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Thesis directed by Prof. Dana Anderson

The general impedance method developed by Khondker et.al [1] is applied to multiple barrier
potentials to study the transmission behaviors of a single Gaussian barrier potential, double rectan-
gular barrier potential, and a double Gaussian barrier potential. Using the impedance method we
will find quantum mechanical transmission behaviors like resonant tunneling for the quasi bound-
states of the double barrier potentials. The single Gaussian barrier potential is an approximation
for the atomtronic battery and the double Gaussian barrier potential is an approximation for the
atomtronic transistor. Thus far, the atomtronic work presented in reference [2] was done in the
classical regime where thermal currents dominate. The work presented in this thesis analyzes the
quantum mechanical characteristics, such as tunneling, to be incorporated and perhaps used to

explore coherent transistor action.
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Chapter 1

Introduction

Purpose of Study

This thesis details the use of the impedance method [I, B] as a means to develop and
understand atomtronic circuits. The impedance method is a numerical method that draws an
analogy between the one-dimensional time-independent Schrédinger equation and transmission line
theory in electronics and has been applied to double rectangular barrier potentials in [4] and [5] as
well as other other well potentials, as in [6], for finding the bound-state solutions. The impedance
method is used to calculate transmission/reflection probabilities, complex reflection coefficients, and
eigenenergies of an arbitrary potential. In this thesis the impedance method is applied to a single
Gaussian barrier potential, a double rectangular barrier potential, and a double Gaussian barrier
potential. For the double rectangular barrier potential and the double Gaussian barrier potential,
the impedance method can also be used to evaluate the eigenenergies for the resulting well between
the barriers. In this work, application to atomtronics is made through a single Gaussian barrier
potential and a double Gaussian barrier potential. Atomtronics is the atomic analog to electronics,
in which neutral atoms replace electrons resulting in an atom current rather than an electron
current. The chemical potential, u, of the system replaces the electric potential to further the
analogy between atomtronics and electronics. The work done in reference [2] was done in the
classical regime where thermal affects dominate. The work done in this thesis is an exploration of
quantum mechanical effects like tunneling and can be used to incorporate and design potentials

that use tunneling as a feature to atomtronic devices.



The atomtronic battery is created by the superposition of a harmonic well and a single
Gaussian barrier potential [2]. The single Gaussian barrier potential will be treated using the
impedance method in chapter 3 to find the behaviors of transmission associated with transmission.
The atomtronic transistor is modeled by the superposition of a harmonic well and a double Gaussian
barrier potential. The triple-well formed by this superposition is analogous to the three terminals
of an electronic transistor, and the chemical potential in each well is analogous to the node voltage
of the electronic transistor. The double Gaussian barrier potential will be treated by using the
impedance method in chapter 4.

Because the impedance method is a numerical approximation, there are limitations to its ef-
fectiveness. Numerical limitations depend on the computation program used, and for more complex
potentials, like that of the double barrier, energy spectra with much higher density or non-uniform
optimized density must be used. Other limitations come from approximation of the potential bar-
rier itself; since the impedance method incurs error for potentials with infinite slope, e.g. the
step potential or double rectangular barrier. However, unlike other methods such as the Wentzel-
Kramers-Brillouin (WKB) method, there is not a limitation on the variation of the potential. The
impedance method is effective, simple to use, and can be applied to almost any potential.

This thesis is arranged as follows:

Chapter 2] introduces the general impedance method, a numerical method developed by
Khondker et al in reference [I]. The analytically solvable step potential which is used as an
example of the application of the impedance method. The impedance method is extended to the
potential barriers covered in chapters 3, 4 , and 5. Chapter [3| covers the single Gaussian barrier
potential. Using the impedance method the transmission spectrum of a single Gaussian barrier
potential is evaluated and used to determine the characteristics of the potential that lead to certain
behaviors of the transmission. The single Gaussian barrier potential is an approximation of the
atomtronics battery potential. Chapter [4] covers the double rectangular barrier potential. The
double rectangular barrier presents an interesting case that can be solved analytically. The double

rectangular barrier allows for resonant tunneling; meaning that incoming energies less than that of



the barrier height may have unity transmission when on resonance with the middle well. Resonant
tunneling and the quasi-bound eigenenergies are explored and compared to its analytical solution.
Chapter 5| explores the double Gaussian barrier potential. The double Gaussian barrier potential
is an approximation to the atomtronic transistor potential. Manipulating the characteristics of the
barriers and analyzing the resulting transmission spectrum and resonant eigenenergies allows us
to optimize the atomtronic transistor potential to include quantum mechanical properties. The
atomtronics transistor uses two blue detuned light sheets superposed on a harmonic magnetic trap
to form a triple-well geometry. The purpose of analyzing the transmission spectrum of the dou-
ble Gaussian barrier potential is to gain further understanding of quantum mechanical behaviors,
like that of resonant tunneling, and apply them to the triple-well potential. Chapter [6] concludes
the thesis. For the three barrier potentials studied here, the single Gaussian barrier potential,
the double rectangular barrier potential, and the double Gaussian barrier potential, apparent re-
lations between barrier characteristics and transmission energies are made through the use of the
impedance method. The double Gaussian barrier potential can be applied to the atomtronic tran-
sistor potential in order to optimize certain behaviors, such as a coupling of resonant energy to the

dipole moment of the gate condensate.



Chapter 2

Introduction to the General Impedance Method

2.1 The transmission line analogy: The general impedance method

The transmission line analogy, also known as the general impedance method or impedance
method, was developed by Khondker, et al. [1] in 1987 as a method to solve the Schrédinger
equation for the quantum mechanical transmission spectrum of an arbitrary potential barrier.
Originally this method was developed to describe tunneling in electronic devices, here the method
is applied to atomtronic devices. Knowing the quantum mechanical transmission probability is
useful for determining tunneling conditions, bound state conditions, resonant tunneling energies,
wavefunction behavior, etc. Using Schrodinger’s equation to find the transmission probabilities is
only analytically possible with a handful of potential barrier functions, such as the infinite/finite
square well, the delta potential, and the finite square barrier; many of these are common examples
in physics textbooks [7, 8]. Other numerical and approximation methods can be used to solve for
the transmission spectrum. For example, the Wentzel-Kramers-Brillouin approximation (WKB),
provides an analytical solution for a slowly varying potential, or the Schrédinger equation can be
solved directly via the finite difference method.

The general impedance method is a numerical method that calculates the quantum mechani-
cal wave impedance allowing for the quantum mechanical transmission probabilities to be evaluated
as well as the eigenenergies. The method is based on the suggestion that two similar problems will
have similar solutions and draws a parallel between the Schrodinger equation and transmission

line theory for a generalized distributed impedance. The barrier of an arbitrary potential in the



quantum scheme is analogous to the junction between two different transmission lines, and the
wavefunction and its derivative are analogous to the transmission line voltage and current, respec-
tively. The qualitative comparison below show the relationship between Schrodinger’s equation and

transmission line theory,

Schrédinger : Transmission line theory :
Y(x) = AT(e" — pe ") I(x) = I (" —De™7)
~ — ey (2.1)
_thdy _ At¢o(e" + pe ") V(z) =I¢(e?* +Te %)
m dx
9 2
K2 — K1 CLoAD — QO,LINE

R=|p|* = Ry =T =

Ko + K1

in/2m(E—U)
h

Croap + Co,LINE

where v = k = is the propagation constant and x1, ko denote the propagation constant

in the reflected region 1 and barrier region 2 respectively. The wave amplitude reflection coefficient
isp=1T, (= —%’1 is the characteristic impedance, and R is the quantum reflection coefficient,
which is directly related to Ry, the reflection coefficient defined in transmission line equations. The
load and characteristic impedances of the transmission line are (roap and (o, LrNE, respectively.
The amplitude constants, AT and I'", are defined by initial conditions. Here, & is Planck’s constant,
m is the atom mass, F is the energy of the incoming atom wave, and U is the potential barrier
function.

The total voltage, V(z), and total current, I(x), between two different transmission lines
must be continuous across the boundary, analogous to the boundary conditions of the quantum
mechanical wavefunction, ¢ (x), and its derivative, %, must also be continuous across a barrier. The

impedance, given a complex current and voltage, which is defined by Ohm’s law as ( = V(x)/I(z)

therefore, the quantum mechanical wave impedance is defined as

—ih 1
o) dr

Coadcosh(kl) — (psinh(kl)
Cocosh(kl) — Coaqsinh(xl) ’

((z) = V(z)/I(x) = — Ginput = Co (2.2)

where Cinput is the input impedance, (p is the characteristic impedance defined in Eq. (2.5]), and



Cload is the load impedance [I, [3]. The quantum mechanical wave impedance, (inpu, must be
continuous across the boundaries; at the boundaries the load impedance, (joaq, in the reflection

region is equivalent to the input impedance, Cinput, inside the barrier. From the boundary conditions

Cinput 7(0

R allowing for the
inpu

the definition of the wave amplitude reflection coefficient becomes I' =
transmission probabilities to be determined from 7' = 1 — |F|2. The quantum mechanical wave

impedance also allows for the eigenenergies of potential wells to be evaluated. The energy condition

to find the eigenstate energies becomes

Cinput,L(mref) = Cinput,R(xref) 5 (23)

where Cinput, 1. (Zref) is the left looking impedance from a chosen reference plane and Cinput, R(Zref) is
the right looking impedance from the same chosen reference plane. The Mathematica package for
calculating the eigenenergies is provided in Appendix B.

The general impedance method uses the quantum mechanical wave impedance in an iterative

manner where,

b — in/2m(E; = Vj)

= - 7 (2.4)
ihk;

Coj=——- (2.5)

CjnputJ _ Co CloadJCOSh(kjl) — C()J'Sinh(kjl) (2.6)

7 Gy jeosh(k;l) — Goad, jsinh(k;1)
where k; is the propagation constant for iteration j and (o ; is the characteristic impedance for
iteration j. Cinput,j is the input impedance of the jth segment and (o ; is the characteristic impedance
of the jth segment (Note: for j = n where n is the total number of iterations, (ioadn = (o,n). The
load impedance of the jth segment is (jpaq,; and is equal to Cinput,n—1. From definition Eq.
one can iterate backwards from j = n to j = 1 along the potential function in order to calculate

Croap and (o rrnE and find the reflection coefficient,
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n_ Cinput — Co| _ |SLoAD — QOLINE| _ R . @7)
Ginput + €0 CLoAD + Co,LINE
V(x)‘\
Yincident Ytransmitted

ZLOAD = Zinput,1  Zload,N-1 = Zinput,N
Zload,N = Z0

Figure 2.1: An arbitrary potential function showing the iteration scheme for the impedance method
that begins on the right most point and ends on the left most. Image credit: [3].

Fig. shows an incident wavefunction i, cident With some incoming energy and an arbitrary
potential barrier function V (z,,). Using Fig. for reference, start with some ¥jpcident at an energy
FE and a potential barrier defined by n discrete points. Then the impedance method initializes at
the (x,,V,) position, where the step size x,, — r,—1 = [ is defined and is the same through out
the region of interest. We first apply Eq. with £ and V; = V,, giving a value for k,. From
here (o, is found from Eq. and defines (ioad,n giving Cinput,n = Co,n- For the next iteration
we move to position (Vy,—1,2,—1) and set Coad,n—1 = Cinput,n = Co,n- Because V,,_1 # V,,, it follows
that k,_1 # k,, and kj,_1 is used to find (o ,—1. Given I, k,_1, o,n—1, Cload,n—1 = Co,n and plugging
into Eq. , we now have Cinput,n—1. Continuing with this pattern all the way down to j =1 we
are left with (o1 and inpue,1 Which is substituted into Eq. for the reflection probability of our
arbitrary potential. See Appendix [A] for the Mathematica package for the impedance method.

As an example, the simple and analytically solvable step potential barrier is presented. From
there the impedance method will be applied to a single Gaussian barrier potential, a double rect-
angular barrier potential, and a double Gaussian barrier potential. The single Gaussian barrier
potential and the double Gaussian barrier potential are simplifications of an atomtronics battery-

like potential and transistor-like potential, respectively. The single Gaussian barrier potential will



be discussed in chapter 3 and the double Gaussian barrier potential is discussed in chapter 5.

2.2 An Example: The step barrier potential

The one-dimensional step potential, whose function is defined by Eq. (2.8) and shown in
Fig. 77, may be solved analytically by the Schrédinger equation. The potential energy function is
zero in the range x = (—o00,0) and a constant Vj over the range x = [0, 00).

The step potential function is defined by
V=4, (2.8)
Voo tx>0

where V} is the height of the step potential [7]. The analytical solution for the reflection probability,

Rineory, and transmission probability, Tipeory, are

1 0<E<V,
Rtheory = 9 ’ (2 9)
(E— E(E—V0)> CES TV,
E+\/E(E—Vp)
0 0< E<Vp
Ttheory =1- Rtheory = LB/ BV BV ) (210)
: 0

(E+ E(E—VO)>2
where E is the energy and Vj is the height of the potential [7, 8] and is solved directly from the
Schrodinger equation. In Fig. [2:2) the potential height is given a value of Vy = 1 kHz with a
position range of z = [—3.0 mm, 3.0 mm]| in steps of | = 0.40 pum so that the assumption of the
potential extending to infinity can be approximated for the analytic case. The necessary inputs for
the impedance method are the step size, [, the potential barrier array, ‘7, and the incoming energy

—

array, I,



=0, ...,0, Vo, ..., Vo]* = [0, ...,0,1,...1] kHz ,

=[E, ... Ep,..E, )T =10,...,3.998, ...,5.0] kHz .

(2.11)



E Z]oad,n—l = Zinput,n_
m incident
| | |
V=V
G —
/ [ B0t Ak
3 2 : :
ZroAD — & Tt 1 — & o iy 2m( B, — v, 1) _ ?,V”Qm(.i‘:'m—voj _
—R, = FLOiD pU'“NE =| : put,1 Fu.l k1= 5 — n =k,
Zroap + ZoLiNe la’mpuu + Zn; (
Zﬂ,f‘:—l = ﬁﬂ.n = —]
: Zinputs — Zoa | o
Tp=1- A 2m(E,, — vp)
Zinput,1 + Zo1 | Zivadn—-1 = Linputn = Lop = e
AV 2m{Em = Uﬁ])

T Zi'ﬂ_puhn | ZCI_.n =

m
NVAY "
| # J/ | V= i/ 2m(E, — v,
| ek o M
D (x,,v,) C (x.v) " h
i p‘zm(Em _ 'Uj':] iv2mEn, Zo. = _'Sﬁ.ku " 2By — 1)
k; = 3 = h " T m
, ihk; 2mE, V2m(E, —v,)
= iv2mE,, Zng = —T; e Zicadn = Zopn = e
h 2m(E,,, —vg) ;
Fo ssm o e V2m(Ep — vy) 7 _ 7 Byoadncosh(k,l) — Zp psinh(k,l) _ 5
—Z{J i % load.j put,j—1 0 m input,n (1% Zu,nmﬁhl:knf] — Zluud,n-‘?i“h(kn” 0,n
¢ m P Zycosh(k;l) — Zy sinh(k;l)
Zsaar = Zigina | T N 2 jeosh(kyl) — Zosinh (k)

_[2En V' Ey — vgeosh{k;l) — +/E, sinh(k,l)
Zioadcosh(kyl) — Zogsinh(kd) —Y v Eycosh(k;l) — ' Em — vgsinh(k, 1)
ZUIIUJBII(FE'[!) — Z]nad.lﬁinh(kl!)

Zinput.,] = Z[l,l

Figure 2.2: A flow chart depicting the iteration scheme for the impedance method using a step potential (blue) and some incident wave
with energy F,, denoted by the yellow dashed arrow. Starting at point A and following through all the way to the end of the defined>
potential at point D. The step potential is the blue solid line. The points A, B, C, and D are denoted in pink. The iteration steps are
denoted by red arrows and the impedance method scheme at steps A, B, C, and D are black.
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Using Fig. and starting with the nontrivial case of incoming energy E,, > vg, the method
begins at point A = (z,,v,,). The first calculation finds k,, from Eq. where v, = vy and from
there (o, is defined by Eq. . For this initial iteration we set (joad,n = Co,n» Which it clearly follows
that Guput,n = Cload,n = Co,n- Moving one step in the negative z-direction to point B = (2,—1,vp—1)
where v,_1 = vg, and plugging in (ioad,n—1 = Cinput,» We are left with all the same values; that is
to say that k,—1 = kn, Con—1 = Co,ns Coadn—1 = Cload,n = C0,ns a0d Cinput,n—1 = Ginput,n = Co,n-
This is true for all following steps to point C = (x;,v;) where v; = 0, and C is the step where
vjy1 = v9 — v; = 0. At point C k; # k, and it follows that (o ; # Con and Cinpus,j # Con @S
well. However (joad,j = Co,n is still true at this point because (ioad,; = Cload,j+1- As we move from
point C down to point D = (x1,v1) where v; = 0, it is clear to see that at each step it is true
that kj = kj_1 = ... = k1 and (o j = (o, j—1 = ... = 0,1, but Cioad,j 7 Cload,j—1 7 --- 7 Cload,1 and
thus changing the value of (input,; along the way as well. At the end of the potential, the values
of (p,1 and Cinput,1 and are used in Eq. to find the reflection probability R. The transmission
spectrum for the step potential barrier is shown in Fig. 2.3] along with the analytically derived
transmission probability from Eq. . The Mathematica notebook for the step potential barrier

is given in Appendix [B]
2.3 Summary of the numerical method

The impedance method is a numerical method that draws parallels between Schrodinger’s
equation and the transmission line theory by defining a quantum mechanical wave impedance. The
impedance method is an iterative scheme that uses the propagation constant k;, the characteristic
impedance (o ;, and the input impedance (input,, i-e. the quantum wave impedance, to find the
quantum mechanical transmission spectrum for an arbitrary potential energy function. For the case
of a double barrier potential or well potential, the method can be used to find the eigenenergies of

the quasi-bound states.
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Transmission spectrum for the Step Potential
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Figure 2.3: The transmission spectrum for the step potential barrier. The blue solid line is the
evaluated transmission spectrum by the impedance method and the red solid line is the analytical
solution for the transmission spectrum defined in Eq. (2.10]).



Chapter 3

The Single Gaussian Potential

3.1 The single Gaussian barrier potential

The Gaussian barrier potential, described by Eq. (3.1]), is commonly used as the continuous
counterpart of the finite square barrier in discussing tunneling behaviors. The single Gaussian

barrier potential is described by,

Wo

V(z) =vpe o2, (3.1)

where vg is the peak potential height and o is the variance, or width, of the barrier. The variance
of the single Gaussian potential is related to the full width half maximum (FWHM) by I" = /In 20.
Figure shows the Gaussian barrier and its variations of the potential height and variance. An
increase in ¢ increases the FWHM which decreases the tunneling probability for the wavepacket of
a given energy. Increasing the peak potential height makes the barrier taller and has the effect of

shifting the tunneling energies to higher values.
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The tunneling condition for the Gaussian barrier potential, as derived in reference [9], is

> (v - B, (3.2)

where FE is the incoming energy of the wavepacket. Eq. was derived from the time-energy
uncertainty principle AEAt > % where i has been taken to be unity. The left hand side of the
tunneling condition is the kinetic energy of the wavepacket and the right hand side defines the
energy difference. The condition states that the kinetic energy must be greater than the difference
between the peak potential energy height and the incoming energy of the wavepacket. However,
this tunneling condition is inconsistent; the values of the first tunneling energy in Table violate
this condition, and, as is discussed in reference [I0)], the dimensions on either side of Eq.
do not agree. When Eq. is put into dimensionless notation, vy — € < %, the transmission
probability for 0 < e < vy still violates this condition, i.e. there is still tunneling [10].

The single Gaussian barrier is a precursor to the double Gaussian barrier which is the ap-
proximated barrier function for the atomtronics transistor potential. The Gaussian barrier was
studied for variations in the peak potential height, vy, and in variance, o as is shown in Fig. 3.}
The first tunneling energies are calculated using the impedance method’s transmission spectrum

for the different combinations of height and o. These are given in Table [3.1]

3.2 Applying the impedance method to the single Gaussian barrier potential

Studying the transmission spectrum of the single Gaussian barrier potential allows for opti-
mization of barrier characteristics such that only certain specific incoming energies can be trans-
mitted or have full reflection. The transmission spectra for a single Gaussian barrier are shown in
Fig. and Fig. The transmission spectrum for a Gaussian potential barrier whose height is
held fixed at 30 kHz with varied ¢ is shown in Fig. Notice that the transmission slope increases
with increased o, in other words the allowed tunneling energy values increase and approach the

energy of the peak potential height from both sides. This is because as ¢ is increased, the FWHM
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is increased and the wavepacket has more barrier to tunnel through. The 50% transmission energy
is the same for all four different o values and is directly related to the Gaussian barrier height.
When the incoming energy of the wavepacket is equivalent to that of the barrier height, 50% of
the incoming wavepacket is reflected back and the other 50% continues in the forward direction.
This is because the incoming wavepacket is described by a plane wave, so it oscillates about its
incident energy with half the wave being below the energy and half the wave being above it, thus
50% gets reflected back from the Gaussian barrier. At the lower end of the tunneling energy range
one can clearly see from Fig. and Table that for a smaller o one can have lower energies
tunneling through the barrier and that the relation between tunneling and o is not a linear one. At
the upper end of the energy range in Fig. and Table when the incoming energies are at and
above that of the peak barrier height vy we see that for smaller o, higher energies are still affected
by the Gaussian barrier as compared to larger ¢ where transmission of the incoming wavepacket
approaches unity faster. This behavior suggests that at the limits of ¢ << 1 and ¢ >> 1 the
transmission spectrum will behave as a transmission spectrum for a delta function potential or the
classical transmission spectrum for a step potential respectively as shown in Fig. 3.4

The transmission spectrum for a Gaussian potential barrier whose o is held fixed at 1.0 um
with varied peak potential height is shown in Fig. [3:3] The entire transmission spectrum is shifted
to the right for higher peak potential energy heights, which is due to the barrier now being present
at higher incoming energies. A change in the peak potential height has the effect of shifting the
transmission spectrum’s 50% transmission energy to the energy level of the peak potential height,
changing both o and the peak potential height leads to the unsurprising result of a shift in 50%
transmission energy to vy for the different variances. In other words, the first tunneling energy for
a change from o = 1.0 um to ¢ = 1.6 um for a potential height of 30 kHz differs by approximately
2 kHz and for the same change in o at a potential height of 31 kHz, 32 kHz, and 33 kHz the
first tunneling energies differ by approximately 2 kHz as well. This behavior is relevant for the
optimization of the potential to specific tunneling energies.

The first tunneling energies in Table are found using the impedance method rather than
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Figure 3.2: The transmission spectrum of the Gaussian barrier with o =

{1.0 pm (Blue solid line), 1.6 ym (Orange solid line), 2.1 um (Green solid line), 2.5 ym (Red solid line)}
with the peak potential barrier height held fixed at 30 kHz. The light gray grid lines locate the

50% transmission point, or in other words 50% of the wavepacket is reflected off the Gaussian
barrier. Notice how the energy of 50% transmission is equivalent to the Gaussian barrier height.

The transmission spectrum with the largest variance, ¢ = 2.5 ym has the steepest slope, and this
correlates to having a smaller energy range where tunneling is possible, i.e. the first allowed energy

that can tunnel through the barrier is much closer to the Gaussian barrier height.

First Tunneling Energy in kH=z

Vazisnoe 1

T . m 1.6 um 2.1 m 2.5 um

30. kHz 24.3768 26.4372 27.271 27.7014

31. kH= 25.2804 27.3769 28.2251 28.6629

32. kH= 26.1856 28.3177 29.18 29.625

33. kHz 27.0922 29.2593 30.1355 30.5876

Table 3.1: The first tunneling energy calculated from the impedance method for the single Gaussian
barrier. The horizontal row entry denotes the variance o and the vertical column entry denotes the
peak potential height vy.
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The transmission spectrum of the Gaussian barrier with varied height, wvg
{30 kHz (Blue solid line), 31 kHz (Orange solid line), 32 kHz (Green solid line), 33 kHz (Red solid line)}
with o held fixed at 1.0 pm. The light gray grid lines denote the 50% transmission point where
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50% of the wavepacket is reflected off the barrier. Notice how the energy of 50% transmission is
again equivalent to the Gaussian barrier height. The slope of the transmission line is the same
for each variation but the tunneling energies have shifted by the same amount that the potential

height has.
Last Energy Before Full Transmission in kH=z

Variance

ol 1. pm 1.6 um 2.1 jm 2.5 pim
30. kHz 36.02489 33.7197 32.8201 32.36248
31. kHz 37.1212 34.7799 33.B659 33.4013
32. kHz 38.216 35.8391 34.9111 34.4392
33. kH=z 39.3094 36.8975 35.9555 35.4768

Table 3.2: The last energy before full transmission is achieved, calculated from the impedance
method for the single Gaussian. The horizontal row entry denotes the variance of the Gaussian
potential barrier and the vertical column entry denotes the peak potential height of the Gaussian

potential barrier.



Transmission Rate of Change
‘ﬁ l. pm 1.6 um 2.1 um 2.5 um
30. kHz 0.0B58507 0.137315 0.180209 0.214527
31. kH=z 0.0B44536 0.13508 0.177279 0.211041
32. kHz 0.0B31226 0.132954 0.174486 0.207718E
33. kHz 0.0B18517 0.130921 0.171821 0.20454
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Table 3.3: The central rate of change or slope of the Transmission spectrum between the first
tunneled energy and the last energy before full transmission is achieved for the single Gaussian.
The horizontal row entry denotes the variance of the Gaussian potential barrier and the vertical

column entry denotes the peak potential height of the Gaussian potential barrier.
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the tunneling condition Eq. . The first tunneling energy was found by finding the first incoming
energy in the set Ejncoming = {0.001,0.0011,0.0012, ...,39.9999,40.0} kHz that corresponds to the
first reflection probability being less than unity. The values for each different variation of the
potential are given in Table Notice how an increase in ¢ increases the first tunneling energy,
as does an increase in peak potential height of the Gaussian barrier. Changing the barrier height
by 1 kHz causes the energy to shift by just under 1 kHz, but changing o does not have such a near
1:1 relation. As o is increased the growth in the energy is slowed, i.e. when ¢ = 1.0 pm versus
when ¢ = 1.6 um the energy increases by approximately 2, but when compared to ¢ = 1.6 um and
o = 2.1 pym whose difference is 0.5 pm the energy increases, but by less than unity. This can also
be seen in Fig. and Table where the slope of transmission for ¢ = 1.0 pum is the slowest and
the slope for ¢ = 2.5 pm is the fastest, while the o values are between the two have slopes much
closer to that of ¢ = 2.5 ym than ¢ = 1.0 ym even when the difference between them is lessened
when taken with respect to ¢ = 1.0 pym. This behavior illustrates that the relation between o
and tunneling energies is not a linear one, although Eq. cannot be used quantitatively, this is
expected due to the tunneling condition. The slopes of the transmission spectrums are tabulated in
Table [3.3] there the relation to o and peak potential height is clear. The increase in peak potential
height provides a slight decrease in the rate of change of the transmission spectrum over the energies
of interest, but on the order of 1073, where as the increase in o has a more significant impact in
the rate of change of the transmission spectrum over the energies of interest, that being on the
order of 1071, Table shows the opposite trend for o as Table does; as o is increased the
last energy before full transmission decreases. This behavior is as expected since in the limiting
case of a very large o we expect the transmission spectrum to be that of a classical step potential;
the energies which are transmitted are those greater than the peak potential height, otherwise full
reflection happens. For each change in the potential height with the variance fixed at ¢ = 2.5 ym
the last energy is approximately 2.5 kHz above the peak potential height, again illustrating a linear
relationship. As is discussed above, when the limits of o are very small or very large, corresponds

to a delta function potential and a classical transmission for a step potential, illustrated in Fig. [3.4
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Gaussian Barrier Potential Transmission Spectrum, Variance Limits
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Figure 3.4: The transmission spectrum for a the single Gaussian potential with peak potential
height at 30 kHz with the variance at the extreme limits of ¢ << 1 and ¢ >> 1. In the limit of
0 << 1 a transmission spectrum similar to that of a delta potential is expected and in the limit of
o >> 1 a transmission spectrum similar to that of a step potential is expected.
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Gaussian Barrier Potential and Transmitting Wave
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Figure 3.5: The wavepacket interacting with the Gaussian barrier potential. The potential has
c = 1.0 pm and vy = 30 kHz. The wavepacket is described by a plane wave whose incoming
energy is that of the first tunneling energy for this particular Gaussian barrier, £ = 24.38 kHz.
The wavepacket on the left hand side of the barrier clearly oscillates about its incoming energy
and is the superposition of the incident wave and the reflected wave. At the barrier one see’s a
spike in amplitude of the wavepacket which is from the reflected wave and incident wave having
constructive interference. Within the barrier there is exponential decay until it exits the barrier
and can be described by a plane wave traveling to the right, the amplitude of this plane wave
is significantly reduced from the incident waves amplitude because we are at the lowest possible
energy that still allows for tunneling, so a very small percent of the wave is transmitted through
the barrier. It is key to note that this is a time-independent depiction.
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An approximate depiction of what the wavepacket looks like when interacting with the Gaus-
sian barrier potential is shown in Fig. (3.5 The Gaussian barrier potential is described by Eq. ( .
o = 1.0 pm and vg = 30 kHz. The wavepacket has an incoming energy of F = 24.38 kHz, which
corresponds to the first tunneling energy for this particular Gaussian barrier, as stated in Table
The wavepacket is described by a plane wave, with an incident amplitude coefficient of unity and the
reflection and transmission amplitude coefficients are determined by the general impedance method
described in Chapter 2. As expected the wavepacket in region I, the region to the left of the barrier,
has a clear oscillation about the energy E = 24.38 kHz and is a superposition of the incident wave
and the reflected wave. The spike at the barrier is in part due to the Gibbs phenomenon, which is a
numerical and physical effect caused by large oscillations near the jump discontinuity, at the barrier,
of the piecewise continuously differentiable periodic wavefunction which is defined in Eq. and
in part due to the constructive interference between the reflected wave and the incident wave. At
the classical tuning point, the probability of finding the wave is higher because the kinetic energy
is lower at the reflection point. An analogy for this is a classical pendulum, where probability of

finding the pendulum at the turning points is highest. The piecewise periodic wavefunction is,

ek 4 e~ . g c Region I: Left of the barrier

U(x) = { e : = € Region II: Inside the barrier ) (3.3)
tetke : x € Region III: Right of the barrier
where k = ELQV and K = h2 r is the reflection amplitude found from the

impedance method (see Appendix C), ¢ = /1 — R where R is found by the impedance method
(see Appendix A) and defined in Eq. . The behavior of the wavepacket within the barrier is
that of exponential decay, and again at the jump discontinuity, as the wave exits the barrier, we
see a slight spike from the Gibbs phenomenon and reflection within the barrier. The amplitude
of the wavepacket that has successfully tunneled through is significantly reduced from that of the
incident amplitude showing that there is indeed a small fraction of transmission occurring for this

energy. The transmitted wave oscillates about the energy F = 24.38 kHz but the amplitude is
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comparatively much smaller.

3.3 Chapter conclusion

The atomtronic battery potential is a super position of a harmonic well and single Gaussian
barrier potential. The atomtronic barely is analogous to the electric barely, where the electric
potential is now defined by the chemical potential and the current is now defined by the atomic flux
that depends on the barrier height of the single Gaussian potential barrier. For further discussion
on the atomtronic battery see [2] and [11] .

The single Gaussian barrier potential allows for transmission at energies lower than the peak
potential height, i.e. tunneling occurs. Increasing the height of the Gaussian barrier has a near
one-to-one relation with the first tunneling energy and keeps the general shape and slope of the
transmission spectrum. Unlike the relationship with the height of the Gaussian barrier, o of the
Gaussian barrier does not scale linear with the tunneling energies. Changing o changes the shape
and slope of the transmission spectrum, and an increase in o steepens the slope of transmission
for tunneling and transmitting energies and shrinks the range of those energies as well. Knowing
how transmission depends on the barrier characteristics allows for the single Gaussian barrier
potential to be used as a spectrum analyzer. In the limiting cases where 0 << 1 and o >> 1,
the transmission spectrum of the single Gaussian barrier approaches the transmission spectrum for
a delta potential and the classical transmission spectrum for a step potential, as expected. The

Mathematica notebook for the single Gaussian barrier potential is given in Appendix [C]



Chapter 4

The Double Rectangular Potential

4.1 The double rectangular barrier potential

For a double barrier potential, e.g. a double rectangular barrier or double Gaussian barrier,
the quantum mechanical phenomenon of resonant tunneling occurs. This tunneling occurs when
the incoming energy of the wavepacket is resonant with the eigenenergies of the inner potential
well. Thus allowing the wave packet to be fully transmitted through the potential even when the
incoming energy is less than that of the potential’s height. In the impedance method, the energy
condition for resonance is (refi(Re) = Cright(Rc), where R, is the chosen center reference plane [IJ.
In effect, the left looking impedance is equivalent to the right looking impedance from a chosen

center reference plane. See Appendix [D] For the double rectangular case the potential is described

by Eq. ,

vor : —b<zx<-—a Region II
0 —a<z<a Region 111
v(x) = (4.1)
v : a<zxz<b Region IV
0 = Jz|>b Region I and V

\

Here, we choose b = 0.6455 pm, a = 0.3125 pm, vo; = 30 kHz, and vge = 30 kHz. Figure [4.]]
shows the potential barrier, described in Eq. (4.1), with the different regions labeled for clarity.

