0.0081562	506
337	OCA2	0.0034348	138	337	KIAA0907	0.0081676	878
338	ULK2	0.0034457	697	338	KLHL33	0.008203	178
339	WNT2B	0.0034483	464	339	ZNF106	0.0082545	877
340	GPR116	0.0034634	799	340	MSXI	0.0082643	861
341	KCNH5	0.0034798	896	341	MAP1LC3A	0.008266	549
342	CCDC147	0.0035001	141	342	KCNE2	0.0083061	NA
343	AXIN1	0.0035075	615	343	APOE	0.0083215	857
344	CRLF3	0.0035387	479	344	SIGLEC11	0.0083846	NA
345	CKM	0.0035433	1001	345	BRINP2	0.0083931	104
346	CAAP1	0.0035473	830	346	ATXN7L2	0.0084092	184
347	C5orf34	0.0035518	732	347	ZNF513	0.0084608	922
348	UTS2B	0.0035658	231	348	ARHGAP29	0.0085124	501
349	PIGX	0.0035883	855	349	HLX	0.0085288	742
350	HSPB9	0.0035898	893	350	NETO1	0.008552	38
351	CD300C	0.0036036	400	351	CYSLTR1	0.0086155	37
352	PLEKHO2	0.0036062	1113	352	CDON	0.0086858	603
353	NDUFAF4	0.0036231	20	353	NCBP 2	0.0087151	NA
354	ING2	0.0036535	80	354	CDKN2AIPNL	0.0087186	144
355	USP38	0.0036554	452	355	DCUN1D5	0.0087443	102
356	FAM107A	0.0036796	713	356	ZFP14	0.0087702	186
357	PACRGL	0.0037057	281	357	GBF1	0.0087913	649
358	UGT2B7	0.0037072	164	358	MMP16	0.0088089	929
359	APOA2	0.0037192	149	359	TMEM205	0.0088217	597
360	$F K B P 1 B$	0.0037213	104	360	DNAJC2	0.0088265	1021
361	$M P G$	0.0037331	806	361	TTLL4	0.0088733	633
362	BCAP31	0.003741	888	362	TREM1	0.0088914	NA
363	SALL4	0.0037704	343	363	RNF167	0.0089248	967
364	PRX	0.0037715	587	364	$D P C D$	0.0089763	502
365	RNF183	0.0037965	895	365	C14orf105	0.008992	519
366	TTC4	0.0038243	411	366	SNAPC1	0.0090279	NA
367	EVA1A	0.0038491	564	367	SESN1	0.0090794	372
368	DDHD1	0.0038625	354	368	MFGE8	0.0091051	736
369	$V C X 3 B$	0.0038767	385	369	GPX4	0.009131	822
370	NGFRAP1	0.0039035	390	370	ZNF853	0.0091589	NA
371	MTMR1	0.0039142	875	371	FOXD4L1	0.0091825	1069
372	APOBEC4	0.0039156	226	372	FAM122B	0.0091949	257
373	SORT1	0.0039477	211	373	TTC13	0.009261	928
374	NT5C	0.0039567	938	374	RNF5	0.009267	237
375	TLL2	0.0039649	1044	375	KCNA4	0.009279	480
376	KLHDC8A	0.003966	1009	376	CCL2	0.0092911	NA
377	HOXC10	0.003966	842	377	VASN	0.0093635	288

378	RFC1	0.003976	1002	378	KCNJ12	0.0093665	444
379	ATG3	0.0039921	633	379	SUN5	0.0093886	941
380	FGFBP1	0.003996	484	380	GRM4	0.0094401	NA
381	DNAJC15	0.0039981	682	381	RNF7	0.0094544	173
382	PRH2	0.0040372	90	382	NDNL2	0.0094666	NA
383	BIRC6	0.0040608	844	383	ANGPTL5	0.0095214	837
384	TMEM261	0.0040716	28	384	LOC100862671	0.0095824	NA
385	SYNGR4	0.0040735	694	385	PON2	0.0095947	1087
386	ITCH	0.0040858	444	386	JMJD4	0.0096977	271
387	ENTPD6	0.0041186	942	387	SIGLEC10	0.0097379	266
388	XAGE2	0.0041212	606	388	EMR3	0.0097492	162
389	CALD 1	0.0041398	880	389	SERBP1	0.0098007	357
390	PAAF1	0.0041633	499	390	C19orf82	0.0098474	989
391	RIN2	0.0041764	948	391	NUP62	0.0098522	NA
392	NDUFB4	0.0041801	4	392	REG3G	0.0098531	NA
393	JMJD8	0.0041851	686	393	COX6A1	0.0099037	637
394	COL17A1	0.0041888	245	394	CD6	0.0099404	NA
395	SENP8	0.0041967	233	395	MAGEC1	0.0099552	563
396	IRAK4	0.0042147	353	396	CCDC30	0.0099711	624
397	TMEM45A	0.004222	53	397	SLC39A9	0.010015	96
398	ZBTB14	0.0042247	287	398	STEAP2	0.010021	799
399	OR6N1	0.0042261	NA	399	MMP25	0.010058	775
400	STXBP6	0.0042334	794	400	STXBP1	0.010065	NA
401	DMTN	0.0042765	900	401	FLT3LG	0.01009	370
402	LEKR1	0.0043141	NA	402	SPDL1	0.01011	591
403	ALS2	0.0043245	491	403	STAT5B	0.010127	NA
404	NOSTRIN	0.0043415	377	404	KRTAP10-5	0.010134	NA
405	ZNF19	0.0043679	255	405	MIER3	0.010146	626
406	CBLC	0.004373	1012	406	LOC100130705	0.010161	NA
407	BACE2	0.0043764	119	407	DIAPHI	0.010196	592
408	TUBA1A	0.00438	588	408	TMEM140	0.010228	673
409	PUS7L	0.0043899	533	409	C18orf63	0.010264	757
410	MBD4	0.0043907	854	410	TFF2	0.010278	479
411	INSR	0.0043944	162	411	FGD4	0.01031	1117
412	DPY19L2	0.0044088	849	412	GSTZ1	0.010316	923
413	PDZD9	0.0044212	117	413	DPY19L1	0.010365	234
414	MTMR9	0.0044218	266	414	MSL1	0.010367	181
415	SLC33A1	0.0044293	1080	415	GOLIM4	0.0104	368
416	CCDC137	0.0044317	1109	416	CAPN9	0.010419	263
417	ZNF683	0.0044456	244	417	UBL7	0.01047	NA
418	CRB3	0.0044793	912	418	SMUG1	0.010522	710
419	G3BP2	0.0044834	441	419	SOX5	0.010526	852
420	$S A F B$	0.0044837	504	420	MKKS	0.010577	666

421	TFDP2	0.0045068	395	421	TMEM27	0.010728	77
422	PIK3R4	0.0045136	76	422	IP6K1	0.01077	NA
423	PPP1R9A	0.0045138	865	423	ZSWIM7	0.010779	NA
424	CHDC2	0.0045148	868	424	HORMAD2	0.010783	880
425	SPC25	0.0045237	601	425	SLC7A3	0.01083	1048
426	GAGE10	0.0045299	1095	426	MFHASI	0.010882	654
427	SIKE1	0.0045307	227	427	VAMP8	0.010886	608
428	TMIGD1	0.0045352	685	428	LEMD2	0.010902	1002
429	LAMP5	0.0045381	239	429	PTX3	0.010933	124
430	SSMEM1	0.0045437	451	430	LRCH1	0.010977	NA
431	GABRB1	0.0045765	543	431	MATN3	0.010984	NA
432	C21orf2	0.0045922	61	432	SUSD3	0.010985	801
433	GTPBP1	0.0045922	327	433	MOGAT1	0.01099	72
434	CXorf64	0.0046248	116	434	ROPN1L	0.011036	NA
435	BZW2	0.0046482	347	435	ANXA7	0.011088	702
436	B3GNTL1	0.004651	872	436	PRKCZ	0.011139	1058
437	ZNF879	0.004661	302	437	CDR1	0.011191	377
438	BRCAI	0.0046659	1106	438	POLR2H	0.011242	1080
439	RAD9B	0.0046825	96	439	IGF2BP1	0.011246	453
440	ULBP3	0.0046827	610	440	TMEM40	0.011259	514
441	MCAT	0.0046833	1068	441	TM7SF3	0.011285	886
442	GPR174	0.0046869	623	442	LOC728819	0.011292	NA
443	SUMF2	0.0047258	416	443	GALK1	0.011294	537
444	C5orf28	0.0047266	387	444	ELMO3	0.011345	925
445	AAAS	0.0047307	596	445	ERI2	0.011371	NA
446	ACSL1	0.0047421	993	446	SIAH1	0.011448	57
447	PDZK1	0.0047513	785	447	B3GNT7	0.011457	334
448	CLEC4F	0.0047594	837	448	OR10XI	0.01147	NA
449	GPR157	0.0047785	346	449	SCLT1	0.011499	NA
450	PXDN	0.0047938	828	450	TUB	0.011537	737
451	RTBDN	0.0048002	506	451	TRPV4	0.011551	515
452	FBXW7	0.004812	1142	452	SLC16A8	0.01159	779
453	STAM	0.0048137	815	453	SEMA5B	0.011597	1060
454	XYLT1	0.004844	282	454	RFPL1	0.011602	NA
455	PHYKPL	0.004851	952	455	CCNK	0.011705	NA
456	SLC5A2	0.0048541	690	456	POU2AF1	0.011751	NA
457	PNMT	0.0048932	270	457	VCL	0.011756	917
458	Clorf177	0.0048937	770	458	ZNF883	0.011757	NA
459	VSIG8	0.004895	135	459	RPL27	0.011808	1141
460	USP10	0.0048965	990	460	CLPS	0.011811	NA
461	PTCHD 4	0.0048972	577	461	LGALS13	0.011909	508
462	HYKK	0.0049236	495	462	INHBE	0.011911	NA
463	MYCL1	0.0049261	NA	463	SERINC1	0.011933	319

464	FKBP9	0.0049394	219	464	SIAH3	0.011962	679
465	GREB1L	0.004943	650	465	CLDN16	0.011967	172
466	PKP4	0.004949	210	466	PYGO2	0.012013	617
467	SENP6	0.0049526	714	467	LSG1	0.012065	NA
468	SLC22A6	0.0049818	824	468	SAPCD2	0.012089	335
469	PLEKHA8	0.0050007	89	469	ERG	0.012116	575
470	C11orf86	0.005002	797	470	CAND1	0.012123	1103
471	NIM1	0.0050156	424	471	MMP19	0.012168	NA
472	TMEM135	0.0050157	520	472	GM2A	0.012211	NA
473	SUMO1	0.0050158	458	473	CAPRIN2	0.012271	76
474	MAFB	0.0050382	137	474	NLGN2	0.012322	698
475	RHBDL3	0.0050668	229	475	ADRA2A	0.012348	NA
476	MAGEA6	0.0050732	284	476	XPR1	0.012397	818
477	C19orf44	0.0050913	995	477	ALOX5AP	0.012431	869
478	PRR4	0.0051275	746	478	BAIAP2L1	0.012476	422
479	GRB2	0.005129	174	479	KLRG1	0.012527	494
480	APOL1	0.0051525	326	480	DEPDC7	0.012562	1092
481	COQ7	0.0051656	86	481	SPECC1L	0.012579	NA
482	COL6A5	0.0051727	NA	482	NFXI	0.012597	662
483	LIF	0.0051747	101	483	TMEM9	0.01263	NA
484	TMEM41B	0.0051782	836	484	MAN1C1	0.012687	NA
485	ALG3	0.0051967	235	485	HVCN1	0.012733	NA
486	BTG1	0.0051976	409	486	TGM7	0.012784	205
487	LEMD 1	0.0052013	498	487	MCC	0.012834	355
488	TCAP	0.0052013	637	488	TECPR2	0.012836	NA
489	OR52B6	0.0052013	NA	489	CKMT1B	0.012868	NA
490	GGA1	0.0052096	412	490	ATP13A5	0.012876	NA
491	MTERF	0.0052153	54	491	ACCS	0.012911	214
492	G2E3	0.005216	762	492	GOT1	0.012939	338
493	SLC25A36	0.0052459	330	493	TMEM194B	0.013041	302
494	CLEC1A	0.0052478	645	494	SPON2	0.013065	NA
495	CACHD1	0.0052592	396	495	E2F6	0.013093	NA
496	USP34	0.005263	981	496	RFPL4B	0.013093	226
497	MORN4	0.0052642	207	497	PLN	0.0131	571
498	KCTD9	0.0052918	471	498	PTPN5	0.013129	415
499	IGSF6	0.0053054	580	499	CAPN12	0.013144	362
500	EML4	0.0053109	118	500	ACSS 1	0.013195	245
501	PXK	0.0053334	487	501	DMPK	0.013206	790
502	WHSC1	0.0053626	652	502	PAEP	0.013249	NA
503	ASCL5	0.0053738	172	503	RNF14	0.013298	119
504	ANKS6	0.005388	905	504	GBX2	0.01332	1104
505	ARPP21	0.0053964	440	505	CSNK2B	0.013327	1133
506	USP26	0.0054067	286	506	SIGIRR	0.013334	639

