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Abstract: The Earth’s long-wavelength geoid anomalies have long been used to 

constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-

mantle convection model. However, there is strong evidence that the seismically 

observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are 

chemically distinct and denser than the ambient mantle. In this thesis, I investigated 

how chemically distinct and dense piles influence the geoid. I formulated dynamically 

self-consistent 3D spherical convection models with realistic mantle viscosity 

structure which reproduce Earth’s dominantly spherical harmonic degree-2 

convection. The models revealed a compensation effect of the chemically dense 

LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography 

to compute the geoid and constrain mantle viscosity assuming thermochemical 

convection with the compensation effect. Thermochemical models reconcile the geoid 

observations. The viscosity structure inverted for thermochemical models is nearly 

identical to that of whole-mantle models, and both prefer weak transition zone. Our 

results have implications for mineral physics, seismic tomographic studies, and 

mantle convection modelling. 

Another part of this thesis describes analyses of the influence of mantle 

compressibility on thermal convection in an isoviscous and compressible fluid with 

infinite Prandtl number. A new formulation of the propagator matrix method is 

implemented to compute the critical Rayleigh number and the corresponding 

eigenfunctions for compressible convection. Heat flux and thermal boundary layer 

properties are quantified in numerical models and scaling laws are developed.  
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Chapter 1 

 

Introduction 

1.1.  Compressible mantle convection  

Thermal convection within planetary mantles controls thermal and dynamic 

evolution of planets. Most studies on Earth’s mantle convection employ a Boussinesq 

approximation that assumes an incompressible mantle. Classic studies with the 

Boussinesq approximation provide an important understanding of Earth’s mantle 

convection and interior dynamics (e.g., McKenzie et al., 1974).  

As more exoplanets or super-Earths are detected (e.g., Charbonneau et al., 

2009), there is a growing interest in understanding the mantle dynamics for these 

planets (e.g., O’Neill & Lenardic, 2007; Valencia et al., 2007;  Van Heck & Tackley, 

2011; Foley et al., 2012).  A distinct character of super-Earths’ mantles is their very 

large compressibility and Rayleigh number, due to their sizes and masses.  

By formulating compressible mantle convection models, a number of studies 

have examined the effects of compressibility including depth-dependent density, 

viscous heating, and adiabatic heating (e.g., Jarvis & McKenzie, 1980; Steinbach, 

Hansen, & Ebel, 1989). In particular, large compressibility has a critical effect on 

mantle plume dynamics. Leng & Zhong (2008b) reported that the compressibility has 

a controlling effect on plume excess temperature and plume heat flux. It has also been 
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demonstrated that the number of plumes is reduced in compressible convection since 

small scale plumes merge to form super-plumes (Balachandar, Yuen, & Reuteler, 

1992; Thompson & Tackley, 1998; Tan & Gurnis, 2005).   

However, to better understand the thermal and atmosphere evolution of terrestrial 

planets with large compressibility, more studies are needed on the marginal stability 

analysis and scaling laws of convective heat flux for compressible mantle convection. 

Marginal stability analysis has been performed for compressible convection, but only 

with limited parameters and restricted boundary conditions (Jarvis & McKenzie, 1980; 

Bercovici et al., 1992). While scaling laws of heat flux and thermal boundary layer 

properties are well understood for Cartesian incompressible thermal convection, they 

remain poorly understood for compressible convection.  

In Chapter 2, I described a marginal linear stability analysis on compressibility 

mantle convection using a new technique based on a propagator matrix method.  I 

also computed finite amplitude compressible models with a wide range of mantle 

compressibility and Rayleigh number, and derive scaling laws for thermal boundary 

layer (TBL) properties and convective heat transfer. 

1.2.  The Earth’s long wavelength structure from the geoid observation and 

seismic tomographic models 

The Earth’s gravitational equipotential surface that defines the sea level, the 

geoid, provides fundamental constraints on the Earth’s interior structure (e.g., Hager 

and Richards, 1989; Ricard et al., 1993). With advances of the space satellite geodesy, 

the Earth geoid has been mapped in an ever high resolution with unprecedented 

details. It has long been noticed that the non-hydrostatic geoid is prevalently at long 

wavelengths (Lerch et al., 1983) and is characterized by a dominantly spherical 
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harmonic degree-2 structure with two geoid highs above Africa and the Pacific Ocean. 

While the geoid features at shorter wavelength, such as positive geoid at convergent 

zones, are associated with plate tectonics (e.g., Hager, 1984), the very long 

wavelength geoid (e.g., degree-2) shows little tectonic patterns and its primary source 

lies deep in the mantle (e.g., Hager & Richards, 1989). 

The geoid is controlled by lateral density variations including both the interior 

buoyancy and those from deflections of internal and external boundaries (e.g., Pekeris, 

1935; Hager and Richards, 1989). The isostatic component of the deflections (i.e., 

topographies) is fully compensated and makes zero contribution to the geoid, and the 

geoid modelling only considers the dynamic topographies (i.e., the residual 

topographies) that are supported by vertical stresses induced by the mantle flow (e.g., 

Hager, et al., 1985). The dynamic topographies, which are computed by solving the 

Stokes’ flow equations, have a strong dependence on, and thus can constrain, the 

mantle viscosity profile (e.g., Hager and Richards, 1989). As a result, the Earth’s non-

hydrostatic geoid provides important constraints on the structure, rheology, and 

dynamics of the mantle (e.g., Hager and Richards, 1989; Ricard et al., 1993), making 

it an essential piece of information in probing the internal structure of the dynamic 

Earth by its surface manifestations.  

Earth’s internal structure can be more directly imaged by seismic methods (e.g, 

Dziewonski, 1984). Seismic wave anomalies can be mapped by tomographic 

inversions of seismic data. Seismic slow anomalies are typically associated with hot 

and buoyant mantle materials, while fast wave anomalies imply relatively cold 

materials (e.g., cold downwellings). The mantle tomographic models have clearly 

shown slow anomalies below mid-ocean ridges and hotspot, and fast anomalies 

beneath continent shields and subduction zones (e.g., Dziewonski, 1984; Tanimoto, 
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1990) in the shallow depths. However, the most prominent feature in all recent 

tomographic models are a dominantly degree-2 structure in the lower mantle, with 

two large low shear velocity provinces (LLSVPs) extending several hundred 

kilometers above the CMB below Africa and the Pacific Ocean, which are surrounded 

by seismically fast, circum-Pacific anomalies (e.g., Dziewonski, 1984; Tanimoto, 

1990; Masters et al., 1996; Ritsema et al., 1999). These degree-2 anomalies are 

continuous across the mantle, despite weaker anomalies in the mid-mantle and more 

tectonic features at shorter wavelength in the shallow depths (e.g., Ritsema et al., 

2011).  

The seismic anomalies are often interpreted as purely due to the thermal effect 

in an isochemical, whole mantle convection framework, and the LLSVPs are thought 

as hot and buoyant roots of the ‘super-plumes’ that extend to the upper mantle, form 

the upwelling part of the global mantle convection, and cause the African and Pacific 

super-swell topography (e.g., Marty and Cazenave, 1989; Davies and Pribac, 1993; 

Lithgow-Bertelloni and Silver, 1998; Romanowicz and Gung, 2002). Representing the 

seismic structures as mantle density and buoyancy structure in the purely thermal, 

whole mantle convection model, geodynamic studies have not only reproduced the 

Earth’s geoid, but also provided constraints on the mantle viscosity structure (e.g. 

Hager & Richards, 1989). Assuming thermal LLSVPs, Lithgow-Berterlloni and Silver 

(1993) also explains the dynamic topography which, similarly to the geoid, has two 

prominent topographic highs over southeast Africa and south Pacific.   

1.3.  Earth’s mantle is compositionally heterogeneous 

Purely thermal and whole mantle convection apparently means fast mixing 

and homogenization in the convective system. The Earth’s mantle, however, is far 
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from being homogenized (e.g., Hofmann, 1997). Rich varieties of geochemical 

signatures found in mantle derived basalts suggest a mantle with complex 

composition reservoirs (e.g., Hofmann, 1997; Kellogg et al., 1999; Kunz et al., 1998). 

Fundamental geochemical differences have been found between the mid-ocean basalts 

(MORB) which sample the relatively depleted upper mantle, and oceanic island 

basalts (OIB) which are less depleted or even enriched in incompatible or radiogenic 

elements (e.g., Schilling, 1973). Although their exact mantle sources are still 

uncertain, OIBs have been proposed as created by plumes rising from the deep mantle 

(e.g., Morgan, 1971), and can shed lights to the lower mantle thermochemical 

structure as well as the differentiation and evolution of the Earth (e.g., Hofmann et al., 

1986; Hofmann, 1997). Compositional distinct mantle layers and potentially primitive 

reservoirs in the lower mantle are two candidates of the origins of OIBs. Indeed, the 

layered mantle convection, where upper mantle and lower mantle are compositionally 

distinct materials and have separate convective systems, has long been the ‘standard 

model’ in geochemical studies (e.g., Schilling, 1973). However, the layered 

convection model fails to reconcile the Earth’s geoid: to reproduce the observed geoid, 

a huge undulation at the compositional boundary at 670 km depth would occur in the 

layered mantle convection model, which contradicts the seismic observations (Hager 

& Richards, 1989). Can we propose mantle convection models that would reproduce 

both the geochemical signatures and the geoid?  

Recently, seismic studies suggest that LLSVPs might be chemically distinct 

and dense piles. The anti-correlation between shear wave and bulk sound speeds in 

the LLSVPs suggests a thermochemical origin for the seismic heterogeneities in these 

regions (e.g., Masters et al. 2000). The sharp seismic velocity contrasts at the edges of 

LLSVPs are better explained as features of chemically distinct piles rather than purely 
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thermal anomalies (Wen et al., 2001; Ni et al., 2002). The thermochemical 

characteristics of the LLSVPs reconcile geochemical inferences of chemically distinct 

“reservoirs” that explain the difference between the oceanic island basalt (OIB) and 

the mid-ocean ridge basalt (MORB) (e.g., Hofmann, 1997; Kellogg et al., 1999; Kunz 

et al., 1998), and promote the studies of thermochemical mantle mode with 

chemically distinct piles in the lowermost mantle.  

The large-scale chemically distinct piles, if they represent the LLSVPs as 

proposed (e.g., Garnero and McNamara, 2008), may have significant effects on the 

mantle dynamics. It has been suggested that thermochemical structures in the mantle 

affect the buoyancy force distribution, mantle flow configuration and convective heat 

transfer (e.g., Tackley, 1998; Kellogg et al., 1999; Davaille, 1999; McNamara and 

Zhong, 2005a; Zhang et al., 2010). However, the effects of thermochemical structures 

on the geoid are not well understood.  

1.4.  Geoid modelling of thermochemical mantle convection models 

The geoid modelling using instantaneous mantle flow models based on 

seismic velocity anomalies can provide a critical constraint on the mantle rheology 

and buoyancy structure. However, constructing buoyancy structure from the seismic 

tomographic models in those chemically heterogeneous regions is difficult due to the 

mixture of both thermal and compositional effects, and uncertainties in seismic, 

compositional and mineral physics mantle models. In their geoid modelling study, 

Steinberger & Torsvik (2010) simply removed the buoyancy structure of the 

thermochemical layer (i.e., bottom 300 km of the mantle). Through a joint inversion 

of the geoid and seismic data with a parameterization of possible compositional effect 

on the buoyancy, Forte & Mitrovica (2001) concluded that the LLSVPs are overall 
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positively buoyant in order to fit the geoid (Forte and Mitrovica, 2001), thus raising 

the question of whether LLSVPs represent stable thermochemical structures over long 

time scales.  

With all the difficulties in the direct geoid modelling based on seismic 

tomographic models, we seek to firstly examine the effects of chemical piles (e.g., the 

LLSVPs) on the geoid as well as whether positive geoid anomalies in a largely 

degree-2 convection as for the present-day Earth can be generated above stable 

chemical piles based on dynamically self-consistent mantle convection models. 

 A key in formulating dynamically self-consistent convection models to 

investigate the effects of thermochemical piles on the Earth’s geoid is to generate 

long-wavelength convective structure with two major thermochemical piles above the 

CMB. This is accomplished here by modeling thermochemical convection (e.g., 

McNamara and Zhong, 2004a) with modestly strong lithosphere and a weak upper 

mantle (Zhong et al., 2007).  

In time-dependent, dynamically self-consistent thermochemical mantle 

convection models, I found that the general characteristics of the surface geoid and 

dynamic topography over stable dense thermochemical piles, after reaching a 

dynamic equilibrium, resemble the observations. Additionally, I will show that dense 

thermochemical piles have a compensation effect on the geoid such that the bottom 

~1000 km of the mantle (i.e., a compensation layer), or 2 to 3 times of the maximum 

thickness of the chemical piles, has a zero net contribution to the geoid at long 

wavelengths. As analyzed in Chapter 3, the compensation effect occurs because the 

geoid anomalies from negatively buoyant chemical piles are offset by those from hot 

and buoyant normal mantle above the piles.  
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Considering the compensation effect,  the geoid modelling for the 

thermochemical model with stable chemical piles can be done following the same 

approach as that for whole mantle models (e.g., Hager & Richards, 1989) except that 

the mantle buoyancy structure in the compensation layer, including the LLSVPs, 

needs to be removed. The mantle above the compensation layer can be seen as 

isochemical with buoyancy structure that can be determined from seismic 

tomographic models with a conversion factor (e.g., Hager & Richards, 1989; Forte & 

Mitrovica, 2001; Ghosh, et al., 2010).  

I then investigated how well the geoid can be explained in instantaneous flow 

models in which mantle buoyancy structure is derived from seismic tomographic 

models considering the compensation effect for the thermochemical mantle as 

described in Chapter 4. This study also re-examines the geoid constraints on mantle 

viscosity structure for a thermochemical mantle and compares the inverted mantle 

viscosity with that inferred from previous purely thermal mantle models. 

1.5.   Organization of the thesis  

This thesis is organized as follows: Chapter 2 presents the work on the 

compressible mantle convection, Chapter 3 describes the study about the effects of 

chemically dense piles on the long wavelength geoid using dynamically self-

consistent thermochemical mantle convection models, Chapter 4 presents the study of 

the geoid modelling based on seismic tomographic models assuming thermochemical 

convection considering the compensation effect by heavy chemical pile, and Chapter 

5 summarizes this thesis.  
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Chapter 2 

 

Analyses of Marginal Stability, Heat Transfer and Boundary Layer 

Properties for Thermal Convection in a Compressible Fluid with 

Infinite Prandtl Number
1
 

 

Abstract: Thermal and dynamical evolution of planets is controlled by thermal convection in 

planetary mantles. Mantle compressibility, which measures volume change due to pressure 

change and its associated energetic effects, can have important effects on planetary mantle 

convection. However, key issues including marginal stability analysis, thermal boundary 

properties, and heat transfer in compressible mantle convection are not well understood. This 

paper studies the influence of mantle compressibility on thermal convection in an isoviscous 

and compressible fluid with infinite Prandtl number, using both marginal stability analysis 

and numerical modeling. For the marginal stability analysis, a new formulation of the 

propagator matrix method is implemented to compute the critical Rayleigh number Rac and 

the corresponding eigenfunctions for compressible convection at different wavelengths (i.e., 

wavenumber kx) and dissipation number Di which measures the compressibility. Rac from the 

analysis is in a good agreement with that determined from the numerical experiment using the 

eigenfunctions as initial perturbations.  Our study suggest that if Ra is defined by the surface 

density, the minimum Rac may occur at non-zero Di. Finite element models are computed for 

compressible mantle convection at different Ra and Di. Heat flux and thermal boundary layer 

(TBL) properties including boundary layer thickness and temperature difference are 

quantified and analyzed from the numerical results. Scaling laws of temperature differences 

                                                           
1
 This chapter was published as “Liu, X., and S.J. Zhong, 2013. Analysis of marginal stability, heat 

transfer and boundary layer propoerties for thermal convection in a compressible fluid, Geophys. J. Int, 

194, 125-144” 
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across TBLs and of the heat flux are derived analytically for compressible mantle convection 

and are verified by the numerical results. This study shows that while TBL thicknesses and 

the heat flux are still scaled with Ra to the -1/3 and 1/3 power, respectively, as those for 

incompressible convection, they also strongly depend on Di. In particular, compressibility 

breaks the symmetry for the top and bottom TBLs, and the ratios of thickness and temperature 

difference for the top TBL to those for the bottom TBL are exp(Di/2). These results have 

important implications for compressible mantle convection.      
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2.1.  Introduction 

Thermal convection within planetary mantles controls thermal and dynamic 

evolution of planets. Most studies on Earth’s mantle convection employ a Boussinesq 

approximation that assumes an incompressible mantle. Classic studies with the 

Boussinesq approximation provide an important understanding of Earth’s mantle 

convection and interior dynamics (e.g., McKenzie et al., 1974). However, by 

formulating compressible mantle convection models, a number of studies have also 

examined the non-Boussinesq effects including depth-dependent density, viscous 

heating, and adiabatic heating (e.g., Jarvis & McKenzie, 1980; Steinbach et al., 1989).  

In their classic work on compressible mantle convection, Jarvis & McKenzie 

(1980) formulated a 2D Cartesian model and systematically investigated the marginal 

stability problem and finite amplitude convection. Other models of compressible 

convection have been formulated to examine the effects of equations of state (Ita & 

King, 1994), variable viscosity (Tackley, 1996), spherical geometry (Bercovici et al., 

1992), and dynamic pressure in the buoyancy term (Leng & Zhong, 2008a). Recently,  

Tan et al. (2011) incorporated variable viscosity and material properties into 3D 

spherical models of compressible mantle convection.  Also, a number of studies 

showed that mantle compressibility has significant effects on plume dynamics. It has 

been demonstrated that the number of plumes is reduced in compressible convection 

since small scale plumes merge to form super-plumes (Balachandar et al., 1992; 

Thompson & Tackley, 1998; Tan & Gurnis, 2005).  Leng & Zhong (2008b) reported 

that the compressibility has a controlling effect on plume excess temperature and 

plume heat flux. Tan et al. (2011) found that in a compressible mantle, the plumes 

form around the edges of chemical ‘domes’ at the core mantle boundary. 



12 
 

However, more studies are needed to better understand the marginal stability 

analysis and scaling laws of convective heat flux for compressible mantle convection. 

Marginal stability analysis was performed for compressible convection with limited 

parameters and restricted boundary conditions (Jarvis & McKenzie, 1980; Bercovici 

et al., 1992). While scaling laws of heat flux and thermal boundary layer properties 

are well understood for Cartesian incompressible thermal convection, they remain 

poorly understood for compressible convection. Recently, as more exoplanets or 

super-Earths are detected (e.g., Charbonneau et al., 2009), there is a growing interest 

in understanding the mantle dynamics for these planets (e.g., O’Neill & Lenardic, 

2007; Valencia et al., 2007;  Van Heck & Tackley, 2011; Foley, Bercovici et al., 

2012).  A distinct character of super-Earths’ mantles is their very large 

compressibility and Rayleigh number, due to their sizes and masses. Most of previous 

studies on compressible mantle convection considered compressibility in a range 

appropriate to Earth, and now it is necessary to consider larger compressibility.  

In this study, we perform marginal linear stability analysis using a new 

technique based on a propagator matrix method.  We also compute finite amplitude 

compressible models with a wide range of mantle compressibility and Rayleigh 

number, and derive scaling laws for thermal boundary layer (TBL) properties and 

convective heat transfer. In the following section, we present model formulation and 

governing equations. In section 2.3, we show results for the marginal stability analysis 

of compressible convection.  In section 2.4, we present finite amplitude convection 

calculations and derive scaling laws for TBL properties and heat flux. In sections 2.5 

and 2.6, we discuss the implications of our results for compressible convection and 

make concluding remarks.  
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2.2.  Model formulation 

2D Cartesian models are formulated with an anelastic-liquid approximation 

(ALA) (e.g., Jarvis & McKenzie, 1980; Schubert, Turcotte, & Olson, 2001). ALA 

uses depth-dependent parameters, notably density )(zr  as reference state in the 

governing equations. In this study, parameters such as viscosity, thermal conductivity, 

specific heat, and thermal expansion are assumed constant in our models unless 

otherwise indicated.  

)(zr  is determined by the Adams-Williamson equation of state by Birch 

(1952):  

         



P

r

r c

g

z



 d

d1

 

,                         (2.1) 

where z is the vertical coordinate pointing upwards, g is gravitational acceleration,   

is the coefficient of thermal expansion, Pc is the specific heat at constant hydrostatic 

pressure, and   is the Grüneisen’s parameter and is defined as  

       P

S

c




 

,     (2.2) 

where S is the isentropic bulk modulus. Notice that in our model with homogeneous 

composition, isentropic and adiabatic process may be viewed as equivalent. We also 

assume that   is constant. 

  In ALA, the density anomaly   is determined by both temperature 

perturbation rTTT   and dynamic pressure p, 

])([ 1 pTT Trr

 
 
,   (2.3) 

where Tr 
is the reference temperature and T  is the isothermal bulk modulus. In our 

models, we make assumption that ST  , which simplifies the compressible 

mantle convection problem as discussed in Schubert et al. (2001). 
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  With assumption of infinite Prandtl number, the conservation equations of 

mass, momentum and energy can be written as follows (Jarvis & McKenzie, 1980; Ita 

& King, 1994; Leng & Zhong, 2008a; King et al., 2010): 

0)( , iiru ,      (2.4) 

         0,,  izjijijj gp  ,    (2.5) 

HukTTugTucTc rjiijiizriiPrPr   ,,,, )( ,  (2.6) 

where ui and T are velocity vector and temperature,  is deviatoric stress tensor, T is 

the derivative of temperature with respect to time t, k is thermal conductivity, H is 

heat production rate;  i and j are spatial indices and z means vertical direction, and ij  

is the Kronecker delta function. 

The deviatoric stress tensor is determined by a rheology equation 
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
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


  ,    (2.7) 

where   is the viscosity.   

Equations (2.4)-(2.6) can be non-dimensionalized with the following 

characteristic values: 

ii xdx  , 
ii u

d
u  0 , sTTTT  , ss TTT  ,

 rr   0 , t
d

t 
0

2


, 

2

00

d

TcH
H P




,   0 , p
d

p 
2

00
,   0 , ggg  0 , PPP ccc  0 , 

 0 , kkk  0 ,         (2.8) 

where symbols with primes are dimensionless; symbols with a subscript 0 are surface 

values of corresponding parameters and are used as the reference to scale the 

dimensional variables; d is the mantle thickness, T  is the total temperature 

ij
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difference across the layer, and sT
 
is the surface temperature which is taken as 273K 

in this study; 0  
is the reference thermal diffusivity and is defined as )/( 0000 Pck   . 

After dropping the primes, the dimensionless governing equations for ALA 

are as follows (e.g., Leng & Zhong, 2008a):
 

0)( , iiru ,               (2.9) 

0])([,, 


 iz

P

rrjijijj p
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g
TTgRap 


 ,                       (2.10) 

               
Hu

Ra

Di
kTTTguDiTucTc rjiijiiszriiPrPr   ,,,, )()( ,         (2.11) 

where Ra is the Rayleigh number, Di is the dissipation number, and   is the mantle 

compressibility. They are defined as: 

00
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Ra P 

 ,                       (2.12) 

0

00

Pc

dg
Di


 ,              (2.13)

   

0


Di
 .              (2.14) 

In our model, 0 is taken as 1, therefore, Di . The dimensionless surface 

temperature sT  is fixed as 0.091 and the heat production rate H in equation (2.11) is 

zero. The non-dimensional values of  , , k, g, and Pc  are all 1 in equations (2.9)-

(2.11) unless otherwise indicated. 

The dimensionless Adams-Williamson equation is  

     




 


p

r

r c

g

zd

d1
.                                  (2.15) 

With )/( Pcg = 1 and Di , the dimensionless reference density profile is 

       
)1(

0)( zDi

r ez   .             (2.16) 
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We consider 2D Cartesian models within a box of non-dimensional height of 1 

and length L. The top and bottom boundaries are set as z = 1 and z = 0, respectively. 

We use free-slip boundaries with zero normal velocities and tangential stresses at the 

four boundaries of the box. The non-dimensional temperature is fixed at 0 and 1 on 

the top and bottom boundaries, respectively, and the sidewalls are thermally insulated.  

Two different analyses are presented in this study: the marginal stability 

analysis and the finite amplitude convection calculations.  We use the finite element 

code developed by Leng & Zhong (2008a) for numerical experiments of compressible 

mantle convection. This code is based on incompressible mantle convection code 

Citcom (Moresi et al., 1996) and has been benchmarked (Leng & Zhong, 2008a; King 

et al., 2010).  

 

2.3.  Marginal Linear Stability Analysis Using Propagator Matrix 

Method 

Rayleigh number, Ra, is an important non-dimensional number that 

determines the vigor of convection. Convection occurs when Ra exceeds a critical 

value Rac. Marginal linear stability analysis can be used to study the onset of mantle 

convection and to determine Rac (e.g., Jeffreys, 1930; Turcotte & Schubert, 2002).  

Classic analyses using a stream-function formulation have been used to determine Rac 

for incompressible fluid with uniform thermodynamic parameters and the same 

boundary conditions as our models (e.g., Turcotte & Schubert, 2002) and Rac is: 

   
2

322

k

)kπ(

x

x
cRa


 ,                (2.17) 

where kx is the wave-number of horizontal perturbation. 
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For compressible convection with depth-dependent density and possibly other 

depth-dependent thermodynamic properties, propagator matrix method is more 

effective. The propagator matrix method has been used to obtain analytic solution of 

the Stokes flow problem for incompressible (Hager & O'Connell, 1981) and 

compressible (Leng & Zhong, 2008a) models. With a stream-function and vorticity 

formulation, Jarvis & McKenzie (1980) employed the propagator matrix method for 

marginal stability analysis with heat flux boundary conditions. Buffett, Gable, & 

O’Connell (1994) used the propagator matrix method for marginal stability analysis 

for incompressible flows with depth-dependent viscosity. In this study we develop a 

new implementation of propagator matrix method for marginal stability analysis for 

both incompressible and compressible flows with free-slip and isothermal boundary 

conditions. Our implementation is based on a stress-velocity formulation which is 

similar to that in Leng & Zhong (2008a), but we also incorporate the linearized 

energy equation. The set-up of propagator matrix and the solution procedure are 

discussed in Appendix A. In the following sections we will outline the basic 

principles of marginal stability analysis and present the critical Rayleigh number of 

compressible convection as well as the corresponding eigenfunctions solved by the 

propagator matrix method.  

2.3.1.  Linearized Governing Equations  

Marginal linear stability analysis is performed in the limit of weak convection, 

in which the governing equations can be linearized around a background state 

(Turcotte & Shubert, 2002).  For basal heating convection with a fixed temperature of 

1 at the bottom and 0 at the top, and with constant thermal conductivity, the reference 

temperature is set to be zTr  1 , i.e., purely conductive temperature. Introduce a 

small perturbation T   into reference temperature, such that TTT r
 , and the 
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perturbed temperature leads to non-zero horizontal and vertical velocities uand v , as 

well as non-zero shear and normal stresses  and .  

Since T  , u , v ,    and   are all of small magnitude, the governing 

equations (2.9)-(2.11) can be linearized as follows: 

    
  0

,


iiru ,               (2.18) 
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     TkTzDivgvcTc srPrPr
 2)1(  .            (2.20) 

The dependences of the perturbations on x and z are separable.  The horizontal 

and vertical components of the perturbations are represented by sinusoidal functions 

and arbitrary functions, respectively. Take the temperature perturbation T   as an 

example, T   can be expressed in Fourier transform as  




 x

t

x exzTT dk)ksin()(0

 ,              (2.21) 

where kx is the wave-number of the horizontal component of temperature perturbation, 

)(0 zT  is the vertical dependence of the temperature perturbation, and   is the growth 

rate and is taken as a real number. Notice that both )(0 zT  and   in equation (2.21) 

are corresponding to kx. Perturbations should satisfy the boundary conditions. The 

isothermal boundary condition in our model requires that 0)1()0(  zTzT  

and )(0 zT
 
in equation (2.21) should be 0 at z=0 and z=1. The critical Rayleigh 

number, Rac, is determined as the value of Ra at 0 . )(0 zT
 
at 0  is the 

eigenfunction of temperature perturbation for corresponding Rac, i.e., the 

corresponding kx and Di.  
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The other four perturbations, u , v ,  and   , are expressed in similar forms 

to that of T   in Appendix A. The vertical dependences of u , v ,  and    are 

denoted as )(zU , )(zV , )(zYxz
 and )(zSzz , respectively.   