The double rectangular barrier potential is an analytically solvable problem. The solution is found
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by separating the problem into five different regions and calculating the respective periodic solu-
tions to the Schrodinger equation, as denoted in Fig. as region I, II, 111, IV, and V. The
boundary conditions require that the periodic functions and their derivatives are continuous over
the boundary.

The analytical reflection/transmission is derived using the one-dimensional time-independent
Schrodinger equation g—gj% + v(z)Y(x) = Ev(x) as shown in Eq. . Although solvable, the
calculation is quite involved and is generally done numerically as in [4]. References [12] and [13]
have published analytical transmission coefficient functions, but they are not in agreement with each
other nor with Eq. , Eq. , and Eq. . The analytically solved transmission probability
is

2

B (4.2)

where

) k2 )
B =%kt [(— + Ko)e*cosh (k1 A)sinh (k2 A)
K2
k2 ,
+(H— + k1)e” 2*%sinh (k1 A)cosh (ko A) (4.3)
1

k3 R1K2. . Rl ) . .
[ P )sin(2ka) +zk(ﬁ—2 - K—l)cos(Qk:a)]smh(nlA)smh(mgA) ,

and

‘ 2
A =e~2ka [(z— — Ko)sinh(koA)cosh(k1A)
2
2
+(k— — Kk1)sinh(k1A)cosh(k2A) — Qikcosh(ngA)cosh(mA)} (4.4)

K1
k‘3 KR1K2 K9

. . Rl . .
o + ’ )sin(2ka) — Zk(/g + H—l)cos(Qka)]Slnh(mgA)smh(mA) ,

+(

where k = 1/2}1—?E is the propagation constant in region I, I11, and V, k1 = 2,7751(1101 — F) is the
propagation constant in region I, and ko = %(vog — E) is the propagation constant in region
1V, with A = a —b. This derivation was done by hand and confirmed using Mathematica. Despite

disagreement with references [12] or [13], it is in close agreement with the eigenenergies calculated

by the impedance method and is closer to the impedance method’s transmission spectrum than
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Rectangular Double Barrier
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Figure 4.1: The double rectangular barrier potential whose potential height is vo2 = {30 kHz (Blue
solid line), 31 kHz (Orange solid line), 32 kHz (Green solid line)} and barrier width is 0.333 pm with
a separation distance of 0.625 um. The wavepacket is described by the superposition of Wy, Wyy,
Wrrr, Y1y, and Wy where the subscript relates to the region. Wy is the superposition of the incident
and reflected wave, Wy is the superposition of the tunneling waves, Wy is the superposition of
the tunneled wave and reflected tunneled wave, Wy is again a superposition of tunneling waves,
and WYy is the transmitted wave.



28

references [12] and [13]. The analytical solutions presented in [12], [13], as well as the solutions

given in Eq. (4.2), Eq. (4.3), and Eq. (4.4) are compared in Fig.

4.2 Applying the impedance method to the double rectangular barrier

potential

The transmission spectrum for the symmetric double rectangular barrier potential is illus-
trated in Fig. The resonances are shown by peaks of full transmission at incoming energies
less than the barrier height. The peaks occur when the incoming energy is matched to the quasi
bound-state solutions of the middle well between the two barriers. When the incoming energy is
matched to one of these resonant energies the wavefunction between the two barriers is peaked due
to constructive interference from the reflected waves off both interior barriers. A depiction of the
wavefunction between the barriers is shown in Fig. [£.7] and discussed in further detail later. When
the incoming wavepacket is not resonant the transmission is as though the well does not exist, i.e.,
transmission is less than unity for energies less than the barrier height. The double barrier acts
as an energy filter, allowing the resonant wavepacket through both barriers with full transmission.
All other energies less than the height of the potential are reflected off of the barrier. This filtering
is illustrated in Fig. [£.3] Incoming energies less than that of vg; and on resonance fully transmit,
where other off resonant energies, will fully reflect at the barrier. A higher energy density around
the lower energy resonances is needed for the impedance method transmission spectrum to register
and show full transmission. This is due to the resonant energies having a resonant width that gets
smaller and smaller for the lower resonant energies, where the resonant width approaches a delta
function. This is why the lower resonant spikes on the spectrum are not shown to be at unity
transmission, when in reality they are.

The eigenenergies of a double barrier potential can be found by use of the impedance method
as discussed in references [I] and [6]. The condition for an eigenenergy, defined in Eq. (2.3), is
that the left-looking impedance, defined in Eq. , is equivalent to the right-looking impedance

from a given reference plane between the two barriers. Specifically the program written to find the
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Transmission spectrum of analytical solutions
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Figure 4.2: A comparison of the impedance method spectrum (Blue solid line), analytical solution
from Eq. , Eq. , and Eq. (Orange solid line), and analytical solutions done in [13]
(Green solid line), and [I2] (Red solid line). Notice that the both the impedance method trans-
mission and transmission from Eq. , Eq. , and Eq. show five resonant energies, but
the transmission spectra of [12] and [13] only show three resonant energies. The general structure
of [12] and [I3] transmission spectra are similar and some what in agreement with each other,
while the impedance method and Eq. , Eq. , and Eq. are in closer agreement to each
other. Interestingly the transmission spectra of [12] and [I3] appear to have a somewhat uniform
spacing of the resonant energies, unlike what we would expect from the bound-state solutions of
the finite square well.
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Transmission spectrum of the double rectangular barrier potential
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Figure 4.3: The transmission spectrum for the double rectangular barrier potential described by
Eq. . The blue solid line is the transmission spectrum calculated by the impedance method,
and the vertical black dashed lines are the eigenenergies calculated by the impedance method. The
peaks are the resonant tunneling energies where full transmission is achieved. Notice though that
the two lowest resonant energies are not at unity transmission in this plot, this is due to numerical
memory limitation. The range of incoming energies is not at a high enough density around the two
lowest peaks causing the impedance method to not see unity transmission. The resonant energies
from this plot are 1.16198 kHz, 4.62346 kHz, 10.2976 kHz, 17.9696 kHz, and 26.9463 kHz.
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eigenenergies of the double barrier potentials, rectangular and Gaussian, sets a reference plane to
be centered between the two inside walls of the barriers and evaluates the impedance from the left
(right) end of the potential function to the reference plane, (5, ((g). The eigenenergies satisfy the

condition

(97
Cr

= 1. The energies that satisfy this condition for the specific potentials in Fig.

are given in Table

Eigen-Energies in kH=z

30. kH=z 1.11401 4.43412 9.BB3 17.2732 26.039
31. kH=z 1.11628 4.44363 9.90643 17.3226 26.15089
32. kHz 1.11844 4.45268 9.52868 17.269 26.2519

Table 4.1: The eigenenergies calculated using the impedance method for a double rectangular
barrier whose potential height is {30 kHz, 31 kHz, 32 kHz}, width is 0.333 um with a separation
distance of 0.625 ym. Increasing the height of the second barrier increases the eigenenergies slightly.
The eigenenergies for the double rectangular barrier whose barriers have heights both at 30 kHz

are also shown in Fig. and Fig.

A comparison of the transmission spectrum evaluated using the impedance method, the
derived analytical solution, and the evaluated eigenenergies is shown in Fig. [4.4. Notice that the
lowest resonant energy all three methods are in agreement with each other, but at higher energies
the analytical resonances are shifted slightly to the left of those found by the impedance method.
The shift between the analytical solution’s spectrum and the impedance method’s spectrum is
due to the numerical approximation of the infinite slope of the step potential. The calculated
eigenenergies, via the reference plane method, are slightly shifted to the left of the analytical
resonances, where the shift becomes greater for each higher resonance. The eigenenergies agree more
with the analytical solution as compared to the impedance method’s spectrum, this is interesting
because the eigenenergies and the spectrum are both using the same general method of numerically
calculated impedances. The difference in agreement to the analytical solution is again explained

by the numerical approximation of the infinite slope of the boundaries of the potential function.
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Transmission spectrum of the double rectangular barrier potential
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Figure 4.4: A compilation of transmission spectrums of the double rectangular barrier with
vo1 = vo2 = 30 kHz, width= 0.333 pum, and separation distance= 0.625 pym. The blue solid line is
the transmission spectrum from the impedance method also shown in Fig. The red solid line
is the analytical solution for the transmission spectrum and the vertical black dashed lines are the
values of the eigenenergies from the impedance method. Notice how the eigenenergies from the
impedance method agree more with the analytical solution than the transmission spectrum from
the impedance method does. All three methods are in agreement for the first quasi-bound state,
but start to shift from one an other as they near the height of the potential. This shift is due to
the numerical approximation of the infinite slope of the barriers.
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The impedance method spectrum encounters an infinite slope four times while the eigenenergy
evaluation does the numerical approximation for the infinite slope twice, so the error in the spectrum
is higher than the error in the evaluation of the eigenenergies. Although this error has visible effects
at the higher energy resonances, it provides a very useful way to optimize the transmission spectrum.
Using the eigenenergy package with an energy range of uniform density allows for the discovery of
resonant energies that would not have otherwise shown in the spectrum. Therefore an optimized
energy range can have a higher density of energies around the evaluated resonant energies, and
these can be input into the impedance method package allowing for the lower resonant energies to
be visible in the transmission spectrum. This is described further in chapter five.

A comparison of the transmission spectra for the double rectangular barrier potential where
the second barrier has a height that is larger than the first is shown in Fig. Notice that an
increase in the second barrier height slightly increases the resonant energies, this can also be seen in
Table [4.1] Increasing the separation of the barriers has a more noticeable and interesting effect on
the resonant energies, this is shown in Fig.[4.6|and Table[d.2] As expected, increasing the separation
of the barriers increases the number of resonant energies. From Fig. [1.6] one can see that as the
separation is increased, the spacing between the resonant energies decreases and becomes more
uniform, with the spacing between the higher resonances being larger than the spacing between the
lower resonances. This type of behavior is expected in light of the finite square well bound-state

energies defined by [7]
B 2h202
- m(2a)’

Ey (4.5)

where 2a is the length of the well, and v,, is the dimensionless variable v,, = k,a, k, being the
propagation constant inside the well. Table shows the spacing between energy resonances up
to order10~1 as the separation between the barriers is increased.

The wavepacket is represented in Fig. for the symmetric double rectangular barrier po-
tential whose two barriers have equal height vg; = vg2 = 30 kHz, barrier width of 0.333 ym and

separation of 0.625 ym. The incoming wave has an incident amplitude coefficient of unity and
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Transmission Spectrum for Varied Heights
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Figure 4.5: The transmission spectrum for the double rectangular barrier potential whose second
barrier height is vge = {30 kHz (Blue solid line), 31 kHz (Orange solid line), 32 kHz (Green solid
line)}, width of 0.333 pm, and separation of 0.625 pm. An increase in the second barrier height
only slightly increases the resonant energies.

Transmission Spectrum for Varied Separation
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Figure 4.6: The transmission spectrum for the double rectangular barrier potential whose second
barrier height is sep = {0.625 pm (Blue solid line), 1.25 pm (Orange solid line), 2.5 pm (Green
solid line)}, width of 0.333 pm, and height of vg; = vg2 = 30 kHz. Notice that an increase in
separation increases the number of resonant energies.
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Eigen-Energies in kHz, v01l-v02-30kH=z

0.625 m [1.11 (4.43|9.BB|17.27 |26.04

1.25pm |1.27(2.B4|5.05| 7.B6 [11.29(15.29(19.8B3(24.81(29.93

2.5 m (3.04(4.14| 5.4 | 6.B3 | 8.43 |10.19(12.11( 14.2 |16.44|18.8B4 |(21.38(24.06 |26.8B5

Eigen-Energy differnces in kHz, vw0l-=v02=30kH=z
0.625 m | 3.3 |5.4(7.4|8.B
1.25m |1.6|2.2|2.B(3.4(4. (4.5]|5. |5.1
2.5m (1.1(1.3|1.4|1.6|1.B|1.9|2.1(2.2|2.4(2.5(|2.7|2.B

Table 4.2: The eigenenergies for a double rectangular barrier potential with the second barrier
held fixed at 30 kHz and a width of 0.333 pum for different values of separation and the differences
or spacing between the resonant energies. Notice that as separation is increased so do the number
of resonant energies. Also the spacing between those energies is similar to the bound-state solutions
of the finite square well. As the separation is increase the spacing between the resonant energies is
decreased, yet still follows the finite square well pattern, where lower resonant energies are spaced
closer together than the higher resonant energies.
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Double Rectangular Barrier Potential and Transmitting Wave
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Figure 4.7: A representation of a wavepacket interacting with the double rectangular barrier po-
tential. The wavepacket has an incoming energy on resonance at £ = 26.95 kHz thus having a
transmission probability of unity. It is important to note that this is a representation of the wave-
function and the waves amplitude and frequency are not denoted by the axes of the figure. Notice
that between the barriers the wavefunction is peaked due to the constructive interference between
the reflected waves off the two inner barrier surfaces. The build up of wave amplitude allows for full
transmission of the wavepacket through the second barrier. In the barriers themselves exponential
decay occurs, as expected. The wavefunction on the left end of the barrier is a superposition of the
incident and reflected waves. The reflected wave has a complex component from the reflected wave
within the barrier well, but only the real part of the wave is shown here.
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a reflection amplitude coefficient calculated by the impedance method, with an incoming energy
at the resonant energy of £ = 26.95 kHz. As expected, the wavefunction peaks between the two
barriers with exponential decay occurring in the two barriers, and the real part of the transmission
amplitude coefficient is unity. The amplitude coefficients were calculated using the derived analyti-
cal coefficients which depend on the reflection amplitude coefficient calculated using the impedance

method. The derived coefficients are,

1 B . ‘ .
C :7e—n1b[7ezkb(ﬁ + 1) _ e—zkb(ﬁ _ 1)]
2 A K1 K1 (4 6)
. 1 : ik, B, ik, '
_~ kib[_—tkb o = ikbrq TV
C—2e e (1+,€1)+Ae (1 ﬁl)]
1. -
D =chacema(r — By 4 Gemmioq 4+ By
2 ik ik 4.7
F_} 7ika[C nla(l_’_ﬂ)_’_éfma(l_ﬂ)]’ ( . )
—2° ‘ ik e ik
_1 Koa tka(q1 _ ﬁ ika ﬁ
G—2e [Det™(1 K2)+F6 (1—{—@)]
— , (4.8)
H=1-|=
[l

where C, C, D, F, G, and H are the amplitude coefficients denoted in Fig. See Appendix

for further detail on the coefficients and Appendix [F] for the reflection amplitude package.

4.3 Chapter conclusion

The double rectangular barrier potential gives rise to resonant tunneling energies; full trans-
mission is possible for incoming energies less than the barrier height when the incoming energy is
at a resonant energy. When the incoming energy is not on resonance the wavepacket is reflected
and the transmission spectrum is that of a box barrier potential, as if the well does not exist. The
double rectangular barrier potential can be used as an energy filter, where full transmission only
occurs at resonant energies. Increasing the separation of the barriers allows for more energies to

pass through the filter, which was expected from the finite square well energy condition, Eq. (4.5)).
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The lower resonant energies are spaced closer together and as the resonant energies approach the
height of the barrier the spacing between them increases, this behavior is similar to that of the finite
square well bound-state energies. The Mathematica notebook for the double rectangular barrier

potential is shown in Appendix [E]



Chapter 5

The Double Gaussian Potential

The atomtronics project combines optical and magnetic trapping forces to produce a triple-
well potential, as illustrated in Fig. to develop an atomic transistor. The triple-well potential
of the atomtronic transistor is a superposition of a harmonic well and a double Gaussian barrier
potential, where the three wells are analogous to the three terminals of the electronic transistor.
With an atom current flowing out of the source well, atoms become trapped in the gate well
producing a condensate. The positive chemical potential of the condensate alters the original
central potential well, shifting the energy levels of the gate well. A height difference between the
barriers allows for control of the chemical potential and temperature of the gate condensate relative
to the source condensate. The ability to manipulate the behavior in such a way demonstrates the
potential for an operational atomtronic circuit [2]. The previous work done in reference [2] was a
classical study of transport dynamics where the thermal current regime dominates. Application of
the impedance method to the atomtronics transistor potential could be used to include quantum

mechanical effects like tunneling into those transport dynamics already studied.

5.1 The atomtronic transistor potential

The atomtronics triple-well potential is simplified and only the longitudinal direction is
treated by approximating the experimental potential as a double Gaussian barrier potential cen-

tered at the origin. The approximate double Gaussian barrier potential is defined by

T+ Tsep, k T — Tsep,k
——2-)?) + una,; exp(—2(

V(2, 02,5, Tsep k> On) = o1 exp(—2( o o
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Figure 5.1: Atomtronic transistor triple-well potential showing the source, gate and drain wells as
well as the relative height difference between the source and drain. The terminator beam removes
the population in the drain via resonant light and replenishes them back into the source. Image
credit: [2]
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where ug; is the height of the first Gaussian barrier and is fixed, ugz ; is the height of the second
Gaussian barrier and can be varied, Zeep 1 is the separation between the two Gaussian barriers and
can be varied, o, is the variance of the Gaussian barriers and can be varied. The values of ug,
02,5, Tsepk, and o, studied are similar to those of the atomtronics experiment. The full width
half maximum (FWHM) of the Gaussian barriers is defined by I' = 4/ %ln 20,,. Increasing ep
will increase the distance between the two barriers as shown in Fig. [5.2] increasing the number of
resonant energies that can be found. An increase in o will increase the FWHM, shifting the resonant
energies to higher values because the width of the barriers has increased and so has decrease the
separation at a given energy level. Looking back at the double rectangular barrier potential we
would expect that an increase in wugo will also shift the resonances higher in energy. The double

Gaussian barrier potentials for a varied variance and varied height of the second barrier are shown

in Fig. and Fig. respectively.
5.2 Applying the impedance method to the double Gaussian barrier potential

Knowing the quasi-bound states for the double Gaussian barrier potential is important to
construct an optimized atomtronics transistor. Knowledge of the quasi-bound states would allow
control over the coupling between the transistor potential and the dipole moment of the condensate
in the gate well. By exciting the dipole mode of the gate well condensate, interatomic interactions
with the higher lying rensonant states causes correlations between the gate condensate and the
output current of the transistor [2].

There are many different numerical methods for solving Schrodinger’s equation, one of which
is the impedance method, which is used to generate the transmission spectrum and in the double
barrier case the eigenenergies. The calculated eigenenergies for a potential barrier with variance
o = 1.6 pm, separation s, = 4.8 pm and second barrier height ugs = 30 kHz, as shown in
Fig. and Fig. are compared to the eigenenergies generated by solving Schrodinger’s equation
directly using the finite difference method, illustrated in Fig. [5.6] The figure is a one to one plot of

the generated eigenenergies from the finite difference method and the impedance method.
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Double Gaussian Barrier: Varied Separation
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Figure 5.2: The double Gaussian barrier potential for ¢ = 1.6 pum, ug2 = 30 kHz and the separation
of the barriers x4, = {1.25 pm(Blue solid line), 2.5 pm(Orange solid line), 4.8 pm(Green solid line),
5.0 pum(Red solid line), 5.8 pm(Purple solid line)}. For x4, = 1.25 pm(Blue solid line) one expects
the transmission spectrum to be similar to that of a single Gaussian barrier and so g, = 1.25 um
is neglected, expect for special cases. As the separation is increased we would expect that the
number of resonant energies to increase as well. For too small a separation, xs., = 1.25 pm we
have a single Gaussian barrier potential. As the separation of the barriers is increased the well
begins to flatten at the bottom.
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Figure 5.3: The double Gaussian barrier potential for x4, = 4.8 um, ugs = 30 kHz and the
variance of the barriers ¢ = {1.0 pum(Blue solid line), 1.6 pm(Orange solid line), 2.1 pm(Green
solid line), 2.6 ym(Red solid line)}. For o = 1.0 pum(Blue solid line) one expects the highest degree
of resonant tunneling and a more uniform distribution of the resonant energies. Notice that the
double Gaussian barrier potential with the smallest variance, ¢ = 1.0 pm has a well that is flattened
at the bottom.
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Gaussian Double Barrier: Varied Height

Aol —
T osf ]
¥
= ]
gzﬂ'_‘ 1 — 30.kHz
£ | r_
g | ] 31 kHz
< 15F 1 — 32.kHz
;._:; [ ] — 33.kHz
5 10F .
[

5| 1

oL ]

Position, ym

Figure 5.4: The double Gaussian barrier potential for x4, = 4.8 ym, 0 = 1.6 ym and the height
of the second barrier upz = {30 kHz(Blue solid line), 31 kHz(Orange solid line), 32 kHz(Green
solid line), 33 kHz (Red solid line)}. Increasing the height of the second barrier one expects some
type of shift in the resonant energies. Changing the height of the second barrier makes the double
Gaussian barrier potential asymmetric about the origin, which has a T" < 1 on resonance effect on
the transmission of a given wavepacket.
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Finite-Difference Method Potential
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Figure 5.5: The Gaussian well potential used for the finite difference method.
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Compairison of eigen-values with different numerical methods
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Figure 5.6: The comparison of two different methods for generating the eigenenergies of the double
Gaussian barrier potential. The blue solid squares are the resonant energies that were found from
solving Schrédinger’s equation directly using the finite difference method and the orange empty
triangles are the resonant energies that were found from the impedance method energy condition
Eq. . The Gaussian barrier potential was defined to have a variance o = 1.6 um, a separation
ZTsep = 4.8 pm and a second barrier height upo = 30 kHz. Notice how the two agree at lower
resonant energies, but as the barrier height is approached, the results start to deviate. This is in
part due to the approximation of the barrier shape for the finite difference method; the potential,
illustrated in Fig. [5.5] was taken such that the quasi-bound states could be found. Although the
finite difference method potential was defined to be different near the barrier height, it is still a
check on the lower bound energy levels.



47

The comparison between the two different numerical methods is a check to make sure that
the impedance method is finding the correct eigenenergies for the double Gaussian barrier potential
case. Figure illustrates that the two methods are in agreement with one another, particularly at
lower eigenenergies. It is important to note that the finite difference method used an approximated
potential such that only the quasi-bound states of the Gaussian well would be found. The potential
used in the finite difference method calculations is a Gaussian well and is illustrated in Fig. [5.5
The difference in the definition of the potentials accounts for the discrepancy between the two
numerical methods at higher energies. In Fig. the lower energy appear to have a uniform
spacing between the eigenenergies. This is due to the fact that near the bottom of the gate well
the potential is harmonic. Thus we expect a uniform spacing between the eigenenergies as in the
simple harmonic oscillator case. As the incoming energies get closer to the top of our gate well, the
harmonic approximation is no longer valid and the energy level spacing is no longer uniform.

The characteristics of the double Gaussian barrier potential can define the amount of resonant
energies as well as the spacings between the resonant energies. Figure shows the double
Gaussian barrier potential for three separate cases, each of which have the same variance, o =
1.0 pm, and the same second barrier height, ups = 30 kHz, but with different barrier separations.
Given a larger separation between the barriers one expects the amount of resonant energies to
increase as well as having a more uniform spacing between those resonant energies such that the
well is still harmonic in shape. But since the larger separations are no longer harmonic we would
expect the spacings for the lower resonant energies to be smaller that the spacings of the higher
resonant energies. Each potential was evaluated using a uniform energy density ranging from 0.01
kHz to 40 kHz, and using the impedance method packages for the transmission spectrum and
eigenenegies (Appendices |A| and @[)

The transmission spectrum of the double Gaussian barrier potential with zs, = 2.5 um
is illustrated in Fig. 5.8l Table of eigenenergies shows that there are a total of 13 resonant
energies, although only five can be seen in Fig. due to the uniform energy density used for

the incoming energies. The resonant energies that are not shown in Fig. [5.§ require a much higher
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Double Gaussian Barrier Potential;, o=1.0um, ug;=30kHz
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Figure 5.7: Double Gaussian barrier potential with barrier heights are fixed at 30kHz and vari-
ance is 1.0 ym. The separation of the barriers is varied where x4, = {2.8 pm(Blue solid line),
4.8 pm(Orange solid line), 5.8 pm(Green solid line)}. Increasing the separation is expected to
increase the amount of resonant energies possible. The spacing between the resonant energies will
also have increased uniformity for the potential well that is harmonic in shape. Notice that the
well for zsep = 4.8 um and 5.8 pm is no longer similar to the harmonic well, and so we expect the
resonant spacing to be have characteristics like that of the finite square well or double rectangular
barrier, i.e. closer together for the lower energies than the higher energies.
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Energy, kHz
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The transmission spectrum for a double Gaussian barrier potential defined by o =
1.0 pm, xgep = 2.5 pm, and up2 = 30 kHz. The blue solid line shows the transmission spectrum and
the gray dashed vertical lines correspond to the calculated eigenenergies. There are 13 resonant
energies. Only the last four resonant energies are shown on the transmission spectrum. This is
due to the lower resonant energies having a smaller resonant width than the higher resonances.
The resonant width is also why the first visible resonant energy does not show full transmission,
although in reality it does have full transmission as demonstrated in Fig. and Fig. The
spacing between the resonant energies is uniform, unlike the spacing shown in Fig.[5.9]and Fig.
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energy density to resolve them. This is due to the lower eigenenergies having an increasingly smaller
resonant width than those resonant energies closer to the potential’s peak height. This is why the
lowest eigenenergy that is seen in Fig. is not at full transmission, when in reality full transmission
is achieved for each resonant energy. It is important to note this type of numerical limitation so that
misinterpretation is avoided. Together with the evaluated eigenenergies, a new optimized energy
density is developed in order to capture lower resonant energies for the transmission spectrum, this
is shown in Fig. and Fig. and discussed later on in the chapter. Increasing the separation
between the barriers to o4, = 4.8 um, whose transmission spectrum and eigenenergy values are
shown in Fig. and Table respectively, increase the amount of resonant energies allowed in
the potential barrier well structure. It is not surprising that the first clearly visible resonant energy
is around 24 kHz due to resonant widths, nor that the number of resonant energies has increased
due to the increased barrier separation. The first visible resonant energy is at approximately
the same energy for all three cases because the resonant widths are proportionally similar at the
corresponding incoming energies. As is expected, increasing the separation allowed for a larger
number of resonant energies, as was also seen for the double rectangular barrier in chapter 4.
Again increasing the separation of the Gaussian barriers to x4, = 5.8 pm, and as seen in
Fig. the number of resonant energies visible has increased. As was the case for separations of
Tsep = 2.5 pm and xsep = 4.8 pm, the first visible resonant energy is around 24 kHz, and the number
of resonant energies has increased. There are 13 resonant energies for x4, = 2.5 um, four of which
are visible in Fig. @ Increasing the separation to xs., = 4.8 um results in 28 resonant energies,
six of which are visible in Fig. [5.12] Further increasing the separation to x4, = 5.8 um, leads to 35
resonant energies, eight of which are visible in Fig. [5.10] The spacing of the low eigenenergies in
Fig. 5.9 and Fig. [5.10] is nonuniform, showing that the potential of the well is no longer harmonic
and so uniform spacing of the quasi-bound states is no longer expected. Clearly an increase in
separation increases the number of resonant energies available, but what does an increase in the
variance do? To answer that we refer to Fig. Table and Fig. .13 Table The double

Gaussian barrier potential defined by o = 1.6 pm, x4, = 4.8 pum, and ug2 = 30 kHz is illustrated in
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Transmission spectrum; o=1.0um, Xgep=4.8um, Ug=30kHz
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and upz = 30 kHz. The orange solid line shows the transmission spectrum

4.8 pm,
and the gray dashed vertical lines correspond to the calculated eigenenergies. There are 28 resonant

The transmission spectrum for a double Gaussian barrier potential defined by o

Figure 5.9:
1.0 pm, wep

energies. Notice the first resonant energy that can be seen is ' = 24.03 kHz but there are six more

This implies that as the separation

resonant energies compared to only three seen in Fig.
between the barriers is increased, so is the number of resonant energies.
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Figure 5.10:

and ugz = 30 kHz. The green solid line shows the transmission spectrum

and the gray dashed vertical lines correspond to the calculated eigenenergies. There are 35 resonant

bl

5.8 pm

1.0 pm, Zgep

eight resonant energies seen here. The spacing between the resonant energies is not uniform for the

energies. Once again the first noticeable resonant energy is around £ = 23.51 kHz and there are
lower eigenenergies

because the shape of the potential well is no longer harmonic. Compared to

I

Fig. we see that the resonant energy spacing is even less uniform due to the flattening of the

potential well.
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Fig. and it’s transmission spectrum is illustrated in Fig. The first visible resonant energy
for this particular case is F = 27.05 kHz, and four resonances are shown in Fig. Note that an
increase in variance will decrease the separation of the barriers and cause a decrease the number
of resonant energies. The energy level spacing for the potential whose variance is ¢ = 1.6 pm is
approximately uniform, whereas the potential whose variance is ¢ = 1.0 pum did not have uniform
eigenenergy spacing. Reviewing Fig. and Fig. its seen that the potential well bottoms
differ significantly. The double Gaussian barrier potential in Fig. has a potential whose gate
well is flat that the bottom, while the double Gaussian barrier potential in Fig. has a potential
whose gate well is more harmonic in nature. Thus, the latter is more uniform. To gain further
insight of how the variance of the double Gaussian potential affects the transmission spectrum and
eigenenergies, please review Fig. and Fig. The double Gaussian potential giving the
transmission spectrum in Fig. is illustrated in Fig. and has 0 = 1.6 ym, s, = 5.8 pm,
and wugy = 30 kHz. Because the double Gaussian potential in Fig. has a potential well that
is no longer harmonic, one expects the eigenenergy spacing to be nonuniform. interestingly the
difference in the number of resonant energies in, Fig. and Fig. is two. Thus an increase
of Ag = 0.6 pm corresponds to two less available resonant energies. The decrease in available
resonant energies is due to the shape of the potential well, for Fig. the potential well has a
fully flattened well bottom and so one would expect it to behave more like that of a finite square well
where the lower resonant energies are spaced closer together. Comparatively, Fig. [5.13] is defined
by a potential well that is just barely flattened at the bottom and so is more of a mixture between
a harmonic well and finite square well, thus expecting the spacing of the lower eigenenergies to be
nonuniform but have a larger spacing than those seen in Fig. [5.10

Based on the work done with the single Gaussian barrier potential and the double rectangular
barrier potential, one might expect that changing the relative height between the barriers, as shown
in Fig. [5.14] will shift the eigenenergies slightly. However, as seen in Fig. [5.15] and Fig. the
change in symmetry does more than just a shift in resonance. The transmission spectrum for

both figures significantly changes when compared to one another and further compared to the
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Double Gaussian Barrier Potential; o=1.6um, ug;=30kHz
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Figure 5.11: The double Gaussian barrier potential defined by o = 1.6 um, g, = {4.8 pm,
5.8 utextm}, and uge = 30 kHz
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Transmission spectrum; o=1.6um, Xsep=4.8um, Ug=30kHz
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The transmission spectrum for the double Gaussian barrier potential defined by

Figure 5.12:

4.8 pm, and upz = 30 kHz, this is the potential that was also used in Fig. [5.6]

The blue solid line shows the transmission spectrum and the gray dashed vertical lines correspond
to the calculated eigenenergies. There are 27 resonant energies. Notice that there are four visible

o=1.6 pm, ws

resonant energies, this is because the lower resonant energies have a much smaller resonant width.
This is also why the first visible resonant energy does not show full transmission. The spacing

between the resonances is uniform, as shown in Table [H.4 The first noticeable resonant energy is

E

27.05 kHz.
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The transmission spectrum of the double Gaussian barrier potential defined by

Figure 5.13:

The orange solid line shows the transmission

spectrum and the gray dashed vertical lines correspond to the calculated eigenenergies. There are
33 resonant energies. Notice that there are five visible resonant energies, due to the lower resonant

o = 1.6 um, Tep = 5.8 um, and upy = 30 kHz.

energies have a much smaller resonant width than the final few, this is also why the first visible

resonant energy does not show full transmission, although in reality it does have full transmission.
The spacing between the resonances is not uniform, and decreases for the lower eigenenergies.
This is because the potential well is no longer harmonic. The first noticeable resonant energy is

27.19 kHz.

FE =
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Double Gaussian Barrier Potential; g=1.6um, Xsep=4.8Lm
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Figure 5.14:  The double Gaussian barrier potential defined by o = 1.6 ym, xs, = 4.8 pm,
and wup2 = {31 kHz(Blue solid line), 33 kHz(Orange solid line)}. The difference in relative height
between the two Gaussian barriers results in an asymmetric potential.
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The transmission spectrum for a double Gaussian barrier potential defined by

Figure 5.15:

The blue solid line shows the transmission

31 kHz.
spectrum and the gray dashed vertical lines correspond to the calculated eigenenergies.

are 27 resonant energies.