507	TBCEL	0.0054164	115	507	DDT	0.013345	NA
508	ZNF292	0.0054325	300	508	LAPTM5	0.013349	481
509	ATRNL1	0.0054526	648	509	NTN5	0.013401	NA
510	MTMR2	0.005466	741	510	OGFOD 1	0.013441	594
511	PTGIS	0.0055001	1014	511	SOWAHB	0.013452	NA
512	USP31	0.0055412	565	512	FAM110D	0.013503	579
513	DCAF8L2	0.0055596	667	513	ESPN	0.013555	360
514	STAG3	0.0055694	1087	514	RRP1	0.013556	1081
515	IFNA4	0.0055994	816	515	SCARB1	0.013591	NA
516	SYTL2	0.0056168	920	516	PPP1R37	0.01362	NA
517	PTMA	0.0056211	1101	517	LYRM1	0.013627	NA
518	OGN	0.005625	134	518	ZNF587B	0.013657	NA
519	NDUFA11	0.0056499	22	519	EIF3F	0.013706	1075
520	C1QTNF5	0.0056519	695	520	ZNF148	0.013709	NA
521	STX3	0.0056567	529	521	LIF	0.01376	81
522	TMEM132D	0.0056567	208	522	USP29	0.013811	NA
523	CTNNA2	0.0056615	847	523	OXTR	0.013844	746
524	MTNR1A	0.0056776	329	524	SMAD6	0.01396	723
525	NBPF9	0.0056811	NA	525	C3orf36	0.013965	1052
526	GRAMD1C	0.005695	350	526	PARP6	0.014007	73
527	MPP5	0.005719	295	527	SYN1	0.014011	762
528	ANKRD1	0.0057244	389	528	NKD2	0.014068	NA
529	C8orf46	0.0057371	480	529	ONECUT1	0.014119	NA
530	VN1R2	0.0057623	337	530	MYOM3	0.014134	NA
531	ZYG11A	0.0057665	1116	531	NARR	0.014149	NA
532	TRIML1	0.0057914	418	532	OR4K5	0.014171	NA
533	FANCD2	0.005797	1129	533	COG3	0.014171	1
534	ARPC1A	0.0058197	1036	534	OR6C76	0.014193	NA
535	HMOXI	0.0058275	514	535	NFIX	0.0142	469
536	AVL9	0.0058278	730	536	HIST1H2BF	0.014222	NA
537	C6orf62	0.0058278	99	537	HYAL2	0.014222	NA
538	CLDN11	0.0058378	319	538	PRR5	0.014238	NA
539	DACT3	0.0058674	139	539	STX8	0.014376	NA
540	BRK1	0.0058795	969	540	TC2N	0.014376	NA
541	OR2T2	0.0058833	NA	541	BRSK1	0.014524	381
542	SLC25A52	0.0058912	1093	542	RAB1B	0.01453	NA
543	BCKDK	0.0058939	997	543	DAZL	0.014568	NA
544	RAB15	0.0059115	744	544	CSDC2	0.014581	NA
545	MPPE1	0.0059208	733	545	PXDNL	0.014606	NA
546	PLA2G4E	0.0059272	712	546	POMK	0.014616	NA
547	ALDH1A1	0.0059311	644	547	GPR75	0.014633	581
548	PPIL3	0.0059354	242	548	CNOT6	0.014665	NA
549	MDH1B	0.0059488	548	549	MAGEB4	0.014684	NA

550	POC5	0.0059554	1016	550	PDLIM3	0.014732	NA
551	KIAA2018	0.0059564	531	551	CDH19	0.014735	NA
552	PSMG2	0.0059859	1020	552	RSF1	0.014762	NA
553	SOD3	0.0060259	398	553	PACS2	0.014791	93
554	SNX17	0.0060301	1077	554	IMMT	0.014806	652
555	PRELID1	0.0060345	1136	555	TDP1	0.014821	1124
556	CD177	0.006036	NA	556	AQP4	0.014838	NA
557	KLHL1	0.0060401	1041	557	VPS36	0.014851	NA
558	SECTM1	0.0060706	922	558	ROCK2	0.014918	347
559	ACHE	0.006081	277	559	CEP85L	0.01494	NA
560	RELA	0.0060825	897	560	CYP4F8	0.014948	NA
561	ACADS	0.0060861	1089	561	CNOT7	0.014992	111
562	JAM2	0.0060867	950	562	FSCB	0.014993	NA
563	AES	0.0060894	546	563	PLP1	0.015031	625
564	CLEC12B	0.0061054	41	564	OR8B12	0.015043	NA
565	L1TD1	0.0061076	678	565	TAX1BP3	0.015053	473
566	FOXD 4	0.0061106	892	566	PPAPDC3	0.015094	NA
567	TTC12	0.0061124	36	567	PRELID1	0.015197	1140
568	ACTL6B	0.0061191	393	568	ZNF580	0.015248	NA
569	GRIN2A	0.006127	538	569	NDRG1	0.015257	860
570	WBSCR27	0.0061378	612	570	COG7	0.015272	9
571	LOC100862671	0.0061435	NA	571	BMP2K	0.015299	NA
572	COL19A1	0.0061564	819	572	OR3A2	0.015333	NA
573	FLII	0.0061678	198	573	B3GNTL1	0.015363	774
574	TAS2R39	0.0061702	534	574	ZFYVE26	0.015386	933
575	DEFB125	0.0061882	128	575	PSMA3	0.015402	NA
576	ANKZF1	0.0061895	224	576	LRRC26	0.015453	NA
577	BYSL	0.0062037	692	577	ASAH2	0.015504	NA
578	EPSTII	0.0062411	786	578	DDX25	0.015523	170
579	SYT17	0.0062424	846	579	FCHO2	0.015607	16
580	FAM78B	0.0062637	42	580	NBEA	0.015637	NA
581	TGM7	0.0062776	1061	581	MASI	0.015691	538
582	DNAJC17	0.0062805	256	582	MB21D2	0.015806	970
583	PRICKLE3	0.0062928	923	583	SLCO4C1	0.015812	416
584	LOC643669	0.0062938	940	584	HOXB1	0.015829	466
585	MUC16	0.0063294	1075	585	TTYH1	0.015863	NA
586	OR10G3	0.0063294	NA	586	SEMA4B	0.015883	NA
587	DDB2	0.0063538	777	587	CCDC129	0.01591	NA
588	HEPACAM2	0.0063623	167	588	KLHL41	0.015966	NA
589	GRIA3	0.0063723	196	589	BOD1L1	0.015975	640
590	CCL26	0.0063827	864	590	GALK2	0.016017	NA
591	ZNF764	0.0063945	1069	591	TRMT1L	0.016068	NA
592	ABCA3	0.0063961	628	592	C9orf170	0.016119	282

593	HGS	0.006402	363	593	RMI2	0.016134	NA
594	$S G P P 2$	0.0064357	728	594	SEMA3F	0.016161	999
595	MCL1	0.0064457	1085	595	ZNF77	0.01617	NA
596	TMEM155	0.0064477	662	596	DYNC1I1	0.016207	NA
597	FAM53A	0.0064532	69	597	LOC100505841	0.016219	NA
598	DCUN1D2	0.0064691	551	598	NEURL2	0.016222	NA
599	GSX1	0.006475	683	599	KLK15	0.016273	NA
600	SNAP29	0.0064816	257	600	TMEM235	0.016277	425
601	C6orfl 36	0.0064994	103	601	SDK2	0.016316	460
602	TESPA1	0.0065014	443	602	C5orf15	0.016324	703
603	HDHD1	0.0065174	132	603	GLUD1	0.016375	693
604	CD2	0.00656	1013	604	PRDX2	0.016394	834
605	PADI6	0.0065783	NA	605	TMEM184C	0.01641	NA
606	PSEN1	0.0065853	213	606	TIPARP	0.016427	NA
607	TBCE	0.0065929	1112	607	DDX3Y	0.016473	655
608	AAED1	0.0066027	192	608	RC3H2	0.016478	577
609	CLPTMIL	0.0066184	967	609	PRSS35	0.016504	NA
610	PPIC	0.006643	65	610	FAM200B	0.016551	NA
611	FCER1A	0.0066431	276	611	RPS3A	0.016575	NA
612	NUSAP1	0.0066543	216	612	GLIPR1	0.01658	244
613	PELII	0.0066728	522	613	GLB1L	0.016582	520
614	DNAJB2	0.0067009	166	614	RBM24	0.016606	215
615	IZUMO4	0.006718	998	615	CCDC90B	0.016631	NA
616	ENG	0.0067216	550	616	SLIT1	0.016661	NA
617	ARHGEF19	0.0067348	218	617	TMPRSS5	0.016677	NA

EXPERIMENTAL PROCEDURES

Generation of GLUT reporter cell lines

HeLa cells, 293 T cells, and mouse preadipocytes (derived from inguinal white adipocyte tissues, a gift from Dr. Shingo Kajimura) were maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% FBS and penicillin/streptomycin. To differentiate into adipocytes, preadipocytes were cultured to $\sim 95 \%$ confluence before a differentiation cocktail was added to the following concentrations: $5 \mu \mathrm{~g} / \mathrm{mL}$ insulin (Sigma, \#I0516), $1 \mathrm{nM} \mathrm{T3} \mathrm{(Sigma}$, \#T2877), 125 mM indomethacin (Sigma, \#I-7378), $5 \mu \mathrm{M}$ dexamethasone (Sigma, \#D1756), and 0.5 mM IBMX (Sigma, \#I5879). After two days, the cells were switched to DMEM supplemented with $10 \% \mathrm{FBS}, 5 \mu \mathrm{~g} / \mathrm{mL}$ insulin, and $1 \mathrm{nM} \mathrm{T3}$. After another two days, fresh media of the same composition were supplied. Differentiated adipocytes were usually analyzed six days after addition of the differentiation cocktail.

To generate cell lines expressing the GFP-GLUT4-HA reporter, lentiviruses were produced by transfecting 293T cells with a mixture of plasmids including GFP-GLUT4-HA (Muretta et al., 2008) pAdVAntage (Promega, \#E1711), pCMV-VSVG, and psPax2. Lentiviral particles were collected 40 hours after transfection and every 24 hours thereafter for a total of four collections. Lentiviruses were pooled and concentrated by centrifugation in a Beckman SW28 rotor at 25,000 RPM for 1.5 hours. The viral pellets were resuspended in PBS and used to transduce HeLa cells and preadipocytes. HeLa cells expressing the reporter were enriched for the strongest responses to insulin using fluorescence activated cell sorting (FACS) on a MoFlo cell sorter (Beckman

Coulter). A clonal cell line with the strongest insulin response was used in the genetic screens. Mouse preadipocytes expressing the reporter were similarly generated except that pooled cell populations were used.

Flow cytometry analysis of insulin-triggered GLUT translocation

HeLa cells or adipocytes were washed three times with KRH buffer $(121 \mathrm{mM} \mathrm{NaCl}, 4.9 \mathrm{mM}$ $\mathrm{KCl}, 1.2 \mathrm{mM} \mathrm{MgSO} 4,0.33 \mathrm{mM} \mathrm{CaCl} 2$, and 12 mM HEPES [pH7.0]). After incubation in the KRH buffer for two hours, the cells were treated with 100 nM insulin for 30 minutes. When applicable, 100 nM wortmannin (Sigma, \#W1628) was added 10 minutes prior to insulin treatment. After insulin stimulation, the cells were rapidly chilled on an ice bath and their surface reporters were stained using anti-HA antibodies (BioLegend, \#901501) and allophycocyanin (APC)-conjugated secondary antibodies (eBioscience, \#17-4014). The cells were dissociated from the plates using Accutase (Innovative Cell Technologies, \#AT 104) and their APC and GFP fluorescence was measured on a CyAN ADP analyzer. Data from populations of $>5,000$ cells were analyzed using the FlowJo software. Statistical significance was calculated based on experiments run in triplicate.