In Appendix A, we discuss that with a stress-velocity formulation, the 

linearized governing equations (2.18) - (2.20) for a compressible fluid can be written 

as a vector linear differential equation:  

        
AW

d

dW


z
,                                          (2.22)         

where A is a 66  matrix consisting of Ra, Di, kx, and other parameters, and W is a 

16 vector: 
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where superscript T denotes matrix transpose. 

The solution approach to equation (2.22) using the propagator matrix method 

and calculations of critical Rayleigh number and the corresponding eigenfunctions are 

described in Appendix A.  

This implementation of propagator matrix method is general and can be used 

for marginal stability analysis for both incompressible and compressible media with 

either homogeneous or depth-dependent thermodynamic and material properties such 

as thermal conductivity or viscosity.  

 2.3.2.  Results for Rac and eigenfunctions 

We first show calculations of Rac for incompressible (Di=0) and homogeneous 

fluid at fundamental mode n=0 from our method. Here mode n represents the number 

of internal nodes of the vertical velocity eigenfunction, V(z) (i.e., the first mode or 

n=1 mode has one V(z)=0 node, and thus two cells in the vertical direction). We use 
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129 uniform grid points in z direction to compute propagator matrix for all the results 

shown in this study. Figure 2.1a shows Rac for different wave-numbers kx and the 

results are identical to those from classic analysis given by equation (2.17).    

 For compressible fluid, Rac at fundamental mode n=0 and first mode n=1 are 

determined and given in Table 2.1 and Figures 2.1b and 2.1c. We determined Rac at 

n=0 mode for Di=0, 0.5, 1, and 1.5, and kx from 0.1 to 3. We found that n=0 mode 

does not exist for large Di. For example, for kx=0.5, , and 2the maximum Di with 

which n=0 mode exists is 1.9, 1.8, and 1.7, respectively. We also determined Rac at 

n=1 mode for Di = 0, 0.5, 1, and 2, and kx varying from 0.5 to 2. Rac for n=1 mode 

is much larger than that for n=0 mode. It is expected that n=1 mode does not exist for 

even larger Di (e.g., Jarvis and McKenzie, 1981), but we did not explore this topic 

further. 
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Figure 2.1. (a) critical Rayleigh number Rac versus wave-number kx for 

incompressible fluid with uniform thermodynamic parameters and fixed temperature 

boundary conditions. The '+' symbols represent Rac from propagator matrix method 

and the line represents Rac from equation (2.17). (b) and (c): Rac versus kx for 

compressible fluid with uniform thermodynamic parameters at (b) fundamental mode 

n=0 and for different Di; (c) first higher mode n=1 and for different Di. (d) Rac versus 

Di at kx = π for n=0. In (b),(c), and (d), the lines are Rac (defined by surface density) 

from the marginal stability analysis, and the circles are those from numerical 

experiments with error bars (Table 2.1). In (d), the dashed line represents Rac defined 

by depth-averaged density.   
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Table 2.1. Critical Rayleigh number computed by propagator matrix method 

(analytical) and finite element modeling (numerical). 

 

Mode 

n 

Wave number 

kx (π) 

Di Rac 

(analytical) 

averaged Rac 

(numerical) 

Error 

0   0.5 0 761 760  0.8% 

0 0.5 0.5 667 667  0.7% 

0 0.5 1 761 760  0.8% 

0 0.5 1.5 2812 2812  0.5% 

0 1 0 779 779  0.8% 

0 1 0.5 683 683  0.4% 

0 1 1 785 785  0.6% 

0 1 1.5 2408 2408  0.5% 

0 2 0 3044 3045  0.2% 

0 2 0.5 2652 2645  0.5% 

0 2 1 3035 3035  0.3% 

0 2 1.5 6101 6100  0.3% 

1 0.5 0 29910 30500  0.7% 

1 0.5 0.5 26321 26825  0.3% 

1 0.5 1 35533 36400  1.6% 

1 0.5 2 23775 23150  1.5% 

1 1 0 12176 12200  0.8% 

1 1 0.5 10714 10725  0.2% 

1 1 1 14394 14400  0.7% 

1 1 2 11215 11180  0.7% 

1 2 0 12468 12450  0.4% 

1 2 0.5 10963 10950  0.5% 

1 2 1 14557 14550  0.7% 

1 2 2 14572 14600  0.7% 
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 Rac would increase monotonically with Di (Figure 2.1d). Rac shows similar 

Di dependences for wave-numbers kx=0.5 and kx=2 at fundamental mode (Table 

2.1). For n=1 mode, Rac increases with Di for Di varying from 0 to 1 (Figure 2.1c). 

While for n=0 mode, the wave-number kx at which Rac is minimum is about 2/π2

for 1Di , this critical wave-number increases with Di (Figure 2.1b), suggesting that 

smaller convective wavelength is favored for larger Di.  

The eigenfunctions T0(z), U(z) and V(z) are shown in Figure 2.2. It is found 

that compressibility, or Di, has a significant effect on these eigenfunctions (Figures 

2.2a and 2.2b). For Di = 0, T0(z), U(z) and V(z) are purely sinusoidal functions (Figure 

2.2, plotted in dashed lines as references for other cases). For Di = 1, T0(z), U(z)  and 

V(z) are similar to sinusoidal functions, but are distorted to have larger amplitudes at 

shallow depths (or z > 0.5) than sinusoidal functions (Figure 2.2a). For Di = 2, the 

fundamental mode does not exist, and eigenfunctions of n=1 mode is plotted. It can be 

seen that T0(z), U(z) and V(z) differ significantly from sinusoidal functions with flow 

velocity much stronger at the shallow depths (Figure 2b). Eigenfunctions are also 

influenced by depth-dependent thermodynamic parameters (Figures 2c-2d).  
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Figure 2.2. The solid lines are eigenfunctions of temperature (left panel), horizontal 

velocity (middle panel), and vertical velocity (right panel) for models with non-

uniform properties: (a) Di = 1; (b) Di = 2; (c) non-uniform thermal conductivity that 

increases linearly from 1 at the top to 2 at the bottom, Di=0; (d) non-uniform thermal 

expansion that decreases linearly from 1 at the top to 0.2 at the bottom, Di=0. The 

dashed lines in those figures are the corresponding eigenfunctions for a case with 

Di=0 and homogeneous fluid and are sinusoidal functions. 
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Rac is also determined from numerical experiments for kx=0.5π, π and 2π, with 

Di=0, 0.5, 1, 1.5 for the fundamental mode, and Di=0, 0.5, 1, 1.5, and 2 for the first 

mode, using the finite element code for compressible convection (Leng & Zhong, 

2008a).  We determine the critical Rayleigh number numerically by searching for a 

Rayleigh number at which the kinetic energy Ek remains constant with time for a 

given initial perturbation in temperature (Zhong & Gurnis, 1993). The initial 

perturbation is given as  

      
)kcos()(0 xzcTT x ,             (2.24) 

where c is a small number (e.g., 10
-2

), and T0(z) is the corresponding eigenfunction 

determined from the marginal stability analysis for the given Di and kx as discussed 

earlier. The kinetic energy Ek of the flow from the numerical models is defined as:  

    

dSvuE
S

k   )( 22 ,              (2.25) 

where the integration domain S represents the whole flow field in the 2D model. For 

the given Di and kx, we calculate Ek for the first 200 time steps and adjust Ra in the 

model until Ek neither increases nor decays with time (Figure 2.3 for Ek versus time 

for two example cases). The resulting Ra is the critical Rayleigh number where the 

growth rate is 0 (e.g., Zhong & Gurnis, 1993).  
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Figure 2.3. Kinetic energy Ek versus time from numerical calculations using Citcom 

with kx=, Ra = 730 and (a) Di=0; (b) Di=0.5. The critical Rayleigh number Rac 

computed from propagator matrix method for these two cases are 779 and 683, 

respectively. These two calculations show that Ek increases/decreases with time when 

Ra is greater/less than Rac. These two cases were computed for 40,000 time steps 

(elapsed time ~ 5) to reach nearly steady states. For calculations numerically 

determining Rac, models are often computed for 200 time steps. 

 

 

Our finite element models use the same model parameters and boundary conditions as 

those for linear stability analysis. The models use nx×nz=129×129, and 65×129 grid 

points for kx=0.5π, π, and 2π, respectively (i.e., the aspect ratio of the box is 2, 1 and 

0.5, respectively). Such numerically determined Rac for different Di and kx are in 

excellent agreement with those from our propagator matrix method with relative 

difference of less than 1% (Figures 2.1b~2.1d, and Table 2.1), providing confirmation 

for both our propagator matrix method and the finite element method for determining 

Rac.  

We make two remarks about the eigenfunctions. First, it is well known that for 

incompressible (Di=0) and homogeneous fluid, the eigenfunctions are sinusoidal 
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functions (e.g., Turcotte & Schubert, 2002). We showed that the eigenfunctions are no 

longer sinusoidal functions for compressible fluid with 0Di  and depth-dependent 

density (Figures 2.2a and 2.2b). Even for incompressible fluid with Di=0, depth-

dependent thermal conductivity or thermal expansion also leads to non-sinusoidal 

forms of eigenfunctions (Figures 2.2c and 2.2d). Second, it is important to use the 

eigenfunctions of T0(z) in equation (2.24) to determine Rac numerically. Although 

numerical methods have been used to determine Rac (e.g., Zhong & Gurnis, 1993), it 

has not been explicitly demonstrated that the eigenfunctions of T0(z)
 
are needed as 

initial temperature perturbations. We found that for 0Di , if )πsin( z  rather than 

eigenfunction of T0(z) is used for the initial perturbations, the kinetic energy Ek does 

not vary monotonically with time and Rac cannot be determined accurately.  

 

2.4.  Finite Amplitude Convection 

We computed 2D Cartesian models of compressible mantle convection at 

different Ra and Di (Table 2.2) using a finite element code (Leng & Zhong, 2008a).  

In this study of finite amplitude convection, the models are all 1×1 boxes. All the 

cases are for basal heating convection with no internal heating. The calculations are 

done with adequate resolution that produces less than 3% discrepancy between top 

and bottom heat flux for most cases (Table 2.2). For all cases, there are at least three 

elements across a thermal boundary layer (TBL). For most cases with relatively low 

Ra, calculations start from initial temperature perturbation as in equation (2.24). But 

for cases with high Ra, we choose steady state temperature field from calculations 

with either lower resolution or lower Ra as initial conditions. The calculations are run 

until steady states, or quasi-steady states are attained when averaged heat flux does 

not change with time (Figure 2.4). Compressible convection is more time-dependent 
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in general, as discussed in King et al. (2010). In our analysis for cases which reach 

quasi-steady state, time-averaged values of heat flux and TBL properties are used. 

 

 

Figure 2.4. Nusselt number Nu versus elapsed time t for cases (a) AC0036, with Di=0, 

Ra=3 10
6
; (b) AC1537, with Di=1.5, Ra=3 10

7
. AC0036 reaches the steady state at 

t=0.04. AC1537 reaches the quasi-steady state at about t=0.64. Solid and dashed lines 

are Nusselt number at the bottom and top boundaries, respectively. 
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  Table 2.2. Calculations for 2D Cartesian compressible convection. 

Case Di Ra I.C. Steps 

(10
4
) 

Grid ∆Nu(%) Nu εNu Vt Vb 

NC0013 0 10
3
 0 2 65 65 0.002 1.47 0 4.43 4.43 

NC0033 0 3 10
3
 0 2 65 65 0.001 3.10 0 16.59 16.59 

NC0053 0 5 10
3
 0 2 65 65 0.001 3.81 0 24.90 24.90 

NC0014 0 10
4
 0 2 65 65 0.003 4.89 0 41.47 41.47 

AC0034 0 3 10
4
 0 2 65 65 0.002 7.09 0 88.61 88.62 

AC0015 0 10
5
 0 4 65 65 0.002 10.5 0 197.8 197.8 

AC0035 0 3 10
5
 AC0015 6 65 65 0.009 14.9 0 406.3 406.4 

AC0016 0 10
6
 0 6 65 65 0.003 21.7 0 882.9 882.9 

AC0036 0 3 10
6
 0 6 65 65 0.007 30.2 0 1789 1788 

AC0017 0 10
7
 * 12 129 129 0.112 44.7 0 3867 3863 

AC0037 0 3 10
7
 AC0017 18 257 257 0.938 61.9 0.28 7326 7388 

NC0513 0.5 10
3
 0 5 65 65 0.035 1.49 0 4.58 4.37 

NC0533 0.5 3 10
3
 0 2 65 65 0.035 2.58 0 14.31 14.02 

NC0553 0.5 5 10
3
 0 5 65 65 0.043 3.07 0 21.23 20.83 

NC0514 0.5 10
4
 0 5 65 65 0.043 3.82 0 35.05 34.37 

NC0534 0.5 3 10
4
 0 5 65 65 0.015 5.33 0 74.25 72.40 

NC0564 0.5 6 10
4
 0 4 65 65 0.005 6.54 0 117.0 113.3 

NC0515 0.5 10
5
 0 3 65 65 0.032 7.55 0 161.5 155.1 

AC0535 0.5 3 10
5
 0 3 65 65 0.111 9.00 0 252.7 224.8 

AC0565 0.5 6 10
5
 * 8 129 129 4.534 11.3 1.60 341.1 307.1 

AC0516 0.5 10
6
 * 8 129 129 0.132 13.0 0.40 444.6 390.1 

AC0536 0.5 3 10
6
 * 8 129 129 4.789 17.2 1.52 529.9 464.2 

AC0517 0.5 10
7
 * 10 129 129 1.818 23.9 2.42 1077 864.6 

AC0537 0.5 3 10
7
 AC0517 10 129 129 3.249 32.6 3.07 2032 1442 

NC1013 1 10
3
 0 5 65 65 0.075 1.21 0 2.98 2.56 

NC1033 1 3 10
3
 0 5 65 65 0.072 1.82 0 10.04 9.32 

NC1014 1 10
4
 0 5 65 65 0.075 2.47 0 24.40 23.0 

NC1034 1 3 10
4
 0 5 65 65 0.101 3.19 0 50.00 46.7 

NC1015 1 1 10
5
 0 1 65 65 0.218 3.87 0 88.89 77.47 

NC1035 1 3 10
5
 * 8 129 129 4.14 4.82 0.82 129.3 111.6 

NC1065 1 6 10
5
 0 2.8 65 65 0.510 6.37 0 157.6 135.4 

AC1016 1 10
6
 0 5 65 65 0.078 6.87 0.20 192.4 166.5 

AC1036 1 3 10
6
 * 3 129 129 1.159 9.44 0.97 387.6 279.3 
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The first six columns are for case number, Di, Ra, initial condition, the number of 

time steps (in 10
4
), and finite element grid, respectively. NC cases do not have 

vigorous enough convection, while AC cases have vigorous convection and are used 

in scaling analysis here. For the initial condition column (I.C.), ‘0’ stands for default 

initial temperature condition (i.e., equation 2.24), ‘*’ for that from its lower resolution 

case, and ‘AC’ for that from lower Ra case. Nu is for surface Nusselt number. Nu is 

the difference between the top and bottom Nu in percentage. Nu is the standard 

deviation of surface Nu (0 for steady state, while nonzero Nu is for quasi-steady state). 

Vt and Vb are the RMS velocity for the surface and bottom, respectively. 

AC1017 1 10
7
 * 10 129 129 2.473 13.7 1.80 798.3 503.1 

AC1037 1 3 10
7
 AC1037 10 129 129 4.646 18.9 2.14 1533 848.1 

NC1533 1.5 3 10
3
 0 5 65 65 0.148 1.11 0 3.99 2.08 

NC1514 1.5 10
4
 0 5 65 65 0.064 1.31 0 10.31 6.52 

NC1534 1.5 3 10
4
 0 5 65 65 0.038 1.49 0 19.16 12.57 

NC1515 1.5 10
5
 0 2 65 65 0.443 2.00 0 30.29 24.00 

NC1535 1.5 3 10
5
 * 2.5 129 129 0.475 2.53 0 61.08 45.84 

NC1516 1.5 10
6
 * 3.5 129 129 0.713 3.31 0.13 126.5 81.67 

AC1536 1.5 3 10
6
 * 6 257 257 2.94 4.40 0.41 242.7 143.6 

AC1517 1.5 10
7
 * 10 257 257 2.12 6.27 0.71 539.0 270.9 

AC1537 1.5 3 10
7
 * 8 257 257 2.388 8.79 1.0 1075.2 472.6 

AC1518 1.5 10
8
 AC1537 8 257 257 5.298 12.27 1.52 2108.2 799.1 

NC2034 2 3 10
4
 0 3 65 65 0.018 1.10 0 9.06 0.51 

NC2015 2 10
5
 0 3 65 65 0.325 1.23 0 18.73 0.17 

NC2035 2 3 10
5
 0 5 65 65 0.700 1.33 0 34.63 0.20 

NC2016 2 10
6
 * 2 129 129 1.084 1.46 0 60.4 0.38 

NC2036 2 3 10
6
 * 8 257 257 -1.27 1.71 0.13 121.1 7.93 

NC2017 2 10
7
 * 6 257 257 -1.23 2.16 0.18 242.2 29.46 

NC2037 2 3 10
7
 * 10 385 385 1.645 2.79 0.33 456.3 92.84 

AC2018 2 10
8
 * 4 385 385 1.284 3.87 0.38 1020 228.1 

AC2038 2 3 10
8
 * 8 385 385 -1.72 5.24 0.50 1965 475.8 

AC2019 2 10
9
 * 7 385 385 5.2613 7.27 0.71 4454 971.5 

AC2039 2 3 10
9
 AC2019 10 385 385 6.7265 10.14 0.85 7209 1666 
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With no internal heating, Cartesian thermal convection for incompressible 

fluid (Di=0) display symmetric features for the TBLs. Top and bottom TBLs contain 

equal amount of buoyancy, so are the downwellings and upwellings (Figure 2.5a). 

Horizontally averaged RMS velocity for the top and bottom TBLs are identical, and 

the average temperature in the convective core is 0.5 (Figure 2.6a). The 

compressibility breaks the symmetry between the TBLs. For Di=1 cases, the top TBL 

has larger temperature difference and larger flow velocity than those for the bottom 

TBL, and consequently cold downwellings dominate heat transfer (Figures 2.5b and 

2.6b). The adiabatic temperature gradient is also evident (Figures 2.6b~2.6d). These 

features are expected, as have been observed by Jarvis & McKenzie (1980). An 

increasing compressibility causes reduced flow velocity and larger lateral 

homogenous temperature, i.e., less vigorous convection (Figures 2.6a~2.6c), which 

leads to less efficient heat transfer (Figure 7 and Table 2.2). A larger Di also causes 

upwelling plumes to be much weaker than downwellings (Figure 2.5d). When Di=2, 

upwelling plumes can hardly be produced, even with a very large Ra (e.g., Figure 

2.5d with Ra=3 10
9
), because at large Di, the compressibility cools the upwelling 

plumes rapidly to diminish the plumes (Leng & Zhong, 2008a). 
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Figure 2.5. Contours and snapshots of representative temperature fields T for cases (a) 

AC0037, with Di=0, Ra=3 10
7
, and normalized super-adiabatic temperature field θ, 

for cases (b) AC1037, with Di=1, Ra=3 10
7
; (c) NC2037, with Di=2, Ra=3 10

7
; (d) 

AC2039, with Di=2, Ra=3 10
9
. The super-adiabatic temperature Tsa is computed by 

subtracting adiabatic temperature (for example as shown in Figure (B1)) from original 

temperature, and normalized super-adiabatic temperature 

)/()( minmaxmin

sasasasa TTTT  , where 
max

saT and 
min

saT are the maximum and minimum 

of super-adiabatic temperature. ),( maxmin

sasa TT  for cases in (b), (c), (d) are (-0.2803, 

0.1334), (-0.0713, 0.0127), and (-0.0584, 0.0174), respectively. All the cases have 

reached quasi-steady states.  
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Figure 2.6. The solid lines are the horizontally averaged temperature (left panel) and 

RMS velocity (right panel) for cases (a) AC0037; (b) AC1037; (c) AC2039. The 

dashed lines in the temperature plots are the maximum temperature versus depth. 

 

 

We computed cases with dissipation number Di = 0, 0.5, 1, 1.5, 2 and a large range of 

Ra (Table 2.2). The smallest Ra for each Di is generally slightly larger than the 

corresponding Rac. In the following subsections, we will first present numerical 

results, and then develop a scaling theory on how Di and Ra control TBL properties 
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and heat transfer. We will show that our theoretical analysis is consistent with the 

numerical results. 

2.4.1.  Numerical results of Nu and TBL properties 

The Nusselt number is defined as the ratio of the heat flux through the 

convection system to the heat flux which would exist in a purely conductive state: 

      
q

dTk

Q
Nu 




/
,              (2.26) 

where Q is the dimensional convective heat flux, dTk /  is dimensional heat flux in 

a purely conductive state, and q is the dimensionless heat flux, given how the 

equations are normalized in equation (2.8). 

Figure 2.7 shows Nu versus Ra for all the cases. For a given Di, in general, Nu 

does not follow a straight line in the log-log plot at small Ra. This is because at 

relatively small Ra, the top and bottom TBLs have not been fully developed and 

separated. In the following analysis on Nu ~ Ra scaling, we choose cases with 

relatively large Ra (Table 2.3) that have developed vigorous convection and with Nu 

larger than 4. Those cases follow Nu~Ra
α
 and are along straight lines in Figure 2.7.
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Table 2.3. TBL properties of finite amplitude convection cases 

Cases Di Ra 
tT   

bT  
t  

b  
tRa  bRa  

AC0034 0 4103  0.500 0.500 0.112 0.112 5.25 5.24 

AC0015 0 510  0.495 0.495 0.075 0.075 5.19 5.19 

AC0035 0 5103  0.496 0.497 0.054 0.054 5.50 5.50 

AC0016 0 610  0.497 0.497 0.038 0.038 5.94 5.94 

AC0036 0 6103  0.500 0.500 0.028 0.028 6.80 6.79 

AC0017 0 710  0.497 0.496 0.019 0.019 6.80 6.76 

AC0037 0 7103  0.485 0.500 0.014 0.014 7.03 7.95 

AC0535 0.5 5103  0.409 0.305 0.072 0.056 11.5 9.16 

AC0565 0.5 5106  0.404 0.291 0.059 0.045 11.9 7.33 

AC0516 0.5 610  0.389 0.296 0.047 0.037 10.4 9.08 

AC0536 0.5 6103  0.389 0.291 0.036 0.029 13.4 11.0 

AC0517 0.5 710  0.381 0.293 0.026 0.021 15.6 14.4 

AC0537 0.5 7103  0.378 0.298 0.019 0.016 17.8 18.4 

AC1016 1 610  0.269 0.168 0.061 0.038 16.1 16.9 

AC1036 1 6103  0.262 0.158 0.044 0.026 16.9 15.6 

AC1017 1 710  0.255 0.156 0.030 0.019 16.7 16.4 

AC1037 1 7103  0.251 0.156 0.022 0.014 17.8 19.1 

AC1536 1.5 6103  0.154 0.073 0.053 0.023 19.6 19.1 

AC1517 1.5 710  0.146 0.063 0.036 0.014 18.4 12.5 

AC1537 1.5 7103  0.140 0.063 0.025 0.011 17.2 13.5 

AC1518 1.5 810  0.137 0.062 0.018 0.008 19.1 15.6 

AC2018 2 810  0.059 0.023 0.023 0.007 21.2 26.6 

AC2038 2 8103  0.056 0.024 0.017 0.006 20.8 34.4 

AC2019 2 910  0.054 0.022 0.012 0.004 22.1 35.3 

AC2039 2 9103  0.053 0.020 0.008 0.003 22.6 24.3 

tT and bT  are temperature differences across the top and bottom TBLs, respectively.

t  and b are thicknesses of the top and bottom TBLs, respectively. tRa  and bRa  are 

local Rayleigh numbers of the top and bottom TBLs, respectively. 
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Figure 2.7. Nu versus Ra in log-log plot for 2D compressible convection with 

different Di. The symbols diamond, circle, star, triangle, and square are for cases with 

Di = 0, 0.5, 1, 1.5, and 2, respectively.  The cases along the straight lines with filled 

symbols have developed vigorous convection and are used in the scaling analyses 

(Table 2.3). When applicable, error bars represent standard deviations. 

 

 

Convective heat transfer is controlled by TBL properties. We quantified the thickness 

l  and temperature difference lT  of the top and bottom TBLs from numerical 

models. The methods for quantifying the TBL properties are described in Appendix B. 

For a given Di, both the top and bottom TBL thicknesses, t and b , decrease with Ra 

(Figure 2.8a). For incompressible convection (Di=0), l  scales as 
30.0~ Ral  from 

fitting our numerical results, which agrees with classic analysis, where 
3/1~ Ral
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(e.g., McKenzie et al. 1974). TBL thicknesses l  for compressible convection cases 

show similar scaling with Ra to that for incompressible convection (Figure 2.8a). 

While for incompressible convection (Di = 0), t  
and b  are identical, t  is larger 

than b  
for compressible convection ( 0Di ). 

 

 

Figure 2.8. (a) Thicknesses of the top and bottom TBLs and (b) the ratio of top TBL 

thickness to bottom TBL thickness versus Ra. In both (a) and (b), the symbols 

diamond, circle, star, triangle, and square represent cases with Di = 0, 0.5, 1, 1.5, and 

2, respectively. In (a), the filled symbols are for top TBL thickness and the unfilled 

ones are for bottom TBL thickness. In (b), the lines mark 2/Die . 
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Figure 2.9. (a) Temperature differences across the top and bottom TBLs and (b) the 

ratio of temperature differences across the top TBL to that of the bottom TBL versus 

Ra. For both (a) and (b), the symbols diamond, circle, star, triangle, and square are for 

cases with Di = 0, 0.5, 1, 1.5, and 2, respectively.  In (a), the filled symbols are for top 

TBL thickness and the unfilled ones are for bottom TBL thickness. In (b), the lines 

mark 2/Die . 

 

 

For Di = 0 cases, temperature difference of the top TBL, tT , is 0.5 and is identical 

with that of bottom TBL, bT  (Figure 2.9a).  For 0Di  cases, tT  is larger than bT . 

Both tT  and bT  are mainly controlled by Di, and decrease dramatically with Di. 

For a fixed Di, both tT  and bT
 
seem to decrease slightly with Ra (Figure 2.9a).  

We may define a boundary layer Rayleigh number as  
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 ,             (2.27) 

where subscript l means the local value of corresponding parameters and l can be t 

and b, which represent the top and bottom TBLs, respectively. Notice that the density 

for each of the TBLs, l, is taken as that at the top of the TBL. 

tRa
 
and bRa

 
can be defined and related to Ra as: 
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where the superscript * denotes dimensional values, and we considered )1(

0

zDie    

from equation (2.16) and the following relations for pure basal heating convection,
      

bbtttttt TTdTTdTkTkNu  //)//()/()//()/( ******  .                 (2.30) 

Rat and Rab calculated by (28) and (29) using numerical results of Nu, tT
 
and 

bT  are presented in Figure 2.10.  Here we use Nu, tT
 
and bT , but not TBL 

thicknesses l , to determine TBL local Ra, because the latter are more difficult to 

quantify accurately. The most distinct feature of such determined local Ra is that for 

all the cases (Figure 2.10)  

     bt RaRa  .               (2.31) 

It should not be noted that there are some scatterings in Figure 2.10 for Rat and Rab, 

especially for Di=2 cases that may be caused by resolution issues. 
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Figure 2.10. Boundary layer Raleigh numbers for the top and bottom TBLs versus Ra 

for cases with (a) Di=0; (b) Di=0.5; (c) Di=1; (d) Di=2. The circles and the diamonds 

represent the top and bottom TBLs, respectively.  