= 4.8 pm, and up =

1.6 pm, e

g =

There

The asymmetry of the double Gaussian barrier potential changes the

transmission probability through the second barrier. The only difference between the potential for

is the height of the second barrier. The potential is now asymmetric and thus reduces the

transmission probability even when on resonance.

12

o.

Fig.
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Figure 5.16:

4.8 pm, and uge = 33 kHz. The orange solid line shows the transmission spectrum

and the gray dashed vertical lines correspond to the calculated eigenenergies. There are 25 resonant

1.6 pm, wep

energies. The transmission spectrum shown is similar to that of a single Gaussian barrier whose
peak potential height is 33 kHz, the resonances do not have a transmission probability of unity for

the asymmetric barrier. As seen in Table [.7] there are resonant energies where full transmission

is not achieved even when on a resonant energy, a characteristic of an asymmetric barrier.
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symmetric double Gaussian barrier potential in Fig. the increase in the height of the second
barrier significantly reduces the visible resonant energies, and in the case where ugo = 33 kHz,
there is no noticeable resonance. This drastic change in the transmission spectrum is surprising
but reasonable since the barriers are no longer symmetric and the affect of the asymmetry of
the barriers is a significant reduction of resonant transmission. Asymmetric double barriers were
also studied in references [I3] and [5] , both of which found that asymmetry of the barriers
significantly reduces the transmission of the wavepacket when on resonance. The lower resonant
energies of the asymmetric double Gaussian barrier potentials are close to the resonant energies
of the respective symmetric double Gaussian barrier potential, and the difference increases as the
resonant energy increases. However the transmission of the wavepacket through the double Gaussian
barrier potential is significantly reduced for the asymmetric double Gaussian barrier potentials.
This type of behavior might prove useful for trapping the wavepacket within the gate well for a
longer period of time, this behavior is explored further in references [4] and [I4]. Increasing
the incident amplitude of the wavepacket will allow for the resonant energies to be transmitted as
discussed in reference [5].

Optimization of the transmission spectrum for the double Gaussian barrier potential can be
done using the evaluated eigenenergies for a particular double Gaussian barrier potential. Using
the eigenenergies, a related energy spectrum is made such that there is a higher density around the
evaluated eigenenergies, illustrated in Fig.[5.17 and Fig.[5.18] The optimized transmission spectrum
has two more visible resonance energies than the non-optimized transmission spectrum in Fig. [5.9]
Figure [5.17] shows unity transmission for lower resonant energies, however this behavior is not
captured in Fig. 5.9, The optimization illustrated in Fig. [5.18|is for the transmission spectrum of
a double Gaussian barrier potential being defined by ¢ = 1.6 um, x4, = 4.8 pm, and ug2 = 30
kHz. This potential is also used to make Fig. With the optimized energy spectrum there are
two more visible resonances and unity transmission in Fig. than in Fig. Optimization
of the transmission spectra is useful in visualization of the resonances and their spacing as seen in

Fig. [5.17] and Fig. Qualitatively, from Fig. the spacing of the resonant energies looks
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Transmission spectrum; o=1.0um, Xgep=4.8um, Ug=30kHz
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The optimized transmission spectrum for the double Gaussian barrier potential

Figure 5.17:

4.8 pm and ugz = 30 kHz. The purple solid line plots the optimized

= 1.0 pm, Tsep

defined by o

transmission spectrum, the orange solid line shows the transmission spectrum seen in Fig. and

the gray dashed vertical lines correspond to the calculated eigenenergies. Notice that the optimized
spectrum shows unity transmission for £ = 24.03 kHz, 25.34 kHz, and 26.63 kHz when Fig. [5.9] did

not. Also notice that two more resonant energies are now visible, F = 21.37 kHz and 22.7 kHz.

The eigenenergies using the optimized energy density is the same as in Table to an order of

1074
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30kHz

Transmission spectrum; o=1.6um, Xsep=4.8um, gz

S S e e e e

S S S S S S S S S S e

e L LTI rrrrrrrr

30 35

25

1.0
8
6
4
2

00}

A)Iqeqoid uoissiwsuel |

10

Energy, kHz

Figure 5.18: The optimized transmission spectrum for the double Gaussian barrier potential defined

The red solid line shows the optimized

30 kHz.

transmission spectrum, the blue solid line plots the transmission spectrum seen in Fig. [5.12] and

4.8 pm, and wugs

the gray dashed vertical lines correspond to the calculated eigenenergies. Notice that the optimized

spectrum has unity transmission for the resonant energy of F = 27.05 kHz and two more resonant

by o = 1.6 pum, xsep

energies are visible now as well, those being £ = 24.73 kHz and 25.91 kHz. The eigenenergies from

the optimized energy density are the same as those in Table within 1074,
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uniform and near 1 kHz. Knowing the resonant energies and their spacings in relation to each other

can allow us to engineer state coupling and coherence.

5.3 Chapter conclusion

The atomtronics transistor potential is approximated by a superposition of a harmonic well
and a double Gaussian barrier potential created by a magnetic potential. The three wells of the
atomtronics transistor are analogous to the three terminals of an electronic transistor. By using the
impedance method to evaluate the transmission spectrum and eigenenergies for double Gaussian
barrier potential, it is found that an increase in separation and decrease in variance of a symmetric
double Gaussian barrier increases the amount of resonant energies. This is due to many factors,
but the most influential being the shape of the potential well, i.e. if it is harmonic or not. A
symmetric double Gaussian barrier with a harmonic well allows for more resonant energies and a
more uniform spacing of the resonances. Altering the double Gaussian barrier potential such that
the potential is no longer symmetric about the origin reduces the transmission probability when
on resonance. Using asymmetric double Gaussian barriers, or double rectangular barriers, might
allow for trapping of the wavepacket. When the wavepacket is on resonance with an asymmetric
double barrier the wavepacket will be at a maximum within the well, but transmission through the
second barrier will be significantly reduced. Thus the wavepacket is trapped within the barriers for
some amount of time before tunneling out. This type of trapping is explored further in [4], [5],
and [I4]. Studying the effects that different characteristics of the double Gaussian potential have
on transmission and resonances shows the effectiveness and simplicity of the impedance method.
Figure gives overall trends of the resonant energies studied thus far for the double Gaussian
barrier potential. The Mathematica notebook for the double Gaussian barrier potential is shown

in Appendix [G] and all Tables referenced in this chapter are shown in Appendix [H]



Chapter 6

Conclusion

The general impedance method is a numerical method that draws an analogy between the
Schrodinger equation and transmission line theory. The impedance method is used to analyze the
transmission spectrums of a single Gaussian barrier potential, a double rectangular barrier potential,
and a double Gaussian barrier potential as well as extract the eigenenergies of the trapped states
of the double barrier potentials.

Potentials with finite height and width, like the single Gaussian barrier potential, exhibit
tunneling in its transmission spectrum. The transmission spectrum of a single Gaussian barrier
potential varies according to the characteristics of the barrier. The slope of the spectrum shows a
non-linear dependence on o. Furthermore, the position of the 50% transmission energy varies pro-
portionally with the Gaussian barrier height. Analysis of the single Gaussian barrier transmission
spectrum was motivated by the application of the impedance method to the atomtronic battery.
The single Gaussian barrier potential is discussed in regards to the atomtronic battery, which is
generated by the superposition of a harmonic well and a single Gaussian barrier potential.

The transmission spectrum of the double rectangular barrier exhibits resonant tunneling
behavior, which is a phenomena that occurs in periodic potentials. Resonant tunneling occurs
when the incoming energy of the wavepacket matches the resonant energy of the states supported
between the barriers, allowing for full transmission to occur when the energies are matched. From
the transmission spectra of the double rectangular barrier potential, the separation of the barriers

corresponds to the amount of allowed resonant energies and the difference in the heights of the
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barriers slightly shifted the resonant energies.

The double Gaussian barrier potential approximates of the atomtronic transistor potential.
The atomtronic transistor potential is formed by the superposition of a harmonic well and a double
Gaussian potential to produce three wells. These wells are named the source, gate, and drain and
correspond to the three terminals of an electronic transistor. The chemical potentials of the atoms in
each well are analogous to the node voltages of an electronic transistor. As in the double rectangular
barrier potential, the double Gaussian barrier potential supports resonant tunneling behavior. It
was shown that the characteristics of the double Gaussian barrier can be tuned to control the
transmission of resonant energies. The separation of the two barriers determines the number of
allowed trapped states, in a similar manner to the double rectangular barrier potential. Asymmetry
of the double Gaussian barrier potential was explored and was found to reduce transmission of the
resonant energies. This mechanism can be used to control population trapping in the central well.
The double Gaussian barrier has a more uniform distribution of resonant energies when the central
well mimics the curvature of a harmonics well, as expected. Analysis of the double Gaussian barrier
potential reveled many different characteristics of the potential which can be tuned to affect the
resonant, energies.

Armed with this information a discussion was provided that indicated the possibility of
manipulating the triple-well potential such that the resonant energies are coupled to the dipole
moment of the gate condensate. Coupling the center of mass motion of the condensate to the
atoms incident on the barrier at resonant energies will allow for energy transfer via inter-particle
interactions between the wave packet and condensate. If the wavepacket takes energy from the gate
condensate its tunneling probability is increased otherwise if the condensate takes energy from the
wavepacket the tunneling probability decreases and atoms become trapped within the gate well.
Coupling between the resonant energy levels and the dipole moment of the condensate leads to
correlation of the output atom current of the transistor and the gate well condensate motion. Thus
far, the work presented in reference [2] was done in the classical regime where thermal currents

dominate. The work presented in this thesis analyzes the quantum mechanical characteristics of the
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atomic transistor potential such that tunneling can be incorporated and perhaps used to explore

coherent transistor action.
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Appendix A

The Mathematica package for the impedance method

ImpedanceMethod.m
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General Impedance Method

08.07.2015 Anderson Group

MetaPackage:

Transmission line analogy of resonance tunneling phenomena:The generalized impedance concept by A.N.
Khondker

J. Appl. Phys., vol. 63, no. 10, p.5191, 1988
Wave transmissionthrough periodic, quasiperiodic, and random one-dimensional finite lattices by Braulio
Gutierrez-Medina

Am. J. Phys., vol. 81, no. 2, p. 104, 2013

This package used the general impeance method to numically evaluate the reflection probabilities of an
arbitrary potential energy function. The general impedance method evaluates the potential energy function
from the output end to the input end of the potential.
The input values for this package are:

v=Table[function[i],{i,imin,imax,stepsize}] : the arbitrary potential energy function as a list of points.

energy=Table[i,{i,imin,max,stepsize}] : the span of energy values that an arbitrary wavefunction might
have. Note, this could also be a list of one.

I= constant : step size, or more specifically the value x[[2]]-x[[1]]. This is the step size at which the
potential energy function takes.
The output values for this package is the values of the reflection probability for each value of energy. Length-
[ReflectionProbability]==Length[energy].
The variables defined with in the package are:

m= effective mass of the wave packet in units of kg (for rubidium)

h= Planck’s constant in units of Js

k= propagation constant

z0= characteristic impedance

zload= load impedance

zinput= input impedance

Begin Package

BeginPackage [ "ImpedanceMethod™ ImpedanceMethod™ "]

ImpedanceMethod™ ImpedanceMethod™

Printed by Wolfram Mathematica Student Edition
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Usage Message

ReflectionProbability: :usage =
"ReflectionProbability[v,energy,l] computes the reflection

coefficient by using the general impedance method. The arguments
are v, energy, and 1 where they are the potential energy vector
function, energy vector function, and the step size, respectively.

m is the effective mass of the wave packet and A is Planck's constant
in units of Js, both are defined within the package.

v must be of the form v=Table[function[i], {i,imin,imax,1}]

energy must be of the form energy=Table[i,{i,imin,imax,1}]";

Warning Messages

ReflectionProbability::badv =
"The potential energy argument ~1° must be in the form of a list.";

ReflectionProbability::badenergy =
"The energy argument 1 must be in the form of a list.";

ReflectionProbability::badl =
"The step size argument ~1° is not within the appropriate bounds. 1 must be
greater than 0 and less than the Thermal de Broglie Wavelength, “2°.";

Options
Private Context

(LN

Begin[" “Private™ "]

ImpedanceMethod™ ImpedanceMethod Private”
Function Definitions (Public and Private)

m=1.44%"-25;
A =1.054571726%"-34;

Printed by Wolfram Mathematica Student Edition
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ReflectionProbability[v_, energy_, 1_] :=
Module[{k, z0, zload, zinput, reflectionL, i},
Which|
! (VectorQ[v]), Message[ReflectionProbability:: "badv", v],

! (VectorQ[energy]), Message[ReflectionProbability:: "badenergy", energy],

o<1 < (2% N[x, 10] * h)

Sqrt[2 * m * Max [energy] ] '

. - (2*N[x, 10] + 1)
Message [ReflectlonProbablllty: :"badl", 1,

]

Sqrt[2 *m * Max [energy] ]

~e

]
Do [
k=1'1*Sqrt[2*m*(energy—v[[i]])]/h;
z0=-ixhxk/m;

If[i == Length[v], zload = 20, zload = zinput];

zload * Cosh[k * 1] - z0 * Sinh[k » 1]
zinput = z0 , {i, Length[v], 1, -1}];
z0 *x Cosh[k * 1] - zload * Sinh [k % 1]
. zinput - z0
reflectionL = Abs —] A2]
zinput + z0

End Private Context

End[]

ImpedanceMethod™ ImpedanceMethod Private”

End Package

EndPackage|[]

Printed by Wolfram Mathematica Student Edition
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The step potential barrier Mathematica notebook

stepPotentialTest.nb



Step Potential Test:

This is a test of the ImpedanceMethod package by using a step potential.
Quit (#Quits out of local kernalx)
ClearAll["Global~"] (*clears all set variables with in the global contextx)

$ContextPath (xgives the current contextx)

{StreamingLoader™, IconizeLoader™,
CloudObjectLoader” , PacletManager , System” , Global"}

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethod.m"]
(#loads the ImpedanceMethod package. There are several ways to do this,
here is a couple options:
1) For newer versions of Mathematica you can start with
Get["dkfj and a small icon will apear to let you search your computers files.
2) If you know the file path use Get["filePath"] or Needs["filePath"]
3) If you dont know the file path and the
icon does not appear, try going to File -> Install ->
Type of Item to Install:" select Package, "Source:
" select from file, and choose the appropriate file, ie
ImpedanceMethod.m. Now use <<ImpedanceMethod™ for the inputx)

$ContextPath (xgives the current context,
ie shows that the ImpedanceMethod package
loaded correctly and we are now with in its contextx)

{ImpedanceMethod” ImpedanceMethod™, StreamingLoader”,
IconizeLoader™, CloudObjectLoader™ , PacletManager , System” , Global™}

m=1.44%"-25; (+*massx*)

h =1.054571726%"-34; (xPlanck's constants)

v0 = 1000 * 2 *x T+ h; (*potential energy heightx)

1=4.0+"-9; (xpotential energy step sizex)

energyO = Table[5000* 2 *wxhA*x1i, {i, 0, 1, 2.0%"-4}] ;

(#list of the energy that ranges from 0 to 3 with a step size of 1)

v = Table[vO * UnitStep[i], {i, -3.0%"-3, 3.0%x"-3, 1}] ;
(#list of the potential energy with a step size 1lx)

x = Table[i, {i, -3.0%"-3, 3.0%"-3, 1}]1;
(#list of the postion values for the potential energy function,
only nessicary for plotting the potential energy functionx)

Printed by Wolfram Mathematica Student Edition
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stepPot =ListLinePlot[
Transpose@{x+10"3, v/ (2x 7+ h+10"3)}, ImageSize » Large, Frame - True,
FrameLabel -» {Style["Position, mm", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Step potential barrier", 18],
FrameTicksStyle—aMedium,ImageSize-aLarge,Plotstyle-aThickness[.OOGI

‘St‘ep potential ‘ba‘rri‘er‘

o
©
T
I

0.6

0.4

Potential Energy, kHz

0.2 i

0-07\ N N N N 1 N N N N 1 N N N N . . . . I . . . . I . . . . ]
-3 -2 -1 0 1 2 3

Position, mm

Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible figs/stepPot.jpeg", stepPot];

energy = If [Intersection[v, energy0O] == {}, energyoO,

Delete[energyO, Flatten[Position[energyO, Intersection[v, energyO] [[1]]1]1]11];
(#checks to see if any value of energy0O is equal to any value of v,
and if so it deletes that value from energyOx)

Dimensions [energy]
{5000}
rP = ReflectionProbability[v, energy, 1];

(#uses ImpedanceMethod package to evaluate the reflection probabilitiesx)

stepReflection = Table[If[energy[[i]] <VvO, 1, rP[[i]]], {i, 1, Length[energy]}];
(*because the step potential is special,

in that for all values energy<v0 ReflectionProbability=1,

this replaces all "imdeterminant" values of ReflectionProbability with 1x)

data = Transpose@{energy / (2 * 7+ h*10"3), stepReflection};
(*creates a 2-dimensional listx)

(xPlotLabel-»Style["Reflection & Transmission",18], %)

Printed by Wolfram Mathematica Student Edition
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reflectionLPlot = ListPlot[data, Frame -> True,
FrameLabel » {Style["Energy, kHz", 18], Style["Reflection Probability", 18]},
PlotRange -» {{0, 4}, {-0.01, 1.01}}, PlotMarkers -» "+", PlotStyle - Green,
PlotLabel - Style[" (a)", 20], FrameTicksStyle » Medium]
(*plots the resulting reflection behaviorsx)

(@)

N
o
T

0.8

0.4

Reflection Probability

OO: P R S e e :
0 1 2 3 4

Energy, kHz

transmissionLPlot =
ListLinePlot [Transpose@ {energy/ (2 *mTxh*x10" 3) , 1- stepReflection} , Frame - True,
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission Probability", 18]},
PlotRange -» {{0, 4}, {-0.01, 1.01}}, (xPlotMarkers-{"+", Large}, *)
PlotStyle -» Directive[Blue, Thickness[.02]],
PlotLabel -» Style["Transmission spectrum for the Step Potential", 20],
FrameTicksStyle » Medium] (#Plots resulting transmission behaviorsx)

s;nsmission spectrum for the Step Potenti
L0 e

0.8/
06/
04/

0.2

0.0
0 1 2 3 4

Energy, kHz

Transmission Probabilit

anarefl = Table[If[energy[ [1i]] < vO, 1,
((energy[[i]] -Sqrt[energy[[i]] * (energy[[i]] —VO)]) / (energy[[i]] +
Sqrt[energy[[i]] * (energy[[i]] —VO)])) "2] , {1, 1, Length[energy]}];

Printed by Wolfram Mathematica Student Edition
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anareflPlot = ListLinePlot[
Transpose@{energy / (2 * 7+ h*10"3), anarefl}, PlotStyle - Red, PlotRange - All]

1.0
08|

06

04r

0.2

1 1 1 1 1 1 1 1 1 1 n T T | A

1 2 3 4 5

anatransPlot = ListLinePlot [Transpose@ {energy/ (2 *Txh*x10" 3) , 1- anarefl} '
PlotStyle -» {Red, Thickness[.005]}, PlotRange - All]

1.0 »
08 »
06 »
04 »

021

Printed by Wolfram Mathematica Student Edition
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Show[reflectionLPlot, anareflPlot, ImageSize » Large,
Epilog -» Inset[Framed[Column[{PointLegend[{Green}, {Style[" R.", 16]},
LegendMarkers -» "+"], LineLegend[{Red}, {Style[" Rtheory r 161}1}1111]
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Printed by Wolfram Mathematica Student Edition
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stepTrans =
Show[transmissionLPlot, anatransPlot, ImageSize » Large, Epilog » Inset [Framed [
Column[ {LineLegend|[{Blue}, {Style[" T.", 18]} (*LegendMarkers—{"+" ,Large}x)],
LineLegend[{Red}, {Style[" Ttheory", 181}1}1111
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/stepTrans.jpeg", stepTrans];

Printed by Wolfram Mathematica Student Edition
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The single Gaussian barrier potential Mathematica notebook

gaussianTest.nb



Gaussian Test

This is a test of the ImpedanceMethod package by using a gaussian potential.

Quit[] (*Quits out of local kernelx)
ClearAll["Global™ "] (*clears all set variables with in the global contextx)

$ContextPath (xgives the current contextx)

{StreamingLoader”, IconizeLoader™,
CloudObjectLoader™, PacletManager™, System™ , Global™ }

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethod.m"]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodAmplitude.m"]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodEigenEnergy.m"]

(#loads the ImpedanceMethod package. There are several ways to do this,
here is a couple options:
1) For newer versions of Mathematica you can start with
Get["dkfj and a small icon will apear to let you search your computers files.
2) If you know the file path use Get["filePath"] or Needs["filePath"]
3) If you dont know the file path and the
icon does not appear, try going to File -> Install ->
Type of Item to Install:" select Package, "Source:
" select from file, and choose the appropriate file, ie
ImpedanceMethod.m. Now use <<ImpedanceMethod™ for the inputx)

$ContextPath (xgives the current context,
ie shows that the ImpedanceMethod package
loaded correctly and we are now with in its contexts)

{ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy,
ImpedanceMethodAmplitude” ImpedanceMethodAmplitude”,
ImpedanceMethod™ ImpedanceMethod™, StreamingLoader™, IconizeLoader™,
CloudObjectLoader” , PacletManager , System , Global’}

m=1.44%"-25; (*massx)

h=1.05%"-34; (*Planck's constantx)

vO = Z*H*h*Table[(i) *10"3, {i, 30, 33}]; (*potential energy heightx)
jvO0 = Length[v0]; (*length of the potential energy heightx)

wx = 15.0+"-6; (*imin/imax*)

1l =wx/1000; (*potential energy step sizex)

energyO = Table[2*w+xhA %1073 xi, {i, 0.001, 40, .0001}] ;

(#*list of the energy that ranges from 0 to 3 with a step size of 1.010le-3%)
x0 = 0.; (xhorizontal shiftx)

o=Sort[{2.1%*"-6, 2.5%*"-6, 1.6*"-6, 1.0x"-6}, Less]; (xvariancex)

no = Length[o]; (*length of the variancex)

Printed by Wolfram Mathematica Student Edition
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(h/ (m*o[[l]]‘z)) /10‘3 (*» kinetic energy side of the tunneling conditionx)
0.729167

-(i-x0) "2

newv = Table [vO[[j]] *Exp[ﬁ], {n, 1, no}, {j, 1, jvO}, {i, -wx, wx, 1}];
o[[n]]"2

(#list of the potential energy that ranges from -

5e-6 to 5e-6 with a step size 1lx)

x = Table[i, {i, -wx, wx, 1}]; (*list of the postion values for the potential

energy function, only nessicary for plotting the potential energy functionx)

Dimensions [newv]
Dimensions [energy0]

{4, 4, 2001}

{399 991}

potentialEnergyn = ListLinePlot[
Table [Transpose@{x /10"-6, newv[[i, 2, Al1l]] / (2*7+h*10"3)}, {i, 1, no}],
PlotRange -» All, Frame - True,
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel - Style["Gaussian Barrier Potential, Varying o", 18],
FrameTicksStyle -» Medium, ImageSize -» Large, PlotStyle -» Thickness[.006],
PlotLegends - Placed[{Table[a[ [n]] /loA—G "um", {n, 1, nc}]}, {.8, .8}]]
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L 10r .
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o
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-15 -10 -5 0 5 10 15
Position, yum
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/potentialEnergyn.jpeg"”, potentialEnergyn];

Printed by Wolfram Mathematica Student Edition
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potentialEnergyj =1istLinePlot[
Table [Transpose@{x /10"-6, newv[[1, j, All]] / (2*x+&10"3)}, {j, 1, jvO}],
PlotRange -» {{-10, 10}, {-0.1, 34}}, Frame - True,
FrameLabel » {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel - Style["Gaussian Barrier Potential, Varying Height", 18],
FrameTicksStyle » Medium, ImageSize » Large, PlotStyle » Thickness[.006],
PlotLegends - Placed[{Table[vO[[j]]/ (2*7+A10"3) "kHz", {j, 1, 4}]}, {.8, .8}]]
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Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/potentialEnergyj.jpeg"”, potentialEnergyj];

energyoch =
Table[If[Intersection[newv[[n, j, Al1l]], energyO] == {}, energyO, Delete[energyO,
Flatten[Position[energy0O, Intersection[newv[[n, j, Al11]], energyO] [[1]1]1111,
{n, 1, no}, {j, 1, jvO}];
Dimensions[energych]

{4, 4, 399990}

reflectionPoh = Table[ReflectionProbability[
newv[[n, j, All]], energych[[n, j, A11]], 11, {n, 1, 4}, {j, 1, 4}1;
Dimensions[reflectionPoch]

{4, 4, 399990}

amplitudePch = Table[ReflectionAmplitude[
newv[[n, j, All]], energyoch[[n, j, A11]], 11, {n, 1, 4}, {3, 1, 4}1;
Dimensions[amplitudePoh]

{4, 4, 399990}

Printed by Wolfram Mathematica Student Edition
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heightTrans = ListLinePlot [Table [
Transpose@{energych[[1, j, All]] / (2*7*h%10°3), 1 - reflectionPoh[[1, j, All]]},
{j, 1, 4}], PlotRange - All,
GridLines - {{VO[ [1]1] / (2 *7Tx A% 10A3)}, {.5}}, Frame - True,
FrameLabel » {Style["Energy, kHz", 18], Style["Transmission Probability", 18]},
(*PlotLabel-Style|
"Gaussian Barrier Potential Transmission Spectrum, Varying Height",18], %)
FrameTicksStyle » Medium, ImageSize -» Large, PlotStyle -» Thickness[.006]

(*,PlotLegends—Placed[{Table[vO[[j]]/(2*7+h*10"3) "kHz",{j,1,4}]},{-2,.8}]*)]

1.0 b

o o
o ™

— —
1

Transmission Probability

o
N
T

I

0 10 20 30 40
Energy, kHz

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/heightTrans.jpeg", heightTrans];

a = ListLinePlot [Table[
Transpose@ {energyoh[[n, 2, Al1]] / (2% 7% A 10"3), 1 - reflectionPch[[n, 2, All]]},
{n, 1, 4}], PlotRange - All, (#GridLines-~{{vO[[4]]/(2*7hx10"3)},{.5}},%*)
AxesLabel -» {"Energy, kHz", "Transmission Probability"}]

Transmission Probability

10}
OB; ;
05§
0.4}
02f j
S 16 26 éﬁ T Jo Energy, kHz
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b = ListLinePlot [Table[
Transpose@{energych[[n, 4, Al11]] / (2% 7+ %10"3), 1 - reflectionPoh[[n, 4, All]]},
{n, 1, 4}], PlotRange - All, (#GridLines-~{{vO[[4]]/(2*7+hx10"3)},{.5}},%)
AxesLabel -» {"Energy, kHz", "Transmission Probability"}]

Transmission Probability

107
osé ;
05§
04f
02 _/
S 16 26 30 — 46 Eneray, kHz

varTrans =ListLinePlot[Tab1e[
Transpose@{energyoh[[n, 1, All]] / (2*7*% % 10"3), 1 -reflectionPoh[[n, 1, AL1]]},
{n, 1, 4}], PlotRange - All,
GridLines—>{{vO[[l]]/(2*7r*h*10A3)},{.5}},Frame-+True,
FrameLabel » {Style["Energy, kHz", 18], Style["Transmission Probability", 18]},
(#PlotLabel-Style|
"Gaussian Barrier Potential Transmission Spectrum, Varying Variance", 18], *)
FrameTicksStyle » Medium, ImageSize » Large, PlotStyle -» Thickness[.006]
(*,PlotLegends—~Placed[{Table[o[[n]]/10"-6"um",{n,1,n0}]},{.2,.8}]+)]
‘ \ ‘ ‘

1.0 i

o o o
» o oo

— — —
Il Il Il

Transmission Probability

o
N
—
I

0 10 20 30 40
Energy, kHz

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varTrans.jpeg", varTrans];
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c = ListLinePlot [Table[
Transpose@ {energyoh[[n, 3, All]] / (2% 7+ &% 10"3), 1 -reflectionPoh[[n, 3, ALl1]]},
{n, 1, 4}], PlotRange - All, (#GridLines-~{{vO[[4]]/(2*7+hx10"3)},{.5}},%)
AxesLabel -» {"Energy, kHz", "Transmission Probability"}]

Transmission Probability

1.0¢
o.sé ;
o.eé
0.4§
10 20 3oj T Frew R

Show[varTrans, a, b, c]
Gaussian Barrier Potential Transmission Spectrum, Varying Variance
1.0+ :

0.8 b

Transmission Probability

0.2 i

0.0+ b

0 10 20 30 40
Energy, kHz
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hTransClose:=ListLinePlot[Tab1e[
Transpose@{energych[[1, j, All]] / (2*7*h%10°3), 1 - reflectionPoh[[1, j, All]]},
{j, 1, 4}], PlotRange - {{26, 37}, {-0.01, 1.01}},

GridLines - {{VO[ [1]] / (2 * T x B * 10A3)}, {.5}}, Frame -» True, FrameLabel -
{style["Energy, kHz", 18], Style["Transmission Probability", 18]}, PlotLabel -
Style["Gaussian Barrier Potential Transmission Spectrum, Varying Height", 18],

FrameTicksStyle » Medium, ImageSize » Large, PlotStyle » Thickness[.006],

PlotLegends - Placed[{Table[vO[[j]]/ (2% 7+ A 10"3) "kHz", {j, 1, 4}]}, {.8, .2}]]

Gaussian Barrier Potential Transmission Spectrum, Varying Height
1.0 7 T T T T et ——————

o o o
s o o)
T T T

Transmission Probability

o
N
T

0.0 p— S
26 28 30 32 34 36

Energy, kHz

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/hTransClose.jpeg", hTransClose];
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wTransClose:=ListLinePlot[Tab1e[
Transpose@{energych[[n, 1, Al11]] / (2*7*hA%10"3), 1 - reflectionPoh[[n, 1, All]]},
{n, 1, 4}], PlotRange - {{26, 34}, {-0.01, 1.01}},

GridLines - {{vO[[l]]/ (2*7r*f1*10A3)}, {.5}}, Frame -» True, FrameLabel -
{style["Energy, kHz", 18], Style["Transmission Probability", 18]}, PlotLabel -
Style["Gaussian Barrier Potential Transmission Spectrum, Varying o", 18],

FrameTicksStyle » Medium, ImageSize » Large, PlotStyle » Thickness[.006],

PlotLegends - Placed|[{Table[o[[n]] /10"-6 "um", {n, 1, no}]}, {.8, .2}]]

Gaussian Barrier Potential Transmission Spectrum, Varying o

1.0F '
> 0.8 i
=
o
@©
O
ég 06" |
c
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75}
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2 1
E . Hm
= 02l 1.6 um i
2.1um
2.5 um
0.0 ; | ! 9
26 28 30 32 34
Energy, kHz
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/wTransClose.jpeg", wTransClose];

positionol = Flatten[Position[l - reflectionPoh[[1, 1, A11]], _? (& > .000001 &)1];
Dimensions[positionol]
positiono2 = Flatten[Position[l - reflectionPoh[[2, 1, A11]], _? (& > .000001 &)]1];
Dimensions[positiono2]
positiono3 = Flatten[Position[1l - reflectionPoh[[3, 1, A11]], _? (& > .000001 &)]1];
Dimensions[positiono3]
positiono4 = Flatten[Position[l - reflectionPch[[4, 1, A11]], _? (& > .000001 &)]1];
Dimensions[positiono4]

{156 232}
(135628}
(127290}

(122986}
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tunnelingEnergyoFirst =
{energyoch[[1l, 1, positionol[[1]]]], energych[[2, 1, positionoc2[[1]]]], energych|[[
3,1, positiono3[[1]]]], energych[[4, 1, positionoc4[[1]]]]} / (2 *TTxh* 1.0*A3) ;
tunnelingEnergyoFirst

{24.3768, 26.4372, 27.271, 27.7014}

positioncLastll =
Flatten[Position[1l - reflectionPoh[[1, 1, A11]], _? (#< .999999&)]1];
Dimensions[positionocLastl1l]
positionoLastl2 =
Flatten[Position[1l - reflectionPch[[2, 1, A11]], _? (#< .999999 &)]1];
Dimensions[positionocLastl12]
positionoLastl3 =
Flatten[Position[1l - reflectionPch[[3, 1, A11]], _? (H< .999999 &)]1];
Dimensions[positionocLast13]
positionoLastl4 =
Flatten[Position[1l - reflectionPoh[[4, 1, A11]], _? (#< .999999&)]];
Dimensions[positionocLast14]
tunnelingEnergyocLastl =
{energyoch[[1l, 1, positionoLastll[[Length[positionocLastl11]]]]],
energych[[2, 1, positionoLastl2[[Length[positionoLast12]]]1]],
energych[[3, 1, positionoLastl3[[Length[positionoLast13]]]1]1],
energych[[4, 1, positionoLastl4[[Length[positioncLast14]]]1]1]1} / (2 *Txh*xl .0*A3)

