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The accretion disks and hot X-ray coronae surrounding black holes host plasmas spanning a wide

range of parameter space. The plasma can be collisional or collisionless, depending on its location relative

to the black hole and properties such as the accretion rate of surrounding material onto the black hole. In

these plasmas, Coulomb collisions between electrons and protons can become inefficient, resulting in a two-

temperature flow. In collisionless plasmas, magnetic turbulence and reconnection can accelerate particles

to Lorentz factors of 1000 or more. Modeling these processes on scales of an entire disk/corona system is

difficult computationally.

In this thesis, I examine the large and small scales of black hole accretion disks and their collisionless

coronae. I first study the fundamental process of how turbulence in a collisionless, magnetized coronal plasma

changes in the context of an accretion disk/corona system. By driving turbulence with asymmetric energy

injection, I show that the timescales for nonthermal particle acceleration depend on the injected energy’s

imbalance. I also propose a relativistic momentum-coupling mechanism that efficiently converts the driven

electromagnetic energy into bulk kinetic energy of the plasma. Then, I demonstrate that nonthermal electrons

should exist in the plunging region of a black hole. I use prescriptions from particle-in-cell simulations to

build the electron distribution function within the plunging region. By ray-tracing the emission from these

electrons, I show that nonthermal electrons within the plunging region create an observable power-law

compatible with observations of black hole binaries in the soft spectral state. Finally, I examine two-

temperature effects on the accretion disk as a whole. I probe how Coulomb collisions between protons and

electrons can alter accretion disk structure, either through efficient collisions leading to disk collapse or

through inefficient collisions leading to disk inflation. I contextualize these results in the framework of the

disk truncation model for black hole binaries and examine the thick-to-thin disk transition as a function of

accretion rate.
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how close to the black hole the radiation travels, blur the spectrum further and form the

basis for iron-line-based spin measurements. a) Actual observations from the Suzaku, with

different detectors shown in orange, red, blue, and pink. Model component fits are labeled

and shown in black. The bottom panel shows the ratio of the data to the model. Adapted

from Ref. [93]. b) Example reflection spectrum before (red) and after (blue/green) relativistic

blurring. The green line shows the relativistically blurred spectrum for a non-spinning black

hole, while the blue line shows the spectrum for a black hole spin of 𝑎 = 0.998. From

Ref. [47]. c) Current models can drastically overestimate black hole spin, motivating the

need for better understanding of the plasma physics in the corona. Data from a 3D MHD

simulation, scaled to have an input spin 𝑎real, is fed through a model that measures spin

through the fluorescent iron broadening. The model’s extracted spin 𝑎fit is shown on the

y-axis. The dotted black line shows the perfect recovery case, while colored lines show the

dependence on disk scale height at the ISCO. From bottom to top: ℎ/𝑟𝑔 ∈ 0.01, 0.25, 0.5, 1.0.

From Ref. [94]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



xvi

3.1 A turbulent cascade forms for all balance parameters. a) The magnetic energy spec-

tra 𝑃mag(𝑘⊥) for 𝐿/2𝜋𝜌𝑒0 = 81.5 simulations of varying balance parameter averaged

between times 8.8 < 𝑡𝑐/𝐿 < 9.9 (comprising five outputs) show an inertial range be-

tween 𝑘⊥𝜌𝑒 (𝑡) ∼ 0.1 and 1.0. A break in the spectrum at 𝑘⊥𝜌𝑒 (𝑡) ∼ 1.0 indicates the

onset of kinetic effects. b) When compensated by 𝑘2
⊥, the spectra for the balanced 𝜉 = 0.75

and 1.0 cases are slightly steeper than ∝ 𝑘−2
⊥ , whereas the imbalanced case 𝜉 = 0.0 is slightly

flatter. The Elsasser fields’ spectra, shown in dash-dot red lines for 𝜉 = 0, exhibit slightly

different slopes, with the stronger field (𝑧+, top line) being slightly steeper than the weaker

field (𝑧−, bottom line). In both panels, shaded lines show one temporal standard deviation

about the mean. Black dashed lines show the scaling 𝑘−5/3
⊥ ; black dotted lines show 𝑘−2

⊥ .

Gray lines show the 𝐿/2𝜋𝜌𝑒0 = 164 balanced simulation’s magnetic energy spectrum, taken

at 𝑡 = 8.9 𝐿/𝑐. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The amount of energy injected into a simulation depends on its balance parameter. The

simulations of more balanced turbulence (purple and blue) have more injected energy than the

simulations of less balanced turbulence (yellow and green). Red×’s indicate the “equivalent"

times where the same amount of energy has been injected for each simulation (see Table 3.3),

which all have 𝐿/2𝜋𝜌𝑒0 = 81.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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3.3 Energy partition into electromagnetic, turbulent kinetic, internal, and net flow energy de-

pends on balance parameter. Left column: each type of energy density evolved over time,

normalized to the constant value of the initial magnetic energy density 𝐵2
0/8𝜋. The turbulent

electromagnetic (a) and kinetic (b) energy densities reach a constant value whereas the inter-

nal (c) and net flow (d) energy densities increase over time. Right column: the change in each

type of energy density evolved over time, normalized to the total amount of injected energy

density Einj(𝑡). Summing over the four panels on the right for each simulation adds to 1.

Turbulent electromagnetic (e) and kinetic (f) energy efficiencies decay as ∝ 𝑡−1, whereas

internal (g) and net flow (h) energy efficiencies saturate at a constant fraction of the injected

energy. Note that the net flow energy (h) has a different vertical axis. Colors and markers

indicate balance parameter. These simulations all have 𝐿/2𝜋𝜌𝑒0 = 81.5. . . . . . . . . . . . 42

3.4 Time evolution of the energy partition for the balanced case (𝜉 = 1.0; left) and most

imbalanced case (𝜉 = 0.0; right). Both show a decay in turbulent electromagnetic and

kinetic energies and a saturation of internal and net flow energy densities; black dashed lines

shows fits to 𝐴 + 𝐵/𝑡, with 𝐴 and 𝐵 constants. The imbalanced case has net flow energy

density about an order of magnitude higher than the balanced case and correspondingly lower

internal energy density, whereas the turbulent electromagnetic and kinetic energy densities

are comparable for both balance parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Trends of the turbulent magnetic and kinetic energy densities with balance parameter. Quan-

tities are time-averaged from 10 < 𝑡𝑐/𝐿 < 20. The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5

(filled markers) shows a linear trend with balance parameter for the turbulent magnetic

(a) and kinetic (b) energy densities, respectively. The statistical deviation is shown by

the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). The dashed lines show linear fits. Colors

and markers are the same as in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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3.6 The injection efficiency 𝜂inj (a; Equation 3.18) and cascade time 𝜏casc (b; Equation 3.19)

depend on balance parameter. The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5 is shown with filled

markers and the statistical deviation is shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled

markers). Colors and markers are the same as in Fig. 3.3. . . . . . . . . . . . . . . . . . . . 49

3.7 The net flow energy efficiency decreases with increasing balance parameter. The plotted

values are volume-averaged and time-averaged from 10 < 𝑡𝑐/𝐿 < 20. The largest domain

size 𝐿/2𝜋𝜌𝑒0 = 81.5 is shown with filled markers and the statistical deviation is shown by

the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). Note that the outliers for 𝜉 = 0.5, 0.75,

and 1.0 with net flow energy efficiencies a factor of 2 higher than the rest of the seed study

were run with the same random seed. Colors and markers are the same as in Fig. 3.3. . . . . 52

3.8 Even turbulence that is balanced as a whole has spatial and temporal pockets of locally

imbalanced turbulence. Slices of the Poynting flux (𝑐/4𝜋)E ×B in the 𝑧−direction, taken

at the plane 𝑧 = 0 at time 𝑡 = 16.1 𝐿/𝑐 and normalized to (𝑐/4𝜋)𝐵2
0 for balanced turbulence

(𝜉 = 1.0; left) and most imbalanced turbulence (𝜉 = 0.0; right) show variation in the sign of

Poynting flux throughout the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 The average parallel Poynting flux is approximately constant in time, whereas the 𝑧−momentum

of the plasma increases linearly in time. a) The time evolution of the volume-averaged

Poynting flux (𝑐/4𝜋)⟨E × B⟩ in the 𝑧−direction, normalized to (𝑐/4𝜋)𝐵2
0, shows fluctua-

tions around some mean value; time-averaging the curves over 10 < 𝑡𝑐/𝐿 < 20 shows a

quadratic dependence on balance parameter (b). The time evolution (c) of the parallel plasma

momentum shows an increase in time. The ratio ⟨P𝑧,tot𝑐
2⟩/(⟨𝑆𝑧⟩ 𝑡𝑣𝐴0/𝐿), shown in (d), is

of order unity for all values of balance parameter. Black dash-dot lines show a quadratic fit;

the dotted line is a quadratic fit without the outlier seed. Dashed black lines indicate zero.

Colors and markers are the same as in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . 54
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3.10 The parallel electromagnetic momentum generates and maintains the parallel momentum of

the plasma. In these plots, each point corresponds to the instantaneous values of the volume-

averaged plasma momentum along the background magnetic field and the volume-averaged

parallel electromagnetic momentum at a given simulation time. Three periods of time are

shown with linear fits of slopes 2.2, 3.9, and 7.4 for (a) 5 < 𝑡𝑐/𝐿 < 10, (b) 10 < 𝑡𝑐/𝐿 < 15,

and (c) 15 < 𝑡𝑐/𝐿 < 20, respectively. Here, 𝑔0 = 𝐵2
0/(4𝜋𝑐) is a typical value of momentum

density. Colors and markers are the same as in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . 55

3.11 The net plasma velocity along the background magnetic field depends on balance parameter.

a) The time evolution of the volume-averaged velocity 𝑣net (Equation 3.21) shows values

that fluctuate in time around some mean value that depends on 𝜉; time-averaging the curves

over 10 < 𝑡𝑐/𝐿 < 20 shows a dependence on balance parameter (b). The largest domain

size 𝐿/2𝜋𝜌𝑒0 = 81.5 is shown with filled markers and the statistical deviation is shown by

the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). Colors and markers are the same as in

Fig. 3.3. Black dashed lines show zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 Particle acceleration occurs for all values of balance parameter. a) The distribution func-

tion of the most imbalanced case (𝜉 = 0.0) becomes shallower in time from an initial

Maxwell-Jüttner distribution (purple) to a Maxwell-Jüttner distribution plus a hard power-

law component at later times (yellow). b) Spectra taken at the same time 𝑡 = 8.0 𝐿/𝑐 for

different balance parameters show different peak energies but similar power-law components.

The dashed black line shows a Maxwell-Jüttner fit to the 𝜉 = 0.0 case. The vertical green

dash-dot line shows the mean Lorentz factor ⟨𝛾⟩ extracted from this fit. The vertical green

dotted line shows the maximum energy 𝛾max. The dash-dot black line in panel (a) shows the

power law 𝛾−2.7, while the dotted black line in panel (b) shows 𝛾−3. Colors are the same as

in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.13 At equivalent times, the power laws of imbalanced turbulence are slightly flatter/harder than

balanced turbulence. a) The particle energy spectra at equivalent times (see Table 3.3) show

a similar mean energy and similar power laws until 𝛾 ∼ 104. The dashed black line shows a

Maxwell-Jüttner fit to the 𝜉 = 0.0 case. b) Compensating by 𝛾3 reveals that more imbalanced

turbulence (𝜉 = 0.0, 0.25, and 0.5) has flatter power laws than the more balanced turbulence

with 𝜉 = 0.75 or 1.0. The vertical green dash-dot line shows the mean Lorentz factor ⟨𝛾⟩

extracted from the Maxwell-Jüttner fit. The vertical green dotted line shows the maximum

energy 𝛾max. The black dash-dot line in panel (b) shows the spectrum compensated to 𝛾3,

while the dotted black line shows the power law 𝛾−3+3 (a constant). Colors are the same as

in Fig. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.14 The partition of plasma energy ⟨Epl⟩ into thermal and nonthermal components shows a

moderate increase with the balance parameter at any given time. Both the fraction of

particles with nonthermal energies (a) and the fraction of total plasma energy density ⟨Epl⟩

contained in such particles (b) are calculated by fitting a thermal Maxwell-Jüttner function

to the low- and medium-energy particle distribution at each time and subtracting the fit from

the total particle distribution. Colors are the same as in Fig. 3.3. . . . . . . . . . . . . . . . 63

3.15 The injection efficiency and Poynting flux along the background magnetic field depend

weakly on simulation domain size within statistical variation. When averaged from 𝑡 =

5 − 14 𝐿/𝑐, the injection efficiency (a) and Poynting flux along the background magnetic

field (b) are shown as a function of 𝐿/2𝜋𝜌𝑒0. Both the balanced (𝜉 = 1.0; purple circles)

and most imbalanced values (𝜉 = 0; yellow triangles) are mostly within statistical variation

of the 𝐿/2𝜋𝜌𝑒0 = 40.7 sample of 8 random seeds. The black dashed line indicates zero. . . . 66

3.16 The magnetic and turbulent kinetic densities are weakly dependent on simulation domain

size. When averaged from 𝑡 = 5 − 14 𝐿/𝑐, the magnetic energy density (a) and turbulent

kinetic energy density (b) are shown as a function of 𝐿/2𝜋𝜌𝑒0. Both the balanced (𝜉 = 1.0;

purple circles) and most imbalanced (𝜉 = 0; yellow triangles) values are mostly within

statistical variation of the 𝐿/2𝜋𝜌𝑒0 = 40.7 sample of 8 random seeds. . . . . . . . . . . . . 67
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4.1 Properties of the plunging region calculated from the Ref. [51] background for fiducial

parameters 𝑎 = 0.95 and Δ𝜖 = 1.04. From left to right: radial magnetic field strength

𝐵𝑟 (left axis) and the fluid’s Lorentz factor (right axis), dimensionless ion temperature

𝜃𝑖 = 𝑘𝐵𝑇𝑖/𝑚𝑝𝑐2 (left axis) and ratio of gas-to-magnetic pressure 𝛽𝑖 = 8𝜋𝑛0𝑘𝐵𝑇𝑖/𝐵2
𝑟 (right

axis), electron scattering optical depth 𝜏es, and cold ion magnetization 𝜎𝑖 . Here, 𝐵0 = 108

G. The plunging region extends from the ISCO at 1.94𝑟𝑔 to the event horizon at 1.31𝑟𝑔 in

the midplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Timescales in the plunging region show that all physical processes except for electron-ion

collisions are fast compared to the infall time for a wide range of accretion efficiencies Δ𝜖 ,

consistent with the hierarchy 𝑡accel ≪ 𝑡cool(𝛾) ≪ 𝑡𝑒𝑒coll(𝛾) ≪ 𝑡infall ≲ 𝑡
𝑒𝑖
therm. Timescales are

shown at a radius 𝑟 = 1.58𝑟𝑔 for black hole spin 𝑎 = 0.95. These timescales are calculated for

thermal ion and hybrid electron distributions determined by the steady-state model described

in Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Radial profiles of the electron distribution function model properties for fiducial parameters

𝑎 = 0.95 and Δ𝜖 = 1.04. From left to right: the high-energy Lorentz factor cut-off of

the power law 𝛾2, the electron power-law index, the thermal electron temperature 𝜃𝑒 =

𝑘𝐵𝑇𝑒/𝑚𝑒𝑐2, and the fraction of the total cooling rate 𝑄− from the power-law and thermal

component. Vertical dashed line shows the location of the half-light radius. . . . . . . . . . 79

4.4 The effective power-law index 𝑝eff is calculated from the initial power-law distribution

𝑓PL,0 by assuming that both power laws have the same value at the high-energy cut-off 𝛾2

(Equation 4.17). This sample electron distribution was calculated for fiducial parameters

close to the event horizon at a radius 𝑟 = 1.31 𝑟𝑔, where 𝑝 = 3.3 (purple dashed line) and

𝑝eff = 0.6 (blue solid line). For radii closer to the ISCO, the difference between 𝑓PL,0 and

𝑓PL is not so pronounced. The thermal distribution is also shown for reference (green dotted

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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4.5 Spectrum for the fiducial model parameters 𝑎 = 0.95 and 𝐹𝜃 𝜙 = 6.0 at an inclination of

60◦. The thin disk emission (dashed orange line) peaks around a few keV. The nonthermal

electrons’ radiation (solid blue line) extends from 10 eV to 0.1 GeV, although emission

beyond 1 MeV (gray region) may be impacted by pair creation. The thermal electrons in the

plunging region create a small excess at around 10 keV (dotted green line). . . . . . . . . . . 88

4.6 Portion of the fiducial model’s observed frequency-integrated luminosity originating between

the event horizon and a radius 𝑟 for an inclination angle of 60◦. Emission from the plunging

region’s nonthermal electrons (blue) dominates over the plunging region’s thermal electrons

(green). 10% of the luminosity comes from 𝑟 < 𝑟1/10 = 1.66𝑟𝑔 (dotted line), while 50%

comes from 𝑟 < 𝑟1/2 = 1.77𝑟𝑔 (dashed line). Vertical dash-dot line shows the decoupling

radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Frequency-integrated luminosity in X-rays (1 keV < 𝜈 < 1 MeV) in predicted power law

compared to the thermal blackbody disk for different model parameters, assuming an incli-

nation angle 𝑖 = 60◦. Models where nonthermal electron emission dominates over thermal

electron emission, satisfying 𝐿PL > 𝐿MJ, are marked with large black circles. . . . . . . . . 91

4.8 Power-law fraction (Equation 4.25) as a function of inclination angle. Calculated from the

most strongly magnetized plunging region parameters such that nonthermal plunging region

emission dominates thermal plunging region emission. . . . . . . . . . . . . . . . . . . . . 92

5.1 Changing a variety of parameters did not eliminate the problem of the electron temperature

being much higher than the target at inner radii. The panels show the dependence of density-

weighted shell-averages time-averaged from 1500 to 2500 𝑟𝑔/𝑐 on a) electron cooling time,

b) electron adiabatic index, c) 𝜎cut, and d) 𝑠. These parameters are defined in Eq. 5.9 or

Sec. 5.2.2. Dotted vertical lines show the location of the ISCO for this black hole spin of

𝑎 = 0.9375. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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5.2 Test 2D GRMHD simulations at low accretion rate ( ¤𝑚 ∼ 10−7 showing the impact of

prescribing viscous heating as opposed to the MHD heating method. Data are density-

weighted shell averages, averaged over times in the interval (3500, 4500)𝑟𝑔/𝑐. Dotted

vertical line shows the ISCO; dashed horizontal line shows the target temperature for the

electron cooling function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Coulomb heating rate as a function of a) electron temperature and b) proton temperature,

calculated using Eq. 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Plots of the Coulomb quality factor (Eq. 5.14) at low accretion rates (panel a) and high

accretion rates (panel b) over proton temperature. Panel c fixes the electron temperature at a

target value of 109 K and shows how the Coulomb quality factor depends on mass density. . 108

5.5 Illustration of unphysical behavior due to explicit evolution of Coulomb heating in the high-

density regime. Plots show density-weighted shell averages taken from high-resolution

GRMHD simulations, averaged over 13, 000 to 15, 000𝑟𝑔/𝑐. . . . . . . . . . . . . . . . . . 110

5.6 The unphysical Coulomb exchange rate that breaks the explicit evolution happens predom-

inantly in the midplane of the accretion disk, where densities are highest. These slices are

taken at 𝜙 = 0 at a snapshot in time from high-resolution 3D GRMHD simulations. . . . . . 111

5.7 Gas box test for Coulomb thermalization in the high-density, single-temperature regime

where the explicit solver (left) breaks and sets 𝑇𝑝/𝑇𝑒 to its ceiling value, compared to the

implicit solver (right) that is meant for high densities. . . . . . . . . . . . . . . . . . . . . . 114

5.8 Gas box test for Coulomb heating in the single-temperature regime. The electrons and

protons should cool down to the same temperature to the target, but the operator-splitting im-

plementation breaks down (left) whereas the non-operator-splitting implementation behaves

as expected (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 Two-species thermalization tests for gas box in flat space-time. . . . . . . . . . . . . . . . . 117
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5.10 2D GRMHD tests of the Coulomb heating implementation at low accretion rate M7, where

it should not make a difference to use an implicit or explicit evolution. Plots show density-

weighted shell averages time-averaged from 4500 < 𝑡𝑐/𝑟𝑔 < 5000. Blue lines show the

explicit evolution, which holds for this low density limit, while orange and green show the

two implicit methods, one that uses operator-splitting (green) and one that does not (orange).

Compare to the high-density regime in Fig. 5.11. . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 2D GRMHD tests of the Coulomb heating implementation at high accretion rate M3; density-

weighted shell averages time-averaged from 4500 < 𝑡𝑐/𝑟𝑔 < 5000. Blue lines show the

explicit evolution, which breaks down for this high density limit, as seen in particularly in the

ratio𝑇𝑝/𝑇𝑒. Orange and green lines show the two different implicit method implementations.

Because the operator split method (green) shows signs of breaking down in the single-

temperature limit, we prefer the non-operator split method (orange). Compare to the low-

density regime in Fig. 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.12 Density-weighted shell averages at 𝑟 = 2.04𝑟𝑔 (left) and 𝑟 = 10.0𝑟𝑔 (right) plotted over time

to demonstrate the lack of steady-state. The speed of equilibration depends both on the radial

location and the accretion rate. The target temperature 109 K is shown in the top row as a

dotted horizontal line. Dotted lines in the bottom row show the minimum and maximum

ratios for 𝑇𝑝/𝑇𝑒 and the single-temperature case of 𝑇𝑝/𝑇𝑒 = 1. . . . . . . . . . . . . . . . . 121

5.13 Density-weighted shell averages of relevant proton and electron timescales for three different

accretion rates. Timescales are normalized to the dynamical time 𝑡dyn = 1/Ω. Here, the

black vertical dotted line shows the location of the ISCO. The black horizontal dotted lines

show where the timescales equal the dynamical time. . . . . . . . . . . . . . . . . . . . . . 123

5.14 Density-weighted shell averages, time-averaged over the interval 1.4 × 104 < 𝑡𝑐/𝑟𝑔 <

1.5× 104. Dotted vertical black line shows the location of the ISCO. Dotted vertical colored

lines show the location of the infall equilibrium radius 𝑟𝑒𝑞 where 𝑡 = 𝑟𝑒𝑞/|𝑣𝑟 |. Dotted black

lines in the 𝑇𝑝/𝑇𝑒 and 𝑄coul/𝑄𝑒visc plots shows where the ratio equals 1. Dotted black line in

the 𝐻/𝑟 plot shows the theoretical thin disk scaling for 𝑇𝑝 = 𝑇𝑒 = 𝑇target. . . . . . . . . . . . 124
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5.15 Density-weighted shell averages, time-averaged over the interval 1.4 × 104 < 𝑡𝑐/𝑟𝑔 <

1.5× 104. Dotted vertical black line shows the location of the ISCO. Dotted vertical colored

lines show the location of the infall equilibrium radius 𝑟𝑒𝑞 where 𝑡 = 𝑟𝑒𝑞/|𝑣𝑟 |. . . . . . . . 126

5.16 Azimuthally-averaged vertical slices for three accretion rates, time-averaged over the interval

1.4 × 104 < 𝑡𝑐/𝑟𝑔 < 1.5 × 104. The solid contour shows 𝜎 = 1. The dashed contours show

𝜌 = 1 and 10. The dotted contours show 𝛽 = 1. . . . . . . . . . . . . . . . . . . . . . . . . 127

5.17 Density-weighted shell averages, time-averaged over the interval 1.4 × 104 < 𝑡𝑐/𝑟𝑔 <

1.5 × 104. Simulations have an accretion rate that is about the same, ¤𝑚 ∼ 10−3 ¤𝑚Edd. . . . . . 129

5.18 Density-weighted shell averages, time-averaged over the interval 1.4×104 < 𝑡𝑐/𝑟𝑔 < 1.5×104.130

5.19 Density-weighted shell averages from 2D GRMHD torus tests with isothermal electrons,
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Chapter 1

Context and Outline

Black holes and their surroundings constitute a natural laboratory for exploring plasmas under extreme

conditions that cannot yet be created on Earth. In the plasma around a black hole, conditions can range from

an accretion disk cold and dense enough to thermalize both electrons and protons, to a corona hot and sparse

enough that particles never interact with each other before leaving the system. While single-temperature

magnetohydrodynamics (MHD) well describes the former scenario, it fails completely for the latter, where a

kinetic description is instead more appropriate. Capturing both regimes in a single model requires bridging

a massive separation in length scales. This scale separation spans tens of orders of magnitude, from

microphysical length scales such as particle Larmor radius to length scales over which general relativity

becomes non-negligible. General relativity and gas dynamics determine large-scale structure and transport

magnetic fields. Microphysical processes determine the energy released by magnetic reconnection, or the

fraction of dissipated energy that heats electrons rather than protons. The plasma physics problems in

black hole accretion physics center around including microphysics on the scales of the accretion disk-corona

system.