Genome-wide CRISPR mutagenesis of HeLa reporter cells

HeLa cells expressing the GFP-GLUT4-HA reporter were mutagenized using the GeCKO V2 CRISPR Knockout Pooled Library (Addgene, \#1000000048), following previously described procedures with minor modifications (Marceau et al., 2016; Parnas et al., 2015; Sanjana et al.,

2014; Shalem et al., 2014; Sidik et al., 2016; Zhang et al., 2016). When delivered into targeted cells, Cas 9 and sgRNAs encoded by the library introduced loss-of-function indel mutations through non-homologous end joining (Cong et al., 2013; Doudna and Charpentier, 2014; Fu et al., 2014; Hart et al., 2015; Mali et al., 2013; Marceau et al., 2016; Xiong et al., 2016). Lentiviruses were produced by transfecting the GeCKO V2 library plasmids (Parts A and B) into 293 T cells using procedures similar to the generation of GFP-GLUT4-HA reporter cell lines. Starting at 48 hours after transfection, media containing lentiviruses were collected every 24 hours for a total of four collections. Lentiviral particles were pelleted in a Beckman SW28 ultracentrifuge rotor at 25,000 RPM for 1.5 hours. The lentiviral pellets were resuspended in PBS and stored at $-70^{\circ} \mathrm{C}$.

To test viral titers, one million HeLa cells were seeded into each well of a 12-well plate. The cells were spin infected by lentiviruses produced from the Part A or B of the CRISPR library at 2,000 RPM for two hours. The plate was subsequently transferred to a $37^{\circ} \mathrm{C}$ incubator. On the following day, the cells were dissociated and seeded in replicate wells of a 24 -well plate. Fresh media were supplied on the following day and $1 \mu \mathrm{~g} / \mathrm{ml}$ puromycin (Sigma, \#P8833) was added to half of the duplicate wells. After 24 hours, attached cells were washed once with PBS and counted using CountBright beads (Thermo, \#C36950) on a CyAN ADP analyzer. Numbers of cells in puromycin-treated wells were divided by those in the parallel untreated wells to calculate multiplicity of infection (MOI). Viral concentrations that yielded an MOI of ~ 0.4 were chosen for large-scale preparations.

In large-scale preparations, 45 million HeLa reporter cells were seeded for each part of the library. Small-scale replicates of these mutagenized populations were separately treated with puromycin and counted to verify the MOI. After puromycin treatment, the large-scale mutant populations were combined at a 1:1 ratio and frozen on the sixth day after viral transduction.

Genome-wide CRISPR screens

In each screen, 40 million mutagenized HeLa reporter cells were seeded at 1.2 million cells per $10-\mathrm{cm}$ dish. On the following day, the cells were incubated in KRH buffer for two hours. In the translocation defective screen, the cells were treated with 100 nM insulin for 30 minutes. In the constitutive translocation screen, the cells were left untreated. The dishes were subsequently chilled on an ice bath and the cells were stained with anti-HA antibodies and APC-conjugated secondary antibodies. After dissociation from the plates by Accutase, the cells were concentrated by centrifugation and sorted by FACS. The cells in the bottom 3\% of the APC channel were collected in the translocation defective screen while the top 1.2% of the cells were sorted in the constitutive translocation screen. The collected cells were expanded and sorted for another two rounds using the same fluorescence gating.

Illumina deep sequencing

Genomic DNA was isolated using a genomic DNA isolation kit (Thermo, \#K0721). The unsorted control population contained 50 million cells whereas each of the sorted populations contained five million cells. The isolated genomic DNA was used as template to amplify guide
sequences. In the first round of PCR, each reaction was performed in a total volume of $100 \mu \mathrm{~L}$ containing $10 \mu \mathrm{~g}$ genomic DNA and the following primers:

Forward: AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG
Reverse: AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG

The second round of PCR reactions was performed in a total volume of $50 \mu \mathrm{~L}$, using $5 \mu \mathrm{~L}$ of the PCR products from the first round as template. Of the 12 forward barcoded primers, six were used for the sorted populations and six were used for the unsorted control population. The barcoded forward primers (F01-12) and the reverse primer (R01) are listed below with barcodes highlighted in bold. Stagger sequences are shown to the 5^{\prime} of the barcode in lower case, while the priming sites are shown to the 3 ' of the barcode in lower case (Table 1.2).

PCR products were pooled, purified using a gel purification kit (Clontech, \#740609), and sequenced on an Illumina HiSeq2000 using 1x125 v4 Chemistry. Sequencing reads were demultiplexed and processed to contain only the $20-\mathrm{bp}$ unique guide sequences using the FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Readcount tables and gene enrichment analysis were performed using the MAGeCK algorithm (http://sourceforge.net/projects/mageck/).

Table 1.2: Illumina sequencing primers

F01	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTtAAGTAGAGtcttgtggaaaggacgaaacaccg
F02	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTatACACGATCtcttgtggaaaggacgaaacaccg
F03	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTgatCGCGCGGTtcttgtggaaaggacgaaacaccg
F04	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTcgatCATGATCGtcttgtggaaaggacgaaacaccg
F05	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTtcgatCGTTACCAtcttgtggaaaggacgaaacaccg
F06	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTatcgatTCCTTGGTtcttgtggaaaggacgaaacaccg
F07	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTgatcgatAACGCATTtcttgtggaaaggacgaaacaccg
F08	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTcgatcgatACAGGTATtcttgtggaaaggacgaaacaccg
F09	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTacgatcgatAGGTAAGGtcttgtggaaaggacgaaacaccg
F10	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTtAACAATGGtcttgtggaaaggacgaaacaccg
F11	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTatACTGTATCtcttgtggaaaggacgaaacaccg
F12	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTgatAGGTCGCAtcttgtggaaaggacgaaacaccg
R01	CAAGCAGAAGACGGCATACGAGATAAGTAGAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtTCTACTATTCTTTCCCCTGCACTGT

Pooled secondary CRISPR screens

We constructed a pooled secondary CRISPR library based on the guide sequences of an activityoptimized library (Wang et al., 2015). Ten sgRNAs were selected for each of the top 1,170 genes from the genome-wide genetic screens (598 genes from the translocation defective screen and 572 genes from the constitutive translocation screen). The secondary library also contained 1,000 non-targeting control sgRNAs. Oligonucleotides containing the guide sequences were synthesized by CustomArray and amplified by PCR using the following primers:

PCR products were ligated into the pLenti-CRISPR vector (addgene, \#49535) using a Gibson assembly kit (Synthetic Genomics, \#GA1200). pLenti-CRISPR vector was digested using BsmBI followed by alkaline phosphatase treatment and gel purification. Each Gibson assembly reaction contained 100 ng vector and 40 ng PCR products in triplicate. The reactions were subsequently dialyzed against deionized water and transformed into electrocompetent E. coli cells (Lucigen, \#60242). E. coli colonies were counted to ensure $>20 \mathrm{x}$ coverage of the library. HeLa cells expressing the GLUT reporter were mutagenized by the secondary CRISPR library and sorted as described in the primary screens.

CRISPR-Cas9 genome editing of candidate genes

To edit a candidate gene, two independent guide sequences were selected within the early constitutive exons of the gene (Table 1.3). Oligonucleotides containing one guide sequence were cloned into the pLenti-CRISPR-V2 vector (Addgene, \#52961) as we previously described (Davis et al., 2015). Oligonucleotides containing the other guide sequence were cloned in a modified version of the CRISPR vector in which the puromycin selection marker was replaced with a hygromycin selection marker (pLenti-CRISPR-Hygro). Lentiviruses produced from the CRISPR plasmids were used to infect target cells. The infected cells were consecutively selected using 1 $\mu \mathrm{g} / \mathrm{mL}$ puromycin and $500 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin B (Thermo, \#10687010). Supplementary Table 7 lists the gRNAs used to edit individual genes.

Table 1.3 gRNAs used in individual CRISPR KO experiments

Species	Gene	Target 1	Target 2
mouse	Exoc7	GGCACTGACGCAGTGAATGT	ATGGCGGATGATGGCTTTCC
mouse	Rabif	GAACGAGCTCGTGTCAGCCG	CATGAGAAAGAAGCCAGATC
mouse	Rab10	CCACTCCCGAGTCCCCGATC	GTTCTCAAAGCTTTTACCGT
mouse	$V p s 35$	AAAGTTTTTCCTGCTCATCC	TTACCAGGCATCTTTTCATC
mouse	Ankrd13d	GTGGCTCTCTTTGCCCACGT	CCCTCTGGAAGTCCCGATAC
mouse	Osbpl8	TCTCCCAAAGGTTTTGAAAG	GGAAAGATGAGTCAGCGCCA
mouse	Osbpl10	CCAGGACCTGCTTCTCCTGA	CCGCCAGTGCCAACATAACA
mouse	Tbcld4	AGCCGGAAGCGCTTGTCGCC	ATCTGTGACTCGGGGTCGTC
mouse	Ap2s1	CCGGGCAGGCAAGACGCGCC	GGATGTCAACGACAACAATC
mouse	Aagab	GCTAGCTGAGGTGATGATCC	CAACTTCCAGCGATGCTGTG
human	AP2S1	GCGTCTTGCCTGCCCGGTTC	GGTCCAGTTCACAGACATTG
human	AAGAB	CAGCTGGTCTCCTGAGAAGA	GCAGTAACAAGAAATTTGTT
human	$R A B I F ~$	GCACCCGGGAGCCGCAACGC	TCCTGGAGGAGATCGCCGTC
human	$R A B 10$	CCTGATCGGGGATTCCGGAG	ATCAAAACAGTTGAATTACA
human	TBClD4	AAGTCAGCCAGGTCCTCTCC	CTGGGTCATCCTCCCCAGAC

Chapter 2

AAGAB regulates Adapter protein 2 complex formation on the plasma membrane

Introduction

In the constitutive translocation screen we sought to generate a list of all proteins whose loss resulted in constitutive translocation of the GLUT reporter to the cell surface. One prominent class of genes identified in this screen were those predicted to be involved in the endocytosis of GLUT4. There are four main forms of endocytosis: clathrin-mediated endocytosis, caveolae, macropinocytosis, and phagocytosis. In our screen, we recovered genes involved in clathrinmediated endocytosis, which is consistent with previous reports indicating GLUT4 internalization is dependent on clathrin-mediated endocytosis. Among the genes identified were the adapter protein complex 2 constitutes, AP2S1 and AP2M1 and a known binding partner AAGAB.

Clathrin mediated endocytosis

Clathrin-mediated endocytosis occurs through five steps: nucleation, cargo selection, clathrin coat assembly, vesicle scission, uncoating and recycling (McMahon and Boucrot, 2011). Initially, during nucleation, there is a slight membrane invagination concurrent with the assembly of the nucleation module which includes FCH domain only (FCHO) proteins, EGFR pathway
substrate protein (EPS15) and intersectins (McMahon and Boucrot, 2011). Subsequently, during cargo selection, adaptor protein 2 (AP2) is recruited to the site of endocytosis. AP2 can bind directly to the membrane through a phosphatidylinositol-4,5-bisphosphate (PIP2) binding domain, and interacts directly with cargo through its μ-subunit (Bonifacino and Glick, 2004). Next, the clathrin coat assembles into a lattice that helps to stabilize the membrane's curvature. It is thought that some accessory proteins such as EPS15 move to the periphery where the curvature is most dramatic, thus stabilizing the expanding invaginated membrane bud (Tebar et al., 1996). BAR domain-containing proteins then bind to the severe curvature at the neck of the developing vesicle where they recruit dynamin (Ferguson et al., 2009). It is thought that GTP hydrolysis of dynamin causes a conformational change, which results in the scission of the vesicle (Stowell et al., 1999). Once scission has occurred, the clathrin coat is disassembled by ATPase heat shock cognate 70 (HSC70) (Böcking et al., 2011). This allows the uncoated vesicle to be competent for fusion with the endosome and the clathrin coat and accessory proteins to be recycled for another round of endocytosis.

$A A G A B$ mutation in human disease

AAGAB was first identified in a yeast-2-hybrid experiment that used the γ-adaptin subunit of AP1 as bait (Page et al., 1999b). Although AAGAB was shown to bind both AP1 and AP2 complex no further progress was made on the function of AAGAB (Page et al., 1999b). Later, the disease-causing locus of a collection of families with autosomal dominant palmoplantar keratoderma (PPK) was mapped to $A A G A B$ (Pohler et al., 2012). PPK is hereditary skin disorder resulting in thickening of the epidermis on the palms and the soles of the feet. Onset occurs in
the first twenty years of life and is first noticeable with the development of small growths on the palms and soles. As the disease progresses these growths converge resulting in larger lesions (Pohler et al., 2012) (Fig 2.1).

