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a b s t r a c t 

Common executive functioning (cEF) is a domain-general factor that captures shared variance in performance across diverse executive function tasks. To investigate 

the neural mechanisms of individual differences in cEF (e.g., goal maintenance, biasing), we conducted the largest fMRI study of multiple executive tasks to date 

( N = 546). Group average activation during response inhibition (antisaccade task), working memory updating (keep track task), and mental set shifting (number–letter 

switch task) overlapped in classic cognitive control regions. However, there were no areas across tasks that were consistently correlated with individual differences 

in cEF ability. Although similar brain areas are recruited when completing different executive function tasks, activation levels of those areas are not consistently 

associated with better performance. This pattern is inconsistent with a simple model in which higher cEF is associated with greater or less activation of a set of 

control regions across different task contexts; however, it is potentially consistent with a model in which individual differences in cEF primarily depend on activation 

of domain-specific targets of executive function. Brain features that explain commonalities in executive function performance across tasks remain to be discovered. 
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. Introduction 

Executive functions (EFs) are a family of cognitive processes that
egulate goal-related behavior. Individual differences in EF abilities
re "important to just about every aspect of life" ( Diamond, 2013 , p.
37). The variance shared across diverse EF tasks, a Common Execu-
ive Functioning (cEF) factor ( Friedman and Miyake, 2017 ), appears to
e a particularly important dimension of individual differences, show-
ng stronger relationships to outcomes compared to individual EF tasks.
n particular, cEF is associated with important life outcomes including
cademic achievement (Cantin et al., 2016), self-regulation (Gustavson
t al., 2015), subjective well-being (Toh et al., 2020), psychopathology
 Friedman et al. (2008) ; Harden et al., 2020; McTeague, Goodkind, &
tkin, 2016; Snyder et al., 2015), and substance use ( Gustavson et al.,
017 ; Jones et al., 2020). Despite this importance, we still know very
ittle about the neural basis of individual differences in cEF. Although
he areas that are typically more active during EF-demanding com-
ared to baseline conditions across tasks are well documented (e.g.,
iendam et al., 2012 ), it is not known whether activation differences

n these areas or other areas across tasks are associated with better cEF
bility. To date, only a handful of studies with modest N (for individual
ifferences questions) have examined individual differences, and those
end to focus on individual tasks or EF abilities, such as a response inhi-
ition or task set shifting ( Jamadar et al., 2010 ; Wager et al., 2005 a, b .
ere, we investigate the neural correlates of a cEF factor score in the

argest multi-task fMRI study ( N = 546) of EFs to date. We evaluate
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hether individual differences in a highly stable cEF factor that captures
hared variance in across three separable EF components (response in-
ibition, working memory updating, and mental set shifting) are associ-
ted with similar patterns of brain activation or functional connectivity
cross tasks tapping each of these EF components. 

Most neuroimaging studies have focused on the frontoparietal and
ingulo-opercular areas that tend to activate across individuals during
F tasks ( Collette et al., 2005 ; Duncan, 2010 ; Fedorenko et al., 2013 ;
ee et al., 2013 ; Dosenbach et al., 2006 ; Niendam et al., 2012 ), rather

han areas that distinguish between individuals as a function of their
evel of EF performance. Yet the brain regions that activate consistently
cross individuals for any given task may not necessarily be sensitive to
ndividual differences ( Yarkoni and Braver, 2010 ). 

Of those studies that do investigate the neural basis of individual dif-
erences in EFs, there are two notable issues. First, they have focused on
ingle EF tasks. One obstacle to understanding individual differences in
Fs is that EFs are by definition domain general processes that control
ower-level processes in diverse contexts. Any one EF task offers only
 glimpse of this unobservable construct, in which the EF of interest
annot be separated from the particular context in which it is observed
e.g., a categorization task that also requires stimulus processing, re-
ponse mappings, etc.). Thus, to get a full picture of an EF, one has to
easure performance in multiple contexts or tasks and look at what is

ommon across these contexts (Miyake et al., 2000). This multi-task ap-
roach has become popular in the behavioral literature, but is rarely
dopted within the neuroimaging literature. Most studies focus on a
ty of Colorado Boulder, Boulder, CO, United States. 
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ingle EF task (e.g., Ravizza & Carter, 2008, Jamadar et al., 2010 ;
urgess et al., 2011; Wager et al., 2005 a, Purkayastha et al., 2008 ). 

Second, most fMRI studies of EF individual differences to date are
odest in sample size (e.g., N = 18, Jamadar et al., 2010 ; N = 43,
ager et al., 2005 a). Small sample sizes are particularly limiting for

MRI studies of individual differences, which require larger sample sizes
o detect reliable and reproducible associations), compared to studies
hat focus on group mean effects ( Yarkoni, 2009 ). For example, nearly
00 participants are required for 80% power to detect a small effect,
 = 0.20, as is commonly observed in the imaging literature, at an al-
ha = 0.05 (not accounting for multiple comparisons). Consortium-level
nd biobank-scale projects (such as the UK Biobank; Bycroft et al., 2018)
re attempting to overcome the limits of small sample sizes. However,
y design, they usually fall victim to the first concern by not measur-
ng EFs with high resolution in an effort to maximize the sample size.
o date, no study has simultaneously addressed both of these concerns
y deeply phenotyping EFs in a sample that is appropriately sized for
ndividual differences analyses. 

Here, we present the first large study ( N = 546) to investigate asso-
iations of task-related fMRI activations/connectivity in multiple tasks
ith individual differences in a highly reliable cEF factor ( Friedman and
iyake, 2017 ). We measured cEF with a battery of six tasks tapping

esponse inhibition, working memory updating, and mental set shifting
bilities. Three of these tasks (one per EF component) were adminis-
ered in an fMRI context, and three were administered outside the scan-
er. This design allowed us to evaluate neural correlates of individual
ifferences in cEF across multiple tasks that tap separable EF constructs.

Specifically, we use activation and connectivity analyses to evaluate
ypotheses related to the two main mechanisms proposed to drive cEF
ndividuals differences: actively maintaining goals and using those goals
o bias ongoing processing ( Friedman and Miyake, 2017 ). From a neural
erspective, goal maintenance refers to sustained activation or attractor
ynamics ( Braver and Cohen, 2000 ) in frontal areas that allow informa-
ion to be held on-line so it is accessible in the focus of attention. The
eural implementation of goals involves linking desired actions/states
ith the multimodal information relevant to those states, which is par-

icularly important in difficult EF tasks when the desired link between
oals and sensory information rapidly changes based on tasks demands,
r is poorly established by default ( Miller and Cohen, 2001 ). Goal main-
enance is hypothesized to be supported by lateral prefrontal cortex,
hereas processing of lower-level information relevant to goals is dis-

ributed across relevant portions of association cortex and thus should
patially vary based on the specifics of the task at hand. 

Hence, our first set of analyses leverages multi-task conjunctions to
sk Question 1: Is variability in cEF associated with an overlapping

r task-specific spatial pattern of activation across three EF tasks?

e are primarily interested in the spatial pattern of individual differ-
nces results within frontoparietal regions that are commonly impli-
ated in EF tasks. We propose four possible outcomes: (1a) If individ-
al differences in cEF reflect high-level goal maintenance, we should
bserve that cEF differences are related to activation of dorsolateral
refrontal cortex during all three tasks. (1b) If individual differences
eflect variation in top-down attentional control, in a domain-general
anner, to lower-level goal-related information (such as increasing ac-

ivation to goal-relevant stimuli dimensions; Jessen et al., 1999 ), we
ight observe common activation in regions that are more proximal to

he target/s of cognitive control, such as the lateral parietal cortex. (1c)
f instead cEF differences reflect variation in processing of task-specific
ower-level associative information, we would expect to see that acti-
ation differences related to cEF are spatially inconsistent across tasks
nd include lower-level sensory areas. (1d) Finally, individual differ-
nces in EF may be may be related to other brain regions not typically
ctivated during goal-directed behavior. For example, some work sug-
ests the default network may have functions complementary to those
f the frontoparietal network such as formation of conceptual maps
 Constantinescu et al., 2016 ) or integration of prior knowledge to in-
2 
orm new situations ( Schlichting and Preston, 2015 ). That said, the in-
ernal mentation functions commonly associated with the default net-
ork ( Andrews-Hanna, 2011 ) could also be seen as distracting in the

ontext of demanding externally-directed tasks, so it is not yet clear
hether more or less default activation will be associated with individ-
al differences in cEF. 