 

 

2.4.2. Boundary layer analysis of heat transfer 

Equation (2.28) can be written as: 

   

3/13/4 )()(
t

t
Ra

Ra
TNu  .             (2.32) 

The scaling 3/1~ RaNu  is the same as that for isoviscous and incompressible 

convection (e.g., McKenzie et al., 1974; Moresi & Solomatov, 1995; Schubert et al., 
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2001). While tT  is a constant (e.g., ~0.5) for incompressible convection (Di=0), it 

depends strongly on Di for compressible convection ( 0Di ) (Figure 2.9).  

 We take 
bt RaRa   as our basic assumption in the following theoretical 

analysis. Combining (28) and (29), it is straightforward to obtain: 

                                                  

2/2/)1( DiDi

b

t ee
T

T
b 



  .                                         (2.33)      

Since bbtt TTNu  //   (i.e., equation 2.30), equation (2.33) leads to  

                                                        
2// Di

bt e .                                                   (2.34) 

Numerical results of bt TT  /  and bt  /  for all the cases with different Ra and Di 

(Figures 2.8b and 2.9b) confirm equations (2.33) and (2.34).  

 Our numerical results suggest that tT
 
and bT

 
are mainly controlled by Di. 

Next we derive how tT
 
and bT

 
are scaled by Di. In finite amplitude compressible 

convection, an isentropic central region is produced (Jarvis & McKenzie, 1980). In 

the central region, the temperature in a non-dimensional form follows (e.g., Leng & 

Zhong, 2008a) 

)(
d

d
sad

ad TTDi
z

T
 ,               (2.35)  

where Ts is the non-dimensional surface temperature, Tad is the adiabatic temperature, 

and the negative sign results from z pointing upwards. Super-adiabatic temperature, 

which drives convection, happens in the top and bottom TBLs. We divide the 

convective domain vertically into three parts: the top and bottom TBLs and the central 

core, over which temperature differences are represented by tT , bT  and
 adT , 

respectively.  Let T  be the temperature across the whole convective system, and 

non-dimensional 1T . 
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From equation (2.35), in the isentropic central area,  

)1( zDi

sad AeTT  ,              (2.37) 

where A is a constant (e.g., Leng and Zhong, 2008a). At the base of the top TBL or

tz 1 , the temperature is ttad TzT  )1(  , and from equation (2.37), 

tDi

ststad AeTTTzT
  )1( .            (2.38) 

Likewise, at the top of the bottom TBL or bz  , the temperature is

bbad TzT  1)(  , and  
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Combining equations (38) and (39) and defining

)1()( tadbadad zTzTT   , we get 

      1
)1(

)1(







 


tb

t

tb

Di

Di

DiDi

st

ad e
e

ee

TT

T 





.            (2.40) 

Substituting equations (40) and (33) into equation (36) leads to 
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which can be written as 
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From equation (42), tT
 
is determined by both Di and TBL thickness )( bt   . 

As discussed before, TBL thickness   scales with Ra following 3/1~ Ra . 

Therefore, equation (2.42) suggests that tT  is influenced by both Di and Ra. From 

numerical results, )( bt  
 
is of a smaller magnitude compared with 1, especially for 
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large Ra (Figure 2.8a), and may be ignored in equation (2.42) without introducing a 

large error. As a result, equation (2.42) may be approximated as: 

         )(
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Equation (2.43) suggests that tT  is mainly controlled by Di at large Ra, which 

agrees with numerical results (Figure 2.9a). Combining equations (2.33) and (2.43) 

leads to an expression for :   
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 .                                           (2.44) 

Figure 2.11a shows the comparison between tT  from equation (2.43) and 

those from numerical models for different Di and Ra. For a given Di, both tT  from 

the largest Ra case and the averaged tT
 
for all cases (Table 2.3) are plotted. tT

 

from the numerical models agree well with that predicted from the theoretical analysis 

(equation 2.43) with <5% discrepancy, especially for cases with the largest Ra, and it 

is expected because equation (2.43) is a better approximation for large Ra cases. bT
 

from numerical models for different Di and Ra show similarly good agreement with 

those predicted from equation (2.44) (Figure 2.11b).    

bT
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Figure 2.11. Temperature difference for (a) the top and (b) bottom TBLs versus Di. 

In (a) and (b), the lines are computed from equations (2.43) and (2.44), respectively, 

and the circles and diamonds are from numerical experiments. The circles are from 

the highest Ra case for each Di series, while the diamonds are for averaged 

temperature difference for each Di series. 

 

   

Substituting equation (2.43) into equation (2.32), we find  
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From Figure 2.10, tRa
 
is approximately a constant of 18 for 0Di cases. Using 

Rat=18
 
for 0Di  cases and Rat=6 for 0Di  in equation (2.45), Figure 2.12 shows 
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the comparison of Nu from equation (2.45) with our numerical results for all the cases 

with different Ra and Di. This comparison suggests that our theory as given by 

equation (2.45) describes the numerical results of heat transfer well.  

 

 

Figure 2.12. Nu from numerical results compared with those from equation (2.45) for 

cases listed in Table 2.3. The line represents Nudata=Nutheory. The symbols are for Nu 

from equation (2.45), using Rac =18 for Di>0 cases and Rac =6 for Di=0 cases. The 

symbols diamond, circle, star, triangle and square are for Di = 0, 0.5, 1, 1.5 and 2 

cases, respectively.  

 

 

2.5.  Discussion 

In this study, we formulate a 2D Cartesian compressible convection model to 

examine the effects of compressibility on thermal convection. We present a new 

implementation of propagator matrix technique for marginal linear stability analysis 

and determine critical Rayleigh number for different dissipation numbers Di and 
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wave-numbers kx. In the regime of finite amplitude convection, we use a finite 

element code to study the influence of Di on thermal boundary layer (TBL) properties 

and heat flux for models with kx=π and different Di and Ra. We also develop scaling 

laws that describe the dependence of TBL properties and heat flux on Di and Ra. 

2.5.1. Marginal linear stability analysis 

Using a propagator matrix method, we have determined the critical Rayleigh 

number, Rac, for compressible convection with Di varying from 0 to 3. Its agreement 

with Rac determined from numerical experiments proves the robustness of the method 

and results. Our results indicate that if defined with surface density, Rac does not vary 

monotonically with Di. For example, with horizontal perturbation wave-number kx=, 

Rac decreases from 779 for Di=0 to 681 for Di=0.6, but Rac increases rapidly with Di 

for Di > 0.6 (Figure 2.1d). To show the robustness of the result, we computed two 

cases with Di=0 and 0.5, respectively, but with the same Ra=730 and kx=, using our 

finite element model. Notice that Ra=730 is slightly smaller than Rac=779 for Di=0.0 

but larger than Rac=683 for Di=0.5. The initial temperature perturbations for these 

calculations are the same as described in section 2.3.2. Figure 2.3 shows that with 

same Rac=730, the kinetic energy Ek increases with time to a steady state value for 

Di=0.5 case, but decays to nearly zero for Di=0 case, confirming that Rac is smaller 

for Di=0.5 than for Di=0. However, it should be pointed out that if we re-define Ra 

using the averaged density rather than the surface density as in equation (2.12), Rac 

does increase monotonically with Di (Figure 2.1d).  

Our results appear significantly different from those by Jarvis & McKenzie 

(1980), where the authors found that Rac increases much more rapidly with Di for 

models with heat flux boundary conditions at the bottom. For example, for kx=π, 

Jarvis & McKenzie (1980) reported that Rac defined by the average density increased 
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from 586.8 for Di=0 to 9310 for Di=0.117, and to 2.6 10
5
 for Di=0.5. It is 

interesting that the bottom heat flux boundary may have such a major influence on 

Rac.  

Eigenfunctions for the fundamental mode and kx=π (Figure 2.2) show that, as 

Di increases, the flow in the lower region becomes more sluggish than that in the 

upper region. For Di=2, there is an internal node in the eigenfunction of vertical 

velocity, indicating a shear driven flow in the lower region. This is similar to the 

eigenfunction results by Jarvis & McKenzie (1980). One important conclusion from 

our study is that the eigenfunctions of temperature T0(z), horizontal and vertical 

velocities U(z) and V(z), for compressible convection may differ significantly from 

sinusoidal functions that are eigenfunctions for a homogeneous and incompressible 

fluid (e.g., Turcotte & Schubert, 2002). We also found that even for incompressible 

convection, depth-dependent thermodynamic parameters such as thermal conductivity 

or thermal expansion can also cause T0(z), U(z) and V(z) to deviate from sinusoidal 

functions (Figures 2.2c and 2.2d). For example, for incompressible convection with 

thermal conductivity increasing linearly from 1 at the top to 2 at the bottom, our 

analysis revealed that Rac = 1166 for kx=π and the corresponding eigenfunctions are 

given in Figure 2.2c. Notice that for this calculation the background conductive 

temperature Tr needs to be determined for the variable thermal conductivity, and 

dTr/dz
 
in the propagator matrix should be modified accordingly. We also considered a 

case with thermal expansion decreasing linearly from 1 at the top to 0.2 at the bottom, 

and for this case, Rac is 1295 for kx=π and eigenfunctions are given in Figure 2.2d. 

These results of Rac are in agreement with those determined from numerical 

experiments, provided that the corresponding eigenfunctions T0(z) are used as initial 

temperature in the calculations. Compared with Rac = 779 for thermal convection in 
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an incompressible and homogenous fluid, our results show that the depth-dependence 

of the thermodynamic parameters considered here stabilize the convection.  

A final remark on the marginal stability analysis is on ignoring the imaginary 

part of the growth rate in our analysis (i.e., we only considered real number for the 

growth rate), while Jarvis and McKenzie (1980) considered both imaginary and real 

numbers for the growth rate. The growth rate with imaginary number implies 

oscillatory behavior. Although it is of some interest for future studies to examine the 

physical significance of imaginary part of the growth rate, we would like to point out 

that the independent verification of our marginal stability analysis from our finite 

element modeling (Figures 2.1b-2.1d) suggests that our analysis is robust. 

2.5.2.  Finite amplitude compressible convection 

We have quantified convective heat flux and thermal boundary layer (TBL) 

properties for compressible convection at different Ra and Di.  It is well known that 

for isoviscous and incompressible convection, the top and bottom TBLs are 

symmetric with both TBL thickness and temperature difference in TBL identical for 

the top and bottom TBLs. Compressibility breaks the symmetry. Equations (2.33) and 

(2.34) show that the ratios of thickness and temperature drop of the top TBL to those 

of the bottom TBL increase with Di but are insensitive to Ra, especially at large Ra, 

and these two equations describe the numerical results reasonably well (Figures 2.8b 

and 2.9b). 

We also developed theoretical expressions for temperature differences across 

the top and bottom TBLs, Tt and Tb. We found that Tt and Tb, given by 

equations (2.43) and (2.44), respectively, are controlled by Di and insensitive to Ra, 

especially when Ra is large and boundary layer thicknesses are significantly smaller 
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than the depth of the fluid (see equation 2.42). Tt and Tb from equations (2.43) and 

(2.44) are consistent with numerical results (Figure 2.11).   

Note that equations (2.43) and (2.44) for Tt and Tb may pose an upper 

bound on dissipation number Di, Dimax, for which these equations are applicable. That 

temperature differencesTt and Tb must be greater than zero requires that 

0)1(1  Di

s eT .                (2.46) 

In our models, the dimensional surface temperature Ts is set as 0.091 and is applicable 

to the Earth. To satisfy equation (2.46), Di must be smaller than ~2.5 or Dimax~2.5. 

This is consistent with the diminished bottom TBLs in cases with very high Di (e.g., 

Di=2, Ra=3 10
9
, in Fig 2.6c). Dimax is controlled by Ts. The larger Ts is, the 

smallerTt and Dimax are. Also notice that Ts does not affectTt for Di=0, because

01Die .  

Based on our analyses of TBL properties, we developed a scaling relationship 

of heat flux (i.e., Nu) to Rayleigh number Ra and dissipation number Di for 

isoviscous and basal heating compressible convection at relatively large Ra (equation 

2.45).  In particular, we found that Nu scales with Ra
1/3

, which is similar to that for 

incompressible thermal convection (e.g., Turcotte & Schubert, 2002), while its 

dependence on Di follows a more complicated expression due to the relationship 

ofTt to Di in equation (2.43). Rat is needed to fully determine Nu in addition to Ra 

and Di, using equation (2.45). From numerical modeling, Rat 
does not vary with Ra, 

but appears to increase moderately with Di from Rat~6 for Di=0 to Rat~18 for Di=2 

(Figure 2.10). For Di = 0 cases, Rat  may be deduced from equation (2.28) together 

withTt = 0.5 and numerical results of Nu=0.2987Ra
0.31

, and this leads to Rat ~6, 

which is consistent with Rat ~6 in Figure 2.10. Similar value of Rat can be obtained if 

3/1294.0 RaNu   from Turcotte and Schubert (2002) is used for incompressible 
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convection. If we simply take Rat = 6 for Di=0 and Ra = 18 for Di > 0, Nu predicted 

from equation (2.45) agree well with numerical results (Figure 2.12).  

An interesting question is to understand the dependence of Rat on Di. 

Unfortunately, critical Rayleigh numbers Rac from our marginal stability analysis do 

not seem to be directly applicable to understand the effects of Di on Rat, since Rac 

does not vary significantly for Di varying from 0 to 1 (Figure 2.1b). However, Rac 

increases rapidly with decreasing convective wavelength or increasing wave-number 

kx for kx > π (Figure 2.1b). We speculate that the dependence of Rat on Di (Figure 

2.10) may also reflect the effects of decreasing convective wavelengths for cases with 

increasing Di (Figure 2.5). We will leave this for future studies. 

Finally, we wish to point out that the Nu~Ra scaling law (i.e., equation 2.45) does 

not apply for convection at intermediate Ra (Figure 2.7). We think that this is because 

at intermediate Ra, thermal boundary layers are not yet fully developed, and the top 

and bottom TBLs have not been separated yet. 

 

2.6.    Conclusion 

Thermal convection in an isoviscous, compressible fluid is investigated using 

both marginal stability analysis and finite element modeling. A technique based on a 

propagator matrix method is developed for marginal stability analysis of thermal 

convection with depth-dependent thermodynamic properties, density and viscosity. 

Scaling laws are developed for heat transfer and thermal boundary layer properties for 

thermal convection in an isoviscous, compressible fluid. The conclusions can be 

summarized as follows.   

(1) Critical Rayleigh numbers, Rac, at the fundamental and higher modes are 

determined for thermal convection in a compressible fluid. At the fundamental mode, 
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if Ra is defined by the surface density, Rac may not show a monotonic variation with 

dissipation Di. The fundamental mode may only exist for relatively small Di.  

(2) For thermal convection with depth-dependent density or thermodynamics 

parameters, the eigenfunctions are no longer sinusoidal functions, as they are for 

thermal convection in a homogeneous, incompressible fluid. For Di > 0, the 

eigenfunctions for temperature T0(z), horizontal velocity U(z), and vertical velocity 

V(z) have larger amplitudes at the shallower depth than those at the larger depths, and 

shear driven convective cell may appear for large Di.   

(3) Rac are also determined from numerical experiments for different Di and 

wavelengths. With the eigenfunctions for temperature T0(z) as initial perturbations, 

numerically determined Rac agree well with Rac computed from marginal stability 

analysis. 

(4) Thermal boundary layer (TBL) properties are quantified in numerical 

models of thermal convection in a compressible fluid at different Ra and Di. TBL 

thicknesses and temperature differences are heavily influenced by Di. While 

temperature differences across the TBLs decrease with Di, TBL thicknesses increase 

with Di. The ratios of top TBL thickness and temperature difference to corresponding 

bottom TBL properties are 2/Die . For both incompressible and compressible 

convection, TBL thicknesses follow 3/1~ Ral , while TBL temperature differences 

are insensitive to Ra. 

(5) Our numerical modeling shows that the local Rayleigh numbers at the top 

and bottom TBLs are nearly identical and are insensitive to Ra and Di for 

compressible convection. 

(6) The scaling laws of the temperature differences across TBLs, tT  and bT , 

are derived as )/()]1(1[ 2/ DiDiDi

st eeeTT    and
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)1/()]1(1[ 2/3DiDi

sb eeTT  . tT and bT  are found only dependent on Di. The 

scaling laws are verified by numerical results. 

(7) The scaling law of heat transfer, Nusselt number Nu, for thermal 

convection in an isoviscous, compressible fluid is derived to be

3/13/4
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. Nu scales with Ra as 3/1~ RaNu , similar with that 

for incompressible convection. The scaling law for Nu is consistent with numerical 

modeling results. We think that these results may have important implications for 

understanding thermal evolution of super-Earths.  
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Chapter 3 

 

The Long-wavelength Geoid from 3-Dimensional Spherical Models of 

Thermal and Thermochemical Mantle Convection
2
 

 

Abstract: The Earth’s long-wavelength geoid anomalies have long been used to constrain the 

dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection 

model. However, there is strong evidence that the seismically observed large low shear 

velocity provinces (LLSVPs) in the lower mantle underneath the Pacific and Africa are 

chemically distinct and likely denser than the ambient mantle. In this study, we have 

formulated dynamically self-consistent 3D spherical mantle convection models to investigate 

how chemically distinct and dense piles above the core-mantle boundary (CMB) may 

influence the geoid. Our dynamic models with realistic mantle viscosity structure produce 

dominantly spherical harmonic degree-2 convection, similar to that of the present-day Earth. 

The models produce two broad geoid and topography highs over two major thermochemical 

piles in the lower mantle, consistent with the positive geoid anomalies over the Pacific and 

African LLSVPs. Our geoid analysis showed that the bottom layer with dense chemical piles 

contributes negatively to the total geoid, while the layer immediately above the chemical piles 

contributes positively to the geoid, cancelling out the effect of the piles. Thus, the bottom part 

of the mantle, as a compensation layer, has zero net contribution to the total geoid, and the 

thickness of the compensation layer is ~1000 km or two to three times as thick as the 

chemical piles. Our results help constrain and interpret the large-scale thermochemical 

                                                           
2
 This chapter was published as “Liu, X., and S.J. Zhong. The long-wavelength geoid from 3-

dimensional spherical models of thermal and thermo-chemical mantle convection, J. Geophys. Res., 

120, doi:10.1002/2015JB012016” 
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structure of the mantle using surface observations of the geoid and topography, as well as 

seismic models of the mantle. 

3.1  Introduction 

The Earth’s non-

hydrostatic geoid provides 

important constraints on the 

structure and dynamics of 

the mantle (e.g., Hager and 

Richards, 1989; Ricard et al., 

1993). The geoid is 

controlled by both the 

interior density variations 

and the dynamic topography 

of the surface and core-

mantle boundary (CMB) 

(e.g., Pekeris, 1935; Hager 

and Richards, 1989). The 

dynamic topography is 

caused by mantle flow, and 

has a strong dependence on, 

thus can constrain, the 

mantle viscosity profile (e.g., 

Hager and Richards, 1989).  

An important feature of the 

Figure 3.1. (a) The observed geoid up to degrees 

and orders 12, and seismic S-wave anomalies at 

(b) 1000 km and (c) 100 km above the CMB 

from Smean model (Becker and Boschi, 2002), 

respectively. 
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geoid is its dominantly degree-2 structure with two geoid highs above Africa and the 

central Pacific (e.g., Lerch et al., 1983) (Figure 3.1a). 

Seismic tomographic studies also reveal two large low shear velocity 

provinces (LLSVPs) in the lower mantle below Africa and the Pacific Ocean 

surrounded by seismically fast, circum-Pacific anomalies (e.g., Dziewonski, 1984; 

Tanimoto, 1990; Masters et al., 1996; Ritsema et al., 1999) (Figures 3.1b and 3.1c), 

which correlate well with the long wavelength geoid (e.g., Hager et al., 1985). The 

seismic anomalies are often interpreted as purely due to the thermal effect in an 

isochemical, whole mantle convection framework, and the LLSVPs are thought as hot 

and buoyant roots of the ‘super-plumes’ that extend to the upper mantle, form the 

upwelling part of the global mantle convection, and cause the African and Pacific 

super-swell topography (e.g., Marty and Cazenave, 1989; Davies and Pribac, 1993; 

Lithgow-Bertelloni and Silver, 1998; Romanowicz and Gung, 2002). Representing the 

seismic structures as mantle density and buoyancy structure in the purely thermal, 

whole mantle convection model, geodynamic studies have not only reproduced the 

Earth’s geoid, but also provided constraints on the mantle viscosity structure (e.g. 

Hager & Richards, 1989).  

In the past 20 years, however, various evidences suggest that the LLSVPs may 

be chemically distinct (e.g., Su and Dziewonski, 1997; Masters et al., 2000; Wen et 

al., 2001; Ni et al., 2002; He and Wen, 2009; Houser et al., 2008). The anti-

correlation between shear wave and bulk sound speeds in the LLSVPs suggests a 

thermo-chemical origin for the seismic heterogeneities in these regions (e.g., Masters 

et al. 2000). The sharp seismic velocity contrasts at the edges of LLSVPs are better 

explained as features of chemically distinct piles rather than purely thermal anomalies 

(Wen et al., 2001; Ni et al., 2002). The thermochemical characteristics of the LLSVPs 
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may also reconcile geochemical inferences of chemically distinct “reservoirs” that 

explain the difference between the oceanic island basalt (OIB) and the mid-ocean 

ridge basalt (MORB) (e.g., Hofmann, 1997; Kellogg et al., 1999; Kunz et al., 1998). 

However, it should be pointed out that a number of recent studies have suggested that 

these seismic and geochemical observations could be explained as purely thermal and 

post-perovskite phase change effects (Davies et al., 2012; Schuberth et al., 2009, 

2012; Huang and Davies, 2007), thus questioning the necessity of interpreting the 

LLSVPs as chemical piles.  

The large-scale chemically distinct piles, if they represent the LLSVPs as 

proposed (e.g., Garnero and McNamara, 2008), may have significant effects on the 

mantle dynamics. It has been suggested that thermochemical structures in the mantle 

affect the buoyancy force distribution, mantle flow configuration and convective heat 

transfer (e.g., Tackley, 1998; Kellogg et al., 1999; Davaille, 1999; McNamara and 

Zhong, 2005a; Zhang et al., 2010). However, the effects of thermochemical structures 

on the geoid are not well understood. Hager & Richards (1989) modeled a layered 

mantle convection with a compositional interface at a fixed radial location that 

represents the top surface of the chemically distinct D” layer or the 670 km 

discontinuity. They showed that while density anomalies at the compositional 

interface do not produce any geoid anomalies (i.e., they are fully compensated), a 

density anomaly above the interface has opposite contribution to the geoid, compared 

to that below the interface. Through a joint inversion of the geoid and seismic data 

with a parameterization of possible compositional effect on the buoyancy, Forte & 

Mitrovica (2001) concluded that the LLSVPs are overall positively buoyant. 

Steinberger & Torsvik (2010) formulated thermochemical mantle flow models for the 
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geoid and true polar wander (TPW), ignoring the buoyancy in the bottom 300 km 

thick layer of the mantle to account for possible compositional buoyancy effects.  

However, these models have a number of drawbacks and assumptions that 

may limit their applications. Hager & Richards (1989)’s model assumed that the 

chemically distinct layer is global and that the topography at the compositional 

interface is significantly smaller than the layer thickness. This assumption is 

inconsistent with seismic observations and thermochemical convection models 

showing that the LLSVPs or chemical piles only exist in isolated regions above the 

CMB with hundreds of kilometers topography (e.g., Wang and Wen, 2004; He and 

Wen, 2009; McNamara and Zhong, 2005a). Buoyant LLSVPs or thermochemical 

piles suggested by Forte & Mitrovica (2001) may be inconsistent with the 

geochemical evidence for primitive chemical reservoirs or piles that would require the 

reservoirs to be negatively buoyant to avoid being mixed and recycled. However, this 

argument may depend on mantle mixing process (Huang and Davies, 2007; van 

Keken et al., 2001). In Steinberger & Torsvik (2010)’s model, the removal of mantle 

buoyancy from the bottom 300 km thick layer is rather ad hoc.  

The goal of this study is to examine the effects of chemical piles (e.g., the 

LLSVPs) on the geoid as well as whether positive geoid anomalies in largely degree-2 

convection as for the present-day Earth can be generated above primitive chemical 

piles above the CMB in dynamically self-consistent mantle convection models. A key 

in formulating dynamically self-consistent convection models to investigate the 

effects of thermochemical piles on the Earth’s geoid is to generate long-wavelength 

convective structure with two major thermochemical piles above the CMB. This is 

accomplished here by modeling thermochemical convection (e.g., McNamara and 

Zhong, 2004a) with modestly strong lithosphere and a weak upper mantle (Zhong et 
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al., 2007). Our models represent the first mantle geoid models that include realistic 

mantle viscosity and dynamically generated degree-2 mantle structure, although semi-

dynamic models with imposed surface plate motions could produce the degree-2 

mantle structure (e.g., McNamara and Zhong, 2005a). Our models indicate that 

positive geoid anomalies can be generated over two major thermochemical piles 

above the CMB in largely degree-2 mantle convection, similar to what is observed for 

the Earth. We also found that for the degree-2 geoid, the buoyancy from a large 

fraction of the bottom mantle (~1000 km in thickness) including the chemically dense 

piles has zero net contribution to the geoid, due to compensation effects. The paper is 

organized as follows. Next section describes the modeling methods for time-

dependent convection models. Section 3.3 presents the modeling results, while 

discussions and conclusion are given in sections 3.4 and 3.5.  

 

3.2   Model 

3.2.1 Governing equations, initial and boundary conditions 

The time-dependent, dynamically self-consistent thermochemical convection 

models are formulated in a 3-D spherical shell geometry to study the effects of 

thermochemical structures on the geoid. The mantle is assumed to be an 

incompressible fluid, and under assumptions of the Boussinesq approximation and 

constant thermodynamic parameters except for the viscosity, the non-dimensional 

governing equations for the conservation laws of the mass, momentum, energy, and 

composition are (Tackley, 1998; McNamara and Zhong, 2004b; Zhong et al., 2008):  

∇ ∙ 𝒖 = 0,                                                                   (3.1) 

−∇𝑝 + ∇ ∙ [𝜂(∇𝒖 + ∇𝑇𝒖)] + 𝑅𝑎(𝑇 − 𝐵𝐶)𝒆𝑟 = 0,                             (3.2) 
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𝜕𝑇

𝜕𝑡
+ (𝒖 ∙ ∇)𝑇 = ∇2𝑇 + 𝛾,                                                      (3.3) 

         
𝜕𝐶

𝜕𝑡
+ (𝒖 ∙ ∇)𝐶 = 0,                                                        (3.4) 

where 𝒖 is the velocity vector; 𝑝 is the dynamic pressure; 𝜂 is the viscosity; 𝒆𝑟 

is the unit vector of the radial direction; Ra is the Rayleigh number; 𝑇 is the 

temperature; B is the buoyancy number; 𝐶 is the composition field; 𝑡 is the time; 𝛾 is 

the internal heat production rate. The detailed formulation and non-dimensionalization 

of the equations can be found in Zhong et al. (2008).   

The Rayleigh number 𝑅𝑎 in equation (3.2) controls convective vigor, and is 

defined as  

                        𝑅𝑎 =
𝜌0𝑔0𝛼0𝑅3Δ𝑇

𝜂0𝜅0
 ,                              (3.5) 

where subscript 0 means reference values, 𝜌 is the density, 𝑔 is the 

gravitational acceleration, 𝛼 is the thermal expansion coefficient, R is the radius of the 

Earth, Δ𝑇 is the temperature difference across the mantle, and 𝜅  is the thermal 

diffusion. Note that the Earth’s radius, instead of mantle thickness, is used as the 

length scale to non-dimensionalize the governing equations, and our Ra is ~10 times 

larger than defined by mantle thickness (e.g., Zhong et al., 2000).   