(360239}
(337187}
(328191}
(323618}

{36.0249, 33.7197, 32.8201, 32.3628}

positiono2l = Flatten[Position[1l - reflectionPch[[1l, 2, A11]], _? (# > .000001 &)]];
Dimensions[positionoc21]
positionoc22 = Flatten[Position[l - reflectionPch[[2, 2, A11]], _? (# > .000001 &) ]];
Dimensions[positionoc22]
positiono23 = Flatten[Position[1l - reflectionPch[[3, 2, A11]], _? (# > .000001 &)]1];
Dimensions[positionoc23]
positionoc24 = Flatten[Position[1l - reflectionPch[[4, 2, A11l]], _? (#> .000001 &)]];
Dimensions[positionoc24]

(147196}
{126 231}
{117 749}

(113371}
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tunnelingEnergyocSecond = {energych|[[1, 2, positionoc21[[1]]]],
energyoch[[2, 2, positionc22[[1]]]], energych[[3, 2, positiono23[[1]]]],
energych[[4, 2, positiono24[[1]]]]}/ (2+7+h*1.0+"3);
tunnelingEnergyoSecond

{25.2804, 27.3769, 28.2251, 28.6629}

positioncLast2l =
Flatten[Position[1l - reflectionPoh[[1l, 2, A11]], _? (#< .999999&)]];
Dimensions[positionocLast21]
positionoLast22 =
Flatten[Position[1l - reflectionPch[[2, 2, A11]], _? (#< .999999 &)]1];
Dimensions[positionocLast22]
positionoLast23 =
Flatten[Position[1l - reflectionPoch[[3, 2, A11]], _? (H< .999999 &)]1;
Dimensions[positioncLast23]
positionoLast24 =
Flatten[Position[1l - reflectionPoh[[4, 2, A11]], _? (#< .999999&)]];
Dimensions[positionocLast24]
tunnelingEnergyocLast2 =
{energyoch[[1l, 2, positionoLast2l[[Length[positionocLast21]]]]],
energych[[2, 2, positionoLast22[[Length[positionoLast22]]]1]1],
energych[[3, 2, positionoLast23[[Length[positionoLast23]]]1]1],
energych[[4, 2, positionoLast24[[Length[positioncLast24]]]1]1]1} / (2 *Txh*xl .0*A3)

(371202}
(347789}
(338649}
(334003}

{37.1212, 34.7799, 33.8659, 33.4013}

positiono31l = Flatten[Position[1l - reflectionPch[[1l, 3, A11]], _? (# > .000001 &)]1];
Dimensions[positionoc31]
positiono32 = Flatten[Position[1l - reflectionPcoh[[2, 3, A11]], _? (# > .000001 &)]];
Dimensions[positiono32]
positiono33 = Flatten[Position[1l - reflectionPch[[3, 3, A11l]], _? (# > .000001 &)]];
Dimensions[positionoc33]
positiono34 = Flatten[Position[1l - reflectionPch[[4, 3, A11l]], _? (#> .000001 &)]];
Dimensions[positiono34]

(138144}
{116 823}
(108200}

{103 750}
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tunnelingEnergyoThird = {energych[[1, 3, positionc31[[1]]]],
energyoch[[2, 3, positiono32[[1]]]], energych[[3, 3, positiono33[[1]]]],
energych[[4, 3, positiono34[[1]]]]}/ (2+7+h*1.0+"3);
tunnelingEnergyoThird

{26.1856, 28.3177, 29.18, 29.625}

positionoLast31l =
Flatten[Position[1l - reflectionPoh[[1l, 3, A11]], _? (#< .999999&)]1];
Dimensions[positionocLast31]
positionoLast32 =
Flatten[Position[1l - reflectionPch[[2, 3, A11l]], _? (#< .999999 &)]1];
Dimensions[positionocLast32]
positionoLast33 =
Flatten[Position[l - reflectionPch[[3, 3, A11]], _? (#< .999999 &)11];
Dimensions[positioncLast33]
positionoLast34 =
Flatten[Position[1l - reflectionPoh[[4, 3, A11]], _? (#< .999999&)]];
Dimensions[positionocLast34]
tunnelingEnergyocLast3 =
{energyoch[[1l, 3, positionoLast31l[[Length[positionocLast31]]1]]1],
energych[[2, 3, positionoLast32[[Length[positionoLast32]]]1]1]1,
energych[[3, 3, positionoLast33[[Length[positionoLast33]]]1]1],
energych[[4, 3, positionoLast34[[Length[positioncLast34]]]1]1]1} / (2 *Txh*xl .0*A3)

(382150}
(358381}
(349101}
(344382}

{38.216, 35.8391, 34.9111, 34.4392}

positiono4l = Flatten[Position[1l - reflectionPch[[1, 4, A11]], _? (# > .000001 &)]];
Dimensions[positionoc41l]
positionoc42 = Flatten[Position[l - reflectionPch[[2, 4, A11]], _? (# > .000001 &)]];
Dimensions[positionoc42]
positiono43 = Flatten[Position[1l - reflectionPch[[3, 4, A11]], _? (# > .000001 &)]1];
Dimensions[positionc43]
positionoc44 = Flatten[Position[1l - reflectionPch[[4, 4, A11l]], _? (#> .000001 &)]];
Dimensions[positionoc44]

{129 078}
{107 407}
{98645}

{94124}
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tunnelingEnergyocFourth = {energych[[1, 4, positionoc4l1[[1]]]],
energych[[2, 4, positionoc42[[1]]]], energych[[3, 4, positiono43[[1]]]1],
energych[[4, 4, positiono44[[1]]]]}/ (2+7+h*1.0+"3);
tunnelingEnergyoFourth

{27.0922, 29.2593, 30.1355, 30.5876}

positioncLast4l =
Flatten[Position[1l - reflectionPch[[1, 4, A11]], _? (#< .999999&)]1];
Dimensions[positionocLast41]
positionoLast42 =
Flatten[Position[l - reflectionPch[[2, 4, A11]], _? (#< .999999 &)]1];
Dimensions[positioncLast42]
positionoLast43 =
Flatten[Position[1l - reflectionPoch[[3, 4, A11]], _? (H< .999999 &)]11];
Dimensions[positionocLast43]
positionoLast44 =
Flatten[Position[1l - reflectionPch[[4, 4, A11]], _? (#< .999999&)]];
Dimensions[positionocLast44]
tunnelingEnergyocLast4 =
{energyoch[[1l, 4, positionoLast4l[[Length[positionocLast41]]1]]1],
energych[[2, 4, positionoLast42[[Length[positionoLast42]]]1]1,
energych[[3, 4, positionoLast43[[Length[positionoLast43]]]1]1]1,
energych[[4, 4, positionoLast44[[Length[positioncLast44]]]1]1]1} / (2 *Txh*xl .0*A3)

(393084}
(368965}
(359545}
(354756}

{39.3094, 36.8975, 35.9555, 35.4766}

Variance
tableData = {{"First Tunneling Energy in kHz", SpanFromLeft}, {"—",

Height
o[[1]]/10%-6 "um", o[[2]] /10" -6 "um", o[[3]] /10"-6 "um", o[[4]] /10" -6 "um"},
Join[{vO[[1]]/ (2*7*h »1.0%"3)
Join[{vO[ [2]1] / (2 *7Txh* 1.0*A3) "kHz"} , tunnelingEnergyoSecond] ,
Join[{vO[ [3]11 / (2 *TTxh* 1.0*"3) "kl-lz"} ’ tunnelingEnergya‘I‘hird] ’
Join[{vO[[4]]1/ (2*7*h»1.0%"3)

"kHz"}, tunnelingEnergyoFirst]|,

"kHz "} ’ tunnelingEnergycFourth] } ;
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singleGaussTable = Grid[tableData, Alignment -» Center, Spacings -» {2, 2},
Frame -» All, Background -» {{LightGray, None}, {None, LightGray}}]

First Tunneling Energy in kHz

Variance

Height 1. um 1.6 um 2.1 um 2.5 um

30. kHz 24.3768 26.4372 27.271 27.7014

31. kHz 25.2804 27.3769 28.2251 28.6629

32. kHz 26.1856 28.3177 29.18 29.625

33. kHz 27.0922 29.2593 30.1355 30.5876

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/singleGaussTable.jpeg"”, singleGaussTable];

tableDatalast =

L . N , Variance
{{"Last Energy Before Full Transmission in kHz", SpanFromLeft}, { _— ",

Height
o[[1]] /10"-6 "um", o[[2]] /10" -6 "um", o[[3]] /10"-6 "um", o[[4]] /10" -6 "um"},
Join[{vO[[1]]/(2*7*A»1.0+"3) "kHz"}, tunnelingEnergyoLastl],
Join[{vO[[Z]]/(2*7r*h*1.0*A3)"kHz"},tunnelingEnergycLastZ],
Join[{vO[[3]]/ (2#7*h*1.0+"3) "kHz"}, tunnelingEnergyoLast3],
Join[{vO[[4]]/(2*7*h»1.0+"3) "kHz"}, tunnelingEnergyoLast4]};

singleGaussLastTable = Grid[tableDatalLast, Alignment » Center, Spacings -» {2, 2},
Frame -» All, Background -» {{LightGray, None}, {None, LightGray}}]

Last Energy Before Full Transmission in kHz

Variance

Height 1. pum 1.6 um 2.1 pm 2.5 um

30. kHz 36.0249 33.7197 32.8201 32.3628

31. kHz 37.1212 34.7799 33.8659 33.4013

32. kHz 38.216 35.8391 34.9111 34.4392

33. kHz 39.3094 36.8975 35.9555 35.4766

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/singleGaussLastTable.jpeg"”, singleGaussLastTable];
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slopeGauss =(.999999-—.000001)/{tunnelingEnergyoLastl-tunnelingEnergycFirst,
tunnelingEnergyoLast2 - tunnelingEnergyocSecond, tunnelingEnergyocLast3 -
tunnelingEnergyoThird, tunnelingEnergyoLast4 - tunnelingEnergyoFourth}

{{0.0858507, 0.137315, 0.180209, 0.214527}, {0.0844536, 0.13508, 0.177279, 0.211041},
{0.0831226, 0.132954, 0.174486, 0.207718}, {0.0818517, 0.130921, 0.171821, 0.20454}}

Dimensions[slopeGauss]

{4, 4}

. " Variance
tableDataSlope ={{"Transmlss1on Rate of Change", SpanFromLeft}, {"————————",

Height
o[[1]]1/10"-6 "um", o[[2]] /10" -6 "um", o[[3]] /10"-6 "um", o[[4]] /10" -6 "um"},
Join[{vO[[1]]/(2*7*A»1.04"3) "kHz"}, slopeGauss[[1, ALl]]],
Join[{vO[[2]]/(2*7m*h»1.04"3) "kHz"}, slopeGauss[[2, ALl]]],
Join[{vO[[3]]/(2*n*h1.0+"3) "kHz"}, slopeGauss[[3, ALl]]],
Join[{vO[[4]]1/(2*7m+h»1.0+"3) "kHz"}, slopeGauss[[4, All]]]};

singleGaussSlopeTable = Grid[tableDataSlope, Alignment -» Center, Spacings -» {2, 2},
Frame -» All, Background » {{LightGray, None}, {None, LightGray}}]

Transmission Rate of Change

Variance

i 1. pum 1.6 um 2.1 um 2.5 um

30. kHz .0858507 0.137315 0.180209 0.214527

31. kHz .0844536 0.13508 0.177279 0.211041

32. kHz .0831226 0.132954 0.174486 0.207718

33. kHz .0818517 0.130921 0.171821 0.20454
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/singleGaussSlopeTable.jpeg", singleGaussSlopeTable];

Dimensions[amplitudePoh]

{4, 4, 399990}

Abs[amplitudePch[[1, 1, positionol[[1]]]]]

0.999999
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positionEnergyBelow = Flatten[Position[newv[ [1, 1, 1001 ;; 2001]],
_? (# 2 tunnelingEnergyoFirst[[1]] + (2#7*A*1.0%"3) -1 (2*x7*h*1.0%"3) &)]];
Dimensions [positionEnergyBelow]
positionEnergyAbove = Flatten|[Position[newv[[l, 1, All]],
_?(#<10% (2#7*h*1.0%"3) +1x (2x7xh%1.0+"3) &)]];
Dimensions[positionEnergyAbove]

positionEnergy = Union[positionEnergyBelow, positionEnergyAbove];
Dimensions[positionEnergy]

{34}
{1868}
{1868}

positionEnergyBelow

(1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}

newv([[1, 1, 1032]] / (2% 7+ h+1.0%"3)
24.1666

psi[i_, time_] := Re[Exp[

2xm
i*Sqrt| * (tunnelingEnergyoFirst[[1]]  (2#7n*A*1.0%"3) -newv[[1, 1, i]])] «
h~2
(x[[i]] - time) | + amplitudePoh[[1, 1, positionol[[1]]]] *Exp[-i=
2%m
Sqrt [ * (tunnelingEnergyoFirst[[1]]  (2#7*h*1.0%"3) -newv[[1, 1, i]])] *
n~2

(x[[i]1] - time)]]

psiB[i_, time_] := Re[Exp[

. 2%m
i*Sqrt|
h~2

(x[[1]] - time)]]

* (tunnelingEnergyoFirst[[1]]  (2#7*A*1.0%"3) -newv[[1, 1, i]])] »

psiT[i_, time_] := Re[Sqrt[l - Abs[amplitudePch[[1, 1, positionol[[1]]1]]]"2] »Exp|
2

* m
* (tunnelingEnergyoFirst[[1]]  (2#7*A*1.0%"3) -newv[[1, 1, i]])] «
n~2
(x[[1]] - time) ] ]

i*Sqrt|

Y11 = tunnelingEnergyoFirst[[1]] + Join[Table[psi[i, 0], {i, 1, 970}],
Table[psiB[i, 0], {i, 971, 1032}], Table[psiT[i, 0], {i, 1033, 2001}]];

Dimensions [¢§11]

x[[900]]

(2001}

~1.515%x10°°
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ListPlot [Transpose@ {x/ 10" -6, lIlll} , Joined -» True, PlotRange - All]
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S5
Show|[ListLinePlot [Transpose@{x /10"-6, newv[[1, 1, All]] / (2*x*h10"3)},
PlotRange -» {{-15, 15}, {-3, 40}}],
ListLinePlot [Transpose@{x/ 10"-6, 1[/11} , PlotRange - All] ]
40

— T T T

T T T T T T T T,

T
(9]
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gaussWave = ListLinePlot[{Transpose@{x/ 10"-6, newv[[1, 1, All]] / (2 * Tk h* 10"3) } ’
Transpose@{x /10"-6, y11}}, PlotRange » {{-15, 15}, {-3, 35}},
Frame -» True, FrameLabel -» {{Style["Potential Energy Function", 18],
Style["Wave-function, T (x)", 18]}, {Style["Position, um", 18], None}},
PlotLabel -» Style["Gaussian Barrier Potential and Transmitting Wave", 18],
FrameTicksStyle-aMedium,ImageSize-eLarge,Plotstyle-eThickness[.OOGI

Gaussian Barrier Potential and Transmitting Wave
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Position, yum
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/gaussWave.jpeg", gaussWave];

00 = {.01%"-6, 100.0+"-6};

- (i-x0)"~2
newvv = Table[vO[[1]] » Exp|

]l {n, 1, 2}, {i, -wx, wx, l}];
oo[[n]]1"2

Dimensions[newvv]

{2, 2001}

energyLimit = Table[If[Intersection[newvv|[[n, Al1l]], energyO] == {},
energy0O, Delete[energy0O, Flatten[Position[energyO,
Intersection[newvv[[n, All]], energyO0][[1]]1]1]11]1, {n, 1, 2}];
Dimensions[energyLimit]

{2, 399990}

reflectionLimit = Table][
ReflectionProbability[newvv[[n, Al1l1]], energyLimit[[n, A11]], 1], {n, 1, 2}];
Dimensions[reflectionLimit]

{2, 399990}
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varianceLimits =ListLinePlot[
{Transpose@{energyLimit[[1,All]]/(2*7r*h*10A3), l—reflectionLimit[[l,All]]},

Transpose@{energyLimit[[2, All]] / (2% 7w+ A 10"3),

97

Join[Table[0, {i, 1, 298474}], 1 - reflectionLimit[[2, 298475 ;; 399990]11]1}},

PlotRange -» All, Frame -» True, FrameLabel -» {Style["Energy, kHz", 18],
Style["Transmission Probability", 18]}, PlotLabel -

Style["Gaussian Barrier Potential Transmission Spectrum, Variance Limits", 18],
FrameTicksStyle -» Medium, ImageSize - Large,

PlotStyle -» Thickness[.006], PlotLegends -» {"o<<1", "c>>1"}]

Gaussian Barrier Potential Transmission Spectrum, Variance Limits

1.0

Transmission Probability

0.8
0.6
0.4

0.2

Export [

0.0

10

20
Energy, kHz

30

40

— o<<1

g>>1

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis

nb's/possible figs/varianceLimits.jpeg", varianceLimits];
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General Impedance Method Eigen
Energy

02.11.2016 Anderson Group

MetaPackage:

Transmission line analogy of resonance tunneling phenomena:The generalized impedance concept by A.N.
Khondker

J. Appl. Phys., vol. 63, no. 10, p.5191, 1988
Wave transmissionthrough periodic, quasiperiodic, and random one-dimensional finite lattices by Braulio
Gutierrez-Medina

Am. J. Phys., vol. 81, no. 2, p. 104, 2013

This package used the general impeance method to numically evaluate the eigen-energies of an arbitrary
potential energy function. The general impedance method evaluates the potential energy function from the
output end to the reference plane for the left looking input impedance, {inputL, and the input end of the poten-
tial to the reference plane for the right looking input impedance, inputR. The condition for the eigen-energies
is dinputL=inputR.
The input values for this package are:

v=Table[function[i],{i,imin,imax,stepsize}] : the arbitrary potential energy function as a list of points.

energy=Table[i,{i,imin,max,stepsize}] : the span of energy values that an arbitrary wavefunction might
have. Note, this could also be a list of one.

I= constant : step size, or more specifically the value x[[2]]-x[[1]]. This is the step size at which the
potential energy function takes.
The output values for this package are the eigen-energies for the potential.
The variables defined with in the package are:

m= effective mass of the wave packet in units of kg (for rubidium)

h= Planck’s constant in units of Js

k= propagation constant

{0= characteristic impedance

{load= load impedance

{input= input impedance

Begin Package

BeginPackage["ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy "]

ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy"
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Usage Message

EigenEnergy: :usage =
"EigenEnergy[v,energy,l] computes the eigen-energies by using the

general impedance method. The arguments are v, energy,
and 1 where they are the potential energy vector function,
energy vector function, and the step size, respectively.

m is the effective mass of the wave packet and A is Planck's constant
in units of Js, both are defined within the package.

v must be of the form v=Table[function[i], {i,imin,imax,1}]

energy must be of the form energy=Table[i,{i,imin,imax,1}]";

Warning Messages

EigenEnergy: :badv =
"The potential energy argument “1° must be in the form of a list.";

EigenEnergy: :badenergy = "The energy argument ~“1° must be in the form of a list.";

EigenEnergy: :badl =
"The step size argument ~1° is not within the appropriate bounds. 1 must be
greater than 0 and less than the Thermal de Broglie Wavelength, “2°.";

Options
Private Context

Begin[" “Private™ "]

ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy Private’
Function Definitions (Public and Private)

m=1.44%"-25;
A =1.054571726+"-34;
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EigenEnergy[v_, energy_, 1_] :=
Module[{kL, €OL, floadL, finputL, kR, £OR, £loadR, finputR,
i, reference, above, below, aboveAndbelow, resonantEnergy},
Which|
! (VectorQ[v]), Message [EigenEnergy:: "badv", v],
! (VectorQ[energy]), Message [EigenEnergy:: "badenergy", energy],

2 1 h
o<1 < (2% N[m, 10] % h)

Sqrt[2 * m * Max [energy] ] '
(2*N[m, 10] %= h)

Message [EigenEnergy::"badl", 1,

4
1eference = If[EvenQ[Length[v]], Length[v] / 2, (Length[v] -1) /2];
Do[
kL = i*Sqrt[Z*m* (energy—v[[i]])] /h;
EOL = -1 +h kL /m;
If[i == Length[v], £loadL = 0L, £loadL = inputL];
£loadL * Cosh[kL * 1] - EOL * Sinh[KL % 1]

COL # Cosh [KL # 1] - £10adL » Sinh[kL + 1]
{i, Length[v], reference, —1}];
Do [
kR = J'L*Sqrt[Z * M * (energy—v[[i]])] /h;
EOR = -1 *h*kR/m;
If[i==1, £loadR = ZOR, floadR = £inputR];

. £loadR * Cosh[kR* 1] - EOR * Sinh[kR % 1] .
CinputR = EOR * , {i, 1, reference, 1}];
EOR * Cosh[kR* 1] - £1loadR * Sinh[kR % 1]

Sqrt[2 *m » Max[energy] ]

€inputL = EOL *

above = Flatten|[Position[Abs[ginputL /EinputR], _? (#> .999&)]];
below = Flatten [Position [Abs [QinputL/§inputR] , _2(#<1.001 &) ] ] ;
aboveAndbelow = Intersection[above, below];
resonantEnergy =

Table[energy[ [aboveAndbelow[[i]]]], {i, 1, Length[aboveAndbelow] }]

End Private Context

End[]

ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy Private’

End Package

EndPackage|[]
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The double rectangular barrier potential Mathematica notebook

doubleRectPot.nb



103

Impedance Method Rectanglar
Double Barrier

Quit[]
ClearAll["Global™ "]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethod.m"]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodAmplitude.m"]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodEigenEnergy.m"]

$ContextPath

{ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy,
ImpedanceMethodAmplitude” ImpedanceMethodAmplitude”,
ImpedanceMethod” ImpedanceMethod™, StreamingLoader”, IconizeLoader™,
CloudObjectLoader”™, PacletManager , System™, Global™}

A=1.054%"-34;
vO0l =2x7wxh*x30.0x"3;
v02 =2%m+h%x1.0+x"3 »Table[i, {i, 30, 32}];
wid = .333%"-6;

.625%x"-6
sep=——;

2

mxm = 15.0%"-6;
1l =mxm/ 1000;

energy = 2 *n*xh+* 10”3 x Table[i, {i, .001, 31(*56%), .0001(*.001%)}];
Dimensions [energy]

(309991}

potential = Table[-vOl » UnitStep[i + sep] + vOl » UnitStep[i + (sep +wid)] +
vO2[[j]] * (—Unitstep[i - (sep +wid) ] +UnitStep[i - sep] ) ’
{j, 1, Length[v02]}, {i, -mxm, mxm, 1}];
x = Table[i, {i, -mxm, mxm, 1}];
Dimensions [potential]
{3, 2001}
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doubRectPot =
ListLinePlot|[Table[Transpose@{x /10"-6, potential[[j, All]] / (2*n+h*10"3)},
{j, 1, Length[v02] }] , PlotRange » {{-5, 5}, {-.1, 35}}, Frame -» True,
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Rectangular Double Barrier", 18],
FrameTicksStyle-eMedium,ImageSize—»Large,Plotstyle-e{Thickness[.OOG]}]

Rectangular Double Barrier
35 \ \ : : ‘ \ \ \ \ \ \

30, -

- N N
a o (6)}

— T T
I I I

Potential Energy, kHz

-4 | | | -2 | | | 0 | | | 2 | | | 4
Position, ym

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRectPot.jpeg", doubRectPot];

energyGood = Table[If[Intersection[potential[[j, Al1l]], energy] == {},
energy, Delete[energy, Flatten[Position[energy,
Intersection[potential[[j, A1ll]], energy] [[1]1]1]11], {j, 1, Length[v02]}];
Dimensions [energyGood]

{3, 309990}

t = AbsoluteTime[];
reflectCoefl =
ReflectionProbability[potential[[1l, A1l1]], energyGood[[1l, A11l]], 1];
Dimensions[reflectCoefl]
AbsoluteTime[] -t

(309990}

190.303008
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pl =
ListLinePlot|[Transpose@{energyGood[[1, All]] / (2% 7% A x30.0%"3), 1 - reflectCoefl},
PlotRange -» All, Frame - True,
FrameLabel » {Style["Energy/v0", 18], Style["Transmission", 18]},
PlotLabel - Style["Rectangular Double Barrier", 18],
FrameTicksStyle » Medium, ImageSize -» Large, PlotStyle » {Thickness[.006] }]

7 Rectangular Double Barrier
1.0 :

0.8+ h

0.4r h

Transmission

0.0

0.0 0.2 04 06 08 10
Energy/v0

t = AbsoluteTime[];

reflectAmpl = ReflectionAmplitude[potential[[1l, A1l1l]], energyGood[[1l, Al11l]], 1];
Dimensions[reflectAmpl]

AbsoluteTime[] -t

t = AbsoluteTime[];

eigenEnergyl = EigenEnergy[potential[[1l, A11]], energyGood[[1l, Al11l]], 1];
Dimensions[eigenEnergyl]

AbsoluteTime[] -t

{42}

194.415754

DeleteDuplicates [eigenEnergyl/ (2 *7mxh* 1.0*"3) , Abs [#1 - #2] < .1 &]
{1.1141, 4.4342, 9.883, 17.2733, 26.039}

Avik Dutt analytical solution:
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m=1.44+"-25;

kl[nrg_] :=Sqrt[2 *m*nrg/h"z]

k2[nrg_] := Sqrt[2 *m=* (vOl-nrg) /4" 2]
k3[nrg_] := Sqrt[z #m#* (VO2[[1]] - nrg) /h"z]
g=2x*wid;

b = 2 »wid + sep;

tProb[nrg_] :=
kl[nrg] k3[nrg]
k3[nrg] kl[nrg]
kl[nrg] k2 [nrg]
k2 [nrg] kl[nrg]
((kl[nrg] k3[nrg]] (kl[nrg] k2[nrg]
+ * +
k3 [nrg] kl[nrg] k2 [nrg] kl[nrg]

16 * ((4 * Cosh[k3[nrg] »wid] ~2 + ( ] ~2 % Sinh[k3[nrg] * wid] "2) *

(4 * Cosh[k2[nrg] *wid] ~2 + ( ) ~2 % Sinh[k2[nrg] *wid] "2) +

) * Sinh[k2 [nrg] * wid] *

Sinh[k3[nrg] *wid]) ~, (kl[nrg] . k3 [nrg] ) . (kl[nrg] . k2[nrg] ) .

k3 [nrg] kl[nrg] k2 [nrg] kl[nrg]

Sinh[k2[nrg] *wid] * Sinh[k3 [nrg] * wid] * (8 * Cos [kl[nrg] » (wid +sep)] »
Cosh[k3[nrg] »wid]  Cosh[k2[nrg] »wid] - 4 » Sin[kl[nrg] » (wid + sep) | *
((kl[nrg] k2 [nrg]

k2[nrg] kl[nrg]
(kl[nrg] k3 [nrg]

k3 [nrg] kl[nrg]

] * Sinh[k2[nrg] » wid] * Cosh[k3[nrg] » wid] +

) * Sinh[k3[nrg] *wid] * Cosh[k2[nrg] »wid] | -

kl[nrg] k3 [nrg]

2 Cos [kl[nrg] » (wid +sep)] » (
k3 [nrg] kl[nrg]

] * Sinh[k3 [nrg] * wid] *

(kl [nrg] - k2[nrg] ) * Sinh[k2[nrg] *wid]]) ~-1
k2 [nrg] kl[nrg]

H. Yamamoto analytical solution

B[nrg_] :=Sqrt[2+mx (vOl-nrg) /h"2]
kk[nrg_] := Sqrt[Z *m*nrg/hAZ]
h[nrg_] := 2 *Sqrt[nrg* (vOl - nrg)] » Cosh[B[nrg] *wid] * Cos [kk[nrg] * sep] -
(2 *nrg-v01l) * Sinh[B[nrg] *wid] * Sin[kk[nrg] * sep]
trans[nrg_] :=
(1+ (v01"2 » Sinh[B[nrg] *wid] "2 »h[nrg] “2) / (4 *nrg"2  (vOl - nrg) “2)) ~-1

Ava Ashby analytic solution:

m=1.44%"-25;

k[nrg_] :=Sqrt[2 *m*nrg/h"z];

xl[nrg_] := Sqrt[2+m« (vOl-nrg) /h"2];
x2[nrg_] := Sqrt[2+m+ (vO2[[1]] -nrg) /Aa"~2];
x1 = sep;

x2 = wid + sep;

A =x1-x2;
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rProbAva[nrg_] :=

k[nrg] ~2

Abs[(Exp[—Z*i*k[nrg] * X2] * (( +J<2[nrg]) *EXp[2 + 1 *k[nrg] »x1] *

k2 [nrg]

k[nrg] ~2

Cosh[kl[nrg] * A] * Sinh[x2[nrg] * A] + ( +x1[nrg]] *

xl[nrg]
Exp[-2*1i*k[nrg] *x1] * Sinh[kxl[nrg] * A] * Cosh[x2[nrg] * A] +
(( k[nrg] *3 xl[nrg] * x2[nrg]
k1l[nrg] * x2[nrg] k[nrg]
(Kl [nrg] x2[nrg]
k2[nrg] x1l[nrg]

] *#Sin[2 * k[nrg] *» x1] +

] *1*k[nrg] * Cos[2 x k[nrg] *xl]) *

Sinh[x1l[nrg] * A] * Sinh[x2[nrg] *A])]/ (Exp[—Z *1+k[nrg] *x1] *

k[nrg] ~2
([ k2 [nrg]
k[nrg] ~2

( k1l[nrg]

- x2[nrg] ) *# Sinh[x2 [nrg] * A] * Cosh[kx1l[nrg] * A] +
- k1 [nrg]] * Sinh[x1[nrg] * A] * Cosh[x2[nrg] * A] -2 +1 * k[nrg] *

Cosh[x2[nrg] * A] * Cosh[x1l[nrg] *A]] +Sinh[x2[nrg] * A] * Sinh[kx1l[nrg] * A] *

(( k[nrg] "3 . kxl[nrg] * x2[nrg] ) < Sin[2 »k[nrg] » x1] -
kl[nrg] * x2[nrg] k[nrg]

(Kl[nrg] k2 [nrg]
+

] *1xk[nrg] * Cos[2 * k[nrg] *"1])]]A2;
x2[nrg] xl[nrg]

1
c[nrg_, rAmp_] := Exp[-k1l[nrg] * x2] * — *
2

1% k[nrg]
- +

(rAmp*Exp[J'L*k[nrg] * X2] * [

1% k[nrg]
1) -Exp[-1*k[nrg] » x2] * (——1])

xl[nrg] xl[nrg]

1
cc[nrg_, rAmp_] := Exp[xl[nrg] * x2] * — %
2

i* k[nrg]

(Exp[—i*k[nrg] *xX2] * (1 +

i* k[nrg]
J + rAmp * Exp[1 * k[nrg] * x2] * (1— —J)

x1[nrg] x1l[nrg]
psiI[i_, nrg_, rBmp_] := Re[Exp[i *k[nrg] *x[[1i]]] + rAmp * Exp[-L * k[nrg] * x[[i]]]]

psiII[i_, nrg_, rAmp_] :=
Re[c[nrg, rAmp] * Exp[-x1l[nrg] *x[[1i]]] + cc[nrg, rAmp] * Exp[x1l[nrg] *x[[1]]]]

d[nrg_, rAmp_] :=

1 i* k[nrg] x1l[nrg]
— +*Exp[i*k[nrg] »x1] * (rAmp*Exp[i*k[nrg]*xZ]* [ - ) *
2 x1l[nrg] i* k[nrg]

Sinh[kxl[nrg] * A] + Exp[-1 * k[nrg] * x2] *
k1l[nrg] i*k[nrg]
+

(2 * Cosh[x1l[nrg] *x A] - ( J * Sinh[x1[nrg] *A]))

i* k[nrg] x1l[nrg]

1
f[nrg_, rAmp_] := — *Exp[-1 *k[nrg] * x1] % (rAmp*Exp[i*k[nrg] *xX2] *
2

(2 * Cosh[x1l[nrg] » A] + (i*k[nrg] + x1[nrg] ) * Sinh[x1[nrg] *A]) -

x1l[nrg] i* k[nrg]

Exp[-1i*k[nrg] * x2] * (i*k[nrg] - x1[nrg] J * Sinh[x1 [nrg] *A])

kx1l[nrg] i*k[nrg]
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pPsiIII[i_, nrg_, rAmp_] :=

Re[d[nrg, rAmp] * Exp[i * k[nrg] *x[[1]]] + £[nrg, rAmp] *Exp[-i *k[nrg] *x[[1]]]]
tAmp [rAmp_] := Sqrt[1l - Abs[rAmp] * 2]
gg[nrg_, rAmp_] := Sqrt[1l - Abs[rAmp] *2] * Exp[i * k[nrg] * x2 + x2[nrg] * x2]
g4[nrg_, rAmp_] :=
i* k[nrg]