Goal maintenance and other mechanisms that could manifest in fMRI
ctivations may not be the only mechanisms relevant to individual dif-
erences in EF. One can maintain the goal and yet fail to implement it
hen appropriate, as illustrated by “goal neglect ” ( Duncan et al., 1996 ).
his observation is consistent with Friedman and Miyake (2017) sugges-
ion that goal maintenance and the use of those goals to bias ongoing
rocessing may be separable mechanisms, with the latter related to con-
ectivity between brain regions. Specifically, in computational models
f EF, individual differences in biasing are implemented by manipulat-
ng connectivity strength between frontal maintenance areas and pos-
erior areas that process lower-level information necessary for the task
t hand (i.e., targets of control; Herd et al., 2014 ). An important area
nvolved in such biasing is middle frontal gyrus (MFG), which can adap-
ively connect to other cortical areas based on task demands ( Cole et al.,
013 ; Depue et al., 2015 ). 

Thus, our second set of analyses used task-based functional connec-
ivity analysis to evaluate Question 2: Is variability in cEF associated

ith connectivity of lateral prefrontal cortex across the three neu-

oimaging tasks? If lateral prefrontal cortex is responsible for biasing
he activity of other brain areas, task-based functional connectivity anal-
ses should reveal that cEF is associated with change in connectivity of
hose areas involved in biasing (lateral prefrontal cortex) when tasks
ecome more demanding. We propose three possible outcomes for the
ask-based functional connectivity analyses: 2a) Lateral prefrontal cor-
ex biases processing in a posterior area common to all EF contexts. 2b)
ateral prefrontal cortex biases processing in task-specific posterior ar-
as. 2c) Lateral prefrontal cortex is not involved in biasing as measured
y task-based functional connectivity. 

. Methods 

.1. Resource availability 

Data and Code Availability . All unthresholded statistical maps will be
ade available in Neurovault (neurovault.org) upon publication. Fur-

her information and requests for data should be directed to the lead
ontact, Andrew Reineberg (andrew.reineberg@colorado.edu). 

.2. Participant details 

Analyses used data from a total of 546 individuals who had data for
t least one task (237 male/309 female; M age = 28.67 years, SD age = 0.63
ears, range = 28 - 32 years): n = 443 for the antisaccade task, n = 488
or the keep track task, and n = 480 for the number–letter task; 358
articipants had usable data for all three scanner tasks. These individu-
ls were a subset of the initial sample scanned (587 individuals), after
ata were removed due to incidental anatomical findings or excessive
ovement during the scanning session based on the criteria of greater

han 3 mm translation (motion in x, y, or z plane) or 3° rotation (roll,
itch, or yaw motion). Participants were part of the Longitudinal Twin
tudy (LTS), a long-term longitudinal study of twins in Colorado re-
ruited from the Colorado Twin Registry based on birth records (see
orley et al., 2019 ; Rhea et al., 2006 , 2013 ), for additional informa-
ion). Of the 546 individuals, there were 119 pairs of monozygotic (MZ)
wins, 109 pairs of dizygotic (DZ) twins, 41 MZ twin singletons, and 49
Z twin singletons. Singletons are members of twin pairs whose cotwins
ither did not participate or were excluded from analysis. Based on self-
eport, the entire LTS sample is 92.6% White, 5.0% more than one race,
 1% American Indian/Alaskan Native, < 1% Pacific Islander, and 1.2%
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a  

b  
nknown/not reported. Hispanic individuals composed 9.1% of the sam-
le. Participants were paid $150 for participation in the study or $25
er half an hour for those who did not finish the entire 3-hour session. 

Ethics Statement . All study procedures were approved by the Institu-
ional Review Board of the University of Colorado Boulder. 

.3. Procedure 

The study was run in a single 3-hour session. Following informed
onsent, participants were familiarized with the imaging procedures in-
luding practice versions of the tasks to ensure comprehension later in
he scanner. They first completed a 1.5-h scanning session. The follow-
ng scanning sequence order was used for all participants: scout localizer
can, 6-minute resting-state scan (not analyzed in the current study),
tructural scan, antisaccade task, keep track task, number–letter task,
nd a diffusion tensor imaging sequence (not analyzed in the current
tudy). After the scans, participants returned to a behavioral testing
oom to complete three additional EF tasks – Stroop, category-switch,
nd letter memory, in that order. If both twins of a pair participated
n the same day, the twins completed the protocol consecutively (twin
rder randomized) with the same ordering of behavioral testing and
maging acquisition. 

Participants were scanned in a Siemens Tim Trio 3T ( n = 259)
r Prisma 3T ( n = 287) scanner (the Trio scanner was upgraded ap-
roximately halfway through the study). Scanner type was included
s a nuisance regressor in all analyses. Neuroanatomical data were ac-
uired with T1-weighted magnetization prepared using rapid gradient
cho magnetization sequence (acquisition parameters: repetition time
TR) = 2400 ms, echo time (TE) = 2.07, matrix size = 320 × 320 × 224,
oxel size = 0.80 × 0.80 × 0.80 mm, flip angle (FA) = 8.00°, slice thick-
ess = 0.80 mm). Functional data were acquired with T2 ∗ -weighted
cho-planar functional scans. Acquisition parameters were: number of
olumes = 966 for each run of the antisaccade task (2 runs total), 784
or each run of the keep track task (3 runs total), 1588 for each run
f the number–letter task (2 runs total); TR = 460 ms; TE = 27.2 ms;
ulti-band acceleration factor = 8; matrix size = 82 × 82 × 56; voxel

ize = 3.02 × 3.02 × 3.00 mm; FA = 44.0°; slice thickness = 3.00 mm;
eld of view (FOV) = 248 mm. 

Behavioral and Imaging Tasks 

The battery of six tasks is an abbreviated version of the nine-task
attery used in the LTS study in prior waves of data collection (see
riedman et al., 2016). It contained two tasks from each of three EF
omponents: response inhibition, working memory updating, and men-
al set shifting. One task from each component was administered during
MRI (antisaccade, keep track, and number–letter) and one task from
ach category was administered outside the scanner (Stroop, letter mem-
ry, and category-switch). These tasks were chosen to align the current
tudy with the rich longitudinal historical data available for LTS partici-
ants and to allow for future longitudinal analyses. We have found these
asks effective at eliciting genetic and environmental individual differ-
nces in prior waves of data collection (Friedman et al., 2016) and useful
n prior individual differences analyses exploring EF relationships with
sychopathology ( du Pont et al., 2019 ; Friedman et al., 2020), substance
se ( Gustavson et al., 2017 ), and stressful life events ( Morrison et al.,
020 ), among many other associations. To maintain continuity with our
rior work with this sample and ensure that we did not change the con-
tructs of interest, we maintained key aspects of the tasks (such as the
hort trial times used in the antisaccade), even when those would not
e considered typical for a scanner task (as most scanner tasks are not
ocused on eliciting individual differences in performance). 

The design of the three non-scanner tasks was identical to that used
n the age 23 battery administered to this sample (Friedman et al., 2016).
ll tasks included additional practice trials and "warm-up" trials at the
eginning of each block that were not analyzed. 