Our thermochemical models only consider two compositions that differ in 

intrinsic density. 𝐶 measures the mantle composition, with 𝐶=0 for the regular mantle 

and 𝐶=1 representing the denser component.  The buoyancy number B measures the 

relative strength between the compositional and thermal buoyancy, and is defined as  

     𝐵 =
∆𝜌𝑐

𝛼0𝜌0∆𝑇
 ,                                                (3.6) 

where ∆𝜌𝑐 is the intrinsic density difference between the denser and regular 

mantle materials.  
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All models are in the 3D spherical shell geometry. The top and bottom 

boundaries represent the surface and core-mantle boundary (CMB), and have 

dimensionless outer and inner radii r=1 and r=0.55, respectively. The models use 

free-slip as well as isothermal boundary conditions at the top and bottom boundaries 

with fixed temperature of 0 and 1, respectively. For the thermochemical convection, 

no composition flux is allowed to cross the top and bottom boundaries. The initial 

temperature field is a largely degree 3 structure. The initial condition for composition, 

which is only relevant for thermochemical models, is a denser layer with a uniform 

thickness of 400 km above the CMB. The volume of this dense layer is generally 

consistent with what is inferred for the LLSVPs (e.g., Hernlund and Houser, 2008; 

Wang and Wen, 2004). As we are only interested in quasi-steady state solutions, our 

results are insensitive to initial conditions. 

We use a 3-D finite element convection package CitcomS to solve the 

governing equations for spherical shell mantle convection (Zhong et al., 2000, 2008). 

The particle-ratio method is employed in CitcomS to solve thermochemical 

convection problems (McNamara & Zhong, 2004a; Tackley and King, 2003). Parallel 

computing techniques are implemented in CitcomS (Zhong et al., 2000). The mantle 

is divided into 12 caps, and each cap is further divided to be run on multiple CPUs. 

Calculations presented in this study use 48, 96, or 192 CPUs. Models are typically 

computed for 20,000-50,000 time steps until heat flux reaches a quasi-steady state 

with a relatively stable convective structure.     

3.2.2 Viscosity structure 

The viscosity is both depth- and temperature-dependent, following a non-

dimensional rheological equation (Zhong et al., 2007) 
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                      𝜂 = 𝜂0(z) exp(𝐸(𝑇 − 𝑇0)) ,               (3.7)           

where 𝜂0(𝑧) is a depth-dependent pre-factor, 𝐸 is the activation energy, and 

𝑇0 = 0.5 is the reference temperature, which is approximately the mantle interior 

temperature in the models. E is set at 6.9078 that gives rise to 3 orders of magnitude 

in viscosity variations due to temperature changes from the surface to the CMB.  

Since the Earth’s geoid has a strong power at degree-2, our convection models 

are designed to produce long-wavelength, especially dominantly degree-2 convection. 

Generation of long-wavelength convective structure in dynamically self-consistent 

convection models has been an important topic in geodynamics. Bunge et al. (1996) 

reported that a viscosity increase of a factor of 30 from the upper to lower mantles as 

suggested from the geoid studies (e.g., Hager and Richards, 1989) increases 

convective wavelength, but only up to a dominantly degree-6 structure. McNamara 

and Zhong (2005b) found that a moderately strong lithosphere leads to dominantly 

degree-1 convection (i.e., the longest possible wavelength in a spherical shell) for 

moderate Rayleigh numbers Ra. Zhong et al. (2007) further demonstrated that long-

wavelength convection including that of degree-1 can be generated for Earth-like 

Rayleigh number by considering both moderately strong lithosphere and a viscosity 

increase at the 670 km depth. Some recent studies produced similar long-wavelength 

convection, also using modestly strong lithosphere (e.g., Li et al., 2014a; Coltice et al., 

2012). Following Zhong et al. (2007), we adjust the viscosity contrast between the 

lithosphere and the upper mantle to generate convection with different planforms, 

from dominantly degree-1, -2 to shorter wavelengths. Fixing 𝜂0(z) as 1 for the lower 

mantle and 1/30 for the upper mantle, but varying 𝜂0(z) in the lithosphere, denoted as 

𝜂𝑙𝑖𝑡ℎ0(z), we manage to build dominantly degree-2 convection models for both purely 

thermal and thermochemical convection. It should be noted that our temperature-
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dependent viscosity, while producing mobile-lid convection, does not produce “plate-

like” surface motions (e.g., Ratcliff et al., 1997). Pseudo-plastic rheology may lead to 

“plate-like” surface motions in mantle convection (e.g., Moresi and Solomatov, 1998; 

Coltice et al., 2012). However, it remains a significant challenge to reconcile 

observational, laboratory and theoretical studies on rheological properties of 

lithosphere (e.g., Zhong and Watts, 2013).  

3.2.3 Calculations of the geoid and dynamic topographies 

The geoid anomalies represent gravitational potential anomalies at the surface, 

𝜑, which can be obtained by solving the Poisson’s equation, 

                                ∇2𝜑 = −4𝜋G𝛿𝜌 ,                            (3.8) 

where G is the gravitational constant, and 𝛿𝜌 includes both density variations 

in the interior mantle and those associated with dynamic topographies at the surface 

and CMB. Here the interior density anomaly 𝛿𝜌 is in general given by, 

        𝛿𝜌 = −𝛼𝜌0𝛿𝑇 + ∆𝜌𝑐𝐶,                               (3.9) 

where 𝛿𝑇 is the temperature anomaly and C denotes the composition field. 

The dynamic topographies at the surface and the CMB, denoted as s and b, 

respectively, can be related to the radial stresses at these boundaries as (Zhong et al., 

2008) 

𝑠 = −
𝜎𝑟𝑟_𝑡

∆𝜌𝑡𝑔
 ,                                        (3.10) 

       𝑏 =
𝜎𝑟𝑟_𝑏+𝜌𝑐𝑜𝑟𝑒𝜑𝑏

∆𝜌𝑏𝑔
 ,                                (3.11) 

where 𝜎𝑟𝑟_𝑡 and 𝜎𝑟𝑟_𝑏  are the radial stresses at the surface and CMB, 

respectively, which can be calculated by solving the Stokes’ flow equations (i.e., 

equations (3.1) and (3.2)), ∆𝜌𝑡 and ∆𝜌𝑏 are the density contrast across the surface and 

CMB, respectively, 𝜌𝑐𝑜𝑟𝑒 is the density of the core, and 𝜑𝑏 is the gravitational 
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potential perturbation at the CMB. The topography computed from equation (3.10) in 

our study includes contributions from the whole mantle, and is different from the 

classic definition of dynamic topography that only includes contribution from the sub-

lithospheric mantle (e.g., Hager & Richards, 1989).    

The geoid calculations incorporate the self-gravitation effects, although the 

equations presented above did not include this effect for simplicity. With the self-

gravitation effect, an additional term  −𝜌𝛿𝑔𝒆𝒓⃑⃑⃑⃑  should be added to the left side of 

equation (3.2) where  𝛿𝑔 = −|∇𝜑| is the perturbation to the radial gravity (e.g., 

Zhong et al., 2008). An efficient approach to solve the momentum equation, dynamic 

topographies, gravitational potential and geoid with the self-gravitation is to introduce 

a reduced pressure term (e.g., Zhong et al., 2008). 

 

3.3   Results 

In this section, we will present the results of convective structure and geoid for 

the time-dependent and dynamically self-consistent mantle convection models. 

Numerical models for both purely thermal and thermochemical mantle convection are 

computed at two different Rayleigh numbers (Ra=5×10
7
 and 1.5×10

8
). Constant 

thermodynamic parameters, except the viscosity, are used for all models (Table 3.1). 

The viscosity is both depth- and temperature- dependent, and the viscosity pre-factor 

in the lithosphere, 𝜂𝑙𝑖𝑡ℎ0(z), is explored to achieve a predominantly long-wavelength 

convective structure (e.g., degree 2). Numerical grids of 12×65
3
 are used for the cases 

with Ra=5×10
7
, and grids of 12×97

3
 are used for the higher Ra cases. The internal 

heating 𝛾 (equation 3.3) is 50 and 70 for Ra=5×10
7
 and 1.5×10

8
, respectively, leading 

to internal heating ratios of approximately 50% for these cases (i.e., the core and 
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mantle each contributes half of the surface heat flux).  For the thermochemical models, 

the buoyancy number B is varied to generate relatively stable chemical piles above the 

CMB. In general, a small buoyancy number leads to rapid overturn and destruction of 

a chemical layer, while a large buoyancy number results in a stable chemical layer 

with a flat surface but no chemical piles (e.g., McNamara and Zhong, 2004b; Oldham 

and Davies, 2004). Our model calculations show that dominantly degree-2 structure 

can be generated for thermochemical models with B=0.8 and 0.5 for Ra=5×10
7
and 

1.5×10
8
, respectively. Because the primary interest of this study is on the geoid, we 

only present 4 cases that display dominantly degree-2 mantle structures, at two 

different Ra, each with thermal and thermochemical convection models.  

 

 

  

Table 3.1. The thermodynamic parameters.  

Parameters Value 

Earth’s radius, R 6370 km 

Mantle thickness, h 2870 km 

Gravitational acceleration 9.8 ms
-2

 

Mantle density 3300 kgm
-3

 

Thermal diffusivity 1×10
-6 

m
2
s

-1
 

Thermal expansion 3×10
-5 

K
-1

 

Temperature difference 2700 K 

Specific heat 10
3 

m
2
s

-2
K

-1
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3.3.1 A purely thermal convection model at Ra=5×10
7
 

In Case 1, the viscosity pre-factors, η0(z), are 1, 1/30, and 0.27 for the lower 

mantle, upper mantle, and lithosphere, respectively (Table 3.2). Starting from a 3D 

temperature with a dominantly degree-3 structure, the model quickly reaches a 

statistically steady state with dimensionless surface heat flux of ~42 (Figure 3.2a). 

The internal heating ratio is 44%. The power spectra of the temperature structure 

within the top thermal boundary layer (i.e., at a depth of 100 km) is used to 

characterize convective structure. For each spherical harmonic degree l, the power 

spectrum of a function 𝑓 is  

        𝐹𝑙 = ∑ [(𝑓𝑐𝑜𝑠
𝑙𝑚)2𝑙

𝑚=0 + (𝑓𝑠𝑖𝑛
𝑙𝑚)2] ,                                   (3.12) 

where 𝑓𝑐𝑜𝑠
𝑙𝑚 and 𝑓𝑠𝑖𝑛

𝑙𝑚 are the cosine and sine coefficients of spherical expansion 

of the function f at degree l and order m, respectively. The power spectra as a function 

of time for degrees 1 to 4 for Case 1 are presented in Figure 3.2b. Although the 

degree-1 convective structure becomes the strongest at the end, there is a significant 

time period during which degree-2 structure is significant.  
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Figure 3.2.  Time dependence of (a) the nondimensional surface (solid line) and 

CMB (dashed line) heat flux, and of (b) the power spectra for temperature structure at 

100 km depth for degrees 1 to 4, denoted by black, red, blue, and green lines, 

respectively, for Case 1. The red star in (b) marks the time with a dominantly degree 2 

convective structure that is used for the structure and geoid analyses. In (a), the CMB 

heat flux is plotted after taking into account of the surface area effect.      

 

 

A snapshot of a dominantly degree-2 convective structure (time marked in Figure 

3.2b) is used for the geoid analysis. A 3D isosurface plot for the temperature 

anomalies at this time step (Figure 3.3a) shows two clusters of downwellings and 

upwellings, which are indicative of a dominantly degree-2 structure, as also displayed 

in 2D plots of temperature structure at a depth of 100 km (Figure 3.4a) and 100 km 

above the CMB (Figure 3.4b). Figure 3b shows the horizontally averaged temperature, 

indicating two well-developed thermal boundary layers (TBLs) at the surface and 
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bottom. The horizontally averaged viscosity shows that the average lithospheric 

viscosity is ~60 times of the upper mantle viscosity, while the lower mantle viscosity 

is ~30 times larger than the upper mantle (Figure 3.3c). Scaled by parameters in Table 

3.1, Ra=5×10
7 

indicates a reference viscosity of ~1.4×10
22

Pa
.
s, and the lower mantle 

viscosity of ~3×10
22

 Pa
.
s, which is comparable to that inferred from post-glacial 

rebound study (Simons and Hager, 1997; Mitrovica and Forte, 2004). The root-mean-

square (RMS) of the horizontal velocity indicates a mobile-lid convection with 

surface velocity that is comparable to that in the upper mantle (Figure 3.3d).  
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Figure 3.3. (a) The isosurface of temperature anomalies δT=-0.2 and δT=0.2 in blue 

and yellow, respectively, for a representative snapshot of Case 1, horizontally 

averaged (b) temperature, (c) viscosity, and (d) horizontal velocity, for representative 

snapshots of both Case 1 (solid line) and Case 2 (dash line). The reference viscosity is 

determined to be 1.4×10
22

 Pa
.
s, using Ra=5×10

7
 for Cases 1 and 2 and parameters in 

Table 3.1. 
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Figure 3.4. Temperature structures at (a) 100 km depth and (b) 100 km above the 

CMB, (c) the surface and (d) the bottom topographies, and (e) the surface geoid, all 

for Case 1. Arrows in both (a) and (b) denote the horizontal velocities at 

corresponding depths. Contour lines of 0 m are plotted on (c)-(e).  
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Surface and CMB topographies as well as the surface geoid at the 

corresponding time are computed and scaled to dimensional values using physical 

parameters in Table 3.1 (Figures 3.4c-3.4e). Notice that the surface topographies 

presented in this study include contributions from both the top thermal boundary layer 

and the underlying mantle, while dynamic topography typically excludes the 

contribution from the lithosphere (i.e., the top thermal boundary layer) (e.g., Hager 

and Richards, 1989), and the difference is presented in the discussion section. The 

topographies are well correlated with the convective structure, and are negative in the 

cold downwelling regions and positive in hot upwelling regions. The negative 

topographies in downwelling regions have much larger magnitudes than the positive 

topographies over upwellings, due partly to the high viscosity associated with cold 

downwellings that tends to increase the coupling of downwellings to the top and 

bottom boundaries. The geoid is prevailingly at long-wavelengths with a dominantly 

degree 2 structure (Figures 3.4e and 3.5a). The long-wavelength geoid is positive over 

the two major upwelling regions, and is negative elsewhere (e.g., major downwelling 

regions). The largest negative geoid of -320 m is above the center of one major 

downwelling, and its magnitude is 3 times larger than that of the maximum positive 

geoid of ~80 m. The general pattern of the positive geoid over two major upwelling 

systems from the model is consistent with the observed for the present-day Earth 

(Figure 3.1).  
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Figure 3.5. Square root of power spectra of (a) geoid and (b) surface topography at 

degrees 2-12 for Case 1(solid black), Case 2 from the buoyancy of the whole mantle 

(thin black) and of the upper 1700 km of the mantle (thin dashed black), and Case 3 

(red). 

 

 

 

We now analyze the contribution of buoyancy at different depths to the 

surface geoid. Our mantle convection model employs 64 unevenly distributed 

elements in the radial direction. The geoid contributed from buoyancy at each of these 

64 layers can be computed by solving the Stokes’ flow equations for the topographies 

and then the Poisson’s equation (equation 3.8), using the buoyancy from that layer but 

the same 3-D mantle viscosity as in the global calculations. Using the same 3-D 

viscosity to compute the geoid (and topographies) from each element layer of 

buoyancy guarantees that the summation of the geoid (and topographies) from all the 

layers is equal to the total geoid in Figure 3.4e, as the Stokes’ flow equations with a 
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fixed 3-D viscosity are linear. The geoid from each element layer is further divided by 

the layer thickness to represent the geoid contributed from the layer per unit thickness 

(i.e., per kilometer). Figures 3.6a, 3.6c, and 3.6e show the geoid from three layers at 

depths of 200 km and 1400 km, and 200 km above the CMB. The corresponding 

buoyancy structures for the three layers are given in figures 3.6b, 3.6d, and 3.6f where 

the buoyancy is defined as −𝛿𝜌 = 𝛼𝜌0𝛿𝑇 − ∆𝜌𝑐𝐶, with a unit of kg/m
3
. While the 

buoyancy is comparable in both wavelengths and magnitude at the top and the bottom 

TBLs (Figures 3.6b, 3.6f, 3.7d and 3.7e), the geoid from the top TBL is significantly 

larger than that from the bottom TBL (Figures 3.6a, 3.6e, and 3.7b) due to attenuation 

effects. Although the buoyancy at the middle mantle has significant short-wavelength 

structure (Figures 3.6d, 3.7d and 3.7e), its geoid is still dominated by long-

wavelengths (Figures 3.6c and 3.7a), again due to attenuation effects that reduce 

short-wavelength structures. The normalized power spectra of the geoid from each 

depth (Figure 3.7a) show that degree-2 component is the strongest at nearly all depths 

except for the mid-mantle where degrees 3 and 4 are the strongest. Figure 3.7b shows 

the maximum geoid power among all the degrees at different depth that is used to 

normalize the power spectra as shown in Figure 3.7a. Figure 3.7b indicates that the 

top 300 km and the bottom 1000 km of the mantle contribute the most to the surface 

geoid, while the mid-mantle’s contribution is small. 

  



73 
 

  

 

Figure 3.6. (a) The geoid produced by (b) mantle buoyancy at 200 km depth, (c) and 

(d) for those from 1400 km depth, and (e) and (f) for those at 200 km above the CMB, 

all for Case 1. The buoyancy and the geoid are all given as per unit thickness (i.e., per 

kilometer). The contour lines of 0 are plotted on (a)-(f). 
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The degree-correlation Cl between the geoid from a unit-thickness layer at 

each depth, h, and the total geoid H is computed for degrees 2-10 (Figure 3.7c), 

following 

              𝐶𝑙 =
∑ (𝐻𝑠𝑖𝑛

𝑙𝑚ℎ𝑠𝑖𝑛
𝑙𝑚 +𝐻𝑐𝑜𝑠

𝑙𝑚ℎ𝑐𝑜𝑠
𝑙𝑚 )𝑙

𝑚=0

√𝐻𝑙ℎ𝑙
 ,                                 (3.13) 

where ℎ𝑙 and Hl  represent the power of h and H at degree l, respectively, 

which are computed by equation (3.12). The degree-2 correlation is mostly positive 

except for at depth of ~600 km for all the degrees (Figure 3.7c), suggesting that the 

buoyancy at different depths mostly contributes positively to the surface geoid. Also 

note that the geoid power at ~600 km depth is small (Figure 3.7b). 

 

Figure 3.7. (a) The normalized power spectra of the geoid and (b) the maximum 

geoid power per unit thickness for degrees 2-10 produced from buoyancy at different 

depths, (c) the degree-correlation for degrees 2-10 between the total geoid and the 

geoid contributed from each layer, (d) and (c) normalized buoyancy spectra and 

maximum power at different depths, all for Case 1. Note that the maximum power at 

different depths in (b) and (e) are used to normalize the power spectra shown in (a) 

and (d), respectively.  

 

  



75 
 

3.3.2 A thermochemical convection model with Ra=5×10
7
 

Case 2 is identical to Case 1 except for including a compositionally distinct 

material above the CMB with buoyancy number B=0.8 (Table 3.1), which 

corresponds to an intrinsic density difference of 210 kg/m
3
 relative to the normal 

mantle, using parameters in Table 3.1. The same initial temperature field as in Case 1 

is used for Case 2, and initially the compositionally distinct material is uniformly 

distributed in a 400 km thick layer above the CMB. The model is computed for about 

40,000 time steps and reaches a quasi-steady state. The convective structure is 

dominated by long-wavelengths, similar to Case 1, suggesting that the chemically 

distinct material plays a relatively minor and passive role in forming convective 

structure in Case 2.  

In Case 2, convective structure with dominantly degree-2 component persists 

for a long time (>2 Ga) and we choose a time step with a well-developed degree-2 

structure for geoid analysis (Figure 3.8). Temperatures are high within and above two 

chemical piles, indicating that two major upwellings are formed above the piles 

(Figure 3.8a). The two chemical piles extend to ~400 km above the CMB, but their 

areal extent shrinks with distance from the CMB (Figures 3.8b and 3.8c). Considering 

that the chemical layer initially has a uniform thickness of 400 km, the configuration 

of the chemical piles (Figures 3.8b and 3.8c) suggests that their volume has been 

reduced significantly due to entrainment after long time integration. The entrained 

materials are dispersed throughout the mantle but do not seem to form any coherent 

structure to affect the large-scale mantle dynamics. The horizontally averaged 

temperature and horizontal velocity, as well as the viscosity contrast between the 

lithosphere and the upper mantle are smaller than those for the purely thermal model 

(Figures 3.3b-3.3d). 
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Figures 3.9a and 3.9b show the 

temperature and horizontal 

velocity at a depth of 100 km 

and 100 km above the CMB. 

Two broad warm regions in the 

upper mantle occur above the 

two chemical piles, and the 

chemical piles above the CMB 

are separated by cold 

downwellings (Figures 3.9a and 

3.9b). Horizontal velocities 

above the CMB indicate that 

there are two separated 

convective systems inside and 

outside the chemical piles 

(Figure 3.9b). Outside of 

chemical piles, the horizontal 

flow from downwellings 

reaches piles’ edge and 

continues along the upper 

boundary of the piles, 

introducing counter flow inside 

of the chemical piles due to 

shear coupling. 

Figure 3.8. (a) The isosurface of temperature 

anomalies δT=-0.2 and δT=0.2 in blue and 

yellow, respectively, for a representative 

snapshot of Case 2, and composition field at 

(b) 100km and (c) 300 km above the CMB, 

respectively. In (a), the black isosurface below 

the upwelling plumes (i.e., yellow isosurfaces) 

represents chemical piles.   
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Figure 3.9. Temperature structures at (a) 100 km depth and (b) 100 km above the 

CMB, (c) the surface and (d) the bottom topographies, and (e) the surface geoid, all 

for Case 2. Arrows in both (a) and (b) denote the horizontal velocities at 

corresponding depths. Contour lines of 0 m are plotted on (c)-(e). 
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The surface topography is positive in two broad regions of upwellings over the 

chemical piles, and is negative in downwelling regions (Figure 3.9c). The magnitude 

of the negative topography is up to 3 times that of the positive topography. The range 

of surface topography of Case 2 is reduced by ~40% compared with that of Case 1. 

However, the degree 2 topography is stronger in Case 2 than that in Case 1 (Fig 3.5b), 

due to a stronger degree-2 structure in Case 2.  At the large scale (i.e., degrees 2 and 

3), the surface topography is in the range of ±3 km. The CMB topography under the 

chemical piles ranges from zero to slightly negative and is extremely smooth (Figure 

3.9d), However, the most negative CMB topography occurs in the central regions of 

downwellings outside the piles, while the positive CMB topography is also outside 

the chemical piles (Figure 3.9d). Compared with Case 1, the amplitude of the negative 

CMB topography in Case 2 is also reduced significantly, as a result of compensation 

associated with the deformation of the chemical piles.  

Two major positive geoid anomalies occur in the regions with positive surface 

topography above the chemical piles, while the long-wavelength negative geoid is in 

downwelling regions (Figure 3.9e). The geoid has the strongest power at degree 2 

(Figure 3.5a). It is interesting to note that Case 2 resembles the present-day Earth’s 

scenario in which the long-wavelength geoid and topography highs occur above the 

African and Pacific LLSVPs (or thermochemical piles) that are separated by circum-

Pacific subducted slabs. Moreover, the large-scale geoid (degrees 2 and 3) of ~±80m 

in Case 2 is close to that observed on the Earth. This suggests that the positive long-

wavelength geoid anomalies in the Pacific and Africa are consistent with the 

interpretation of the two LLSVPs as chemically denser, possibly primitive 

thermochemical piles.  
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We repeat the geoid analysis for contribution from different depths as done for 

Case 1. The normalized power spectra of the geoid versus depth reveal that degree 2 

is the strongest for almost all depths except at ~400 km above the CMB where degree 

3 is the strongest (Figure 3.10a). Notice that at ~400 km above the CMB the chemical 

piles largely disappear. The maximum power of the geoid is high in the lower mantle 

and is the largest at ~300 km above the CMB, within the radial extent of the chemical 

piles  (Figure 3.10b), which is different from that in Case 1 of purely thermal 

convection (Figure 3.7b). This suggests that the chemical piles have an important 

effect on the geoid.  

 

 

Figure 3.10. (a) The normalized power spectra of the geoid and (b) the maximum 

geoid power per unit thickness for degrees 2-10 produced from buoyancy at different 

depths, (c) the degree-correlation for degrees 2-10 between the total geoid and the 

geoid contributed from each layer, (d) and (c) normalized buoyancy spectra and 

maximum power at different depths, all for Case 2. Note that the maximum power at 

different depths in (b) and (e) are used to normalize the power spectra shown in (a) 

and (d), respectively. 
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The degree-correlation of the geoid from each depth with the total geoid 

shows high correlation in the upper mantle for all the degrees (Figure 3.10c), similar 

to Case 1 (Figure 3.7c). At degree 2, while the correlation is high and positive for the 

top ~2300 km of the mantle, the correlation is high but negative for the bottom ~400 

km of the mantle (Figure 3.10c) which is different from that for Case 1. The negative 

correlations also exist for degrees 3 for the bottom 200 km of the mantle.  

The negative correlation at degrees 2 and 3 between the geoid from buoyancy 

immediately above the CMB and the total surface geoid occurs where the chemical 

piles are, suggesting that the chemical piles may contribute negatively to the surface 

geoid. This is supported by analysis of the geoid from the buoyancy at 300 km (i.e., 

within the chemical piles) and 600 km (above the piles) above the CMB. At 300 km 

above the CMB, the buoyancy is negative within the piles and is dominantly degree-2 

(Figures 3.11b and 3.10d). The resulting geoid is strongly degree 2 with two negative 

geoid anomalies over the piles (Figure 3.11a) and is negatively correlated with the 

total surface geoid at long wavelengths (Figures 3.9e and 3.10c). At 600 km above the 

CMB, while the buoyancy has significantly shorter wavelengths (Figure 3.10d), it is 

generally positive above the chemical piles (Figure 3.11d). The resulting geoid is 

positive over two broad regions approximately above the chemical piles (Figure 

3.11c), and is positively correlated with the total surface geoid (Figures 3.9e and 

3.10c).  
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Figure 3.11.  (a) The geoid produced by (b) mantle buoyancy at 300 km above the 

CMB (within the chemical piles), and (c) and (d) for the corresponding geoid and 

buoyancy from the layer at 600 km above the CMB (above the chemical piles), all for 

Case 2. The geoid in (a) and (c) are given as per unit thickness (i.e., per kilometer). 

 

 

The highly negatively correlated geoid from the layers within the chemical piles 

suggests that the geoid from these regions of the lower mantle may be cancelled or 

compensated by the geoid from the mantle above the piles. We define the geoid 

contribution of the buoyancy from a unit-thickness layer at a depth, denoted as h, to 

the total geoid H at degree l, Rl , as  

                  𝑅𝑙 =
∑ (𝐻𝑠𝑖𝑛

𝑙𝑚ℎ𝑠𝑖𝑛
𝑙𝑚 +𝐻𝑐𝑜𝑠

𝑙𝑚ℎ𝑐𝑜𝑠
𝑙𝑚 )𝑙

𝑚=0

√𝐻𝑙𝐻𝑙
 ,                               (3.14) 
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where all the variables are defined following equations (3.12) and (3.13). 