1
— x» Exp[k2[nrg] » x1] * (d[nrg, rAmp] * Exp[1i * k[nrg] » x1] * (1 -
2

k2 [nrg]
i* k[nrg]
f[nrg, rAmp] * Exp[-1 % x1] * (1 + —))

k2 [nrg]

1
gg4[nrg_, rAmp_] := — * Exp[-x2[nrg] * x1] *
2

+

. i* k[nrg]
d[nrg, rAmp] * Exp[i * k[nrg] * x1] * (— + 1)

x2[nrg]
f[nrg, rAmp] * Exp[-1i * x1] * [1 _ i*k[nrg] ))
x2[nrg]

psiIV[i_, nrg_, rAmp_] :=
Re[g4[nrg, rAmp] + Exp[-x2[nrg] *x[[i]]] (x+gg4 [nrg,rAmp] +Exp [x2[nrg]+x[[i]]]+) ]
(*gg[nrg, rAmp] +Exp[-x2[nrg]+x[[i]]]]+)

psiV[i_, nrg_, rAmp_] := Re[tAmp[rAmp] * Exp[i *k[nrg] »x[[1]]]]

positII = Flatten[Position[potential[[1, A11l]], _? (#==v01l &)]]

{958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975,
976, 977, 978, 979, 980, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030,
1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044}

positIV = Flatten[Position[potential[[1l, Al1l1l]], _? (#==vO02[[1]] &)]]

{958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975,
976, 977, 978, 979, 980, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030,
1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044}

positAmp = Flatten[Position [energyGood[ [1, Al1]], _? (11 == eigenEnergyl[[13]] &) ]] ;

4

rAmp = reflectAmpl[[269501]]
Sqrt[1l - Abs[rAmp] " 2]

-0.000825029 +0.00075589 1

0.999999

energyGood[[1, 269501]] / (2% 7+ h+1.0%"3)
26.951
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YI = Flatten@Table[psiI[i, energyGood[[1l, 269501]], rAmp], {i, 1, 957}];

YII = Flatten@Table[psiII[i, energyGood[[1l, 269501]], rAmp] *1, {i, 958, 980}];
YIII = Flatten@Table[psiIII[i, energyGood[[1l, 269501]], rAmp] 1, {i, 981, 1021}];
YIV = Flatten@Table[psiIV[i, energyGood[[1l, 269501]], rAmp] » 1, {i, 1022, 1044}];
YV = Flatten@Table[psiV[i, energyGood[[1l, 269501]], rAmp], {i, 1045, Length[x]}];
E::energyGood[[l,269501]]/(2*7r*ﬁ*]u0*A3)+Join[w1,wII,wIII,wIV,wV];
Dimensions[T]

(2001}

doubRectWave = ListPlot[{Transpose@{x/ 10*-6, ¢},
Transpose@{x /10" -6, potential[[1l, All]] / (2*7w+a%10"3)}},
Joined -» True, PlotRange -» {{-2, 2}, {-0.1, 46}}, Frame » True, FrameLabel -
{{Style["Potential Energy Function, kHz", 18], Style["Wavefunction, & (x)", 18]},
{Style["Position, um", 18], None}}, PlotLabel -»
Style["Double Rectangular Barrier Potential and Transmitting Wave", 18],

FrameTicksStyle » Medium, ImageSize » Large, PlotStyle -» Thickness[.004] ]
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N 40l i
T 4 ,
x o
c ]
jel |
—-— S
&} L _
S 30 7 N 7 3i
S NN\ U\ NN\UN\V N\ €
w7 1.9
> T -
> 2
O 20- 1 5
T 1%
= 3
2 1=
£ | ]
o 10- _
..6 L 4
s ]

0 L L L L L L L L L L L L L L L L L L

-2 -1 0 1 2

Position, yum

Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRectWave.jpeg", doubRectWave];

DeleteDuplicates|[eigenEnergyl / (2# 7w+ A% 1.0%"3), Abs[#1-#2] < .1 &]
{1.1141, 4.4342, 9.883, 17.2733, 26.039}
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energyBetter = (2x 7% A*1.0%"3) » Join[Table[i, {i, .1, 1.0, .1}],
Table[i, {i, 1.0, 1.2, .00000004}], Table[i, {i, 1.2, 4.3, .1}],
Table[i, {i, 4.3, 4.7, .000001}], Table[i, {i, 4.7, 9.5, .1}1,
Table[i, {i, 9.5, 10.5, .00001}], Table[i, {i, 10.5, 17.0, .1}],
Table[i, {i, 17.0, 18.0, .00001}], Table[i, {i, 18.0, 26.0, .1}],
Table[i, {i, 26.0, 27.0, .001}], Table[i, {i, 27.0, 40.0, .1}1];

Dimensions [energyBetter]

{5601374}

t = AbsoluteTime[];

reflectCoefBetterl = ReflectionProbability[potential[[1l, Al11]], energyBetter, 1];
Dimensions[reflectCoefBetterl]

AbsoluteTime[] - t

{5601374}

3859.546387

t = AbsoluteTime[];

reflectAmpBetterl = ReflectionAmplitude[potential[[1l, Al1l]], energyBetter, 1];
Dimensions[reflectAmpBetterl]

AbsoluteTime[] - t

(3852347}

2495.542985

t = AbsoluteTime[];

eigenEnergyBetterl = EigenEnergy[potential[[1, All]], energyBetter, 1];
Dimensions [eigenEnergyBetterl]

AbsoluteTime[] - t

(2888}

9532.782682

dataTable = {{"Eigen—Energies in kHz", SpanFromLeft},
DeleteDuplicates [eigenEnergyBetterl / (2 *Txh*xl .0*A3) , Abs[#1 - #2] < .1 &] };
eigenEnergy30 = Grid[dataTable, Alignment -» Center, Spacings » {2, 2},
Frame -» All, Background » {{None, None}, {LightGray, None}}]

Eigen-Energies in kHz

1.11401 4.43412 9.883 17.2732 26.039

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/eigenEnergy30.jpeg"”, eigenEnergy30];

eigs30 = DeleteDuplicates [eigenEnergyBetterl / (2 *Txh* 1.0*"3) , Abs [#1 - #2] < .1 &] ;
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energyAnall =2 x s+ h % 10”3 » Table[i, {i, .01, 40, .00001}];
Dimensions[energyAnall]
energyAnal = If[Intersection[potential[[1l, Al1l1l]], energyAnall] == {},
energyAnall, Delete[energyAnall, Flatten[Position[energyAnall,
Intersection[potential[[1l, All]], energyAnall] [[1]1]111]11;
Dimensions [energyAnal]

(3999001}

{3999000}

aBimped = Transpose@{energyBetter / (2+m+h*1.0+"3), 1 - reflectCoefBetterl};
Dimensions [aBimped]

aBAva = Transpose@ {energyBetter/ (2% 7%xh%1.0%"3), 1-rProbAva[energyBetter] };
Dimensions[aBAva]

aBDutt = Transpose@{energyAnal / (2 xw+h % 1.0+"3), tProb[energyAnal] };
Dimensions [aBDutt]

aBYama = Transpose@{energyAnal / (2xw*h»1.0«"3), trans[energyAnal] };
Dimensions[aBYama]

(5601374, 2)
(5601374, 2)
(3999000, 2}

{3999000, 2}
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avasBest = ListLinePlot [ {aBimped, aBAva, aBDutt, aBYama}, PlotRange - All,
Frame -» True, FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission", 18]},
PlotLabel - Style["Transmission spectrum of analytical solutions", 18],
FrameTicksStyle » Medium, ImageSize » Large, PlotStyle » Thickness[.005],
PlotLegends - {"Impedance Method", "Ashby", "Dutt [11]", "Yamamoto [10]"}
(#,Epilog-{Directive[{Thick,Black,Dashed}],
Table[Line[{{eigs30[[i]],0},{eigs30[[i]],1}}],{i,1,5}]}*)]

Transmission spectrum of analytical solutions

1.0 i
0.8+ i
S I
= 06" .
(7] —_— ]
7 I Impe
= —— Ashb
(7] L ]
g 0.4k | —— Duitt]
|_ r i — Yam‘
0.2 .
0.0+ i
0 10 20 30 40
Energy, kHz
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/avasBest.jpeg", avasBest];
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ListLinePlot[Transpose@{energyBetter / (2+m+h%1.0%"3), 1-reflectCoefBetterl},
PlotRange -» All, Frame - True,
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission", 18]}, PlotLabel -
Style["Transmission spectrum of the double rectangular barrier potential”, 18],
FrameTicksStyle » Medium, ImageSize -» Large,
PlotStyle » Directive[Blue, Thickness[.005]],
Epilog -» {Directive[{Thick, Black, Dashed}],
Table[Line[{{eigs30[[i]], O}, {eigs30[[i]], 1}}], {i, 1, 5}] }]

Transmission

Export [

1.0 7
0.8 7
0.6:
04 7

0.0

Transmission spectrum of the double rectangular barrier potential

A

10

20 30 40
Energy, kHz

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRectTrans.jpeg", doubRectTrans];

positionBet = Flatten[Position[1l - reflectCoefBetterl, ? (#> .4 &)]];
energyResonanceBetter = Table[
energyBetter[[positionBet[[i]]]]/ (27 *h*1.0%"3), {i, Length[positionBet]}];

refEnergy = DeleteDuplicates [energyResonanceBetter, Abs [#1 - #2] < .1 &]

{1.16198, 4.62346, 10.2976, 17.9693, 26.934, 33., 33.1, 33.2, 33.4, 33.5,

33.6, 33.7, 33.9, 34.,34.1, 34.2, 34.4, 34.5, 34.6, 34.7, 34.9, 35., 35.1,

35.2, 35.4, 35.5, 35.6, 35.7, 35.9, 36., 36.1, 36.2, 36.4, 36.5, 36.6, 36.7,

3.9, 37., 37.1, 37.2, 37.4, 37.5, 37.6, 37.7, 37.9, 38., 38.1, 38.2, 38.4,

38.6, 38.7, 38.8, 38.9, 39., 39.1, 39.2, 39.4, 39.5, 39.7, 39.8, 39.9, 40.}
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analytDoubRect = ListLinePlot[
Transpose@{energyBetter / (2 * wx A% 1.0%"3), 1 - rProbAva[energyBetter]},
PlotRange - All, PlotStyle -» Directive[Red, Thickness[.004]],
PlotLabel -» Style["Ava Ashby analytic solution"”, 18], Frame - True,
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission", 18]},
FrameTicksStyle » Medium, ImageSize —» Large]

Ava Ashby aqalytic solution

0.8+ h

0.4r h

Transmission
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doubRectAnalyt = Show[doubRectTrans, analytDoubRect]
Transmission spectrum of the double rectangular barrier potential
1.0+

0.8

0.6

Transmission

0.2+

0-07\ " " " " | " " " " I " " " " | . . . . L]
0 10 20 30 40

Energy, kHz

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRectAnalyt.jpeg", doubRectAnalyt];

energyBetter3l = (2x7*h*1.0%"3) « Join[Table[i, {i, .1, 1.1, .1}],
Table[i, {i, 1.1, 1.3, .000001}], Table[i, {i, 1.3, 4.4, .1}],
Table[i, {i, 4.4, 4.9, .000001}], Table[i, {i, 4.9, 9.3, .1}1,
Table[i, {i, 9.3, 10.6, .00001}], Table[i, {i, 10.6, 17.0, .1}],
Table[i, {i, 17.0, 18.5, .00001}], Table[i, {i, 18.5, 25.9, .1}],
Table[i, {i, 25.9, 28.0, .0001}], Table[i, {i, 28.0, 40.0, .1}]1;

Dimensions[energyBetter31]

(1001354}

reflectCoefBetter3l =
ReflectionProbability[potential[[2, A1l1]], energyBetter3l, 1];
Dimensions[reflectCoefBetter31]

(1001354}

eigenEnergyBetter31l = EigenEnergy[potential[[2, Al11]], energyBetter3l, 1];
Dimensions[eigenEnergyBetter31]
data3l =

DeleteDuplicates [eigenEnergyBetter3l/ (2 *mxhxl .0*"3) , Abs [#1 - #2] < .1 &]
{665}

{1.11628, 4.44363, 9.90643, 17.3226, 26.1509}
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ListLinePlot [Transpose@ {energyBetter31 / (2 *mxh*xl .0*"3) , 1- reflectCoefBetter31} '
PlotRange -» All, Frame - True,
FrameLabel - {Style["Energy, kHz", 18], Style["Transmission", 18]},
PlotLabel - Style["Rectangular Double Barrier, 31kHz", 18],
FrameTicksStyle -» Medium, ImageSize -» Large, PlotStyle -» {Thickness[.006] }]

. Rectangular Double Barrier, 31kHz I
1.0 B

0.6r h

Transmission

0.4 i

L

better32 = (2 *71'*!1*1.0*’\3) * Join[Table[i, {i, .1, 1.0, .1}],

Table[i, {i, 1.0, 1.3, .000001}], Table[i, {i, 1.3, 4.4, .1}],

Table[i, {i, 4.4, 4.9, .000001}], Table[i, {i, 4.9, 9.3, .1}],

Table[i, {i, 9.3, 10.7, .00001}], Table[i, {i, 10.7, 17.0, .1}],

Table[i, {i, 17.0, 18.5, .00001}], Table[i, {i, 18.5, 25.9, .1}],

Table[i, {i, 25.9, 28.0, .0001}], Table[i, {i, 28.0, 40.0, .1}11;
energyBetter32 = If[Intersection[potential[[3, Al1l]], better32] == {},

better32, Delete[better32, Flatten]|
Position[better32, Intersection[potential[[3, A11l]], better32][[1]]1]1111];

Dimensions[energyBetter32]

(1111351}

0.01 h | 1
0 10 20

Energy, kHz

40
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reflectCoefBetter32 =

ReflectionProbability[potential[[3, Al11]], energyBetter32, 1];
Dimensions[reflectCoefBetter32]
eigenEnergyBetter32 = EigenEnergy[potential[[3, Al11]], energyBetter32, 1];
Dimensions[eigenEnergyBetter32]
data32 =

DeleteDuplicates[eigenEnergyBetter32 / (2 x 7w+ h+1.0%"3), Abs[#1 - #2] < .1 &]

(1111351}
{650}

{1.11844, 4.45268, 9.92868, 17.369, 26.2519}

ListLinePlot [Transpose@{energyBetter32 / (2« m*h % 1.0%"3), 1 - reflectCoefBetter32},
PlotRange -» All, Frame - True,
FrameLabel » {Style["Energy, kHz", 18], Style["Transmission", 18]},
PlotLabel » Style["Rectangular Double Barrier, 32kHz", 18],
FrameTicksStyle -» Medium, ImageSize - Large, PlotStyle -» {Thickness[.006] }]

o Rectangular Double Barrier, 31kHz o
1.00 .

0.8 h

0.6 h

Transmission

0.2r b

0.0] m—tm—— A/
0 10 20 30 40

Energy, kHz
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position32 = Flatten[Position[1l - reflectCoefBetter32, _? (#> .001 &)]];

energyResonance32 = Table[
energyBetter32[[position32[[i]]]]/ (2*7*hA%1.0+"3), {i, Length[position32]}];

DeleteDuplicates[energyResonance32, Abs [#1 - #2] < .1 &]

(1.1667, 4.64326, 10.3463, 18.0676, 26.9207, 27.0208, 27.1208, 27.2208,
27.3208, 27.4208, 27.5209, 31., 31.1, 31.3, 31.5, 31.6, 31.8, 32.1, 32.2,
32.4, 32.5, 32.6, 32.7, 32.9, 33., 33.1, 33.2, 33.4, 33.5, 33.6, 33.7,
33.9, 34., 34.1, 34.2, 34.4, 34.5, 34.6, 34.7, 34.9, 35., 35.1, 35.2,

35.4, 35.5, 35.6, 35.7, 35.9, 36., 36.1, 36.2, 36.4, 36.5, 36.6, 36.7,
36.9, 37., 37.1, 37.2, 37.4, 37.5, 37.6, 37.7, 37.9, 38., 38.1, 38.2, 38.4,
38.6, 38.7, 38.8, 38.9, 39., 39.1, 39.2, 39.4, 39.6, 39.7, 39.8, 39.9, 40.}

dataTable ={{"Eigen—Energies in kHz", SpanFromLeft},
Join[{v02[[1]]/ (2*7*h*1.0+"3) "kHz"}, Flattene
DeleteDuplicates [eigenEnergyBetterl / (2 *Txh*xl .0*"3) , Abs [#1 - #2] < .1 &] ] ’
Join[{v02[[2]]/ (2*7*h*1.0+"3) "kHz"}, Flattenedata3l],
Join[{v02[[3]]/ (2*7n*h*1.0+"3) "kHz"}, data32]};

eigenEnergies = Grid[dataTable, Alignment » Center, Spacings » {2, 2},
Frame -» All, Background » {{LightGray, None}, {LightGray, None}}]

Eigen-Energies in kHz
30. kHz 1.11401 4.43412 9.883 17.2732 26.039
31. kHz 1.11628 4.44363 9.90643 17.3226 26.1509
32. kHz 1.11844 4.45268 9.92868 17.369 26.2519
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis

nb's/possible figs/eigenEnergies.jpeg", eigenEnergies];
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doubRTransH =
ListLinePlot[{Transpose@{energyBetter / (2xw* A% 1.0+"3), 1 - reflectCoefBetterl},

Transpose@ {energyBetter31 / (2 *ntxkhA*x1l. 0*"3) , 1- reflectCoefBetter31} ’
Transpose@{energyBetter32 / (2xm+h*1.0+"3), 1 - reflectCoefBetter32}},

PlotRange -» All, Frame - True,

FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission", 18]},

PlotLabel - Style["Transmission Spectrum for Varied Heights", 18],

FrameTicksStyle » Medium, ImageSize -» Large,

PlotStyle » {Thickness[.006]}, PlotLegends -» {"30kHz", "31kHz", "32kHz "}]

_Transmission Spectrgm for Varied Heights
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0.0t | N N N N 1 N N N N 1 N N N J N - L . . . L
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Energy, kHz
Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRTransH.jpeg", doubRTransH] ;
.625%"-6 1.25%"-6 2.5%"-6
sepV = { ’ ’ };
2 2 2

potentialSep =

Table[-vOl » UnitStep[i + sepV[[n]]] + vOl « UnitStep[i + (sepV[[n]] +wid)] +
v02[[1]] * (-UnitStep[i- (sepV[[n]] +wid)] + UnitStep[i-sepV[[n]]]),
{n, 1, Length[sepV]}, {i, -mxm, mxm, 1}];
x = Table[i, {i, -mxm, mxm, 1}];
Dimensions [potentialSep]
{3, 2001}
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doubRectSepPot =
ListLinePlot[Table[Transpose@{x /10" -6, potentialSep[[n, All]] / (2*7*h*10"3)},
{n, 1, Length[sepV] }] , PlotRange » {{-5, 5}, {-.1, 35}}, Frame -» True,
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Rectangular Double Barrier", 18],
FrameTicksStyle » Medium, ImageSize -» Large, PlotStyle -» {Thickness[.006]},
PlotLegends - {"0.625um", "1.25um", "2.5um"}]
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRectSepPot.jpeg", doubRectSepPot];

betterSep2 = (2*7r*h*1.0*"3) * Join[Table[i, {i, .1, 1.1, .1}],
Table[i, {i, 1.1, 1.4, .000001}], Table[i, {i, 1.4, 2.6, .1}],
Table[i, {i, 2.6, 3.0, .00001}], Table[i, {i, 3.0, 4.9, .1}],
Table[i, {i, 4.9, 5.3, .00001}], Table[i, {i, 5.3, 7.5, .1}],
Table[i, {i, 7.5, 8.5, .00001}], Table[i, {i, 8.5, 10.9, .1}],
Table[i, {i, 10.9, 11.9, .00001}], Table[i, {i, 11.9, 15.0, .1}],
Table[i, {i, 15.0, 15.7, .0001}], Table[i, {i, 15.7, 19.5, .1}],
Table[i, {i, 19.5, 21.0, .0001}], Table[i, {i, 21.0, 24.5, .1}],
Table[i, {i, 24.5, 26.0, .0001}], Table[i, {i, 26.0, 29.5, .1}],
Table[i, {i, 29.5, 31.0, .0001}], Table[i, {i, 31.0, 35.0, .1}]1];
energyBetterSep2 = If[Intersection[potential[[2, All]], betterSep2] = {},
betterSep2, Delete[betterSep2, Flatten]|
Position[betterSep2, Intersection[potential[[2, Al1l]], betterSep2][[1]]1]11];
Dimensions [energyBetterSep2]

(632285}

1
2
4
7
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reflectCoefSepBetter2 =

ReflectionProbability[potentialSep[[2, Al11]], energyBetterSep2, 1];
Dimensions[reflectCoefSepBetter2]
eigenEnergySepBetter2 = EigenEnergy[potentialSep[[2, A1l1l]], energyBetterSep2, 1];
Dimensions [eigenEnergySepBetter2]
dataSep2 =

DeleteDuplicates|[eigenEnergySepBetter2 / (2xmxh* 1.0+"3), Abs[#1 - #2] < .1 &]
(632285}

{206}

{1.26529, 2.84344, 5.04584, 7.86416, 11.2851, 15.2864, 19.8268, 24.8131, 29.9303}

transH2 = ListLinePlot [Transpose@

{energyBetterSepZ / (2 *mxh*xl. 0*A3) s 1- reflectCoefSepBetterZ} , PlotRange - All,
Frame -» True, FrameLabel -» {Style["Energy", 18], Style["Transmission", 18]},
PlotLabel -» Style["Rectangular Double Barrier, separation=1.25um", 18],
FrameTicksStyle » Medium, ImageSize -» Large, PlotStyle » {Thickness[.006] }]

Rectangular Double Barrier, separation=1.25ym_
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Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible figs/transH2.jpeg", transH2];
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betterSep3 = (2x7*h*1.0%"3) » Join[Table[i, {i, .1, 2.8, .1}],
Table[i, {i, 2.8, 3.2, .00001}], Table[i, {i, 3.2, 3.9, .1}],

Table[i, {i, 3.9, 4.3, .000001}], Table[i, {i, 4.3, 5.2, .1}],

Table[i, {i, 5.2, 5.6, .000001}], Table[i, {i, 5.6, 6.7, .1}],

Table[i, {i, 6.7, 7.2, .00001}], Table[i, {i, 7.2, 8.3, .1}],

Table[i, {i, 8.3, 8.8, .00001}], Table[i, {i, 8.8, 9.9, .1}],

Table[i, {i, 9.9, 10.6, .00001}], Table[i, {i, 10.6, 11.9, .1}],
Table[i, {i, 11.9, 12.4, .00001}], Table[i, {i, 12.4, 13.9, .1}],
Table[i, {i, 13.9, 14.6, .00001}], Table[i, {i, 14.6, 16.3, .1}],
Table[i, {i, 16.3, 16.9, .0001}], Table[i, {i, 16.9, 18.5, .1}],
Table[i, {i, 18.5, 19.5, .0001}], Table[i, {i, 19.5, 21.2, .1}],
Table[i, {i, 21.2, 21.9, .0001}], Table[i, {i, 21.9, 23.8, .1}],
Table[i, {i, 23.8, 24.8, .0001}], Table[i, {i, 24.8, 26.5, .1}],
Table[i, {i, 26.5, 27.5, .0001}], Table[i, {i, 27.5, 29.4, .1}],
Table[i, {i, 29.4, 31.0, .001}], Table[i, {i, 31.0, 35.0, .1}1];

energyBetterSep3 = If[Intersection[potential[[3, A1l1l]], betterSep3] = {},

betterSep3, Delete[betterSep3, Flatten|
Position[betterSep3, Intersection[potential[[3, A1l1l]], betterSep3][[1]1]1]111];
Dimensions [energyBetterSep3]

(1174877}

reflectCoefSepBetter3 =
ReflectionProbability[potentialSep[[3, All]], energyBetterSep3, 1];
Dimensions[reflectCoefSepBetter3]
eigenEnergySepBetter3 = EigenEnergy[potentialSep[[3, A1l1]], energyBetterSep3, 1];
Dimensions [eigenEnergySepBetter3]
dataSep3 =
DeleteDuplicates[eigenEnergySepBetter3 / (2% mxh»1.0+"3), Abs[#1 - #2] < .1 &]

(1174877}
{361}

{3.04189, 4.13844, 5.40232, 6.83282, 8.42903, 10.1898,
12.1136, 14.1983, 16.441, 18.8375, 21.381, 24.0596, 26.8487}
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transH3 = ListLinePlot[

Transpose@ {energyBetterSep3 / (2 m* A% 1.0%"3), 1-reflectCoefSepBetter3},
PlotRange -» All, Frame - True,

FrameLabel » {Style["Energy, kHz", 18], Style["Transmission", 18]},
PlotLabel -» Style["Rectangular Double Barrier,separation=2.5um", 18],
FrameTicksStyle -» Medium, ImageSize » Large, PlotStyle » {Thickness[.006] }]
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Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible figs/transH3.jpeg", transH3];

positionughhhh = Flatten|[Position[energyBetter / (2% 7w+ h+1.0%"3), _? (#>=35.08&)]];
positionughhhh[[1]]

5601324

energyBetter[ [positionughhhh[[1]]]]/ (2% 7w *h*1.0+"3)
35.
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doubRtransSep = ListLinePlot|[
{Transposee{energyBetter[[1 ;; positionughhhh[[1]]]] / (2% %A% 1.0%"3),
1 - reflectCoefBetterl[[1 ;; positionughhhh[[l]]]]},
Transpose@{energyBetterSepZ / (2 *7txh* 1.0*"3) , 1- reflectCoefSepBetterZ} '
Transposee@ {energyBetterSep3 / (2 *x m*h+1.0+"3), 1 - reflectCoefSepBetter3}},
PlotRange -» All, Frame - True,
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission", 18]},
PlotLabel - Style["Transmission Spectrum for Varied Separation", 18],
FrameTicksStyle » Medium, ImageSize -» Large, PlotStyle » {Thickness[.006]},
PlotLegends - {"0.625um", "1.25um", "2.5um"}]
) Transmission Spectrum for Varied Separation ]
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Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/doubRtransSep.jpeg"”, doubRtransSep];

Round [dataSep3, .001]

{3.042, 4.138, 5.402, 6.833, 8.429, 10.19,
12.114, 14.198, 16.441, 18.838, 21.381, 24.06, 26.849}
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dataTableSep ={{"Eigen—Energies in kHz, v01=v02=30kHz", SpanFromLeft},
Join[{sepV[[1]] 2 /10"-6 "um"}, Round [Flatten@DeleteDuplicates|
eigenEnergyBetterl/ (2 *w*h*1.0+"3), Abs[#1-#2] < .1&], .01]],
Join[{sepV[ [2]] * 2/10A—6 "um"}, Round [dataSep2, .01] ] ’
Join[{sepV[[3]] *2/10"-6 "um"}, Round[dataSep3, .01]]};
eigenEnergiesSep = Grid[dataTableSep, ItemSize -» Full, Frame - All,
Background - {{LightGray, None}, {LightGray, None}}]

Eigen-Energies in kHz, v01=v02=30kHz

0.625,m|1.11]14.43]9.88[17.27[26.04

1.25um [1.27]2.845.05| 7.86 |11.29]15.29119.83[24.81[29.93

2.5um |[3.04|4.14] 5.4 | 6.83 | 8.43 |10.19]12.11[ 14.2 [16.44]|18.84]21.38]24.06

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/eigenEnergiesSep.jpeg", eigenEnergiesSep];

diffDatal = Round [Di fferences [Flatten@

DeleteDuplicates [eigenEnergyBetterl/ (2 *Tx A * 1.0*"3) , Abs [#1 - #2] < .1 &] ] ’ . 1]
diffData2 = Round [Differences[dataSep2], .1]
diffData3 = Round[Differences[dataSep3], .1]

{3.3,5.4, 7.4, 8.8}
{1.6,2.2,2.8,3.4,4.,4.5,5.,5.1}

{1.1,1.3,1.4,1.6,1.8,1.9,2.1,2.2,2.4,2.5,2.7, 2.8}

dataTableSepDiff =
{{"Eigen—Energy differnces in kHz, v01=v02=30kHz", SpanFromLeft},
Join[{sepV[[1]] *2/10"-6 "um"}, diffDatal], Join[{sepV[[2]] x2/10"-6 "um"},
diffpata2], Join[{sepV[[3]] *2/10"-6 "um"}, diffData3]};
eigenEnergiesSepDiff = Grid[dataTableSepDiff, Alignment -» Center, ItemSize -» Full,
Frame -» All, Background » {{LightGray, None}, {LightGray, None}}]

Eigen-Energy differnces in kHz, v01=v02=30kHz
0.625 um|[3.3]5.4[7.4[8.8
1.25um [1.6[2.2]2.8]3.4| 4. |[4.5]5.
2.5um [1.1|1.3]1.4]1.6]1.8[1.9[2.1

5.1
2.2(2.412.512.7]2.8

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/eigenEnergiesSepDiff.jpeg", eigenEnergiesSepDiff];
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General Impedance Method
reflection amplitude

12.21.2015 Anderson Group

MetaPackage:

Transmission line analogy of resonance tunneling phenomena:The generalized impedance concept by A.N.
Khondker

J. Appl. Phys., vol. 63, no. 10, p.5191, 1988
Wave transmissionthrough periodic, quasiperiodic, and random one-dimensional finite lattices by Braulio
Gutierrez-Medina

Am. J. Phys., vol. 81, no. 2, p. 104, 2013

This package used the general impeance method to numically evaluate the reflection probabilities of an
arbitrary potential energy function. The general impedance method evaluates the potential energy function
from the output end to the input end of the potential.
The input values for this package are:

v=Table[function][i],{i,imin,imax,stepsize}] : the arbitrary potential energy function as a list of points.

energy=Table[i,{i,imin,max,stepsize}] : the span of energy values that an arbitrary wavefunction might
have. Note, this could also be a list of one.

I= constant : step size, or more specifically the value x[[2]]-x[[1]]. This is the step size at which the
potential energy function takes.
The output values for this package is the values of the reflection probability for each value of energy. Length-
[ReflectionProbability]==Length[energy].
The variables defined with in the package are:

m= effective mass of the wave packet in units of kg (for rubidium)

h= Planck’s constant in units of Js

k= propagation constant

z0= characteristic impedance

zload= load impedance

zinput= input impedance

Begin Package

BeginPackage["ImpedanceMethodAmplitude” ImpedanceMethodAmplitude™ "]

ImpedanceMethodAmplitude™ ImpedanceMethodAmplitude™
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Usage Message

ReflectionAmplitude: :usage =
"ReflectionAmplitude[v,energy,l] computes the complex reflection

amplitude by using the general impedance method. The arguments
are v, energy, and 1 where they are the potential energy vector
function, energy vector function, and the step size, respectively.

m is the effective mass of the wave packet and A is Planck's constant
in units of Js, both are defined within the package.

v must be of the form v=Table[function[i], {i,imin,imax,1}]

energy must be of the form energy=Table[i,{i,imin,imax,1}]";

Warning Messages

ReflectionAmplitude: :badv =
"The potential energy argument ~1° must be in the form of a list.";

ReflectionAmplitude: :badenergy =
"The energy argument 1 must be in the form of a list.";

ReflectionAmplitude: :badl =
"The step size argument ~1° is not within the appropriate bounds. 1 must be
greater than 0 and less than the Thermal de Broglie Wavelength, “2°.";

Options
Private Context

(LN

Begin[" “Private™ "]

ImpedanceMethodAmplitude” ImpedanceMethodAmplitude Private”

Function Definitions (Public and Private)

m=1.44%"-25;
A =1.054571726%"-34;
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ReflectionAmplitude[v_, energy_, 1_] :=
Module[{k, z0, zload, zinput, reflectionL, i},
Which|
! (VectorQ[v]), Message[ReflectionAmplitude:: "badv", v],

! (VectorQ[energy]), Message[ReflectionAmplitude:: "badenergy", energy],

o<1 < (2% N[x, 10] * h)

Sqrt[2 * m * Max [energy] ] '

) ) (2 *N[x, 10] % h)
Message [ReflectlonAmplltude: :"badl"”, 1,

Sqrt[2 *m * Max [energy] ]

~e

]
Do [
k=1'1*Sqrt[2*m*(energy—v[[i]])]/h;
z0=-ixhxk/m;

If[i == Length[v], zload = 20, zload = zinput];

. zload * Cosh[k * 1] - z0 * Sinh[k » 1] .
zinput = z0 * , {1, Length[v], 1, -1}];
z0 *x Cosh[k * 1] - zload * Sinh [k % 1]

zinput - z0

reflectionL =
zinput + z0

End Private Context

End[]

ImpedanceMethodAmplitude™ ImpedanceMethodAmplitude Private™

End Package

EndPackage|[]
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Impedance Method Double Gaussian
Potential

In[1]:=

In[1]:=

In[2]:=

In[3]:=

In[4]:=

In[5]:=

Out[5]=

Quit[]
ClearAll["Global™ "]

Load the ImpedanceMethod package:

There are several ways to do this, here is a couple options:

1) For newer versions of Mathematica you can start with Get[“dkfj and a small icon will apear to
let you search your computers files.