The Stroop task (adapted from Stroop, 1935 ) captures the ability to
top a prepotent word reading response and instead name the color in
3 
hich the words were printed. Participants voiced the color (red, blue,
r green) of text presented on a black screen as quickly as possible. Re-
ction times (RTs) were measured with a ms-accurate voice key. There
ere three trial types: a block of 42 neutral trials in which 3–5 asterisks
ere presented in one of three colors (red, blue, and green); a block
f 42 congruent trials in which color words were presented in matched
ont color (e.g., the word “RED ” displayed in red font); and two blocks
f 42 trials each of incongruent trials in which color words were pre-
ented in non-matched font color (e.g., the word “RED ” displayed in blue
nk). Stimuli disappeared as soon as the voice key detected the response.
rials were separated by a 250 ms white fixation cross. The dependent
easure was the mean RT difference between correct incongruent and
eutral trials. 

The letter memory task (adapted from Morris and Jones, 1990 ) cap-
ures the ability to maintain and update items in working memory. In
ach of 12 trials, participants viewed a series of 9, 11, or 13 consonants,
ith each letter appearing for 3 s. As each letter appeared, they had to

ay aloud the last four letters they viewed, including the current letter.
he dependent measure was the proportion of 132 sets in which they
eported the set of letters in the correct order. 

The category-switch task (adapted from Mayr and Kliegl, 2000 ) cap-
ures the ability to shift between mental sets. In each trial, participants
ategorized a word according to animacy (i.e., living vs. non-living) or
ize (i.e., smaller or larger than a soccer ball), depending on a cue (heart
r crossed arrows, respectively). The cue preceded the word by 350 ms
nd remained above the word until the participant responded with one
f two buttons on a ms-accurate button box. The stimuli disappeared
rom the screen when the participant responded. There was a 350 ms
elay between responses and the next trial. A 200-ms buzz sounded for
rrors. The task began with two single-task blocks of 32 trials each,
n which participants categorized words only by animacy then only by
ize. Then participants completed two mixed blocks of 64 trials each,
n which half the trials required switching the categorization criterion.
he dependent measure was the local switch cost — the difference be-
ween average response times on correct switch and no-switch trials
ithin mixed blocks. RTs for trials following errors were also excluded

rom analysis, as the switch vs. repeat classification would be incorrect
f participants were using the incorrect task set on those trials. 

Three tasks were adapted for fMRI from the versions used by Fried-
an et al. (2016) with this sample. The antisaccade task ( Roberts et al.,
994 ) requires inhibiting reflexive eye movements to a cue stimulus,
nstead saccading to the opposite side of the screen in time to see a
riefly appearing target stimulus. Participants completed 20 s blocks of
rosaccade, anti-saccade, and fixation trials (12 blocks of each across
wo runs; 5 trials per block for the prosaccade and antisaccade blocks).
ach block was preceded by a jittered instruction (TOWARD, AWAY,
r FIXATION for 2, 4, or 6 s) indicating the direction to which they
hould direct their attention relative to the cue. After a jittered fixation
asting 1–3 s, a small visual cue flashed on one side of the computer
creen. The cue lasted for 234 ms, however, the duration of this cue was
hanged to 284 ms after the first 276 participants as we noticed low
verage performance in an interim analysis for another project. After
he cue, a target (a digit from 0 to 9) appeared for 150 ms before being
asked. The mask lasted 1650 ms, during which time the participant
as instructed to vocalize the target. The cue and target appeared on

he same side of the screen during prosaccade trials and opposite sides
uring anti-saccade trials. Hence, in order to identify the number on the
ntisaccade trials, participants had to avoid the tendency to saccade to
he cue and instead immediately look in the opposite direction. The be-
avioral dependent measure was the proportion of correctly identified
argets on the 60 antisaccade trials. The main fMRI contrast of interest
as antisaccade trials versus prosaccade trials. The antisaccade task was
roken into 2 runs. 

The keep-track task ( Yntema, 1963 ) captures the ability to maintain
nd update information in working memory. Each trial was preceded
y a 1500 ms instruction (REMEMBER, READ, or FIXATION) indicat-
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ng the trial type. On each remember trial, 500 ms after the instruction
isappeared, a fixation cross appeared in the center of the screen, and
elow it appeared 3 or 4 target categories (animals, colors, countries,
istances, metals, or relatives). The categories remained on the screen
hroughout the trial. After a duration of 2, 4, or 6 s, a series of 16 words
2 s per word) appeared where the fixation was; each word belonged
o one of the six categories. Participants had been shown the full list
f words during the practice trials, so were familiar with them and the
ategories to which they belonged. After presentation of the words, a
rompt ( “??? ”) appeared for 10 s and participants were instructed to
rally recall the last exemplar of each target category. Because each
ist of 16 words contained 1–3 exemplars of each category, they had
o update which words to remember and ignore words from irrelevant
ategories. In addition to these “Remember ” trials, the scanner version
f the task included baseline conditions of “Read ” trials, in which par-
icipants just silently read the words without trying to remember them
followed by a 4 s " —" prompt during which they remained silent), and
0 s rest (fixation) trials. The behavioral dependent measure was the
roportion of the 45 words correctly recalled out of all trials where they
ere asked to remember words. The main fMRI contrast of interest was
iewing the words in remember trials versus read trials. The keep track
ask was broken into 3 runs, each with 3 recall trials (two with 4 words
o recall and one with 3), 3 read trials (also two with 4 categories and
ne with 3 categories present with the words), and 3 fixation trials. 

The number-letter task ( Rogers and Monsell, 1995 ) captures the abil-
ty to shift between mental sets. In each trial, participants viewed a box
ectioned into four quadrants. The borders of one quadrant were dark-
ned as a cue for 350 ms before a number–letter or letter–number pair
e.g., 3F, G7) appeared inside. Participants were instructed to catego-
ize the number as odd/even if the cued quadrant was one of the up-
er 2 quadrants, or the letter as consonant/vowel if the cued quadrant
as one of the lower 2 quadrants, using two buttons on a ms-accurate
utton box. The stimuli disappeared from the screen when categorized.
here was 350 ms delay between response and the next trial. The trials
ere arranged in blocks, and rest blocks (20 s) were intermixed with

he task blocks. Each block was preceded by a jittered instruction (TOP,
OTTOM, MIXED, or FIXATION for 2, 4, or 6 s) that indicated where
he stimuli would appear for that block. In mixed blocks, half the trials
ere repeat trials in which the task stayed the same as the previous trial;

he other trials required a switch in categorization task. Each block con-
isted of 13 trials. The first trial in each block was not counted because it
as neither switch nor repeat. The behavioral dependent measure was

he difference between average RTs on correct switch trials (i.e., trials
n which a switch of mental set was made) versus correct trials in which
o switch was made. As in the category-switch task, RTs for trials fol-
owing errors were also excluded from analysis, as the switch vs. repeat
lassification would be incorrect if participants were using the incor-
ect task set on those trials. To equate all tasks based on the difficulty
f their respective baseline conditions, the main contrasts of interest in
he number-letter task analysis is switch vs. repeat trials in single-task
locks because repeat trials in the mixed context are more cognitively
emanding than the baseline condition in the other imaging tasks. We
lso report results from the switch versus repeat trials in mixed blocks
ontrast (i.e., reflecting local switch cost) in the supplemental results
or comparison to prior work that utilized this contrast. The task was
roken into 2 runs, each containing eight mixed blocks, four single-task
locks (two number and two letter blocks), and four 20 s fixation blocks.

.4. Statistical analyses 

Behavioral data were processed with the same pipeline we used in
 previous manuscript ( Reineberg et al., 2018 ). Reaction times were
rimmed within-subject to obtain the best measures of central tendency
ithin conditions ( Wilcox and Keselman, 2003 ). Extreme high and low

cores at the between-subjects level (greater than 3 SDs from the group
ean) were Windsorized by replacing them with the cutoff value of
4 
 SDs above or below the mean to improve normality and reduce the
mpact of extreme scores while maintaining these scores in the distri-
ution. Behavioral data from the antisaccade task were z-scored within
ach version (234 and 284 ms cue versions) prior to between-subject
rimming to remove mean differences due to cue duration. 