Equation (3.14) is valid when the magnitude of degree-correlation between h and H at 

degree l is high, such as degree 2 (Figure 3.10b) in Case 2. The degree contribution R2 

(i.e., for degree-2) is plotted in Figure 3.12a. By integrating R2 over radius from CMB 

upwards, it is found that the bottom 400 km of the mantle with the chemical piles 

contributes ~ -60% to the total geoid at degree-2, and the negative contribution is 

cancelled by the geoid from a ~ 800 km thick layer right above the chemical piles.  As 

a result, the bottom ~1200 km is fully compensated with no net contribution to the 

surface geoid at degree-2. The depth contribution to the total geoid for Case 1 is also 

plotted for comparison (Figure 3.12a), and no similar compensation effect exists for 

Case 1. Therefore, the compensation effect is unique to thermochemical convection 

where the gravity anomalies from negatively buoyant chemical piles are offset and 

cancelled by those from hot, buoyant normal mantle above the piles. 
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Figure 3.12. (a) The degree 2 contribution to the total geoid from the layer with unit 

thickness at different depths for both Case 2 (solid black line) and Case 1 (dashed 

black line), (b) the geoid and (c) the surface topography contributed from the top 1700 

km of the mantle of Case 2. In (a), the red line represents the reference value of 0, and 

the green line denotes the compensation region for Case 2, below which the net 

contribution to the total geoid is 0. Contour lines of 0 m are plotted in (b) and (c). 

 

 

To further illustrate the compensation effect, we compute the geoid resulting 

from the buoyancy of the top ~ 1700 km of the mantle (i.e., ignoring the bottom 1200 

km of the mantle), and the resulting geoid (Figure 3.12b) is quite similar to the geoid 

from using the whole mantle buoyancy (Figures 3.9e and 3.5a). At degree 2, the geoid 

from the top 1700 km of the mantle buoyancy correlates at ~90% with, but has ~12% 

larger amplitude than the original degree-2 geoid (Figure 3.5a)  The amplitude 

difference results from both imperfect correlation at degree-2, which implies 

difference in degree-2 geoid patterns, and finite radial numerical resolution. Although 

the compensation thickness of 1200 km is determined by considering the degree-2 

geoid only (Figure 3.12a), the overall similarity between the geoid with and without 

the bottom 1200 km of the mantle structure arises because the geoid has the strongest 

power at degree-2 and also because the deep mantle tends to have small effects on the 
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geoid at relatively short wavelengths (Figure 3.5a). Surface topography produced by 

the upper 1700 km of the mantle for Case 2 is nearly identical to that by the entire 

mantle (Figures 3.9c, 3.12c and 3.5b), and the former has a total degree-correlation of 

99.9% with and a contribution of 99.7% to the later for degrees 1-12. Similar layer 

analysis for the surface topography to that for the geoid shows that the surface 

topography contributed from the upper part of the mantle have much stronger power 

than that from the bottom part of the mantle, and thus is insensitive to the lower 

mantle buoyancy structure.   

Finally, it should be pointed out that numerical entrainment is inevitable in 

thermochemical convection calculations (e.g., van Keken et al., 1997) and it often 

requires special attention such as high resolution using adaptive mesh refinement (e.g., 

Leng and Zhong, 2011; Davies et al., 2007). Compositionally dense material is 

constantly entrained and mixed with the normal fluid in thermochemical convection. 

This entrainment would eventually destroy the chemical heterogeneities, and 

homogenizes the fluids (e.g., Jellinek and Manga, 2002; Davaille, 1999; McNamara 

and Zhong, 2004a). However, numerical models tend to significantly overestimate the 

entrainment rates. The large numerical entrainment rate may reduce the size of 

chemical piles significantly faster than it should. To reduce the impact of numerical 

entrainment on the dynamics and the geoid analysis, we implement a scheme to re-

define compositional field C to maintain the original compositional difference in our 

modeling. After we identify a certain time window in which the geoid analysis is to be 

performed, we re-define the compositional field C by assigning C to be either 1 or 0, 

depending whether or not the original C is larger than a threshold value (e.g., 0.5). 

Using the newly defined C, we re-compute the models for ~5000 time steps over the 

time window of interest, and the geoid analysis is then performed for the time frames 
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with the re-defined compositional field. We found that the geoid results as presented 

above are insensitive to time steps.  

3.3.3 Models with Ra=1.5×10
8
 

Rayleigh number (Ra) controls the convection vigor, and heat flux as well as 

surface convective velocity increase with Ra. The dimensionless quasi-steady state 

averaged surface heat flux of Cases 1 and 2 are ~42 and ~26, respectively, 

corresponding to a total surface heat flux of 30 TW and 18 TW, based on the 

parameters in Table 3.1. They both are significantly lower than the Earth’s mantle 

convective heat flux of ~36 TW (e.g., Davies, 1999). The surface RMS velocities for 

Cases 1 and 2, averaged for the degree 2 dominant quasi-steady state, are 3.2 cm/yr 

and 1.3 cm/yr, respectively, and are smaller than the averaged present-day plate speed 

of ~4 cm/yr (Gordon and Jurdy, 1986). The lower mantle viscosities for Cases 1 and 2 

are about 10
22

 Pa
.
s and ~3×10

22
 Pa

.
s, respectively (Figure 3.3c), which are comparable 

with but still larger than the estimated from post-glacial rebound (e.g., Simons and 

Hager, 1997). Therefore, it is important to examine the possible effects of larger Ra 

on compensation effects seen in thermochemical convection model of Case 2. To test 

such effects, we formulate both purely thermal and thermochemical convection 

models with Ra=1.5×10
8
.  It is found that the main results for models with 

intermediate Ra, as presented in sections 3.3.1 and 3.3.2, also hold for models with 

Ra=1.5×10
8
. Cases with a higher Ra, however, seem to systematically reduce the 

dynamic topography and geoid, as presented below.  

The initial temperature condition for the purely thermal convection model with 

Ra=1.5×10
8
 (Case 3) is the same as in Case 1. Case 3 has viscosity pre-factors of 0.3, 

1/30, and 1 in the lithosphere, the upper mantle, and the lower mantle, respectively, 

which are also similar to those in Case 1 (Table 3.2). Measured by the temperature in 
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the bottom TBL (e.g., 100 km above the CMB), a dominantly degree 2 convective 

structure is reached with two main downwelling systems (Figure 3.13a). However, 

unlike in Case 1 where the power spectra of the temperature within the top and 

bottom TBLs are similar, in Case 3 the temperature in the top TBL has stronger short 

lith0 0.4, the 

models would reach a stable, dominantly degree-1 structure, measured from both the 

top and the bottom temperature fields (e.g., Zhong et al., 2007). With the increased Ra, 

Case 3 has an averaged surface heat flux of ~54 (or 39 TW) and a surface RMS 

velocity of 7060 (or 3.5 cm/yr). The averaged lower mantle viscosity is 5×10
21

 Pa
.
s.  
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Table 3.2. Time-dependent, self-consistent numerical models. 

Case Ra B  𝜂𝑙𝑖𝑡ℎ0 Steps  Grid 𝛾 Nu Vt 

Case1 5×10
7
 0 0.27 30000 12×65

3
 50 42 6470 

Case2 5×10
7
 0.8 0.27 40000 12×65

3
 50 26 2580 

Case3 1.5×10
8
 0 0.3 60000 12×97

3
 70 54 7060 

Case4 1.5×10
8
 0.5 0.3 40000 12×97

3
 70 45 5150 

Ra, B, 𝜂𝑙𝑖𝑡ℎ0, and 𝛾 stand for Rayleigh number, buoyancy number, viscosity pre-factor 

in the lithosphere, and internal heating, respectively. Column Steps shows the 

maximum time steps for the case. The numbers 12 in column Grid means 12 caps 

divided for the spherical shell, and 65 and 97 mean the resolution for the longitude, 

latitude, and the radial directions, respectively. Nu, and Vt are the nondimensional 

surface heat flux, and surface RMS velocity after the model reaches quasi-steady 

states 
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Similar to Case 1, the CMB topography is dominantly degree 2, and is 

negative/positive below the downwelling/upwelling regions (Figure 3.13c). The 

surface topography shows strong short wavelength components, and is dominantly 

degree 3 (Figures 3.13b and 3.5b), following the pattern of the shallow depth 

temperature structure. The magnitude of the surface and CMB topographies is smaller 

than that of Case 1 due to a smaller mantle viscosity with the higher Ra for Case 3 

(Figure 3.5b). The dominantly degree 2 geoid, dictated by the lower mantle structure, 

is positive in two broad regions approximately above the upwellings and is negative 

above the two main downwellings revealed in the bottom TBL temperature (Figures 

3.13d and 3.5a). The buoyancy at different depths mostly contributes positively to the 

surface geoid across the mantle (Figure 3.14e). These results are similar to that for 

Case 1.  
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Figure 3.13. (a) The temperature structure at 100 km above the CMB, (b) the surface 

and (c) the bottom topographies, and (d) the geoid for Case 3. Arrows in (a) denote 

the horizontal velocities at the corresponding depth. Contour lines of 0 m are plotted 

in (b)-(d). 

 

 

The thermochemical model, Case 4, has the same initial temperature and 

composition conditions as in Case 2, but uses Ra=1.5×10
8
 and buoyancy number 

B=0.5. Using the same viscosity pre-factors as Case 3, Case 4 achieves a dominantly 

degree 2 convective structure. Similar to Case 2, two stable, hot thermochemical piles 

separated by two cold downwellings are formed (Figure 3.14a) and the piles extend to 

the height of ~600 km above the CMB. This again suggests that thermochemical piles 

do not have a significant effect on the dominant convective wavelength that is mainly 

controlled by viscosity structure. The surface heat flux and RMS velocity of Case 4 
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are ~32 TW and 2.6 cm/y, respectively. The lower mantle viscosity is 5×10
21

 Pa
.
s, 

which is similar with that of Case 3. 

 

Figure 3.14. (a) The temperature structure at 100 km above the CMB, (b) the surface 

and (c) the bottom topographies, (d) the geoid, (e) the degree 2 contribution to the 

total geoid from the layer with unit thickness at different depths, and (f) the geoid 

from the top 1800 km of the mantle, for Case 4. Arrows in (a) represent the horizontal 

velocities at the corresponding depth. The black contours in (b)-(d) and (f) are for 0 m 

contours. In (e), the black dashed line is for degree-2 contribution for Case 3, the red 

line represents the reference value of 0, and the green line denotes the compensation 

region for Case 4, below which the net contribution to the total geoid is 0.  
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The CMB topography for Case 4 (Figure 3.14c) is relatively smooth in the pile 

regions, with one pile region slightly uplifted and the other one slightly depressed. 

Similar to Case 2, the lowest CMB topography occurs outside the piles at the center of 

one downwelling, and the highest topography is also outside the pile regions but near 

the piles. While the topographies are strongly influenced by the degree 2 convective 

structure, there are also significant short-wavelength components (Figures 3.14b and 

3.14c). The topographies for Case 4 are smaller than those for Case 3 due to the 

compensation (or buffering) effect by the chemical piles, and are also reduced from 

Case 2 due to a higher Ra.  

The geoid for Case 4 is dominantly degree 2, and is positive in two broad 

regions approximately over the two chemical piles (Figure 3.14d). The geoid 

contributed from buoyancy with a unit thickness at different depths, the depth-

dependent geoid power spectra and degree-correlations with the total surface geoid 

are computed, following the same procedures as for Cases 1 and 2. Both the power 

spectra and degree-correlations are similar to those for Case 2. The layer contribution 

to the geoid at degree 2 indicates that the bottom ~600 km of the mantle, which is the 

vertical extent of the chemical piles, contributes negatively to the total geoid, and that 

the negative contribution is compensated by the positive contribution from the mantle 

right above the piles (Figure 3.14e). The thickness of the compensation region is 

~1100 km at degree 2, similar to that in Case 2. The geoid produced by the top ~1800 

km of the mantle resembles the total geoid (Figures 3.14f and 3.14d), and it correlates 

at 94% and accounts for 114% of the total geoid, summed from degrees 2 to 12. 

Similar with Case 2, the surface topographies produced before and after removing the 

bottom part of the mantle are nearly identical (the correlation and contribution for 

degrees 1-12 are 99.9% and 101.4%, respectively). Based on Cases 2 and 4, we 
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conclude that for thermochemical convection with heavy thermochemical piles, the 

bottom layer of the mantle does not have net contribution to the geoid, as well as the 

surface dynamics topography, and this compensation layer thickness is ~1000 km for 

the chemical piles extending to ~500 km above the CMB. 

 

3.4   Discussion 

3.4.1 The geoid, thermochemical LLSVP, and compensation layer 

In this study, we present dynamically self-consistent thermal and 

thermochemical convection models that generate dominantly degree-2 convective 

structure at Earth’s mantle like Rayleigh number. The degree-2 convective structure 

from our dynamic models resembles the seismically observed mantle structure and is 

generated with a depth- and temperature-dependent mantle viscosity structure (e.g., a 

modestly strong lithosphere) that is consistent with that inferred from post-glacial 

rebound and geoid studies. These dynamic models allow us to investigate the dynamic 

effects of thermochemical mantle structure on the long-wavelength geoid and 

topography anomalies. Our dynamically self-consistent thermochemical convection 

models show that long-wavelength geoid and topography highs are produced above 

two chemically distinct and dense piles (Figures 3.9c and 3.9e). This may reconcile 

the observations of long-wavelength positive geoid and topography anomalies in the 

Pacific and Africa with the interpretation that the Pacific and Africa LLSVPs are 

chemically distinct and dense piles (e.g., McNamara and Zhong, 2005b). This also 

supports the notion that the chemical piles as suggested seismically in the LLSVPs 

(Masters et al., 2000; Wen et al., 2001; Ni et al., 2002) may represent reservoirs for 
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primitive mantle materials and also as the source materials for oceanic island basalts 

(Hofmann, 1997; Boyet and Carlson, 2005).   

Our dynamically self-consistent models also show that the thermochemical 

piles have a compensation effect on the long wavelength geoid, and that the bottom 

~1000 km of the mantle (i.e., a compensation layer) has nearly zero net contribution 

to the total geoid. The relatively thick compensation layer arises because the dense, 

negatively buoyant chemical piles above the CMB produce negative surface geoid, 

while the hot, buoyant mantle above the piles generates positive geoid, cancelling the 

negative geoid from the chemical piles. In our models, the chemical piles reach to 

400-500 km height above the CMB, and the thickness of the compensation layer is 

about 1000-1200 km or 2-3 times of the pile thickness. The compensation thicknesses 

in our study are determined based on the degree 2 geoid. While degree-2 geoid 

accounts for >50% of the geoid in both the observation and our models, the degree 3 

geoid is also significant. Our dynamic models indicate that similar compensation 

effect also exists at degree 3 (Figure 3.10c), but the effect is not as evident and robust 

as that for the degree 2.  For example, for Case 2 with Ra=5×10
7
, the degree 3 

compensation thickness ranges between 250 km and 500 km at different time steps.  

It has been a challenge to construct mantle buoyancy structure from the 

seismic tomographic models for a chemical heterogeneous mantle, because of the 

uncertainties in mantle seismic, composition and mineral physics models. For 

example, Forte and Mitrovica (2001) suggested a limited role of composition in 

affecting seismic and density anomalies of the LLSVPs and concluded that the 

LLSVPs needed to be overall buoyant to fit the geoid. However, buoyant LLSVPs 

would not be in dynamic equilibrium with the ambient mantle to stay in the deep 

mantle as chemically distinct, possibly primitive mantle reservoirs. In their studies on 
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the geoid and true polar wander, to consider possible chemical effects of the LLSVPs, 

Steinberger & Torsvik (2010) simply removed the bottom 300 km of the mantle 

where the LLSVPs are. Clearly, the results on the geoid and compensation thickness 

from our time-dependent dynamic models differ significantly from these two studies 

based on instantaneous mantle flow. The compensation effect revealed from our 

dynamic models may offer an approach to construct mantle buoyancy structure from 

seismic models for calculating the geoid. That is, we may ignore mantle buoyancy in 

the compensation layer and only consider the upper part of the mantle (e.g., the top 

1800 km). This approach avoids determining the conversion from seismic anomalies 

to buoyancy structure in the LLSVPs where seismic anomalies have both thermal and 

chemical origins. It should be pointed out that although reaching to >600 km heights 

above the CMB, the LLSVPs have the largest seismic anomalies (>5%) only in the 

bottom ~300 km with a non-uniform structure (e.g., Wang and Wen, 2004; He and 

Wen, 2012). This suggests that although our dynamic models suggest a reasonable 

estimate of the compensation thickness of ~1000 km, its exact thickness for the 

earth’s mantle is still somewhat uncertain, possibly ranging from 600 km to 1200 km. 

3.4.2 Surface topography, dynamic topography, and the geoid  

It is important to point out that surface topography presented in this study (e.g., 

Figure 3.4c) differs from the classic definition of dynamic topography. Dynamic 

topography is often defined as the topography caused by the mantle buoyancy 

excluding that from shallow depths (i.e., the lithosphere), revealing the dynamics of 

the mantle interiors (e.g., Hager and Richards, 1989). With the classic definition, the 

subsidence caused by the plate cooling is not considered as dynamic topography. The 

surface topography in this study, on the contrary, is computed from the buoyancy 

structure of the whole mantle including the top thermal boundary layer (i.e., TBL or 
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the lithosphere). Therefore, although the positive surface topography in our models is 

3-4 km (e.g., Figures 3.4c and 3.9c), it should not be interpreted as a 3-4 km dynamic 

topography.  

It is of interest to explore the surface dynamic topography of convective 

models using the classic definition. We will use Case 2 as an example. The top TBL 

of Case 2, determined from the horizontally averaged temperature (Fig 3.3a), is ~170 

km thick. Figures 3.15a and 3.15b present the large-scale (i.e., the degrees 2 and 3) 

surface topography with and without the contribution from the top TBL, respectively. 

Note that the surface topography in Figure 3.15a is essentially the long-wavelength 

components of that in Figure 3.9c, while Figure 3.15b shows the dynamic topography 

in its classic definition. The dynamic topography is in a range of ±1.5 km, and is only 

half of the surface topography. That is, the top TBL contributes ~50% of the surface 

topography. However, the top TBL does not significantly influence the geoid (Figures 

3.15c and 3.15d), contributing ~15% of the total geoid at degrees 2 and 3. This 

reflects the fact that the buoyancy at shallow depths is largely compensated with little 

effect on the geoid (e.g., Hager and Richards, 1989). 
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Figure 3.15. The degrees 2 and 3 surface topography for Case 2 (a) with and (b) 

without the contribution from the top 170 km thick thermal boundary layer, and the 

geoid (c) with and (d) without the contribution from the top thermal boundary layer. 

Surface topography in Figure 15b is the dynamic topography in its classic definition. 

Contour lines of 0 are plotted on (a)-(d). 

 

 

 A similar analysis is done for other cases. For example, for Case 1, the long-

wavelength dynamic topography (i.e., degrees 2-3) ranges from -1.5 km to 1 km, and 

the top 160 km TBL contributes ~60% to the surface topography. The dynamic 

topography for Case 4 is ~ ±700 m, and its 150 km thick top TBL contributes ~40% at 

degrees 2 and 3 to the total surface topography. The results further show that the 

surface topography and the dynamic topography are smaller for models with a larger 

Ra (i.e., smaller viscosity). It should be pointed out that in its classic definition, the 
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dynamic topography of both purely thermal and thermochemical cases in our study is 

in a range of ± 1 km, which is comparable to that inferred from seismic models (e.g., 

Hager and Richards, 1989; Lithgow-Bertelloni and Silver, 1998), suggesting that our 

models use reasonable model parameters.     

3.4.3 CMB topography 

Our dynamic models show that the CMB topography is distinctly different 

between purely thermal and thermochemical convection models. In purely thermal 

convection, the CMB topography shows variations at all different scales that 

correspond directly to mantle convective structure (e.g., Figures 3.4d and 3.13c). For 

example, in the upwelling regions, short-wavelength positive CMB topography with 

large amplitude below localized mantle plumes superposes on long-wavelength 

positive topography. However, for thermochemical convection, CMB topography in 

the chemical pile (i.e., upwelling) regions is extremely smooth and is nearly zero or 

slightly depressed/uplifted (Figures 3.9d and 3.14c), although the piles are chemically 

dense with net negative buoyancy (Figure 3.11b). However, the CMB topography 

varies significantly and rapidly outside the pile regions where both the largest uplift 

and the largest depression occur. While the largest uplift occurs at the vicinity of the 

chemical piles, the largest depression is underneath the coldest downwellings. This is 

generally consistent with previous modeling studies using a similar mantle viscosity 

structure but imposed plate motions (Lassak et al., 2010). For Case 4 with Earth-like 

convective vigor, the largest positive and negative CMB topography are about 4 km 

and -10 km, respectively, and they exist over relatively small length-scales (hundreds 

of kilometers) (Figure 3.14c). Recent analyses of short period PcP seismic waves 

suggest up to 6 km depression of the CMB beneath Kenai Peninsula over several 

hundred kilometer length-scales (Wu et al., 2014). Similar future seismic studies on 
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the short-wavelength CMB topography may provide constraints on mantle dynamic 

models.  

3.4.4 The effects of 3-D viscosity on the geoid 

Geoid modeling studies often assume an 1-D viscosity structure (e.g., Hager 

and Richards, 1989), because the simplified viscosity allows the use of the propagator 

matrix method to compute the geoid, making it possible for efficiently sampling 

model parameter space and inversion (e.g., King and Masters, 1992). However, there 

has been a concern on how the simplified 1-D viscosity structure may introduce errors 

in the geoid for the mantle with 3-D viscosity (e.g., Richards and Hager, 1989). For 3-

D viscosity inferred from seismic tomography models, it seems that the effects from 

3-D viscosity or lateral variations in viscosity (i.e., LVV) are only important at 

wavelengths smaller than those corresponding to spherical harmonic degree 4 (Zhang 

and Christensen, 1993). This is generally consistent with other similar studies 

(Moucha et al., 2007; Ghosh et al., 2010). However, Zhong and Davies (1999) 

indicated that the effect of LVV is dependent on mantle structure itself. For example, 

it was found that 3-D viscosity derived from slab models could affect degree-2 geoid 

(Zhong and Davies, 1999). 

 It is of interest to examine the effect of 3-D viscosity or LVV on the geoid for 

dynamically self-consistent convection models such as those in this study. To address 

this issue, we compute the geoid using the buoyancy structure of our convection 

models but with a horizontally averaged viscosity (i.e., 1-D) structure (e.g., Figure 

3.3c) and compare the resulting geoid with the geoid using 3-D viscosity. We use 

Case 2 as an example for our analysis, but the results for other cases are similar. The 

geoid kernels for degrees 2-20 are computed for 1-D viscosity structure for Case 2 

(Figure 3.3c) using a propagator matrix method (e.g., Hager and O'Connell, 1981) 
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(Figure 3.16c). These geoid kernels are similar to those from Hager and Richards 

(1989), except in the upper mantle. The difference is mainly caused by the lack of a 

weak asthenosphere from 100 km to 400 km depths in our convection models (Figure 

3.3c). The self-gravitational effects and an improved treatment of the boundary 

conditions at the CMB in our models (see section 3.2.3) also contribute to the 

difference.  
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Figure 3.16. The geoid for Case 2 with 1-D viscosity contributed from (a) the whole 

mantle and (b) the top 2000 km of the mantle (i.e., excluding the bottom 900 km), (c) 

the geoid kernels for degrees 2 (black), 4 (red), and 8 (green) for the 1-D viscosity 

profile, (d) the square root of the geoid power spectra for degrees 2-12 for the original 

geoid with 3-D viscosity (i.e., Figure 3.9e) (red line), the geoid in Fig 3.16a (black 

solid line), and the geoid in Figure 3.16b (the black dashed line), and (e) the degree-

correlation for degrees 2-12 between the original geoid with 3-D viscosity and the 

geoid in Figure 3.16a (red line), and the correlation between the geoid in Figure 3.16a 

and the geoid in Figure 3.16b (black line). The 1-D viscosity is the horizontally 

averaged viscosity of the selected snapshot of Case 2 (Fig 3.3c). 
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The geoid kernels are convolved with buoyancy for Case 2 (e.g., Figures 3.10d 

and 3.11) to compute the geoid. The resulting geoid with 1-D viscosity, H1D, (Fig 

3.16a) shows a similar degree-2 pattern to the original geoid of Case 2 with 3-D 

viscosity, H3D, (Figure 3.9e). The power spectra of H1D and H3D, as well as their 

degree-correlations are shown in Figures 3.16d and 3.16e, respectively. While the two 

geoids agree very well at degree-2, significant difference exists at short-wavelengths 

for degrees 6 and up especially for the amplitude. At degrees 3 and 4, the amplitudes 

of the geoid from H1D are smaller than those from H3D by 14% and 18%, respectively, 

but the degree-correlation at degree 3 is smaller than 0.6. Because of the degree-2 

dominance, the total degree-correlation for degrees 2-12 between H1D and H3D is 92% 

and the total amplitude of H1D is 90% of H3D. The results suggest that the degree-2 

geoid is not affected by LVV, consistent with what has been suggested for seismically 

based geoid models (e.g., Zhang and Christensen, 1993; Moucha et al., 2007; Ghosh 

et al., 2010). However, the effect of LVV may remain significant for shorter 

wavelengths even for degree-3, further confirming that the effect of LVV is 

dependent on buoyancy/viscosity structure (Zhong and Davies, 1999).  

We now go back to the compensation effect caused by heavy chemical piles 

for the model with 1-D viscosity. We repeat the geoid analysis for Case 2 using the 1-

D viscosity (Figure 3.3c) and the geoid kernel approach, and find that the degree-2 

geoid compensation effect still exists but with a compensation layer thickness of 900 

km, instead of 1200 km for the original Case 2 with 3-D viscosity. The geoid using 

the 1-D viscosity but with the bottom 900 km of the buoyancy structure removed 

(Figure 3.16b), H1DR, agrees with the geoid with the whole mantle buoyancy, H1D 

(Figure 3.16a), except at degree-3 where the degree-correlation is poor (Figure 3.16e). 

This suggests that the compensation effect observed in the numerical models with 3-D 
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viscosity also stands in geoid models with 1-D viscosity, and, to the first order, can be 

analyzed using 1-D viscosity geoid models.  

3.4.5 Some potential drawbacks of the model 

Our study represents the first attempt to investigate the geoid for 

thermochemical mantle convection based on dynamically self-consistent models with 

a number of important features that are relevant for the present-day’s Earth mantle, 

including degree-2 dominant structure, temperature- and depth-dependent viscosity, 

and chemically distinct LLSVPs. However, our models also fall short to incorporate 

some other features that may be potentially important for understanding the geoid. For 

example, tectonic plates do not emerge from our models (see discussion in section 

3.2.2). Therefore, our models, even if they display dominantly degree-2 convective 

structure, do not have linear plate boundaries with localized deformation nor sheet-

like downwellings (i.e., subducted slabs). Future studies are needed to examine the 

effects of tectonic plates on our results. In spite of recent progress in modeling mantle 

convection with tectonic plates (e.g., Moresi and Solomatov, 1998; Coltice et al., 

2012), this type of modeling remains a significant challenge due to our poor 

understanding of lithospheric rheology (e.g., Zhong and Watts, 2013).  

Our models do not produce positive geoid anomalies over cold downwellings. 

However, the Earth has geoid highs both over Africa and Pacific at degrees 2 and 3 

originated from the long-wavelength lower mantle structure, and over subduction 

slabs, at wavelengths corresponding to degrees 4 to 9 (e.g., Hager & Richards, 1989). 

In the Pacific, the geoid high over subduction zones is likely influenced by both 

subduction and lower mantle structures, and radial viscosity profile across the mantle 

as well as regional rheological structure might play a role. Assuming an 1-D viscosity 

structure, Hager (1984) showed that the geoid highs over subduction zones and also 
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on global scale could be reproduced with a viscosity jump of a factor of 30 at the 670 

km depth. Moresi and Gurnis (1995) demonstrated that for subducted slabs with 

higher viscosity than the ambient mantle as expected from temperature-dependent 

viscosity, a larger viscosity contrast (~60-200) at the 670 km depth would be required 

to reproduce regional geoid high over subduction zones in the western Pacific. 