2) If you know the file path use Get[“filePath”] or Needs[“filePath”], or sometimes Get[“context™],
Needs[“context™”] works too.

3) If you dont know the file path and the icon does not appear, try going to File -> Install -> “Type
of Item to Install:” select Package, “Source:” select from file, and choose the appropriate file, ie
ImpedanceMethod.m. Now use <<ImpedanceMethod" for the input

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethod.m" ]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodAmplitude.m"]

Get["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/ImpedanceMethodEigenEnergy.m"]

$ContextPath

{ImpedanceMethodEigenEnergy ImpedanceMethodEigenEnergy",
ImpedanceMethodAmplitude™ ImpedanceMethodAmplitude™,
ImpedanceMethod™ ImpedanceMethod™, StreamingLoader™, IconizeLoader ™,
CloudObjectLoader”, PacletManager™, System” , Global"}

phase[vec_List] := Module[{phi, df, len, i},
phi = Im[Log[vec]];
df = Differences@phi;
len = Length@phi;
i = Flatten@Position[df, x_ /; Abs[x] > 3.5];
Do|[phi = phi - (2Pi«Sign[df[[j]]] «UnitStep[#- (j +1)] & /@Range[len]), {j, i}];
phi]

(*unWrapPhase[data_?VectorQ,tol_:s,inc_:2 x]:=

data+inc FoldList[Plus,0,Sign[Chop[Apply[Subtract,Partition[data,2,1],{1}]tol]]]

Define all global constants:

Printed by Wolfram Mathematica Student Edition



2 | doubleGaussPot.nb

In[6]:=

In[17]:=

Out[20]=

In[253]:=

Out[254]=

h=1.054%x"-34;

m=1.44x"-25;

wx = 15.0%"-6; (*imin/imaxx)

1l =wx/1000;

sigx = Sort[{2.1*"-6, 1.0%"-6, 1.6%x"-6, 2.6x" -6}, Less];
nL = Length[sigx];

ull =2 *xwxh*30%x"3;

u02 = 2 » 7w x h » Table[ (i) » 10"3, {i, 30, 33}];

jL = Length[u02];

xsep = Sort[{2.5*"-6, 1.25%*"-6, 5.0%x"-6, 4.8%*"-6, 5.8x"-6}, Less];
kL = Length[xsep];

Define the potential function, v[i], and put into list of data points:

vii_,j_,k_,n_] :=
xse k

1+ 2

sigx[[n
1

potential = Table[v[i, j, k, n], {n, 1, nL}, {k, 1, kL},
{3, 1, jL}, {i, -wx /2, wx /2, 1}];

x = Table[i, {i, -wx/2,wx/2,1}];

Dimensions[potential]

Sigx

ull *Exp[—z* [
1

Xse; k
]Az] +u02[[j]] *Exp[-2+ [1—2J ~2];

(4,5, 4, 1001)

Define the energies you would like to be evaluated:

energy = 2xwxh %103 » Table[i, {i, 1.0, 35, .00004}];
Dimensions[energy]

(850001}

Optional- Plot potential function:
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varsepPot =ListLinePlot[Tab1e[

Transpose@{x/lO"-G, potential[[2, k, 1, A11]] / (2#7xn%1073)}, {k, 1, kL}],
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Double Gaussian Barrier: Varied Separation", 18],
PlotLegends -» {Table["um" xsep[[k]] /10"-6, {k, 1, kL}]},

PlotRange -» All, FrameTicksStyle -» Medium, ImageSize - Large,
PlotStyle » {Thickness[.006]}, Frame—»True]

| unple Gaus‘sian‘B‘arrie‘r: ‘Va‘rigd‘S‘ep‘ar‘atjon

40+ B
N
Lz |
< 30
5 I — 1.25;
8 — 2.5
LE 20; | — 48w
O 77 — 5.um
= .
2 — 58w
DC3 I

10F 8

0, |

Position, um

Export [

" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varsepPot.jpeg", varsepPot];
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varheightPot =ListLinePlot[Table[

Transpose@{x /10" -6, potential([[2, 3, j, All]] / (2+n*ha%10"3)}, {j, 1, JL}],
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Gaussian Double Barrier: Varied Height", 18],

PlotLegends - {Table["kHz" u02[[j]]/ (2+7+hA*10"3), {j, 1, jL}]},
FrameTicksStyle -» Medium, ImageSize - Large,
PlotStyle » {Thickness[.006]}, Frame -» True, PlotRange - All]

| Ga‘ussi‘an‘ [‘)oub‘le‘Barr‘ie‘r: ‘Va‘\ried‘H‘eigh‘t |

30, 1
I o5l ]
x |
> |
gzo 1 — 30.k
St ] 31.kt
[ 15 ] 32.kl
= — 33.kl
-.q__? L
o 101 ]
o |

5f ]

ol | ]

-6 -4 -2
Position, ym

Export [

" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varheightPot.jpeg", varheightPot];
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varwidthPot = ListLinePlot [Table [

Transpose@{x /10" -6, potential[[n, 3, 1, All]] / (2*7n+h%10"3)}, {n, 1, nL}]|,
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Double Gaussian Barrier: Varied wWidth", 18],

PlotLegends - {Table[“um" sigx[[n]] / 10*-6, {n, 1, nL}] }, FrameTicksStyle -» Medium,
ImageSize - Large, PlotStyle - {Thickness[.006]}, Frame - True]

unble G‘a‘us‘si‘an‘ Barrier: ‘Vgri‘ed‘ Wigth

300 ]
25; -
N I
I I
X I
é 20? 7
PN I — 1.um
@
i 15- 1.6 ul
& | 21
= i — 2.6 W
L 10r R
5 I
a |
sl ]
0; N 1 N N | 1 . . . 1 . . n n . . 1 . . . 1 n N N 1 Bl
-6 -4 -2 0 2 4 6
Position, yum
Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varwidthPot.jpeg", varwidthPot];

Evaluate ReflectionProbability[ ]:

cams3030 = {1.17740582696143, 2.23133776667272, 3.34253664358537, 4.49894536987933,
5.69190681957433, 6.91468142122128, 8.16173082465847, 9.42831606824111,
10.7102482710843, 12.0037210432943, 13.3051893293914, 14.6112751117543,
15.9186878599275, 17.2241511179226, 18.5243278612551, 19.8157367704978,
21.0946492913658, 22.3569532744475, 23.5979665672744, 24.8122060464905,
25.9932613055158, 27.1344544972186, 28.2320728685983, 29.2928309974024};

cams3033 = {1.22170862465289, 2.29953553327378, 3.43503981668997,
4.61627663809360, 5.83463517411243, 7.08339968535128, 8.35704776481764,
9.65085465197591, 10.9606470048600, 12.2826371626870, 13.6133033601839,
14.9492966688016, 16.2873627355717, 17.6242698148082, 18.9567357552994,
20.2813459902520, 21.5944520010844, 22.8920350827527, 24.1695178150228,
25.4215358162169, 26.6418780099316, 27.8245036657676, 28.9675945788482};
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ne3- energyBetterer = 2 x rx A % 10”3 » Table[i, {i, .0001, 10, .00001}];
Dimensions [energyBetterer]
eigenEnergyBetterer = EigenEnergy[potential[[2, 3, 1, All]], energyBetterer, 1];
Dimensions[eigenEnergyBetterer]
energyBetterer2 = 2 x wrxh % 10”3 » Table[i, {i, 10, 15, .00001}];
Dimensions [energyBetterer2]
eigenEnergyBetterer2 = EigenEnergy[potential[[2, 3, 1, All1]], energyBetterer2, 1];
Dimensions[eigenEnergyBetterer2]
energyBetterer3 = 2 x v+ h % 10”3 » Table[i, {i, 15, 20, .00001}];
Dimensions [energyBetterer3]
eigenEnergyBetterer3 = EigenEnergy[potential[[2, 3, 1, A1l1]], energyBetterer3, 1];
Dimensions [eigenEnergyBetterer3]
energyBettererd4 = 2 x wrxh % 10”3 » Table[i, {i, 20, 25, .00001}];
Dimensions [energyBetterer4]
eigenEnergyBetterer4 = EigenEnergy[potential[[2, 3, 1, A1l1]], energyBetterer4, 1];
Dimensions[eigenEnergyBetterer4]
energyBetterer5 = 2 xsrxh 10”3 » Table[i, {i, 25, 30, .00001}];
Dimensions [energyBetterer5]
eigenEnergyBetterer5 = EigenEnergy[potential[[2, 3, 1, A1l1]], energyBetterer5, 1];
Dimensions [eigenEnergyBetterer5]

outeal= {999 991}
ouizel= {74}
outegl= {500001}
outzo)= {69}
ou3zl= {500001}
outa4= {82}
outzsl= {500001}
outzsl= {88}
out40)= {500001}

outaz= {103}

in46l= waveEnergy = Join[energyBetterer, energyBetterer2,
energyBetterer3, energyBetterer4, energyBetterer5];
Dimensions [waveEnergy]

oua7= {2999995}

in43= a3030 = DeleteDuplicates [Join [eigenEnergyBetterer/ (2 *Txhxl .0*"3) ’
eigenEnergyBetterer2 / (2+m+h+1.0%"3), eigenEnergyBetterer3 /
(2 *7Txh* 1.0*"3) ’ eigenEnergyBetterer4/ (2 *7TxH* 1.0*"3) ’
eigenEnergyBetterer5 / (2 * 7Tk A * 1.0*"3) ] , Abs[#1 - #2] < .1 &] ;

in441:= a3030

oua- {1.16551, 2.20647, 3.31029, 4.45918, 5.6462, 6.86311, 8.10521, 9.367, 10.6448,
11.9344, 13.2325, 14.5355, 15.8403, 17.1435, 18.4419, 19.7318, 21.0098,
22.2716, 23.5127, 24.7274, 25.9088, 27.0471, 28.1263, 29.1165, 29.9996}
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in4s- Differences[a3030]

outs- {1.04096, 1.10382, 1.14889, 1.18702, 1.21691, 1.2421, 1.26179, 1.27782,
1.28956, 1.29813, 1.30299, 1.30483, 1.30317, 1.29838, 1.28995, 1.27799,
1.26179, 1.24108, 1.2147, 1.18141, 1.13826, 1.07927, 0.99015, 0.88308}

compair3030 = ListPlot[{Transpose@ {cams3030, cams3030}, Transpose@ {a3030, a3030}},
ImageSize » Large, PlotMarkers -» {{m, 23}, {v, 23}},
FrameLabel -» {Style["Energy, kHz", 18], Style["Energy, kHz", 18]}, PlotLabel »
Style["Compairison of eigen-values with different numerical methods", 18],
PlotLegends -» Placed[{"Finite Difference Method", "Impedance Method"},
{.75, .25}], FrameTicksStyle » Medium, ImageSize - Large,
PlotStyle » Directive[Thickness[.006]], Frame —» True]

C‘or‘npai‘rison Qf eigen—‘valu‘es‘ with different numerigal me‘th‘od‘s

30 -
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I
L W 1
25+ ) 4
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r vi
E 201 i .
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> 7]
9) 15? o 7 ]
8 L -
w | |
10 = 4
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Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/compair3030.jpeg"”, compair3030];
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energyBetterer3033 =2 xtxh» 10”3 % Table[i, {i, .0001, 10, .00001}];
Dimensions [energyBetterer3033]
eigenEnergyBetterer3033 =

EigenEnergy[potential[[2, 3, 4, All]], energyBetterer3033, 1];
Dimensions[eigenEnergyBetterer3033]
energyBetterer23033 =2 xrxh x 10" 3 » Table[i, {i, 10, 15, .00001}];
Dimensions [energyBetterer23033]
eigenEnergyBetterer23033 =

EigenEnergy[potential[[2, 3, 4, All]], energyBetterer23033, 1];
Dimensions [eigenEnergyBetterer23033]
energyBetterer33033 =2 xwxh % 10" 3 » Table[i, {i, 14, 20, .00001}];
Dimensions[energyBetterer33033]
eigenEnergyBetterer33033 =

EigenEnergy[potential[[2, 3, 4, All]], energyBetterer33033, 1];
Dimensions [eigenEnergyBetterer33033]
energyBetterer43033 =2 xw+xh % 10”3 » Table[i, {i, 19, 25, .00001}];
Dimensions[energyBetterer43033]
eigenEnergyBetterer43033 =

EigenEnergy[potential[[2, 3, 4, All]], energyBetterer43033, 1];
Dimensions [eigenEnergyBetterer43033]
energyBetterer53033 = 2 xwr+x A 10”3 » Table[i, {i, 24, 30, .00001}];
Dimensions[energyBetterer53033]
eigenEnergyBetterer53033 =

EigenEnergy[potential[[2, 3, 4, All]], energyBetterer53033, 1];
Dimensions [eigenEnergyBetterer53033]

{999 991}

{97036}

{500001}

{44}

{600001}

{69}

{600001}

{106}

{600001}

{198}

a3033 = DeleteDuplicates [Join [eigenEnergyBetterer3033 / (2 *mxh*l .0*A3) ’
eigenEnergyBetterer23033 / (2 * w» A x 1.0%"3), eigenEnergyBetterer33033 /

(2#7+h%1.0%"3), eigenEnergyBetterer43033 / (2 xwr*h» 1.0+"3),

eigenEnergyBetterer53033/ (2 *Tx A * 1.0*"3)] , Abs[#1 - #2] < .1 &]
{0.0001, 0.1001, 0.2001, 0.3001, 0.4001, 0.5001, 0.6001, 0.7001,

0.8001, 0.9001, 3.40171, 4.57519, 5.7874, 7.0301, 8.29861, 9.58744,

10.8929, 12.2109, 13.538, 14.8707, 16.206, 17.5405, 18.871, 20.194,
21.506, 22.8029, 24.0802, 25.3325, 26.5526, 27.7302, 28.8457, 29.8734}
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Differences[a3033]

(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 2.50161, 1.17348, 1.21221, 1.2427,
1.26851, 1.28883, 1.3055, 1.31791, 1.32715, 1.33273, 1.33531, 1.33445, 1.33049,
1.32299, 1.312, 1.29691, 1.27735, 1.25226, 1.22015, 1.17755, 1.11548, 1.02776)}

compair3033 = ListPlot[{Transpose@ {cams3033, cams3033}, Transpose@{a3033, a3033}},
ImageSize » Large, PlotRange -» All, PlotMarkers -» {{m, 20}, {Vv, 20}},
PlotLabel -» "Compairison of eigen-values
from different numerical methods, energy vs energy"]

Compairison of eigen-values from different numerical methods, energy vs energy
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Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/compair3033.jpeg", compair3033];
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energyBetter =
2%7m*x*h*»10"3 * Join[Table[i, {i, .01, .6, .01}], Table[i, {i, .6, 1.0, .001}],
Table[i, {i, 1.0, 1.5, .01}], Table[i, {i, 1.5, 2.0, .0001}],
Table[i, {i, 2.0, 2.5, .01}], Table[i, {i, 2.5, 3.0, .0001}],
Table[i, {i, 3.0, 3.5, .01}], Table[i, {i, 3.5, 4.2, .0001}],
Table[i, {i, 4.2, 4.7, .01}], Table[i, {i, 4.7, 5.4, .0001}],
Table[i, {i, 5.4, 5.8, .01}], Table[i, {i, 5.8, 6.4, .0001}], Table[i,
{i, 6.4, 6.9, .01}], Table[i, {i, 6.9, 7.9, .0001}], Table[i, {i, 7.9, 9.2, .01}],

Table[i, {i, 9.2, 10.0, .0001}], Table[i, {i, 10.0, 10.5, .01}],
Table[i, {i, 10.5, 11.3, .0001}], Table[i, {i, 11.3, 11.8, .01}],
Table[i, {i, 11.8, 12.4, .0001}], Table[i, {i, 12.4, 12.9, .01}],
Table[i, {i, 12.9, 13.5, .0001}], Table[i, {i, 13.5, 14.2, .01}],
Table[i, {i, 14.2, 14.7, .0001}], Table[i, {i, 14.7, 15.5, .01}],
Table[i, {i, 15.5, 16.0, .0001}], Table[i, {i, 16.0, 16.8, .01}],
Table[i, {i, 16.8, 17.2, .0001}], Table[i, {i, 17.2, 17.9, .01}],
Table[i, {i, 17.9, 18.4, .0001}], Table[i, {i, 18.4, 19.2, .001}],
Table[i, {i, 19.2, 19.8, .00001}], Table[i, {i, 19.8, 20.5, .001}],
Table[i, {i, 20.5, 20.9, .00001}], Table[i, {i, 20.9, 21.7, .001}],
Table[i, {i, 21.7, 22.1, .00001}], Table[i, {i, 22.1, 22.9, .001}],
Table[i, {i, 22.9, 23.3, .00001}], Table[i, {i, 23.3, 24.0, .001}],
Table[i, {i, 24.0, 24.5, .00001}], Table[i, {i, 24.5, 25.3, .001}],
Table[i, {i, 25.3, 25.7, .00001}], Table[i, {i, 25.7, 26.5, .001}],
Table[i, {i, 26.5, 26.9, .00001}], Table[i, {i, 26.9, 27.5, .001}],
Table[i, {i, 27.5, 27.9, .00001}], Table[i, {i, 27.9, 28.5, .001}],
Table[i, {i, 28.5, 29.1, .00001}], Table[i, {i, 29.1, 29.4, .01}],
Table[i, {i, 29.4, 29.9, .0001}], Table[i, {i, 29.9, 40, .1}]];

Dimensions [energyBetter]

reflectCoefBetter3030 =

ReflectionProbability[potential[[2, 3, 1, Al11]], energyBetter, 1];

Dimensions[reflectCoefBetter3030]

eigenEnergyBetter3030 = EigenEnergy[potential[[2, 3, 1, Al1l]], energyBetter, 1];

Dimensions [eigenEnergyBetter3030]

(513711}
(513711}

{84}
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ListLinePlot [Transpose@ {energyBetter/ (2 *mxh*l. 0*"3) , 1- reflectCoefBetter3030} '
PlotRange - All (%{{20,38},{-0.01,1.005}}#), GridLines - {{}, {}},
FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel - Style[ (*"Varied Potential Height"=*) "Gaussian Double Barrier", 18],
PlotLegends - {Table[Style["kHz = uo2" u02[[j]]/ (2*7*ax10°3), 18], {j, 1, jL}]},
FrameTicksStyle -» Medium, ImageSize » Large, Frame - True]

Gaussian Double Barrier

0.8 i

— 30. |

04 B

Transmission Probability

0.0+ i

0 10 20 30 40
Energy, kHz

positBetter3030 = Flatten[Position[1l - reflectCoefBetter3030, _? (&> .01 &)]];
energyResonanceBetter3030 =
Table [energyBetter[ [positBetter3030[[i]]]] / (2 *Txhxl .0*A3) ’
{i, Length[positBetter3030]}];
Dimensions [energyResonanceBetter3030]

{6394}

DeleteDuplicates[energyResonanceBetter3030, Abs[#1 - #2] < .1 &]

(27.16, 28.221, 29.0877, 29.19, 29.29, 29.39, 29.4901, 29.5901, 29.6902, 29.7902,
29.8902, 30., 30.2, 30.4, 30.5, 30.7, 30.9, 31., 31.2, 31.4, 31.5, 31.7, 31.9,
32.,32.1, 32.3, 32.4, 32.5, 32.6, 32.8, 32.9, 33., 33.1, 33.3, 33.4, 33.5,

33.6, 33.8, 33.9, 34., 34.1, 34.3, 34.4, 34.5, 34.6, 34.7, 34.9, 35., 35.1,
35.2, 35.4, 35.5, 35.6, 35.7, 35.9, 36., 36.1, 36.2, 36.4, 36.5, 36.6, 36.7,
36.9, 37., 37.1, 37.2, 37.4, 37.5, 37.6, 37.7, 37.9, 38., 38.1, 38.2, 38.4,
38.6, 38.7, 38.8, 38.9, 39., 39.1, 39.2, 39.4, 39.6, 39.7, 39.8, 39.9, 40.)
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DeleteDuplicates [eigenEnergyBetter3030/ (2 *txh*xl .0*A3) , Abs [#1 - #2] < .1 &]

{9.367, 10.6449, 11.9344, 13.2326, 14.5355, 15.8404, 17.1435, 18.442, 19.7318,
21.01, 25.909, 34.3, 35.4, 35.5, 35.6, 35.7, 35.9, 36., 36.1, 36.2, 36.4, 36.5,
36.6, 36.7, 36.9, 37., 37.1, 37.2, 37.4, 37.5, 37.6, 37.7, 37.9, 38., 38.1, 38.2,
38.4, 38.6, 38.7, 38.8, 38.9, 39., 39.1, 39.2, 39.4, 39.5, 39.7, 39.8, 39.9, 40.}

meFirst = Table[If[Intersection[potential[[n, k, j, All]], energy] == {},
energy, Delete[energy, Flatten|
Position[energy, Intersection[potential[[n, k, j, A1l1l]], energy] [[1]11111],
{n, 1, nL}, {k, 1, KL}, {j, 1, jL}];
Dimensions [meFirst]
energyGood =
Table[If[Intersection[potential[[n, k, j, All]], meFirst[[n, k, j11] == {},
meFirst[[n, k, j]], Delete[meFirst[[n, k, j]1,
Flatten[Position[meFirst[[n, k, j]], Intersection[potential[[n, k, j, Al1l]],
meFirst[[n, k, 3111[[111111], {n, 1, nL}, {k, 1, KL}, {j, 1, JL}1;
Dimensions [energyGood]

{4, 5, 4}

{4, 5, 4}

Table[Length[energyGood|[ [n, k, j1]], {n, 1, nL}, {k, 1, kL}, {j, 1, jL}] // MatrixForm

Out[259]//MatrixForm=

850001 850001 850000 850001 850001
850001 850001 849999 850001 850001
850001 850001 849999 850001 850001
850001 850001 849999 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001
850001 850001 850001 850001 850001

t = AbsoluteTime[];
reflectCoef = Monitor|[
Table[ReflectionProbability[potential[[n, k, j, A11l]], energyGood[[n, k, j]1, 1],
{n, 1, nL}, {k, 1, kL}, {j, 1, jL}], Row[{ProgressIndicator[j, {1, jL}], 3}, " "11:
Dimensions[reflectCoef]
AbsoluteTime[] -t

{4, 5, 4}

22656.839627
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t = AbsoluteTime[];
eigenEnergy =
Monitor[Table[EigenEnergy[potential[[n, k, j, Al11]], energyGood|[[n, k, j]]1, 1],
{n, 1, nL}, {k, 1, kL}, {j, 1, jL}], Row[{ProgressIndicator[k, {1, kL}], k}, " "11;
Dimensions[eigenEnergy]
AbsoluteTime[] -t

{4, 5,4}

41759.347563

DeleteDuplicates[eigenEnergy[ [1, 3, 1]] / (2 *Txh* 1.0*A3) , Abs[#1 -#2] < .1 &]

(2.221, 4.7191, 5.6741, 6.6809, 7.7348, 8.8317, 9.9678, 11.1392, 12.3427, 13.5747,
14.8318, 16.1108, 17.408, 18.7198, 20.0423, 21.371, 22.7009, 24.0261, 25.3387,
26.6274, 27.8735, 29.0493, 30.1596, 31.3055, 32.5645, 33.927, 35.3674, 36.858,
38.3423, 38.4423, 38.5424, 38.6424, 39.6653, 39.7653, 39.8654, 39.9654}

Length[eigenEnergy[[2, 2, 3]]]
1304

reflectAmp = Monitor|[
Table[ReflectionAmplitude[potential[[n, k, j, All]], energyGood[[n, k, j]]1, 11,
{n, 1, nL}, {k, 1, kL}, {j, 1, jL}], Row[{ProgressIndicator[k, {1, kL}], k}, " "11;
Dimensions[reflectAmp]

{3, 3, 4, 4000}
Plot Reflection and Transmission behavior:

(+yticks=Table[{ix10,Round[u02[[i%10]]/(2+n*5%10"3)]},{i,1,3L/10}];
xticks=Table[{i*1000,Round[energy[[i*1000]]/(2+7+h+10"3)]},
{i,1,Length[energy] /1000}] 7*)

(*jet[u_?NumericQ]:=
Blend[{{0,RGBColor[0,0,9/16]},{1/9,Blue}, {23/63,Cyan}, {13/21,Yellow},
{47/63,0range}, {55/63,Red}, {1,RGBColor[1/2,0,0]}},u]/;0suslx)

(#ListDensityPlot[l-reflectCoef[[1,1,A11,Al1l1l]],PlotLegends—»Automatic,
Frame-True,ColorFunction-jet,FrameTicks—{{yticks,None}, {xticks,None}},
FrameLabel- {{"Uo2,kHz", "Transmission"}, {"Incoming Energy,kHz",6 None}}]*)

(#*ListLinePlot [

Table [Transpose@{energy/(2*7r*h*10"3) ,reflectCoef[[1l,k,2,A11]] } , {k, l,kL}] ,
PlotRange-{{27,36},{-.01,1.01}},GridLines~>{{},{}},

AxesLabel-{"Energy, kHz","Reflection Probability"},

PlotLabel-"Varied separation”,

PlotLegends—{Table["um = xsep"xsep[[k]]/10%-6,{k,1,kL}]}]+)
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varsepTrans2kl =ListLinePlot[Table[
Transpose@ {energyGood[[2, k, 1]1] / (2*x*h*10"3), 1 - reflectCoef[[2, k, 1]]},
{k, 1, kL}], PlotRange » {{16.0, 36.0}, {0, 1.009}}, GridLines -» {{}, {}},
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission Probability", 18]},
PlotLabel -» Style["Varied Separation"”, 18],
PlotLegends - {Table[Style["um = xsep" xsep[[k]] /10"-6, 18], {k, 1, kL}]},
FrameTicksStyle-oMedium,ImageSize-eLarge,Frame—»True]

Varied Separation
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'% — 4.8
D 04) T —2o.pu
c | )
@ \ ;| — 5.8,
© |

— ool J |

0.0t ‘ - ‘ ‘

20 25 30 35
Energy, kHz

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varsepTrans2kl.jpeg", varsepTrans2kl];
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varheightTrans23j =ListLinePlot[Table[
Transpose@ {energyGood[[2, 3, j]1]1/ (2*7*h*1.0%"3), 1-reflectCoef[[2, 3, jI1},
{j, 1, jL}], PlotRange - A1l (*{{20,38},{-0.01,1.005}}*),
GridLines -» {{}, {}}, FrameLabel -» {Style[ (*"Energy/v0"x*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel -» Style["Varied Potential Height" (*"Gaussian Double Barrier"x), 18],

PlotLegends - {Table[Style["kHz = uo2" u02[[j]]/ (2*7m+h10"3), 18], {j, 1, jL}]},
FrameTicksStyle-aMedium,ImageSize-eLarge,Frame—»True]

Varied Rotgntial Height
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0.0F il

N T )
Energy, kHz

Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varheightTrans23j.jpeg", varheightTrans23j];
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varVarTransn31l =ListLinePlot[Table[
Transpose@ {energyGood[[n, 3, 1]] / (2*7x*h*10"3), 1 - reflectCoef[[n, 3, 1]1]},
{n, 1, nL}], PlotRange -» {{16.0, 36.0}, {0, 1.009}}, GridLines -» {{}, {}},
FrameLabel -» {Style["Energy, kHz", 18], Style["Transmission Probability", 18]},
PlotLabel - Style["Varied Variance", 18],
PlotLegends - {Table[Style["um = ¢" sigx[[n]] /10"-6, 18], {n, 1, nL}]},
FrameTicksStyle-oMedium,ImageSize-eLarge,Frame—»True]

Varied Variance
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Export [
" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varVarTransn3l.jpeg", varVarTransn3l];
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seplV30 =
Table [Round [Select [DeleteDuplicates[eigenEnergy[[1, k, 1]]1/ (2% * A »1.0%"3),
Abs[#l-#2] < .1&|, #<30&], .01], {k, 2, kKL}];

sep2V30 = Table [Round[Select [DeleteDuplicates [eigenEnergy[ [2, k, 1]] /
(2#7*h%1.0%"3), Abs[#1-#2] < .1&|, #<30&], .01], {k, 2, kL}];

sep3V30 = Table [Round[Select [DeleteDuplicates [eigenEnergy[ [3, k, 11] /
(2#7*h%1.0%"3), Abs[#l-#2] < .1&], #<30&], .01], {k, 2, kL}];

sep4V30 = Table [Round[Select [DeleteDuplicates[eigenEnergy[[4, k, 1]1] /
(2%7*h%1.0%"3), Abs[#1-#2] < .1&|, #<30&], .01], {k, 2, kL}];

Dimensions[seplV30]

Dimensions[sep2V30]

Dimensions[sep3V30]
Dimensions [sep4V30]

{4}
{4}
{4}
{4}

Table[Length[seplV30[[i]]], {i, 1, 4}]
Table[Length[sep2V30[[i]]], {i, 1, 4}]
Table[Length[sep3V30[[i]]], {i, 1, 4}]
Table[Length[sep4V30[[i]]], {i, 1, 4}]

(12, 22, 25, 26}
(39, 24, 26, 30}

{231, 20, 21, 27}
{300, 46, 32, 23}

ListLinePlot [
Transpose@{energyGood[[1, 2, 1]]/ (2*7*h*10"3), 1 - reflectCoef[[1, 2, 1]]}]

v—
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|

0.2

10 20 30 40
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seplV3l =
Table [Round [Select [DeleteDuplicates[eigenEnergy[[1, k, 2]]1/ (2% 7w+ A% 1.0%"3),
Abs[#l-#2] < .1&|, #<31&], .01], {k, 2, kKL}];
Dimensions[seplV31]
seplv32 =

Table [Round [Select [DeleteDuplicates|[eigenEnergy[[1, k, 3]]1/ (2% 7w+ A% 1.04"3),
Abs[#l-#2] < .1&], #<32&], .01], {k, 2, KL}];
Dimensions[seplV32]
seplv33 =
Table [Round [Select [DeleteDuplicates [eigenEnergy[ [1, k, 4]] / (2 *xkh*xl .0*"3) ’
Abs[#1-#2] < .1&], #<33&], .01], {k, 2, kL}];
Dimensions [
seplv33]

{4}
{4}
{4}

datal2vh =
{{"Resonant energies, kHz, whose variance is 1.0um and spacing is 2.5um",
SpanFromLeft}, Join[{u02[[1]]/ (2*7*A1.0+"3)}, seplVv30[[1]]],
Join[{u02[[2]]/ (2*7*h*1.0+"3)}, seplv31[[1]]],
Join[{u02[[3]]/ (2*7+h*1.0+"3)}, sep1v32[[1]]],
Join[{u02[[4]]/ (2*7*h*1.0+"3)}, sep1v33[[1]]1]};

sep2siglVhTable = Grid[datal2Vh (%x,Alignment- {Left},Spacings->{12,-1}%),
Frame -» All, Background -» {{LightGray, None}, {None, None}}]

Resonant energies, kHz, whose
variance is 1.0um and spacing is 2.5um
30.]3.87]6.39] 8.95 [11.51]14.06]16.58]19.04[21.44]23.74[25.92] 27.9 [29.62
31. [3.92|6.46| 9.05 [11.63 [ 14.2 [16.74]|19.23[21.64[23.97[26.17[28.19]30.77
32.[6.53[9.1411.74[14.33[16.89] 19.4 [22.55][24.19[26.42[28.46[30.21[31.69
33.[4.02[ 6.6 [11.48[19.57[22.03[24.41[26.65[28.71[30.51[32.21

Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/sep2siglVhTable.jpeg", sep2siglVhTable];
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varheightTrans12j =ListLinePlot[Table[
Transpose@{energyGood[[1, 2, j]]/(2*7m*hA%1.0%"3), 1 -reflectCoef[[1, 2, j]]},
{j, 1, jL}], PlotRange - A1l (*{{20,38},{-0.01,1.005}}*),
GridLines -» {{}, {}}, FrameLabel -» {Style[ (*"Energy/v0"x*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel -» Style["Varied Potential Height" (*"Gaussian Double Barrier"x), 18],

PlotLegends - {Table[Style["kHz = uo2" u02[[j]]/ (2*7m+h10"3), 18], {j, 1, jL}]},
FrameTicksStyle-aMedium,ImageSize-eLarge,Frame—»True]

Varied Ppteptial Height
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Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varheightTransl2j.jpeg", varheightTrans12j];

datal3vhfirst =
{{"Resonant energies, kHz, whose variance is 1.0um and spacing is 2.5um",
SpanFromLeft}, Join[{u02[[1]]/ (2*7*h*1.0+"3)}, sep1v30[[2]]],
Join[{u02[[2]]/ (2*7*h*1.0+"3)}, sep1v31[[2]]]};
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sep3siglVhTablefirst = Grid[datal3Vhfirst (»,Alignment-{Left},
Spacings—{2,2}*), Frame » All, Background -» {{LightGray, None}, {None, None}}]