After the trimming procedures, behavioral data from all six tasks
ere input to a confirmatory factor analysis in Mplus. The model for

hese six tasks was similar to the one used in prior waves of this lon-
itudinal study with nine tasks (Friedman et al., 2016): There were
hree orthogonal factors: a cEF factor on which all 6 tasks loaded, an
rthogonal Updating-specific factor on which the keep track and let-
er memory tasks loaded, and an orthogonal Shifting-specific factor on
hich the number–letter and category-switch tasks loaded. To identify

he orthogonal 2-indicator specific factors, the loadings for each specific
actor were constrained to be equal after first scaling the tasks vari-
nces to be similar that the standardized loadings would be equal. The
esulting model fit was reasonable according to recommended thresh-
lds for confirmatory fit index (CFI > 0.95) and standardized root mean
esidual (SRMR < 0.08), although the chi-square statistic was significant
nd the root-mean squared error of approximation exceeded the recom-
ended value (RMSEA < 0.06): 𝜒2 (7) = 33.74, p < 0.001, CFI = 0.954,
MSEA = 0.081, SRMR = 0.040. As a similar model fit well and was used

n the two prior waves of this longitudinal study, we proceeded with this
odel as specified and extracted cEF, Updating-specific, and Shifting-

pecific factor scores using the “SAVE = FSCORES ” option in Mplus. 
Image processing and data analysis were implemented using FSL

ersion 5.0.9 (FMRIB, Oxford, UK, http://www.fmrib.ox.ac.uk/fsl/ ).
 standard pre-processing was applied: motion correction, brain ex-

raction, high pass filter (0.01 Hz), 8 mm FWHM spatial smoothing,
nd registration and spatial normalization to the Montreal Neurolog-
cal Institute (MNI) 152-T1 2-mm template. Additionally, we applied
n ICA-based single-subject denoising procedure (implemented in FSL’s
ROMA tool) to each participant’s functional scan to remove artifact
ignal associated with breathing, heartbeat, movement, and other noise
ources. 

Data were analyzed using FSL’s general linear model tool. Lower-
evel model regressors were task-specific, with each task having regres-
ors of interest (e.g., antisaccade trials, prosaccade trials) and confound
egressors (e.g., inter-trial intervals, error trials) as well as 6 linear head
ovement parameters (X, Y, Z, roll, pitch, yaw) and their squared val-
es. Each task had several 20-second fixation blocks, which were left
s the un-modeled baseline per standard FSL procedure. The main con-
rast of interest for each of the three EF tasks was between demand-
ng EF events (antisaccade trials for antisaccade, remember trials for
eep-track, and switch trials for number–letter) and less demanding
vents (prosaccade trials, read trials, and repeat trials within the sin-
le trial blocks) or fixation blocks controlling for nuisance events (e.g.,
re-stimulus fixation cross events). 

For each lower-level contrast, an intermediate model was used to
ombine multiple runs, and one-sample t-tests were performed at the
ighest level to obtain the group average activation. The main focus of
he current study was an additional higher-level model with a covariate
or cEF to obtain an estimate of which brain region’s activity during the
emanding versus less demanding condition covaried with cEF factor
cores. These covariate (individual differences) models ask about acti-
ation differences for those who are different in their cEF ability and
hould not be confused with group average models. Task-specific co-
ariates were used in secondary analyses (i.e., antisaccade performance
ovariate for antisaccade task analysis, etc.). In addition to a gender
ovariate, all models included a scanner covariate to account for the
act that approximately 50% of the sample’s data was obtained using a
iemens Trio scanner before upgrading to a Siemens Prisma scanner. In
ost-hoc analyses suggested during review, we checked for significant
otion-BOLD relationships in all areas with significant cEF-BOLD rela-

ionships. A single region from the antisaccade task cEF covariate results
ad a significant motion-activation relationship, however the effect of

http://www.fmrib.ox.ac.uk/fsl/
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Table 1 

Descriptive statistics for behavioral variables. EF = Executive Functioning. ∗ Split-half reliability (odd/even for Stroop task and category-switch task or run1/run2 for 

antisaccade task and number–letter task), adjusted with the Spearman-Brown prophecy formula. ̂Cronbach’s alpha across 3 runs for keep-track and 4 sets of trials 

for letter memory. † Pearson’s r between behavioral performance at current time and prior wave of data collection. ° 6-year stability for antisaccade task calculated 

across 234 and 284 ms cue versions. 

n mean sd min max skew kurtosis Reliability 6-year stability † 

Antisaccade (234 ms cue) 276 44.42 21.03 6.67 96.67 0.35 − 0.70 0.94 ∗ 0.68°

Antisaccade (284 ms cue) 289 58.95 21.25 8.33 96.67 − 0.36 − 0.77 0.93 ∗ 

Stroop 580 145.93 75.09 − 163.32 373.03 0.55 0.84 0.96 ∗ 0.48 

Keep track 579 0.77 0.13 0.36 1.00 − 0.69 0.14 0.74ˆ 0.51 

Letter memory 585 73.28 13.97 35.61 100.00 − 0.05 − 0.97 0.93ˆ 0.84 

Number-letter 568 182.22 120.73 − 60.54 565.48 0.93 0.94 0.93 ∗ 0.55 

Category switch 583 180.32 149.90 − 103.05 664.08 1.22 1.55 0.93 ∗ 0.66 

Common EF 587 0.00 0.81 − 2.42 2.02 − 0.13 − 0.45 0.80 

Shifting-specific EF 586 0.00 0.65 − 2.11 1.70 − 0.32 − 0.26 0.62 

Updating-specific EF 584 0.00 0.73 − 2.52 1.73 − 0.81 0.65 0.68 
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EF persisted after statistically controlling for individual differences in
otion. 

FSL’s PALM permutation testing tool was used to account for non-
ndependence associated with twin pairs. This tool allowed targeted per-
utation between and within twin pairs. We used FDR-corrected out-
ut from PALM unless otherwise noted. For conjunction analysis of the
roup average and covariate results, we binarized FDR-corrected stat
aps for each task at a p fdr < 0.05 threshold. Binary maps were over-

apped and any location in the brain with a sum of 3 was plotted as a
hree-way conjunction. 

In addition to the standard task activation analyses outlined above,
e performed functional connectivity analyses via the psychophysio-

ogical interaction (PPI) framework ( Friston et al., 1997 ). We were in-
erested in whether individual differences in cEF were associated with
he change in MFG connectivity from the less demanding to the more
emanding EF condition of each task. In particular, we were interested
n whether cEF was related to MFG connectivity with the regions impli-
ated by the individual differences models from the task activation anal-
ses. To perform the PPI analyses, we first extracted the time course for
 classic cognitive control region (MFG; mask taken from the Harvard-
xford atlas) for each participant and run. A contrast-coded regressor
as created for each run of each task for the demanding condition (1)
ersus the less demanding condition (–1). Additionally, a dummy-coded
egressor for the combined demanding and less demanding (both coded
s 1) conditions was created. Using FEAT, we prepared a new lower-level
odel for each run that included the new contrast and dummy-coded

egressors, the MFG time course, a regressor of nuisance components,
nd the interaction of the MFG time course and the contrast-coded re-
ressor. The interaction effect is the main component of interest in PPI
nalyses, as it represents the location in the brain where connectivity
o MFG changes as a function of task demands. We subjected the lower-
evel PPI results to the same intermediate models (to combine runs) and
igher-level group models (with cEF covariate and nuisance regressors)
s described above. To ascertain whether the regions from the task ac-
ivation analyses emerged in the task-based connectivity cEF covariate
aps, we masked the results of the PPI models in each task by the re-

pective individual differences maps from the task activations analyses.
or this analysis, we did not utilize a correction for multiple compar-
sons because we considered the masked areas from the task activation
ovariate maps a priori areas of interest. 