Understanding the physics of the plasmas around black holes is crucial to interpreting the polarization

and highly resolved energy spectra from recent and upcoming X-ray telescopes such as IXPE and XRISM [1,

2]. Astrophysicists often rely on interpreting electromagnetic radiation from the gas and plasma surrounding

a black hole to extract black hole properties such as mass and spin. The mass and spins of these black holes

inform galactic formation and evolution models, as well as stellar evolution models. However, measuring the

black hole spin currently poses a particular difficulty. Different gas-physics-dependent techniques obtain non-
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overlapping estimates for the spin of accreting stellar-mass black holes. Comparing those techniques to LIGO

measurements suggest that merging black holes and single black holes have different spin distributions [3].

In this sense, black hole accretion disks pose plasma physics problems with broad astrophysical implications.

This thesis explores how refining the plasma physics in accretion disk and corona models can improve

our understanding of black holes and their environments. Chapter 2 introduces background information on

the plasma physics and astrophysics needed to understand this work. Chapter 3 examines particle acceleration

and a possible wind-launching mechanism in the collisionless regime of the corona [4]. Chapter 4 models

the corona as the region closest to the black hole, crossing between the strongly collisional regime to

the collisionless regime where particles can accelerate to nonthermal energies [5]. Chapter 5 performs

well-controlled experiments to determine the role of Coulomb collisions between protons and electrons in

determining the accretion disk and corona structure [6]. For the sake of brevity and cohesion, I include

my first paper of graduate school in Appendix A [7]; although it addresses accreting bodies in a disk, i.e.

stellar-mass black holes in the accretion disk around a supermassive black hole, it does not touch on aspects

of the corona that I focus on in this thesis. The main scientific chapters of this thesis include a prologue

where I connect the publication to the broad themes in this chapter and the relevant background information

in the next chapter.



Chapter 2

Introduction and Background

In this chapter, I will review the broad physics and astrophysics relevant to the rest of the thesis. In

Ch. 2.1, I will treat both collisionless plasmas and collisional plasmas. I introduce the kinetic equations, the

MHD equations, and explore assumptions in plasma turbulence theory. In Ch. 2.2, I introduce the problem of

accretion and the general framework for discussing black hole accretion. Ch. 2.3 delves into specific models

for the accretion disk and corona combined system, exposing past assumptions that I will relax. Ch. 2.4

discusses the observational context for this thesis and the specific astrophysical objects to which this research

may be applied. Finally, Ch. 2.5 outlines the numerical codes that are often crucial to studying these systems

and that I employ in subsequent chapters.

2.1 Plasma Regimes

The universe hosts many types of plasmas, each with a certain ordering of length scales and dimen-

sionless parameters that determines the mathematical formalism used to describe them. Even the narrow

subset of plasmas around black holes spans several orders of magnitude in temperature and number density.

Fig. 2.1 demonstrates a sampling of the parameter space of astrophysical and earthly plasmas in terms of

number density and temperature. Several factors are not included in the figure for simplicity, including

magnetization of the plasmaa and the entire strongly-coupled plasma regime, applicable to ultracold plasmas

and the interior of gas giants [8].

On the surface, mathematically describing a plasma is simple. Plasma comprises charged particles (in

a A magnetized plasma has a Larmor radius much smaller than the system size
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this work, electrons and protons or electrons and positrons) that move throughout space generating electric

and magnetic fields that evolve according to Maxwell’s equations and affect particles through the Lorentz

force. The Klimontovich equation describes such a scenario for particle density 𝑁𝑠 (x, v, 𝑡) with species

𝑠 ∈ 𝑒, 𝑖 for electrons and protons/positrons:

𝜕𝑡𝑁𝑠 (x, v, 𝑡) + v · ∇𝑥𝑁𝑠 +
𝑞𝑠

𝑚𝑠

(
𝐸 + v

𝑐
× B

)
· ∇𝑣𝑁𝑠 = 0, (2.1)

where 𝑞𝑠 and 𝑚𝑠 are the charge and mass of the particles for species s, ∇𝑥 and ∇𝑣 are the gradient with

respect to position and velocity, and the electric and magnetic fields include external fields and the fields

generated by the moving charges themselves [12].

In practice, Eq. 2.1 is essentially impossible to study, either analytically or numerically, for large

numbers of particles. Besides, knowing how many particles are in a volume of phase space is much more

useful than knowing whether a particle sits at the exact position (x, v) in phase space. As such, the smoother

distribution function 𝑓𝑠 (x, v, 𝑡) ≡ ⟨𝑁𝑠 (x, v, 𝑡)⟩ replaces 𝑁𝑠, where the brackets denote an ensemble average.

By the ergodic hypothesis, the ensemble average is equivalent to a spatial average over a length scale ℓ that is

much greater than the particle separation and much less than the Debye length [11]. Averaging over Eq. 2.1

yields the standard Boltzmann equation:

𝜕𝑡 𝑓𝑠 (x, v, 𝑡) +
[
v · ∇𝑥 +

𝑞𝑠

𝑚𝑠

(
E + v

𝑐
× B

)
· ∇𝑣

]
𝑓𝑠 =

(
𝜕 𝑓𝑠

𝜕𝑡

)
coll

(2.2)

where the right-hand side, known as the collision operator, includes discrete particle-particle interactions.

The fields must satisfy Maxwell’s equations, with the charge and current density given as moments of 𝑓𝑠.

2.1.1 Kinetic Description for Collisionless Plasmas

For a collisionless plasma, the collision operator on the right side of Eq. 2.2 is set to zero to obtain

the Vlasov equation, also called the collisionless Boltzmann equation. Setting the collision operator to zero

assumes that collisions are negligible compared to collective effects. The ratio of collisional to collective

effects is given by the inverse of the plasma parameter, where the plasma parameter is the number of particles

inside a Debye sphere. Because the plasma parameter is often much greater than 1, this assumption is
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excellent in weakly-coupled plasmas. The red text in Fig. 2.1 highlights a few collisionless astrophysical

systems where the mean free path between particle collisions is much longer than the size of the system.

2.1.2 Fluid Description for Collisional Plasmas

Taking velocity moments of the Vlasov equation yields the conservation equations of MHD. To

close the resulting hierarchy that depends on the next highest moment, the fluid description assumes that the

particle velocity distribution is thermal and thus characterized by a single number (temperature) at every point.

Collisionless systems have a particle mean free path much larger than the system size. Because collisions push

particles towards thermal equilibrium, the particles in collisional systems have a Boltzmann (non-relativistic)

or Maxwell-Jüttner (relativistic) distribution [11, 12]. Two-temperature MHD allows protons and electrons

to have different temperatures and to exchange energy between the species via Coulomb collisions. Single-

temperature MHD assumes that the density is high enough for Coulomb collisions to maintain both species

at the same temperature. The black text in Fig. 2.1 highlights a few collisional systems where particles

essentially thermalize due to collisions.

2.1.3 Imbalanced Turbulence: from MHD to sub-Larmor Scales

To set the scene for Ch. 3’s study of relativistic, collisionless imbalanced turbulence, I now review

the somewhat more familiar regime of incompressible imbalanced MHD turbulence. I will then extend this

framework to the relevant relativistic and collisionless regimes.

Incompressible balanced (magneto)hydrodynamic turbulence has a long, rich history of phenomeno-

logical models that aim to predict the power-law scaling of the kinetic and magnetic energy spectra [13–15],

the measurement of which in numerical simulations is still under debate [16–18]. By relaxing the assumption

of equal energy fluxes parallel and anti-parallel to the background magnetic field — a scenario common in

astrophysical systems — the turbulence becomes “imbalanced”. Breaking the symmetry along the magnetic

field allows a choice in defining different quantities. Numerical models of imbalanced MHD turbulence have

run into subtleties such as domain size, resolution, and long integration times [19, 20]. Due to these analytic

and numerical difficulties, there is no overarching framework for understanding incompressible imbalanced
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MHD turbulence.

Phenomenological models of imbalanced turbulence differ in assumptions of which length scales are

relevant to the nonlinear interactions. Ref. [21], for instance, assumes that the more energetic wave’s shearing

rate determines the parallel length for both fields, leading to a prediction of the same anisotropy for both

fields and an energy spectral index of -5/3. Numerical simulations suggest that this model is adequate for

small levels of imbalance, but does not predict the energy spectra at larger imbalance [22]. Alternatively,

Ref. [23] formulates an advection-diffusion model for the power spectrum and argues that the coherence time

for the more energetic wave is on the order of 1/(𝑘 ∥𝑣𝐴), much longer than Ref. [21]’s timescale 1/(𝑘⊥𝑤−).

As a result, this model predicts that the energy spectra have different power-law indices and that the more

energetic wave’s spectrum steepens with increasing cross-helicity. Ref. [24] also assumes that the more

energetic wave undergoes a weak cascade; however, these last two models differ in their assumptions of the

relevant length scales for the nonlinear interactions of the more energetic wave. This model appears to be

consistent with numerical simulations in both the non-relativistic [22, 25, 26] and the relativistic regime [27],

although the numerical methods and insufficient resolution of these simulations might have led to artificial

results [28]. Lastly, Ref. [29] assumes that dynamic alignment will lead to the same nonlinear timescale for

both waves, leading to power-law indices of 𝑘−3/2
⊥ . When simulations have a sufficient box size, resolution,

and techniques to capture the inertial range, it is this model that appears to be supported numerically [20, 28,

30]. Hybrid simulations of imbalanced turbulence have focused on decaying turbulence, rather than driven

turbulence [31].

More recent attempts to study imbalanced turbulence below the Larmor scale have focused on electron

MHD or on kinetic Alfvén waves. Electron MHD studies have found an inverse cascade of magnetic helicity

and a magnetic energy power-law index of close to -3/2 [32], supporting the Ref. [29] model. Studies of

the transition between MHD and kinetic turbulence have shown that kinetic Alfvén wave turbulence is less

imbalanced than its MHD counterpart [33]. More recently, progress in modeling collisionless Alfvénic

turbulence via a diffusion equation in Fourier space suggests that high imbalance combined with Landau

damping of ions leads to the steepening of the Elsässer variables’ energy spectrum from -5/3 on scales above

the sonic ion Larmor radius 𝜌−1
𝑠 =

√︁
𝑚𝑖/𝑇𝑒Ω𝑖 to -7/3 below it [34, 35]. It is still unclear how kinetic effects
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will influence ultra-relativistic imbalanced turbulence.

Meanwhile, observational evidence for imbalanced turbulence comes mostly from the solar wind [36,

37]. In-situ experiments have established that the MHD Alfvénic turbulence of the solar wind is strongly

imbalanced in the radially outward direction [38, 39], and that this MHD turbulence could continue to

kinetic scales and heat the solar corona [40]. Other possible sources of imbalanced turbulence in the solar

wind are reconnection [41] and phase-mixing [42]. However, long-standing puzzles include why the cross-

helicity observed in the solar wind depends on radial distance from the sun [43, 44] and why the kinetic

and magnetic energy spectral power-law index depend on cross-helicity [45]. Neither of these puzzles is

completely explained by any model proposed to date (although ion-scale effects are beginning to address

these problems; see [33]).

Looking back on this literature review, clearly even imbalanced MHD turbulence is not completely

understood. Although application of imbalanced turbulence to high-energy astrophysical systems has pre-

viously been suggested [22], detailed exploration of the relevant parameter regime has been lacking. I will

address this gap in Ch. 3.

2.2 Accretion Physics and Models

The light observed from astrophysical systems is broadly the result of accretion, wherein gravitational

potential energy converts into other forms of energy, in particular electromagnetic radiation. Generally

speaking, accretion in astrophysics refers to the general process of matter falling onto a central massive

object due to gravity. Although accretion underlies a variety of processes ranging from galaxy formation,

planet formation, and supernovae, black hole accretion is unique because black holes have no hard surface

where matter can accumulate. Instead, the black hole itself is a sink of energy.

To understand the problem of accretion, consider a gas cloud at radius 𝑟0 far from a black hole. In

all likelihood, the cloud initially has some net angular momentum ℓ0 about the black hole. Relative to the

angular momentum ℓ of a circular orbit at radius 𝑟 , initially the ratio ℓ0/ℓ ≪ 1, but becomes ≳ 1 at smaller

𝑟 because ℓ0 is conserved and ℓ ∼ 𝑟1/2. To fall onto the black hole, the gas must lose a large amount of

angular momentum. Accretion physics and models of accretion disks seek to address where and how energy
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dissipates and how angular momentum is transferred away from some gas, allowing it to fall onto the central

object.

Where and how energy is dissipated depends on the plasma conditions and strongly influences the

radiation observed from an accreting system. Different disk regimes depend on gas density and how efficiently

angular momentum is removed. These disk models span the regimes discussed earlier in Ch. 2.1 and could

explain some of the observations outlined in Ch. 2.4.

2.2.1 Single-temperature, Thin Accretion Disks

The thin disk (or “alpha-disk”) model describes an accretion disk with protons and electrons in local

thermodynamic equilibrium [9]. This model has high enough densities to thermalize both electrons and

protons to the same temperature, and thus applies to accretion rates close to the Eddington rateb. Crucially,

the model assumes that any energy dissipated locally in the disk will immediately radiate away, keeping the

plasma cool compared to the plasma of hot accretion flows (Ch. 2.2.2). Because none of the dissipated energy

stays in the plasma as heat, the protons do not have much thermal pressure. Local hydrostatic equilibrium

demands that the disk stay geometrically thin compared to a hotter disk, in the sense that the disk gas scale

height 𝐻 is much smaller than the radius from the black hole 𝑟: 𝐻 ≪ 𝑟 . The optical depth in the thin disk

model is much greater than one, resulting in thermal emission. See Appendix B for some relevant properties

of the Kerr metric and the relativistic thin disk model.

Calculations of the local dissipation rate yield an accretion disk model whose peak energy 𝐸peak

depends on the black hole mass, the gas accretion rate, and the distance 𝑟 from the black hole as [46, 47]:

𝐸peak ≈ 2.9 keV
(
𝐿𝑑/𝐿Edd

0.01

)1/4 ( 𝜂
0.1

)−1/4
(
𝑀

10𝑀⊙

)−1/4 (𝑟in

2

)−3/4
, (2.3)

where 𝑟in = 𝑅𝑖𝑛/𝑟𝑔 is the disk inner edge normalized to the gravitational radius, 𝜂 ∼ 0.1 is the accretion

efficiency, and 𝐿𝑑 is the disk luminosity. Thin accretion disks tend to have luminosities 𝐿𝑑 ≳ 0.01𝐿Edd, and

b The Eddington luminosity 𝐿Edd ≡ 4𝜋𝐺𝑀𝑚𝑝𝑐/𝜎𝑇 is the theoretical maximum luminosity before radiation pressure due to

electron scattering counters gravity. Although many factors modify the “true” maximum luminosity, the Eddington luminosity is

a useful means to compare across systems with different black hole mass 𝑀 .
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can stay thin up to at least 0.3𝐿Edd.

The mass dependence in Eq. 2.3 explains why accretion disks around supermassive black holes peak

in the UV (1 – 100eV), whereas disks around stellar mass black holes peak in the soft X-rays (1-10keV). The

thin accretion disk’s multi-temperature blackbody describes observations of Seyfert galaxies and BHBs in

the thermal soft state (Ch. 2.4.1; [48]). As will be discussed in Ch. 2.3, the thin disk could underlie the

BHB hard state spectrum as well.

The canonical thin disk model assumes that the peak temperature comes from just outside the inner

edge of the accretion disk, located at a slightly larger radius than the innermost stable circular orbit (ISCO; [9,

49]). The boundary condition for the ISCO states that there should be zero torque at the inner disk edge.

This assumption, originally motivated by arguments of causality once the gas starts plunging towards the

black hole, does not hold in the presence of large-scale torques, due to e.g. large-scale magnetic fields.

Simulations questioned the validity of this assumption, ultimately inspiring new models that do include

torque at or within the ISCO [50, 51].

In terms of timescales, the thin disk assumes

𝑡cool
gas = 𝑡cool

𝑒 = 𝑡heat ≪ 𝑡infall, (2.4)

where 𝑡cool
gas is the timescale for gas (proton) cooling via Coulomb collisions with electrons, 𝑡cool

𝑒 is the

timescale for electron cooling due to radiation, 𝑡heat is the timescale for viscous energy dissipation in the disk,

and 𝑡infall is the gas infall or accretion timescale. In Ch. 4, I explore how the ordering of these timescales

changes within the ISCO and how the resulting spectrum can include nonthermal emission from high-energy

particles. In Ch. 5, I explore how high densities can collapse a thick disk down to a thin disk, and how the

resulting disk structure differs from the canonical ordering in Eq. 2.4.

2.2.2 Two-temperature Accretion Disks

At lower accretion rates and thus lower gas densities, protons and electrons can decouple and a two-

temperature accretion flow develops. While the first such two-temperature model was thermally unstable [52],

subsequent models introduced the idea that energy could be advected to other radii in the disk, thus stabilizing
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the disk [53]. These disks should be supported by ion pressure [54], and as such are geometrically thicker

than the thin disks of Ch. 2.2.1: more like a doughnut than a CDc. In these disks, the radial pressure gradient

is too important to decouple radial and vertical disk structure, which is part of why in Ch. 5 I use global

simulations rather than local shearing box simulations. While the term “advection-dominated accretion

flow” (ADAF) does not necessarily mean the disk is hot (slim disks are cold and advection-dominated [55]),

the term ADAF usually refers to the hot flow introduced by Ref. [56], among others.

Overall, because radiative processes decrease in efficiency with smaller densities (especially two-body

processes such as bremsstrahlung) and dissipated energy goes into heat instead of radiation, these disks are

much less luminous than thin disks. Therefore, their radiative efficiency 𝜂 can be much less than the canonical

Novikov-Thorne [49] value for a given spin, meaning that for an accretion rate ¤𝑀 , their luminosity 𝐿 will be

lower:

𝐿Edd = 𝜂 ¤𝑀Edd𝑐
2. (2.5)

Thick accretion flows generally describe accretion flows with accretion rates 𝐿 ≲ 10−3𝐿Edd, but can have

luminosities up to 0.3𝐿Edd, overlapping with the thin disk luminosity regime.

The emission from geometrically thick disks is typically optically thin, meaning that traces of the

radiative mechanism are imprinted into the spectrum and polarization data. The radiative processes can in

theory be traced through polarization measurements, since synchrotron emission has a polarization fraction

of ≳ 70%, although even one scattering event significantly lowers that fraction [57]. Thick disks are thought

to describe low luminosity AGN such as Sagittarius A* and possibly the hard state of BHBs. Repeated

Compton scatterings of synchrotron emission can sum together to yield a power-law with photon index 1.7

- 1.9, in agreement with the hard state [58]. Nonthermal particles could also exist in such two-temperature

flows, both within the disk [59] and in the upper, sparser layers.

Canonical ADAF models often ignore the difference in cooling times between electrons and protons.

Protons can only cool through Coulomb collisions with electrons because of their larger mass, whereas

electrons cool via synchrotron, bremsstrahlung, and inverse Compton radiative processes. The hierarchy of

c As of 2023, the author does still own a CD player.
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timescales reads:

𝑡infall ≪ 𝑡cool
gas ∼ 𝑡cool

𝑒 ∼ 𝑡heat. (2.6)

Compare to the thin disk ordering of Eq. 2.4. The disks are radiatively inefficient because 𝑡cool
𝑒 > 𝑡infall and

advection dominated for 𝑡cool
gas > 𝑡infall. In Ch. 5, I will explore the possibility of a new ordering of timescales

that should be relevant for the intermediate mass accretion regime. Namely, how does the disk structure

change when 𝑡cool
gas > 𝑡infall > 𝑡

cool
𝑒 ?

2.2.3 Magnetic Fields in Accretion Disks

Magnetic fields play a crucial role in accretion physics. Early estimates demonstrated that molecular

friction between gas rings at different radii is orders of magnitude too small to explain the luminosity observed

from accreting systems [46]. As such, other mechanisms (most often involving magnetic fields in some way)

must make up the majority of the angular momentum loss. One popular mechanism is the magnetorotational

instability, wherein magnetic fields couple plasma at different radii and the magnetic tension acts as a spring

to transfer angular momentum [60, 61]. Magnetic fields can also drive winds off the accretion disk that carry

away angular momentum. A common wind-launching mechanism, the magnetocentrifugal mechanism,

treats the plasma as a bead on a wire, where the wire is a large-scale magnetic field [62]. In GR simulations

of the accretion disk, the highly-magnetized region above the accretion disk can account for a significant

fraction of angular momentum removal [63–65]. The presence of magnetic fields in accretion disks opens

up the possibility of MHD turbulence, magnetic reconnection, and particle acceleration. In particular,

magnetic fields can affect the distribution of dissipated energy between electrons and protons [66–68], with

significant observational consequences [69, 70]. In Ch. 3, I explore how magnetic turbulence in the presence

of asymmetric energy injection, like the case above a thin accretion disk, can affect the turbulent cascade

and particle acceleration.

2.3 Disk-Corona Models

In a global sense, disk-corona models should explain the energy budget of the corona, in particular

how it is heated after losing energy to radiation, and how/whether it contributes to angular momentum loss,
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Wind?

a b c

Figure 2.2: Possible configurations of the disk/corona system. The thermal disk emission (red) is upscattered
by hot electrons in the corona. The resulting high-energy photons (blue) reflect off the disk, which then
emits “reprocessed” light (green). Adapted from Ref. [47].

possibly through a disk wind. Disk-corona models need to address both the radiation mechanisms that lead

to the observed optically thick and optically thin emission outlined in Ch. 2.4 and fit into or build upon

existing accretion disk models (Ch. 2.2.1 and 2.2.2).

2.3.1 Geometric Configurations

The geometry of the corona remains largely unknown, with several configurations that match the

observational suggestion of a compact corona (Ch. 2.4.2). The main questions center around whether the

corona is outflowing (i.e. a jet or wind) and whether it is located above the disk (i.e. a lamppost/sandwich

model) or is a truncation of the accretion disk (i.e. a hot accretion flow within a thin accretion disk that ends

at radius 𝑟 > 𝑟ISCO). Fig. 2.2 illustrates some of the possible geometries that I will discuss below.

Numerical simulations of thin accretion disks often find the formation of a strongly magnetized

region above the main disk body, similar to a “sandwich” type model (Fig. 2.2a). This sandwich corona

can be in hydrostatic equilibrium or outflowing. The thin accretion disk at the core might not even be

necessary to reproduce the hard spectral state; a hot accretion flow pushed to intermediate mass accretion

rates that produce optical depths close to 1 and large Compton-y parameters can produce the power-law

through repeated Compton scattering [58]. Outflowing models of the corona suggest that the power-law

spectral shape originates from Comptonization off a relativistic bulk flow. For example, the lamppost model

(Fig. 2.2b) suggests that the corona forms the base of a jet [71] and is widely used because of its simplicity

and the ease of measuring a “height” of the corona. Some observations that rely on lamppost models suggest
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that the corona expands away from the black hole during a BHB state transition [72]. Another model

suggests that reconnection in the magnetically-dominated region both heats the corona [73, 74] and launches

plasmoids that form the relativistic outflow [75].

Disk truncation models propose that the corona comprises a hot, thick accretion flow surrounded by

a cold, thin accretion disk that truncates at some radius that is typically greater than the ISCO (Fig. 2.2c).

These models are attractive for explaining BHB state transitions (Ch. 2.4.1), the idea being that the thin

accretion disk moves in or out as the system transitions from quiescent to hard and soft states [76]. Fig. 2.3a

illustrates the disk truncation model as a function of mass accretion rate. Although the corona is often

thought to disappear in the soft state, it could just shrink to a small size and low luminosity, as suggested

by some observations [77] and explored in Ch. 4. See Ref. [78] for a review of observational evidence

for the disk truncation model. Disk truncation has been numerically reproduced a handful of times, for

example by introducing an artificial cooling function to induce it at a given location [79], evolving a highly-

magnetized disk [80], or introducing cooling into an alpha-disk model [81]. The truncation mechanism

in these simulations differs between thermal instability and magnetic torques. In Ch. 5, I will explore the

possibility that Coulomb collisions becoming inefficient determines the truncation radius.