Figure 2.1 Phenotype observed in patients with loss of function mutation in AAGAB. (Pohler et al., 2012)

$A A G A B$ KO results in trafficking defect and acts downstream of insulin signaling

Given that AAGAB was among the highest scoring genes we identified, its known association with human disease, and its unknown function, we decided to investigate the molecular mechanism of AAGAB. KO of $A A G A B$ using CRISPR-Cas9 strongly increased the basal surface levels of GLUT reporter in both HeLa cells and adipocytes (Figs. 2.2a, 2.3a,b). Insulin-induced AKT phosphorylation was intact in $A A G A B$ KO cells (Fig 2.2b), suggesting that AAGAB acts downstream of insulin signaling.
a

a

Figure 2.3: $A A G A B$ KO results in GLUT4 plasma membrane localization.
a. Normalized surface levels of the GLUT reporter in WT or mutant adipocytes were measured by flow cytometry. Error bars indicate standard deviation. b, Confocal images showing the surface or intracellular localization of GFP-GLUT4 in WT or mutant adipocytes. Bar: $10 \mu \mathrm{~m}$. Imaging was performed by Jingshi Shen.

$A A G A B$ KO results in an endocytosis defect

We hypothesized that AAGAB mutation disrupts the retrieval of cargo proteins through clathrinmediated endocytosis (CME). Indeed, using a fluorescent antibody-based endocytosis assay, we observed that the endocytosis of the GLUT reporter was abolished in $A A G A B$ KO cells or in cells deficient in $A P 2 S 1$ (Fig. 2.4), which encodes the σ subunit of the AP2 adaptor. Thus, AAGAB is crucial to the endocytic retrieval of the GLUT reporter.

Figure 2.4: $A A K A B$ KO disrupts endocytosis.
Relative endocytosis was measured by flow cytometry using fluorescent antibodies against GLUT4 and measuring increased fluorescence over time.

AAGAB regulates AP2 adaptor formation on the plasma membrane

To further determine the molecular mechanism of AAGAB, we examined whether AAGAB may regulate AP2 adaptor complex formation on the plasma membrane, a key step in CME (Brodsky, 2012; Martens and McMahon, 2008; Traub and Bonifacino, 2013). Confocal imaging of wildtype (WT) cells using anti- α-adaptin antibodies revealed abundant AP2 puncta on the cell surface (Fig. 2.5a). Strikingly, AP2 puncta disappeared in $A A G A B$ deficient cells (Fig. 2.5a). Total internal reflection fluorescence microscopy (TIRFM), which selectively visualizes events near the plasma membrane, confirmed that AP2 puncta were eliminated in $A A G A B \mathrm{KO}$ cells (Fig. 2.5 b). These data suggest that AAGAB is essential to the formation of AP2 adaptor complex on the plasma membrane. Furthermore, the total cell levels of α-adaptin was decreased in $A A G A B$ KO cells (Fig. 2.6). Overexpression of α-adaptin was able to rescue GLUT4 internalization (Fig. 2.7) demonstrating that $A A G A B$ is not directly required for CME. Although AAGAB interacts with α-adaptin, they did not show significant co-localization in the cell (Fig. 2.8), suggesting that AAGAB regulates AP2 adaptor formation via transient interactions. AAGAB also binds to γ adaptin, a subunit of the AP1 adaptor required for clathrin-mediated transport from the transGolgi to the lysosome (Page et al., 1999a). However, lysosomal morphology (based on LAMP1 staining) was not impaired in $A A G A B$ KO cells (Fig. 2.9), suggesting that the function of AAGAB is dispensable for AP1-dependent cargo transfer.

a

Figure 2.5: AAGAB regulates AP2 formation on the plasma membrane.
a. Representative confocal images showing the localization of α-adaptin and GLUT reporter in WT or mutant HeLa cells. Bar: $10 \mu \mathrm{~m}$. b. Representative TIRFM images showing the localization of α-adaptin in WT or mutant HeLa cells. Bar: $10 \mu \mathrm{~m}$. Imaging was performed by Jingshi Shen.

Figure 2.6: AAGAB regulates total α-adaptin levels.
Immunoblots showing total cell α-adaptin levels in WT, $A P 2 S 1 \mathrm{KO}$ and $A A G A B \mathrm{KO}$ cells.

Figure 2.7: α-adaptin overexpression partially rescues AAGAB KO.
Normalized surface levels of the GLUT reporter in WT or mutant adipocytes with or without α adaptin were measured by flow cytometry. Error bars indicate standard deviation.

Figure 2.8: AAGAB does not colocalize with α-adaptin.
AAGAB-V5 was transiently expressed in HeLa cells. The cells were either untreated or treated with 100 nM insulin for 30 minutes before AAGAB-V5 and α-adaptin were stained and visualized by confocal microscopy. Bar: $10 \mu \mathrm{~m}$. Imaging was performed by Jingshi Shen.

Figure 2.9: LAMP1 trafficking is intact in $A A G A B$ KO cells.
Representative confocal images showing the localization of LAMP1 and GLUT reporter in WT or mutant HeLa cells. Bar: $10 \mu \mathrm{~m}$. Imaging was performed by Jingshi Shen.

Surface proteomics identifies many cargo similarly regulated by $A A G A B$ or $A P 2 S 1$ KO

Finally, we used mass spectrometry (MS)-based proteomics to identify cargo proteins regulated by AAGAB. Cell surface proteins were biotinylated, purified and analyzed by MS. Surface levels of many proteins such as TFRC (transferrin receptor), a known CME cargo (Conner and Schmid, 2003; Page et al., 1999a), were markedly elevated in $A A G A B$ KO cells (Fig. 2.10a, Table 2.1). Other surface proteins such as FAS and PVR were not significantly affected in $A A G A B$ KO cells (Fig. 2.10a, Table 2.1). Using flow cytometry, we confirmed that the surface levels of TFRC were strongly elevated in $A A G A B$ KO cells, whereas FAS and PVR remained unchanged (Fig. 2.10b). The ability of AAGAB to regulate a large number of cargo proteins is in agreement with its crucial role in AP2-dependent CME. To further validate that AAGAB functions by regulating AP2 complex subunits we compared the surface proteomics of $A A G A B$ KO cells to AP2S1 KO cells. Overall, many of the quantified proteins were similarly affected by either $A A G A B$ or $A P 2 S 1$ knockout (Table 2.1). Together, these data demonstrate that AAGAB plays an essential role in CME by regulating AP2 adaptor formation on the plasma membrane. Thus, our unbiased CRISPR screens allowed us to uncover a new component even in the extensively investigated CME pathway.

A

D

Figure 2.10 $A A G A B$ KO effects the cellular localization of endogenous CME cargo.
a. Proteomic analysis of surface proteins in $A A G A B$ KO cells. Top 20 proteins with greatest increases in surface levels are shown. FAS and PVR are included as representative cargo proteins not affected in $A A G A B$ KO cells. Average values of two technical replicates are shown. For proteins quantified only in one replicate, the values are shown without error bars. Dashed line indicates the basal levels in WT cells. b. Normalized surface levels of the indicated molecules in WT or mutant HeLa cells (FAS and PVR) or adipocytes (TFRC) were measured by flow cytometry. Error bars indicate standard deviation. n.s.: not significant.

Discussion

AAGAB was one of the strongest scoring genes observed in our constitutive translocation screen. Validation in both HeLa cells and adipocytes confirmed that AAGAB knockout was one of the most severe phenotypes of all genes we have tested to date. AAGAB loss of function causes type I punctate palmoplantar keratoderma (PPKP1) through an unknown mechanism. Together, this made $A A G A B$ a strong candidate for mechanistic study. In this work we have demonstrated that AAGAB functions by regulating the surface localization of the AP2 complex, thereby regulating CME.

Further work is needed to clarify which CME cargos contribute to the development of PPKP1. In the Nature Genetics paper (and in later work from other labs), Pohler et al. provide strong evidence that AAGAB is the causal mutation; however, to date the mis-regulated cargo causing the disease is still unresolved (Pohler et al., 2012). Pohler et al. suggested that AAGAB mutation drives constitutive surface localization of EGFR, which leads to constitutive EGFR signaling. Our proteomics analysis in either $A A G A B K O$ or $A P 2 S 1$ KO did not reveal an EGFR trafficking defect in HeLa cells, though this does not exclude a defect in other cell types such as keratinocytes. Additionally, our assay may not have captured all changes in surface localization.

In our surface proteomics experiments we set out to identify all endogenous CME cargo. Surprisingly, although surface expression was changed for a large number of proteins, only a small subset of those proteins showed a dramatic change. This could be due to technical limitations of our experiment, redundancy of endocytic pathways for the majority of CME cargo,
or the relative rate of recycling amongst the CME cargo. Among the proteins whose surface localization was dramatically increased in the absence of either $A P 2 S 1$ or $A A G A B$ was TFRC, which is known to have a very high recycling rate between the plasma membrane and the endosome. Another protein with a high surface expression change with the loss of AP2S1 was amlyoid beta precursor protein like 2 (APLP2). APLP2 has heparin, copper, and zinc binding domains, but its recycling rate and molecular role remains unclear. It would be interesting to test if APLP2 has a rapid recycling rate similar to TFRC. Another surprising result from our surface proteomics experiments were the large number of proteins not previously predicted to be CME cargo. Many of the proteins localize to a wide array of cellular organelles. Further work is needed to validate these candidates as bona fide CME cargo, but if confirmed this would underline the vast dynamics of the secretary pathway in regulating cellular localization.

Table 2.1: Surface proteomics for either $A P 2 S 1$ or $A A G A B$ KO

Gene	Expression level AP2S1:WT	Rank Raspression level AAGAB:WT	Rank	
APLP2	NA	NA	8.8855	1
TFRC	3.1995	1	7.4854	2
KMT2C	NA	NA	6.8903	3
LINGO2	NA	NA	4.4446	4
TPBG	NA	NA	4.0023	5
SET	NA	NA	2.8679	6
SLC38A1	2.0594	10	2.85935	7
ALYREF	2.352	3	2.74365	8
SLC39A14	2.4664	2	2.6114	9
PTPRJ	2.0932	7	2.5247	10
RTN4	NA	NA	2.51865	11
MTX2	NA	NA	2.4608	12
WLS	NA	NA	2.45445	13
CSRP2	NA	NA	2.3802	14
TAF15	1.168	186	2.3656	15
BCAP31	NA	NA	2.32595	16
NISCH	NA	NA	2.2193	17
ANXA1	NA	NA	2.2177	18
GPR56	NA	NA	2.1898	19
TNFSF9	1.3933	56	2.1816	20
FH	NA	NA	2.1688	21
ANXA4	NA	NA	2.1563	22
LMAN1	NA	NA	2.1533	23
FLOT1	NA	NA	2.1392	24
SLC2A4	1.2517	111	2.12695	25
CD97	1.451	39	2.11725	26
GNAS;GNAL	NA	NA	2.1168	27
PSME3	1.3661	65	2.1003	28
NPR3	NA	NA	2.1	29
CPOX	NA	NA	2.0844	30
P4HB	1.6468	19	2.0827	31
HSPE1;HSPE1-		NA	NA	2.079

MCM4	NA	NA	2.0477	35
HDGF	NA	NA	2.0265	36
LGALS3BP	1.7202	15	2.0225	37
PODXL	1.155	217	2.0018	38
HSD17B4	NA	NA	1.9972	39
MCM2	0.88049	752	1.9918	40
CLU	NA	NA	1.9561	41
CKMT1B;CKMT1A	NA	NA	1.9556	42
PDIA3	1.757	13	1.9531	43
PHB	1.4148	49	1.9346	44
COLGALT1	NA	NA	1.9251	45
CPS1	1.2422	120	1.92395	46
PHB2	1.3242	76	1.92	47
AIFM1	NA	NA	1.9195	48
PCDH1	NA	NA	1.9193	49
NRP1	NA	NA	1.8896	50
YES1;FYN	NA	NA	1.8886	51
PRKCSH	NA	NA	1.88165	52
LONP2	NA	NA	1.8813	53
COX4I1	NA	NA	1.8753	54
ACTN4	NA	NA	1.8724	55
NCSTN	1.4684	35	1.8555	56
YTHDC2	NA	NA	1.8423	57
AP2M1	0.54299	908	1.8353	58
PSG11	NA	NA	1.8352	59
LDLR	NA	NA	1.8233	60
NCL	1.362	66	1.82225	61
PDIA4	NA	NA	1.8198	62
EBP	NA	NA	1.8164	63
GANAB	1.6908	16	1.81255	64
$\begin{aligned} & \text { HNRNPA1;HNRNP } \\ & \text { A1L2 } \\ & \hline \end{aligned}$	1.5029	29	1.8087	65
FLOT2	NA	NA	1.802	66
SPTBN1	NA	NA	1.789	67
HSP90B1	1.4508	40	1.78845	68
CALR	NA	NA	1.7807	69
TPM4;TPM2	NA	NA	1.7748	70
TKT	1.1688	183	1.768	71
SSB	NA	NA	1.76095	72
CYB5R3	NA	NA	1.7596	73
SLC1A1	NA	NA	1.7586	74