. Results 

.1. Behavioral results 

Descriptive statistics for all six behavioral tasks and three factor
cores are provided in Table 1 . The 234- and 284-ms cue versions of
he antisaccade task differed in mean accuracy but not reliability. cEF,
hifting-specific, and Updating-specific latent variables are orthogonal.
5 
owever, their factor scores are moderately correlated because they are
mperfect approximations of latent variables due to factor score inde-
erminacy. Factor score determinacy estimates for the complete data
attern were 0.815, 0.652, and 0.733 for cEF, Updating-specific, and
hifting-specific factors respectively. cEF factor scores positively cor-
elated with Updating-specific ( r = 0.360, p < 0.001) and Shifting-
pecific ( r = 0.253, p < 0.001) scores, whereas Updating-specific and
hifting-specific factor scores were negatively correlated ( r = − 0.317, p
 0.001). Regarding correlations of the behavioral scores from the three
canner tasks, antisaccade performance was positively correlated with
eep track performance ( r = 0.34, p < 0.001). After reverse scoring the
ategory–switch task so that higher scores would indicate better perfor-
ance (lower shift costs), category-switch performance was positively

orrelated with Antisaccade performance ( r = 0.34 p < 0.001) and keep
rack performance ( r = 0.21, p < 0.001). Descriptive statistics, reliabil-
ty, and the pattern of relationship among cEF, Updating-specific and
hifting-specific factor scores closely replicate the results of an identical
nalysis of EF behavior in the first 250 participants of the current wave
f data collection in the LTS sample ( Reineberg et al., 2018 ). 

Because the ability to measure robust intercorrelations among cog-
itive tasks depends, in part, on the reliability of the individual tasks
Draheim et al., 2021, Hedge et al., 2018 ), we assessed the internal re-
iability ( Table 1 ) and 6-year test-retest reliability of our tasks. Internal
eliability was high for all tasks (0.74 to 0.96). Consistent with our goal
f measuring the same individual differences constructs we had previ-
usly measured in this sample, performance in the three scanner tasks
orrelated well with the behavioral versions of the same tasks admin-
stered 6 years earlier (Friedman et al., 2016), r s = 0.51 to 0.68, p s <
.001. These correlations were comparable to the 6-year test-retest cor-
elations of the 3 behavioral tasks we administered outside of the scan-
er, r s = 0.48 to 0.84, p s < 0.001. cEF, Updating-specific, and Shifting-
pecific factor scores for this assessment also showed strong correlations
ith those from the prior wave (based on 9 tests): r s = 0.796, 0.683, and
.624, respectively, all p s < 0.001. 

.2. fMRI group average activation 

Group average maps for the main contrast of interest (i.e., demand-
ng versus less demanding trials) for all three EF tasks and the three-way
onjunction of these maps can be found in the left-hand column of Fig. 1 .
he group average maps for all three tasks ( Fig. 1 a–c) were very simi-

ar. The three-way conjunction of group average maps ( Fig. 1 d) revealed
lusters of peak activation common to all tasks and included classic fron-
oparietal and cingulo-opercular activations as well as default network
eactivations. 

Because we tried to equate all contrasts in the main analysis based
n the difficulty of the baseline conditions, we focused on the global
witch cost contrast for the number–letter task based on the easier base-
ine condition of repeat trials in a single task context. However, we pro-
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Fig. 1. fMRI results . a-c. Group average activation for antisaccade, keep track, and number–letter tasks. d. Conjunction of group average map from all three tasks. 

e-g. Common Executive Functioning (cEF) covariate analyses. Individual differences maps for antisaccade, keep track, and number–letter tasks. h. Conjunction of 

individual differences maps for antisaccade, keep track, and number–letter tasks. Input maps are thresholded at p fdr < �0.05 = 0.368 rather than p fdr < 0.05 as in 

panels e, f, and g. red = positive activation or covariate association, blue = negative activation or covariate association. 
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ide an analysis of the local switch cost contrast (switch versus repeat
rials in the mixed context in the number–letter task) in a supplemental
nalysis for comparison to prior work ( Fig. S1 ). Activation for the local
witch cost contrast was very similar to activation in the main contrast
f switch (during mixed context) versus repeat (in single-task blocks),
ith additional sensory-somatomotor and insular activity in the latter. 

A comparison of unthresholded or minimally thresholded maps
ould be a useful alternative to a conjunction analysis, similar to how
6 
eta-analysis of unthresholded maps has utility over meta-analysis of
oci when investigating consistency in effects across many studies in
MRI meta-analysis ( Salimi-Khorshidi et al., 2009 ). The statistical maps
 Table 2 ) showed moderate to strong correlations ( r s = 0.39–0.77) when
tilizing the subthreshold information (i.e., below the threshold for cor-
ecting for multiple comparisons). Although the group average activa-
ion maps were very similar overall, there are notable differences across
he three group average maps, which were most pronounced in posterior
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Table 2 

Spatial correlation (Pearson’s r ) of all unthresholded z -statistic maps. Red = positive correlation, Blue = negative correlation. GLM = general linear 

model results; PPI = psychophysiological interaction analyses; cEF = Common Executive Functioning scores. 
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ingulate cortex and the visual processing stream. The antisaccade task
ad more posterior cingulate cortex (PCC) deactivation and less visual
ctivation than the other two tasks. The number–letter task had more
isual activation and less PCC deactivation than the other tasks. 

To explore whether there might be heterogeneity across tasks for dif-
erent functional networks, we also looked at similarity of the statistic
ap after assigning voxels to one of 7 bins based on its functional net-
ork assignment derived from a commonly used parcellation ( Yeo et al.,
011 ). This analysis allows us to assess whether correlation of group av-
rage statistic maps ( Table 2 ) are driven by particular networks or are
epresentative of a whole brain effect. For example, the overall correla-
ion among the three tasks could be misleading if, for example, fron-
oparietal, dorsal attention, and ventral attention network activation
ere extremely correlated across all tasks but the default network was
ot. The distribution of voxel activations by functional network and
orrelation of the group average statistic maps by functional network
s described in detail in Fig. S2 . This analysis predominantly revealed
greement in the correlation of per-network activations across the three
ask maps; however, the whole brain correlation ( Table 2 ) of antisac-
ade and keep track maps may be suppressed because of heterogeneity
cross functional networks (e.g., there is a correlation of activity in the
wo tasks for all networks except the default network). 

.3. Is variability in cEF associated with an overlapping versus task-specific

patial patterns of activation across three tasks? 

To investigate question 1, we used covariate models to quantify
he relationship between cEF and change in activity from the less de-
anding to higher demanding task conditions. The cEF covariate re-

ults are shown in Fig. 1 e–g and described in Tables 3 –5 for the anti-
accade, keep track, and number–letter tasks, respectively. These maps
ere much less spatially consistent than the group average maps ( Fig. 1 ,

eft hand column). 
The three individual differences maps had no areas of three-way

verlap based on our a priori analysis plan for conjunctions (overlap
f the three FDR-corrected maps presented in Fig. 2 ). Upon loosening
he threshold for significance so the joint probability was less than 0.05
n the three-way conjunction (i.e., each individual map thresholded at
 fdr < �0.05 = 0.368), there were several small areas of overlap. Across
asks, higher levels of cEF were associated with increased activation of
ilateral precuneus, left posterior cingulate cortex, left lateral parietal
ortex, and left anterior middle temporal gyrus ( Fig. 1 h ). These areas
f weak overlap tend to be in the default mode network, supporting
he fourth proposed mechanism for cEF individual differences (associ-
tion with regions not typically during goal-directed behavior such as
he default network). However, the directionality was such that higher
EF was associated with less deactivation of the default mode network
uring more demanding conditions. 
7 
Although there were no regions in the three-way overlap of the
DR-corrected cEF individual differences maps, there were overlapping
egions when ignoring directionality of effects. Upon absolute value
ransformation of the cEF covariate maps, clusters of overlap ( Fig.