2.3.2 Plasma Physics in the Corona

Regardless of the geometric configuration, the hot corona probably involves a collisionless, strongly

magnetized plasma that suggests the presence of many interesting processes. These processes fall broadly into

two categories: those that heat the plasma, i.e. retain its thermal distribution but increase its temperature,

and those that accelerate particles, changing the shape of the particle distribution. Fig. 2.4 illustrates

the distinction between these processes for an initially thermal particle distribution. The occurrence and

dominance of one process over another are broadly determined by the plasma’s physical conditions and the

sources and sinks of energy in the system. Potential sources of energy include turbulence injected from a thin

disk (see Fig. 2.3b) and magnetic fields, which can lead to conversion of magnetic energy to kinetic energy

via mechanisms like turbulence and magnetic reconnection. The dominant energy sink is likely radiation,

though other sources such as conduction with the disk [82] are in principle possible. Of course, because
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Thin disk
Turbulent

Corona

a b

Figure 2.3: a) An illustration of the disk truncation model for BHB state transitions. At high luminosities
and accretion rates, a thin accretion disk reaches all the way to the ISCO. At smaller luminosities, the thin
disk truncates and a thick disk populates the inner region. Ch. 5 investigates the intermediate regime. Figure
adapted from Ref. [76]. b) Schematic of a possible mechanism for particle acceleration in a sandwich-type
corona (blue) sitting above a thin disk (green) threaded by large-scale magnetic fields (gray). Alfvén waves
(red) launch predominantly upward into the corona and then reflect. Green arrows show the dominant
direction of energy flux that starts the turbulent cascade. Ch. 3 investigates heating and particle acceleration
in this scenario.
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Figure 2.4: Illustration of a) plasma heating/energization and b) nonthermal particle acceleration. Energy
injected into a system with an initial distribution function in blue can end with a final distribution function
shown in orange. Electrons and protons do not need to experience the same effect from each process. Here
I assume an isotropic particle distribution function and have normalized to the particle number density.
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current experiments cannot make in-situ measurements of the particle distribution, we must be careful relying

on observed radiation to disentangle the underlying particle distribution.

The heating problem of accretion disk coronae resembles the problem with the solar corona: farther

away from the core of the sun, the temperature actually increases, contrary to naive expectations. Similarly,

for a sandwich-type corona, the temperature increases with distance from the disk midplane by about two

orders of magnitude. The heating mechanism for both accretion disk coronae and the solar corona could

lie in Alfvénic dissipation [83, 84], wherein Alfvén waves launch from the disk/sun into the corona, reflect

off density gradients or perturbations, and subsequently form a turbulent cascade — see the schematic in

Fig. 2.3b. In addition to turbulence, magnetic reconnection could also heat the plasma. Both turbulence and

magnetic reconnection could also accelerate particles to high energies, resulting in nonthermal emission.

In the relativistically-hot, magnetically-dominated regime, magnetic turbulence and reconnection can

efficiently accelerate particles [68, 85, 86]. Although the possibility of nonthermal electrons in the corona was

long-established [87], full numerical models of the accretion disk-corona system with nonthermal electrons

are rare (see Ch. 2.5, [88]). The fraction 𝑓𝑒 of dissipated energy that heats and accelerates electrons so far

varies depending on factors such as plasma magnetization [66, 68, 89], magnetic field configuration and in

particular the guide field [90], and the turbulence driving mechanism [91, 92]. The fraction 𝑓𝑒 has long been

a subject of debate in the accretion disk community. It could affect the radiation observed from the disk and

jet [58, 69]. If the temperature of the protons is significantly affected by 𝑓𝑒, then the structure of the disk

and the shape of the corona could also change depending on this fraction. Particle-in-cell simulations (PIC;

Ch. 2.5.2) have started to address the problem of 𝑓𝑒’s values as a function of relevant parameters such as

plasma magnetization and magnetic field configuration.

2.4 Observational Motivation: Thermal and Nonthermal Emission

In this thesis, I will seek to understand processes occurring light years away, around black holes far

beyond our own solar system. Most black holes and their accretion disks are too far away to spatially resolve,

leaving theorists to interpret spectra and occasionally polarization data. Astronomers often split spectra

observed from the vicinity of a black hole into two components: a thermal distribution and a nonthermal,
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often power-law distribution. This separation is motivated by the idea that the thermal component comes

from a thin accretion disk (see Ch. 2.2.1) and the power-law component comes from a “corona” — some sort

of hot gas with an unknown geometry. Although this separation glosses over the source of the corona and

whether there actually is an underlying thin accretion disk, the general concept of optically thick (thermal)

emission and optically thin emission (power law) applies.

While both supermassive black holes and stellar-mass black holes host accretion disks and coronae,

the shorter evolution timescales for stellar-mass black holes mean we can see more time-varying behavior

for them. As such, although much of my work applies to the disks in Seyfert galaxies, I will primarily focus

on black hole binary (BHB) systems.

2.4.1 Black Hole Binary State Transitions

In a black hole binary, a star accretes onto a stellar-mass black hole either through Roche lobe overflow

or stellar winds. The star will emit in the IR/optical/UV with a typical blackbody spectrum. The X-ray

emission, on the other hand, undergoes dramatic outbursts that completely alter the bolometric luminosity

and spectral shape. At first, the system is in quiescence with a low luminosity 𝐿 ≪ 𝐿Edd. On the first leg

of the outburst, the X-ray luminosity increases dramatically (Fig. 2.5a). Over the course of days to weeks,

the spectrum morphs from peaking at 100 keV (Fig. 2.5b blue) to a blackbody with a temperature of 1 keV

(Fig. 2.5b red), then back, eventually returning to quiescence. This cycle repeats approximately every 1 to

60 years depending on the system and shows hysteresis in the return to quiescence; the transition from the

100 keV to the 1 keV peaked states happens at a different luminosity than the transition from the 1 keV to

the 100 keV state [48].

To facilitate categorization of these outbursts into distinct spectral states, astronomers rely on the

division of the spectrum into thermal and nonthermal (power-law) components. The thermal distribution

yields a characteristic temperature, while the power-law photon distribution 𝑁 (𝐸) = 𝐴𝐸𝐸−Γ fits the normal-

ization 𝐴𝐸 and the photon power-law index Γ. The temperature is often used to make arguments about how

close to the black hole the thin accretion disk potentially extends, while the power-law index could provide

information about the underlying radiation processes (synchrotron, inverse Compton) and gas densities. The
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Figure 2.5: Black hole binaries undergo outbursts that significantly change their X-ray luminosity and spectral
shape. Panel a shows the counts per second over time (Modified Julian Date; MJD) detected from the binary
XTE J1859+226 by the All-sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE), which
dramatically increase over the course of an outburst. Panel b shows spectra recorded from observations of
the binary Cyg X-1 during two distinct X-ray states: the high/soft state in red and the low/hard state in blue.
Panel c demonstrates how model fits to spectral data from panel a characterize the time evolution of the
binary’s spectral states. Adapted from Ref. [48] and Ref. [78].
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State Name Definition
Thermal or High/soft Disk fraction >75%

Low/hard Disk fraction <20%
1.4 < Γ < 2.1

Steep Power Law (SPL) or Very High State (VHS) Disk fraction ≲ 0.8
Γ > 2.4

Table 2.1: Definitions of black hole binary spectral states. Adapted from Ref. [48]

ratio between the thermal and power-law flux (often called the “disk fraction”) and the power-law index Γ

together empirically define the spectral states (see Table 2.1). Measuring these quantities in different energy

bands and taking the ratio also yields a hardness ratio, a ratio between more energetic (“hard”) and less

energetic (“soft”) X-raysd that is used to track the state transitions.

As discussed in Ch. 2.2, a changing accretion disk well describes these outbursts, although the details

of the emission and the mechanism behind the transition remain less understood. For example, the origin of

the nonthermal emission across different accretion states could vary from saturated Comptonized emission

to synchrotron radiation. My research describes a variety of emission models in different accretion states,

sometimes focusing purely on the power-law component and sometimes holistically describing the disk

fraction by comparing dissipation in optically thick vs. optically thin regions.

2.4.2 Spectroscopy and Timing Studies of the Disk-Corona System

Spectra from black hole accretion disks often reveal features that are thought to come from light

reflecting off a hot corona rather than coming directly from the accretion disk (Fig. 2.2). Hot electrons (either

thermal or nonthermal) will Compton upscatter a population of seed photons (possibly thermal emission

from the disk or nonthermal synchrotron photons). Some portion of these higher energy photons will then

reflect off of the accretion disk, ionizing atoms like iron, whose fluorescence lines then appear in the X-

ray spectrum. Because the reflection presumably happens close to the black hole, the reflection spectrum

provides information about the innermost region of the accretion disk.

To demonstrate how delicate inferring black hole and accretion disk parameters from the reflection

d The exact energy bands depend strongly on the instrument.
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spectrum is, Fig. 2.6a shows a set of X-ray observations that feature these reflection lines, fit by assuming

a truncated thin disk (see Ch. 2.3) and a hot reflection component. This fit finds an inner disk radius of

17 ± 3𝑟𝑔, between 3 – 10 times the size of the ISCO, with a temperature of 0.15 ± 0.01 keV and a coronal

temperature of 98 ± 7 keV [93]. The reflection spectrum blurs together once relativistic effects are included

(Fig. 2.6b), opening up the possibility that the asymmetric relativistic broadening of the iron 𝐾𝛼 line could

be used to measure black hole spin. This blurring is simultaneously useful to estimate black hole spin, and

extremely uncertain due to the limited spectral resolution of current instruments. XRISM, launching in late

2023, is expected to distinguish between spectral lines [2]. In the meantime, Fig. 2.6c shows how current

models rely heavily on assumptions about the accretion disk structure, motivating the research in Ch. 5.

In theory, changes in the disk emission will also affect the reflection spectrum after a time that

depends on the spatial separation between the disk and the corona. Reverberation mapping tracks the

temporal evolution of the disk and reflected emission to extract this distance and hence attempt to interpret

the disk/corona geometry. Recent observations suggest that the corona is relatively compact, within 5𝑟𝑔 for

a BHB [72] and 6𝑟𝑔 for a Seyfert galaxy [95]. This compactness will motivate Ch. 4’s model for the corona

as a collisionless gas within the ISCO, and Ch. 5’s investigation of whether Coulomb decoupling in the inner

accretion disk regions leads to the formation of a corona-like structure.

Although promising, reverberation mapping relies on several assumptions that may not hold in the

actual disk/corona geometry. In particular, most techniques assume that the light-crossing time is the most

relevant timescale in the system, i.e. that the region is extremely optically thin, and that the emission comes

from a single central source [96]. However, both assumptions might fail in the case of a real corona sitting

around the disk, either through an extended geometry or a moderate optical depth [58, 97].

2.5 Numerical Tools

Astrophysics and astronomy as a field has the curious problem that scientists cannot do the controlled

experiments that are the bread and butter of “regular” physics. Astronomers cannot create a star in the lab,

much less tweak a single variable and see how that change affects the evolution and death of the star. As

astrophysicists, we have only what the universe gives us, and all the observational biases that come with
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Figure 2.6: Interpreting observational data to extract black hole spin relies on fitting several components
of the reflection spectrum, which is assumed to come from hot, presumably thermal electrons located
somewhere around the black hole. Relativistic effects, which depend sensitively on how close to the black
hole the radiation travels, blur the spectrum further and form the basis for iron-line-based spin measurements.
a) Actual observations from the Suzaku, with different detectors shown in orange, red, blue, and pink. Model
component fits are labeled and shown in black. The bottom panel shows the ratio of the data to the model.
Adapted from Ref. [93]. b) Example reflection spectrum before (red) and after (blue/green) relativistic
blurring. The green line shows the relativistically blurred spectrum for a non-spinning black hole, while the
blue line shows the spectrum for a black hole spin of 𝑎 = 0.998. From Ref. [47]. c) Current models can
drastically overestimate black hole spin, motivating the need for better understanding of the plasma physics
in the corona. Data from a 3D MHD simulation, scaled to have an input spin 𝑎real, is fed through a model
that measures spin through the fluorescent iron broadening. The model’s extracted spin 𝑎fit is shown on the
y-axis. The dotted black line shows the perfect recovery case, while colored lines show the dependence on
disk scale height at the ISCO. From bottom to top: ℎ/𝑟𝑔 ∈ 0.01, 0.25, 0.5, 1.0. From Ref. [94].
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trying to figure out what we are seeing. Because of lack of direct experimentation, astrophysicists often turn

towards numerical codes to integrate the differential equations relevant for their system. By starting with a

different initial condition, turning off a term, adding new terms, etc., theorists design and conduct numerical

experiments to give us physical insight. Of course, we must be careful with numerical simulations because

we cannot discover something that has not already been written into the equations we tell the computer to

solve. As is the case with all simulations, different jobs need the right tools. In the case of plasma physics, the

collisional, magnetohydrodynamic regime and the collisionless, kinetic regime motivate different numerical

formalisms.

2.5.1 Collisional Plasma: General Relativistic Magnetohydrodynamic Codes

General Relativistic Magnetohydrodynamic (GRMHD) simulations are useful for examining the global

dynamics of an accretion disk. While these simulations cannot resolve microphysics such as magnetic

reconnection or accelerate particles to nonthermal energies, they can capture large-scale gradients in gas

density and magnetic fields. Although MHD is strictly valid only for the collisional regime described in

Ch. 2.1.2, it is much less computationally expensive than PIC and thus is commonly used to simulate an

entire accretion disk.

GRMHD codes solve the general relativistic equations for conservation of particle number and en-

ergy/momentum and the evolution of the electromagnetic field tensor in the ideal limit. The first two of these

equations are given by:

𝜕𝑡
(√−𝑔𝜌0𝑢

𝑡
)
= −𝜕𝑖

(√−𝑔𝜌0𝑢
𝑖
)

(2.7)(
𝑇
𝜇
𝜈 + 𝑅𝜇𝜈

)
;𝜇 = 0 (2.8)

where 𝜌0 is the co-moving rest mass density, 𝑢𝜇 is the fluid four-velocity, and 𝑅𝜇𝜈 is the radiation stress-energy

tensor. The stress-energy tensor 𝑇 𝜇𝜈 in the ideal MHD limit is written as

𝑇
𝜇
𝜈 =

(
𝜌0 + 𝑢 + 𝑃 + 𝑏2

)
𝑢𝜇𝑢𝜈 +

(
𝑃 + 1

2
𝑏2

)
𝑔
𝜇
𝜈 − 𝑏𝜇𝑏𝜈 (2.9)

where 𝑃 is the (assumed isotropic) fluid pressure, 𝑢 is the fluid internal energy density, 𝑏2 = 𝑏𝜇𝑏𝜇, and 𝑏𝜇

is the magnetic field four-vector.
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The magnetic field evolution is governed by Maxwell’s equations:

𝜕𝑖
(√−𝑔𝐵𝑖 ) = 0 (2.10)

𝜕𝑡
(√−𝑔𝐵𝑖 ) = 𝜕 𝑗 (√−𝑔 [

𝑏 𝑗𝑢𝑖 − 𝑏𝑖𝑢 𝑗
] )

(2.11)

where 𝐵𝑖 is the three magnetic field, which includes the constraint 𝑏𝜇𝑢𝜇 = 0 and gives two equations relating

𝑏𝜇 and 𝐵𝑖: 𝑏𝑡 = 𝐵𝑖𝑢𝜇𝑔𝑖𝜇 and 𝑏𝑖 = (𝐵𝑖 + 𝑏𝑡𝑢𝑖)/𝑢𝑡 . See Ref. [98–100] for more details.

The treatment of the radiation term 𝑅
𝜇
𝜈 differs across GRMHD codes and often restricts the code

to certain optical depth regimes. A common method for the optically thin regime uses photon packets to

sample the phase space and capture emission and scattering. This Monte Carlo method quickly becomes

numerically expensive at high optical depths. On the other hand, radiation can be treated as a fluid in the

optically thick regime with the so-called “M1 closure”, which closes the radiation GRMHD equations by

assuming that the radiation tensor is isotropic in the orthonormal rest frame of the radiation (distinct from the

fluid frame in GR) [101]. The M1 closure method does not accurately treat anisotropic radiation and as such

does not apply in optically thin regions where radiation is not traveling in one main direction. Connecting

the optically thin and thick regimes is thus a major numerical difficulty — and an important problem, as that

is exactly the regime thought to occur during the hard-to-soft spectral state transitions described in Ch. 2.4.

In Ch. 5, I will approximate radiation as a cooling function in an attempt to capture both the optically thin

and optically thick regimes.

In Ch. 5, I relax the typical assumption that electrons and protons have the same temperature. To allow

for electrons having a different temperature than protons, the code separately evolves an electron fluid on top

of the total (electron and proton) fluid. This electron fluid is governed by the electron entropy conservation

equation:
𝜌𝛾𝑒

𝛾𝑒 − 1
𝑢𝜇𝜕𝜇𝜅𝑒 = 𝑓𝑒𝑄𝐻 +𝑄𝐶 (𝑇𝑒, 𝑇𝑝) − 𝑢𝜈𝑅𝜇𝜈;𝜇 (2.12)

where 𝜅𝑒 ≡ exp((𝛾𝑒−1)𝑠𝑒) = 𝑃𝑒/𝜌𝛾𝑒0 , where 𝑠𝑒 is the electron entropy. The fraction 𝑓𝑒 describes how much

of the viscous heating 𝑄𝐻 goes into electrons: the remaining (1 − 𝑓𝑒)𝑄𝐻 goes into the protons. Energy

is exchanged between the electrons and protons via the Coulomb heating term 𝑄𝐶 , which depends on the

electron and proton temperature and is given by Ref. [102]. The last term on the right side is the radiation
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reaction on the electron fluid. The electron fluid is described in detail in Ref. [103, 104].

2.5.2 Collisionless Plasmas: Particle-in-cell Codes

Particle-in-cell (PIC) simulations focus on the microphysics of a plasma. Instead of capturing large-

scale gradients and general relativity, PIC simulations resolve the plasma frequency and do not assume

a thermal particle distribution function. As such, PIC simulations best describe the collisionless regime

outlined in Ch. 2.1.1. Due to their computational cost, PIC simulations often zoom in on a small patch of

plasma over which the plasma and spacetime conditions do not change significantly. A notable exception

to that limitation is GRPIC simulations [105–107]; note, however, that those simulations (so far) most often

include an infinitely thin accretion disk.

Particle-in-cell simulations do not evolve the full distribution function 𝑓 (x, v). Instead, they sample the

distribution function and track macroparticles that represent many individual particles. The electromagnetic

fields are solved on a grid using Maxwell’s equations. The particles are then evolved according to the Lorentz

force, and their movements update the currents and charges in the next evolution of Maxwell’s equations [108,

109]. PIC simulations do not typically (or ever, in astrophysics) include particle-particle interactions such

as Coulomb collisions, since such a binary interaction would significantly increase the computational cost.

They occasionally include radiation, in particular synchrotron radiation as a drag force [109] and inverse

Compton scattering as either a soft photon bath that produces a drag on each particle [110] or by tracking

macrophotons [111].

In Ch. 3, I use PIC simulations to investigate how relaxing the assumption of isotropic energy injection

affects the turbulent cascade [13, 14] as described in Ch. 2.1.3.

2.6 Summary of This Work

In this thesis, I bring together both collisionless and collisional plasma physics to study the accretion

disks and coronae around black holes. Kinetic physics has been especially neglected in the past, partially due

to a lack of understanding and partially due to the difficulty in including the results in MHD simulations. To

begin bridging these regimes, I begin with a study of the kinetic physics in the corona using PIC simulations
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(Ch. 3). I examine plasma heating and particle acceleration in a corona pumped by turbulence from an

underlying accretion disk. Next, I create a semi-analytic model that begins with a highly-collisional thin

disk and show that kinetic physics could become important within the black hole’s ISCO (Ch. 4). Particle

acceleration to nonthermal energies could occur and be observed from this region, forming a version of

the corona for the soft state of BHBs. Finally, I end with an exploration of two-temperature MHD in an

entire accretion disk (Ch. 5). I explore the impact of Coulomb collisions between electrons and protons on

determining the overall disk structure, particularly the transition between an inner hot accretion flow and an

outer cold accretion disk. Throughout this thesis, I focus on the plasma physics that could affect what we

observe from black hole accretion disks.



Chapter 3

Kinetic Simulations of Imbalanced Turbulence in a Relativistic Plasma: Net Flow and

Particle Acceleration

Observations of astrophysical systems such as black hole binaries suggest the presence of nonthermal

electrons with suprathermal energies. These high-energy electrons must somehow be accelerated out of

the thermal bulk. A possible mechanism for accelerating particles is via magnetic turbulence. However,

canonical models of turbulence assume that the energy flux parallel and anti-paralllel to a background

magnetic field is equal, or “balanced”, which might not be the case in systems such as pulsar wind nebulae

and accretion disk coronae. In particular, in a sandwich-type corona, turbulence from an underlying thin

disk could launch Alfvén waves along magnetic field lines. These waves could then reflect and form

counterpropagating waves: see Fig. 2.3b.

Here, I investigate how imbalance in energy injected into a magnetized, relativistic, collisionless

plasma can affect the turbulent cascade’s ability to heat the plasma and accelerate particles to nonthermal

energies. See Ch. 2.1.3 for a review. To effectively understand these microphysical plasma processes, I

employ PIC simulations (Ch. 2.5.2) to study a small patch of plasma. In these simulations, I ignore general

relativistic effects and large-scale gradients in the disk. Future work will investigate the impact of large-scale

gradients. I find that imbalance decreases the efficiency of particle acceleration, effectively limiting the

development of the turbulent cascade. A portion of the imbalanced net injected energy converts into net

motion of the plasma, which could lead to an outflow. Such an outflow could affect the structure of the

corona. This chapter was published in Ref. [4].
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Abstract

Turbulent high-energy astrophysical systems often feature asymmetric energy injection: for instance,

Alfvén waves propagating from an accretion disk into its corona. Such systems are “imbalanced”: the energy

fluxes parallel and anti-parallel to the large-scale magnetic field are unequal. In the past, numerical studies

of imbalanced turbulence have focused on the magnetohydrodynamic regime. In the present study, we in-

vestigate externally-driven imbalanced turbulence in a collisionless, ultrarelativistically hot, magnetized pair

plasma using three-dimensional particle-in-cell (PIC) simulations. We find that the injected electromagnetic

momentum efficiently converts into plasma momentum, resulting in net motion along the background mag-

netic field with speeds up to a significant fraction of lightspeed. This discovery has important implications

for the launching of accretion disk winds. We also find that although particle acceleration in imbalanced

turbulence operates on a slower timescale than in balanced turbulence, it ultimately produces a power-law

energy distribution similar to balanced turbulence. Our results have ramifications for black hole accretion

disk coronae, winds, and jets.

3.1 Introduction

High-energy astrophysical systems such as accretion disks, jets, and pulsar wind nebulae often com-

prise collisionless, relativistically-hot plasmas and are likely turbulent [9, 61, 112, 113]. Turbulence in

systems with magnetization (the ratio of magnetic enthalpy to plasma enthalpy) 𝜎 ≳ 1 can efficiently

accelerate particles, as recently demonstrated in particle-in-cell (PIC) simulations [86, 114–116]. Such

nonthermal particle acceleration (NTPA) could explain the power laws seen in spectra of jets, pulsar wind

nebulae, and stellar-mass black hole X-ray binary systems [48, 117, 118].

These previous studies of turbulence in relativistic collisionless plasmas have assumed symmetric

energy injection into the plasma. However, this assumption is not true in a variety of space and astrophysical

systems where turbulence is preferentially stirred on one side of the system. For example, in an accretion

disk-wind system, turbulence in the disk may shake the footpoint of an open large-scale magnetic field

line, sending Alfvén waves predominately away from the disk’s midplane and into the corona [84]. This
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asymmetric propagation of Alfvén waves could impact NTPA. In addition, if efficiently coupled to the plasma,

such asymmetrically-injected electromagnetic momentum could result in bulk motion of the plasma—an

outflow/wind. Understanding both NTPA and the possible formation of an outflow necessitates studying

turbulence with asymmetric momentum injection—so-called “imbalanced" turbulence.

Most studies of imbalanced turbulence have focused on the magnetohydrodynamic (MHD) regime.

Canonical phenomenological models for strong, “balanced" MHD turbulence consider ensembles of counter-

propagating Alfvén waves with equal energy fluxes along a background magnetic field [14, 15, 119–121];

see Ref. [17] for a recent review. Phenomenological models for imbalanced turbulence relax the assumption

of equal fluxes, leading to predictions that are ripe for numerical exploration [21, 23, 24, 29]. Numerical

attempts to model imbalanced turbulence in the MHD regime have proven difficult due to questions about

the effects of varying dissipation prescriptions, limited dynamic ranges of accessible simulation domains,

and limited run times [19, 20, 25, 26, 28, 30]. Some numerical studies have extended beyond standard MHD

to the relativistic MHD regime using the force-free assumption that 𝜎 ≫ 1 [27, 32].