SAMM50	1.3172	81	1.7558	75
$\begin{aligned} & \text { GNAI3;GNAI1;GN } \\ & \text { AO1;GNAI2 } \\ & \hline \end{aligned}$	NA	NA	1.7503	76
TNFRSF10A	NA	NA	1.7468	77
PDIA6	1.3854	60	1.74675	78
AK2	2.2591	4	1.74465	79
MDH2	NA	NA	1.733	80
ERP29	NA	NA	1.7219	81
HNRNPR	0.78117	853	1.7216	82
NCLN	NA	NA	1.7204	83
HNRNPAB	NA	NA	1.7131	84
UQCRC1	NA	NA	1.7048	85
RCN1	1.3945	55	1.6962	86
HDAC2;HDAC1	NA	NA	1.69	87
ATAD3A;ATAD3B	1.1393	242	1.68515	88
HSPD1	1.2599	106	1.68215	89
ANXA6	1.9326	12	1.676	90
ACLY	NA	NA	1.676	91
PTGES2	NA	NA	1.6743	92
FUBP1	NA	NA	1.66805	93
PDCD6	NA	NA	1.6667	94
PTPN1	NA	NA	1.6653	95
GEMIN5	0.98055	577	1.6638	96
SFXN1	1.267	101	1.65985	97
RAB7A	NA	NA	1.6575	98
ULBP2;RAET1G;R AET1L	NA	NA	1.6532	99
PHGDH	0.99869	533	1.6498	100
CAV1	NA	NA	1.6449	101
SLC25A4	NA	NA	1.6424	102
GART	NA	NA	1.6365	103
HNRNPA1	NA	NA	1.6318	104
HNRNPUL1	1.2718	98	1.626	105
PCNA	1.094	317	1.6255	106
CLPTM1L	NA	NA	1.6221	107
ANXA6	1.9326	12	1.619	108
GPR89B;GPR89A; GPR89C	NA	NA	1.6182	109
VCP	1.4419	42	1.6175	110
UGGT1	NA	NA	1.6114	111
RPN2	1.4585	37	1.6107	112
ZC3HAV1	1.0626	386	1.60595	113

MYBBP1A	0.95174	646	1.6046	114
CHCHD3	1.3198	79	1.6014	115
CBX3	1.0319	453	1.59985	116
HMMR	1.1412	238	1.5994	117
GOT2	NA	NA	1.5966	118
MTCH2	1.2277	133	1.5905	119
PDIA3	1.757	13	1.58695	120
NENF	NA	NA	1.5796	121
SURF4	1.0608	390	1.57685	122
PABPC4	1.3403	73	1.5742	123
UBA1	0.75625	862	1.5715	124
NOP9	NA	NA	1.5707	125
DDB1	NA	NA	1.567	126
BAG2	1.1034	302	1.56535	127
SPTAN1	1.3853	61	1.5637	128
STT3A	NA	NA	1.5636	129
CANX	2.0793	8	1.5587	130
CD81	1.1597	208	1.5557	131
PRPF19	1.2127	146	1.5515	132
HLA-B	0.44627	917	1.5448	133
MATR3	1.1228	266	1.54305	134
PSMD13	NA	NA	1.543	135
ACTN4;ACTN1	NA	NA	1.5427	136
S100A4	NA	NA	1.54	137
SIGMAR1	1.2569	107	1.5362	138
CD320	NA	NA	1.534	139
CAD	1.0312	456	1.527	140
ASNS	NA	NA	1.5263	141
VDAC2	1.3466	69	1.52625	142
HSD17B11	NA	NA	1.5259	143
SLC31A1	NA	NA	1.5218	144
POR	0.68754	888	1.5194	145
NUP155	1.2897	94	1.5192	146
PFDN2	NA	NA	1.5103	147
SERPINH1	1.1509	226	1.50725	148
IMMT	1.1945	161	1.5069	149
HNRNPA0	1.0288	463	1.5068	150
ATP5B	1.0315	454	1.5052	151
ESYT2	NA	NA	1.5019	152
PUM1	NA	NA	1.5005	153
MBOAT7	NA	NA	1.5002	154

EXPERIMENTAL PROCEDURES

Endocytosis assay

HeLa cells were incubated with the KRH buffer for two hours prior to treatment with 100 nM insulin for 30 minutes. The plates were then transferred to a $37{ }^{\circ} \mathrm{C}$ water bath and, where appropriate, treated with $200 \mu \mathrm{M}$ Dynasore (Sigma, \#D7693) for five minutes. After addition of $5 \mu \mathrm{~g} / \mathrm{mL}$ anti-HA antibodies, the cells were incubated at $37{ }^{\circ} \mathrm{C}$ for another five minutes. The cells were then washed with a wash buffer (KRH buffer supplemented with 5% FBS) and dissociated from the plate using Accutase. The cells were then fixed by 2% paraformaldehyde (PFA) for 15 minutes at room temperature. After washing with wash buffer, the cells were incubated with APC-conjugated anti-mouse antibodies at room temperature for one hour in the KRH buffer supplemented with 2% FBS and 0.2 \% saponin (Sigma, \#47036). Subsequently the cells were washed and analyzed on a Cyan ADP Analyzer. Endocytosis Index was calculated using the following formula: $(\alpha-\delta) / \delta$, where α is the mean fluorescence of the wells without dynasore treatment whereas δ is the mean fluorescence of the dynasore-treated wells.

Immunoblotting

Cells grown in 24-well plates were lysed in 1x SDS protein sample buffer and the cell lysates were resolved on 8% Bis-Tris SDS-PAGE. Proteins were detected using primary antibodies and
horseradish peroxidase-conjugated secondary antibodies. Primary antibodies used in immunoblotting were: anti-AKT antibodies (Cell Signaling Technology, \#9272), anti-phosphoAKT antibodies (Cell Signaling Technology, \#5473), anti- α-adaptin antibodies (BD Biosciences, \#610502), anti- α-tubulin antibodies (eBioscience, \#14-4502-82),

Immunostaining and imaging

HeLa cells were seeded on coverslips coated with fibronectin (Sigma, \#F1144). The cells were fixed using 2\% PFA and permeabilized in PBS supplemented with 5% FBS and 0.2% saponin. Antigens were stained using the following primary antibodies: anti- α-adaptin antibodies (Thermo, \#MAL-064), anti-LAMP1 antibodies (SCBT, clone H5G11), anti-Myc antibodies (SCBT, clone\#9E10), anti-FLAG antibodies (Sigma, \#F7425), anti-V5 antibodies, anti-CD47 antibodies (eBioscience, \#14-0479-82), anti-CD95 antibodies (eBioscience, \#14-0959-80), and anti-PVR antibodies (BioLegend, \#337602). The cells were subsequently incubated with Alexa Fluor 488- or Alexa Fluor 568-conjugated secondary antibodies. After mounting on glass slides using the ProLong Antifade mountant with DAPI (Thermo, \#P36931), the cells were visualized on a Carl Zeiss LSM780 confocal microscope. Cell images were captured and processed using the Carl Zeiss Zen 2 and Adobe Photoshop software. To visualize the GFP-GLUT4-HA reporter in adipocytes, the cells were fixed and permeabilized similarly to HeLa cells.

In TIRF imaging, cells grown on Delta T dishes (Bioptechs, \#04200417B) were fixed and stained in a similar way as in confocal imaging. The cells were submerged in the PBS-based Citifluor AF3 anti-fade solution (EMS, \#17972-25) and visualized on a Carl Zeiss Observer Z1
microscope equipped with a Stable Z heating system (Bioptechs) for maintenance at $37^{\circ} \mathrm{C}$. The TIRF angle was set at 66° for Alexa Fluor 488 fluorescence and 68° for Alexa Fluor 568 fluorescence.

Surface proteomics

Quantitative proteomic analysis of protein levels was performed using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS). Cells were grow in SILAC media (Thermo, \#88423) supplemented with 10% dialyzed FBE (Seradigm, \#3100). WT HeLa cells were grown in the presence of light lysine and arginine (Sigma, \#L1262 and A5131), whereas AAGAB or AP2S1 KO cells were grown in the presence of heavy lysine and arginine (Cambridge Isotope Laboratories, \#CNLM-291 and CNLM-539). After five days, surface proteins were biotinylated prior to the cells being harvested at $\sim 60 \%$ confluence in a lysis buffer (4\% SDS and 50 mM Tris- $\mathrm{HCl}[\mathrm{pH} 6.8])$. Surface proteins were biotinylated by incubation with $1 \mathrm{mg} / \mathrm{mL}$ Sulfo-NHS-biotin (Thermo, \#21217) for 20 minutes at $4{ }^{\circ} \mathrm{C}$ prior to quenching with 100 mM glycine and subsequent lysis in IP buffer (25 mM Tris- $\mathrm{HCl}[\mathrm{pH} 7.4], 150 \mathrm{mM} \mathrm{NaCl}, 1$ mM EDTA, 1% NP-40, 5% glycerol, and a protease inhibitor cocktail). Protein content from WT and AAGAB or AP2S1 KO cell lysates were quantified by Bradford assay and combined in equal proportion prior to immunoprecipitation with streptavidin-paramagnetic beads (Promega, Z5482). Streptavidin-biotin binding was carried out overnight at $4{ }^{\circ} \mathrm{C}$. Beads were washed twice with IP buffer, twice with IP buffer with NaCl level adjusted to 500 mM , and twice with TE buffer. Beads were boiled in lysis buffer (4\% SDS and 50mM Tris-HCl [pH 6.8]) prior to mass spectrometry analysis.

The cell lysates were processed for MS analysis following the filter-aided sample preparation (FASP) protocol (Erde et al., 2014; Wisniewski et al., 2009). Briefly, after addition of 20 mM DTT, equal amounts of whole-cell lysates were mixed and loaded onto a spin filter with a molecular weight cutoff of 30 kDa . The sample was then washed with the UA solution (8 M Urea and 0.1 M Tris- $\mathrm{HCl}[\mathrm{pH} 7.9])$ and alkylated using 0.1 M iodoacetamide. The sample was further washed with the UA solution and equilibrated with 0.1 M ammonium bicarbonate and 0.01% deoxycholic acid. The sample was then digested using $1 \%(\mathrm{w} / \mathrm{w})$ trypsin at $37{ }^{\circ} \mathrm{C}$ for 16 hours. The resulting tryptic peptides were eluded by centrifugation, and acidified using formic acid. Deoxycholic acid was removed using phase transfer with ethyl acetate. The tryptic peptides were fractionated by a Pierce high pH reversed-phase spin column using 18 step gradients (4% acetonitrile for the first fraction, 1% increment for each fraction to the $17^{\text {th }}$ fraction, and 50% acetonitrile for the $18^{\text {th }}$ fraction). The fractions were dried using vacuum centrifugation.

One third of each fraction $(5 \mu \mathrm{~L})$ from high pH fractionation was analyzed by UPLC-MS/MS. The tryptic peptides were loaded onto a Waters nanoACQUITY UPLC BEH C18 column (130 \AA, $1.7 \mu \mathrm{~m} \times 75 \mu \mathrm{~m} \times 250 \mathrm{~mm}$) equilibrated with 0.1% formic acid $/ 3 \%$ acetonitrile/water. Mobile phase A was 0.1% formic acid/water, while B was 0.1% formic acid/acetonitrile. The peptides were eluted at $0.3 \mathrm{~mL} / \mathrm{min}$ using a gradient of $3-8 \% \mathrm{~B}$ ($0-5$ minutes) and $8-35 \% \mathrm{~B}(5-123$ minutes).

Precursor ions between $300-1800 \mathrm{~m} / \mathrm{z}$ (1×10^{6} ions, 60,000 resolution) were scanned on a LTQ Orbitrap Velos mass spectrometer. The 10 most intense ions for MS/MS were selected with 180second dynamic exclusion, 10 ppm exclusion width, with a repeat count $=1$, and a 30 -second
repeat duration. Ions with unassigned charge state and $\mathrm{MH}+1$ were excluded from MS/MS. Maximal ion injection times were 500 milliseconds for FT (one microscan) and 250 milliseconds for LTQ, and the AGC was 1×10^{4}. The normalized collision energy was 35% with activation Q 0.25 for 10 milliseconds.