5 ) included bilateral MFG, medial superior frontal gyrus, left angu-
ar/superior parietal cortex, and the cerebellum. These areas were all at
he anatomical borders between major functional networks. 

We were mindful that conjunctions are sensitive to thresholding deci-
ions. To determine how similar the cEF covariate maps were, including
ll subthreshold information in the map and not just the information
hat exceeded our threshold for statistical significance, we correlated
ll pairwise combinations of the three maps as we did previously for the
roup average maps. The whole brain spatial correlation of unthresh-
lded cEF covariate statistic maps for the three tasks is described overall
n Table 2 . Correlations between tasks were moderate-to-strong for all
airs of tasks (| r | = 0.21 - 0.60). However, these correlations varied in
irection, with a positive correlation between the cEF-related pattern
or keep track and category-switch, but negative correlations of those
wo patterns with the cEF-related pattern for antisaccade. The opposite
irection of these correlations is inconsistent with a simple model in
hich higher cEF is associated with greater or less activation of a set of

egions across different task contexts. 
Additionally, to explore whether cEF-related activations show con-

istency across all three tasks for all networks, we calculated correlations
etween pairs of tasks after grouping voxels by functional network as-
ignment as described by Yeo et al. (2011) ( Fig. S3 ). There appeared to
e some heterogeneity: For example, although the whole brain correla-
ion of antisaccade with keep track cEF covariate maps is only moder-
te overall, the cEF-related sensory-somatomotor network activation is
ore correlated than the overall correlation suggests. 

A final question of interest was whether the brain areas that are ac-
ive on average in the EF tasks are the same areas that are associated
ith individual differences in the cEF covariate. When comparing the

EF-covariate analysis maps to the group-average activation within each
ask, many areas involved in individual differences in cEF reside in ar-
as active in the group on average. In fact, Table 2 and Fig. S4a re-
eal the group average and cEF covariate maps are strongly correlated
| r | = 0.60 - 0.68) within task when examining the unthresholded statis-
ic maps. As in the cross-task correlations, group average activation in
ntisaccade was negatively correlated with cEF covariate-related acti-
ation. That is, voxels positively activated in the group average analy-
is tended to have negative activations associated with cEF individual
ifferences. 

Due to task impurity, performance on any given EF task is driven by
EF as well as additional constructs. Therefore, a covariate statistic map
ased on performance on each task performed in the scanner should
e a combination of cEF-covariate regions and additional task-specific
egions. We derived covariate maps for in-scanner performance to com-
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Table 3 

Composition of significant Individual differences clusters for keep track, number-letter, and antisaccade tasks . Each significant individual difference cluster (columns) was composed 

of voxels from one to several functional subareas (rows). Region labels taken from Harvard-Oxford cortical atlas (top series of rows), Harvard-Oxford subcortical atlas (middle series of row), 

and Diedrichsen cerebellar atlas (bottom series of rows; Diedrichsen et al., 2009 ). To be included as a column, a threshold of 100 contiguous voxels was used. To be included as a row, a 

threshold of 50 voxels was used. grey highlighted rows are regions with significant individual differences activations across all three tasks. Note, however, that antisaccade activations are 

negative whereas activations in the keep track and number–letter task are positive. 

Keep Track task Number-letter task Antisaccade task 

Region 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Frontal Pole 4489 

Insular Cortex 615 

Superior Frontal 

Gyrus 

180 122 623 2952 

Middle Frontal 

Gyrus 

217 220 84 204 740 3821 

Inferior Frontal 

Gyrus, pars tri. 

509 

Inferior Frontal 

Gyrus, pars oper. 

162 1302 

Precentral Gyrus 71 322 271 512 1406 

Temporal Pole 58 

Superior Temporal 

Gyrus, ant. 

63 

Superior Temporal 

Gyrus, post. 

93 513 54 101 

Middle Temporal 

Gyrus, post. 

306 174 379 

Middle Temporal 

Gyrus, temp. 

124 634 668 

Inferior Temporal 

Gyrus, ant. 

84 

Inferior Temporal 

Gyrus, temp. 

58 

Postcentral Gyrus 55 

Superior Parietal 

Lobule 

73 110 381 265 

Supramarginal 

Gyrus, ant. 

86 87 229 

Supramarginal 

Gyrus, post. 

68 87 514 760 362 1024 

Angular Gyrus 57 803 194 1211 

Lateral Occipital 

Cortex, sup. 

73 165 716 2844 54 660 1290 

Lateral Occipital 

Cortex, inf. 

1232 

Intracalcarine Cortex 685 231 

Juxtapositional 

Lobule Cortex 

125 146 308 

Paracingulate Gyrus 1578 

Cingulate Gyrus, ant. 804 

Cingulate Gyrus, 

post. 

233 

( continued on next page ) 

8
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Table 3 ( continued ) 

Keep Track task Number-letter task Antisaccade task 

Region 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

Precuneous Cortex 2081 2833 54 

Cuneal Cortex 140 157 

Frontal Orbital 

Cortex 

995 

Lingual Gyrus 278 52 502 

Temporal Occipital 

Fusiform Cortex 

106 84 

Occipital Fusiform 

Gyrus 

187 710 

Frontal Operculum 

Cortex 

516 

Supracalcarine 

Cortex 

98 137 

Occipital Pole 107 372 

Left Lateral Ventrical 65 

Left Thalamus 330 72 145 

Left Caudate 119 343 

Left Putamen 217 

Brain-Stem 187 109 106 60 

Right Lateral 

Ventricle 

56 

Right Thalamus 226 226 

Right Caudate 57 344 

Right Putamen 166 

Left I-IV 835 63 105 343 635 843 

Right I-IV 708 302 250 422 

Left V 622 160 222 383 

Right V 597 150 69 121 

Left VI 357 131 

Vermis VI 196 100 

Right VI 179 96 

Left Crus I 172 74 

Vermis Crus I 161 62 

Right Crus I 155 

Left Crus II 114 

Vermis Crus II 102 

Right Crus II 68 

Left VIIb 60 

Vermis VIIb 58 

Right VIIb 57 

Left VIIIa 54 

Vermis VIIIa 52 

9
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Fig. 2. Task-based functional connectivity results . Individual differences in Common Executive Functioning (cEF) were associated with change in middle frontal 

gyrus (MFG; green) connectivity from the less demanding to the more demanding condition in each task. Connectivity result are masked by task activation cEF 

covariate maps and uncorrected for multiple comparisons. Connectivity beta values for the largest cluster for each task were extracted as examples. Scatterplots those 

connectivity betas versus cEF scores (residualized on age, sex, and scanner) are shown on the right for example clusters from maps on the left (black circles). 
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are them to the cEF maps as an exploratory look at regions relevant for
ask-specific individual differences (see Fig. S6a–c ). If the task-specific
erformance covariate maps are very similar to the cEF covariate maps,
hen cEF-related neural mechanisms explain most of the behavioral vari-
tion for that task. This exploratory analysis suggests the localization of
EF and task-specific performance effects is largely the same in the brain
for details see Supplementary Information and Fig. S6c ). 

.4. Is variability in cEF associated with connectivity of lateral prefrontal 

ortex across three tasks? 

To investigate question 2, we evaluated PPI models. The PPI re-
ults presented below were not significant when conducting a whole-
10 
rain analysis and correcting for multiple comparisons across the brain,
uggesting they should be interpreted as preliminary evidence of a
onnectivity-based basis of individual differences in cEF. 