Recently, Hines & Billen (2012) suggested that due to yielding induced lateral 

variations of viscosity within slabs, the geoid over subduction zones might be only 

sensitive to local rheological structure (e.g., the mantle wedge). Our models, while 

produce long-wavelength mantle structure (e.g., degree-2), do not have sheet-like 

slabs, and this makes it difficult to account for the subduction zone geoid as observed. 

Future studies should explore models explaining the geoid at both global (i.e., degrees 

2-3 for the LLSVPs) and regional scales (i.e., subduction zones) in Earth-like 

dynamically self-consistent models.       

Phase changes are not included in our numerical models. The phase changes in 

the upper part of the mantle, i.e., the olivine to spinel phase change at 410 km depth 

and spinel to post-spinel phase change at 660 km depth, may not affect significantly 

the large scale mantle dynamics, especially in the lower mantle, given that the 

Clapeyron slope of the post-spinel phase change is only ~ -2.5 MPa/K (e.g., Fukao et 

al., 2009). The post-perovskite (pPv) phase change occurs in the relatively cold slabs 

several hundred kilometers above the CMB and could potentially affect the lower 

mantle structure (e.g., Sidorin et al., 1999; Murakami et al., 2004; Garnero and 

McNamara, 2008; Tosi et al., 2009). The pPv phase change would increase the 

negative buoyancy of the slabs, and may weaken the slabs. However, its overall 

dynamic effect on the dynamics of thermochemical piles in the CMB regions is 

relatively minor (e.g., Li et al., 2014b). We think that the effect of the pPv phase 
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change on our results may be compensated by increasing slightly buoyancy number B 

for thermochemical piles in our models.  

Finally, our models do not consider the effects of secular cooling including the 

cooling of the mantle and core, which leads to time-dependent Ra. However, we think 

that these effects are likely small on our results. The secular cooling is on a much 

longer time scale (e.g., at a cooling rate of ~70 K per Ga for the mantle for the last 3 

Ga [Jaupart et al., 2007]) than that for convective mantle structure change (Figure 

3.2b) [Zhong et al., 2007]. 

 

3.5   Conclusion 

We have computed a series of 3-D spherical convection models for both 

purely thermal and thermochemical convection. These dynamically self-consistent 

models include temperature- and depth-dependent viscosity. By varying the 

lithosphere viscosity, these models achieve a stable degree-2 dominant convective 

structure that is similar to the present-day Earth’s mantle. We computed the geoid 

anomalies and analyzed the geoid contributed from the buoyancy structure at different 

depths from these models. The results can be summarized as follows: 

1. Our dynamically self-consistent thermochemical convection models show 

that degree-2 positive geoid anomalies can be produced over chemically dense piles, 

which suggests that the positive long-wavelength geoid anomalies observed in the 

Pacific and Africa are consistent with the interpretation of the two LLSVPs as 

chemically dense, possibly primitive thermochemical piles. However, our degree-2 

purely thermal convection models also produce positive geoid anomalies over the two 
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major upwelling systems, consistent with previous studies of the geoid in isochemical, 

whole-mantle models using buoyancy derived from seismic models.  

2. Our dynamic models show that the chemically dense piles have a 

compensation effect on the surface geoid, resulting in a compensation layer at the 

bottom of the mantle that is 2 to 3 times as thick as the chemical piles or ~1000 km 

thick. The buoyancy in the compensation layer has zero net contribution to the surface 

geoid.  

3. Thermochemical piles in our dynamic models have a passive and secondary 

effect on large-scale convective structure that is controlled by mantle viscosity 

structure and convection above the thermochemical piles. 

4. The CMB topography is smooth and slightly negative in the regions with 

thermochemical piles, but significant and rapid variations in CMB topography occur 

outside the chemical pile regions where both the largest depression and uplifts at the 

CMB are found. The largest CMB depression is always under major downwellings, 

but the largest uplift at the CMB is near the chemical piles.  

5. The 3-D viscosity or lateral variations in viscosity may not affect degree-2 

geoid, but may influence shorter wavelength geoid. Our results further confirm that 

the effects of lateral variations in viscosity are dependent on 3-D buoyancy/viscosity 

structure themselves. 
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 Chapter 4  

 

Constraining mantle viscosity structure for a thermochemical mantle 

using the geoid observation
3
  

 

Abstract: Long-wavelength geoid anomalies provide important constraints on mantle 

dynamics and viscosity structure. Previous studies have successfully reproduced the observed 

geoid using seismically inferred buoyancy in whole-mantle convection models. However, it 

has been suggested that large low shear velocity provinces (LLSVPs) underneath Pacific and 

Africa in the lower mantle are chemically distinct and are likely denser than the ambient 

mantle. We formulate instantaneous flow models based on seismic tomographic models to 

compute the geoid and constrain mantle viscosity by assuming both thermochemical and 

whole-mantle convection. Geoid modelling for the thermochemical model is performed by 

considering the compensation effect (Liu & Zhong, 2015) of dense thermochemical piles and 

removing buoyancy structure of the compensation layer in the lower mantle. Thermochemical 

models well reproduce the observed geoid, thus reconciling the geoid with the interpretation 

of LLSVPs as dense thermochemical piles. The viscosity structure inverted for 

thermochemical models is nearly identical to that of whole-mantle models. In the preferred 

model, the lower mantle viscosity is ~10 times higher than the upper mantle viscosity that is 

~10 times higher than the transition zone viscosity. The weak transition zone is consistent 

with the proposed high water content there. The geoid in thermochemical mantle models is 

sensitive to seismic structure at mid-mantle depths, suggesting a need to improve seismic 

                                                           
3
 This chapter was published as “Liu, X., and S. J. Zhong, 2016. Constraining mantle viscosity 

structure for a thermochemical mantle using the geoid observation, Geochem. Geophys. Geosyst., 17, 

doi:10.1002/ 2015GC006161” 
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imaging resolution there. The geoid modelling constrains the vertical extent of dense and 

stable chemical piles to be within ~500 km above CMB. Our results have implications for 

mineral physics, seismic tomographic studies, and mantle convection modelling.  
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4.1.  Introduction 

The geoid modelling using instantaneous mantle flow models based on 

seismic velocity anomalies can provide a critical constraint on the mantle rheology 

and buoyancy structure. Classic studies using this approach and assuming a whole-

mantle, purely thermal convection model (e.g., Hager & Richards, 1989; Ricard et al., 

1993; King and Masters, 1992; King, 1995; Mitrovica and Forte, 2004; Ghosh et al., 

2010) have estimated that the viscosity in the lower mantle is about 30-60 times 

higher than that in the upper mantle. However, those models may have been over-

simplified, because the large-scale lower mantle structures exhibit complex seismic 

characteristics which may imply compositional heterogeneities (e.g., Su and 

Dziewonski, 1997; Masters et al., 2000; Wen et al., 2001; Ni et al., 2002; He and 

Wen, 2009). For example, the large low shear velocity provinces (LLSVPs) in the 

lower mantle (Figure 4.1a) have been proposed as chemically distinct and stable piles 

(e.g., Wen et al., 2001; Ni et al., 2002) that help reconcile both seismic and 

geochemical observations (e.g., Hofmann, 1997; Kellogg et al., 1999; Kunz et al., 

1998; Boyet and Carlson, 2005; Jackson et al., 2014), although some studies suggest 

that the LLSVPs have a purely thermal origin (e.g., Davies, 2012). Chemical piles 

alter the lowermost mantle buoyancy structure and have been found to influence the 

mantle dynamics (e.g., Tackley, 1998; Kellogg et al., 1999; Davaille, 1999; 

McNamara and Zhong, 2005; Zhang et al., 2010) as well as their surface 

manifestation such as the geoid and dynamic topography (Liu & Zhong, 2015). Thus, 

it is necessary to re-examine the geoid modelling and its constraint on mantle 

viscosity considering the effects of the thermochemical mantle convection based on 

seismic tomographic models.  
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Figure 4.1. (a) Seismic shear wave speed anomaly δv/v (model SAW642ANb) at 

2650 km depth, and (b) the observed geoid at degrees 2-12. Contours of 50 m are 

plotted in (b). 

 

 

Constructing buoyancy structure from the seismic tomographic models in 

those chemically heterogeneous regions is difficult due to the mixture of both thermal 

and compositional effects, and uncertainties in seismic, compositional and mineral 

physics mantle models. In their geoid modelling study, Steinberger & Torsvik (2010) 

simply removed the buoyancy structure of the thermochemical layer (i.e., bottom 300 

km of the mantle). Another geoid modeling study considering possible chemical 

effects on mantle buoyancy suggested that the LLSVPs would be overall buoyant in 

order to fit the geoid (Forte and Mitrovica, 2001), thus raising the question whether 

the LLSVPs represent stable thermochemical structures over long time scales. In 

time-dependent, dynamically self-consistent thermochemical mantle convection 

models, Liu and Zhong (2015) found that the general characteristics of the surface 

geoid and dynamic topography over stable dense thermochemical piles, after reaching 

a dynamic equilibrium, resemble the observations. Additionally, Liu & Zhong (2015) 

showed that dense thermochemical piles have a compensation effect on the geoid such 
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that the bottom ~1000 km of the mantle (i.e., a compensation layer), or 2 to 3 times of 

the maximum thickness of the chemical piles, has a zero net contribution to the geoid 

at long wavelengths. The compensation effect occurs because the geoid anomalies 

from negatively buoyant chemical piles are offset by those from hot and buoyant 

normal mantle above the piles. Considering the compensation effect,  the geoid 

modelling for the thermochemical model with stable chemical piles can be done 

following the same approach as that for whole mantle models (e.g., Hager & Richards, 

1989) except that the mantle buoyancy structure in the compensation layer, including 

the LLSVPs, needs to be removed. The mantle above the compensation layer can be 

seen as isochemical with buoyancy structure that can be determined from seismic 

tomographic models with a conversion factor (e.g., Hager & Richards, 1989; Forte & 

Mitrovica, 2001; Ghosh, et al., 2010).  

This study investigates how well the geoid can be explained in instantaneous 

flow models in which mantle buoyancy structure is derived from seismic tomographic 

models considering the compensation effect for the thermochemical mantle as 

reported in Liu & Zhong (2015). This study also re-examines the geoid constraints on 

mantle viscosity structure for a thermochemical mantle and compares the inverted 

mantle viscosity with that inferred from previous purely thermal mantle models. The 

paper is organized as follows. Next section describes the model formulation and 

procedures, section 3 presents results, and sections 4 and 5 are for discussion and 

conclusion.  

 

4.2.  Models and Procedures 

4.2.1.  Geoid modelling 
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The instantaneous flow models are formulated in a 3D spherical geometry. 

Assuming an incompressible fluid and constant thermodynamic parameters except for 

the viscosity, the governing equations for the conservation laws of the mass and 

momentum are: 

                   ∇ ∙ 𝒖 = 0,                                                   (4.1) 

  −∇𝑝 + ∇ ∙ [𝜂(∇𝒖 + ∇𝑇𝒖)] − 𝛿𝜌𝑔𝒆𝑟 = 0 ,                    (4.2) 

where 𝒖 is the velocity vector, 𝑝 is the dynamic pressure, 𝜂 is the viscosity, 𝑔 

is the gravitational acceleration, and 𝛿𝜌 is the density anomaly.  

The density anomaly 𝛿𝜌 in equation (4.2) is determined from seismically 

observed relative shear-velocity anomaly  
𝛿𝑣𝑠

𝑣𝑠
  by: 

𝛿𝜌

𝜌
= 𝑐

𝛿𝑣𝑠

𝑣𝑠
,                             (4.3) 

where 𝜌 is the background mantle density at a given depth from the PREM 

model (Dziewonski and Anderson, 1981), and c is the conversion factor. This study 

uses three global tomographic models: SAW642ANb (Panning et al., 2010), S40RTS 

(Ritsema et al., GJI, 2011), and Smean (Becker and Boschi, 2002). Each seismic 

model is divided into 20 shells with the identical thickness of 143.5 km, and  
𝛿𝑣𝑠

𝑣𝑠
  is 

interpolated at the middle depth of each shell with one-degree-by-one-degree grids.  

Following the previous studies (e.g., Hager and Richards, 1989), we ignore the 

structure in the top ~280 km of the mantle where large seismic anomalies are 

significantly affected by compositional or/and anisotropic effects but may not affect 

the long-wavelength geoid.  
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The geoid is computed by 𝜑/𝑔, where 𝜑 is the surface gravitational potential 

anomaly and can be solved from the Poisson’s equation, 

∇2𝜑 = −4𝜋G𝛿𝜌 ,                             (4.4) 

where G is the gravitational constant, and 𝛿𝜌 includes both density variations 

in the mantle (𝛿𝜌 in equation 4.3) and those associated with dynamic topographies at 

the surface and CMB. Dynamic topographies are determined from solving equations 

4.1 and 4.2 under free-slip boundary conditions at the surface and CMB. The self-

gravitation effect is incorporated in this study although the equations presented above 

did not include this effect for simplicity. With the self-gravitation effect, an additional 

term, −𝜌𝛿𝑔𝒆𝒓⃑⃑⃑⃑ , should be added to the left side of equation (4.2) where  𝛿𝑔 = −∇𝜑 is 

the perturbation to the radial gravity (e.g., Zhong et al., 2008). A reduced pressure 

formulation is used here to solve the momentum equation, dynamic topographies, 

gravitational potential and geoid with the self-gravitation effect (e.g., Zhang & 

Christensen, 1993; Zhong et al., 2008). 

The flow models in this study consider only radially varying viscosity 

structure, as to be discussed in details later. Consequently, the conservation equations 

can be solved with a propagator-matrix method (e.g., Hager and Richards, 1989). 

Details in solving the conservation equations and the Poisson’s equation for the geoid 

and dynamic topographies with the self-gravitation can be found in Zhong et al. 

(2008). In this study the density contrasts at the surface and the CMB are assumed as 

3300 kg/m
3
 and 4337 kg/m

3
, respectively. 

The compensation effect revealed from Liu & Zhong (2015) suggests that the 

long-wavelength geoid is only contributed from the upper part of the mantle above the 

compensation layer, while the buoyancy structure in the compensation layer can be 
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ignored. The compensation thickness as inferred from dynamically consistent 

thermochemical convection models (Liu & Zhong, 2015) varies at different spherical 

harmonic degrees, and at degree 2 it is estimated to be 2-3 times the thickness of 

chemical piles. In this study, we assume a uniform compensation thickness at all 

degrees in thermochemical models based on the estimation at degree 2. This 

assumption does not affect the overall geoid modeling, given that the geoid is 

predominantly at degree-2 and the compensation layer resides at the lowermost 

mantle which has a limited influence on the geoid at shorter wavelengths. The 

thickness or vertical extent of the LLSVPs is not well constrained, and in particular, 

there are significant vertical variations in seismic anomalies within the LLSVPs (e.g., 

Wang & Wen, 2004; He & Wen, 2009). Therefore, a precise knowledge of the 

compensation thickness is unknown, and in our thermochemical mantle models we 

consider four possible compensation thicknesses of 430 km, 720 km, 1000 km, and 

1500 km. 

4.2.2.  Constraining the radial viscosity structure and the conversion factor 

The instantaneous models use a 1-D, layered viscosity structure. This allows 

the use of a propagation matrix method to compute velocities, stresses, dynamic 

topographies and the geoid from kernels (e.g., Hager & O’Connell, 1981), making it 

possible for efficiently sampling model parameter space. The effects of lateral 

variations in mantle viscosity on the geoid at long-wavelengths (degrees 2-3) may be 

secondary to that of vertical variations in viscosity for the present-day mantle 

structure (Zhang and Christensen, 1993; Moucha et al., 2007; Ghosh et al., 2010; Liu 

& Zhong, 2015), although such effects depend on mantle structures (Zhong & Davies, 

1999). Geoid modelling studies have utilized various parameterizations for the radial 

viscosity (e.g., Hager & Richards, 1989; Steinberger & Calderwood, 2006). With a 
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concern of potential tradeoffs, our models do not employ fine viscosity layering, but 

only include four viscosity layers that coincide with significant phase transitions and 

seismic velocity stratifications. The viscosities in the lithosphere (0-100 km depths), 

the upper mantle (100-410 km depths), the transition zone (410-670 km depths), and 

the lower mantle (below 670 km) are denoted as 𝜂𝑙𝑖𝑡ℎ, 𝜂𝑢𝑚, 𝜂𝑡𝑧, and 𝜂𝑙𝑚, respectively. 

The geoid is only sensitive to relative viscosity changes between different layers but 

not to the absolute viscosity (e.g., Hager and Richards, 1989). Since the lithospheric 

viscosity has a weak impact on the long-wavelength geoid compared with that of 

mantle viscosities (Thoraval and Richards, 1997), we fix 𝜂𝑙𝑖𝑡ℎ as 20. Recognizing that 

when assuming an 1D viscosity profile as in this study that cannot include weak plate 

margins, a weak lithosphere is required in the geoid modelling (e.g., Zhong and 

Davies, 1999; Ghosh et al., 2010), we treat 𝜂𝑢𝑚, 𝜂𝑡𝑧, and 𝜂𝑙𝑚 as free parameters while 

requiring that 𝜂𝑙𝑚 is larger than 𝜂𝑙𝑖𝑡ℎ, i.e., 𝜂𝑙𝑚 is larger than 20.  

The conversion factor c in equation 4.3 can be inferred from mineral physics 

studies (e.g., Karato, 1993) as well as modeling surface observables (e.g., Forte & 

Mitrovica, 2001). In this study, c is taken as a constant in the whole mantle except for 

the compensation layer in which c is zero, and c is treated as the fourth free parameter 

in our model calculation in addition to the three viscosities.  

We have computed the geoid and dynamic topography in a large number of 

models in which these four free parameters are varied. These four parameters are 

constrained by fitting the model geoid to the observation. For each group of these four 

parameters, the model geoid, denoted as H’, is computed up to degrees and orders 12, 

and the fit to the observed geoid, H, is measured by the variance reduction (e.g., 

Ricard et al., 1993): 
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𝑉2−12 = 1 −
𝑀2−12

𝐻2−12
 ,                                                 (4.5) 

where 𝐻2−12 is the total power of the observed geoid H from degrees 2 to 12 

and is computed by 

           𝐻2−12 = ∑ ∑ [(𝐻𝑐𝑜𝑠
𝑙𝑚 )2𝑙

𝑚=0 + (𝐻𝑠𝑖𝑛
𝑙𝑚)2]12

𝑙=2 .                               (4.6) 

𝑀2−12 in equation 4.5 is the total power of the difference between the model 

geoid H’ and the observed geoid H from degrees 2 to 12:   

𝑀2−12 = ∑ ∑ [(𝐻′𝑐𝑜𝑠
𝑙𝑚 − 𝐻𝑐𝑜𝑠

𝑙𝑚 )2𝑙
𝑚=0 + (𝐻′𝑠𝑖𝑛

𝑙𝑚 − 𝐻𝑠𝑖𝑛
𝑙𝑚)2]12

𝑙=2  .             (4.7) 

The degree-correlation Clmin-lmax between the model and observed geoids is 

computed by 

        𝐶𝑙𝑚𝑖𝑛−𝑙𝑚𝑎𝑥 = [∑ ∑ (𝐻′
𝑐𝑜𝑠
𝑙𝑚

𝐻𝑐𝑜𝑠
𝑙𝑚 + 𝐻′

𝑠𝑖𝑛
𝑙𝑚

𝐻𝑠𝑖𝑛
𝑙𝑚)𝑙

𝑚=0
𝑙𝑚𝑎𝑥
𝑙=𝑙𝑚𝑖𝑛 ]/(𝐻′

𝑙𝑚𝑖𝑛−𝑙𝑚𝑎𝑥𝐻𝑙𝑚𝑖𝑛−𝑙𝑚𝑎𝑥)
1/2,  (4.8) 

where 𝐻′𝑙𝑚𝑖𝑛−𝑙𝑚𝑎𝑥 and 𝐻𝑙𝑚𝑖𝑛−𝑙𝑚𝑎𝑥 are the total power of the model and 

observed geoids, respectively, from degrees lmin to lmax, and are computed by 

equation 4.6. Degree-correlation reveals the similarity between the patterns of the 

model and observed geoids at certain wavelengths.   

In our geoid modeling calculations, these four free parameters, i.e., 𝜂𝑢𝑚, 𝜂𝑡𝑧, 

𝜂𝑙𝑚, and the conversion parameter c, are firstly searched in a large parameter space 

with relatively coarse parameter grids. Guided by the fitting to the observed geoid, i.e., 

the variance reduction V2-12, the search space is then narrowed down with refined 

parameter grids to the parameter space for models with large variance reductions, as 

to be discussed later.  
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4.3.  Results 

4.3.1.  Results of the geoid models and inverted viscosities 

4.3.1.1. Models with restriction 𝜼𝒕𝒛  𝜼𝒖𝒎 

Following Hager & Richards (1989), our study starts from models with a 

strong transition zone, i.e., 𝜂𝑡𝑧  𝜂𝑢𝑚 is pre-constrained in the geoid modelling. The 

original search space is 𝜂𝑢𝑚 between 0.01 and 10,  𝜂𝑡𝑧 between 0.1 and 20, and 𝜂𝑙𝑚 

between 1 and 100, respectively. Ten different values with equal spacing in a 

logarithmic scale are searched for each viscosity parameter. Notice that we require 

that 𝜂𝑙𝑚 𝜂𝑡𝑧 𝜂𝑢𝑚. The conversion factor c is searched between 0.1 and 0.5 with a 

uniform spacing of 0.02.  For each zoom-in procedure, the ‘best-fit’ model with the 

largest variance reduction, V2-12(max), is identified, and models with variance reduction 

that is larger than V2-12(max)-5% are considered as acceptable. Two seismic models, 

SAW642ANb and S40RTS, are used in the zoom-in procedure, and both the whole 

mantle convection and the thermochemical convection with a 720 km compensation 

thickness are assumed and tested. The parameter space of those acceptable models 

defines a starting search space for the next zoom-in procedure. 

The zoom-in procedure is done twice, and the parameter space is narrowed 

down to be um between 0.1 and 1, tz between 0.1 and 2.5, and lm between 10 and 

80, with refined intervals of 0.1, 0.1, and 5, respectively. The conversion factor c is 

between 0.22 and 0.34 for the whole mantle models, and 0.30 to 0.42 for the 

thermochemical models, both with an interval of 0.02. Thousands of models are 

computed within this parameter space, and their geoid outputs are analyzed. We 

mostly describe results based on seismic model SAW642ANb as it leads to slightly 

better geoid fits, but the results including the inverted parameters and the analyses 
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shown in the following sections for S40RTS and Smean are quite similar (Tables 4.1 

and 4.2). 
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Table 4.1. The best-fit geoid models with restriction 𝜂𝑡𝑧 ≥ 𝜂𝑢𝑚  

 SAW642ANb S40RTS SMEAN 

WM TC1 TC2 TC3 WM TC1 TC2 TC3 WM TC1 TC2 TC3 

V2-12 (%) 77.9 75.1 68.7 55.8 69.3 68.2 63.6 55.2 70.1 67.3 62.0 50.5 

C 

(%) 

2-12 88.3 86.6 82.9 74.7 83.3 82.6 79.7 74.3 83.8 82.1 78.7 71.1 

2 96.7 96.1 96.4 94.3 93.3 93.1 91.1 84.6 93.3 94.5 91.4 87.4 

3 92.7 94.3 93.8 92.4 90.3 90.5 91.2 92.9 84.9 83.7 84.8 81.9 

η um 0.7 0.5 0.7 0.6 0.6 0.5 0.4 0.5 0.5 0.4 0.6 0.5 

tz 0.7 0.5 0.7 0.6 0.6 0.5 0.4 0.5 0.5 0.4 0.6 0.5 

lm 40 30 35 30 35 30 25 25 35 30 35 30 

C 0.28 0.32 0.36 0.4 0.26 0.28 0.32 0.38 0.24 0.28 0.32 0.36 

WM denotes whole mantle model, and TC1, TC2, and TC3 represent thermochemical 

models assuming a compensation thickness of 430 km, 720 km, and 1000 km, 

respectively. V2-12 is the degrees 2-12 variance reduction of the observed geoid. C is 

the degree-correlation with the observed geoid, 2-12 denotes the total correlation from 

degree 2 to degree 12, and 2 and 3 denote the correlation at degree 2 and degree 3, 

respectively. η is the radial viscosity, and um, tz, and lm denote the upper mantle, the 

transition zone, and the lower mantle, respectively. c is the conversion factor from 

seismic velocity to density anomaly.  
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For the whole mantle models, the largest variance reduction V2-12 is 78%, and 

in this best-fit model (Figure 4.2a), 𝜂𝑢𝑚, 𝜂𝑡𝑧, 𝜂𝑙𝑚, and c are 0.7, 0.7, 40, and 0.28, 

respectively. For all the models with V2-12 > 73%, 𝜂𝑡𝑧 is mostly equal to or slightly 

larger than 𝜂𝑢𝑚, and the viscosity ratio between the lower mantle and the upper 

mantle is 40-200. Similar viscosity profiles are inferred from the thermochemical 

models, but a larger conversion factor is needed for fitting the geoid. The largest 

variance reduction for thermochemical models with a 720 km compensation thickness 

(Figure 4.2b) is 69%, and 𝜂𝑢𝑚, 𝜂𝑡𝑧, 𝜂𝑙𝑚, and c for this model are 0.7, 0.7, 35, and 0.36, 

respectively. Viscosity profiles for models with V2-12 larger than 64% is illustrated in 

Figure 4.3a. The variance reduction for thermochemical models is generally smaller 

than that of whole mantle models, and decreases with increasing compensation 

thickness (Table 4.1).  



120 
 

 

Figure 4.2. The best-fit model geoids computed up to degrees and orders 12 using 

seismic models (a)-(d) SAW642ANb, and (e)-(f) S40RTS. (a), (c), and (e) are for 

whole mantle convection models, and (b), (d), and (f) are for thermochemical 

convection models with a 720 km thick compensation layer. (a) and (b) are for models 

with restriction 𝜂𝑡𝑧  𝜂𝑢𝑚, while (c)-(f) do not have the restriction. Contours of 50 m 

are plotted in (a)-(f). 
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Our inverted viscosity contrast 𝜂𝑙𝑚/𝜂𝑢𝑚~50 is quite similar to that inferred 

from geoid studies assuming a single viscosity layer for the upper mantle and 

transition zone (i.e., 𝜂𝑡𝑧=𝜂𝑢𝑚) (e.g., Hager et al., 1985). However, with the 𝜂𝑡𝑧  𝜂𝑢𝑚  

restriction in the inversion, the fact that in models with a large variance reduction 𝜂𝑡𝑧 

is equal or close to 𝜂𝑢𝑚 (Figure 4.3a) suggests that a weak transition zone, i.e., 

𝜂𝑡𝑧<𝜂𝑢𝑚, needs to be considered. Therefore, we conduct an inversion without the 

restriction between 𝜂𝑡𝑧 and 𝜂𝑢𝑚. 

 

Figure 4.3. Viscosity profiles of thermochemical convection models with a 720 km 

thick compensation layer. (a) Models with restriction 𝜂𝑡𝑧 ≥ 𝜂𝑢𝑚 that has a variance 

reduction larger than 64%, and (b) models without restriction 𝜂𝑡𝑧 ≥ 𝜂𝑢𝑚 that has a 

variance reduction larger than 74%. Red lines denote the best-fit models. 