Raw data files from MS were searched against the Uniprot human proteome database (Consortium, 2015) (total 88,479 entries), using the MaxQuant/Andromeda search engine (version 1.5.2.8) (Cox et al., 2011). Searches allowed trypsin specificity with two missed cleavages, and included fixed Cys carbamidomethylation, and variable acetylation (protein N terminus) and methionine oxidation. Mass tolerances were set to 20 ppm (first search) and 4.5 ppm (main search) for precursor ions, and 0.5 Da for ITMS MS/MS ions. MaxQuant/Andromeda used the top $8 \mathrm{MS} / \mathrm{MS}$ peaks per 100 Da and seven amino acid minimum peptide length, with 0.01 false discovery rate for both protein and peptide identification. For SILAC ratio measurements, minimum two independent peptide ratios were used to calculate a protein ratio.

Chapter 3

RABIF regulates RAB10 expression

Introduction

In the translocation defective screens we sought to generate a list of all genes whose protein products positively regulate insulin stimulated GLUT4 exocytosis. In this screen we identified nearly all known positive regulators including members of the insulin signaling pathway, the exocyst complex, and RAB10, which is thought to be the main RAB regulating insulin stimulated GLUT4 exocytosis. Since RAB10 could be considered an inflection point in the pathway, where the insulin signaling pathway converges to initiate vesicle trafficking, we expected to recover regulators of RAB10. We did not recover the Rab10 GEF, Dennd4c, which is consistent with the current model which suggests that there is redundancy among the Dennd4 family. One protein we did recover that is known to interact with RAB10 was RABIF.

RABIF KO results in defective insulin response

RABIF/MSS4 (not the lipid kinase MSS4) is a 14 kDa soluble protein that has been predicted to act as a Rab GEF, but its biological function and molecular mechanism remain unknown (Wixler et al., 2011; Zhu et al., 2001). KO of RABIF strongly reduced insulin-triggered GLUT4 translocation in both adipocytes and HeLa cells (Figs. 3.1, 3.2). Insulin signaling was intact (Fig.
3.3a) suggesting that RABIF acts downstream of insulin signaling. Furthermore, surface levels of insulin receptor were not affected, suggesting that insulin receptor moves to the plasma membrane via a distinct route (Fig. 3.4b).

a

b

Figure 3.1: RABIF KO results in decreased insulin response.
WT or mutant adipocytes were untreated or treated with 100 nM insulin for 30 minutes before surface levels of GLUT reporter were measured by flow cytometry. When applicable, 100 nM wortmannin was added prior to insulin treatment. Error bars indicate standard deviation. a, HeLa cells. b, Adipocytes.

Figure 3.2: RABIF KO results in decreased insulin response.
WT or RAFIF-deficient adipocytes were either untreated or treated with 100 nM insulin for 30 minutes before the localization of the GLUT reporter was visualized by confocal microscopy. Bar: $10 \mu \mathrm{~m}$. Data generated by Jingshi Shen.

Figure 3.3: Rabif acts downstream of insulin signaling to regulate GLUT4 exocytosis. A. Immunoblots showing total AKT and insulin-stimulated AKT phosphorylation in WT or mutant HeLa cells. B. Normalized surface levels of insulin receptor in WT or mutant adipocytes. Error bars indicate standard deviation.

RABIF interacts with RAB10 and prevents RAB10 degradation

RABIF was identified in the same screen as RAB10 (Figs. 1.7, 1.12), an established mediator of exocytic vesicle fusion in GLUT translocation (Figs. 1.2, 1.10a) (Sano et al., 2007). We observed that RABIF interacted with RAB10 both on membranes and in solution (Fig. $3.4 \mathrm{a}, \mathrm{b}$). Furthermore, RABIF and RAB10 exhibited partial co-localization in the cell (Fig. 3.4c). These data raise the possibility that RABIF directly regulates RAB10 in GLUT translocation. Interestingly, RAB10 protein levels were strongly reduced in RABIF KO cells (Fig. 3.5). Treatment with proteasomal inhibitors restored RAB10 expression in RABIF KO cells (Fig. 3.5), indicating that RAB10 is subject to proteasomal degradation in the absence of RABIF. This is an unexpected finding because no GEF was previously shown to regulate the stability of cognate Rab GTPases.

Figure 3.4: RABIF interacts with RAB10.
A. Top: diagram of the liposome co-flotation assay. Bottom: coomassie blue-stained denaturing gels showing the interaction between RABIF and RAB10 in the liposome co-flotation assay. PF: protein free. B. RABIF-FLAG was transiently expressed in RABIF KO HeLa cells. RABIF-FLAG was immunoprecipitated using anti-FLAG antibodies and the presence of RABIF-FLAG and RAB10 in the precipitates were detected by immunoblotting. C. Representative confocal images showing the localization of RAB10-Myc and RABIF-FLAG in HeLa cells with or without 30 min of insulin treatment (100 nM). Bar: $10 \mu \mathrm{~m}$. Imaging data was generated by Jingshi Shen. Flotation assay was performed by Haijia Yu.

Figure 3.5: RABIF KO results in RAB10 degradation via proteasome. RABIF KO cells (HeLa or Adipocytes) were either untreated or treated with the indicated proteasome inhibitors for 16 hours. The expression levels of RAB10 and α-tubulin were probed by immunoblotting.

RABIF's role in GLUT4 trafficking is independent of its putative GEF domain

We next examined whether the GEF catalytic activity of RABIF is required for GLUT4 translocation. Structural studies suggested that the conserved residues D73, M74 and F75 are likely required for the GEF catalytic activity of RABIF (3.6a) (Zhu et al., 2001). Indeed, in an in vitro nucleotide release assay, the GEF activity of RABIF was largely abolished by a single F75A substitution (M1) or the triple D73A/M74A/F75A mutations (M2) (Fig. $3.6 \mathrm{~b}, \mathrm{~d}$). Strikingly, these GEF-defective mutants rescued GLUT translocation to similar levels as WT RABIF (Fig. 3.7 b,c). RAB10 expression was also restored by the expression of these RABIF GEF mutants (Fig. 3.7a). Finally, overexpression of RAB10 could rescue GLUT4 exocytosis in RABIF KO cells (Fig. 3.8). By contrast, overexpression of DENND4C, a known GEF for RAB10 (Sano et al., 2011) failed to rescue GLUT4 translocation or RAB10 expression in RABIF KO cells (Fig. 3.9), further suggesting that the stability of RAB10 is regulated by RABIF independent of its GEF catalytic activity. Thus, RAB10 exploits RABIF itself, rather than its GEF catalytic activity, to regulate GLUT4 translocation.

Figure 3.6: Catalytic domain mutants disrupt RABIF GEF activity.
A. Diagram showing RABIF point mutations predicted to impair GEF activity. B. Kinetics of fluorescence changes resulting from RABIF-catalyzed mant-GDP release. The reactions were carried out in the presence of WT or mutant RABIF, using RAB10 as the substrate. C. Coomassie blue-stained gel showing purified WT and mutant RABIF proteins. D. Initial rates of the reactions in h. Data are shown as percentage of fluorescence change within the first three minutes of the reactions. This data was generated by Haijia Yu.

Figure 3.7: GEF catalytic domain mutation does not disrupt GLUT4 exocytosis activity.
A. Immunoblots showing the expression levels of endogenous RAB10 and α-tubulin in the indicated HeLa cells. B. Normalized surface levels of the GLUT reporter in the indicated HeLa cells.
$* * * P<0.001$. C. Normalized surface levels of the GLUT reporter in the indicated adipocytes cells. $* * * P<0.001$.

Figure 3.8: RAB10 overexpression rescues RABIF KO GLUT4 exocytosis.
A. Immunoblots showing the expression levels of FLAG-tagged RAB10, total RAB10 and α tubulin in the indicated HeLa cells. B. Normalized surface levels of the GLUT reporter in the indicated HeLa cells. ${ }^{* * * P<0.001 \text {. }}$

Figure 3.9: Overexpression of $D E N N D 4 C$ does not rescue GLUT translocation defects in RABIF
KO cells. A, DENND4C was overexpressed in WT or RABIF- deficient HeLa cells. Effects of DENND4C overexpression on GLUT reporter translocation were measured by flow cytometry. Error bars indicate standard deviation. B, Immunoblots showing the expression of DENND4C, RAB10 and α-tubulin in the indicated cells.

Whole cell proteomics show that RABIF regulates a small subset of RABs

Finally, we determined whether RABIF regulates other Rabs in addition to RAB10. To this end, we performed mass spectrometry-based quantitative proteomic analysis of WT and RABIF deficient cells. Among the 19 Rab GTPases detected by mass spectrometry, RAB10 level was reduced by over 10 -fold in RABIF null cells (Fig. 3.10), consistent with the immunoblotting results (Fig. 3.5, 3.7a). Besides RAB10, RAB8A expression was also diminished in RABIF deficient cells. Using overexpression of a panel of fluorescently labeled RAB proteins we confirmed that RAB8a expression was also effected by RABIF KO (Fig 3.11a) while endogenous expression of RAB5a, RAB6 and RAB7 were not effected (Fig 3.11b). Therefore, the protein stabilizing function of RABIF is restricted to a subset of Rab GTPases. RAB8A was not recovered in our screens (Extended Data Fig. 2), confirming that RAB10 is the molecular target of RABIF in the GLUT translocation pathway. Together, these data demonstrate that, although predicted as a GEF, RABIF regulates RAB10 through a new function independent of its GEF catalytic activity (Fig. 3.12).

Figure 3.10: RABIF regulates a small subset of RAB proteins.
Proteomic analysis of Rab GTPase expression in RABIF KO cells. Data are presented as percentage of expression levels in WT cells. Average values of two technical replicates are shown (RAB1B levels were identical in the replicates, while RAB5A was only quantified in one replicate).

Figure 3.11: RABIF regulates a subset of RAB proteins.
A. Cerulean tagged RABS were transiently transfected in indicated HeLa cells. Fluorescence was quantified by flow cytometry. Error bars indicate standard deviation. B. Imunoblots showing the endogenous expression of the indicated RAB proteins.

Figure 3.12: RABIF regulates the expression of RAB10

Discussion

In this work we demonstrated that RABIF regulates RAB10 expression independent of its canonical GEF domain. Further work is needed to distinguish whether RABIF protects the mature form of RAB10 from degradation or if it is required for maturation of RAB10. Furthermore, the precise role of RAB10 in the cell remains unresolved. While RAB10 is clearly required for a large insulin response in both adipocytes and HeLa cells, it remains unclear if it is playing a direct role in vesicle trafficking and fusion or if it is required for a more upstream step such as sorting GLUT4 into the insulin responsive vesicles.

The whole cell proteomics revealed that RABIF is regulating a small subset of RABs. Other proteins with a more mild reduction may be secondary in nature, for example down regulated in response to Rab10 reduction rather than Rabif. Among the mildly down-regulated proteins ($\sim 25 \%$ reduction) were a large number of mitochondrial-localized proteins. This is a very
interesting finding because it would link the cells ability to import glucose to its ability to metabolize glucose. This is potentially related to the large number of genes whose protein products localize to the mitochondria, which were recovered in the GLUT4 exocytosis defective screen. These two findings could represent opposite sides of a feedback loop. Further work is needed to validate this feedback mechanism, and identify the specific mechanism of feedback inhibition.