Below MHD scales, analytic models of imbalanced kinetic turbulence have recently been formulated

in the nonrelativistic regime [33, 35, 122]. These models of collisionless imbalanced turbulence can be tested

against measurements of the solar wind [45]. Meanwhile, numerical studies have made approximations of

infinite ion-to-electron mass ratio to model scales below the proton gyroradius [123], demonstrated the

importance of finite Larmor radius effects on the turbulent energy cascade [124], or employed a diffusive

model to study turbulence from fluid to sub-ion scales [34]. A few numerical studies have modeled the fully

kinetic collisionless regime with an eye towards the solar wind [125]. However, none to our knowledge have

examined the ultrarelativistic, collisionless regime relevant to high-energy astrophysical systems. Studying

this regime is important because quasi-linear models of turbulent particle acceleration for imbalanced MHD

predict a decrease in the Fokker-Planck momentum diffusion coefficient for increasing imbalance, leading to

less efficient NTPA and posing a potential obstacle to turbulence as an astrophysical particle accelerator in

some systems [126, 127].

In this work, we explore imbalanced, relativistic turbulence in magnetized collisionless electron-

positron (pair) plasmas using 3D PIC methods [128]. We study how imbalance affects self-consistent NTPA,
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inaccessible in fluid-based models, and how it introduces an effect entirely absent in balanced models:

the transfer of net momentum to the plasma, which in realistic systems could form outflows. Though the

regime we simulate is particularly applicable to black hole accretion disk coronal heating [84] and wind-

launching, our results should be generally applicable to relativistic astrophysical turbulence where the source

of perturbations is localized, such as the jets originating from active galactic nuclei.

To frame our study of this numerically- and analytically-unexplored regime of turbulence, we focus

on four main questions:

(i) How does imbalance affect the formation of a turbulent cascade?

(ii) How does imbalance affect the partition of large-scale injected energy into electromagnetic, internal,

and turbulent kinetic energy?

(iii) Does imbalance drive net motion of the plasma?

(iv) How does imbalance affect NTPA?

We first introduce the numerical tools and parameters used to describe imbalanced turbulence (Section 3.2).

We then present the results of 3D collisionless, relativistic PIC simulations with varying degrees of imbalance

and ratio of system size to initial Larmor radius that address each of the above questions in order. After

first demonstrating the presence of a turbulent cascade (Section 3.3.1), we discuss how and why the energy

partition changes with imbalance (Section 3.3.2). Then we examine the formation of a net flow via efficient

momentum transfer to the plasma and provide an analytic framework for understanding it (Section 3.3.3). We

continue by demonstrating, for the first time, the similarity of NTPA in balanced and imbalanced turbulence

(Section 3.3.4). We check the dependence of our results on simulation domain size in Appendix 3.A. We

conclude with implications for high-energy astrophysical systems and remaining questions (Section 3.4).

3.2 Methods

In this section, we will first review physical properties of relativistic magnetized plasmas (Sec-

tion 3.2.1), and then outline the simulation suite used to study imbalanced turbulence (Section 3.2.2). The

last subsection discusses various diagnostics that will be used to analyze our simulations (Section 3.2.3).
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3.2.1 Plasma Physical Regime

The plasmas considered in this paper are collisionless, ultrarelativistically hot, and magnetized. This

section discusses the parameters that characterize such a plasma. Throughout this work, we will use ⟨·⟩

to denote the time-dependent volume- or particle ensemble-average of a quantity and ·̄ to denote the time-

average of a quantity in the time interval 10 < 𝑡𝑐/𝐿 < 20 unless otherwise specified; here 𝐿/𝑐 is the

light-crossing time of the simulation domain with length 𝐿.

The parameters that characterize an ultra-relativistic, magnetized pair plasma with ⟨𝛾⟩ ≫ 1 in-

clude: an average total (electron plus positron) particle density 𝑛0, average particle energy ⟨𝛾⟩𝑚𝑒𝑐2,

and characteristic magnetic field strength 𝐵rms =

√︃
⟨𝐵2
𝑥 + 𝐵2

𝑦 + 𝐵2
𝑧⟩. Here, 𝑚𝑒 is the mass of the elec-

tron (or positron) and ⟨𝛾⟩ is the average particle Lorentz factor (𝛾 = 1/
√︁

1 − 𝑣2/𝑐2 =
√︁

1 + 𝑝2/𝑚2
𝑒𝑐

2

for a particle with velocity 𝑣, mass 𝑚𝑒, and momentum 𝑝). The fundamental physical length scales

in this plasma are: the characteristic Larmor radius 𝜌𝑒 = ⟨𝛾⟩𝑚𝑒𝑐2/𝑒𝐵rms, the plasma skin depth 𝑑𝑒 =(
⟨𝛾⟩𝑚𝑒𝑐2/(4𝜋𝑛0𝑒

2)
)1/2, and the size of the system 𝐿. For a plasma with a Maxwell-Jüttner particle dis-

tribution 𝑓 (𝛾) = 𝛾2
√︁

1 − 1/𝛾2 [𝜃𝐾2(1/𝜃)]−1 exp (−𝛾/𝜃), the plasma has a well-defined temperature 𝑇𝑒 =

⟨𝛾⟩𝑚𝑒𝑐2/3 (assumed equal for electrons and positrons) and the Debye length simplifies to 𝜆𝐷 = 𝑑𝑒/
√

3.

Here 𝜃 ≡ 𝑇𝑒/𝑚𝑒𝑐2 and 𝐾2(𝑥) is the modified Bessel function of the second kind. The three length

scales 𝜌𝑒, 𝑑𝑒, and 𝐿 form two dimensionless quantities: the magnetization 𝜎 = 𝐵2
rms/4𝜋ℎ = 3(𝑑𝑒/𝜌𝑒)2/4

and the ratio of the largest characteristic scale of spatial variation 𝐿/2𝜋 (which will be the turbulence driving

scale in our study as described below) to the Larmor radius 𝜌𝑒. Here ℎ = 𝑛0⟨𝛾⟩𝑚𝑒𝑐2 + ⟨𝑃⟩ ≈ 4𝑛0⟨𝛾⟩𝑚𝑒𝑐2/3

is the characteristic relativistic enthalpy density and ⟨𝑃⟩ ≈ 𝑛0⟨𝛾⟩𝑚𝑒𝑐2/3 is the (assumed isotropic) average

plasma pressure. The magnetization is related to the plasma beta parameter 𝛽 = 8𝜋⟨𝑃⟩/𝐵2
rms as 𝛽 = 1/(2𝜎)

and determines the relativistic Alfvén speed 𝑣𝐴 = 𝑐
√︁
𝜎/(𝜎 + 1). Since we consider primarily Alfvénic

turbulence, the magnetization governs how relativistic the large-scale turbulent motion is.



31

3.2.2 Numerical Simulations

To explore the properties of imbalanced turbulence in a collisionless relativistic pair plasma from first

principles, we use the electromagnetic PIC code Zeltron [109]. Zeltron samples the particle phase space

with macro-particles and evolves them according to the Lorentz force law, providing an approximate solution

to the relativistic Vlasov equation. The electric and magnetic fields evolve according to Maxwell’s equations,

with the addition of an externally-driven volumetric current to Ampère’s law to generate turbulence, as

discussed below.

The physical parameters of the simulations we present are identical to those described in Ref. [128]

and Ref. [114] except for the modifications outlined below to introduce imbalance. Each simulation is

initialized with an electron-positron plasma at rest with a Maxwell-Jüttner distribution function, a uniform

background magnetic fieldB0 = 𝐵0ẑ and no initial electromagnetic fluctuations. For each of the simulations,

we set the initial magnetization to 𝜎0 = 0.5, yielding a relativistic Alfvén velocity 𝑣𝐴0 = 0.58𝑐 and plasma

beta 𝛽0 = 1.0. The initial temperature of the plasma is fixed at 𝑇𝑒 = 100𝑚𝑒𝑐2 across all simulations,

corresponding to an initial average particle Lorentz factor of ⟨𝛾⟩ ≈ 300.

To obtain the largest possible inertial range, the simulation suite’s chosen numerical parameters

maximize the separation between the large driving scale 𝐿/2𝜋 and the small initial kinetic scales 𝜌𝑒0

and 𝑑𝑒0, while still resolving the latter. We resolve the initial plasma length scales with fixed Δ𝑥 = 𝜌𝑒0/1.5 =

𝑑𝑒0/1.22, where Δ𝑥 = Δ𝑦 = Δ𝑧 is the grid cell length in each direction. The simulation domain is cubic

with periodic boundary conditions and length 𝐿 ≡ 𝑁Δ𝑥, where 𝑁 is the number of cells in a spatial

dimension (throughout, 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 ≡ 𝑁). The timestep is a fraction of the cell light-crossing time,

i.e. Δ𝑡 = 3−1/2Δ𝑥/𝑐. The simulations are initialized with 32 particles per cell per species. To scan the

ratio 𝐿/2𝜋𝜌𝑒0, we vary the number of cells in each spatial dimension, with 𝑁 = 256, 384, 512, and

768 corresponding to 𝐿/2𝜋𝜌𝑒0 ∈ {27.1, 40.7, 54.3, 81.5}. When examining the dependence of results on

simulation size, we also include three simulations of balanced turbulence with 𝐿/2𝜋𝜌𝑒0 ∈ {81.5, 108.7, 164}

(𝑁 ∈ {768, 1024, 1536}) used in Ref. [114] that are otherwise identical to the simulations presented in this

work.
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The initial equilibrium is disrupted by an externally-driven current. We employ an oscillating Langevin

antenna [129, OLA] to drive turbulence volumetrically and continually throughout each simulation’s duration.

The OLA is implemented by adding the external current to the evolution equation for the electric field

(Ampère’s law). This current generates counter-propagating Alfvén waves. The amplitudes of these counter-

propagating waves are modified to induce imbalanced turbulence, as described in the following paragraphs.

Because of the random nature of the OLA driving, a single simulation may not be representative of the entire

ensemble of possible random seeds. To avoid basing all our conclusions on a single data point for each

balance parameter, we also present a statistical study of random seeds. For each balance parameter, eight

values of the random seed are simulated for the domain size 𝐿/2𝜋𝜌𝑒0 = 40.7 (𝑁 = 384). The results of the

statistical study are compared against the largest simulation domains 𝐿/2𝜋𝜌𝑒0 = 81.5 (𝑁 = 768). Statistical

variation could potentially be reduced in a single simulation by introducing more than eight driving modes.

We drive imbalanced turbulence via eight independently-evolved, externally-driven sinusoidal current

modes. These current modes create magnetic field perturbations propagating in opposite directions along

the background magnetic field, i.e. Alfvén waves. The driven current modes have the form:

𝐽ext
𝑥 (x, 𝑡) = 2𝜋𝑐

𝐿2 Re


2∑︁
𝑗=1

(
𝑎 𝑗 (𝑡)𝑒𝑖k 𝑗 ·x + 𝑏 𝑗 (𝑡)𝑒−𝑖k 𝑗 ·x

) (3.1)

𝐽ext
𝑦 (x, 𝑡) = 2𝜋𝑐

𝐿2 Re


4∑︁
𝑗=3

(
𝑎 𝑗 (𝑡)𝑒𝑖k 𝑗 ·x + 𝑏 𝑗 (𝑡)𝑒−𝑖k 𝑗 ·x

) (3.2)

𝐽ext
𝑧 (x, 𝑡) = 2𝜋𝑐

𝐿2 Re


4∑︁
𝑗=1

(
−𝑎 𝑗 (𝑡)𝑒𝑖k 𝑗 ·x + 𝑏 𝑗 (𝑡)𝑒−𝑖k 𝑗 ·x

) . (3.3)

The sign of 𝑘𝑧 dictates the direction of the current mode’s propagation. Four of the modes have no 𝑦-

component of their wavevector and four have no 𝑥-component; four propagate in the +𝑧-direction and four

propagate in the −𝑧-direction. These wavevectors are

k1 = 𝑘0(−1, 0, 1) k2 = 𝑘0(1, 0, 1) (3.4)

k3 = 𝑘0(0,−1, 1) k4 = 𝑘0(0, 1, 1). (3.5)

Here, 𝑘0 = 2𝜋/𝐿, so that the driving scale is the largest scale 𝐿/2𝜋. We ensure ∇ · Jext = 0 to avoid

local injection of net charge. Currents driven in 𝐽ext,𝑥 and 𝐽ext,𝑦 create Alfvén waves with magnetic field
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perturbations in the 𝑦- and 𝑥−directions, respectively. The amplitudes of these currents can be adjusted

to create counter-propagating Alfvén waves of unequal amplitudes, thus enabling our study of imbalanced

turbulence.

The external current’s time-dependence is dictated by the coefficients 𝑎 𝑗 (𝑡) and 𝑏 𝑗 (𝑡). The coefficient

at the (𝑛+1)th timestep is found from the previous 𝑛th timestep as

𝑎
(𝑛+1)
𝑗

= 𝑎
(𝑛)
𝑗
𝑒−𝑖𝜔Δ𝑡 + 𝛼 𝑗𝑢 (𝑛)𝑗 Δ𝑡 (3.6)

𝑏
(𝑛+1)
𝑗

= 𝑏
(𝑛)
𝑗
𝑒−𝑖𝜔Δ𝑡 + 𝛽 𝑗𝑣 (𝑛)𝑗 Δ𝑡. (3.7)

The coefficients 𝑎 𝑗 (𝑡) and 𝑏 𝑗 (𝑡) thus oscillate at frequency 𝜔 with random kicks at each timestep [cf.

Langevin equation, hence the name “oscillating Langevin antenna”; 129]. The initial coefficients 𝑎 (0)
𝑗

and 𝑏
(0)
𝑗

are set to amplitudes A and B multiplied by random phases 𝜙 (𝑎)
𝑗

and 𝜙
(𝑏)
𝑗

: 𝑎 (0)
𝑗

= A𝑒𝑖𝜙
(𝑎)
𝑗

and 𝑏 (0)
𝑗

= B𝑒𝑖𝜙
(𝑏)
𝑗 . We setA = 𝐵0𝐿/8𝜋, which for balanced turbulence achieves 𝛿𝐵rms =

√︃
𝐵2

rms − 𝐵2
0 ∼ 𝐵0.

The random kicks 𝑢 (𝑛)
𝑗

and 𝑣 (𝑛)
𝑗

in Equations 3.6 and 3.7 are complex random numbers with real and imaginary

components drawn from a uniform distribution between −0.5 and 0.5. The constant parameters 𝛼 𝑗 and 𝛽 𝑗

are set such that when ensemble-averaged, ⟨|𝑎 (𝑛)
𝑗

|2⟩ = A2 and ⟨|𝑏 (𝑛)
𝑗

|2⟩ = B2. The complex driving

frequency 𝜔 has real component 𝜔0 and an imaginary component −Γ0 which we set to be non-integer

multiples of the Alfvén frequency 𝜔𝐴 ≡ 2𝜋𝑣𝐴/𝐿 to avoid initial resonances: 𝜔0 = (0.6/
√

3)𝜔𝐴 ≈ 0.35𝜔𝐴

and Γ0 = (0.5/
√

3)𝜔𝐴 ≈ 0.29𝜔𝐴. In frequency space, the driving is a Lorentzian centered at 𝜔0 with a

full-width half-max of Γ0; see Ref. [129] for details. The amplitudes A and B (and therefore the 𝛼 𝑗 and 𝛽 𝑗

values) are the same for all 𝑎 𝑗 and 𝑏 𝑗 , but the random parameters 𝑢 𝑗 , 𝑣 𝑗 , and the initial phases 𝜙 (𝑎,𝑏)
𝑗

are

different for each 𝑘 𝑗 .

We introduce imbalance by adjusting the amplitudes of the currents propagating in the −𝑧-direction

relative to those propagating in the +𝑧-direction. The coefficients 𝑎 𝑗 control the currents propagating in

the +𝑧-direction, whereas 𝑏 𝑗 control the waves propagating in the −𝑧-direction. These currents’ amplitudes

are dictated by their respective A and B amplitudes. To achieve imbalanced turbulence, we hold A fixed

and vary B. We quantify how balanced the turbulence is via the balance parameter,

𝜉 ≡ B/A, (3.8)
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where B is the amplitude for the −𝑧-modes and A is the fixed amplitude for the +𝑧-modes. A value of 𝜉 = 1

corresponds to the canonical balanced case, whereas 𝜉 = 0 corresponds to current modes propagating only

in the +𝑧-direction. Because we drive currents rather than Alfvén modes, we do not directly control the

exact amplitude of counter-propagating Alfvén waves. If 𝜉 = 0 corresponded exactly to the case of Alfvén

waves propagating in a single direction, we would not expect turbulence to develop in a non-relativistic, ideal

MHD plasma. Indeed, turning off the random kicks by setting 𝛼 𝑗 = 𝛽 𝑗 = 0 does not result in turbulence

for simulations with 𝜉 = 0 (not shown). However, with our set-up of nonzero 𝛼 𝑗 and 𝛽 𝑗 , the 𝜉 = 0 case

does become turbulent because the OLA forcing excites counter-propagating Alfvén waves. In principle,

more imbalanced turbulence should be achievable by, e.g., a decaying turbulence problem or by changing

the driving mechanism. For the present work, we simply term the 𝜉 = 0 case the “most imbalanced" case.

We will use the balance parameter 𝜉 throughout this paper to refer to the degree of imbalance;

however, since 𝜉 measures the imbalance of the driving mechanism rather than the turbulence, we now

briefly discuss the relationship of 𝜉 to other methods of measuring imbalance. Cross-helicity, an invariant in

ideal MHD, measures the difference in the energy densities associated with waves propagating anti-parallel

(with energy density E+ and amplitude 𝛿𝐵+) and parallel to the magnetic field (with energy density E− and

amplitude 𝛿𝐵−). In ideal, non-relativistic, incompressible MHD, E± = ⟨𝜌 |z± |2⟩/4, where z± = δv ± b

are the Elsasser fields [130]. Here δv is the fluctuating plasma velocity, b ≡ δB 𝑣𝐴/𝐵0 is the fluctuating

magnetic field in velocity units, and 𝜌 is the plasma mass density (not to be confused with the Larmor

radius 𝜌𝑒). The total energy density is then given by E ≡ E+ + E− = (1/2)⟨𝜌
(
|δv |2 + |b|2

)
⟩ and the

cross-helicity 𝐻𝑐 ≡ (E+ − E−) /⟨𝜌⟩ can be re-expressed as 𝐻𝑐 = ⟨δv · b⟩. Cross-helicity is related to the

volume-averaged 𝑧-component of the Poynting flux S (x, 𝑡) = (𝑐/4𝜋) [E ×B] under the assumptions of

incompressible, nonrelativistic, ideal reduced MHD that 𝛿𝐵 ≪ 𝐵0 and that the fluctuations δB and δv are

perpendicular to the background field 𝐵0ẑ:

⟨𝑆𝑧⟩(𝑡) = −𝐵0

4𝜋
⟨δv · δB⟩ = − 1

4𝜋
𝐵2

0
𝑣𝐴
𝐻𝑐 (𝑡). (3.9)

For a single Alfvén wave, δv/𝑣𝐴 = ±δB/𝐵0 and thus the magnitude of the Poynting flux for a single Alfvén
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Table 3.1: Measured values of the Elsasser fields’ energy ratio 𝑟𝐸 = ⟨𝑧2
−⟩/⟨𝑧2

+⟩ for a sampling of balance
parameter 𝜉 values. The first number gives the ratio for 𝑁 = 768 and the second gives one standard deviation
of the 𝑁 = 384 statistical seed studies. Time averages are taken over 5.0 < 𝑡𝑐/𝐿 < 20.0.

𝜉 0.0 0.5 1.0
𝑟𝐸 0.72 ± 0.06 0.92 ± 0.14 1.01 ± 0.14

wave |⟨𝑆𝑧⟩1−wave | is

|⟨𝑆𝑧⟩1−wave | =
1

4𝜋
⟨𝛿𝐵2⟩𝑣𝐴. (3.10)

We can estimate the values of the driven Alfvén wave energies in our simulations of imbalanced turbulence

as 𝐸+ ∼ ⟨𝛿𝐵2
+⟩ ∼ |𝑎 𝑗 |2 (where 𝛿𝐵+ is the amplitude of the magnetic perturbation travelling in the +𝑧

direction) and 𝐸− ∼ |𝑏 𝑗 |2, leading to

⟨𝑆𝑧⟩ ∝ 𝐻𝑐 ∝ 1 − 𝜉2. (3.11)

Equation 3.11 will be tested in Section 3.3.3.2. Normalizing to the total energy, the “normalized cross-

helicity" 𝐻̃𝑐 = (E+ − E−)/(E+ + E−) [29, 45, 124] can be estimated as 𝐻̃𝑐 ∼ (1 − 𝜉2)/(1 + 𝜉2). Finally, we

calculate the ratio ⟨𝑧2
−⟩/⟨𝑧2

+⟩ of Elsasser field energies for several 𝜉 (Table 3.1). These fields are calculated

with 𝑣𝐴(𝑡) = 𝑐
√︁
𝜎(𝑡)/(𝜎(𝑡) + 1) using the instantaneous magnetization. For our most imbalanced turbulence

(𝜉 = 0.0), the ratio of energies is about 0.72, whereas for perfectly imbalanced turbulence the ratio would be

zero. The discrepancy between the driving’s imbalance and the turbulence’s imbalance is due to the excitation

of counter-propagating Alfvén waves (discussed in the previous paragraph), and possibly relativistic, kinetic,

and moving frame effects, which the Elsasser fields we use do not take into account.

The main goal of our study is to determine the impact of imbalance on the properties of collisionless

turbulence. We do so by varying the balance parameter 𝜉 between 0 (“most imbalanced") and 1 (“balanced")

at every value of 𝐿/2𝜋𝜌𝑒0.

3.2.3 Energy Diagnostics

In this section, we discuss diagnostics that will be used in Section 3.3 to partition the energy of the

system into four main types.
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The total energy density in the system can be decomposed into the energy density EEM in the electric

and magnetic fields and the total (kinetic plus rest mass) energy density Epl in the plasma particles. Fluid

quantities provide intuition into the plasma’s behavior by partitioning Epl into internal, net flow, and turbulent

flows:

Epl(x, 𝑡) = Eint(x, 𝑡) + Enet(𝑡) + Eturb(x, 𝑡). (3.12)

The plasma’s total kinetic, internal, and turbulent kinetic energy densities are calculated for each simulation

cell from both the electron and positron macro-particles’ positions and momenta, though they will often

be discussed in terms of their volume averages ⟨Epl⟩, ⟨Eint⟩ and ⟨Eturb⟩, respectively. The net flow energy

density Enet is a key quantity for characterizing how efficiently imbalanced turbulence can drive a directed

plasma flow. It is a global quantity calculated from the total momentum in the system. Explicitly, these

quantities are defined as:

Eint(x, 𝑡) ≡
√︃
E2

pl(x, 𝑡) − P
2
pl(x, 𝑡)𝑐2 (3.13)

Enet(𝑡) ≡ ⟨Epl⟩(𝑡) −
√︃
⟨Epl⟩2(𝑡) − ⟨Ppl⟩2(𝑡)𝑐2 (3.14)

Eturb(x, 𝑡) ≡ Eflow(x, 𝑡) − Enet(𝑡) (3.15)

where Eflow(x, 𝑡) = Epl(x, 𝑡) − Eint(x, 𝑡) [128, Eq. 8] and Ppl(x, 𝑡) is the local momentum density of the

electron-positron plasma. This framework is similar to that in Ref. [128], with the renaming of the “bulk"

energy density to the “flow" kinetic energy density and further breakdown of the flow energy density into

the energy density associated with the net flow of the plasma Enet through the simulation domain and the

turbulent motions Eturb. Equation 3.13 for the internal energy density is analogous to the relativistic energy 𝐸

of a single particle 𝐸2 = (𝑚𝑐2)2 + 𝑝2𝑐2. In this analogy, the plasma internal energy acts like a particle rest

mass, the plasma momentum acts as a particle momentum, and the total plasma kinetic energy acts like a

relativistic particle mass. Equation 3.14 for the net flow energy density uses a similar analogy, specifically

applied to the quantity volume-averages.

The change in the energy of the plasma and the electromagnetic fields comes from the energy injected

into the system by the OLA driving. The energy injection rate ⟨ ¤Einj⟩ = −⟨Jext ·E⟩ is statistically constant in

time. Integrating it over time gives the total injected energy density up to time 𝑡: Einj(𝑡). Because the injected
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energy depends on the amplitude of the driven waves, its value at any given time varies with 𝜉 within a factor

of two or so (see Section 3.3.2). To account for this dependence of injected energy on balance parameter, we

normalize the volume-averaged changes in the various energy components by the volume-averaged injected

energy to obtain energy efficiencies:

1 =
Δ⟨Eint⟩
⟨Einj⟩

+ ΔEnet

⟨Einj⟩
+ Δ⟨Eturb⟩

⟨Einj⟩
+ Δ⟨EEM⟩

⟨Einj⟩
, (3.16)

where the terms on the right are the internal efficiency, net flow efficiency, turbulent kinetic efficiency, and

electromagnetic efficiency, respectively. We use ΔE to indicate the change in a type of energy density since

the start of the simulation, i.e. ΔE(𝑡) = E(𝑡) − E(0).