We measured changes in task-based connectivity of our a priori area
f interest, MFG, from the less demanding to the more demanding con-
ition in each task. We masked the PPI analysis results by the maps
rom Fig. 1 e–g to constrain our analysis to just those areas we previ-
usly demonstrated to be related to individual differences in cEF. For all
hree tasks, some of the same areas from the GLM cEF covariate results
escribed above emerged in this targeted task-based functional connec-
ivity analysis. These results provide some support for our hypothesis
hat lateral prefrontal cortex may have a role in biasing processing in
ask-specific areas (via the observed connectivity) even though lateral
refrontal cortex itself did not emerge as a predictor of cEF individual
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ifferences in the activation-based GLM analyses. Connectivity results
nd example scatterplots are provided in Fig. 2 . 

For antisaccade, higher cEF was associated with increased MFG con-
ectivity from the harder to easier condition to inferior MFG/inferior
rontal gyrus, sensory cortex, frontal pole, medial frontal cortex, and de-
reased connectivity to lateral parietal cortex. For keep track, higher cEF
as associated with increased MFG connectivity to visual cortex, motor

ortex, and lateral parietal cortex. Finally, for number–letter, higher cEF
as associated with decreased MFG connectivity to visual cortex, lat-

ral parietal cortex, and precuneus. The spatial pattern of PPI and task
ctivation covariate results was similar across the whole brain when
onsidering all subthreshold (i.e., threshold for correction for multiple
omparisons) information ( Fig. S4b ). 

. Discussion 

This study is the largest multi-task fMRI study ( N = 587) of EFs to
ate, and was uniquely designed to determine if there is a set of brain
egions that are commonly engaged across EF tasks as a function of in-
ividual differences in cEF. We found robust group average activations
ithin each of three task contexts as well as conjunction of the three

asks’ group average results. We also found robust activations associ-
ted with individual differences in cEF in each individual task. However,
here was no significant three-way conjunction of these individual dif-
erences results. Of several possibilities ( hypotheses 1a-1d in Introduc-

ion ), our results for task activation analyses suggest the neural basis
f cEF individual differences is spatially inconsistent ( hypothesis 1c ) and
ot restricted to frontal areas. Utilizing a lower threshold for statistical
ignificance revealed default network activation may also be relevant to
ndividual differences in cEF ( hypothesis 1d ). Although individual differ-
nces in activation of frontal maintenance areas were not consistently
ssociated with cEF individual differences across all task contexts, pre-
iminary results suggested task-based connectivity of lateral prefrontal
ortex may be associated with individual differences in cEF across all
ask contexts ( hypothesis 2b ). However, because the connectivity results
id not survive whole-brain correction for multiple testing, future work
s required to more fully understand the role of prefrontal biasing in in-
ividual differences in cEF. Individual differences in cEF are primarily
eflected in activation of task-specific areas. 

Although our key finding, the lack of conjunction of the individ-
al differences covariate maps, is a null result, it is striking in the con-
ext of this study. We scanned a very large sample, assessed cEF per-
ormance rigorously with a factor scores of 6 reliable tasks, found a
obust conjunction of activation at the group-level, and found robust
atterns of cEF-related activation differences within each task. Never-
heless, these robust cEF-related differences did not overlap across tasks,
nd in some cases reflected opposing patterns of associations. Similar
ull results have been briefly mentioned in prior reports: For example,
ngelhardt et al. (2019) reported “no significant clusters of accuracy-
orrelated activity shared by the three tasks ” (p. 486) in their fMRI
tudy of three EF tasks in 117 children, although they did observe signif-
cant accuracy associations within each task. As unsatisfying as such a
ull result is, it is nevertheless informative. It challenges the somewhat
revalent, and very reasonable, assumption (evidenced by popular ROI
pproaches) that individual differences in cEF reflect variation in recruit-
ent of the common cognitive control networks that are so strongly ac-

ivated at the group level. Brain features that explain commonalities in
F performance across tasks remain to be discovered, and doing so will
ikely require alternative approaches to testing for spatial commonality,
r alternative interpretations of task-specific associations. 

.1. Support for task-specific neural correlates 

Our group-average results for each of the three tasks contained
lassic frontoparietal and cingulo-opercular activation as well as de-
ault network deactivations. This pattern is consistent with prior
11 
roup-average results from single tasks ( Duncan, 2010 ; Duncan and
wen, 2000 ; Kimberg et al., 2000 ; Luna et al., 2001 ; Wager et al., 2004 ;
ager and Smith, 2003 ), multi-task conjunctions ( Collette et al., 2005 ;

ngelhardt et al., 2019 ), and meta-analyses of EF tasks ( McKenna et al.,
017 ; Nee et al., 2013 ; Niendam et al., 2012 ; Owen et al., 2005 ). As
uch, it appears that our tasks successfully engaged brain regions typi-
ally associated with EFs. 

Notably, however, individual differences in the extent to which these
reas were activated was only weakly related to cEF ability. When con-
idering only cEF-related activation that met or exceeded our threshold
or statistical significance (accounting for multiple comparisons), there
as no three-way overlap, suggesting the most powerful correlates of EF
re task-specific activations. Differences in activation in association cor-
ex were the dominant feature in cEF covariate maps for the keep track
nd number–letter task. In addition, both the antisaccade task and keep
rack task had frontal activations associated with individual differences.
lthough this pattern of results was unexpected, it is not incompatible
ith existing theories of the neural basis of EF, such as the multiple de-
and network ( Duncan and Owen, 2000 ), the cascade of control model

 Banich et al., 2000 ), and the hierarchical control model ( Christoff and
abrieli, 2000 ). These theories focus on neural machinery necessary to
omplete particular cognitive tasks rather than how individual differ-
nces in activations lead to differences in performance. 

Our results suggest researchers interested in activation related to in-
ividual differences should be aware that task selection can critically
ffect the spatial pattern of results. Here we showed different EF tasks
an even have individual differences activations in opposing directions.
n the antisaccade task, high EF individuals were those who showed
ess activation in lateral frontal, superior medial, and anterior cingulate
egions for the more demanding as compared to the less demanding con-
ition. In the keep track task, higher cEF was associated with increased
ctivation of frontal cortex for the more demanding compared to less
emanding condition. A similar pattern was seen in the unthresholded
aps: Although the covariate maps showed low to moderate correla-

ions across tasks, the antisaccade cEF map was negatively correlated
ith the cEF maps for the other two tasks. When considering conjunc-

ions regardless of directionality (i.e., in an absolute value analysis), we
id see overlap in the fully corrected cEF covariate maps in several loca-
ions at the borders of the dorsal/ventral attention, frontoparietal, and
efault networks. In this case, activation in similar areas was associated
ith individual differences in cEF, but the directionality of the effect

hanged with different task demands. No prior work led us to predict
his differential pattern. If this pattern is not specific to this speeded an-
isaccade task but instead reflects a general property of inhibitory tasks,
uture work will be needed to determine why inhibitory task contexts
ay lead to cEF-associated deactivations while other EF task contexts

ead to cEF-associated activations. 
Our results are also consistent with computational models of EF

asks. Computational models encode source-target relationships be-
ween frontal cortex maintenance functions (e.g., attractor dynamics;
azy et al., 2007 ) and association cortex that encodes sensory and mo-

or information relevant to the current goal ( Banich, 2009 ; Miller and
ohen, 2001 ; Munakata et al., 2011 ; Posner and Driver, 1992 ). Rela-
ionships between sources and targets of control are often modified via
hanges in biasing, or connections between areas representing frontal
ortex and posterior areas ( Herd et al., 2014 ). As in such models, in-
ividual differences in biasing are reflected in task-based connectivity
etween frontal cortex and posterior areas as opposed to observing indi-
idual differences in task-set maintenance which would be detected by
ctivation levels in GLM analyses. Consistent with this hypothesis that
ontrol is implemented via connectivity from frontal regions to poste-
ior regions involved in goal-relevant processes, our task-based func-
ional connectivity results indicated that individual differences in cEF
ere also related to the modulation of the spatially diverse task-specific

egions by the same MFG region during each task, although these results
ere not significant at the whole-brain corrected level. Prior individual