 

 

4.3.1.2. Models without restriction 𝜼𝒕𝒛  𝜼𝒖𝒎  

Without restriction on 𝜂𝑡𝑧 and 𝜂𝑢𝑚, the original search space is same as that 

employed in section 4.3.1.1, except that the space for 𝜂𝑡𝑧 is expanded as from 0.01 to 
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20. The zoom-in procedure is done twice, and the final guided search space is 0.1 to 

12 for 𝜂𝑢𝑚, 0.02 to 1.5 for 𝜂𝑡𝑧, and 10 to 80 for 𝜂𝑙𝑚. The interval for 𝜂𝑢𝑚 is 0.1 

between 0.1 to 1, and 0.5 between 1 to 12, respectively, the interval for 𝜂𝑡𝑧 is 0.02 

between 0.02 to 0.1, and 0.05 between 0.1 to 1.5, respectively, and the interval for 

𝜂𝑙𝑚 is uniformly 5. Assuming the whole mantle convection, the best-fit model (Figure 

4.2c) has a variance reduction V2-12 of 83% (Table 4.2), with mantle viscosities of 7, 

0.45, and 50 for the upper mantle, the transition zone, and the lower mantle, 

respectively, and a conversion factor of 0.32. Notice that all the models with V2-12 

larger than 78% have a weaker transition zone than the upper mantle. The degree-

correlations with the observed geoid at degrees 2 and 3 for the best-fit geoid, C2 and 

C3, are 99% and 95%, respectively, implying a nearly perfect reproduction of the long 

wavelength geoid.  
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Table 4.2. The best-fit geoid models without restriction 𝜂𝑡𝑧 ≥ 𝜂𝑢𝑚 

 SAW642ANb S40RTS SMEAN 

WM TC1 TC2 TC3 TC4 WM TC1 TC2 TC3 WM TC1 TC2 TC3 

V2-12 (%) 83.4 81.3 76.6 64.8 32.8 80.0 80.1 77.3 70.0 80.8 79.7 77.0 69.2 

C 

(%) 

2-12 91.3 90.2 87.6 80.5 57.3 89.5 89.5 87.9 83.9 89.9 89.3 87.7 83.7 

2 98.7 98.4 98.2 95.1 53.6 96.2 96 93.8 88.8 97.0 96.4 94.6 90.4 

3 94.5 95.5 95.7 93.7 83.8 93.2 93.6 94.4 95.1 89.3 90.3 91.1 91.3 

Η Um 7 6.5 7 6 7 6 5 6 2 10 9 4 5 

Tz 0.45 0.45 0.5 0.5 0.5 0.1 0.08 0.08 0.06 0.15 0.15 0.1 0.1 

Lm 50 45 45 40 45 30 25 25 15 45 40 25 25 

C 0.32 0.36 0.42 0.5 0.4 0.3 0.36 0.42 0.48 0.3 0.36 0.42 0.48 

TC4 represent thermochemical models assuming a compensation thickness of 1500 

km. Other symbols and notations are same with those in Table 4.1. 
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For whole mantle convection models, we identified a large number of models 

with different viscosity structures that lead to similarly good variance reduction. For 

models with a very large variance reduction (𝑉2−12 > 80%), the viscosities for the 

upper mantle, 𝜂𝑢𝑚, and transition zone, 𝜂𝑡𝑧, range from 0.5 to 11, and 0.1 to 1.2, 

respectively, and the lower mantle viscosity 𝜂𝑙𝑚 is between 20 and 80.  For those 

models, viscosity ratios, 𝜂𝑡𝑧 /𝜂𝑢𝑚 and 𝜂𝑙𝑚𝜂𝑢𝑚, range from 0.02 to 0.45, and 4.5 to 42, 

respectively. Viscosity ratios for models with a large variance reduction show a 

consistent trend and 𝜂𝑡𝑧𝜂𝑢𝑚 varies proportionally with 𝜂𝑙𝑚𝜂𝑢𝑚 (Figure 4.4a). The 

viscosity contrast at the 670 km depth, 𝜂𝑙𝑚𝜂𝑡𝑧, for these models with a large variance 

reduction falls in a narrow range between 60 and 250. Most of the acceptable models 

have c=0.32. 

 

Figure 4.4. The variance reduction of the geoid in the logarithmic scale for (a) the 

whole mantle model and (b) the thermochemical model assuming a 720 km thick 

compensation layer, based on the seismic model SAW642ANb. Horizontal and 

vertical axes are the viscosity ratios of the lower mantle over the upper mantle and of 

the transition zone over the upper mantle, respectively. The color and size of the 

circles indicate the variance reduction and the conversion factor, respectively. In (a) 

and (b), for each radial viscosity profile, only the model with a conversion factor that 

best reproduces the observed geoid is plotted.  
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The inversion is performed for thermochemical models considering the 

compensation effect. Calculations are done with different compensation thicknesses 

of 430 km, 720 km, 1000 km, and 1500 km. Except for models with a 1500 km thick 

compensation layer, thermochemical models reproduces the observed geoid well 

(Figure 4.2d). For models with a 720 km thick compensation layer, the variance 

reduction V2-12 for the best-fit model is 77% (Table 4.2). V2-12 for the best-fit model 

decreases with increasing compensation layer thickness (Table 4.2), similar to 

calculations with restriction 𝜂𝑡𝑧  𝜂𝑢𝑚. For a 1500 km thick compensation layer, the 

best variance reduction V2-12 is only 33% (Table 4.2), suggesting that the 

compensation layer cannot be too thick. The viscosity profiles for the best-fit models 

(Table 4.2) are almost indistinguishable from those for the whole mantle convection. 

The tradeoffs for the inversion parameters are also analyzed, and for models with 

relatively large variance reduction, both the viscosity parameters and their ratios fall 

in very similar ranges to those for the whole mantle convection model (Figures 4.4a 

and 4.4b). The conversion factor for models with V2-12>72% ranges from 0.38 and 

0.44, and the best-fit model has c=0.42.  

Without the restriction 𝜂𝑡𝑧  𝜂𝑢𝑚, the geoid constrains that the transition zone 

is weaker than the upper mantle (Figure 4.3b), and the geoid fit is significantly 

improved compared with models with that restriction in section 4.3.1.1 (Tables 4.1 

and 4.2). In the following sections, the analyses are focused on these models with a 

weak transition zone.   

4.3.2.  Power spectrum and degree-correlation of the model geoid contributed 

from different depths 

The Earth’s geoid is prevalently at long wavelengths (Lerch et al., 1983, 

Figure 4.1b). The power (equation 4.6) of the geoid at degrees 2 and 3 accounts for 65% 
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and 21%, respectively, of the total power from degrees 2 to 12 (Figure 4.10d). The 

long wavelength components of the geoid have a deep source (Hager & Richards, 

1989), and are highly correlated with the lower mantle structure such as LLSVPs 

(Figure 4.1a). The previous section shows that after removing the mantle buoyancy 

structure in the bottom ~1000 km thick compensation layer as expected for the 

thermochemical mantle model, those instantaneous models can still reproduce the 

geoid with a similar viscosity structure to that in whole mantle convection models. It 

is of interest where the long wavelength geoid (i.e., degrees 2 and 3) in those 

thermochemical models is originated from, and how the contributions from different 

depths vary between the two types of mantle models. 

 

 

Figure 4.5. (a) the normalized power spectra of the geoid at degrees 2-12 contributed 

from different depths, (b) the maximum power among degrees 2-12 contributed from 

the layer with unit thickness at each depth, that is used to normalize the power spectra 

in (a) at the corresponding depth, and (c) the degree-correlation between the observed 

geoid and the geoid contributed from a given depth for the whole mantle convection 

model. (e)-(f) are the counterparts of (a)-(c), respectively, for the thermochemical 

convection model with a 720 km thick compensation layer. (a)-(f) are for the best-fit 

geoid models using the seismic model SAW642ANb. 
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For the best-fit model assuming the whole mantle convection, the geoid 

contributed from each depth is dominantly at degree-2 across the mantle except for 

depths of ~1000-1300 km (Figure 4.5a). Between the depths of 1000-1300 km the 

geoid power is relatively small (Figure 4.5b), and this is mainly because the geoid is 

insensitive to the buoyancy at these depths where the geoid kernels at long 

wavelengths (e.g., degree 2) are near 0 (Figure 4.6a). In the top 1000 km of the mantle, 

although the geoid power at degree 2 from each depth is large with a maximum at 

~600 km depth (Figure 4.5b), the effective contribution from this region to the 

observed geoid is limited due to the poor degree-correlation at long wavelengths 

(Figure 4.5c). In total, the square root power of the degree 2 geoid contributed from 

this region is ~ 56 m, with a degree-correlation of 47% with the observed geoid. In 

contrast, at degree 2, the geoid contributed from below the 1300 km depth, with a 

total square root power of 96 m, is highly correlated (80%) with the observed geoid. It 

can be concluded that the degree 2 observed geoid is mainly originated from the lower 

mantle below the 1300 km depth. Analyses are also done on the degree 3 geoid. 

Although the geoid from the deep mantle (i.e., below the 1300 km depth) has a very 

large correlation at degree 3 (Figure 4.5c), the power is too small compared to that 

from the upper part of the mantle (Figures 4.5a and 4.5b). As a result, the lower and 

upper parts of the mantle have similar effective contributions to the observed geoid at 

degree 3. At degree 3, the geoid contributed from the lower mantle below the 1300 

km depth has a square root power of 35 m, and a degree-correlation of 70%, while the 

geoid from the upper region (above the 1000 km depth) has a square root power of 45 

m, and a degree-correlation of 79% with the observed geoid. At shorter wavelengths, 

the geoid is largely originated from the mantle above ~1000 km depth (Figure 4.5a).     
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Figure 4.6. Kernels of (a) geoid, (b) surface dynamic topography, and (c) GTR for the 

best-fit models assuming both the whole mantle convection (solid lines) and the 

thermochemical convection with a 720 km thick compensation layer (dashed lines)  at 

degrees 2 (black) and 8 (red). The vertical and horizontal green line marks the value 

of 0 and the compensation depth, respectively.   

 

 

Analyses are performed for the best-fit model assuming the thermochemical 

convection with a compensation thickness of 720 km. The difference of the viscosity 

profiles between this model and the whole mantle model is minimal (Table 4.2). The 

power spectra and the degree-correlation of the geoid from difference depths (Figures 

4.5d-4.5f) share similar patterns to that of the whole mantle model (Figures 4.5a-4.5c). 

The geoid power from ~1000 km to ~1300 km is nearly zero. At degree 2, the geoid 

power reaches maximum both at ~600 km depth in the upper mantle and at the depth 

above the compensation layer, but the degree-correlation is much higher in the lower 

mantle (Figure 4.5f). The square root power of the degree 2 geoid from below the 

~1300 km depth is ~ 74 m, with a degree-correlation of 80% with the observed geoid, 

while the mantle above the 1000 km depth contributes a square root power of 49 m
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with a degree-correlation of 50% with the degree 2 observed geoid. Therefore, the 

degree 2 geoid is mainly originated from the lower part of the mantle, similar to the 

whole mantle model as discussed earlier.  

It is noticed that even after removing mantle structure in the bottom 720 km 

thick layer, the geoid power contributed from below 1300 km depth in the 

thermochemical model is still comparable to that in the whole mantle model (Figures 

4.5b and 4.5e). Notice that Figure 4.5c also represents the degree-correlation between 

the seismic structure and the observed geoid. The seismic structure, hence the 

buoyancy structure, is continuous from the lowermost mantle to the mid-mantle, and 

is highly correlated with the observed geoid below the 1300 km depth. The slight 

difference in the viscosity profile between the whole mantle and thermochemical 

models causes a noticeable difference in the geoid kernels at degree 2 (Figure 4.6a). 

In the lower mantle below the 1300 km depth, the positive geoid kernel is larger in the 

thermochemical model than that in the whole mantle model. Since the buoyancy 

structure at mid-mantle depths is highly correlated with the observed geoid, the larger 

geoid kernel, together with an increase of the conversion factor c, make it possible for 

the thermochemical model to fit the degree-2 geoid using mantle buoyancy between 

the 1300 km depth and the compensation layer.  

4.3.3. Surface dynamic topography and geoid-to-topography ratio (GTR) 

Surface dynamic topographies are computed for the best-fit models assuming 

the whole mantle convection and the thermochemical convection with a 720 km thick 

compensation layer (Figures 4.7a and 4.7b) by convolving topography kernels (Figure 

4.6b) with mantle buoyancy. Surface dynamic topography in the thermochemical 

model shows similar patterns to that in the whole mantle model, but with larger 
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amplitudes, particularly at relatively short wavelengths (Figures 4.7a and 4.7b). This 

can be understood from the topography kernels and the geoid-to-topography ratio 

(GTR).  

 

 

Figure 4.7. The surface dynamic topography for the best-fit models based on 

SAW642ANb assuming (a) the whole mantle convection, and (b) the thermochemical 

convection with a 720 km thick compensation layer. Contour lines of 1000 m are 

plotted in (a) and (b). (c) The square root degree-power of (a) (solid line) and (b) 

(dashed line), and the ratio of (b) over (a) (red line). 

 

 

For both thermochemical and whole mantle models, topography kernels are 

positive across the mantle, and are nearly identical. Notice that when assuming the 

thermochemical convection, the buoyancy structure in the compensation layer is 
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removed, and would not contribute to the topography. However, the thermochemical 

model requires a larger conversion factor compared with that of the whole mantle 

convection to explain the geoid, implying that the mantle structure above the 

compensation layer would result in larger buoyancy and produce larger surface 

dynamic topography. At relatively short wavelengths (e.g., degree 8), the topography 

kernels for both models are negligibly small at depths of the compensation layer 

(Figure 4.6b). Consequently, in both models, the relatively short wavelength 

topography is mainly generated by the buoyancy structure in the upper part of the 

mantle above the compensation depth. Therefore, the thermochemical model with a 

larger conversion factor c would have a larger topography at these wavelengths 

compared with that of the whole mantle model. The ratio of the relatively short-

wavelength topographies between the two models is approximately the ratio of their 

conversion factor c with the topography of the thermochemical model being ~30% 

larger (Figure 4.7c).  

At long wavelengths (e.g., degree 2), the buoyancy in the compensation layer 

makes a non-eligible contribution to the surface topography in the whole mantle 

model (Figure 4.6b). For the thermochemical mantle model, the effect of a larger 

conversion factor on the topography is partially offset by the effect of removing the 

buoyancy in the compensation layer. However, the dynamic topography in the 

thermochemical model would still be larger than that in the whole mantle model, 

although the difference between these two models is smaller than that at relatively 

short-wavelengths (Figure 4.7c), and that is because in the lower mantle below ~1200 

km depth, the geoid-to-topography ratio (GTR) at degree 2 for both models are 

positive and increase with depth. Removing the buoyancy in the compensation layer 

in the thermochemical model would result in a reduced averaged GTR compared with 
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that of the whole mantle model. A smaller GTR implies that, to produce the same 

observed geoid, the thermochemical model would produce more topography. 

 

4.4.  Discussion 

4.4.1. The geoid, thermochemical mantle convection, and structure in the lower 

mantle 

Our study shows that the long-wavelength geoid anomalies can be reproduced 

in thermochemical mantle models in which the LLSVPs are interpreted as stable, 

negatively buoyant chemical piles. Therefore, our study helps resolve the dilemma 

that while the geoid observation appears to support isochemical, whole-mantle model 

(e.g., Hager and Richards, 1989; Forte and Mitrovica, 2001), seismic and geochemical 

observations require that the mantle has large-scale, stable chemical heterogeneities 

including the LLSVPs (e.g., Jackson et al., 2014; Boyet and Carlson, 2005). In 

modeling the geoid from seismic models for a thermochemical mantle, our study 

considers the compensation effect of stable, negatively buoyant chemical piles on the 

geoid (Liu and Zhong, 2015) that helps circumvent difficulties in inferring the 

buoyancy for thermochemical heterogeneities such as the LLSVPs in seismic models.  

In the whole mantle convection model, the deep mantle with the LLSVPs 

plays a critical role in explaining the long wavelength geoid. However, the 

thermochemical model in our study reproduces the observed geoid, although a 

significant part of the lower mantle above CMB (i.e., a compensation layer of ~1000 

km thick) is removed due to the compensation effect. That the thermochemical model 

fits the geoid well without the structure in the bottom ~1000 km thick layer of the 
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mantle is rather surprising, given that the degree-2 buoyancy structure in this layer 

including the LLSVPs contributes significantly to the geoid in the whole mantle 

model (Figure 4.5b). The good geoid fitting arises because the degree-2 mantle 

seismic and hence buoyancy structure is continuous from CMB to the mid-mantle 

depth (~ 1300 km depth), and is highly correlated with the observed geoid. The 

buoyancy structure in the mid-mantle effectively contributes to the long wavelength 

geoid and makes it possible for thermochemical models to reproduce the observed 

geoid (Figures 4.5d-4.5f), without the buoyancy structure in the compensation layer, 

as shown in section 4.3.2. 

Our results have a number of implications for mineral physics and seismology. 

First, notice that our thermochemical models considering the compensation effect 

suggest a larger conversion factor from seismic velocity to density anomalies in the 

isochemical part of the mantle above the compensation layer. This should have 

implications for mantle mineral physics. Second, our thermochemical models indicate 

an important role of mantle structure in the mid-mantle above the compensation layer 

in explaining the geoid. However, seismic tomographic models often do not have as 

good resolution at this depth range as that for the bottom of the mantle. Therefore, 

future seismic studies should seek to further improve the resolution at the mid-mantle 

depths.  Third, our thermochemical models suggest that the vertical extent of 

chemically dense and stable piles (i.e., LLSVPs) above the CMB may not exceed 300-

500 km. Seismic estimates of vertical extent of chemically distinct LLSVPs or 

superplumes range from several hundreds to over a thousand kilometers, based on the 

anti-correlation of shear wave and bulk sound speeds (Masters et al., 2000) or wave-

form modeling (Ni et al., 2002; Wen et al., 2001; He and Wen, 2009). Ni et al. (2002) 

suggested that the African anomaly, where compositional anomalies are embedded in 
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thermal plumes, would rise to as high as ~1000 km from the CMB. However, it is 

unclear how thick the chemically dense and stable portion of LLSVPs is. Our results 

show that thermochemical models with a compensation layer thinner than 720 km 

reproduce the observed geoid well, while the geoid fitting decreases rapidly with 

thicker compensation layer, especially with layers thicker than 1000 km (e.g., the 

variance reduction decreases from 77% to 65% as the compensation layer thickness 

increases from 720 km to 1000km, respectively, and it drops to 33% as the layer 

thickness increases to 1500 km) (Table 4.2), indicating an upper bound of 

compensation layer thickness of ~1000 km. Considering that, from studies of mantle 

convection models (Liu and Zhong, 2015), the compensation layer thickness is about 

twice of the vertical extent of chemically dense piles with uniform density, our results 

suggest an upper bound of the vertical extent of chemically dense piles of ~ 300-500 

km above the CMB. This is consistent with seismic studies of anti-correlation 

between shear velocities and bulk sound velocities in LLSVPs (Master et al., 2002). 

However, this does not necessarily contradict with the existence of chemically distinct 

superplume structure rising to shallower depths as suggested in Ni et al., (2002), if 

such a structure is not negatively buoyant. For example, Tan and Gurnis (2005) 

proposed a compressible thermochemical convection model where metastable 

superplumes are dynamically maintained while negatively buoyant materials only 

exist in the upper part of thermochemical piles. We think that the geoid modeling 

such as that done in Liu and Zhong (2015) could provide an important test for these 

models.  

4.4.2.  A weak transition zone 

An important outcome of the geoid modeling is to place constraints on mantle 

viscosity structure (e.g., Hager and Richards, 1989). Our study with the whole mantle 



135 
 

and thermochemical mantle models reveals two important features about mantle 

viscosity. First, mantle viscosity inferred from the geoid in the thermochemical 

mantle model is nearly identical to that in the whole mantle model, suggesting that the 

viscosity inferred from previous whole mantle models (e.g., Hager and Richards, 

1989) remains largely valid. Second, with three seismic models considered here (i.e., 

SAW642ANb, S40RTS and Smean), our study suggests that the transition zone 

appears to be the weakest, being ~10 times weaker than the upper mantle and ~100 

times weaker than the lower mantle (Table 4.2), irrespective of the whole-mantle or 

the thermochemical mantle models.  

Our result that the transition zone is significantly weaker than the upper 

mantle is different from Hager & Richards (1989) where a stronger transition zone is 

preferred. We suspect that the difference may be caused by the difference in the 

mantle buoyancy used in our studies. King (1995) found two groups of viscosity 

profiles, with either a strong or a weak transition zone that would reproduce the 

observed geoid. He suggested that a large viscosity contrast between the upper mantle 

and transition zone would be critical in the geoid modelling. Our study using most 

recent seismic models seems to remove the ambiguity in preferring a weaker 

transition zone. That the transition zone is significantly weaker than the upper mantle 

has implications for mineral physics. Compared with the upper mantle, the transition 

zone minerals have much higher water solubility (e.g., Williams & Hemley, 2001; 

Nestola and Smyth, 2015), and the transition zone is estimated to have a water content 

of 0.2-2 wt% (Bercovici and Karato, 2003). The high water content would weaken the 

transition zone, and provide a supporting observation for the inferred viscosity profile 

from our study.   
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It should be pointed out that if the transition zone is restricted not to be weaker 

than the upper mantle, i.e., 𝜂𝑡𝑧  𝜂𝑢𝑚, our modeling indicates that 𝜂𝑡𝑧 would be about 

the same as 𝜂𝑢𝑚 which is ~50 times smaller than the lower mantle (Table 4.1) for 

both whole-mantle and thermochemical models. This result is consistent with those 

inferred for the whole-mantle model in previous studies (e.g., Hager, 1984; Hager et 

al., 1985; Ricard et al., 1993). Previous studies also found that an extremely weak and 

thin layer around ~670 km depth would help fit the geoid (e.g., Panasyuk & Hager, 

1998; Forte et al., 1993). We do not attempt to divide the mantle into more viscosity 

layers to further resolve finer viscosity structure, due to our concern on computational 

costs and potential tradeoffs among a large number of viscosity layers, as seen in 

viscosity inversions using post-glacial rebound observations (Paulson et al, 2007; 

Paulson and Richards, 2009).  

4.4.3.  Viscosity structure in the lower mantle 

While our models assume a constant lower mantle viscosity, previous studies 

on modeling  gravitational anomalies or the post-glacial rebound have employed 

viscosity models with significant viscosity increases within the lower mantle (e.g., 

Steinberger and Calderwood, 2006; Forte & Mitrovica, 2001). Recently, using a 

Bayesian inversion procedure, Rudolph et al. (2015) suggested a viscosity increase at 

~ 1000 km depth using geoid modelling for whole mantle convection models.  

Following same procedure as described in sections 4.2 and 4.3 and assuming 

the whole mantle convection, we tested the robustness of the viscosity stratification at 

1000 km depth. We employ a 4-layer 1D viscosity profile with contrasts at 100 km, 

670 km, and 1000 km depths (the four viscosities are denoted as 𝜂𝑙𝑖𝑡ℎ, 𝜂𝑢𝑚, 𝜂𝑢𝑝−𝑙𝑚, 

𝜂𝑏𝑜𝑡−𝑙𝑚, from the surface to the CMB, respectively), with a fixed 𝜂𝑙𝑖𝑡ℎ of 20 as before, 
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and a presumption that 𝜂𝑏𝑜𝑡−𝑙𝑚≥𝜂𝑢𝑝−𝑙𝑚 ≥ 𝜂𝑢𝑚 (i.e., the viscosity monotonically 

increases with depth). Notice that we now combine the upper mantle and transition 

zone into one layer as the upper mantle for simplicity and reducing tradeoffs. After 

several zoom-in procedures, large amounts of models are calculated with 𝜂𝑢𝑚, 𝜂𝑢𝑝−𝑙𝑚, 

and 𝜂𝑏𝑜𝑡−𝑙𝑚 ranging from 0.02 to 7, 1 to 120, and 7 to 400, respectively. The best-fit 

model (V2-12=77.90%) has a viscosity profile of 𝜂𝑢𝑚 =0.4, 𝜂𝑏𝑜𝑡−𝑙𝑚 =30, and 

𝜂𝑢𝑝−𝑙𝑚 =30, respectively. Notice that no viscosity increase exists for this model at 

1000 km depth. The model with the second large variance reduction (V2-12=77.86%), 

however, has a viscosity jump at 1000 km from 𝜂𝑢𝑝−𝑙𝑚=8 to 𝜂𝑏𝑜𝑡−𝑙𝑚=35, while its 

𝜂𝑢𝑚 is 0.6 which is close to that of the best-fit model. It is found that all the models 

that well reproduce the observed geoid (V2-12>73%) have viscosity increase at 1000 

km depth by a factor of 1 (i.e., no increase) to 10 (Figure 4.8). This significant 

tradeoff implies that a viscosity increase at 1000 km depth is not required from our 

geoid modelling study. The viscosity ratio of the upper mantle to the bottom lower 

mantle (i.e., below 1000 km depth), 𝜂𝑢𝑚/𝜂𝑏𝑜𝑡−𝑙𝑚, however, falls in a very narrow 

range of 1/30 to 1/100 (Figure 4.8), indicating that this viscosity contrast is a rather 

robust inference from our geoid modelling. This result is also consistent with our 

results in section 4.3.1.1 and classic studies where the viscosity in the lower mantle is 

about 30-60 times that of the upper mantle (e.g., Hager & Richards, 1989). The 

viscosity inversion with the same viscosity parameterization is also done for 

thermochemical models with a 720 km thick compensation layer. With viscosity 

structures similar with those inverted from whole mantle geoid models, 

thermochemical models can reproduce the observed geoid, although with smaller 

variance reductions. Thus, the compensation effect from thermochemical models does 

not affect the inferred viscosity stratification at 1000 km.  
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Figure 4.8. The variance reduction of the geoid in the logarithmic scale for whole 

mantle models with a presumed viscosity stratification at 1000 km depth, based on the 

seismic model SAW642ANb. Horizontal and vertical axes are the viscosity ratios of 

the upper part of the lower mantle (from 670 to 1000 km depths) to the bottom part of 

the lower mantle (below 1000 km depth), and of the upper mantle (from 100 to 670 

km depths) to the bottom part of the lower mantle, respectively. The color and size of 

the circles illustrate the variance reduction and the conversion factor, respectively. For 

each radial viscosity profile, only the model with a conversion factor that best 

reproduces the observed geoid is plotted. 

 

 

Therefore, our geoid modeling suggests that a more robust feature in the 

inferred mantle viscosity is a general increase of a factor of 30-100 from the upper 

mantle to the lower mantle, while it is not well constrained how and where the 

viscosity increases with the depth. A viscosity increase at ~1000 km depth as 

suggested by Rudolph et al. (2015) is possible but not required. Constraints other than 
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the geoid observation are needed to better understand the fine-layered viscosity 

structure in the lower mantle. One of the main justifications for the viscosity contrast 

at ~1000 km depth proposed by Rudolph et al. (2015) is the seismic imaging of 

plumes and slabs that appear to change their morphologies at that depth (Fukao et al., 

2009; French & Romanowicz, 2014). However, more slab stagnations have been 

observed at the 670 km depth (e.g., Fukao et al., 2009). If the same reasoning is 

followed, the slab stagnations at ~670 km depth would also suggest a viscosity 

increase there. Moreover, slab geometries involve complex mechanism. For example, 

slab stagnations may be heavily influenced by trench roll back (e.g., Zhong & Gurnis, 

1995; Christensen, 1996) and subduction history (e.g., Billen, 2008). More seismic 

and geodynamic studies are in need to further explore the slab structure and dynamics. 