3.3 Results

In this section, we investigate how imbalanced turbulence differs from balanced turbulence through

a series of comparisons. After demonstrating the presence of a turbulent cascade for all values of balance

parameter (Section 3.3.1), we examine how the injected energy transforms into the plasma’s internal and

turbulent energy (Section 3.3.2). We next turn to the novel aspect of imbalanced turbulence: the presence

of a net flow (Section 3.3.3). By using the statistical study of eight random seeds at smaller simulation do-

mains 𝐿/2𝜋𝜌𝑒0 = 40.7 to enhance the trends in the largest simulation domains 𝐿/2𝜋𝜌𝑒0 = 81.5, we constrain

the dependence of each of these energy types on balance parameter. We then explore the decomposition

of the plasma energy into thermal and nonthermal components and how particle acceleration depends on

the balance parameter (Section 3.3.4). The influence of simulation domain size on the fluid quantities is

explored by varying 𝐿/2𝜋𝜌𝑒0 in Appendix 3.A.

3.3.1 Formation of a Turbulent Cascade

The spectrum of the turbulent magnetic energy is a common diagnostic when examining turbulence.

Much of the previous work on imbalanced turbulence in MHD plasmas has examined the power-law indices

of the two Elsasser fields and how they may or may not deviate from Goldreich-Sridhar 𝑘−5/3
⊥ scalings [14,
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Figure 3.1: A turbulent cascade forms for all balance parameters. a) The magnetic energy spectra 𝑃mag(𝑘⊥)
for 𝐿/2𝜋𝜌𝑒0 = 81.5 simulations of varying balance parameter averaged between times 8.8 < 𝑡𝑐/𝐿 < 9.9
(comprising five outputs) show an inertial range between 𝑘⊥𝜌𝑒 (𝑡) ∼ 0.1 and 1.0. A break in the spectrum
at 𝑘⊥𝜌𝑒 (𝑡) ∼ 1.0 indicates the onset of kinetic effects. b) When compensated by 𝑘2

⊥, the spectra for the
balanced 𝜉 = 0.75 and 1.0 cases are slightly steeper than ∝ 𝑘−2

⊥ , whereas the imbalanced case 𝜉 = 0.0 is
slightly flatter. The Elsasser fields’ spectra, shown in dash-dot red lines for 𝜉 = 0, exhibit slightly different
slopes, with the stronger field (𝑧+, top line) being slightly steeper than the weaker field (𝑧−, bottom line). In
both panels, shaded lines show one temporal standard deviation about the mean. Black dashed lines show
the scaling 𝑘−5/3

⊥ ; black dotted lines show 𝑘−2
⊥ . Gray lines show the 𝐿/2𝜋𝜌𝑒0 = 164 balanced simulation’s

magnetic energy spectrum, taken at 𝑡 = 8.9 𝐿/𝑐.
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21, 24]. In this study, we simply calculate the overall turbulent magnetic energy spectrum via:

𝑃mag(𝑘⊥, 𝑡) =
∫

d𝑘𝑧d𝜙 𝑘⊥
1

8𝜋

(
|𝐵̃𝑥 |2 + |𝐵̃𝑦 |2 + | ˜𝛿𝐵𝑧 |2

)
, (3.17)

where 𝛿𝐵𝑧 = 𝐵𝑧 − 𝐵0, 𝑘𝑧 are the parallel wavenumbers, 𝜙 are the azimuthal angles, and ·̃ indicates the

Fourier transform.

We find that the magnetic energy spectrum shows the formation of a turbulent cascade for all balance

parameters (Fig. 3.1a). The spectra averaged over the time interval 8.8 < 𝑡𝑐/𝐿 < 9.9 (corresponding

to 5.1 < 𝑡𝑣𝐴0/𝐿 < 5.7), i.e. after the turbulent cascade has fully developed but before the plasma’s heating

has diminished the inertial range, show similar shapes for all values of the balance parameter. The inertial

range forms between 𝑘⊥𝜌𝑒 (𝑡) ∼ 0.08 and 0.6 for the most imbalanced case; a slightly shifted inertial range

beginning at 𝑘⊥𝜌𝑒 (𝑡) ∼ 0.15 rather than 𝑘⊥𝜌𝑒 (𝑡) ∼ 0.08 for the simulations with more balanced turbulence

(𝜉 = 1.0 and 0.75) results from the faster heating at these balance parameters. The power-law index in

the inertial range is roughly consistent with −5/3, the classic MHD prediction for strong turbulence [14].

Although the magnetic energy spectrum better matches the 𝑘−2
⊥ scaling characteristic of weak turbulence

in the non-relativistic [131] and relativistic [132, 133] regimes, the turbulence in our simulations is strong.

The steeper than 5/3 spectrum is likely due to a small domain size, as found by Ref. [128]. Identical

balanced simulations with twice the domain size are consistent with a power-law index of −5/3 (dark grey

line in Fig. 3.1a). Accurately measuring the power-law indices of imbalanced turbulence via larger domain

sizes is beyond the scope of the present study. Below the characteristic Larmor radius (𝑘⊥𝜌𝑒 ≳ 1), the

spectrum steepens to another power law that covers a more limited range between 𝑘⊥𝜌𝑒 (𝑡) ∼ 1 and 2 and

is broadly consistent with the formation of a kinetic cascade with a power-law index of −4 for all values of

imbalance [also found in 128], much steeper than in the inertial range. Again, however, providing more exact

values to test against the predictions and measurements in Ref. [134] or Ref. [128] would require larger,

better-resolved simulation domains. Numerical noise dominates at scales smaller than 𝑘⊥𝜌𝑒 (𝑡) ∼ 2.

Although determining the precise dependence of the inertial range’s slope on balance parameter

would require a larger inertial range, there are hints that the slope depends on 𝜉. When the magnetic

energy spectrum is compensated by the scaling 𝑘−2
⊥ , the simulation with balanced turbulence (𝜉 = 1.0) has
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a downward-sloping spectrum, whereas the simulation of turbulence with 𝜉 = 0 has a slightly positive slope

(Fig. 3.1b). However, this steepening is most likely due to increased damping. The balanced simulations heat

up faster (as discussed in Section 3.3.2), resulting in smaller values of 𝐿/𝜌𝑒 than the imbalanced simulations.

Due to the small domain sizes, our simulations cannot distinguish differences in slope caused by imbalance

or dissipation.

Because previous MHD predictions for imbalanced turbulence generally discuss the spectra of the

Elsasser fields rather than the magnetic energy spectra, we also plot the Elsasser fields’ spectra for the 𝜉 = 0

case (dash-dot red lines in Fig. 3.1b). The larger-amplitude field appears to have a slightly steeper slope than

the smaller-amplitude field, consistent with previous MHD simulations [19, 28]. However, constraining the

variation in the power-law index is difficult to quantify with such a short inertial range. If the dependence

of the Elsasser fields’ energy spectra on imbalance persists in larger simulations, it could support MHD

predictions that the spectra’s power-law indices depend on imbalance [23, 131].

Further evidence for the formation of a turbulent cascade comes from comparing the evolution of

the energy injected into the simulation and the internal energy of the plasma. Whereas the accumulated

injected energy increases linearly from 𝑡 = 0 onward (Fig. 3.2), the internal energy density does not begin to

increase until about 2.5 𝐿/𝑐, close to one Alfvén-crossing time (see Section 3.3.2.3, Fig. 3.3c). Presumably

the energy injected at the driving scale cascades to smaller scales over the time period 𝑡 = 0 − 2.5 𝐿/𝑐 until

it reaches the characteristic Larmor radius and dissipates into internal energy—i.e. the turbulent cascade

forms in the first couple of light-crossing times. There appears to be an increase in the cascade formation

time for decreasing balance parameter (see Section 3.3.2.3).

3.3.2 Partition of the Injected Energy

3.3.2.1 Framework for the Energy Partition

Because we drive the plasma in each simulation without an energy sink, the overall energy of each case

increases in time. By adding a statistically-constant amount of energy at each timestep, the overall amount

of injected energy increases linearly in time (Fig. 3.2). The amplitude of the driven waves by definition
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Figure 3.2: The amount of energy injected into a simulation depends on its balance parameter. The
simulations of more balanced turbulence (purple and blue) have more injected energy than the simulations
of less balanced turbulence (yellow and green). Red ×’s indicate the “equivalent" times where the same
amount of energy has been injected for each simulation (see Table 3.3), which all have 𝐿/2𝜋𝜌𝑒0 = 81.5.
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Figure 3.3: Energy partition into electromagnetic, turbulent kinetic, internal, and net flow energy depends on
balance parameter. Left column: each type of energy density evolved over time, normalized to the constant
value of the initial magnetic energy density 𝐵2

0/8𝜋. The turbulent electromagnetic (a) and kinetic (b) energy
densities reach a constant value whereas the internal (c) and net flow (d) energy densities increase over time.
Right column: the change in each type of energy density evolved over time, normalized to the total amount
of injected energy density Einj(𝑡). Summing over the four panels on the right for each simulation adds to 1.
Turbulent electromagnetic (e) and kinetic (f) energy efficiencies decay as ∝ 𝑡−1, whereas internal (g) and
net flow (h) energy efficiencies saturate at a constant fraction of the injected energy. Note that the net flow
energy (h) has a different vertical axis. Colors and markers indicate balance parameter. These simulations
all have 𝐿/2𝜋𝜌𝑒0 = 81.5.



43

depends on the balance parameter 𝜉 (Equation 3.8), and so the amount of energy injected also depends on 𝜉.

The increase in injected energy is twice as fast for the balanced case 𝜉 = 1.0 as for the most imbalanced

case 𝜉 = 0.0 (Fig. 3.2). This doubling of injected energy occurs because twice as many modes are driven in

the balanced as in the most imbalanced case.

The injected energy converts into various types of plasma energy, each of which will be discussed

in the following subsections. Fig. 3.3 shows temporal evolution of each quantity’s energy density (left)

and energy efficiency (right). The large-scale injected energy cascades to smaller scales in the form of

bulk kinetic and electromagnetic energy until it is dissipated into internal energy, thereby implying that the

internal energy should increase linearly in time during the statistical steady state—and it does, as shown in

Fig. 3.3c. As stationary conduits for the turbulent Alfvénic cascade, we expect both the turbulent kinetic

and magnetic perturbations to fluctuate around steady-state values rather than continually increasing over

time. Simulations support this idea of statistically steady-state values: the turbulent electromagnetic and

kinetic energies saturate to their mean values around 7.5 𝐿/𝑐 and fluctuate thereafter around these values

(Fig. 3.3a, b). These values’ dependence on balance parameter will be explored in Section 3.3.2.2, while the

dependence of the internal energy density’s slope on balance parameter is discussed in Section 3.3.2.3. The

final component of plasma energy, the kinetic energy of net motion through the simulation domain, does not

have an easily characterized evolution (Fig. 3.3d); its dependence on balance parameter will be discussed in

Section 3.3.3.2.

Normalizing the change in each type of energy to the injected energy (the energy efficiency; Equa-

tion 3.16) allows direct comparison between turbulence with different balance parameters while accounting

for the injected energy’s dependence on 𝜉 (Fig. 3.4). By the end of the simulations at 𝑡 = 20 𝐿/𝑐, the

percentage of injected energy that dissipates into internal energy depends on balance parameter, varying

from ≈ 80% for the most imbalanced case (𝜉 = 0) to ≈ 90% for the balanced (𝜉 = 1) case. For all balance

parameters, this percentage increases over time as the majority of injected energy converts into internal

energy. In contrast, the fractions of injected energy that convert into turbulent electromagnetic and kinetic

energy (i.e. the electromagnetic and kinetic energy efficiencies) decrease in time as 1/𝑡, plotted as dashed

black lines in Fig. 3.4, with similar magnitudes for the balanced (𝜉 = 1.0) and most imbalanced (𝜉 = 0.0)
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case. These fits are motivated by the discussion in the previous paragraph; when normalized to the injected

energy ∝ 𝑡, these two types of turbulent energy can be fit to the function 𝐴 + 𝐵/𝑡. The fraction of injected

energy that converts into net flow energy differs by an order of magnitude between the balanced case (1%)

and the imbalanced case (10%). In both cases, however, the net flow efficiency remains relatively constant

in time, indicating that a constant fraction of injected energy converts into net flow energy, with a clear

dependence on 𝜉 (also seen in Fig. 3.3h).

With a broad framework for the temporal evolution of internal, turbulent kinetic, and magnetic energy

in hand, the following sections will explore each type of energy’s dependence on balance parameter using

various averages and highlighting statistical variation with the random seed study.

3.3.2.2 Electromagnetic and Turbulent Kinetic Energy

After an initial transient period, the turbulent electromagnetic and kinetic energies become statistically

constant in time (Fig. 3.3a, b). The turbulent electromagnetic energy increases until it contains approximately

the same amount of energy as in the background field (Fig. 3.3a). As 𝜉 increases from 0 to 1, ⟨ΔEmag⟩

increases by about 50% for turbulence in the largest simulation domain sizes (Fig. 3.5a). In contrast, the

electric energy density decreases from 10 - 25% of 𝐵2
0/8𝜋 for 𝜉 = 0.0 to 10 - 17% for 𝜉 = 1.0 (not

shown). This decrease in electric energy density could be due to the decrease in the plasma velocity, which is

approximately the Alfvén speed: 𝐸 ∼ (𝛿𝑣/𝑐) ×𝐵 ∼ (𝑣𝐴/𝑐)𝐵0. Faster heating in the balanced turbulence case

leads to smaller 𝑣𝐴 and hence smaller electric field. The simulations show that the time-averaged turbulent

kinetic energy density ⟨ΔEturb⟩ also depends on 𝜉, increasing from 75% of the background magnetic energy

for the most imbalanced case (𝜉 = 0.0) to about 125% for balanced turbulence with 𝜉 = 1.0 (Fig. 3.5b). The

smaller values of ⟨ΔEmag⟩ and ⟨ΔEturb⟩ in the imbalanced case result from the injection of less energy in

this case (Fig. 3.2). The fraction of injected energy that converts into turbulent and magnetic energy (i.e. the

corresponding energy efficiencies) at any given time is almost independent of balance parameter (Fig. 3.3e,

f), with slightly higher ⟨ΔEEM⟩/⟨Einj⟩ for 𝜉 = 0 compared to 𝜉 = 1.

To test whether the turbulence is Alfvénic, we use the “Alfvén ratio" 𝑟𝐴 ≡ ⟨ΔEturb⟩/⟨ΔEmag⟩. The

Alfvén ratio is related to the residual energy 𝐸𝑟 (defined as the difference between the turbulent kinetic
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Figure 3.5: Trends of the turbulent magnetic and kinetic energy densities with balance parameter. Quantities
are time-averaged from 10 < 𝑡𝑐/𝐿 < 20. The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5 (filled markers)
shows a linear trend with balance parameter for the turbulent magnetic (a) and kinetic (b) energy densities,
respectively. The statistical deviation is shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). The
dashed lines show linear fits. Colors and markers are the same as in Fig. 3.3.
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and turbulent magnetic energies) via 𝐸𝑟 = (𝑟𝐴 − 1)/(𝑟𝐴 + 1). Ideal MHD predicts that the time- and

volume-averaged kinetic and perturbed magnetic energies in an Alfvén wave (and thus perfectly imbalanced

turbulence) should be in equipartition: 𝑟𝐴 = 1. We might expect the same Alfvén ratio for turbulence

(both balanced and imbalanced) comprising many Alfvén waves — though due to an increase in nonlinear

interactions, physical plasmas such as the solar wind often have an excess of magnetic energy such that 𝑟𝐴 ≈

0.7 [43, 45]; see Ref. [135], Ref. [136], and Ref. [137] for MHD models of this excess. Our simulations

show that both balanced and imbalanced turbulence are in equipartition to within error bars (Table 3.2). The

standard deviations of mean values for ⟨ΔEturb⟩ and ⟨ΔEmag⟩ in Table 3.2 were calculated for the 𝐿/2𝜋𝜌𝑒0 =

81.5 and 𝐿/2𝜋𝜌𝑒0 = 40.7 simulations (nine values for each balance parameter) and summed in quadrature.

These error bars suggest that the large-scale ratio of turbulent kinetic to magnetic energies is independent of 𝜉.

However, the residual energy may have a scale-dependent power-law spectrum with significant dependence

on imbalance, which we do not address here. The solar wind shows a clear dependence of the residual

energy spectrum’s slope on imbalance, with a value of −2 for balanced turbulence and closer to −1.8 for

totally imbalanced turbulence [43]. The dependence of the residual energy spectrum’s slope on imbalance

is a major outstanding puzzle that has not been successfully addressed by any phenomenological model of

imbalanced turbulence thus far.

Our finding of approximate equipartition indicates that the turbulence is predominantly Alfvénic. In

addition to Alfvén waves, slow and fast compressive modes also contribute to the turbulence. The fast

modes, introduced by the OLA driving [92] or nonlinear relativistic wave conversion [138], and the slow

modes, passively mixed by the turbulence [139], lead to total density fluctuations on the order of 20-30% of

the background density in our simulations (not shown). Though the presence of fast and slow modes could

affect the Alfvén ratio, characterizing their contribution is beyond the scope of this study.

3.3.2.3 Internal Energy

The increase in internal energy dominates the plasma energy budget at late times. Though the

initial internal energy starts out at about three times the initial magnetic energy for all balance parameters,

the plasmas with balanced turbulence heat up almost twice as quickly as the plasmas with imbalanced
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Table 3.2: The turbulence in all simulations of balanced and imbalanced turbulence is approximately
Alfvénic. The Alfvén ratio 𝑟𝐴 = ⟨ΔEturb⟩/⟨ΔEmag⟩ is approximately 1 for the largest simulations (𝐿/2𝜋𝜌𝑒0 =

81.5) for all values of the balance parameter 𝜉. Standard deviations are calculated from the statistical seed
studies at each balance parameter.

𝜉 ⟨ΔEturb⟩/⟨ΔEmag⟩
1.0 1.1 ± 0.3
0.75 1.2 ± 0.2
0.5 1.0 ± 0.1
0.25 1.0 ± 0.1
0.0 0.9 ± 0.1

turbulence (Fig. 3.3c). At late times, about 80% of the injected energy is converted into internal energy in

the imbalanced case (𝜉 = 0), slightly lower than the corresponding value of closer to 90% for the balanced

case (Fig. 3.3g).

Because the plasma’s internal energy increases linearly after an initial transient, we characterize its

heating rate (i.e. slope) through the dimensionless “injection efficiency" parameter 𝜂inj. We define this

order-unity coefficient as the ratio of the plasma heating rate ⟨ ¤Eint⟩(𝑡) to a “reference" heating rate ⟨ ¤Eref⟩.

We define ⟨ ¤Eref⟩ by dividing the turbulent magnetic energy density, 𝛿𝐵2
rms/8𝜋, by a characteristic non-

linear cascade time at the outer scale 𝐿/𝛿𝑣rms ∼ 𝐿/(𝑣𝐴0𝛿𝐵rms/𝐵0), assuming strong Alfvénic turbulence

and 𝑣𝐴0/𝑐 ≪ 1. This formulation gives us an operational definition of the injection efficiency in terms of

quantities that can be directly measured in our simulations at any moment of time:

𝜂inj ≡
⟨ ¤Eint⟩
⟨ ¤Eref⟩

=
8𝜋𝐵0𝐿⟨ ¤Eint⟩
𝛿𝐵3

rms𝑣𝐴0
. (3.18)

The injection efficiency quantifies how efficiently turbulent magnetic energy cascades to small scales and

dissipates. The heating rate of the plasma is extracted by fitting the slope of the internal energy in the

interval 5 < 𝑡𝑐/𝐿 < 20 and converting to the injection efficiency via Equation 3.18, taking the value of 𝛿𝐵rms

as the time-average over the same time period. The statistical mean value of the injection efficiency varies

from about 1.0 for the most imbalanced case (𝜉 = 0.0) to about 1.5 for the balanced case (𝜉 = 1.0) as seen

in Fig. 3.6a, with a statistical standard deviation on the order of 0.2.

As discussed in Section 3.3.2.2, the magnitude of the magnetic field fluctuations depends on balance

parameter, which in principle may influence energy dissipation and the injection efficiency. To verify that
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the trend in the injection efficiency 𝜂inj with balance parameter 𝜉 is not due to the variation of the amplitude

of magnetic energy perturbations 𝛿𝐵2
rms/𝐵2

0 with 𝜉, we ran a simulation of imbalanced turbulence with 𝜉 = 0

and a driving amplitude
√

2 times its canonical value. The magnetic field fluctuation level 𝛿𝐵2
rms changes

from 0.8𝐵2
0 for the unadjusted amplitude case to 1.2𝐵2

0 for the increased amplitude case, consistent with the

unadjusted amplitude of the balanced case with the same random seed. The injection efficiency, however,

increases to 1.1 with the increased amplitude, compared to 0.9 for the unadjusted 𝜉 = 0 case and 1.4 for the

unadjusted 𝜉 = 1 case with the same random seed. Thus, two simulations with the same level of magnetic

field perturbations but different balance parameters experience significantly different injection efficiencies,

suggesting that the injection efficiency has an inherent dependence on balance parameter rather than 𝛿𝐵rms.

This result suggests that the cascade time depends on balance parameter.

To explore the possibility that the cascade time 𝜏casc depends on balance parameter, we define

𝜏casc ≡
⟨ΔEEM + Eturb⟩

⟨ ¤Eint⟩
. (3.19)

The cascade time is normalized to the global Alfvén time 𝐿/𝑣𝐴(𝑡) and then time-averaged over 10 < 𝑡𝑐/𝐿 <

20 (i.e. 5.8 < 𝑡𝑣𝐴0/𝐿 < 11.6). We expect the cascade time to be on the order of an Alfvén time for

an Alfvénic cascade, and for balanced turbulence we indeed find that the cascade time varies statistically

between 0.8 and 1.2 𝐿/𝑣𝐴(𝑡) (Fig. 3.6b). However, the cascade time increases to about 2.2 𝐿/𝑣𝐴(𝑡) on

average for the imbalanced case 𝜉 = 0. The lack of overlap between the cascade times of imbalanced and

balanced turbulence suggest that the difference is statistically significant, rather than a fluke of random seeds.

A longer cascade time for more imbalanced turbulence is consistent with Ref. [21]’s suggestion that the

dominant waves are less strongly scattered in the imbalanced case.

3.3.3 Net Flow Energy and Momentum Transfer

As a component of the energy not present in balanced turbulence, we expect the kinetic energy in

the net motion of the plasma through the simulation domain to depend on the balance parameter. In the

balanced case, the statistically-symmetric (although not necessarily momentum-conserving) driving should

on average lead to no net motion. In contrast, because imbalanced driving breaks the symmetry along the
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Figure 3.6: The injection efficiency 𝜂inj (a; Equation 3.18) and cascade time 𝜏casc (b; Equation 3.19) depend
on balance parameter. The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5 is shown with filled markers and the
statistical deviation is shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). Colors and markers are
the same as in Fig. 3.3.
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background magnetic field, we may expect a nonzero net flow energy for 𝜉 < 1.0 if the asymmetric wave

momentum converts into plasma momentum. In a gravitational potential, the net flow that results from

efficient wave-plasma momentum coupling could form a wind or outflow. In this section, we first propose a

simple model for the properties of such a net flow (Section 3.3.3.1) and then compare to numerical results

(Section 3.3.3.2).

3.3.3.1 Analytic Framework for Momentum Transfer

A net flow could result from the efficient transfer of injected wave momentum into plasma momentum.

In this section, we propose that the net flow velocity should be constant and provide a scaling for its magnitude.

We can write the net flow energy density as

Enet(𝑡) = (Γnet(𝑡) − 1) ⟨𝜌⟩(𝑡)𝑐2 ≈
⟨Eint⟩(𝑡)𝑣2

net(𝑡)
2𝑐2 , (3.20)

where the last expression holds for 𝑣net(𝑡) ≪ 𝑐. We have defined the net Lorentz factor Γnet(𝑡) = (1 −

𝑣2
net/𝑐2)−1/2.