Table 3.1. Proteomic analysis of WT and Rabif KO cells			
Protein name	Gene name	Average	Standard Deviation
Ras-related protein Rab-10	RAB10	0.1	0.014
Ras-related protein Rab-8A	RAB8A	0.265	0.021
Abhydrolase domain-containing protein 16A	ABHD16A	0.39	NA
Proteolipid protein 2	PLP2	0.41	NA
Lysosomal-associated transmembrane protein 4A	LAPTM4A	0.495	0.049
Syndecan-1	SDC1	0.53	NA
Monocarboxylate transporter 7	SLC16A6	0.53	NA
Folate receptor alpha	FOLR1	0.59	0.014
Disco-interacting protein 2 homolog B	DIP2B	0.595	0.615
ATP synthase mitochondrial F1 complex assembly factor 1	ATPAF1	0.6	0.255
Microtubule-associated proteins 1A/1B light chain 3B	MAP1LC3B	0.605	0.035
Glucocorticoid modulatory element-binding protein 1	GMEB1	0.61	NA
Sin3 histone deacetylase corepressor complex component SDS3	SUDS3	0.63	NA
CD81 antigen	CD81	0.64	0.028
NEDD4 family-interacting protein 1	NDFIP1	0.645	0.007
Deoxynucleotidyltransferase terminal-interacting protein 1	DNTTIP1	0.65	NA
Focadhesin	FOCAD	0.65	NA
Type 1 phosphatidylinositol 4,5-bisphosphate 4phosphatase	TMEM55B	0.65	NA
Glutathione peroxidase	GPX4	0.655	0.078
Cytochrome c oxidase subunit 1	MT-CO1	0.655	0.007

Serine/threonine-protein phosphatase 1 regulatory subunit 10	PPP1R10	0.665	0.078
G antigen 12F	GAGE12F	0.67	0.085
2-oxoisovalerate dehydrogenase subunit beta, mitochondrial	BCKDHB	0.67	NA
Ephrin type-A receptor 2	EPHA2	0.67	NA
Ferritin light chain	FTL	0.67	0.014
Glutathione peroxidase 1	GPX1	0.675	0.021
Neurogenic locus notch homolog protein 2	NOTCH2	0.675	0.007
G antigen 2D	GAGE2D	0.685	0.035
Ferritin	FTH1	0.69	0.014
Integrin alpha-5	ITGA5	0.69	NA
Protein PML	PML	0.69	NA
E3 ubiquitin-protein ligase RNF149	RNF149	0.695	0.021
Alpha-adducin	ADD1	0.7	NA
Nuclear factor 1	NFIA	0.7	NA
Transmembrane protein 205	TMEM205	0.7	NA
CD70 antigen	CD70	0.705	0.064
Endothelial protein C receptor	PROCR	0.705	0.092
Alanine aminotransferase 2	GPT2	0.71	0.113
MARCKS-related protein	MARCKSL1	0.71	NA
28S ribosomal protein S25, mitochondrial	MRPS25	0.72	0.085
Protein MTO1 homolog, mitochondrial	MTO1	0.72	NA
Lipid phosphate phosphohydrolase 2	PPAP2C	0.72	NA
Prostaglandin F2 receptor negative regulator	PTGFRN	0.72	0.028
Folate transporter 1	SLC19A1	0.72	NA
Tumor necrosis factor ligand superfamily member 9	TNFSF9	0.725	0.035
Acyl-CoA synthetase family member 3, mitochondrial	ACSF3	0.73	0.085
CD63 antigen	CD63	0.73	0.071
Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)	DAK	0.73	NA
NADPH:adrenodoxin oxidoreductase, mitochondrial	FDXR	0.73	NA
Transmembrane protein 209	TMEM209	0.73	NA
Neural cell adhesion molecule L1	L1CAM	0.735	0.021
Leukemia inhibitory factor receptor	LIFR	0.735	0.035
Receptor expression-enhancing protein 6	REEP6	0.74	NA
Splicing factor, arginine/serine-rich 15	SCAF4	0.74	NA
Leucine-rich repeat and WD repeat-containing protein 1	LRWD1	0.745	0.191
39S ribosomal protein L45, mitochondrial	MRPL45	0.745	0.007
Solute carrier family 35 member F2	SLC35F2	0.745	0.049
Disintegrin and metalloproteinase domain-containing protein 9	ADAM9	0.75	NA

Quinone oxidoreductase-like protein 1	CRYZL1	0.75	NA
Protein FAM115A	FAM115A	0.75	NA
HIG1 domain family member 2A, mitochondrial	HIGD2A	0.75	NA
Interferon-induced transmembrane protein 1	IFITM2	0.75	NA
39S ribosomal protein L3, mitochondrial	MRPL3	0.75	NA
Brain acid soluble protein 1	BASP1	0.755	0.049
DNA-directed RNA polymerase I subunit RPA34	CD3EAP	0.755	0.021
28S ribosomal protein S18b, mitochondrial	MRPS18B	0.755	0.021
ATP synthase subunit f , mitochondrial	ATP5J2	0.76	NA
1,4-alpha-glucan-branching enzyme	GBE1	0.76	NA
Glutaryl-CoA dehydrogenase, mitochondrial	GCDH	0.76	NA
General transcription factor IIH subunit 2-like protein	GTF2H2C	0.76	NA
Haloacid dehalogenase-like hydrolase domaincontaining protein 3	HDHD3	0.76	NA
Homeodomain-interacting protein kinase 4	HIPK4	0.76	NA
HLA class I histocompatibility antigen, B-42 alpha chain	HLA-B	0.76	NA
28 S ribosomal protein S30, mitochondrial	MRPS30	0.76	0.170
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial	NDUFB11	0.76	NA
Pituitary tumor-transforming gene 1 protein-interacting protein	PTTG1IP	0.76	NA
Zinc transporter ZIP10	SLC39A10	0.76	NA
Zinc transporter ZIP14	SLC39A14	0.76	NA
Activating transcription factor 7-interacting protein 1	ATF7IP	0.765	0.078
Cdc42 effector protein 1	CDC42EP1	0.77	NA
Epsin-1	EPN1	0.77	NA
HCLS1-associated protein X-1	HAX1	0.77	0.028
Myristoylated alanine-rich C-kinase substrate	MARCKS	0.77	0.085
NADH-ubiquinone oxidoreductase chain 5	MT-ND5	0.77	0.071
Putative nascent polypeptide-associated complex subunit alpha-like protein	NACAP1	0.77	NA
Polypyrimidine tract-binding protein 2	PTBP2	0.77	0.014
Parathymosin	PTMS	0.77	0.283
All-trans-retinol 13,14-reductase	RETSAT	0.77	NA
Shugoshin-like 2	SGOL2	0.77	NA
Sequestosome-1	SQSTM1	0.77	0.000
28S ribosomal protein S35, mitochondrial	MRPS35	0.775	0.078
Creatine kinase U-type, mitochondrial	CKMT1A	0.775	0.021
Acylpyruvase FAHD1, mitochondrial	FAHD1	0.775	0.134
ATPase family AAA domain-containing protein 3B	ATAD3B	0.78	NA
Interferon-induced transmembrane protein 3	IFITM3	0.78	NA
NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3	NDUFB3	0.78	NA

NAD-dependent protein deacylase sirtuin-5, mitochondrial	SIRT5	0.78	NA
Synaptophysin-like protein 1	SYPL1	0.78	0.042
Mitochondrial import receptor subunit TOM6 homolog	TOMM6	0.78	0.014
Tetraspanin-3	TSPAN3	0.78	NA
UBX domain-containing protein 8	UBXN8	0.78	NA
Lysosomal alpha-glucosidase	GAA	0.785	0.092
High mobility group protein HMG-I/HMG-Y	HMGA1	0.785	0.049
Heterogeneous nuclear ribonucleoproteins C1/C2	HNRNPC	0.785	0.049
Scavenger receptor class B member 1	SCARB1	0.785	0.092
Zinc finger CCCH domain-containing protein 18	ZC3H18	0.785	0.064
Neutral amino acid transporter B(0)	SLC1A5	0.785	0.007
A-kinase anchor protein 13	AKAP13	0.79	NA
HMG box transcription factor BBX	BBX	0.79	NA
2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial	COQ5	0.79	NA
Protein SGT1	ECD	0.79	0.057
Integrin alpha-2	ITGA2	0.79	0.057
Microtubule-associated protein 2	MAP2	0.79	NA
39S ribosomal protein L4, mitochondrial	MRPL4	0.79	0.042
39S ribosomal protein L54, mitochondrial	MRPL54	0.79	NA
Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	PCK2	0.79	0.057
Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 3, mitochondrial	PDK3	0.795	0.021
Membralin	TMEM259	0.795	0.163
Dystroglycan	ABCG2	NA	0.028
ATP-binding cassette sub-family G member 2	OXA1L	0.106	
Mitochondrial inner membrane protein OXA1L		0.79	

EXPERIMENTAL PROCEDURES

Recombinant protein expression and purification

Recombinant RAB10 proteins were produced in $S f 9$ insect cells using baculovirus infection. The full-length mouse Rab10 gene was cloned into the baculovirus transfer vector pFastBac to generate a construct encoding a His_{6}-tagged RAB10 protein with a tobacco etch virus (TEV) protease cleavage site. His_{6}-Rab10 was expressed in $S f 9$ cells as we previously described for other proteins(Yu et al., 2016; Yu et al., 2013b). The cells were harvested in a lysis buffer (25 mM HEPES [pH 7.4], $400 \mathrm{mM} \mathrm{KCl}, 10 \%$ glycerol, 20 mM imidazole, $5 \mathrm{mM} \mathrm{MgCl}_{2}, 1 \%$ Triton, $2 \mathrm{mM} \beta$-mercaptoethanol, and a protease inhibitor cocktail). RAB10 proteins were purified by nickel affinity chromatography and the His_{6} tag was removed by TEV protease digestion.

Recombinant RABIF proteins were expressed and purified from E. coli as we previously described for other soluble proteins (Rathore et al., 2010; Yu et al., 2013a; Yu et al., 2013c). The human RABIF gene was cloned into a pET28a-based SUMO vector. Purified His ${ }_{6}$-SUMORABIF fusion proteins were digested by SUMO proteases to obtain untagged RABIF proteins. RABIF mutants were generated by site-directed mutagenesis and expressed using the same procedure as the WT protein.

Liposome co-flotation assay

Protein-free or RAB10 liposomes were prepared using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), following a liposome reconstitution protocol previously established in our group (Rathore et al., 2011; Shen et al., 2010; Yu et al., 2013c). Soluble RABIF proteins were incubated with liposomes at $4{ }^{\circ} \mathrm{C}$ with gentle agitation. After one hour, an equal volume of 80% nycodenz (w / v) in reconstitution buffer was added and transferred to 5 mm by 41 mm centrifuge tubes. The liposomes were overlaid with $200 \mu \mathrm{l}$ each of 35% and 30% Nycodenz, and then with $20 \mu 1$ reconstitution buffer on the top. The gradients were centrifuged for 4 hours at 52,000 RPM in a Beckman SW55 rotor. Samples were collected from the $0 / 30 \%$ Nycodenz interface (2×20 $\mu \mathrm{l}$) and analyzed by SDS-PAGE.

Guanine nucleotide release assay

Recombinant RAB10 proteins were incubated with the fluorescent GDP analogue 2^{\prime}-(or- 3^{\prime})- O (N-Methylanthraniloyl) Guanosine 5'-Diphosphate (mant-GDP, Molecular Probes, \#M12414) at room temperature for one hour in a loading buffer (20 mM HEPES [pH 7.4], 50 mM NaCl , 5 mM EDTA, and a 25 -fold molar excess of mant-GDP). The loading reaction was terminated by addition of $10 \mathrm{mM} \mathrm{MgCl} 2_{2}$. Free mant-GDP was removed using desalting columns (GE Healthcare, \#17-0853-02). Mant-GDP-bound RAB10 was diluted to $0.2 \mu \mathrm{M}$ using the exchange buffer (20 mM HEPES [pH 7.4], 50 mM NaCl , and $5 \mathrm{mM} \mathrm{MgCl}_{2}$) in the absence or presence of $10 \mu \mathrm{M}$ RABIF and $100 \mu \mathrm{M}$ unlabeled GDP. Fluorescence changes associated with mant-GDP
release were measured on a SpectraMax M5 microplate reader (Molecular Devices) at the excitation wavelength of 365 nm and emission wavelength of 440 nm .

Immunoblotting and immunoprecipitation

Cells grown in 24-well plates were lysed in 1x SDS protein sample buffer and the cell lysates were resolved on 8% Bis-Tris SDS-PAGE. Proteins were detected using primary antibodies and horseradish peroxidase-conjugated secondary antibodies. Primary antibodies used in immunoblotting were: anti-AKT antibodies (Cell Signaling Technology, \#9272), anti-phosphoAKT antibodies (Cell Signaling Technology, \#5473), anti-RAB10 antibodies (Cell Signaling Technology, \#8127) anti- α-tubulin antibodies (eBioscience, \#14-4502-82), and anti-FLAG antibodies (Sigma, \#F1804).

In immunoprecipitation experiments, cells were lysed in a buffer containing 25 mM Tris- HCl [pH 7.4], $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, $1 \% \mathrm{NP}-40,5 \%$ glycerol, and a protease inhibitor cocktail. Proteins were precipitated by using anti-FLAG magnetic beads (Sigma, M8823). Proteins in the precipitates were detected by immunoblotting.

Immunostaining and imaging

HeLa cells were seeded on coverslips coated with fibronectin (Sigma, \#F1144). The cells were fixed using 2\% PFA and permeabilized in PBS supplemented with 5\% FBS and 0.2% saponin. Antigens were stained using the following primary antibodies: anti-Myc antibodies (SCBT,
clone\#9E10), anti-FLAG antibodies (Sigma, \#F7425). The cells were subsequently incubated with Alexa Fluor 488- or Alexa Fluor 568-conjugated secondary antibodies. After mounting on glass slides using the ProLong Antifade mountant with DAPI (Thermo, \#P36931), the cells were visualized on a Carl Zeiss LSM780 confocal microscope. Cell images were captured and processed using the Carl Zeiss Zen 2 and Adobe Photoshop software. To visualize the GFP-GLUT4-HA reporter in adipocytes, the cells were fixed and permeabilized similarly as HeLa cells.