A.E. Reineberg, M.T. Banich, T.D. Wager et al. NeuroImage 249 (2022) 118845 

d  

a  

p  

a
 

l  

t  

m  

p  

a  

s  

c  

s  

s  

d  

t
 

g  

o  

c  

e  

t  

c  

w  

g  

2  

t  

s  

c  

r  

t  

l  

r  

h  

p  

s  

t  

r  

c  

f  

h  

t  

s  

e  

a  

h  

t

4

 

f  

S  

i  

a  

t  

i  

t
 

i  

s  

i  

m  

F  

s  

m  

v  

n  

i  

F  

n  

(  

w  

s  

d
 

t  

t  

p  

n  

t  

m  

d  

o  

f  

l  

s  

s  

i
 

d  

n  

E  

c  

t  

e  

a  

p  

f  

a

5

 

t  

p  

t  

t  

t  

i  

c  

o  

o  

w  

t  

a  

t  

s  

m  

s  

m  

t
 

m  

w  

a  

r  

d  

l  

c  

t  

t

ifferences work supports the idea that MFG is involved in flexible bi-
sing ( Cole et al., 2015 ; Depue et al., 2015 ; Panikratova et al., 2020 ),
erhaps due to its unique ability to fluidly connect to nearly all cortical
reas ( Cole et al., 2013 ; Ito et al., 2017 ). 

Based on our results, future work might focus on connectivity of the
ateral prefrontal cortex rather than exploring the complex spatial pat-
ern of individual differences activations that may depend on task de-
ands. However, connectivity of lateral prefrontal cortex may be only
art of the story of individual differences. To make the best predictions
bout cognition using task-based activations, future studies may con-
ider combining metrics from a priori areas such as lateral prefrontal
ortex with information from across the whole brain. If a whole brain
earch is not desired, the current study suggests lateral parietal cortex,
ensory cortex, and the default network are additionally involved in in-
ividual differences, and as such should be considered as regions of in-
erest for future work. 

The role of the default network in EF is particularly interesting
iven that the default network is typically associated with a variety
f internally-directed functions ( Andrews-Hanna, 2011 ) and that de-
rease in activation of this network is observed when participants are
ngaged in an externally-directed task ( Spreng et al., 2009 ). However,
ask-positive and task-negative networks can work synergistically under
ertain circumstances. For example, activation in the default mode net-
ork along with activation in the frontoparietal network can support
oal-oriented behavior, as in autobiographical planning ( Spreng et al.,
010 ). When we relaxed the threshold for conjunction significance for
he input maps to a liberal threshold (so the probability of the product of
ignificance across the three tasks was < 0.05) we also found evidence of
ommon individual differences activation across all three tasks. In this
elaxed conjunction analysis, we saw overlap across tasks for associa-
ions with cEF in bilateral precuneus, left posterior cingulate cortex, left
ateral parietal cortex, and left anterior middle temporal gyrus. These
egions span all three major subdivisions of the default network, the
ub regions, the medial temporal lobe subsystem, and the dorsal medial
refrontal subsystem, which are involved in valuation of motivationally
alient information, memory-based simulation functions, and introspec-
ion, respectively, among other functions ( Andrews-Hanna, 2011 ). Our
esults suggest these regions are important for individual differences in
ognitive ability. Specifically, higher cEF was associated with higher de-
ault network activity across the three EF tasks. One possibility is that
igh EF individuals could adaptively utilize the internal mentation func-
ions of the default network highlighted above, such as memory-based
imulation, to assist them in performance. However, there are other
xplanations. For example, high EF individuals may be able to toler-
te more noise from internal mentation while performing EF tasks and
ence exhibit more activation of these regions during task contexts than
hose with low EF. Future work is needed to test these hypotheses. 

.2. Strengths and limitations 

Our primary conjunction analyses assumed that activation in dif-
erent brain areas reflects different functions, which may be invalid.
pecifically, we searched for conjunction of individual differences as an
ndicator of seemingly centralized functions such as goal maintenance,
ssuming such maintenance happens in one location. Maintenance of an-
isaccade related goals and keep track related goals could be localized
n different places; however, there is little external evidence to support
his claim. 

The current study reports an initial analysis of the neural basis of
ndividual differences in cEF. The GLM and connectivity results pre-
ented here do not represent all the possible neural implementations of
ndividual differences in cEF or all the possible ways to test the goal
aintenance and biasing hypotheses posed in the current manuscript.

or example, the tasks we used were designed primarily to isolate
ources of executive function. Future work could, for example, utilize
ulti-voxel pattern analysis ( Norman et al., 2006 ) to isolate and track
12 
ariability in the strength of targets of control to an extent we were
ot able to in the current study. Additionally, individual differences
n cEF may manifest via alternative measures we did not test here.
or example, in our prior resting-state work, network-to-network con-
ectivity ( Reineberg et al., 2018 ) as well as graph-theoretic properties
 Reineberg and Banich, 2016 ) of several brain regions were associated
ith individual differences in executive functions. These and other mea-

ures could be considered in future task-based fMRI studies of individual
ifferences. 

A strength of our approach was the specialized design of the tasks
o elicit individual differences. For example, we maintained the same
emporal structure in the scanner that has been used in the past in a
urely behavioral context. The time pressure adds difficulty that may
ot normally be present in scanning studies that have long inter-trial in-
ervals. However, the speeded nature of the tasks means that our tasks
ay not be as comparable to prior imaging work in which individual
ifferences were not the main focus. Arguing against this possibility,
ur group average activation results suggest the areas necessary to per-
orm our tasks are highly comparable to what is found in the existing
iterature as summarized above, both in terms of the task-specific re-
ults, conjunctions, and meta-analyses. Thus, these versions of the tasks
eem to be generally comparable to versions designed without regard to
ndividual differences. 

Finally, our experiment was not designed to differentiate between
ifferences in strategy selection versus differences in neural mecha-
isms. Experimenter instructions only communicated the goals for each
F task but did not instruct individuals on how to implement the goals
ognitively. High cEF individuals may adopt different strategies in the
hree EF tasks compared to their lower-performing counterparts. Differ-
nces in strategies across individuals are not out of the question and
re a topic of interest in the aging literature, where older adults lower
erformance may be driven by adoption of less demanding (but less ef-
ective) cognitive strategies ( Cabeza et al., 2018 ). Such differences are
n issue for future exploration. 

. Conclusion 

The current study is the first task-based activation study to examine
he neural basis of individual differences in a cEF factor derived from
erformance on multiple EF tasks and in multiple task contexts. Al-
hough we found robust cEF-related activations in each task and sub-
hreshold patterns of cEF-related activation were correlated across task,
he peak cEF-related activations after correcting for multiple compar-
sons for each of three different EF tasks did not have any three-way
onjunction. The role of the default network as observed in the analysis
f individual differences in which we relaxed the significance thresh-
ld is a potentially novel mechanism to be explored in the future. cEF
as not associated with the degree of lateral frontal activation in every

ask, although there was weak evidence for the hypothesis that cEF was
ssociated with the functional connectivity of lateral prefrontal cortex
o diverse task-specific areas, albeit at a much less rigorous standard of
tatistical significance when compared to the GLM analyses. Thus, there
ay be multiple contributors to good performance – quality of repre-

entations, default network activation to aid in internal mentation that
ay support task goals or task sub-processes, and strength of biasing

owards domain-specific targets of control. 
These insights would not be possible without this rich dataset from

ultiple fMRI tasks completed by a large sample of participants. Had

e observed how individual differences in cEF or task performance predicted

ctivity in one task, as is typically done in prior studies, we would have ar-

ived at very different conclusions about the areas associated with individual

ifferences, depending on which task we had chosen ( e.g. , potentially mis-

ocalizing a locus of goal maintenance). Thus, although the results of this
onjunction analysis are complex, this complexity advances the litera-
ure and may help resolve inconsistency in past studies with individual
asks. 
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