Analogously, the internal energy density relates to the net plasma momentum density as

⟨Pz,tot⟩(𝑡) = Γnet(𝑡)⟨𝜌⟩(𝑡)𝑣net(𝑡) ≈
⟨Eint⟩(𝑡)
𝑐2 𝑣net(𝑡), (3.21)

where again 𝑣net ≪ 𝑐 in the last expression. In simulations, both Enet(𝑡) and ⟨Pz,tot⟩(𝑡) increase linearly in

time (Section 3.3.3.2). Because these two quantities depend on different powers of 𝑣net, we deduce that the

net velocity should be relatively constant in time. We test this prediction in the next section.

We can understand the net flow as a relativistic effect. As a limiting case, assume that the maximal

asymmetric Poynting flux for a single Alfvén wave |⟨𝑆𝑧⟩1−wave | (Equation 3.10) is injected into a plasma. If

a fraction 𝜖 of the momentum density |⟨𝑆𝑧⟩1−wave |/𝑐2 in this electromagnetic wave converts into the plasma

momentum density ⟨Pz,tot⟩, we have

⟨Pz,tot⟩ = 𝜖
⟨𝛿𝐵2⟩𝑣𝐴0

4𝜋𝑐2 = Γnet⟨𝜌⟩𝑣net, (3.22)

where the last equality follows from Equation 3.21. By writing the relativistic mass density ⟨𝜌⟩ = ⟨𝛾⟩𝑚𝑒𝑛0,
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we find

Γnet𝑣net =
⟨𝛿𝐵2⟩

4𝜋⟨𝜌⟩𝑐2 𝜖𝑣𝐴0 =
4
3
𝜖 𝛿𝜎 𝑣𝐴0 (3.23)

𝑣net = 𝑐𝜖

√√
16 𝛿𝜎2 𝑣2

𝐴0/𝑐2

9 + 16 𝛿𝜎2 𝑣2
𝐴0/𝑐2

→ 4
3
𝜖 𝛿𝜎 𝑣𝐴0 (3.24)

where we have defined 𝛿𝜎 = ⟨𝛿𝐵2⟩/(4𝜋ℎ) and the last expression again holds for 𝑣net ≪ 𝑐. From

Equation 3.24, we see that the net flow’s velocity approaches 0 as the magnetization goes to 0. Though the

efficiency 𝜖 of converting electromagnetic momentum into plasma momentum can never be greater than 1,

it could change with 𝜎.

3.3.3.2 Numerical Results for Momentum Transfer

In this section, we test the assumptions behind the above calculations and demonstrate that our

simulations do indeed find a net flow in line with the above framework.

Our simulations find that about 8% of the injected energy converts into net flow energy even in the

most imbalanced case (𝜉 = 0.0), a fraction that becomes comparable to the turbulent electromagnetic or

kinetic energy efficiencies after the latter two have decayed by a factor of two or more, around 15 𝐿/𝑐

(Fig. 3.4). Since the net flow efficiency fluctuates strongly about a mean value in time, we compare different

balance parameters by averaging over 10 < 𝑡𝑐/𝐿 < 20. The result, shown in Fig. 3.7, reveals that the net

flow efficiency increases with decreasing 𝜉, as expected. The mean over an ensemble of identical simulations

with 𝜉 = 0 and varying random seeds is about 0.06, approximately three times as large as that for the balanced

turbulence (about 0.02). The statistical spread in the balanced case is on the order of 0.01, and about 0.03

for the imbalanced case. Because energy is a strictly positive quantity and a limited number of modes were

driven, even the simulations of balanced turbulence (𝜉 = 1.0) have a non-zero (albeit small) net flow energy

due to short periods of net motion. Notably, there are three prominent outliers in Fig. 3.7 in the magnitude of

the net flow efficiency in simulations with balance parameters 𝜉 = 0.5, 0.75, and 1.0. Each of these outlying

simulations was initialized with the same random seed, suggesting that the particular random phases of the

driven modes resulted in non-zero mean velocity later in the simulations’ evolutions. The presence of these

outliers demonstrates the need for a suite of random seeds to tease out statistically-robust trends.
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Figure 3.7: The net flow energy efficiency decreases with increasing balance parameter. The plotted values
are volume-averaged and time-averaged from 10 < 𝑡𝑐/𝐿 < 20. The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5 is
shown with filled markers and the statistical deviation is shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled
markers). Note that the outliers for 𝜉 = 0.5, 0.75, and 1.0 with net flow energy efficiencies a factor of 2
higher than the rest of the seed study were run with the same random seed. Colors and markers are the same
as in Fig. 3.3.
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Figure 3.8: Even turbulence that is balanced as a whole has spatial and temporal pockets of locally imbalanced
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Figure 3.9: The average parallel Poynting flux is approximately constant in time, whereas the 𝑧−momentum of
the plasma increases linearly in time. a) The time evolution of the volume-averaged Poynting flux (𝑐/4𝜋)⟨E×
B⟩ in the 𝑧−direction, normalized to (𝑐/4𝜋)𝐵2

0, shows fluctuations around some mean value; time-averaging
the curves over 10 < 𝑡𝑐/𝐿 < 20 shows a quadratic dependence on balance parameter (b). The time evolution
(c) of the parallel plasma momentum shows an increase in time. The ratio ⟨P𝑧,tot𝑐

2⟩/(⟨𝑆𝑧⟩ 𝑡𝑣𝐴0/𝐿), shown
in (d), is of order unity for all values of balance parameter. Black dash-dot lines show a quadratic fit; the
dotted line is a quadratic fit without the outlier seed. Dashed black lines indicate zero. Colors and markers
are the same as in Fig. 3.3.
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Figure 3.10: The parallel electromagnetic momentum generates and maintains the parallel momentum of
the plasma. In these plots, each point corresponds to the instantaneous values of the volume-averaged
plasma momentum along the background magnetic field and the volume-averaged parallel electromagnetic
momentum at a given simulation time. Three periods of time are shown with linear fits of slopes 2.2, 3.9, and
7.4 for (a) 5 < 𝑡𝑐/𝐿 < 10, (b) 10 < 𝑡𝑐/𝐿 < 15, and (c) 15 < 𝑡𝑐/𝐿 < 20, respectively. Here, 𝑔0 = 𝐵2

0/(4𝜋𝑐)
is a typical value of momentum density. Colors and markers are the same as in Fig. 3.3.
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Figure 3.11: The net plasma velocity along the background magnetic field depends on balance parameter.
a) The time evolution of the volume-averaged velocity 𝑣net (Equation 3.21) shows values that fluctuate in
time around some mean value that depends on 𝜉; time-averaging the curves over 10 < 𝑡𝑐/𝐿 < 20 shows a
dependence on balance parameter (b). The largest domain size 𝐿/2𝜋𝜌𝑒0 = 81.5 is shown with filled markers
and the statistical deviation is shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 seed study (unfilled markers). Colors and
markers are the same as in Fig. 3.3. Black dashed lines show zero.
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Although the net flow energy density demonstrates the importance of the net flow in the overall

energy budget, it does not contain information about the direction of the plasma’s net motion. To address

this issue, we now examine momentum rather than energy. First, we discuss the injected electromagnetic

momentum and look at the Poynting flux S = (𝑐/4𝜋)E ×B. For balance parameters 𝜉 < 1.0, we expect

the driven waves’ Poynting flux to be nonzero along the background magnetic field (“parallel Poynting

flux"; 𝑆𝑧). The spatial distribution of the parallel Poynting flux, plotted in Fig. 3.8, is highly nonuniform.

Similar to MHD turbulence [29], our balanced simulation has local patches of strong Poynting flux and thus

high imbalance, highlighting the fundamental connection between balanced and imbalanced turbulence at

small scales. The total, volume-averaged parallel Poynting flux ⟨𝑆𝑧⟩ is statistically constant in time and,

for the balanced case (𝜉 = 1.0), oscillates around zero (Fig. 3.9a). After time-averaging over the period

from 10 < 𝑡𝑐/𝐿 < 20, the parallel Poynting flux is clearly positive for imbalanced turbulence and consistent

with zero for balanced turbulence (Fig. 3.9b). The value ⟨𝑆𝑧⟩ ≈ 0.2 (𝑐𝐵2
0/4𝜋) at 𝜉 = 0.0 is about 30%

of the limiting value (𝛿𝐵/𝐵0)2𝑣𝐴/𝑐 (𝑐𝐵2
0/4𝜋) ≈ 𝑣𝐴/𝑐 (𝑐𝐵2

0/4𝜋) ≈ 0.58 (𝑐𝐵2
0/4𝜋) expected for a single

Alfvén wave (Equation 3.10). The decrease in the Poynting flux with increasing balance parameter agrees

well with the quadratic fit predicted by Equation 3.11, as shown by the dotted and dash-dot black lines in

Fig. 3.9b, though we do not rule out a linear dependence. The same outliers discussed for the net flow

efficiency are present in the parallel Poynting flux. The time- and volume-averaged Poynting flux in the 𝑥−

and 𝑦−directions are much smaller than the parallel Poynting flux: within 0.1 (𝑐 𝐵2
0/4𝜋) of zero for all

balance parameters (not shown), indicating that the net electromagnetic momentum is primarily along the

background magnetic field.

The injected Poynting flux imparts net momentum to the plasma. In agreement with the interpretation

in Section 3.3.2.1, the volume-averaged parallel momentum ⟨P𝑧,tot⟩ of the plasma increases approximately

linearly over time (Fig. 3.9c). The ratio ⟨P𝑧,tot𝑐
2⟩/(⟨𝑆𝑧⟩ 𝑡𝑣𝐴0/𝐿), shown in Fig. 3.9d, is approximately

constant in time and fluctuates around values of order unity for any given balance parameter. In this figure,

the parallel Poynting flux has been converted to an electromagnetic momentum density ⟨𝑆𝑧⟩/𝑐2, and the

momentum densities of both the plasma and the electromagnetic waves are normalized to 𝑔0 ≡ 𝐵2
0/(4𝜋𝑐),

allowing for direct comparison between the two quantities. The ratio of the volume averages has been
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smoothed with a Hanning window to remove arbitrarily large values due to a small Poynting flux. To

further illustrate the relationship between ⟨𝑆𝑧⟩ and ⟨P𝑧,tot⟩, Fig. 3.10 shows their values at each time

snapshot (given by individual dots) for each balance parameter (shown via marker and color). In general, the

plasma momentum dominates over the electromagnetic momentum, with a time-dependent ratio given by

the slope of the linear fit. The positive ratio shows that a positive volume-averaged parallel electromagnetic

momentum corresponds to a positive parallel plasma momentum, as expected if Poynting flux converts to

plasma momentum. The balanced turbulence’s electromagnetic momentum and plasma momentum span

both positive and negative values; for more imbalanced turbulence, the distribution shifts up and right,

demonstrating that the asymmetric driving of electromagnetic momentum results in asymmetric net motion

of the plasma in the 𝑧-direction.

Using Equation 3.21 to solve for 𝑣net shows that 𝑣net fluctuates around a mean value dependent on

balance parameter (Fig. 3.11a). The net velocity of the plasma with balanced turbulence oscillates around

zero, never reaching more than 0.2𝑐. The plasmas with the most imbalanced turbulence can reach net

velocities up to 0.5𝑐. Averaging over 10 < 𝑡𝑐/𝐿 < 20 shows a clear dependence of the net velocity on

balance parameter (Fig. 3.11b). As expected, plasmas with balanced turbulence experience a time-averaged

net velocity near zero, though the finite simulation duration means that temporary movements parallel or

anti-parallel to the background magnetic field are not completely averaged out. Equation 3.24 predicts

a net velocity of 0.4𝑐 for the most imbalanced turbulence (plugging in four waves with 𝛿𝐵 ∼ 𝐵0, and

setting 𝜎0 = 0.5, 𝑣𝐴0 = 0.58𝑐 and 𝜖 = 1), remarkably close to the values found in Figure 3.11b.

Previous studies of imbalanced turbulence appear to exclude the possibility of generating net plasma

motion along the background magnetic field, either through the assumption of reduced MHD, gyrokinetics,

or force-free description [27, 28, 124]. As such, this work presents, to our knowledge, the first numerical

demonstration and investigation of net flow due to imbalanced turbulence. Such a large net motion of the

plasma may have implications for driving accretion disk winds, particularly if the wind comprises mostly

nonthermal particles.
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Figure 3.12: Particle acceleration occurs for all values of balance parameter. a) The distribution function of
the most imbalanced case (𝜉 = 0.0) becomes shallower in time from an initial Maxwell-Jüttner distribution
(purple) to a Maxwell-Jüttner distribution plus a hard power-law component at later times (yellow). b)
Spectra taken at the same time 𝑡 = 8.0 𝐿/𝑐 for different balance parameters show different peak energies but
similar power-law components. The dashed black line shows a Maxwell-Jüttner fit to the 𝜉 = 0.0 case. The
vertical green dash-dot line shows the mean Lorentz factor ⟨𝛾⟩ extracted from this fit. The vertical green
dotted line shows the maximum energy 𝛾max. The dash-dot black line in panel (a) shows the power law 𝛾−2.7,
while the dotted black line in panel (b) shows 𝛾−3. Colors are the same as in Fig. 3.3.
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Figure 3.13: At equivalent times, the power laws of imbalanced turbulence are slightly flatter/harder than
balanced turbulence. a) The particle energy spectra at equivalent times (see Table 3.3) show a similar mean
energy and similar power laws until 𝛾 ∼ 104. The dashed black line shows a Maxwell-Jüttner fit to the 𝜉 = 0.0
case. b) Compensating by 𝛾3 reveals that more imbalanced turbulence (𝜉 = 0.0, 0.25, and 0.5) has flatter
power laws than the more balanced turbulence with 𝜉 = 0.75 or 1.0. The vertical green dash-dot line shows
the mean Lorentz factor ⟨𝛾⟩ extracted from the Maxwell-Jüttner fit. The vertical green dotted line shows the
maximum energy 𝛾max. The black dash-dot line in panel (b) shows the spectrum compensated to 𝛾3, while
the dotted black line shows the power law 𝛾−3+3 (a constant). Colors are the same as in Fig. 3.3.
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3.3.4 Nonthermal Particle Acceleration

Nonthermal particle acceleration can explain high-energy flares and power laws seen in spectra of

various astrophysical systems. Studying NTPA self-consistently requires PIC simulations. Recent PIC

simulations of turbulence [86, 115, 116, 128] have successfully produced nonthermal particle populations

that result in power-law spectra. Similar results have been produced in PIC simulations of kink-unstable

jets [140, 141] and the magnetorotational instability in accretion discs [142–144], where turbulence may

play a fundamental role in the particle acceleration. Because power-law spectra are observed in systems with

asymmetric energy injection, it is important to understand how imbalance affects particle acceleration.

We find that imbalanced turbulence can accelerate a significant portion of the plasma’s particles to

suprathermal energies (Fig. 3.12), much like balanced turbulence at similar magnetizations 𝜎 ∼ 1. Even

the most imbalanced case 𝜉 = 0.0 shows the development of a high-energy power-law tail, which hardens

and reaches an asymptotic slope after about 12 𝐿/𝑐 (Fig. 3.12a). At late times 𝑡 ≳ 12 𝐿/𝑐, the simulation

domain’s boundary conditions limit the maximum attainable Lorentz factor to 𝛾max = 𝐿𝑒𝐵0/𝑚𝑒𝑐2, resulting

in the “pile-up" of high-energy particles at 𝛾max, followed by a sharp cutoff rather than the continuation of

the power law to even higher energies [114]. Visually, the nonthermal distribution matches the power-law

scaling 𝑓 (𝛾) ∝ 𝛾−2.7 between ⟨𝛾⟩ and 𝛾max, shown by the dash-dot line in Fig. 3.12a. Comparing turbulence

with different balance parameters, we see that more balanced turbulence heats the plasma more quickly

and forms a power-law spectrum faster than imbalanced turbulence (Fig. 3.12b). For particle spectra taken

at 𝑡 = 8.0 𝐿/𝑐, the simulation of balanced turbulence 𝜉 = 1.0 has already heated to a peak Lorentz factor of

about 700 and is experiencing pile-up, as shown by the spectrum’s break around 𝛾 ∼ 5 × 104. In contrast,

the most imbalanced case 𝜉 = 0.0 still has a peak Lorentz factor of around 400 and its power-law index has

not yet reached an asymptotic value (Fig. 3.12b).

Because of the different rates at which energy is injected into simulations with different balance

parameters, it may be more meaningful to compare particle spectra not at the same fixed absolute time,

but rather at “equivalent times" when a fixed amount of energy has been injected. For definiteness, we

take this time to coincide with the end (𝑡 = 20 𝐿/𝑐) of the simulation for the most imbalanced case, 𝜉 = 0,
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Table 3.3: Table of “equivalent" times 𝑡eq in 𝐿/𝑐 where the same amount of energy density 10.3 𝐵2
0/8𝜋 has

been injected. Values of the nonthermal particle and energy fraction at 𝑡eq, shown in the second and third
rows, are discussed in Section 3.3.4. Equivalent times are labelled in Fig. 3.2 as red ×’s.

𝜉 0.0 0.25 0.5 0.75 1.0
𝑡eq 20.0 17.4 13.1 9.4 8.0

𝑁nonthermal/𝑁total 0.20 0.19 0.20 0.21 0.21
⟨Enonthermal⟩/⟨Epl⟩ 0.54 0.53 0.55 0.54 0.54

corresponding to an injected energy of 10.3 𝐵2
0/8𝜋. The equivalent times for the simulations vary from 8 𝐿/𝑐

for the balanced case 𝜉 = 1.0 to 20 𝐿/𝑐 for the most imbalanced case 𝜉 = 0.0 (Table 3.3). When

compared at these equivalent times, particle spectra for different 𝜉 essentially collapse to a single universal

curve (Fig. 3.13a). In particular, the peak Lorentz factors and the power-law tails up to 𝛾 ≈ 104 become

nearly indistinguishable. This similarity suggests that NTPA operates similarly in balanced and imbalanced

turbulence when considered on appropriate timescales. In particular, the nonthermal segments of the

distribution function match the power-law scaling 𝑓 (𝛾) ∝ 𝛾−3 (dotted line) for all values of balance parameter,

suggesting that imbalanced and balanced turbulence accelerate particles with the same asymptotic spectra.

Finer differences appear at higher energies when the spectra are compensated by 𝛾3; whereas the balanced

cases 𝜉 = 1.0 and 0.75 closely follow this 𝛾−3 scaling in the interval 200 ≲ 𝛾 ≲ 4×104, the more imbalanced

cases are never quite flat and appear to more closely follow the scaling 𝛾−2.7 (dash-dot line), as shown in

Fig. 3.13b. This power-law index of −2.7 matches the power-law index of balanced turbulence particle

spectra in smaller box sizes [114], suggesting that pile-up contaminates the spectra. Because the equivalent

times for the simulations of imbalanced turbulence are much longer, the high-energy pile-up could be due

to a small sub-population of particles whose stochastic scattering events pushed them to higher energies.

Larger simulation domains are needed to determine what influence the high-energy particle pile-up could

have on the particle spectra at lower energies.

The partition of the plasma particles’ energy ⟨Epl⟩(𝑡) into thermal and nonthermal components further

demonstrates that nonthermal particles are energetically important in the system. The fraction of nonthermal

particles is calculated by subtracting the Maxwell-Jüttner distribution that best fits the total, box-averaged

particle distribution up to the peak Lorentz factor from the total distribution function. This fraction reaches
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20% of the total number of particles at 20 𝐿/𝑐 for the 𝜉 = 0 case (Fig. 3.14a). The balanced case’s

fraction of nonthermal particles is larger, reaching 25% of the total number of particles by the same time.

At 20 𝐿/𝑐, the energy in these particles comprises 55% of the total plasma energy in the imbalanced case,

as compared to 65% for the balanced case (Fig. 3.14b). At equivalent times, the nonthermal fractions

of particles and energy do not vary more than 2% across balance parameters (Table 3.3), suggesting that

particle acceleration by imbalanced turbulence is just as efficient as acceleration by balanced turbulence.

For comparison, the fractions for the balanced simulations are slightly smaller than those found for similar

simulations of electron-ion plasmas in the relativistically-hot limit [89].

Though highly idealized, quasi-linear theory can explain many aspects of turbulent NTPA. In particular,

the treatment of NTPA as a diffusion in momentum space [126, 127] has been justified by measurements of

the momentum diffusion coefficient in PIC simulations of balanced turbulence [116, 145] and improved by

considering resonance broadening [146]. The original models suggest that the diffusion coefficient scales

as 1 − 𝐻̃2
𝑐, which is supported by test-particle simulations of imbalanced MHD turbulence when parallel

acceleration is negligible [147]. Our simulations show that imbalance increases the acceleration timescale

for NTPA, which is broadly consistent with a decrease in the diffusion coefficient. It is not clear why this

increased acceleration timescale does not affect the power-law index.

3.4 Conclusions

In this study we investigate, for the first time, imbalanced kinetic turbulence in a collisionless,

magnetized, relativistically hot plasma. Using 3D PIC simulations, we simulate a pair plasma driven by

large-scale external currents, creating Alfvén waves propagating parallel and anti-parallel to the background

magnetic field with different amplitudes. We demonstrate the formation of a turbulent cascade with a similar

power-law index for all values of the balance parameter covered by the simulations (Section 3.3.1). We find

that the energy injected into the plasma by the external driving is not only converted into internal energy

through small-scale dissipative processes (Section 3.3.2), but also drives net bulk motion of the plasma

(Section 3.3.3). This efficient transfer of momentum to the plasma appears as a relativistic effect, resulting

in a net plasma velocity Γnet𝑣net ∼ 𝛿𝜎 𝑣𝐴0. We also find efficient particle acceleration over two decades of
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Figure 3.14: The partition of plasma energy ⟨Epl⟩ into thermal and nonthermal components shows a moderate
increase with the balance parameter at any given time. Both the fraction of particles with nonthermal energies
(a) and the fraction of total plasma energy density ⟨Epl⟩ contained in such particles (b) are calculated by
fitting a thermal Maxwell-Jüttner function to the low- and medium-energy particle distribution at each time
and subtracting the fit from the total particle distribution. Colors are the same as in Fig. 3.3.



64

particle Lorentz factor even for our most imbalanced turbulence (Section 3.3.4).

Our results on imbalanced turbulence should apply to high-energy astrophysical systems with asym-

metric energy injection, such as accretion disk coronae, relativistic jets, and pulsar wind nebulae. We find

that NTPA remains efficient in imbalanced turbulence, meaning that particle acceleration models developed

for balanced turbulence are still applicable to astrophysical systems with asymmetric energy injection. In

addition, our finding that the momentum from the driven Alfvén waves efficiently transfers to the plasma

itself constitutes a new mechanism for propelling winds from, for instance, the surface of a turbulent accretion

disk. This efficient momentum transfer could also amplify existing astrophysical outflows.

This work represents an important step in studying global properties of imbalanced turbulence in

collisionless plasmas. It demonstrates a method for driving imbalanced turbulence in PIC simulations and

develops diagnostics to study the unique aspects of imbalanced turbulence, including net motion of the plasma.