150

Resonant energies, kHz, whose variance is 1.0um and spaci

30. [ 2.~ | 4.~ |5.~ |6.~ 7.~ 8.~ |9.~ (11~ |12~ | 13~ | 14~ |16~ |17~ | 18- | 20-
2 7- 6- 6 7 8- 9- . . . . . . .
2 2 7 8 3 3 7 1 3- 5- 8- 1- 4- 7 0-
4 7 3 1 1 2 4
31. | 3.~ | 4.~ |5.7 6.~ |7 8.- | 10 11- |12~ | 13- | 14~ | 16 17- | 18- | 20-
8- 7- 7 7 8- . . . . . . . .
4 4 1 7 7 0 1- 4 6- 9 1- 5 8- 1-
1 9 4 9 2 5
datal3Vhsecond =
{{"Resonant energies, kHz, whose variance is 1.0um and spacing is 2.5um",
SpanFromLeft}, Join[{u02[[3]]1/ (2*7*h1.0+"3)}, sep1v32[[2]]],
Join[{u02[[4]]/ (2*n*h*1.0+"3)}, seplVv33[[2]]]};
sep3siglVhTablesecond = Grid[datal3Vhsecond (*,Alignment-{Left},

Spacings—»{2,2}*), Frame » All, Background -» {{LightGray, None}, {None, None}}]
Resonant energies, kHz, whose variance is 1.0um and spacing is 2.5um
32.|0.95(3.01|5.72 | 11.~ |12.~ | 14.~ | 17.~ | 23.~ |26.~ |28.~ 29.~ |30.~ |31.-

24 46 97 58 39 95 23 44 57 61
33.10.46(2.25|13.- | 20.~ | 21.7 | 23.~ | 24.~ [25.~ | 27.1|28.~ |29.~ |30.~ |31.-
24 34 06 42 77 39 62 79 96

ine70)-= energyEigsH31lsig2sep3 =2 xsr*h % 10”3 » Table[i, {i, .5, 35, .00001}];
Dimensions [energyEigsH31lsig2sep3]

meFirstEigsH31 =

If[Intersection[potential[[2, 3, 2, All]], energyEigsH31sig2sep3] == {},

energyEigsH31lsig2sep3,

Delete[energyEigsH31lsig2sep3, Flatten[Position[energyEigsH31lsig2sep3,
Intersection[potential[[2, 3, 2, All]], energyEigsH31lsig2sep3][[1]1]1111;

Dimensions [meFirstEigsH31]

energyGoodEigsH31 = If [Intersection[potential[[2, 3, 2, All]], meFirstEigsH31] == {},
meFirstEigsH31, Delete[meFirstEigsH31, Flatten[Position[meFirstEigsH31,

Intersection[potential[[2, 3, 2, All]], meFirstEigsH31][[1]1]]1111;

Dimensions [energyGoodEigsH31]

oue71l= {3 450001}
oue7al= {3 450001}

oue7sl= {3 450001}
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t = AbsoluteTime[];
eigenEnergyEigsig2sep3H31l =
EigenEnergy[potential[[2, 3, 2, Al1]], energyGoodEigsH31, 1];
Dimensions[eigenEnergyEigsig2sep3H31]
AbsoluteTime[] - t

(4658}

2856.751361

energyEigs =
2%x7m%*h*10"3 x Join[Table[i, {i, .5, 10, .00001}], Table[i, {i, 10, 35, .0001}]];
Dimensions [energyEigs]
meFirstEigs =
Table[If[Intersection[potential[[n, k, j, A1l1l]], energyEigs] = {}, energyEigs,
Delete[energyEigs, Flatten[Position[energyEigs, Intersection[potential[[n, k,
j, All]l], energyEigs][[1]]111]11, {mn, 1, nL}, {k, 1, kL}, {j, 1, jL}];
Dimensions [meFirstEigs]
energyGoodEigs =
Table[If[Intersection[potential[[n, k, j, All]], meFirstEigs[[n, k, j1]] == {},
meFirstEigs[[n, k, j]1,
Delete[meFirstEigs[[n, k, j]], Flatten[Position[meFirstEigs[[n, k, j]],
Intersection[potential[[n, k, j, Al1l]], meFirstEigs[[n, k, j1]11[[11]11111],
{n, 1, nL}, {k, 1, kL}, {j, 1, jL}];
Dimensions[energyGoodEigs]

{1200002}
{4, 5, 4}

{4, 5, 4}

t = AbsoluteTime[];
eigenEnergyEigsig2sep3H = Table[EigenEnergy [
potential[[2, 3, j, All]], energyGoodEigs[[2, 3, j11, 11, {j, 2, jL, 2}];
Dimensions [eigenEnergyEigsig2sep3H]
AbsoluteTime[] - t

{2}

1807.404821

Round [Select [DeleteDuplicates[eigenEnergyEigsig2sep3H[[1]] / (2+ 7w+ A% 1.0+"3),
Abs[#l-#2] < .1&], #<32&], .01]

(1.18, 2.23, 3.34, 4.5, 5.69, 6.92, 8.17, 9.44, 12.03, 13.34, 15.97, 17.28,
18.59, 19.89, 21.18, 22.46, 23.71, 26.43, 28.39, 29.4, 30.27, 31.03, 31.84)
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in2o0]= t = AbsoluteTime[];
eigenEnergyEigs30sig2sep5 =
EigenEnergy[potential[[2, 5, 1, Al1l1]], energyGoodEigs[[2, 5, 1]], 1];
Dimensions[eigenEnergyEigs30sig2sep5]
eigenEnergyEigs30sigl = Table[EigenEnergy [
potential[[1l, k, 1, All]], energyGoodEigs[[1, k, 1]1], 1], {k, 3, kL, 2}];
Dimensions [eigenEnergyEigs30sigl]
AbsoluteTime[] - t

ouz92l= {1563}
out2941= {2}

outzesl= 2213.023531

varPot30sigl =
ListLinePlot[{Transpose@{x/ 10"-6, potential[[1l, 2, 1, All]] / (2 *Txh % 10"3) } ’
Transpose@{x /10" -6, potential[[1l, 3, 1, All]] / (2+n+ha%10"3)},
(»Transpose@{x/10"-6,potential[[1,4,1,A11]]/(2%7*%%10"3)}, )
Transpose@{x/lOA—G, potential[[1l, 5, 1, All]] / (2 *Txh* 10A3) }},
FrameLabel » {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel - Style["Double Gaussian Barrier Potential; o0=1.0um, uo2=30kHz", 18],

PlotLegends -» { "um" xsep[[2]] /10"-6, "um" xsep[[3]]/10"-6,
(*"=Xsep"xsep[[4] ]/loA—G, %) "um" xsep[[5]] / 10" - 6} , FrameTicksStyle » Medium,
ImageSize -» Large, PlotStyle » {Thickness[.006]}, Frame - True]
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varPot30sigl.jpeg", varPot30sigl];
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varsEigen30sigl[[1]][[13]]
31.26

varTrans30siglsep2 =ListLinePlot[

{Transposee{energyGood[[1, 2, 1]] / (2* 7 *h*1.0%"3), 1-reflectCoef[[1, 2, 1]]},
(+Transpose@{energyGood[[1,3,1]]/(2+m+h*1.0%"3),1-reflectCoef[[1,3,1]]1},
Transpose@{energyGood[[1,5,1]]/(2*ﬂ*ﬁ*1.0**3),1—ref1ectCoef[[1,5,1]]}*)},

PlotRange - All (#{{20,38},{-0.01,1.005}}%), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"x*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},

PlotLabel -» Style["Transmission spectrum; o=1.0um, Xsep=2.5um, uo2=30kHz", 18],

FrameTicksStyle » Medium, ImageSize -» Large, Frame - True,

PlotStyle » Directive[Blue, Thickness[.006]], Epilog -

{Directive[{Thick, Gray, Dashed}], Table[Line[{{varsEigen30sigl[[1]][[i]], O},
{varsEigen30sigl[[1]]1[[i]], 1}}1, {i, 1, 13}]}]

vV

7 Transmission spectrum; q=1 .Opm, )‘(sep‘=2.‘5ym, l7102=‘30‘kH‘Z
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varTrans30siglsep2.jpeg", varTrans30siglsep2];
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varTrans30siglsep3 = ListLinePlot|
{Transposee{energyGood[[1, 3, 1]] / (2* 7+ h*1.0%"3), 1-reflectCoef[[1, 3, 1]]}
(*,Transpose@{energyGood[[1,5,1]]/(2#7*h*1.0+"3),1-reflectCoef[[1,5,1]1]}*)},
PlotRange -» Al11(»{{20,38},{-0.01,1.005}}*), GridLines - {{}, {}},
FrameLabel -» {Style[ (*"Energy/v0"x*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel -» Style["Transmission spectrum; o=1.0um, Xsep=4.8um, uo2=30kHz", 18],
(+PlotLegends—{ "=Xsep"x5ep[[3]]1/10%-6 (%, "=Xsep"xsep[[5]]1/10%-6%)},*)
FrameTicksStyle » Medium, ImageSize -» Large, Frame - True,
PlotStyle » Directive[Orange, Thickness[.006]],
Epilog -» {Directive[{Thick, Gray, Dashed}],
Table[Line[{{varsEigen30sigl[[2]][[i]], O}, {varsEigen30sigl[[2]][[i]], 1}}1,
{i, 1,Length[varsEigen305igl[[2]]]}]}]

Transmission spectrum; q=1 .Opm, xsep‘=4.‘8ym, L‘102=‘30‘kH‘Z
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ListLinePlot[
Transpose@{energyGood[[1, 5, 1]] / (2*n*h*1.0%"3), 1-reflectCoef[[1, 5, 1]1},

PlotRange - All (#{{20,38},{-0.01,1.005}}x), GridLines -» {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

varTrans30siglsep5

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

30kHz", 18],

=1.0um, Xsep=5.8um, up2

FrameTicksStyle » Medium, ImageSize -» Large, Frame - True,

PlotStyle » Directive[Green, Thickness[.006]],
Epilog -» {Directive[{Thick, Gray, Dashed}],

Table[Line[{{varsEigen30sigl[[3]][[i]], O}, {varsEigen30sigl[[3]]1[[i]], 1}}1,

{i, 1, Length[varsEigen30sigl[[3]]]}] }]

‘30kH;

Transmission spectrum; 0=1.0um, Xsep=5.8um, Uop2

40

Alllgeqoud uoissiwsuel |
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Energy, kHz
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Export [

" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
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4

nb's/possible figs/varTrans30siglsep5.jpeg", varTrans30siglsep5]
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Out[361]=

Out[362]=

Out[363]=
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Out[365]=

Out[366]=

In[306]:=
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varsEigen30sigl =
{Round[Select [DeleteDuplicates|[eigenEnergy[[1, 2, 1]]/ (2% w*x A% 1.0+"3),
Abs[#l-#2] < .1&], #<32&], .01],
Round [Select [DeleteDuplicates [eigenEnergyEigs3OSigl [[1]1] / (2 *mxh*l .0*"3) ’
Abs[#l-#2] < .1&], #<32&], .01],
Round [Select [DeleteDuplicates [eigenEnergyEigs3OSig1 [[2]1] / (2 *Txh*xl .0*"3) ’
Abs[#l-#2] < .1&], #<32&], .01]}
Dimensions[varsEigen30sigl]
Length[varsEigen30sigl[[1]]]
Length[varsEigen30sigl[[2]]]
Length[varsEigen30sigl[[3]]]
eigenDiff30siglsepk = {Join[Differences[varsEigen30sigl[[1]]], {0}],
Join[Differences[varsEigen30sigl[[2]]], {0}],
Join[Differences[varsEigen30sigl[[3]]], {0}1}
Table[Dimensions[eigenDiff30siglsepk[[i]]], {i, 1, 3}]

{{3.87, 6.39, 8.95, 11.51, 14.06, 16.58, 19.04, 21.44, 23.74,
25.92, 27.9, 29.62, 31.26}, {0.94, 1.54, 2.22, 2.99, 3.82, 4.72, 5.67,
6.68, 7.73, 8.83, 9.97, 11.14, 12.34, 13.57, 14.83, 16.11, 17.41, 18.72,
20.04, 21.37, 22.7, 24.03, 25.34, 26.63, 27.87, 29.05, 30.16, 31.31},
(0.83, 1.24, 1.71, 2.24, 2.82, 3.44, 4.11, 4.82, 5.57, 6.35, 7.17, 8.02, 8.91,
9.82, 10.76, 11.72, 12.71, 13.72, 14.75, 15.8, 16.87, 17.95, 19.05, 20.15,
21.27, 22.39, 23.51, 24.63, 25.74, 26.84, 27.92, 28.94, 29.93, 30.92, 31.98}}

{3}
13
28
35

{{2.52, 2.56, 2.56, 2.55, 2.52, 2.46, 2.4, 2.3, 2.18, 1.98, 1.72, 1.64, 0},
(0.6, 0.68, 0.77, 0.83, 0.9, 0.95, 1.01, 1.05, 1.1, 1.14, 1.17, 1.2, 1.23, 1.26,
1.28,1.3,1.31, 1.32, 1.33, 1.33, 1.33, 1.31, 1.29, 1.24, 1.18, 1.11, 1.15, 0},
{0.41, 0.47, 0.53, 0.58, 0.62, 0.67, 0.71, 0.75, 0.78, 0.82, 0.85,
0.89, 0.91, 0.94, 0.96, 0.99, 1.01, 1.03, 1.05, 1.07, 1.08, 1.1, 1.1,
1.12,1.12,1.12, 1.12, 1.11, 1.1, 1.08, 1.02, 0.99, 0.99, 1.06, 0}}

{{13}, {28}, {35}}

varsEigen30siglsep2Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o0=1.0um, Xgep=2.5um",
SpanFromLeft}, Join[{"30kHz"}, varsEigen30sigl[[1]]],
Join[{"A", ""}, Round[Differences[varsEigen30sigl[[1]]], .01]]},
Frame -» All, Background » {{LightBlue, None}, {None, None}}]

Eigen-energies for a double Gaussian defined by o0=1.0um, Xsep=2.5um

30k- |3.87]6.39(8.95(11.~ | 14.~ |16.~ [19.~ [21.~ [23.~ | 25.~ |27.9]29.- |31.-
H- 51 06 58 04 44 74 92 62 26
Z
A 2.52|2.56|2.56 [2.55[2.52 [2.46 | 2.4 2.3 |2.18 |1.98|1.72 | 1.64
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ingo7i- Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen30siglsep2Table.jpeg"”, varsEigen30siglsep2Table];

inos)= varsEigen30siglsep3Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o=1.0um, Xsep=4.8um",
SpanFromLeft}, Join[{"30kHz"}, varsEigen30sigl[[2]]],
Join[{"A", ""}, Round[Differences[varsEigen30sigl[[2]]], .01]11},
Frame -» All, Background -» {{LightOrange, None}, {None, None}}, ItemSize -» Full]

Eigen-energies for a double G
outios)= ['30kHz [0.94[1.54[2.22[2.99[3.82]4.72[5.67[6.68]7.73[8.83]9.97[11.14[12.34]13.¢
A 0.6 |0.68[0.77]0.83] 0.9 |0.95]1.01[1.05| 1.1 |1.14] 1.17 1.2 1.2

nsi0- Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen30siglsep3Table.jpeg", varsEigen30siglsep3Table];

inogl= varsEigen30siglsep5Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o0=1.0um, Xgsep=5.8um",
SpanFromLeft}, Join[{"30kHz"}, varsEigen30sigl[[3]]],
Join[{"A", ""}, Round[Differences[varsEigen30sigl[[3]]], .01]1},
Frame -» All, Background » {{LightGreen, None}, {None, None}}, ItemSize » Full]

Eigen-en
Oui309)= | 30kHz [0.83 |1.24|1.71]2.24]12.82|3.44(4.11(4.82|5.57(6.35]|7.17[8.02[8.91]9.82]:
A 0.41]10.47]0.53[0.580.62[0.67[0.71]0.75]0.78]0.82[0.85[0.89]0.91

nsi1:= Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen30siglsep5Table.jpeg", varsEigen30siglsep5Table];
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varPot30sig2 =
ListLinePlot[{Transpose@{x /10"-6, potential[[2, 3, 1, All]] / (2*n+h10"3)},
Transpose@{x /10" -6, potential[[2, 5, 1, Al1l]] / (2+n+hx10"3)}},
FrameLabel -» {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel - Style|[

"Double Gaussian Barrier Potential; o=1.6um, uo2=30kHz" (%, Xsep=4.8 umx), 18],
PlotLegends - { "um" xsep[[3]] /10"-6, "um" xsep[[5]]/10"-6},
FrameTicksStyle » Medium, ImageSize -» Large,

PlotStyle » {Thickness[.006]}, Frame-»True]
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
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varTrans30sig2sep3 =ListLinePlot[
Transpose@{energyGood[[2, 3, 1]] / (2*7w*Ax1.0+"3), 1 - reflectCoef[[2, 3, 1]]},
PlotRange - All (*{{20,38},{-0.01,1.005}}#), GridLines -» {{}, {}},
FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel -» Style["Transmission spectrum; o=1.6um, Xsep=4.8um, uo2=30kHz", 18]
(*,PlotLegends—{ "=Xsep"xsep[[3]]/10"-6}+), FrameTicksStyle » Medium,
ImageSize » Large, Frame » True, PlotStyle -» Directive[Blue, Thickness[.006]],
Epilog » {Directive[{Thick, Gray, Dashed}],
Table[Line[{{varsEigen30sig2[[1]][[i]], O}, {varsEigen30sig2[[1]1[[i]1], 1}}1,
{i, 1,Length[varsEigen3OSig2[[1]]]}]}]

Transmission spectrum; 0=1.6um, Xsep=4.8m, Ugr=30kHz
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Export [
" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varTrans30sig2sep3.jpeg"”, varTrans30sig2sep3];
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ListLinePlot [
Transpose@ {energyGood[[2, 5, 1]] / (2* 7+ h*1.0%"3), 1-reflectCoef[[2, 5, 1]1},

PlotRange - All (#{{20,38},{-0.01,1.005}}x), GridLines -» {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

varTrans30sig2sep5

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

30kHz", 18],

=1.6um, Xsep=5.8um, up2

FrameTicksStyle » Medium, ImageSize -» Large, Frame - True,

PlotStyle -» Directive[Orange, Thickness[.006]],
Epilog -» {Directive[{Thick, Gray, Dashed}],

Table[Line[{{varsEigen30sig2[[2]][[i]], O}, {varsEigen30sig2[[2]][[i]], 1}}1,

{i, 1, Length[varsEigen30sig2[[2]]]}] }]

‘30kH;

Transmission spectrum; g=1.6um, Xsep=5.8um, Uop2

40

Alllgeqoud uoissiwsuel |
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Energy, kHz

10

Export [

" /Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis

nb's/possible figs/varTrans30sig2sep5.jpeg", varTrans30sig2sep5];
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inzes]= varsEigen30sig2 =
{Round[Select [DeleteDuplicates|[eigenEnergy[[2, 3, 1]]/ (2*7* A *1.0+"3),

ouyses- {{1.17, 2.21, 3.31, 4.46, 5.65, 6.86, 8.11, 9.37, 10.64,

Out[369]=

Out[370]=

Out[371]=

oup7zl= {{1.

in@23)= varsEigen30sig2sep3Table =

Out[323]=

Out[325]=

Abs[#l-#2] < .1&], #<32&], .01],
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Round [Select [DeleteDuplicates [eigenEnergyEigs3OSingepS / (2 *txh*xl .0*"3) ’

Abs[#l-#2] < .1&|, #<32&], .01]}
Dimensions[varsEigen30sig2]
Length[varsEigen30sig2[[1]]]
Length[varsEigen30sig2[[2]]]
diffEigen30sig2 = {Join[Differences[varsEigen30sig2[[1]]], {0}],

Join[Differences[varsEigen30sig2[[2]]], {0}]1}

11.93, 13.23, 14.54, 15.84, 17.14, 18.44, 19.73, 21.01, 22.27,
23.51, 24.73, 25.91, 27.05, 28.13, 29.12, 30., 30.89, 31.91},
{0.88, 1.52, 2.22, 2.98, 3.79, 4.64, 5.52, 6.43, 7.38, 8.34, 9.33, 10.34,

11.36, 12.4, 13.45, 14.51, 15.57, 16.65, 17.73, 18.81, 19.89, 20.96,
22.03, 23.1, 24.15, 25.18, 26.2, 27.19, 28.13, 29.02, 29.83, 30.62, 31.49})

{2}

27

33

(0.64, 0.7, 0.76, 0.81, 0.85, 0.88, 0.91, 0.95, 0.96, 0.99, 1.01,
1.02, 1.04, 1.05, 1.06, 1.06, 1.08, 1.08, 1.08, 1.08, 1.07, 1.07,
1.07, 1.05, 1.03, 1.02, 0.99, 0.94, 0.89, 0.81, 0.79, 0.87, 0}}

o4,1.1,1.15,1.19,1.21,1.25,1.26, 1.27,1.29, 1.3, 1.31, 1.3, 1.3, 1.3,
1.29,1.28,1.26,1.24,1.22,1.18, 1.14, 1.08, 0.99, 0.88, 0.89, 1.02, 0},

161

Grid[{{"Eigen-energies for a double Gaussian defined by o=1.6um, Xsep=4.8um",
SpanFromLeft}, Join[{"30kHz"}, varsEigen30sig2[[1]]],
Join[{"A", ""}, Round[Differences[varsEigen30sig2[[1]]], .011]},
Frame -» All, Background » {{LightBlue, None}, {None, None}}, ItemSize -» All]

Eigen-energies for a doubl

30kHz | 1.17 | 2.21 | 3.31 | 4.46 | 5.65 | 6.86 | 8.11 [ 9.37 |10.64[11.93[13.23(14.54
A 1.04 1.1 1.15 | 1.19 | 1.21 | 1.25 | 1.26 | 1.27 | 1.29 1.3 1.31
in24)= Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen30sig2sep3Table.jpeg", varsEigen30sig2sep3Table];
in@esi= varsEigen30sig2sep5Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o=1.6um, =Xgsep=5.8um",
SpanFromLeft}, Join[{"30kHz"}, varsEigen30sig2[[2]]],
Join[{"A", ""}, Round[Differences[varsEigen30sig2[[2]]], .01]]1},
Frame - All, Background -» { {LightOrange, None}, {None, None}}, ItemSize » All]
Eigen-—¢
30kHz | 0.88 | 1.52 | 2.22 | 2.98 | 3.79 | 4.64 | 5.52 | 6.43 | 7.38 [ 8.34 | 9.33 |10.34
A 0.64 0.7 0.76 [ 0.81 [ 0.85 [ 0.88 | 0.91 | 0.95 | 0.96 [ 0.99 | 1.01
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ins26i- Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen30sig2sep5Table.jpeg"”, varsEigen30sig2sep5Table];

varPotsig2h31h33 =

ListLinePlot[{Transpose@{x/10" -6, potential[[2, 3, 2, Al1l]] / (2 *Txh % 10"3)},
Transpose@{x /10" -6, potential[[2, 3, 4, All]] / (2+7+ha%10"3)}
(*,Transpose@{x/10"-6,potential[[1,4,1,A11]]/(2+m+h*10"3)},
Transpose@{x/10"-6,potential[[1,5,1,A11]]/(247+xh*x10"3)}x)},
FrameLabel » {Style["Position, um", 18], Style["Potential Energy, kHz", 18]},
PlotLabel -» Style["Double Gaussian Barrier Potential; o=1.6um, Xgep=4.8um", 18],
PlotLegends -» { "kHz" u02[[2]]/ (2* 7+ &% 10"3), "kHz" u02[[4]] / (2+7+h%10"3)},
FrameTicksStyle » Medium, ImageSize -» Large,
PlotStyle-»{Thickness[.OOG]},Frame—aTrue]
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/varPotsig2h31h33.jpeg", varPotsig2h31h33];
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varTrans3lsig2sep3 = ListLinePlot [

Transpose@{energyGood[[2, 3, 2]] / (2* 7+ A% 1.0+"3), 1 - reflectCoef[[2, 3, 2]]},
PlotRange - All (#{{20,38},{-0.01,1.005}}+), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

4.8um, uo2=31kHz", 18],

=l.6um, Xsep

FrameTicksStyle » Medium, ImageSize » Large, Frame - True,

PlotStyle -» Directive[Blue, Thickness[.006]],

Epilog -» {Directive[{Thick, Gray, Dashed}], Table[

Line[{{varsEigensig2sep3[[1]][[i]], O}, {varsEigensig2sep3[[1]][[i]], 1}}]1,

{i, 1, Length[varsEigensig2sep3[[1]]]}] }]

=31kHz

Transmission spectrum; g=1.6um, Xsep=4.8um, Up2

40

Aujigqeqoud

uoissiwsuel |

20 30

Energy, kHz

10
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varTrans33sig2sep3 = ListLinePlot [

Transpose@{energyGood[[2, 3, 4]] / (2* 7w+ A% 1.0+"3), 1 - reflectCoef[[2, 3, 4]]},
PlotRange - All (#{{20,38},{-0.01,1.005}}+), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

=33", 18],

4.8um, uog2

=l.6um, Xsep

FrameTicksStyle » Medium, ImageSize » Large, Frame - True,

PlotStyle -» Directive[Orange, Thickness[.006]],

Epilog -» {Directive[{Thick, Gray, Dashed}], Table[

Line[{{varsEigensig2sep3[[2]][[i]], O}, {varsEigensig2sep3[[2]][[i]], 1}}]1,

{i, 6, Length[varsEigensig2sep3[[2]]]}] }]

=33
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40
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Printed by Wolfram Mathematica Student Edition



doubleGaussPot.nb | 35

165
ine7el= varsEigensig2sep3 =
{Round[Select [DeleteDuplicates|[eigenEnergyEigsig2sep3H3l / (2 x wrxh» 1.0%"3),
Abs[#l-#2] < .4&], #<32&], .01],
Round[Select [DeleteDuplicates [eigenEnergyEigsingep3H[ [2]] / (2 *7Txh* 1.0*"3) ’
Abs[#l-#2] < .1&|, #<32&], .01]}
Dimensions [varsEigensig2sep3]
Length[varsEigensig2sep3[[1]]]
Length[varsEigensig2sep3[[2]]]
diffEigensig2sep3 = {Join[Differences[varsEigensig2sep3[[1]]], {0}],
Join[Differences[varsEigensig2sep3[[2]]], {0}]1}
oufs7el= {{1.18, 2.23, 3.34, 4.5, 5.69, 6.92, 8.17, 9.44, 10.73,
12.03, 13.34, 14.65, 15.97, 17.28, 18.59, 19.89, 21.18, 22.46,
23.71, 24.94, 26.14, 27.29, 28.39, 29.4, 30.27, 31.03, 31.84},
{0.5,0.6,0.7,0.8,0.9, 3.4, 4.58,5.79, 7.03, 8.3, 9.59, 10.89,
12.21, 13.54, 14.87, 16.21, 17.54, 18.87, 20.19, 21.51,
22.8, 24.08, 25.33, 26.55, 27.73, 28.85, 29.87, 30.98}}

ous77l= {2}
outa7gl= 27
out[379)= 28

ouso- {{1.05, 1.11, 1.16, 1.19, 1.23, 1.25, 1.27, 1.29, 1.3, 1.31, 1.31, 1.32, 1.31,
1.31, 1.3, 1.29, 1.28, 1.25, 1.23, 1.2, 1.15, 1.1, 1.01, 0.87, 0.76, 0.81, 0},
(0.1, 0.1, 0.1, 0.1, 2.5, 1.18, 1.21, 1.24, 1.27, 1.29, 1.3, 1.32, 1.33, 1.33,
1.34,1.33,1.33, 1.32, 1.32, 1.29, 1.28, 1.25, 1.22, 1.18, 1.12, 1.02, 1.11, 0} )}
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inze4)= eigsVdiffs = ListPlot [ {Transpose@ {varsEigen30sigl[[1]], eigenDiff30siglsepk[[1]]},
Transpose@ {varsEigen30sigl[[2]], eigenDiff30siglsepk[[2]]},
Transpose@ {varsEigen30sigl[[3]], eigenDiff30siglsepk[[3]]},
Transpose@ {varsEigen30sig2[[1]], diffEigen30sig2[[1]]},
Transpose@ {varsEigen30sig2[[2]], diffEigen30sig2[[2]]},
Transpose@ {varsEigensig2sep3[[1]], diffEigensig2sep3[[1]]},
Transpose@ {varsEigensig2sep3[[2]][[6 ;; 28]],
diffEigensig2sep3[[2]][[6 ;; 28]]}}, PlotRange - All,
FrameLabel -» {Style["Eigenenergy", 18], Style["Eigenenergy spacing", 18]},
PlotLabel -» Style["Eigenenergy spacing vs Eigenenergies", 18],
FrameTicksStyle » Medium, ImageSize -» Large, Frame - True,
PlotLegends —» {"uo2=30kHz, 0=1.0um, Xsep=2.5um",
Xsep=4.8um", "uo2=30kHz, o0=1.0um, Xsep=5.8um",
Xsep=4.8um", "uo2=30kHz, 0=1.6um, Xsep=5.8um",
Xsep=4.8um", "uo2=33kHz, 0=1.6um, Xsep=4.8um"},
{e, 15}, {m, 15}, {O, 15}, {m, 15}, {A, 15}, {0, 15}}]

"up2=30kHz,
"uo2=30kHz,
"uo2=31kHz,

o=1.0um,
o=1.6um,
o=1.6um,

PlotMarkers -» {{®, 15},

Eigenenergy spacing vs Eigenenergies
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Eigenenergy

in39s]= Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/eigsVdiffs.jpeg", eigsVdiffs];

in@s2]= varsEigen3lsig2sep3Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o=1.6um, Xsep=4.8um",
SpanFromLeft}, Join[{"31kHz"}, varsEigensig2sep3[[1]]],
Join[{"A", ""}, Round[Differences[varsEigensig2sep3[[1]]], .01]]1},
Frame -» All, Background » {{LightBlue, None}, {None, None}}, ItemSize » All]

Out[332]=

Eigen-energies for a doubl
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in@3si- Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen3lsig2sep3Table.jpeg", varsEigen3lsig2sep3Table];

in@s4)= varsEigen33sig2sep3Table =
Grid[{{"Eigen-energies for a double Gaussian defined by o=1.6um, Xsep=4.8um",

SpanFromLeft}, Join[{"33kHz"}, varsEigensig2sep3[[2]][[6 ;; 28]11],
Join[{"A", ""}, Round[Differences[varsEigensig2sep3[[2]][[6 ;; 28]]1], -01]1},
Frame -» All, Background -» { {LightOrange, None}, {None, None}}, ItemSize -» All]

Eigen-energies for a double Gaussian de

oufss4l= | 33kHz | 3.4 4.58 | 5.79 | 7.03 8.3 9.59 110.89]12.21|13.54(14.87|16.21]17.54
A 1.18 | 1.21 | 1.24 | 1.27 | 1.29 1.3 1.32 (1.33 [ 1.33 | 1.34 ] 1.33

in@3si- Export["/Users/avaashby/Desktop/masters-thesis/Mathematica
Code/ImpedanceMethod/thesis nb's/possible
figs/varsEigen33sig2sep3Table.jpeg", varsEigen33sig2sep3Table];

optimization:

varsEigen30sig2sep3Table
varsEigen30sig2[[1]]

Eigen-energies for a double G
30kHz| 2.21 | 3.31 | 4.46 | 5.65 | 6.86 | 8.11 9.37 |10.64|11.93113.23|14.54|15.84

(2.21, 3.31, 4.46, 5.65, 6.86, 8.11, 9.37, 10.64,
11.93, 13.23, 14.54, 15.84, 17.14, 18.44, 19.73, 21.01, 22.27,
23.51, 24.73, 25.91, 27.05, 28.13, 29.12, 30., 30.89, 31.91}
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energyBetter30sig2sep3 =
(2*7r*h*]”0*‘3)*Join[Table[i,{i,.1,1.7,.1}],Table[i,{i,1.7,2.7,.1}],
Table[i, {i, 2.7, 2.8, .1}], Table[i, {i, 2.8, 3.8, .1}],
Table[i, {i, 3.8, 4.0, .1}], Table[i, {i, 4.0, 5.0, .1}],
Table[i, {i, 5.0, 5.2, .1}], Table[i, {i, 5.2, 6.2, .1}],
Table[i, {i, 6.2, 6.4, .1}], Table[i, {i, 6.4, 7.4, .1}],
Table[i, {i, 7.4, 7.6, .1}], Table[i, {i, 7.6, 8.6, .1}], Table]i,
{i, 8.6, 8.9, .1}], Table[i, {i, 8.9, 9.9, .1}], Table[i, {i, 9.9, 10.1, .1}],
Table[i, {i, 10.1, 11.1, .1}], Table[i, {i, 11.1, 11.4, .1}],
Table[i, {i, 11.4, 12.4, .1}], Table[i, {i, 12.4, 12.7, .1}],
Table[i, {i, 12.7, 13.7, .1}], Table[i, {i, 13.7, 14.0, .1}],
Table[i, {i, 14.0, 15.0, .1}], Table[i, {i, 15.0, 15.3, .1}],
Table[i, {i, 15.3, 16.3, .1}], Table[i, {i, 16.3, 16.6, .1}],
Table[i, {i, 16.6, 17.6, .1}], Table[i, {i, 17.6, 17.9, .1}],
Table[i, {i, 17.9, 18.9, .1}], Table[i, {i, 18.9, 19.2, .1}],
Table[i, {i, 19.2, 20.2, .01}], Table[i, {i, 20.2, 20.5, .1}],
Table[i, {i, 20.5, 21.5, .01}], Table[i, {i, 21.5, 21.7, .1}],
Table[i, {i, 21.7, 22.7, .001}], Table[i, {i, 22.7, 23.0, .1}],
Table[i, {i, 23.0, 24.0, .00001}], Table[i, {i, 24.0, 24.4, .001}],
Table[i, {i, 24.4, 25.0, .0000001}], Table[i, {i, 25.0, 25.4, .001}],
Table[i, {i, 25.4, 26.4, .000001}], Table[i, {i, 26.4, 26.5, .1}],
Table[i, {i, 26.5, 27.5, .00001}], Table[i, {i, 27.5, 27.6, .1}],
Table[i, {i, 27.6, 29.6, .0001}], Table[i, {i, 29.6, 35.0, .01}]1];
Dimensions[energyBetter30sig2sep3]

(7222786}

reflectCoef30sig2sep3 =
ReflectionProbability[potential[[2, 3, 1, Al1l]], energyBetter30sig2sep3, 1];
Dimensions[reflectCoef30sig2sep3]

(7222786}
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varTrans30sig2sep3

4.8um

Transmission spectrum; g=1.6um, Xsep
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trans30sig2sep3 = ListLinePlot [

Transpose@ {energyBetter30sig2sep3 / (2xm* A% 1.0+"3), 1 - reflectCoef30sig2sep3},
PlotRange - All (#{{20,38},{-0.01,1.005}}+), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

30kHz", 18],

4.8um, uog2

=l.6um, Xsep

FrameTicksStyle » Medium, ImageSize » Large, Frame - True,

PlotStyle » Directive[Red, Thickness[.006]],

Epilog » {Directive[{Thick, Gray, Dashed}],

Table[Line[{{varsEigen30sig2[[1]][[i]], O}, {varsEigen30sig2[[1]]1[[i]], 1}}1,

{i, 1, Length[varsEigen30sig2[[1]]]}] }]

30kHz.
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compairTrans30sig2sep3 = Show[trans30sig2sep3, varTrans30sig2sep3]

30kHz.