Mass spectrometry

Quantitative proteomic analysis of protein levels was performed using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS). Cells were grow in SILAC media (Thermo, \#88423) supplemented with 10\% dialyzed FBE (Seradigm, \#3100). WT HeLa cells were grown in the presence of light lysine and arginine (Sigma, \#L1262 and A5131), whereas RABIF null cells were grown in the presence of heavy lysine and arginine (Cambridge Isotope Laboratories, \#CNLM-291 and CNLM-539). After five days, the cells were harvested at $\sim 60 \%$ confluence in a lysis buffer ($4 \% \mathrm{SDS}$ and 50 mM Tris- $\mathrm{HCl}[\mathrm{pH} 6.8]$). The cell lysates were processed for MS analysis following the filter-aided sample preparation (FASP) protocol (Erde et al., 2014; Wisniewski et al., 2009). Briefly, after addition of 20 mM DTT , equal amounts of whole-cell lysates were mixed and loaded onto a spin filter with a molecular weight cutoff of 30 kDa . The sample was then washed with the UA solution (8 M Urea and 0.1 M Tris$\mathrm{HCl}[\mathrm{pH} 7.9])$ and alkylated using 0.1 M iodoacetamide. The sample was further washed with the UA solution and equilibrated with 0.1 M ammonium bicarbonate and 0.01% deoxycholic
acid. The sample was then digested using $1 \%(\mathrm{w} / \mathrm{w})$ trypsin at $37{ }^{\circ} \mathrm{C}$ for 16 hours. The resulting tryptic peptides were eluded by centrifugation, and acidified using formic acid. Deoxycholic acid was removed using phase transfer with ethyl acetate. The tryptic peptides were fractionated by a Pierce high pH reversed-phase spin column using 18 step gradients (4% acetonitrile for the first fraction, 1% increment for each fraction to the $17^{\text {th }}$ fraction, and 50% acetonitrile for the $18^{\text {th }}$ fraction). The fractions were dried using vacuum centrifugation.

One third of each fraction ($5 \mu \mathrm{~L}$) from high pH fractionation was analyzed by UPLC-MS/MS. The tryptic peptides were loaded onto a Waters nanoACQUITY UPLC BEH C18 column (130 $\AA, 1.7 \mu \mathrm{~m} \times 75 \mu \mathrm{~m} \times 250 \mathrm{~mm}$) equilibrated with 0.1% formic acid $/ 3 \%$ acetonitrile/water. Mobile phase A was 0.1% formic acid/water, while B was 0.1% formic acid/acetonitrile. The peptides were eluted at $0.3 \mathrm{~mL} / \mathrm{min}$ using a gradient of $3-8 \% \mathrm{~B}$ ($0-5$ minutes) and $8-35 \% \mathrm{~B}(5-123$ minutes).

Precursor ions between $300-1800 \mathrm{~m} / \mathrm{z}\left(1 \times 10^{6}\right.$ ions, 60,000 resolution) were scanned on a LTQ Orbitrap Velos mass spectrometer. The 10 most intense ions for MS/MS were selected with 180second dynamic exclusion, 10 ppm exclusion width, with a repeat count $=1$, and a 30 -second repeat duration. Ions with unassigned charge state and $\mathrm{MH}+1$ were excluded from MS/MS. Maximal ion injection times were 500 milliseconds for FT (one microscan) and 250 milliseconds for LTQ, and the AGC was 1×10^{4}. The normalized collision energy was 35% with activation Q 0.25 for 10 milliseconds.

Raw data files from MS were searched against the Uniprot human proteome database (Consortium, 2015) (total 88,479 entries), using the MaxQuant/Andromeda search engine (version 1.5.2.8)(Cox et al., 2011). Searches allowed trypsin specificity with two missed cleavages, and included fixed Cys carbamidomethylation, and variable acetylation (protein N terminus) and methionine oxidation. Mass tolerances were set to 20 ppm (first search) and 4.5 ppm (main search) for precursor ions, and 0.5 Da for ITMS MS/MS ions. MaxQuant/Andromeda used the top $8 \mathrm{MS} / \mathrm{MS}$ peaks per 100 Da and seven amino acid minimum peptide length, with 0.01 false discovery rate for both protein and peptide identification. For SILAC ratio measurements, minimum two independent peptide ratios were used to calculate a protein ratio.

REFERENCES

Antonescu, C.N., McGraw, T.E., and Klip, A. (2014). Reciprocal regulation of endocytosis and metabolism. Cold Spring Harbor perspectives in biology 6, a016964.

Böcking, T., Aguet, F., Harrison, S.C., and Kirchhausen, T. (2011). Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating. Nature structural \& molecular biology 18, 295-301.

Bonifacino, J.S., and Glick, B.S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153-166.

Brodsky, F.M. (2012). Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 28, 309-336.

Bryant, N.J., Govers, R., and James, D.E. (2002). Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3, 267-277.

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339, 819-823.

Conner, S.D., and Schmid, S.L. (2003). Differential requirements for AP-2 in clathrin-mediated endocytosis. The Journal of cell biology 162, 773-779.

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10, 1794-1805.

Davis, E.M., Kim, J., Menasche, B.L., Sheppard, J., Liu, X., Tan, A.C., and Shen, J. (2015). Comparative Haploid Genetic Screens Reveal Divergent Pathways in the Biogenesis and Trafficking of Glycophosphatidylinositol-Anchored Proteins. Cell Rep 11, 1727-1736.

Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science (New York, NY) 346, 1258096.

Dummler, B., Tschopp, O., Hynx, D., Yang, Z.Z., Dirnhofer, S., and Hemmings, B.A. (2006). Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol 26, 8042-8051.

Eguez, L., Lee, A., Chavez, J.A., Miinea, C.P., Kane, S., Lienhard, G.E., and McGraw, T.E. (2005). Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2, 263-272.

Erde, J., Loo, R.R., and Loo, J.A. (2014). Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res 13, 18851895.

Ferguson, S.M., Raimondi, A., Paradise, S., Shen, H., Mesaki, K., Ferguson, A., Destaing, O., Ko, G., Takasaki, J., Cremona, O., et al. (2009). Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Developmental cell 17, 811-822.

Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284.

Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al. (2014). Genome-Scale CRISPRMediated Control of Gene Repression and Activation. Cell 159, 647-661.

Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., Sun, S., et al. (2015). High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell 163, 1515-1526.

Huang, S., and Czech, M.P. (2007). The GLUT4 glucose transporter. Cell Metab 5, 237-252. Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera Mdel, C., and Yusa, K. (2014). Genomewide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32, 267-273.

Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S., Brown, M., and Liu, X.S. (2014). MAGeCK enables robust identification of essential genes from genomescale CRISPR/Cas9 knockout screens. Genome biology 15, 554.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science (New York, NY) 339, 823-826.

Marceau, C.D., Puschnik, A.S., Majzoub, K., Ooi, Y.S., Brewer, S.M., Fuchs, G., Swaminathan, K., Mata, M.A., Elias, J.E., Sarnow, P., et al. (2016). Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159-163.

Martens, S., and McMahon, H.T. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9, 543-556.

McMahon, H.T., and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517-533.

Muretta, J.M., Romenskaia, I., and Mastick, C.C. (2008). Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J Biol Chem 283, 311-323.

Page, L.J., Sowerby, P.J., Lui, W.W., and Robinson, M.S. (1999a). Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin. The Journal of cell biology 146, 993-1004.

Page, L.J., Sowerby, P.J., Lui, W.W.Y., and Robinson, M.S. (1999b). γ-Synergin: An Eh Domain-Containing Protein That Interacts with γ-Adaptin. The Journal of Cell Biology 146, 993-1004.

Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189, 347-358. Parnas, O., Jovanovic, M., Eisenhaure, T.M., Herbst, R.H., Dixit, A., Ye, C.J., Przybylski, D., Platt, R.J., Tirosh, I., Sanjana, N.E., et al. (2015). A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell 162, 675-686.

Pohler, E., Mamai, O., Hirst, J., Zamiri, M., Horn, H., Nomura, T., Irvine, A.D., Moran, B., Wilson, N.J., Smith, F.J., et al. (2012). Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat Genet 44, 1272-1276.

Rathore, S.S., Bend, E.G., Yu, H., Hammarlund, M., Jorgensen, E.M., and Shen, J. (2010). Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARESec1/Munc18 membrane fusion complex. Proc Natl Acad Sci U S A 107, 22399-22406.

Rathore, S.S., Ghosh, N., Ouyang, Y., and Shen, J. (2011). Topological arrangement of the intracellular membrane fusion machinery. Molecular biology of the cell 22, 2612-2619.

Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.

Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nature methods 11, 783-784.

Sano, H., Eguez, L., Teruel, M.N., Fukuda, M., Chuang, T.D., Chavez, J.A., Lienhard, G.E., and McGraw, T.E. (2007). Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5, 293-303.

Sano, H., Peck, G.R., Kettenbach, A.N., Gerber, S.A., and Lienhard, G.E. (2011). Insulinstimulated GLUT4 Protein Translocation in Adipocytes Requires the Rab10 Guanine Nucleotide Exchange Factor Dennd4C. J Biol Chem 286, 16541-16545.

Schekman, R., and Novick, P. (2004). 23 genes, 23 years later. Cell 116, S13-15, 11 p following S19.

Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heck1, D., Ebert, B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, NY) 343, 84-87.

Shen, J., Rathore, S., Khandan, L., and Rothman, J.E. (2010). SNARE bundle and syntaxin Npeptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J Cell Biology 190, 55-63.

Sidik, S.M., Huet, D., Ganesan, S.M., Huynh, M.H., Wang, T., Nasamu, A.S., Thiru, P., Saeij, J.P., Carruthers, V.B., Niles, J.C., et al. (2016). A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell 166, 1423-1435 e1412.

Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J. (2008). The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295, E242-253.

Stowell, M.H.B., Marks, B., Wigge, P., and McMahon, H.T. (1999). Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol 1, 27-32.

Sudhof, T.C., and Rothman, J.E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474-477.

Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M., and Kirchhausen, T. (1996). Eps15 Is a Component of Clathrin-coated Pits and Vesicles and Is Located at the Rim of Coated Pits. Journal of Biological Chemistry 271, 28727-28730.

Traub, L.M., and Bonifacino, J.S. (2013). Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harbor perspectives in biology 5, a016790.

Trefely, S., Khoo, P.S., Krycer, J.R., Chaudhuri, R., Fazakerley, D.J., Parker, B.L., Sultani, G., Lee, J., Stephan, J.P., Torres, E., et al. (2015). Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. J Biol Chem 290, 25834-25846.

Wang, T., Birsoy, K., Hughes, N.W., Krupczak, K.M., Post, Y., Wei, J.J., Lander, E.S., and Sabatini, D.M. (2015). Identification and characterization of essential genes in the human genome. Science (New York, NY) 350, 1096-1101.

Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, NY) 343, 80-84.

Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature methods 6, 359-362.

Wixler, V., Wixler, L., Altenfeld, A., Ludwig, S., Goody, R.S., and Itzen, A. (2011). Identification and characterisation of novel Mss4-binding Rab GTPases. Biol Chem 392, 239248.

Xiong, X., Chen, M., Lim, W.A., Zhao, D., and Qi, L.S. (2016). CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annu Rev Genomics Hum Genet 17, 131-154.

Yu, H., Liu, Y., Gulbranson, D.R., Paine, A., Rathore, S.S., and Shen, J. (2016). Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc Natl Acad Sci U S A 113, 4362-4367.

Yu, H., Rathore, S.S., Davis, E.M., Ouyang, Y., and Shen, J. (2013a). Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 24, 1176-1184.

Yu, H., Rathore, S.S., Lopez, J.A., Davis, E.M., James, D.E., Martin, J.L., and Shen, J. (2013b). Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 110, E3271-3280.

Yu, H., Rathore, S.S., and Shen, J. (2013c). Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. J Biol Chem 288, 18885-18893.

Zhang, R., Miner, J.J., Gorman, M.J., Rausch, K., Ramage, H., White, J.P., Zuiani, A., Zhang, P., Fernandez, E., Zhang, Q., et al. (2016). A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164-168.

Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y., and Wei, W. (2014). High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487491.

Zhu, Z., Dumas, J.J., Lietzke, S.E., and Lambright, D.G. (2001). A helical turn motif in Mss4 is a critical determinant of Rab binding and nucleotide release. Biochemistry 40, 3027-3036.