Our study has revealed a number of factors that could influence the development of imbalanced turbulence

and should be further explored: the driving mechanism, the amplitude of magnetic field fluctuations, and the

plasma magnetization, to name a few. Our main findings of efficient NTPA and efficient momentum transfer

merit further investigation: how are the Fokker-Planck momentum diffusion and advection coefficients for

NTPA modified by imbalance? How does the momentum transfer manifest in a more realistic system

with density gradients? Thus far, our finding of a net flow is a momentum-transfer mechanism, not

a wind-launching mechanism. More work is needed to determine how the transfer efficiency changes

with 𝜎 and whether the wind comprises the thermal bulk of particles or nonthermal particles. Simulations

of imbalanced turbulence in nonrelativistic, semi-relativistic, and trans-relativistic electron-ion plasmas,

particularly relevant to accretion flows, will also be important for understanding the fraction of energy that

heats electrons. Understanding these aspects of imbalanced turbulence will aid in modeling astrophysical

systems with asymmetric energy injection, such as accretion disk coronae, relativistic jets, and pulsar wind

nebulae.
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3.A Dependence on Domain Size

If the ratio 𝐿/2𝜋𝜌𝑒0 is small, the small separation between the characteristic scale of kinetic effects

and the system size scale could influence the results presented in Section 3.3. In this appendix, we examine

the box-size dependence of representative quantities for extremal values of the balance parameter 𝜉 = 0.0

and 𝜉 = 1.0 and for 𝐿/2𝜋𝜌𝑒0 ∈ {27.1, 40.7, 54.3, 81.5}, corresponding to 𝑁 ∈ {256, 384, 512, 768}. These

results also include three very large simulations of balanced turbulence from Ref. [114] with 𝐿/2𝜋𝜌𝑒0 ∈

{81.5, 108.7, 164} (𝑁 = 768, 1024, and 1536) that are otherwise identical to the other simulations of

balanced turbulence. The time-averaging window has been changed from 10 < 𝑡𝑐/𝐿 < 20 to 5 < 𝑡𝑐/𝐿 < 14,

because 14 𝐿/𝑐 is the latest time included in all simulations. Here we focus on the convergence of

energetic quantities; for convergence of the balanced turbulence’s particle energy spectra with system size,

see Ref. [114].
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Figure 3.15: The injection efficiency and Poynting flux along the background magnetic field depend weakly
on simulation domain size within statistical variation. When averaged from 𝑡 = 5 − 14 𝐿/𝑐, the injection
efficiency (a) and Poynting flux along the background magnetic field (b) are shown as a function of 𝐿/2𝜋𝜌𝑒0.
Both the balanced (𝜉 = 1.0; purple circles) and most imbalanced values (𝜉 = 0; yellow triangles) are mostly
within statistical variation of the 𝐿/2𝜋𝜌𝑒0 = 40.7 sample of 8 random seeds. The black dashed line indicates
zero.
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Figure 3.16: The magnetic and turbulent kinetic densities are weakly dependent on simulation domain size.
When averaged from 𝑡 = 5 − 14 𝐿/𝑐, the magnetic energy density (a) and turbulent kinetic energy density
(b) are shown as a function of 𝐿/2𝜋𝜌𝑒0. Both the balanced (𝜉 = 1.0; purple circles) and most imbalanced
(𝜉 = 0; yellow triangles) values are mostly within statistical variation of the 𝐿/2𝜋𝜌𝑒0 = 40.7 sample of 8
random seeds.
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We find that the injection efficiency 𝜂inj depends weakly on simulation domain size for both balanced

and imbalanced turbulence (Fig. 3.15a). The simulations with 𝜉 = 1.0 and 𝐿/2𝜋𝜌𝑒0 = 81.5 and 164 domains

have slightly lower injection efficiencies than those for the smallest (𝐿/2𝜋𝜌𝑒0 = 40.7) domains. Kinetic

damping of large-scale fluctuations, which would drain energy faster than turbulence alone, may explain the

larger 𝜂inj for smaller domain sizes. For 𝜉 = 0, the 𝐿/2𝜋𝜌𝑒0 = 54.3 simulation’s 𝜂inj is within the statistical

spread of the 𝐿/2𝜋𝜌𝑒0 = 40.7 simulations’ injection efficiencies, whereas the 𝐿/2𝜋𝜌𝑒0 = 81.5 injection

efficiency is slightly below. The time-averaged Poynting flux shows a weak positive trend with increasing

domain size (Fig. 3.15b). Though the 𝐿/2𝜋𝜌𝑒0 = 81.5 domain size for the imbalanced 𝜉 = 0 case has a

value higher than the largest 𝐿/2𝜋𝜌𝑒0 = 40.7 value, the difference is only about 0.05 (𝑐𝐵2
0/4𝜋) (about 15%),

within two standard deviations of the statistical variation shown by the 𝐿/2𝜋𝜌𝑒0 = 40.7 study.

The turbulent and magnetic energy densities show a slight dependence on simulation domain size

(Fig. 3.16). Both quantities’ values for 𝐿/2𝜋𝜌𝑒0 ≳ 54.3 are consistently about 15% greater than the

largest value of the statistical ensemble of 𝐿/2𝜋𝜌𝑒0 = 40.7, 𝜉 = 1.0 simulations. Though the imbalanced

turbulence simulations do not appear to exhibit a trend in turbulent kinetic energy with box size (Fig. 3.16b),

the 𝐿/2𝜋𝜌𝑒0 = 81.5, 𝜉 = 0 case’s value for magnetic energy is noticeably higher (20%) than the 𝐿/2𝜋𝜌𝑒0 =

54.3 value, which lies within the statistical spread of the 𝐿/2𝜋𝜌𝑒0 = 40.7 ensemble study (Fig. 3.16a).



Chapter 4

Nonthermal Emission from the Plunging Region: a Model for the High-Energy Tail of Black

Hole X-ray Binary Soft States

In this chapter, I build upon the idea that nonthermal electrons can be produced in an accretion disk

corona. More specifically, I show that the compact region within the ISCO of a thin accretion disk (the

“plunging region”) has conditions conducive to nonthermal particle acceleration. This work was motivated

by GRMHD simulations that suggest the assumption of single-temperature MHD within ISCO no longer

holds, and observations showing the physical compactness of the corona (Ch. 2.4.2). I use an analytic model

of the plunging region to provide a background for a nonthermal electron distribution. I investigate whether

the hierarchy of particle timescales allows for the existence of nonthermal particles, and whether GR effects

would wipe out any radiation from within the ISCO. I use prescriptions from PIC simulations for particle

acceleration to model the electron distribution function at each radius inside the plunging region. This model

takes a step towards building in PIC prescriptions to global models of the accretion disk.

This chapter’s model for the corona agrees well with observations. I predict some trends with black

hole spin and the inclination of the accretion disk with respect to the observer that could be tested against

future observations. This model is an attractive way to connect the disk truncation model (Ch. 2.3.1) to the

soft state of BHBs (Ch. 2.4.1). It provides a framework for locally linking kinetic physics and background

global dynamics and can be improved upon to include better particle acceleration prescriptions as they

emerge. This work was published in Ref. [5].
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Abstract

X-ray binaries exhibit a soft spectral state comprising thermal blackbody emission at 1 keV and a power-

law tail above 10 keV. Empirical models fit the high-energy power-law tail to radiation from a nonthermal

electron distribution, but the physical location of the nonthermal electrons and the reason for their power-law

index and high-energy cut-off are still largely unknown. Here, we propose that the nonthermal electrons

originate from within the black hole’s innermost stable circular orbit (the “plunging region”). Using an

analytic model for the plunging region dynamics and electron distribution function properties from particle-

in-cell simulations, we outline a steady-state model that can reproduce the observed spectral features. In

particular, our model reproduces photon indices of Γ ≳ 2 and power-law luminosities on the order of a

few percent of the disk luminosity for strong magnetic fields, consistent with observations of the soft state.

Because the emission originates so close to the black hole, we predict that the power-law luminosity should

strongly depend on the system inclination angle and black hole spin. This model could be extended to the

power-law tails observed above 400 keV in the hard state of X-ray binaries.

4.1 Introduction

Observations of accreting black hole X-ray binary systems (XRBs) show two main X-ray spectral

states. The hard state has an inverted power-law photon spectrum 𝑁 (𝐸) ∝ 𝐸−Γ with a spectral index Γ ≲ 2

at 10 keV, peaking in the 100 − 200 keV range. The soft state has a thermal blackbody component peaking

around 1 keV and a high-energy power-law tail component from 10 keV to 1 MeV. This hard X-ray to soft

gamma-ray power law has a spectral index Γ ≳ 2 and no observed cut-off [48, 149, 150].

Models of the soft spectral state usually involve a thin accretion disk that produces the thermal

emission and a hot, optically-thin gas that produces the high-energy power-law tail. The thin accretion

disk [9, 49] models the soft state’s blackbody emission well. However, the origin of the power-law tail is

less well-understood. Most models for the power-law tail assume a population of nonthermal electrons that

are somehow accelerated to high energies, presumably by shocks or magnetic reconnection. The hybrid

thermal/nonthermal electron distribution function fits the soft state spectrum up to 600 keV well [151, 152],
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but the electron distribution parameters are determined by the best fit to observational data rather than ab

initio theory.

The spatial location of the hot, optically-thin gas and thus the nonthermal electrons is unknown.

Hybrid electron distribution models usually assume that the nonthermal electrons originate from a jet or

corona above a thin accretion disk extending down to the innermost stable circular orbit [ISCO; 150].

Alternatively, the nonthermal electrons could come from gas within the ISCO. In the “plunging region,”

particle orbits transition from predominantly circular to predominantly radial. The ISCO serves as an

artificial boundary condition in early thin disk models, which assume that the stress there goes to zero and

no light is emitted from within the plunging region [9, 49]. Later thin disk models find that stress at the

ISCO can lead to extra dissipation, which is often parameterized as an additional accretion efficiency Δ𝜖 [50,

51]. Magnetohydrodynamic (MHD) and general relativistic MHD (GRMHD) simulations have measured

additional dissipation within the ISCO on the order of Δ𝜖 ≳ 0.2 for weakly magnetized disks and up to twice

the Novikov-Thorne efficiency for strongly magnetized disks [63, 153–156]. This extra dissipation could

come from magnetic reconnection and turbulence occurring in the plunging region.

Extra dissipation from within the plunging region could cause the soft state’s high-energy power-

law tail. In a purely thermal model, the gas temperature rises so rapidly towards the event horizon that

the Wien peaks sum to a power law [157]. This model could also explain high-frequency quasi-periodic

oscillations in the steep power law state [158]. These models assume that the electron and proton gas are in

thermal equilibrium. However, shorter infall times in the plunging region can mean electrons and protons no

longer have time to thermalize. Estimates of the electron-proton thermalization time in GRMHD simulations

become longer than the infall time close to the black hole, suggesting that electrons and protons may decouple

into a two-temperature plasma within the ISCO [157].

In this work, we present a model for the soft spectral state’s high-energy power-law tail using non-

thermal electrons in the plunging region. We outline the parameter space where electron-proton decoupling

should occur and demonstrate that the plunging region conditions are conducive to accelerating electrons

to nonthermal energies (Section 4.2). We then propose a model for the hybrid thermal/nonthermal electron

distribution in the plunging region based on particle acceleration prescriptions from particle-in-cell simula-
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tions (Section 4.3). We show that our model can reproduce observational characteristics of a high-energy

power-law tail for highly-magnetized parameters, recover the transition to thermal-dominated spectra at lower

magnetizations, and predict trends with inclination angle and black hole spin that are consistent with current

observations (Section 4.4). We end by discussing our model assumptions and its general applicability to

XRBs (Section 4.5) and summarizing our findings (Section 4.6).

4.2 Dynamical Model for the Plunging Region

Within the ISCO, the accretion flow cannot be described as a thin disk. Particle orbits transition from

mostly circular outside the ISCO to mostly radial inside the ISCO. The fast infall times in the plunging

region mean that the usual assumptions of a collisional, single-temperature plasma need to be revisited. In

this section, we will motivate our treatment of the plunging region as a two-temperature, highly-magnetized

region with the potential to continuously accelerate particles to nonthermal energies.

We will use Ref. [51]’s plunging region model as a backdrop for our model. Ref. [51] provides radial

profiles of the gas number density 𝑛0, four-velocity 𝑢𝜇, and radial magnetic field strength 𝐵𝑟 that agree well

with numerical simulations [63]. The model assumes a one-dimensional, steady-state MHD inflow in the

plunging region, parameterized by black hole spin 𝑎, mass 𝑀 , and the 𝐹𝜃 𝜙 component of the Maxwell tensor,

which reduces to −𝑟2𝐵𝑟 at the midplane in the nonrelativistic limit. Throughout, we assume an Eddington

factor 𝜂 = 0.1 = 𝐿Edd/( ¤𝑀Edd𝑐
2), where 𝐿Edd and ¤𝑀Edd are the Eddington luminosity and accretion rate,

respectively. We avoid numerical artefacts due to the boundary condition 𝑣𝑟 = 0 at the ISCO by starting

our solutions at 𝑟ISCO − 0.1𝑟𝑔. We scale the model to physical units using a black hole mass of 10𝑀⊙ and

a density scale height 𝐻/𝑟 = 1, the latter choice motivated by Section 4.2.1’s observation that ions will not

collide with electrons in the plunging region.

For our fiducial model, we use values 𝑎 = 0.95 and 𝐹𝜃 𝜙 = 6.0, which corresponds to an accretion

efficiency Δ𝜖 = 1.04. For all models, we assume that Δ𝜖 is uniformly distributed throughout the volume

within the ISCO and that this heating comes from magnetic reconnection processes. Representative quantities

of the fiducial background are plotted in Figure 4.1. For these parameters, the magnetic field has a strength on

the order of 108 G. We assume a virial ion temperature 𝑇𝑖 = 2𝐺𝑀𝑚𝑝/5𝑘𝐵𝑟 , which gives mildly relativistic
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Figure 4.1: Properties of the plunging region calculated from the Ref. [51] background for fiducial parameters
𝑎 = 0.95 andΔ𝜖 = 1.04. From left to right: radial magnetic field strength 𝐵𝑟 (left axis) and the fluid’s Lorentz
factor (right axis), dimensionless ion temperature 𝜃𝑖 = 𝑘𝐵𝑇𝑖/𝑚𝑝𝑐2 (left axis) and ratio of gas-to-magnetic
pressure 𝛽𝑖 = 8𝜋𝑛0𝑘𝐵𝑇𝑖/𝐵2

𝑟 (right axis), electron scattering optical depth 𝜏es, and cold ion magnetization 𝜎𝑖 .
Here, 𝐵0 = 108 G. The plunging region extends from the ISCO at 1.94𝑟𝑔 to the event horizon at 1.31𝑟𝑔 in
the midplane.

ions, and calculate the ion beta 𝛽𝑖 = 8𝜋𝑛0𝑘𝐵𝑇𝑖/𝐵2
𝑟 . The electron scattering optical depth 𝜏es = 𝑛0𝜎𝑇𝐻 is

always slightly greater than 1. The values of 𝐵𝑟 , 𝜏, and 𝛽𝑖 vary by a factor of ∼ 3 from the ISCO to the event

horizon.

4.2.1 Development of a Two-temperature Plasma

Analytic models of a thin disk that permit non-zero stress at the ISCO predict a factor of ten increase in

the gas temperature between the ISCO and the event horizon [50]. Single-temperature GRMHD simulations

find a similar increase [157] due to the flow becoming effectively optically thin. The rapid rise of temperature

means that the timescale for electrons and protons to reach thermal equilibrium increases as well. This

electron-ion thermalization timescale 𝑡𝑒𝑖th is given by

𝑑𝑇𝑒

𝑑𝑡
=
𝑇𝑖 − 𝑇𝑒
𝑡𝑒𝑖th

(4.1)

where 𝑡𝑒𝑖th ≡ 1/𝜈th. For hot protons heating electrons, the thermalization frequency from Ref. [102] reads:

𝜈th =
𝑚𝑒

𝑚𝑝

𝑛0𝜎𝑇𝑐 lnΛ
𝐾2(1/𝜃𝑒)𝐾2(1/𝜃𝑖)

(4.2)[
2(𝜃𝑒 + 𝜃𝑖)2 + 1

𝜃𝑒 + 𝜃𝑖
𝐾1

(
𝜃𝑒 + 𝜃𝑖
𝜃𝑒𝜃𝑖

)
+ 2𝐾0

(
𝜃𝑒 + 𝜃𝑖
𝜃𝑒𝜃𝑖

)]
s−1 (4.3)

= 3.6 × 10−37
(
𝑚𝑒𝑚𝑝

)1/2
𝑛0 lnΛ(

𝑚𝑝𝑇𝑒 + 𝑚𝑒𝑇𝑖
)3/2 s−1, (4.4)



74

where 𝜃𝑒 = 𝑘𝐵𝑇𝑒/𝑚𝑒𝑐2 and 𝜃𝑖 = 𝑘𝐵𝑇𝑖/𝑚𝑝𝑐2, 𝑚𝑒 and 𝑚𝑝 are electron and proton masses, respectively. The

last line takes the nonrelativistic limit assuming 𝜃𝑒 ≪ 1 and 𝜃𝑖 ≪ 1 [159]. Here, 𝐾0(𝑥), 𝐾1(𝑥), and 𝐾2(𝑥)

are modified Bessel functions of the second kind. Throughout, we set the Coulomb logarithm lnΛ = 10 and

employ cgs units.

In the plunging region, the thermalization timescale can become longer than the accretion timescale.

Ref. [157] finds that a weakly magnetized flow cannot equilibrate within 3 𝑟𝑔 for black hole spin 𝑎 = 0.7.

Therefore, the assumption that electrons and protons couple efficiently no longer applies within the ISCO.

The inefficient Coulomb coupling means that protons cannot cool, and should heat due to viscous and

magnetic dissipation. Such increased temperature and thus increased ion pressure support will puff up the

plunging region beyond a thin disk. The formation of a thick inner disk and a thin outer disk was recently

simulated for the first time [80]. For those model parameters, the thin outer disk with 𝐻/𝑟 ∼ 10−2 expanded

to 𝐻/𝑟 ∼ 0.3 within the ISCO.

This decoupling motivates our subsequent treatment of the electrons and protons in the plunging

region as completely independent, with different temperatures, as well as our assumption that 𝐻/𝑟 ∼ 1.

Indeed, Figure 4.2 shows that in our model, the thermalization time (black solid line) is longer than the infall

time (dashed horizontal line) for a wide range of accretion efficiencies. The same hierarchy holds for all

black hole spins discussed in this work.

4.2.2 Nonthermal Particle Acceleration

Particle-in-cell (PIC) simulations of magnetic reconnection have shown that efficient particle accel-

eration in an electron-ion plasma occurs for ion magnetizations 𝜎𝑖 ≳ 1 [68]. Using background profiles

for magnetic field and gas density from Ref. [51], we will demonstrate that efficient particle acceleration is

possible inside the ISCO. We calculate the ion magnetization

𝜎𝑖 =
𝐵2

0
4𝜋𝑛0𝑚𝑝𝑐2 (4.5)

using the definition from Ref. [68]. We set 𝐵0 = 𝐵𝑟 and 𝑛0 = 𝜌/𝑚𝑝, with the radial magnetic field 𝐵𝑟 (𝑟)

and mass density 𝜌(𝑟) obtained from Ref. [51]. For fiducial model parameters, the ion magnetization ranges
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from 0.2 to 3.0 (Figure 4.1). In PIC simulations of magnetic reconnection with similar ion magnetizations,

Ref. [68] finds that electrons are accelerated into power-law distribution with high-energy cut-off 𝛾𝑐 ∼ 4𝜎𝑒

(rising slowly with 𝜎𝑖) and power-law index 𝑝 prescribed by

𝑝 = 1.9 + 0.7/√𝜎𝑖 . (4.6)

Ref. [68] fixes 𝜃𝑖 = 𝜎𝑖/200 (i.e. 𝛽𝑖 = 4𝜃𝑖/𝜎𝑖 → 0.02), a factor of 10 to 100 times colder than the

equipartition ion temperature calculated above. PIC studies of electron-ion turbulence (rather than magnetic

reconnection) that set 𝛽𝑖 = 2/3 and scanned 𝜃𝑖 ∈ [1/256, 10] with 𝜎𝑖 ∈ [1/256, 10] have found broadly

similar power-law indices [89]. The turbulent simulations in general find more efficient particle acceleration,

measuring 𝑝 ≈ 2.8 for 𝜃𝑖 = 1/16 and 𝜎𝑖 = 0.2 when Equation 4.6 would predict 𝑝 = 3.5.

With ion magnetizations close to unity, the plunging region can plausibly accelerate electrons to

nonthermal energies via turbulence or reconnection. This acceleration could happen in a two-stage process,

with sharp increases in particle Lorentz factor when the particle crosses a current sheet and slower, second-

order Fermi-like acceleration that continues to increase particle energy over time [116]. For a magnetically-

dominated pair plasma, the current sheet acceleration time is on the order of 𝑡acc ∼ (300/𝜎)𝜔−1
𝑝𝑒 [116], where

𝜔𝑝𝑒 =
√︁

4𝜋𝑒2𝑛0/𝑚𝑒 is the electron plasma frequency. For the fiducial parameters Δ𝜖 = 1.04 and 𝑎 = 0.95,

the Ref. [51] model yields 100𝜔−1
𝑝𝑒 ∼ 10−11 s, much shorter than infall times on the order of 10−4 s for a ten

solar-mass black hole and electron-ion thermalization times (Figure 4.2 orange line). Therefore, we argue

that the plunging region can accelerate electrons locally, forming a power-law distribution that will not have

time to be thermalized by protons.

4.2.3 Electron-electron Collisions

A pure power-law distribution of electrons will interact via Coulomb collisions, eventually forming

a pure thermal distribution if allowed to evolve freely [160]. Lower-energy electrons thermalize first,

forming a hybrid thermal/nonthermal population at intermediate evolution times. If nonthermal electrons

are continuously injected, as Section 4.2.2 showed is possible in the plunging region, the electron distribution

will reach some equilibrium of nonthermal and thermal populations. We model this hybrid distribution as a
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thermal Maxwell-Jüttner distribution up to a transition Lorentz factor 𝛾1, where the distribution becomes a

power law. A nonthermal electron with Lorentz factor 𝛾 will interact with the thermal bulk on the energy

loss timescale 𝑡𝑒𝑒coll(𝛾) ≡ 1/𝜈𝑒𝑒𝜖 (𝛾). The energy loss rate is given by

𝜈𝑒𝑒𝜖 (𝛾) = [𝜓(𝑥𝑒𝑒) − 𝜓′(𝑥𝑒𝑒)] 16
√
𝜋𝑒4 lnΛ 𝑛0

𝑚2
𝑒𝑐

3𝛽3
, (4.7)

where 𝛽 =
√︁

1 − 1/𝛾2 and 𝜓(𝑥) is the lower incomplete Gamma function [159]. The kinetic ratio 𝑥𝑒𝑒 =

𝛽2/(2𝜃𝑒). For an electron temperature of 109 K, a particle with a Lorentz factor of 2.0 has an energy loss

timescale of 10−6 s, about 0.002 times the infall timescale (Figure 4.2 purple). We therefore cannot neglect

electron-electron collisions, especially at lower electron energies.

Though nonthermal electrons will also collide with thermal protons over the corresponding electron-

proton energy loss timescale, this timescale will be larger than the thermalization timescale discussed in

Section 4.2.1. We will therefore ignore interactions between nonthermal electrons and thermal ions.

4.2.4 Importance of Radiative Cooling

High-energy electrons cool rapidly due to either synchrotron or inverse Compton cooling. In our

model, the cooling time 𝑡cool(𝛾) is set by either synchrotron or inverse Compton cooling, depending on

the ratio 𝑈𝐵/𝑈𝑝ℎ, where 𝑈𝐵 = 𝐵2
𝑟/8𝜋 is the magnetic energy density and 𝑈𝑝ℎ = 𝐿/(4𝜋𝑐 𝑟2

ISCO) is the

energy density in the ambient photons, assumed to come from the disk such that 𝐿 = 0.1 𝐿Edd, where

𝐿Edd = 4𝜋𝐺𝑀𝑚𝑝𝑐/𝜎𝑇 = 1.26 × 1039 erg/s. If𝑈𝐵/𝑈𝑝ℎ > 1, then the cooling time is set to the time it takes

for an electron to lose half its energy due to synchrotron radiation [57]:

𝑡sync(𝛾) =
5.1 × 108

𝛾𝐵2
𝑟

. (4.8)

In using the above equation, we assume that the particle is moving in gyro-orbits around the dominant

magnetic field 𝐵𝑟 , with a pitch-angle 𝛼 = 𝜋/2. If on the other hand 𝑈𝐵/𝑈𝑝ℎ < 1, the cooling time is set to

the inverse Compton cooling time, assumed to take the form

𝑡IC(𝛾) =
𝑈𝐵

𝑈𝑝ℎ
𝑡sync(𝛾). (4.9)
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Notice that Equation 4.8 and 4.9 are valid only for ultra-relativistic particles. As such, we ignore cooling

for electrons below a minimum Lorentz factor 𝛾min = 2, since below this Lorentz factor the cooling rate

decreases rapidly.

The cooling times decrease for larger Lorentz factors, with values at the minimum Lorentz factor two

orders of magnitude smaller than the electron-electron collision time, and five orders of magnitude smaller

than the infall timescale (Figure 4.2 magenta). The electrons in the plunging region therefore have time to

radiate before disappearing beyond the event horizon.

We show the relevant timescales of the plunging region in Figure 4.2 for models with different black

hole spin 𝑎 and accretion efficiencies Δ𝜖 resulting from different magnetic field strengths. At a radius of

𝑟 = 1.58 𝑟𝑔, all models satisfy the ordering

𝑡accel ≪ 𝑡cool(𝛾) ≪ 𝑡𝑒𝑒coll(𝛾) ≪ 𝑡infall ≲ 𝑡
𝑒𝑖
therm (4.10)

for 𝛾 ≥ 𝛾1. We will use this ordering to motivate our model for the plunging region’s hybrid ther-

mal/nonthermal electron distribution.

4.3 Multizone Equilibrium Model

In this section, we present a model for the electron distribution in the plunging region, motivated by

the properties outlined in Section 4.2. We will assume that nonthermal electrons are continuously injected

by local processes such as magnetic reconnection or turbulence, which then partially thermalize via electron-

electron collisions. We further assume that the hybrid thermal/nonthermal electron distribution reaches a

steady state at each radius, matching the losses due to radiation with the heating due to magnetic dissipation.

Below, we describe the assumptions that allow us to fully constrain this hybrid electron distribution’s form.