Transmission spectrum; g=1.6um, xsep=4‘.8u‘m‘, Uo2

20 25 30 35
Energy, kHz

15

10

1.0
8
6
4
2

0.0+

Aljigeqoud uoissiwsuel |

Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis

.
4

nb's/possible figs/compairTrans30sig2sep3.jpeg", compairTrans30sig2sep3]

varsEigen33sig2sep3Table

varsEigensig2sep3[[2]][[11 ;; 31]]

Eigen-energies for a double Gaussian defined

33kHz| 4.58 | 5.79 | 7.03 | 9.59 |10.89 |12.21 |13.54 |14.87 |16.21 |17.54 |18.87 |20.19

{4.58,5.79, 7.03, 9.59, 10.89, 12.21, 13.54, 14.87, 16.21, 17.54, 18.87,

20.19, 21.51, 22.8, 24.08, 25.33, 26.55, 27.73, 28.85, 29.87, 30.98}
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energyBetter33sig2sep3 =

(2*7r*f1*1.0*"3) * Join[Table[i, {i, .1, 4.0, .1}], Table[i, {i, 4.0, 5.0, .1}],

Table[i, {i, 5.0, 5.2, .1}], Table[i, {i, 5.2, 6.2, .1}], Table]i,

(i, 6.2, 6.5, .1}], Table[i, {i, 6.5, 7.5, .1}], Table[i, {i, 7.5, 9.0, .1}],

Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[1i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[i,
Table[1i,
Table[i,
Table[i,

{i,
{i,
{1,
{1,
{i,
{1,
{1,
{1,
{i,
{1,
{1,
{1,
{i,
{i,
{1,
{1,
{i,
{i,

9.0, 10.0, .1}], Table[i, {i, 10.0, 10.3, .1}],

10.3,
11.7,
13.0,
14.4,
15.7,
17.0,
18.3,
19.6,
21.0,
22.3,
23.5,
24.8,
26.0,
27.2,
28.3,
29.4,
30.5,

11.3, .1}], Table[i, {i, 11.3, 11.7, .1}],
12.7, .1}], Table[i, {i, 12.7, 13.0, .1}],

14.0, .1}], Table[i, {i, 14.0, 14.4, .1}],

15.4, .1}], Table[i, {i, 15.4, 15.7, .1}],

16.7, .1}], Table[i, {i, 16.7, 17.0, .1}],

18.0, .1}], Table[i, {i, 18.0, 18.3, .1}],

19.3, .1}], Table[i, {i, 19.3, 19.6, .1}],

20.6, .1}], Table[i, {i, 20.6, 21.0, .1}],

22.0, .1}], Table[i, {i, 22.0, 22.3, .1}],

23.3, .01}], Table[i, {i, 23.3, 23.5, .1}],
24.5, .001}], Table[i, {i, 24.5, 24.8, .1}],
25.8, .0001}], Table[i, {i, 25.8, 26.0, .1}],
27.0, .00001}], Table[i, {i, 27.0, 27.2, .01}],
28.2, .000001}], Table[i, {i, 28.2, 28.3, .01}],
29.3, .000001}], Table[i, {i, 29.3, 29.4, .01}],
30.4, .000001}], Table[i, {i, 30.4, 30.5, .01}],
31.5, .00001}], Table[i, {i, 31.5, 35.0, .01}]1;

Dimensions[energyBetter33sig2sep3]

{3211772}

reflectCoef33sig2sep3 =

ReflectionProbability[potential[[2, 3, 4, Al1]], energyBetter33sig2sep3, 1];

Dimensions[reflectCoef33sig2sep3]

{3211772}
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trans33sig2sep3 = ListLinePlot[
Transpose@{energyBetter33sig2sep3 / (2x 7w+ h*1.0+"3), 1 - reflectCoef33sig2sep3},
PlotRange - All (*{{20,38},{-0.01,1.005}}#), GridLines -» {{}, {}},
FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],
Style["Transmission Probability", 18]},
PlotLabel -» Style["Transmission spectrum; o=1.6um, Xsep=4.8um, uo2=33kHz", 18],
FrameTicksStyle » Medium, ImageSize » Large, Frame - True,
PlotStyle - Directive[Purple, Thickness[.006]]]

Transmission spectrum; 0=1.6um, Xsep=4.81m, Ugr=33kHz
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Show[trans33sig2sep3, varTrans33sig2sep3]
Transmission spectrum; 0=1.6um, Xsep=4.81m, Ugr=33kHz
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varsEigen30sig2sep5Table
varsEigen30sig2[[2]]

Eigen-enet

30kHz| 0.88 | 1.52 | 2.22 12.98 | 3.79 | 5.52 | 6.43

7.38 | 8.34 | 9.33 [10.34(11.36

{0.88, 1.52, 2.22, 2.98, 3.79, 5.52, 6.43, 7.38, 8.34, 9.33, 10.34,
11.36, 12.4, 13.45, 14.51, 15.57, 16.65, 17.73, 18.81, 19.89, 20.96,
22.03, 23.1, 24.15, 25.18, 26.2, 27.19, 28.13, 29.02, 29.83, 30.62, 31.49)
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energyBetter30sig2sep5 =
(2*7r*h*1.0*‘3)*Join[Table[i,{i,.1,.5,.01}],Table[i,{i,.5,1.1,.1}],
Table[i, {i, 1.1, 1.2, .1}], Table[i, {i, 1.2, 1.7, .1}],
Table[i, {i, 1.7, 1.9, .1}], Table[i, {i, 1.9, 2.5, .1}],
Table[i, {i, 2.5, 2.6, .1}], Table[i, {i, 2.6, 3.2, .1}],
Table[i, {i, 3.2, 3.4, .1}], Table[i, {i, 3.4, 4.0, .1}],
Table[i, {i, 4.0, 5.2, .1}], Table[i, {i, 5.2, 5.8, .1}],
Table[i, {i, 5.8, 6.1, .1}], Table[i, {i, 6.1, 6.7, .1}],
Table[i, {i, 6.7, 7.0, .1}], Table[i, {i, 7.0, 7.6, .1}],
Table[i, {i, 7.6, 8.0, .1}], Table[i, {i, 8.0, 8.6, .1}], Tablel[1i,

{i, 8.6, 9.0, .1}], Table[i, {i, 9.0, 9.6, .1}], Table[i, {i, 9.6, 10.0, .1}],
Table[i, {i, 10.0, 10.6, .1}], Table[i, {i, 10.6, 11.0, .1}],
Table[i, {i, 11.0, 11.6, .1}], Table[i, {i, 11.6, 12.1, .1}],
Table[i, {i, 12.1, 12.7, .1}], Table[i, {i, 12.7, 13.1, .1}],
Table[i, {i, 13.1, 13.7, .1}], Table[i, {i, 13.7, 14.2, .1}],
Table[i, {i, 14.2, 14.8, .1}], Table[i, {i, 14.8, 15.2, .1}],
Table[i, {i, 15.2, 15.8, .1}], Table[i, {i, 15.8, 16.3, .1}],
Table[i, {i, 16.3, 16.9, .1}], Table[i, {i, 16.9, 17.4, .1}],
Table[i, {i, 17.4, 18.0, .1}], Table[i, {i, 18.0, 18.5, .1}],
Table[i, {i, 18.5, 19.1, .1}], Table[i, {i, 19.1, 19.5, .1}],
Table[i, {i, 19.5, 20.1, .1}], Table[i, {i, 20.1, 20.7, .1}],
Table[i, {i, 20.7, 21.2, .1}], Table[i, {i, 21.2, 21.7, .1}],
Table[i, {i, 21.7, 22.3, .1}], Table[i, {i, 22.3, 22.8, .1}],
Table[i, {i, 22.8, 23.4, .1}], Table[i, {i, 23.4, 23.8, .1}],
Table[i, {i, 23.8, 24.4, .0001}], Table[i, {i, 24.4, 24.8, .00001}],
Table[i, {i, 24.8, 25.4, .000001}], Table[i, {i, 25.4, 25.8, .00001}],
Table[i, {i, 25.8, 26.5, .000001}], Table[i, {i, 26.5, 26.8, .0001}],
Table[i, {i, 26.8, 27.4, .000001}], Table[i, {i, 27.4, 27.8, .001}],
Table[i, {i, 27.8, 28.4, .000001}], Table[i, {i, 28.4, 28.7, .001}],
Table[i, {i, 28.7, 29.3, .000001}], Table[i, {i, 29.3, 35.0, .001}]1];

Dimensions [energyBetter30sig2sep5]

(3195732}

reflectCoef30sig2sep5 =
ReflectionProbability[potential[[2, 5, 1, Al1]], energyBetter30sig2sep5, 1];
Dimensions[reflectCoef30sig2sep5]

{3195732}
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varTrans30sig2sep5
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trans30sig2sep5 = ListLinePlot [

Transpose@ {energyBetter30sig2sep5/ (2 m»h»1.0+"3), 1 - reflectCoef30sig2sep5},
PlotRange - All (#{{20,38},{-0.01,1.005}}+), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

30kHz", 18],

5.8um, ug2

=l.6um, Xsep

FrameTicksStyle » Medium, ImageSize » Large, Frame - True,

PlotStyle -» Directive[Purple, Thickness[.006]],
Epilog » {Directive[{Thick, Gray, Dashed}],

Table[Line[{{varsEigen30sig2[[2]][[i]], O}, {varsEigen30sig2[[2]][[i]], 1}}1,

{i, 1, Length[varsEigen30sig2[[2]]]}] }]

30kHz.

Transmission spectrum; g=1.6um, xsep‘=5‘.8u‘m‘, Uo2
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compairTrans30sig2sep5 = Show[trans30sig2sep5, varTrans30sig2sep5]

30KHz

Transmission spectrum; 0=1.6um, Xsep=5.8m, uoy
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Aljigeqoud uoissiwsuel |

Export [

"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis

nb's/possible figs/compairTrans30sig2sep5.jpeg"”, compairTrans30sig2sep5];

varsEigen30siglsep3Table

varsEigen30sigl[[2]]

Eigen-energies for a double Gaussian def

72]5.67]6.68]7.73]8.83]9.97 [11.14[12.34[13.5714.83 [16.11[17.41]

30KHz [2.22 [4.

67, 6.68, 7.73, 8.83, 9.97, 11.14, 12.34, 13.57, 14.83, 16.11, 17.41,

21.37, 22.7, 24.03, 25.34, 26.63, 27.87, 29.05, 30.16, 31.31)

(2.22,4.72, 5.

18.72, 20.04,
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energyBetter30siglsep3 =

(2*7r*f1*1.0*"3) * Join[Table[i, {i, .1, 1.9, .1}], Table[i, {i, 1.9, 2.5, .1}],

Table[i, {i, 2.5, 4.3, .1}], Table[i, {i, 4.3, 5.1, .1}],
Table[i, {i, 5.1, 5.2, .1}], Table[i, {i, 5.2, 6.0, .1}],
Table[i, {i, 6.0, 6.2, .1}], Table[i, {i, 6.2, 7.0, .1}],
Table[i, {i, 7.0, 7.3, .1}], Table[i, {i, 7.3, 8.1, .1}], Table[i,

(i, 8.1, 8.4, .1}], Table[i, {i, 8.4, 9.2, .1}], Table[i, {i, 9.2, 9.5, .1}],

Table[i, {i, 9.5, 10.3, .1}], Table[i, {i, 10.3, 10.7, .1}],

Table[i, {i, 10.7,
Table[i, {i, 11.9,
Table[i, {i, 13.1,
Table[i, {i, 14.4,
Table[i, {i, 15.7,
Table[i, {i, 17.0,
Table[i, {i, 18.3,
Table[i, {i, 19.6,
Table[i, {i, 20.9,
Table[i, {i, 22.4,
Table[i, {i, 23.6,
Table[i, {i, 24.9,
Table[i, {i, 26.2,
Table[i, {i, 27.4,
Table[i, {i, 28.6,

11.5, .1}], Table[i, {i, 11.5, 11.9, .1}],

12.7, .1}], Table[i, {i, 12.7, 13.1, .1}],

13.9, .1}], Table[i, {i, 13.9, 14.4, .1}],

15.2, .1}], Table[i, {i, 15.2, 15.7, .01}],

16.5, .001}], Table[i, {i, 16.5, 17.0, .01}],
17.8, .001}], Table[i, {i, 17.8, 18.3, .001}],
19.1, .000001}], Table[i, {i, 19.1, 19.6, .001}],
20.4, .000001}], Table[i, {i, 20.4, 20.9, .001}],
21.7, .000001}], Table[i, {i, 21.7, 22.4, .001}],
23.1, .000001}], Table[i, {i, 23.1, 23.6, .001}],
24.4, .000001}], Table[i, {i, 24.4, 24.9, .001}],
25.7, .00001}], Table[i, {i, 25.7, 26.2, .001}],
27.0, .00001}], Table[i, {i, 27.0, 27.4, .01}],
28.2, .0001}], Table[i, {i, 28.2, 28.6, .01}],
29.4, .0001}], Table[i, {i, 29.4, 35, .001}]];

Dimensions[energyBetter30siglsep3]

(4087276}

reflectCoef30siglsep3

ReflectionProbability[potential[[1, 3, 1, Al1l]], energyBetter30siglsep3, 1];

Dimensions[reflectCoef30siglsep3]

(4087276}
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varTrans30siglsep3

Transmission spectrum, g=1.0pym
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trans30siglsep3 = ListLinePlot [

Transpose@ {energyBetter30siglsep3 / (2xm»h»1.04"3), 1 - reflectCoef30siglsep3},
PlotRange - All (#{{20,38},{-0.01,1.005}}+), GridLines - {{}, {}},

FrameLabel -» {Style[ (*"Energy/v0"*) "Energy, kHz", 18],

Style["Transmission Probability", 18]},
PlotLabel - Style["Transmission spectrum;

30kHz", 18],

4.8um, uog2

=1.0um, Xsep

FrameTicksStyle » Medium, ImageSize » Large, Frame - True,

PlotStyle -» Directive[Purple, Thickness[.006]],
Epilog » {Directive[{Thick, Gray, Dashed}],

Table[Line[{{varsEigen30sigl[[2]][[i]], O}, {varsEigen30sigl[[2]][[i]], 1}}1,

{i, 1, Length[varsEigen30sigl[[2]]]}] }]

30kHz.

Transmission spectrum; 0=1.0um, Xsep=4.8um, Up

35

Alllgeqoud uoissiwsuel |

20 25
Energy, kHz

15

10
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compairTrans30siglsep3 = Show[trans30siglsep3, varTrans30siglsep3]

] Transmission spectrum; 0=1.0um, Xsep=4.81m, Ug2=30kHz
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Export [
"/Users/avaashby/Desktop/masters-thesis/Mathematica Code/ImpedanceMethod/thesis
nb's/possible figs/compairTrans30siglsep3.jpeg"”, compairTrans30siglsep3];

Possible wavefunction representation: using the double rectangular coefficents

In[48]:=

Out[48]=

In[119]:=

Out[120]=

In[176]:=

out[177]=

In[141]:=

Out[141]=

a3030

{1.16551, 2.20647, 3.31029, 4.45918, 5.6462, 6.86311, 8.10521, 9.367, 10.6448,
11.9344, 13.2325, 14.5355, 15.8403, 17.1435, 18.4419, 19.7318, 21.0098,
22.2716, 23.5127, 24.7274, 25.9088, 27.0471, 28.1263, 29.1165, 29.9996}

waveRef = ReflectionProbability[potential[[2, 3, 1, Al1l]], energyBetterer5, 1];
Dimensions [waveRef]

{500001}

positFullRef3030 = Flatten[Position[1l - waveRef, _? (# >= .999999 &)]11];
Table[l - waveRef [ [positFullRef3030[[i]]]], {i, Length[positFullRef3030]}]

{0.999999, 1., 1., 0.999999}

energyBettererS[[positFullRef3030[[2]]]]/(2*7r*h*10*3)
29.2144
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In[196]:=

Out[197]=

Out[198]=

In[200]:=

Out[200]=

Out[201]=

Out[202]=

Out[203]=

In[218]:=

In[227]:=

In[229]:=

In[230]:=

184
posit3030 = Flatten[Position[potential [[2, 3, 1, Al1]] / (2 *Txh* 10"3) ’
_? (# >= energyBetterer5[ [positFullRe£3030[[2]]]]1/ (2*n+h»10"3) &)]];
Dimensions [posit3030]
posit3030Pot =
Table [potential[[2, 3, 1, posit3030[[i]]]], {i, Length[posit3030]}] / (2*7w*h*10"3)
{50}

{29.2502, 29.3687, 29.4773, 29.5759, 29.6644, 29.7427, 29.8108, 29.8685,
29.9157, 29.9526, 29.9789, 29.9947, 30., 29.9947, 29.9789, 29.9526, 29.9157,
29.8685, 29.8108, 29.7427, 29.6644, 29.5759, 29.4773, 29.3687, 29.2502,
29.2502, 29.3687, 29.4773, 29.5759, 29.6644, 29.7427, 29.8108, 29.8685,
29.9157, 29.9526, 29.9789, 29.9947, 30., 29.9947, 29.9789, 29.9526, 29.9157,
29.8685, 29.8108, 29.7427, 29.6644, 29.5759, 29.4773, 29.3687, 29.2502}

posit3030[[1]]

posit3030[[25]]
posit3030[[26]]
posit3030[[50]]

329
353
649

673

m=1.44+x"-25;

k[nrg_] :=Sqrt[2 *m*nrg/h"z];

x1[i_, nrg_] := Sqrt[2 »m« (potential[[2, 3, 1, i]] -nrg) /2" 2]
k2[i_, nrg_] := Sqrt[z * M * (potential[[z, 3,1, 1i]] —nrg) /hAZ]
x1 = Abs[x[[649]]] -Abs[x[[353]]1];

x2 = Abs[x[[673]] - x[[649]]] + x1;

A =x1-x2;

~e

~e

1
c[i_, nrg_, rAmp_] := Exp[-k1[i, nrg] *x2] + — *
2

i* k[nrg]

(rAmp*Exp[i*k[nrg] *x2] * (

+1]—Exp[-i*k[nrg]*x2]* fifjﬂffgl-_l))

k1l[i, nrg] x1l[i, nrg]
1

cc[i_, nrg_, rAmp_] := Exp[x1[i, nrg] * x2] + — *
2

i* k[nrg]

(Exp[—i*k[nrg] *xX2] * (1 +

i* k[nrg]
] + rAmp * Exp [1 * k[nrg] » x2] * (1— —)}

x1l[i, nrg] x1l[i, nrg]
psiI[i_, nrg_, rAmp_] := Re[Exp[i xk[nrg] *x[[i]]] + rAmp * Exp[-1 * k[nrg] *x[[i]]]]

psiII[i_, nrg_, rAmp_] := Re[c[i, nrg, rAmp] * Exp[-x1[i, nrg] »x[[1]]] +
cc[i, nrg, rAmp] *Exp[x1[i, nrg] *»x[[1]]]]
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d[i_, nrg_, rAmp_] :=

i*Exp[:i*k[nrg] *x1] * (rAmp*Exp[J'L*k[nrg] * X2] * (J’L*k[nrg] - x1[nrg] ) *
2

k1l [nrg] 1% k[nrg]

Sinh[kxl[nrg] * A] + Exp[-1 * k[nrg] * x2] *

x1l[nrg] i* k[nrg]
+

(2 * Cosh[x1l[nrg] * A] - ( J * Sinh[x1[nrg] *A]])

i* k[nrg] x1l[nrg]

1
f[nrg_, rAmp_] := — *Exp[-1 * k[nrg] * x1] % (rAmp*Exp[i*k[nrg] *xX2] *
2

i*k[nrg] x1l[nrg]
+

(2 * Cosh[x1l[nrg] * A] + ( J * Sinh[x1 [nrg] *A]] -

x1l[nrg] i* k[nrg]
i* k[nrg] x1l[nrg]

Exp[-1i*k[nrg] * x2] * ( J * Sinh[x1 [nrg] *A])

x1l[nrg] i k[nrg]
psiIII[i_, nrg_, rBAmp_] :=
Re[d[nrg, rAmp] * Exp[i xk[nrg] *x[[i]]] + £[nrg, rAmp] *Exp[-i *k[nrg] *x[[1]]]]

tAmp [rAmp_] := Sqrt[1 - Abs[rAmp] "~ 2]
gg[nrg_, rAmp_] := Sqrt[1l - Abs[rAmp] " 2] * Exp[i * k[nrg] * x2 + x2[nrg] * x2]

g4[nrg_, rAmp_] :=
1 i k[nrg]
— x» Exp[x2[nrg] *» x1] * (d[nrg, rAmp] * Exp[i * k[nrg] » x1] * (1 -+
2 k2 [nrg]

i+ k[nrg] ))

f[nrg, rAmp] * Exp[-1 * x1] * (1 +
k2 [nrg]

1
gg4[nrg_, rAmp_] := — * Exp[-x2[nrg] * x1] *
2

i* k[nrg]
d[nrg, rAmp] * Exp[i * k[nrg] * x1] * (— + 1) +

k2 [nrg]
i* k[nrg] ) )

f[nrg, rAmp] * Exp[-1 % x1] * [1 -
k2 [nrg]

psiIV[i_, nrg_, rAmp_] :=
Re[g4[nrg, rAmp] + Exp[-x2[nrg] *x[[i]]] (x+gg4[nrg,rAmp] +Exp [x2[nrg]+x[[i]]]+) ]
(*gg[nrg, rAmp] *Exp [-x2 [nrg] *x[[i]]]]*)

psiV[i_, nrg_, rAmp_] := Re[tAmp[rAmp] * Exp[i * k[nrg] »x[[1]]]]

YI = Flatten@Table[psiI[i, energyGood[[1l, 269501]], rAmp], {i, 1, 957}];

YII = Flatten@Table[psiII[i, energyGood[[1l, 269501]], rAmp] *1, {i, 958, 980}];
YIII = Flatten@Table[psiIII[i, energyGood[[1l, 269501]], rAmp] *1, {i, 981, 1021}];
YIV = Flatten@Table [psiIV[i, energyGood[[1l, 269501]], rAmp] » 1, {i, 1022, 1044}];
YV = Flatten@Table[psiV[i, energyGood[[1l, 269501]], rAmp], {i, 1045, Length[x]}];
€ = energyGood[[1, 269501]] / (2# 7w+ A+ 1.0%"3) + Join[yI, YII, YIII, YIV, YV];
Dimensions [T]

doubRectWave = ListPlot[{Transposee{x /10"-6, 2},
Transpose@{x/lo"—6, potential[[1l, All]] / (2 *Tx B * 10A3) }},
Joined -» True, PlotRange -» {{-2, 2}, {-0.1, 46}}, Frame » True, FrameLabel -
{{Style["Potential Energy Function, kHz", 18], Style["Wavefunction, T (x)", 18]},
{style["Position, um", 18], None}}, PlotLabel »
Style["Double Rectangular Barrier Potential and Transmitting Wave", 18],
FrameTicksStyle -» Medium, ImageSize -» Large, PlotStyle » Thickness[.004] ]
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Appendix H

Eigenenergy tables for the double Gaussian barrier potential



Eigen-energies for a double Gaussian defined by o=1.0pm, Xgep=2.5um
30kHz |3.B7|6.39 |8.95(|11.51 |14.06 |16.58 |19.04 |21.44 |23.74(25.92|27.9(29.62 (31.26
A 2.522.56] 2.56 2.55 2.52 2.46 2.4 2.3 2.1B (1.9B| 1.72 1.64

Table H.1: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.0um, zsep = 2.5um, and ug2 = 30kHz,
and the difference between the resonant energies to order 10°. Notice that the first resonant energy seen in the transmission spectrum is
about F = 23.74kHz, but there are eight resonant energies not shown in the spectrum. This will allow us to optimize the energy density
such that we can see more of the resonant energies in the spectrum. The spacing between the resonant energies decreased and became

more uniform as the resonant energy increased.

Eigen-energies for a double Gaussian defined by o=1.0um, Xge;=4.B8um
30kHz (0.94 [1.54(2.22]|2.99|3.82|4.72|5.67|6.68B|7.73|8.83(9.97(11.14 |12.3413.57|14.8B3(16.11(17.41|18.72|20.04(21.37|22.7(|24.03(25.34|26.63(27.87[29.05(30.16(31.31
it 0.6 |0.6B|0.77|0.83] 0.9 |0.95[1.01(1.05| 1.1 (1.14]| 1.17 1.2 1.23 1.26 1.28B 1.3 1.31 | 1.32 1.33 {1.33( 1.33 1.31 1.29 ( 1.24 | 1.18 | 1.11 1.15

Table H.2: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.0um, x4, = 4.8um, and ug2 = 30kHz,

and the difference between the resonant energies to order 10°.

Eigen-energies for a double Gaussian defined by o=1.0im, Xgep=5.8m

SOJLHZ‘0.83|1.24‘1.71|2.24|2.B2|3.44|4.11|E.BZ|5.57|6.35|7‘.17‘8.02|3.91 9.82|10.?6|11.]"2‘]2.71|13.72|14.75|15.B|15.B?|17.95|19.05|20.15‘21.2? |22.39|23.51 |24.53|25.M ‘25.34 |27.92 |2a.94 |29.93|3u.92 31.98

A ‘ |D.41‘0.4T|0.53|D.SB|D.62|D.67|D.T1|D.?5|D.TE|O.BZ‘D.BS|D.EQ‘D.91| 0.94 | 0.96 ‘ 0.99 | 1.01 | 1.03 |1.D5| 1.07 | 1.08B | 1.1 | 1.1 ‘ 1.12 | 1.12 | 1.12 | 1.12 | 1.11 ‘ 1.1 | 1.0B | 1.02 | 0.99 | 0.99 ‘ 1.06

Table H.3: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.0um, zp = 5.8um, and up2 = 30kHz,

and the difference between the resonant energies to order 10°. It is clear that again the number of allowed resonant energies has increased.

18T




Eigen-energies for a double Gaussian defined by o=1.6um, Xgep=4.8m

30kHz

1.

17 | 2.21 | 3.31

4.46

5.65

6.B6

8.11

9.37

10.64 [11.93

13.23

14.54

15.84

17.14

18.44

19.73

21.01

22.27

23.51

24.73

25.91

27.05

28.13

29.12

30.

30.89

31.51

1.04 1.1

1.15

1.19

1.21

1.25

1.26

1.27 | 1.29

1.3

1.31

1.3

1.3

1.3

1.29

1.28

1.26

1.24

1.22

1.18

1.14

1.0E

0.99

0.BB

0.89

1.02

Table H.4: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.6um, xsp = 4.8um, and ug2 = 30kHz,

and the difference between the resonant energies to order 10°.

Eigen-energies for a double Gaussian defined by o=1.6im, Xgep=5.Bum

30kHz| 0.88 ‘1.52 |2.22 |2.BB ‘3.19 |q.54 |5.52 ‘6.43 |7.3E |B.34 ‘9.33 |10.34|11.36‘ 12.4 |13.45|14.51‘15.5?|1G.65|17.?3‘18.Bl|19.BQ|20.96‘22.03| 23.1 |24.15‘25.1s| 26.2 |27.19‘28.13|29.02|29.E3‘30.62|31.49

|

‘ 0.64 | 0.7 | 0.76 ‘ 0.81 | 0.85 | 0.B8 ‘ 0.91 | 0.95 | 0.96 ‘ 0.99 | 1.01 | 1.02 ‘ 1.04 | 1.05 | 1.06 ‘ 1.06 | 1.08 | 1.08 ‘ 1.0B | 1.08 | 1.07 ‘ 1.07 | 1.07 | 1.05 ‘ 1.03 | 1.02 | 0.99 ‘ 0.94 | 0.89 | 0.B1 ‘ 0.79 | 0.87

Table H.5: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.6um, x5p = 5.8um, and up2 = 30kHz,

and the difference between the resonant energies to order 10°.

Eigen-energies for a double Gaussian defined by o=1.6mm, Xge,=4.8:m

31kHz

1.

18

2.23

3.34

4.5

5.69

6.92

8.17

9.44

10.73(12.03

13.34

14.65

15.97

17.28

18.5%9

1%.89

21.18

22.46

23.71

24.94

26.14

27.29

28.39

29.4

30.27

31.03

3l1.B4

1.05

1.11

1.16

1.19

1.23

1.25

1.27

1.29 1.3

1.31

1.31

1.32

1.31

1.31

1.3

1.29

1.28

1.25

1.23

1.2

1.15

1.1

1.01

0.87

0.76

0.81

Table H.6: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.6um, s, = 4.8um, and upz = 31kHz,

and the difference between the resonant energies to order 10°. Notice that the resonant energies match within an order of 10~1 with those

in Fig. but the transmission is no longer unity for those of similar resonance.
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Eigen-energies for a double Gaussian defined by o=1.6um, Xg.,=4.8/m

33kHz

4.58B

5.79

7.03

8.3

9.59

10.89

12.21

13.54

14.B7

16.21

17.54

18.87

20.19

21.51

22.8

24.08

25.33

26.55

27.73

28.B5

25.8B7

30.98

1.18

1.21

1.24

1.2%

1.29

1.3

1.32

1.33

1.33

1.34

1.33

1.33

1.32

1.32

1.29

1.28

1.25

1.22

1.18

1.12

1.02

1.11

Table H.7: Table of the resonant energies for a double Gaussian barrier potential defined by o = 1.6um, xsp = 4.8um, and up2 = 33kHz,

and the difference between the resonant energies to order 10°. Notice that the lower resonances are within an order of 10! of the resonant

energies of the symmetric double Gaussian barrier potential. The asymmetric double Gaussian barrier has resonances that do not achieve

full transmission unlike its symmetric counter part.
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Eigenenergy spacing vs Eigenenergies
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Figure H.1: Overall trends of the resonant energies for each double Gaussian barrier potential transmission spectrum studied thus far.
The resonant energy spacing of the harmonic like potentials (blue solid circle, red open circle, orange open triangle, light blue open
square) are, in general, more uniform in the spacing of the lower resonant energies. The non-harmonic potentials (orange solid diamond,
green rectangle, purple rectangle) have resonant energy spacings closer together for the lower resonances and further apart for the higher
resonances. For the potentials with only a difference in height of the second barrier (red open circle, orange open triangle, light blue

open square) the trend shows that the lower resonant energies are similar in value and in spacing and while the energy is increased the

06T

differences between the resonant energies starts to shift further and further from each other.