4.4.4.  Dynamic topography 

Dynamic topography for the Earth may be estimated by removing the isostatic 

compensation effect on the topography and determining the residual topography (e.g., 

Davies and Pribac, 1993; Lithogow-Bertelloni & Silver, 1998; Panasyuk and Hager, 

2000). The residual topography can be estimated more robustly in oceanic regions 

than in continental regions because of the expected small variations in oceanic crustal 

structure. In oceanic regions, the residual topography shows topographic highs in 

central Pacific (i.e., the Pacific super-swell) ranging from ~1-2 km depending on 

different lithospheric thermal models (Panasyuk and Hager, 2000). Even after 

removing the effects of seamounts and oceanic islands, sediments, and the 

lithospheric thermal structure (i.e., the plate model), the central Pacific region still has 

~1 km of residual topography (Zhong et al., 2007). Over large length-scale (> 6000 

km or up to spherical harmonic degree 6), the estimated residual topography is 

generally in a range of ~±1 km (e.g., Panasyuk and Hager, 2000).  
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In our best-fit geoid model assuming the whole mantle convection, the 

dynamic topography at degrees 2 and 3 (i.e., long-wavelength) are in the range of 

~±800 m and ~±400 m, respectively, with a topographic high of ~1 km in the central 

Pacific. The dynamic topography from our geoid models is consistent with the 

estimated residual topography (Panasyuk and Hager, 2000) and the dynamic 

topography computed from other geoid modelling studies (e.g., Hager & Richards, 

1989; Lithogow-Bertelloni & Silver, 1998). It is of interest why the magnitude of the 

long wavelength dynamic topography is as high as ~1 km. While a recent study based 

on gravity-topography admittance argument suggested that dynamic topography may 

not exceed ~300 m at relatively small length-scales (Molnar et al., 2015), the 

admittance, or the geoid to topography ratio (GTR), may provide some insight for the 

high magnitude of the long wavelength topography in our model. Notice that the 

degree 2 GTR changes sign at ~1200 km depth, being negative above and positive 

below the depth (Figure 4.6c). The negative GTR reflects the negative geoid kernel in 

the upper mantle (Figure 6a), as the topography kernel is positive for the whole 

mantle (Figure 4.6b). The degree-2 seismic structure is a continuous feature from the 

upper to lower mantles (i.e., seismically slow below Africa and the central Pacific, 

Figures 4.9a and 4.9b). This suggests that dynamic topography produced by mantle 

structure at different depths generally adds to each other and highly correlates with 

the total surface topography (Figures 4.9e, 4.9f and 4.9h). However, the degree-2 

geoid from the upper mantle is largely canceled out by that from the lower mantle due 

to the opposite signs of the kernel in the two regions (Figures 4.9c and 4.9d). The 

overall GTR should be the average of the GTR kernel over the whole mantle, 

weighted by depth distribution of the power (e.g., Figure 4.5b). In our best-fit whole 

mantle geoid model, the degree 2 GTR kernel ranges from -0.15 at ~600 km depth to 
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~0.25 above the CMB, and an averaged GTR of less than 0.1 is expected. This 

explains why to produce the observed degree-2 geoid of ~70 m in the Pacific, the 

models often produce ~ 800 m degree 2 topographic high there. The argument also 

applies for thermochemical mantle models, with an even smaller overall GTR. 
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Figure 4.9. Seismic shear wave speed anomaly δv/v (model SAW642ANb) at (a) 650 

km depth and (b) 500 km above CMB. Degree 2 geoid contributed from (c) 650 km 

depth and (d) 500 km above CMB, degree 2 surface dynamic topography contributed 

from (e) 650 km depth and (f) 500 km above CMB, and total degree 2 (g) geoid and 

(h) surface dynamic topography, of the best-fit geoid model assuming the whole 

mantle convection based on model SAW642ANb. 



143 
 

While our whole mantle models for the geoid yield similar dynamic 

topography to that from previous studies, our thermochemical models with the 

compensation effect lead to larger amplitude of dynamic topography due to a larger 

conversion factor, compared with those for the whole mantle model. The difference, 

however, is not significant (<30% overall), and we suspect that it would be 

challenging to use the inferred residual topography to distinguish the whole mantle 

and the thermochemical mantle models. It should be noticed that, in thermochemical 

models, since the buoyancy structure in the lowermost mantle is removed, the model 

CMB topography cannot be used to make meaningful geophysical inference for which 

fully dynamic models are needed.   

4.4.5.  The free-air gravity anomaly 

While the long wavelength structure in the Earth’s gravitational field is well 

represented in the geoid (Figure 4.1b), the small-scale features are more evident in the 

free-air gravity anomalies (Figure 4.10a, EGM2008 model) (Pavlis et al., 2012). 

Notice that we have subtracted the free-air gravity anomaly caused by the glacial 

isostatic adjustment process (A et al., 2013) from the original EGM2008 model. The 

degree power for the geoid decreases rapidly as the wavelength decreases, while the 

free-air gravity anomalies have relatively flat power spectra (Figure 4.10d). This is 

because free-air gravity anomalies, gFAlm, can be simply related to the geoid hlm by 

𝑔𝐹𝐴𝑙𝑚 = (𝑙 − 1)ℎ𝑙𝑚𝑔/𝑅 where l is the spherical harmonic degree, g is the reference 

gravitational acceleration, and R is the Earth’s radius. 
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Figure 4.10. (a) Observed free-air gravity anomaly (model EGM2008), and computed 

free-air gravity anomalies for best-fit models assuming (b) the whole mantle 

convection, and (c) the thermochemical convection with a 720 km thick compensation 

layer. (d) Degree power percentages over degrees 2 to 12 (black) for the observed 

geoid (solid line) and free-air gravity (dashed line), and the degree-correlations (red) 

of the computed geoid (solid line) and free-air gravity (dashed line) with the 

observations for the best-fit thermochemical models with a 720 km thick 

compensation layer.    

 

 

We have computed gFA up to degrees and orders 12 for best-fit geoid models 

assuming both the whole mantle convection (Figure 4.10b) and the thermochemical 

convection with the compensation thickness of 720 km (Figure 4.10c), using the 

similar kernel approach. Both whole mantle and thermochemical models reproduce 

the long wavelength pattern of the gFA (Figures 4.10b and 4.10c). However, the 
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model gFA has significantly lower total degree-correlations with the observation with 

C2-12 at 58% for the whole mantle model, and 52% for the thermochemical model, 

compared with the model geoid (e.g., Table 4.2). This is consistent with the findings 

from previous studies (e.g., Forte et al., 2010). A close examination reveals that the 

degree-correlation is very high at degrees 2 and 3, and it decreases with harmonic 

degree. At relatively short wavelengths, the correlation is poor, and is smaller than 50% 

for degrees larger than 6 for both models (Figure 4.10d). It is also found that at each 

degree the correlation for gFA between the model and the observation is nearly 

identical to that for the geoid (Figure 4.10d). Since the geoid is dominantly at degrees 

2 and 3, its total correlation as well as the variance reduction can be high even with 

poor degree-correlations at short wavelengths (Figure 4.10d).   

The difference in spectral content for the geoid and free-air gravity anomalies 

may have implications for inference of mantle viscosity structure using these 

observations. For example, the inferred mantle viscosity from the geoid weighs more 

on long-wavelength mantle structure at the large depths, while free-air gravity based 

inference may incorporate more small-scale structure at relatively shallow depths. The 

small-scale structure at shallow depths may be more difficult to resolve seismically 

and interpret geodynamically due to uncertainties associated with anisotropy and 

compositional heterogeneities. Consequently, it is important to investigate optimal 

inversion procedures for mantle viscosity using these observations.  

4.4.6.  Potential drawback and future work 

In this study, the compensation effect of negatively buoyant chemical piles 

observed in dynamically self-consistent thermochemical convection models (Liu & 

Zhong, 2015) is utilized in the geoid modeling. This approach avoids the difficulty of 
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determining the buoyancy structure of the chemical piles from the seismic structure. 

However, there are several potential drawbacks in this approach. While the 

dynamically self-consistent thermochemical models suggest that the compensation 

layer thickness is ~2-3 times of the chemical piles (Liu & Zhong, 2015), a precise 

knowledge on the compensation thickness for the Earth is unclear. Since the bottom 

part of the mantle is removed to account for the compensation effect, the CMB 

topography in our thermochemical models does not reveal the lower mantle dynamics 

that would be heavily influenced by the thermochemical piles. Our geoid modelling 

employs an 1-D viscosity, while the low viscosity of the chemical piles due to 

temperature and compositional effects might be important in the lower mantle 

dynamics. Nevertheless, the 1-D viscosity inverted from this study has laid a 

foundation for future studies to formulate instantaneous models based on seismic 

mantle structure with realistic temperature- and composition-dependent viscosity, and 

explore the buoyancy structure in the thermochemical piles and the ambient mantle by 

fitting the geoid and surface and CMB topographies.   

 

4.5.  Conclusion 

In this study, we formulate instantaneous mantle flow models for the geoid 

and dynamic topography assuming both thermochemical and whole mantle 

convection with mantle buoyancy structure derived from seismic tomographic models 

SAWANb642, S40RTS, and Smean. Our models employ an 1-D viscosity structure 

and the geoid is calculated using the propagator matrix method. The thermochemical 

mantle model considers the compensation effect of the stable, negatively buoyant 

thermochemical piles (i.e., LLSVPs).  
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 Our thermochemical mantle models treating the LLSVPs as negatively 

buoyant thermochemical piles can well reproduce the Earth’s geoid, thus reconciling 

the geoid observation with the interpretation of the LLSVPs as long-term stable 

chemical reservoirs. The inferred mantle viscosity structure in the thermochemical 

model is nearly identical to that for the whole mantle model. Both models prefer a 

weak transition zone, and in the preferred viscosity model, the lower mantle viscosity 

is ~10 times higher than the upper mantle viscosity that is ~10 times higher than the 

transition zone viscosity. A larger conversion factor from seismic velocity to density 

anomalies is required to fit the geoid in the thermochemical mantle model compared 

with that of the whole mantle model, resulting in a larger (~30%) surface dynamic 

topography in the thermochemical model. The amplitude of long-wavelength (degrees 

2 and 3) dynamic topography is about ±1.2 km, which is generally consistent with 

previous whole mantle models. Our geoid modeling studies suggest that the 

compensation layer is likely to be thinner than ~1000 km, and that the upper bound of 

the vertical extent of the chemically distinct and negatively buoyant piles or LLSVPs 

above the CMB is ~300-500 km. Our studies indicate that mantle structure at mid-

mantle depths (e.g., between 1300 km and 2100 km depths) controls the geoid for a 

thermochemical mantle model. This suggests that future seismic models need to 

further improve resolution at the mid-mantle depths. While it is possible that the 

lower mantle viscosity may increase significantly with depth (e.g., at ~1000 km 

depth), the geoid modeling only provides a limited depth resolution, and a more 

robust conclusion is a general increase in viscosity by a factor of ~100 from the upper 

mantle to depths below 1000 km. 
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Chapter 5 

 

Summary 

5.1.  Summary of the compressible mantle convection study 

In Chapter 2, a 2D Cartesian compressible convection model is formulated to 

examine the effects of compressibility on thermal convection. A new implementation 

of propagator matrix technique for marginal linear stability analysis is presented and 

the critical Rayleigh number for different dissipation numbers Di and wave-numbers 

kx is determined. In the regime of finite amplitude convection, I use a finite element 

code to study the influence of Di on thermal boundary layer (TBL) properties and heat 

flux for models with kx=π and different Di and Ra. Scaling laws that describe the 

dependence of TBL properties and heat flux on Di and Ra are determined. The 

conclusions are as follows:  

(1) Critical Rayleigh numbers, Rac, at the fundamental and higher modes are 

determined for thermal convection in a compressible fluid. At the fundamental mode, 

if Ra is defined by the surface density, Rac may not show a monotonic variation with 

dissipation Di. The fundamental mode may only exist for relatively small Di.  

(2) For thermal convection with depth-dependent density or thermodynamics 

parameters, the eigenfunctions are no longer sinusoidal functions, as they are for 

thermal convection in a homogeneous, incompressible fluid. For Di > 0, the 
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eigenfunctions for temperature T0(z), horizontal velocity U(z), and vertical velocity 

V(z) have larger amplitudes at the shallower depth than those at the larger depths, and 

shear driven convective cell may appear for large Di.   

(3) Rac are also determined from numerical experiments for different Di and 

wavelengths. With the eigenfunctions for temperature T0(z) as initial perturbations, 

numerically determined Rac agree well with Rac computed from marginal stability 

analysis. 

(4) Thermal boundary layer (TBL) properties are quantified in numerical 

models of thermal convection in a compressible fluid at different Ra and Di. TBL 

thicknesses and temperature differences are heavily influenced by Di. While 

temperature differences across the TBLs decrease with Di, TBL thicknesses increase 

with Di. The ratios of top TBL thickness and temperature difference to corresponding 

bottom TBL properties are
2/Die . For both incompressible and compressible 

convection, TBL thicknesses follow 3/1~ Ral , while TBL temperature differences 

are insensitive to Ra. 

(5) Our numerical modeling shows that the local Rayleigh numbers at the top 

and bottom TBLs are nearly identical and are insensitive to Ra and Di for 

compressible convection. 

(6) The scaling laws of the temperature differences across TBLs, tT  and bT , 

are derived as )/()]1(1[ 2/ DiDiDi

st eeeTT    and

)1/()]1(1[ 2/3DiDi

sb eeTT  . tT and bT  are found only dependent on Di. The 

scaling laws are verified by numerical results. 
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(7) The scaling law of heat transfer, Nusselt number Nu, for thermal 

convection in an isoviscous, compressible fluid is derived to be

3/13/4

2/
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t

DiDi

Di
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Ra

Ra

ee
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Nu







. Nu scales with Ra as

3/1~ RaNu , similar with that 

for incompressible convection. The scaling law for Nu is consistent with numerical 

modeling results. We think that these results may have important implications for 

understanding thermal evolution of super-Earths. 

 

5.2.  Summary of the study on the long wavelength geoid in thermochemical 

mantle convection models 

The second part of this thesis (Chapters 3 and 4) studies the effects of two 

chemically distinct and stable piles in the lowermost mantle (e.g., the LLSVPs) on the 

Earth’s long wavelength geoid. It is shown that the long-wavelength geoid anomalies 

can be reproduced in dynamically self-consistent thermochemical mantle models in 

which the LLSVPs are interpreted as stable, negatively buoyant chemical piles. We 

found that the buoyancy from a large portion of the lower mantle (~1000 km in 

thickness) including the chemically dense piles has zero net contribution to the geoid 

due to compensation effects.  Considering the compensation effect, we investigated 

how well the geoid can be explained in instantaneous flow assuming the 

thermochemical convection based on seismic tomographic models. We also 

reexamined the geoid constraints on the viscosity and buoyancy structure for a 

thermochemical mantle. Comparison was done for the inverted viscosity and 

buoyancy structure between our best-fit models assuming the thermochemical 
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convection and those from classic studies assuming the purely thermal, whole-mantle 

convection. 

In Chapter 3, I presented a series of 3-D spherical convection models 

assuming both the purely thermal and the thermochemical convection. These 

dynamically self-consistent models include temperature- and depth-dependent 

viscosity. A degree-2 dominant convective structure that is similar to the present-day 

Earth’s mantle can be dynamically maintained with realist lithosphere and mantle 

viscosity. I computed the geoid anomalies and analyzed how the geoid is contributed 

from the buoyancy structure at different depths. It is found that positive geoid 

anomalies can be produced over chemically dense piles, suggesting that the positive 

long-wavelength geoid anomalies observed in the Pacific and Africa are consistent 

with the interpretation of the two LLSVPs as chemically dense, possibly primitive 

thermochemical piles. Moreover, our dynamic models show that the chemically dense 

piles have a compensation effect on the surface geoid, and the compensation layer at 

the bottom of the mantle that is 2 to 3 times as thick as the chemical piles (or ~1000 

km thick) has zero net contribution to the surface long wavelength geoid.  

I also examined how the CMB topography is influenced by the above 

chemical piles. It is also found that the CMB topography is smooth and slightly 

negative in the regions with thermochemical piles, but significant and rapid variations 

in CMB topography occur outside the chemical pile regions where both the largest 

depression and uplifts at the CMB are found. The largest CMB depression is always 

under major downwellings, but the largest uplift at the CMB is near the chemical piles.  
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Finally, it is found that thermochemical piles in the dynamic models have a 

passive and secondary effect on large-scale convective structure that is controlled by 

mantle viscosity structure and convection above the thermochemical piles. 

In Chapter 4, I formulated instantaneous mantle flow models and solved for 

the geoid and dynamic topographies assuming both thermochemical and whole mantle 

convection with mantle buoyancy structure derived from seismic tomographic models 

SAWANb642, S40RTS, and Smean. The models employ an 1-D viscosity structure 

and the geoid is calculated using the propagator matrix method. The thermochemical 

mantle model considers the compensation effect of the stable and negatively buoyant 

thermochemical piles (i.e., LLSVPs). Our thermochemical mantle models can well 

reproduce the Earth’s geoid, thus can reconcile the geoid observation with the 

interpretation of LLSVPs as long-term stable chemical reservoirs. The inferred mantle 

viscosity structure in the thermochemical model is nearly identical to that for the 

whole mantle model. Both models prefer a weak transition zone, and in the preferred 

viscosity model, the lower mantle viscosity is ~10 times higher than the upper mantle 

viscosity that is ~10 times higher than the transition zone viscosity. A larger 

conversion factor from seismic velocity to density anomalies is required to fit the 

geoid in the thermochemical mantle model compared with that of the whole mantle 

model, resulting in a larger (~30%) surface dynamic topography in the 

thermochemical model. The amplitude of long-wavelength (degrees 2 and 3) dynamic 

topography is about ±1.2 km, which is generally consistent with previous whole 

mantle models. Our geoid modeling studies suggest that the compensation layer is 

likely to be thinner than ~1000 km, and that the upper bound of the vertical extent of 

the chemically distinct and negatively buoyant piles or LLSVPs above the CMB is 

~300-500 km. Our studies indicate that mantle structure at mid-mantle depths (e.g., 
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between 1300 km and 2100 km depths) controls the geoid for a thermochemical 

mantle model. This suggests that future seismic models need to further improve 

resolution at the mid-mantle depths. While it is possible that the lower mantle 

viscosity may increase significantly with depth (e.g., at ~1000 km depth), the geoid 

modeling only provides a limited depth resolution, and a more robust conclusion is a 

general increase in viscosity by a factor of ~100 from the upper mantle to depths 

below 1000 km. 
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Appendixes
4
 

 

A. Marginal stability analysis using a propagator matrix method 

The marginal linear stability problem for compressible flow is governed by 

equations (2.18)-(2.20). Leng & Zhong (2008a) constructed a propagator matrix for 

the Stokes’ flow problem for a compressible fluid (i.e., equations (2.18) and (2.19)). 

Based on their method, we add the linearized energy equation (2.20) and set up the 

propagator matrix for the marginal linear stability problem.  

In the linearized governing equations (2.18)-(2.20), the dependences of the 

velocities, pressure and stresses perturbations on x and z are separable. Horizontal 

component of the perturbations is represented by sinusoidal functions, but vertical 

component of the perturbations is represented by arbitrary functions. The time-

dependence of the perturbations is expressed by an exponential function of time with 

a growth rate .  

The perturbations should satisfy boundary conditions. The free-slip boundary 

condition requires that 0 uxz
 
at x = 0 and 1, and 0 vxz

 
at z = 0 and 1. The 

fixed temperature boundary condition requires that 0T  at z = 0 and 1.  

The perturbations can be expressed in Fourier transform as  

                                                           
4
 The appendixes are in the paper “Liu, X., and S.J. Zhong, 2013. Analysis of marginal stability, heat 

transfer and boundary layer propoerties for thermal convection in a compressible fluid, Geophys. J. Int, 

194, 125-144” 
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where kx is the horizontal wave-number, )(0 zT , )(zU , )(zV , )(zYxz
 and )(zSzz  

represent the vertical dependence of the perturbations corresponding to kx. The 

boundary conditions 0 vT  at z = 0 and 1 require that  

        00  xzYVT  at z = 0 and 1.    (A2) 

Linearized governing equations (2.18)-(2.20) should be formulated into a 

vector linear differential equation (2.22) so that it can be solved by a propagator 

matrix method. Based on a velocity-stress formulation, the vector W in equation (2.22) 

is chosen as (2.23). Linearized governing equations and constitutive equation are 

rearranged such that only items in vector W are used in the equations as unknown 

variables. In the following equations, non-dimensional forms are used and the 

variables with a prime are perturbations in the linearized equations. 

Considering the depth-dependent density profile (equation 2.16), non-

dimensional linearized mass conservation equation (2.18) can be rewritten as: 
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The total stress ij can be related to dynamic pressure p and deviatoric stress ij as   
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ijijij p   ,     (A5) 

where ij is given in equation (2.7). From equation (A5), zz and p are 

)](
3

2
2[

z

v

x

u

z

v
pzz














  ,   (A6)

                

zz
x

u

z

v
p  











3

2

3

4
.    (A7) 

Substituting (A7) into the x component momentum conservation equation (2.19) leads 

to  
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Substituting (A7) into the z-component of equation (2.19) leads to 
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The non-dimensional linearized energy equation (2.20) may be written as: 
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From the constitutive equation (2.7),  
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For each wave-number kx, combining equations (A4), (A8)-(A11), and eliminating

)ksin( xx , )kcos( xx  and te , these equations can be written as: 
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Equations (A12)-(A17) may be written as a vector equation (2.22) or dW/dz = 

AW, and the vector W and the matrix A are defined in equations (A18) and (A19): 
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where the superscript T for equation (A18) represents matrix transpose. We assume 

that all the parameters in matrix A except for r  in (A19) are constant and 

independent of z. This leads to dimensionless parameters g, Pc , , , , and k in (A19) 

to be 1, and matrix A may be written as: 
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We then discuss solution procedures of equation (2.22) using a propagator 

matrix method. Propagator matrix method was proposed by Gilbert & Backus (1966) 

and is widely used to solve vector linear differential equation in the form of equation 

(2.22). Equation (2.22) has a solution:  

        
)(W),(P)(WW 000

A 0 zzzzez
zz


 ,            (A21) 

where 
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               (A22) 

is a propagator matrix that has the same dimensions as matrix A (i.e., 6×6), and W(z0) 

is vector W at 0zz   (e.g., at a boundary).  

If matrix A is dependent on z, the solution at any depth can be obtained by 

propagating along z direction from a starting point z0 with  
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where )(A 1P 
 iii zz

i e  is a propagator matrix between zi and zi-1 over which Ai and Pi 

can be treated as constant matrices.  

Given boundary conditions (A2), vectors W at z=1 and z=0, denoted as W1 

and W0, respectively, are 
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and from equation (A21)  

       
  01 W0,1PW  .                                    (A26) 
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Propagator matrix P(1,0) in equation (A26) is constructed as given in (A22) 

and (A23), based on a grid between z=0 and z=1 from z-dependent matrix A. There 

are six unknowns in W1 and W0: horizontal velocity U, vertical normal stress Szz/2kx, 

and dT0/dz at the surface and bottom boundaries, and they are represented as x, y, z, a, 

b, and c, respectively. Equation (A26) can be written as   
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 ,             (A27) 

where Pij is the ij item of propagator matrix P(1,0). Equation (A27) may be rearranged 

as: 
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A non-trivial solution for equation (A28) requires that the determinant of the 

6×6 matrix in equation (A28) is zero, which in turn requires  
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Equation (A29) forms the basis of our marginal stability analysis using the propagator 

matrix technique.  
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For a given set of thermodynamic parameters, mantle compressibility, density 

structure, and wave-number of the perturbation, there are two unknown parameters in 

matrix A in (A20) or matrix E in (A29): the growth rate   and the Rayleigh number 

Ra. Note that critical Rayleigh number Rac is defined as Ra which makes 0 . A 

search scheme is developed to determine Rac: setting 0 , we compute det(E) for 

different Ra, and when det(E)=0, Ra equals Rac. Different Rac can be determined for 

different wave-number kx and other model parameters such as the dissipation number 

Di.   

To illustrate the search scheme, we present contour plots of det(E) in the Ra-

  space in Figure A1 for two calculations with kx=π and Di=0 and Di=2, 

respectively. For Di=0, it is observed that the zero contours of det(E), which we use to 

find Rac at 0 , are straight lines, indicating that in the limit of weak convection, 

growth rate increases linearly with Ra. As there are multiple zero contour lines of 

det(E) (Fig. A1a), more than one Rac can be obtained, and each Rac is for a distinct 

mode. We use n=0 to represent the fundamental mode and n=1, 2, … to represent the 

first, second, … mode. The value of n represents the number of nodes where the 

vertical flow velocity is zero (excluding z=0 and z=1), and n+1 is the number of 

convection cells that are stacked in the vertical direction. For the range of Ra shown 

in Fig. A1, zero contours of det(E) cross the ’=0 line twice for Di=0 but only once 

for Di=2. What mode each zero contour of det(E) corresponds to depends on 

eigenfunction of vertical flow velocity V(z). 
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Figure A1. Contour plots of the determinant of matrix E in growth rate ’ and Ra 

space for cases with kx=π and (a) Di=0 and (b) Di=2.   

 

 

The eigenfunctions of T0(z), U(z) and V(z) are also determined from the 

propagator matrix method. First, we need to determine )0(WW0  z  in equation 

(A24). From equations (A24)-(A26), we get 
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where sub

0W
 
consists of the three non-zero items of W0.  Since det(E)=0, sub

0W
 
cannot 

be uniquely determined.  However, we seek for a solution by fixing dT0/dz z=0 =1. For 

a given set of model parameters (e.g., Di and kx), propagator matrix P(z,0) is formed 

by equations (A22) and (A23), using Rac =Ra and growth rate 0  in matrix A (i.e., 
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equation A20).  With W0 and the propagator matrix P(z,0), W(z) (i.e., the 

eigenfunctions) can be computed from equation (A23).   In Figure 2.2, we show 

eigenfunctions of T0(z), U(z), and V(z) for some selective cases. Note that T0(z) is 

scaled such as its maximum value is 1, and U(z) and V(z) are scaled accordingly. 

Based on V(z), we also determined that the two modes in Fig. A1a for Di=0 

are for n=0 and n=1 modes, while the only mode in Fig. A1b for Di=2 is for n=1 

mode. The latter suggests that for Di=2, n=0 mode (i.e., the fundamental mode) does 

not exist.  In this study, we use 129 uniform grid points in z direction to compute 

propagator matrix for all the results shown in section 2.3.2.  
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B. Quantifying thermal boundary layer (TBL) properties. 

In compressible convection, an isentropic central region is developed (e.g., 

Jarvis & McKenzie, 1980), and the adiabatic temperature follows equation (2.35). 

While the horizontally average temperature follows adiabatic temperature Tad in the 

isentropic central regime, it deviates significantly from Tad within the top and bottom 

TBLs (i.e., super-adiabatic). Here we describe how the thicknesses and temperature 

difference of TBLs are defined and quantified. 

As an example, Fig. B1b shows the gradients of typical horizontally averaged 

temperature zT d/d and of adiabatic temperature zTad d/d  (computed from equation 

2.35) for case AC1017, where Di=1 and Ra=10
7
. The temperature gradient deviates 

from adiabatic gradient in the top and bottom TBLs and we define the bottom (top) of 

the top (bottom) TBL as where the deviation of temperature gradient starts to develop:  
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 In equation (B1),  is a small value, and in our study is set as 0.2, and dTad/dz in both 

numerator and denominator is the adiabatic temperature gradient at depth z. Equation 

(B1) measures super-adiabatic gradient normalized by surface super-adiabatic 

gradient and helps to determine the top and bottom TBL thicknesses t and b. The 

choice of  affects the values of t and b. The larger  is, the smaller t and b are. 

However, we found that the ratios of TBL thicknesses and the scalings of such 

determined TBL properties are insensitive to the choice of  After t and b are 

determined, the temperature difference in TBLs, tT  and bT  can be determined 

from the horizontally averaged temperature profile (Fig. B1a). Interpolation is needed 

to obtain lT , because t and b do not necessarily occur at the grid points. For each 

case, we determine average TBL thickness and temperature difference over a large 
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number of time steps for steady-state or quasi-steady state solutions.  The adiabatic 

temperature is also plotted in Fig. B1a. Since equation (2.35) might not be applicable 

within TBLs, here we assume that the adiabatic temperatures within the top and 

bottom TBLs are assumed to be the same as those outside the TBLs. This assumption 

is valid because the TBLs are very thin, and ΔTadi within TBLs should be very small. 

 

 

Figure B1.  (a) Horizontally averaged temperature profile for case AC1017, with Di = 

1.0, and Ra = 10
7
.  (b) Temperature gradients for case AC1017. In both (a) and (b), 

the dotted lines are the horizontally averaged temperature (gradient), where dots show 

the grid points in the numerical models. The dashed lines are the adiabatic 

temperature (gradient) (equation 2.35). The solid lines in both figures show the TBLs 

determined by the method introduced in Appendix B.  

 

 