4.3.1 Initial Electron Distribution

Because the advection timescales are much longer than the particle acceleration timescales (Figure 4.2),

we assume that the initial (pre-thermalization) electron population at each radius is a pure power-law

distribution: 𝑓PL,0(𝛾) = 𝐴0𝛾
−𝑝 for 1 ≤ 𝛾 ≤ 𝛾2, where 𝛾2 is a high-energy cut-off. The high-energy cut-off
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Figure 4.2: Timescales in the plunging region show that all physical processes except for electron-ion
collisions are fast compared to the infall time for a wide range of accretion efficiencies Δ𝜖 , consistent with
the hierarchy 𝑡accel ≪ 𝑡cool(𝛾) ≪ 𝑡𝑒𝑒coll(𝛾) ≪ 𝑡infall ≲ 𝑡

𝑒𝑖
therm. Timescales are shown at a radius 𝑟 = 1.58𝑟𝑔 for

black hole spin 𝑎 = 0.95. These timescales are calculated for thermal ion and hybrid electron distributions
determined by the steady-state model described in Section 4.3.
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at each radius is set to

𝛾2(𝑟) = 𝛾𝑐 (𝑟) = 4𝜎𝑒 (𝑟), (4.11)

where 𝜎𝑒 = 𝐵2
𝑟 (𝑟)/(4𝜋𝑛0𝑚𝑒𝑐

2) is the (cold) electron magnetization [68]. The power-law index 𝑝 is also

set by Ref. [68]’s prescription (Equation 4.6), increased by 1 to account for cooling [161]. Requiring the

distribution to be normalized to 𝑛0 sets the constant 𝐴0. All together, the initial distribution reads:

𝑓PL,0(𝛾) =
𝑛0(𝑝 − 1)
1 − 𝛾1−𝑝

2

𝛾−𝑝 1 ≤ 𝛾 ≤ 𝛾2. (4.12)

Electron-electron Coulomb collisions will partially thermalize this initial power-law distribution. Radial

profiles for the high-energy cut-off 𝛾2 and the power-law index 𝑝 in the fiducial model are given in Figure 4.3.

4.3.2 Steady-state Electron Distribution

Some of the injected power-law electrons will interact with each other via Coulomb collisions, creating

a thermal distribution below some Lorentz factor 𝛾1 (Section 4.2.3). The resulting hybrid thermal/nonthermal

electron distribution continuously gains more nonthermal electrons due to the injection process and loses

nonthermal electrons to the thermal bulk, radiating energy. We approximate these rapid processes with a

steady-state electron distribution comprising a Maxwell-Jüttner thermal distribution 𝑓MJ and a power-law

distribution 𝑓PL(𝛾) for 𝛾1 ≤ 𝛾 ≤ 𝛾2.
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The thermal electron distribution 𝑓MJ is fully described by two variables: its normalization and its

temperature 𝑇𝑒. We fix the normalization of the thermal distribution to the number density 𝑛0, assuming that

the number of nonthermal electrons is negligible compared to the thermal electrons. Explicitly, the thermal

distribution reads

𝑓MJ(𝛾, 𝜃𝑒, 𝑛0) = 𝑛0
𝛾2𝛽

𝜃𝑒𝐾2(1/𝜃𝑒)
𝑒−𝛾/𝜃𝑒 , (4.13)

where 𝐾2 is the modified Bessel function of the second kind. The electron temperature 𝑇𝑒 = 𝜃𝑒𝑚𝑒𝑐2/𝑘𝐵 is

set by the model assumptions outlined below.

The nonthermal electrons are described as a power-law between a minimum Lorentz factor 𝛾1 and a

high-energy cut-off 𝛾2, with a power-law index 𝑝eff and a normalization 𝐴PL:

𝑓PL(𝛾) = 𝐴PL𝛾
−𝑝eff 𝛾1 ≤ 𝛾 ≤ 𝛾2. (4.14)

We will now outline how our model determines the variables 𝛾1, 𝐴PL, 𝑝eff , and 𝑇𝑒.

4.3.2.1 Determining 𝛾1

The minimum Lorentz factor 𝛾1 of the nonthermal distribution is set at the energy where collisions

and cooling balance. At 𝛾1, the energy loss timescale 𝑡𝑒𝑒coll (Equation 4.7) equals the cooling time 𝑡cool:

𝑡𝑒𝑒coll(𝛾1) = 𝑡cool(𝛾1). (4.15)

Here, the cooling time 𝑡cool is set to the minimum of the synchrotron and inverse Compton cooling times

(Equations 4.8 and 4.9). We enforce the lower bound 𝛾1,min = 𝛾min = 2.0 to model the inefficiency of cooling

at low energies. We also require that 𝛾1 > 𝛾threshold(𝑇𝑒), where the threshold Lorentz factor 𝛾threshold is

where the energy loss frequency (Equation 4.7) is zero for a given temperature. A power-law electron with

a Lorentz factor below 𝛾threshold would increase in energy due to collisions with the thermal bulk. Imposing

the requirement that the power-law start at Lorentz factors greater than the threshold Lorentz factor means

that 𝛾1 will always be to the right of the thermal peak, thereby avoiding getting trapped at solutions with

𝛾1 → 1.

Often, the cooling times are shorter than the energy loss times for all values of Lorentz factor. In this

case, collisions are never important for the nonthermal electrons (Figure 4.2). However, it is still important
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to maintain a thermal population of electrons to provide the bulk of the density in the plunging region. When

no solution to Equation 4.15 exists, we set 𝛾1 = max
(
𝛾1,threshold, 𝛾min

)
.

4.3.2.2 Determining 𝐴PL

The power-law normalization 𝐴PL is set by requiring continuity of the thermal and nonthermal electrons

at 𝛾1:

𝑓MJ(𝛾1) = 𝑓PL(𝛾1). (4.16)

4.3.2.3 Determining 𝑝eff

The power-law index 𝑝eff of the steady-state nonthermal distribution is calculated by assuming that

none of the highest-energy particles are thermalized by Coulomb collisions; that is,

𝑓PL,0(𝛾2) = 𝑓PL(𝛾2). (4.17)

We use an effective power-law index because high-energy particles collide more slowly than lower-energy

particles, resulting in a power-law index that decreases over time [160]. Using the power-law index from PIC

simulations would underestimate the total power law. Our formulation assumes that the initial power-law is

continually replenished by in-situ particle acceleration, so the impact of cooling is primarily in the radiation

rather than the dynamics. The difference between 𝑝eff and 𝑝 is largest close to the event horizon (Figure 4.3).

Figure 4.4 shows how the final power-law distribution (blue solid line) differs from the initial power-law

distribution (purple dashed line).

Combining Eqns. 4.12 and 4.17 yields an expression for 𝑝eff:

𝑝eff =
log

[
𝑓PL,0(𝛾2)/ 𝑓MJ(𝛾1)

]
log [𝛾1/𝛾2]

. (4.18)

4.3.2.4 Determining 𝑇𝑒

The temperature 𝑇𝑒 of the thermal electrons is set by requiring a steady state that balances energy lost

to radiation with energy dissipated by magnetic torques. We obtain the volume heating rate 𝑄+ from the
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Figure 4.4: The effective power-law index 𝑝eff is calculated from the initial power-law distribution 𝑓PL,0
by assuming that both power laws have the same value at the high-energy cut-off 𝛾2 (Equation 4.17). This
sample electron distribution was calculated for fiducial parameters close to the event horizon at a radius
𝑟 = 1.31 𝑟𝑔, where 𝑝 = 3.3 (purple dashed line) and 𝑝eff = 0.6 (blue solid line). For radii closer to the
ISCO, the difference between 𝑓PL,0 and 𝑓PL is not so pronounced. The thermal distribution is also shown for
reference (green dotted line).
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accretion efficiency Δ𝜖 given by the Ref. [51] model, assuming that dissipation occurs evenly throughout the

plunging region’s volume:

𝑄+ = 𝛿𝑒
Δ𝜖 𝐿Edd

𝑉PR
, (4.19)

where𝑉PR = 4𝜋(𝑟3
ISCO−𝑟3

EH)/3 is the (Newtonian) volume of the plunging region. The fraction of dissipated

energy 𝛿𝑒 that goes into electrons is set at a constant value of 0.5, as motivated by PIC simulations of the

energy partition in an electron-ion plasma with magnetizations close to 1 [68, 89]. The remainder 1 − 𝛿𝑒

fraction of dissipated energy heats the ions, which do not radiate.

The total cooling rate𝑄− sums the bremsstrahlung cooling rate𝑄−,MJ from the thermal electrons with

the inverse Compton or synchrotron cooling rate from the nonthermal electrons. To account for additional

scattering, the nonthermal cooling rate 𝑄−,PL is set to the nonthermal emitted power P−,PL decreased by a

factor of 𝜏𝑒 = 𝑛0𝜎𝑇𝐻 = 𝑛0𝜎𝑇 (𝐻/𝑟)𝑟 , such that 𝑄−,PL = P−,PL/𝜏𝑒. This additional factor estimates how

many of the synchrotron/IC photons would escape the plunging region without additional scattering, which

is important since 𝜏𝑒 ≳ 1. This choice is motivated by Monte Carlo simulations of an isotropic sphere of

gas with photons packets initialized evenly throughout the sphere. These simulations show that about 1/𝜏𝑒

of the electrons escape with no scattering. The remaining 1 − 1/𝜏𝑒 fraction of photons will Compton scatter

off of the thermal/nonthermal electrons, heat the gas, and re-energize nonthermal electrons. The equation

for steady-state thus reads:

𝑄+ = 𝑄− = 𝑄−,MJ +𝑄−,PL. (4.20)

The nonthermal emissivity P−,PL is calculated by integrating the Larmor formula for power emitted

per electron over frequency 𝜔, the power-law electron distribution 𝑓PL(𝛾), and solid angle. In integrating

over solid angle Ω, we assume an isotropic distribution of pitch-angles 𝛼. The resulting power lost per unit

volume is given by:

Psync
−,PL =

∫
𝑑Ω 𝑑𝜔 𝑑𝛾 𝑓PL(𝛾)

2𝑒4𝐵2
𝑟𝛾

2𝛽2 sin2 𝛼

3𝑚2
𝑒𝑐

3
(4.21)

=
16𝜋𝑒4𝐵2

𝑟

9𝑚2
𝑒𝑐

3

∫ 𝛾2

𝛾1

(𝛾2 − 1)𝐴PL𝑛0𝛾
−𝑝eff𝑑𝛾. (4.22)

If inverse Compton dominates, the emissivity is set to PIC
−,PL = (𝑈𝑝ℎ/𝑈𝐵)Psync

−,PL.
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We describe the cooling due to thermal particles in the plunging region as saturated Comptonized

bremsstrahlung. Because the optical depth is of order 1 and the Compton 𝑦 parameter is much greater than

1, the bremsstrahlung is amplified by repeated inverse Compton scatterings. The resulting emissivity is

𝑄−,MJ = 𝐴(𝑛0, 𝑇𝑒)𝜖ff (𝑛0, 𝑇) (4.23)

where 𝐴(𝑛0, 𝑇𝑒) = 0.74 [ln(2.25/𝑥𝑐𝑜ℎ)]2 is an approximate amplification factor due to repeated inverse

Compton scattering, 𝑥𝑐𝑜ℎ = 2.4 × 1017(𝑚𝑒𝑛0)1/2𝑇
−9/4
𝑒 and 𝜖 𝑓 𝑓 (𝑛0, 𝑇) = 1.68 × 10−27𝑇

1/2
𝑒 𝑛2

0 is the standard

bremsstrahlung emissivity [57].

Because the energy loss collision times (Equation 4.7) assume a nonrelativistic thermal bulk, we put

an upper limit on 𝑇𝑒 at the temperature 𝑇max where setting 𝜈𝑒𝑒𝜖 (𝑥𝑒𝑒𝑐 ) = 0 would require a particle velocity

greater than the speed of light. This maximum temperature is 𝑇max = 3 × 109 K.

Equations 4.15, 4.17, 4.16, and 4.20 are solved iteratively at each radius using Brent’s method to

obtain 𝛾1(𝑟), 𝑝eff (𝑟), 𝐴PL(𝑟), and 𝑇𝑒 (𝑟).

4.4 Results

4.4.1 High-spin, Highly-Magnetized Case

To illustrate the model, we examine the fiducial case 𝑎 = 0.95 and Δ𝜖 = 1.04, which corresponds to

𝐹𝜃 𝜙 = 6.0 and magnetic flux a factor of 2 below the saturation value for a magnetically-arrested disk [156].

The hierarchy of timescales for this fiducial model justifies the assumptions outlined in Section 4.2. For

this set of parameters, 𝛾1 always hits the lower bound 𝛾1,min = 2.0. The equilibrium electron temperature

𝜃𝑒 decreases from 0.14 (8.9 × 108 K) at the ISCO to 0.03 (1.9 × 108) K at the event horizon (Figure 4.3).

These temperatures are roughly consistent with the inner disk temperatures in two-temperature GRMHD

simulations [80]. The temperature decreases towards the event horizon because of the increase in 𝛾2,

decreasing the power law’s overall normalization and shifting the temperature lower because of the continuity

requirement (Equation 4.16). The decoupling of electrons and protons happens very close to the ISCO, at

1.82 𝑟𝑔, meaning that almost the entire plunging region has decoupled. The cooling rate is dominated by

nonthermal synchrotron emission, with thermal cooling representing ≲ 1% of the cooling rate at the ISCO
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and 0.1% at the event horizon (Figure 4.3). This increase in the fraction of cooling from nonthermal electrons

is again driven by the increase in 𝛾2, which is set by the background magnetic field and gas density.

The total spectrum, shown in Figure 4.5, consists of three parts: the plunging region’s nonthermal

electrons (blue solid line), the plunging region’s thermal electrons (green dotted line), and the thin disk’s

spectrum (orange dashed line). The spectrum is calculated with redshifts obtained by ray tracing the plunging

region-disk system with the code geokerr to a camera inclined at 𝑖 = 60◦ to the black hole and disk angular

momentum vector [162]. The gas is assumed to have a four-velocity given by the Ref. [51] model within

the plunging region and a purely azimuthal, Keplerian velocity in the disk body. The power law intensities

𝐼𝜈,PL,𝑖 𝑗 = 𝑃𝜈,PL,𝑖 𝑗𝐻/(4𝜋) at a camera pixel with position 𝑖 and 𝑗 in the 𝑥− and 𝑦−directions are calculated

by assuming a hybrid electron distribution at the radius 𝑟𝑖 𝑗 where the ray-traced photon hits the plunging

region midplane. The power-law distribution is 𝑃𝜈,PL,𝑖 𝑗 = 𝐴𝑖 𝑗𝜈
−𝑠𝑖 𝑗 between the characteristic synchrotron

frequencies 𝜈1,𝑖 𝑗 and 𝜈2,𝑖 𝑗 for electrons with Lorentz factors 𝛾1,𝑖 𝑗 and 𝛾2,𝑖 𝑗 . That is, 𝜈1 = 𝜈0𝛾
2
1,𝑖 𝑗 and

𝜈2 = 𝜈0𝛾
2
2,𝑖 𝑗 , where 𝜈0 = 3𝑒 |𝐵𝑟 |/(4𝜋𝑚𝑒𝑐). The power-law slope is 𝑠𝑖 𝑗 = (𝑝eff,ij − 1)/2. The constant 𝐴𝑖 𝑗

is set by requiring that
∫
𝑃𝜈,PL,𝑖 𝑗𝑑𝜈 = 𝑄−,PL,ij. The emission from the thermal plunging region electrons

is in the Comptonized Wien regime, such that 𝐼𝜈,MJ,𝑖 𝑗 = 𝐼𝑊𝜈 (𝑇𝑖 𝑗)𝑒−𝛼𝑖 𝑗 , where 𝑇𝑖 𝑗 is the thermal electron

temperature at 𝑟𝑖 𝑗 , 𝐼𝑊𝜈 (𝑇𝑖 𝑗) = 2ℎ𝜈3/𝑐2𝑒−𝑘𝑇𝑖 𝑗/ℎ𝜈 is the Wien intensity, and 𝑒−𝛼𝑖 𝑗 is the Compton saturation

factor. The Compton saturation factor is determined by setting the frequency-integrated intensity equal to

the isotropic thermal Comptonized bremsstrahlung emissivity: 𝐼𝑊 (𝑇𝑖 𝑗)𝑒−𝛼𝑖 𝑗 = 𝑄−,MJ𝐻/4𝜋. Luminosities

are obtained by summing over 64 × 64 camera pixels: 𝐿𝜈 = 4𝜋Δ𝛼Δ𝛽
∑
𝑖 𝑗 𝐼𝜈,𝑖 𝑗 , where Δ𝛼 = Δ𝛽 = 0.125𝑟𝑔

are the pixel widths. The disk spectrum is calculated by assuming a blackbody with a radially-dependent

temperature extending from the ISCO to 1010 cm [46]:

𝑇 (𝑟) =
(
3𝐺𝑀 ¤𝑀
8𝜋𝜎𝑟3

𝒬

ℬ𝒞1/2

)1/4

(4.24)

where ℬ, 𝒞, and 𝒬 are relativistic corrections [49, 163].

Several features of the spectrum in Figure 4.5 stand out. First, emission from the nonthermal plunging

region electrons dominates the emission above 10 keV and produces an observable high-energy power-law

tail. The power law has a relatively flat slope past 200 keV, a feature that is difficult to produce through
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thermal Comptonization [87]. This power law cuts off at a little less than 100 MeV, though above 1 MeV

pair production could become important (gray region). The total luminosity from the power law across

all frequencies is 6.1% of the disk luminosity. This fraction decreases to 1.7% if non-X-ray frequencies

below 1keV are excluded. Excluding luminosity from the pair-emitting frequency range above 1 MeV further

decreases the fraction to 1.3%. The nonthermal power-law electrons dominate emission from the plunging

region, with a luminosity 63, 15, or 12 times that of the thermal plunging region electrons for all frequencies,

frequencies above 1 keV, and frequencies between 1keV and 1 MeV, respectively.

Most of the observed luminosity comes from radii close to the ISCO, as shown in Figure 4.6. This

figure calculates the amount of observed luminosity that originates from between the event horizon and a

radius 𝑟 . We define the half-light radius 𝑟1/2 as the location within which 50% of the light from the plunging

region has been emitted; analogously, 𝑟1/10 is where 10% of the light has been emitted. For this fiducial case

with the ISCO at 𝑟 = 1.94𝑟𝑔, 50% of the light comes from 𝑟 > 1.77𝑟𝑔 and 90% comes from 𝑟 > 1.66𝑟𝑔.

The emission depends on the spin and the inclination of the disk-plunging region system. The

inclination of the disk with respect to an observer changes the effective observed area, an effect that goes as

cos 𝑖, where 𝑖 is the angle between the black hole spin axis and the line-of-sight. Relativistic beaming effects

have the opposite trend with inclination angle; radiation from relativistically-moving gas is beamed into the

plane of motion, leading to a higher luminosity for larger inclination angles. In the plunging region, beaming

effects dominate, resulting in a factor of 100 increase in power-law luminosity from 𝑖 = 0◦ (𝐿PL = 5 × 1035

erg/s) to 𝑖 = 90◦ (𝐿PL = 6 × 1037 erg/s) for 𝑎 = 0.95. Power-law emission for 𝑎 = 0.5 is roughly constant

over inclination angle, with 𝐿PL ∼ 2 − 3 × 1036 erg/s. Beaming effects no longer dominate for the smaller

spin because the fluid Lorentz factor is smaller due to a larger 𝑟ISCO. The blackbody disk’s peak temperature

depends on the location of the ISCO, which is set by the black hole spin and decreases by a factor of about

3 from a non-spinning to a maximally-spinning black hole [164, 165]. The disk emission is non-monotonic

as a function of inclination angle, peaking around 60◦, where area projection effects start to dominate over

Doppler effects. The peak disk emission is a factor of two larger than at 𝑖 = 0◦ for 𝑎 = 0.95, and a factor of

1.7 larger for 𝑎 = 0.5. As a result, 𝐿PL/𝐿disk(1keV < 𝜈 < 1MeV) for 𝑎 = 0.95 increases from 0.002 at 𝑖 = 0◦

to 0.17 at 𝑖 = 85◦, whereas for 𝑎 = 0.5 it increases from 0.055 at 𝑖 = 0◦ to 0.09 at 𝑖 = 85◦, with a minimum
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of 0.042 at 𝑖 = 45◦.

4.4.2 Parameter Space

Figure 4.7 shows the power law to disk luminosity fraction as a function of plunging region dissipation

and black hole spin. For 𝑖 = 60◦, the plunging region can emit up to 1% of the accretion disk luminosity

for a high-spin black hole, and even higher for lower spin black holes. At constant spin, disks with less

magnetic torque at the ISCO and hence a lower accretion efficiency Δ𝜖 have less nonthermal luminosity

because weaker magnetic fields lead to less efficient cooling of high-energy particles, whereas the thin disk

emission is constant with Δ𝜖 . At fixed Δ𝜖 , lower black hole spins lead to a more visible power law because

the plunging region extends to larger radii, increasing the magnitude of the nonthermal plunging region

luminosity and decreasing the disk luminosity. For Δ𝜖 ≈ 0.4, the power law’s X-ray luminosity increases

by a factor of 400, from 1033 erg/s for 𝑎 = 0.95 to 4 × 1035 erg/s for 𝑎 = 0.70. This increase is due to a

combination of a larger area radiating 90% of the emission and redshifts closer to unity for smaller spins.

The thin disk’s X-ray luminosity decreases for decreasing spin by a factor of ten, from 1038 to 1037 erg/s.

These combined effects explain why 𝐿PL/𝐿disk is a factor of 4000 different for the same magnetization.

Our model demonstrates two regimes for the plunging region X-ray emission: one where nonthermal

electrons dominate and one where thermal electrons dominate. For fixed spin, weaker magnetic fields lead to

less cooling by nonthermal electrons and thus require more thermal cooling and higher thermal temperatures

to balance the total heating rate. Higher thermal temperatures and a less prominent power-law lead to a

significant decrease in 𝐿PL/𝐿MJ with decreasing accretion efficiency. Nonthermal electrons dominate only

at the highest disk magnetizations because particle acceleration requires strong magnetic fields. For less

strongly magnetized disks, thermal electrons dominate the plunging region emission; in this regime, we

might expect the observed power law to come from thermal electrons with a rapidly-increasing temperature

rather than nonthermal electrons [157]. Figure 4.7 marks the regime where nonthermal electrons dominate

with black circles around the colored markers.

To facilitate comparison with observations, we show our model’s predictions for the power-law fraction
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(PLF) as a function of inclination angle and spin in Figure 4.8. The PLF is defined as

PLF =
LPL

LPL + Ldisk
(4.25)

where LPL = 𝐿PL(1 keV < 𝜈 < 100 keV) is the power-law luminosity in the X-rays and Ldisk =

𝐿disk(0.001 keV < 𝜈 < 100 keV) is the disk luminosity over a wide range of frequencies, to avoid cut-

ting off low-spin blackbody emission that peaks at ∼1 keV [166, 167]. For the high-spin case, the PLF is

almost the same as 𝐿PL/𝐿disk(1 keV < 𝜈 < 1 MeV) because 𝐿PL ≪ 𝐿disk. For lower spins, the PLF is lower

than 𝐿PL/𝐿disk(1 keV < 𝜈 < 1 MeV) by a factor of 2 - 3 because of the change in denominator. The parame-

ters in Figure 4.8 are the most strongly magnetized disks where the nonthermal emission dominates thermal

emission from the plunging region; for the least magnetized cases, the PLF is less than 10−3 (not shown)

and thermal plunging region electrons would significantly change the shape of the emission above 10 keV.

Overall, the PLF calculated from the model lies between 10−3 and 0.3, values consistent with observations

of the soft state [166].

4.5 Discussion

4.5.1 Application to Astrophysical Systems

Our model broadly agrees with observations of X-ray binaries in the soft state. The soft state usually

exhibits a photon index Γ ≳ 2 [48], corresponding to model fits with an electron power-law index 𝑝 ≳ 3.

The model’s most strongly magnetized parameters give an electron power-law index of 3 − 4 (Figure 4.3),

which increases for decreasing magnetization. The soft state’s gamma-ray tail has luminosities on the order

of 1035 − 1037 erg/s above 50 keV [168]. Our model finds power-law luminosities above 50 keV between

1034 − 1037 erg/s, within the same order of magnitude. Calculations from observations find that the PLF

varies between 10−3 and 0.2 in the soft state of XRBs [166], which agrees well with the values found from

our model (Figure 4.8). As yet, trends of the PLF with inclination angle and spin cannot be found from

observations [167]. Testing our predictions concretely against observations will require less uncertainty in

the PLF.

The power-law emission in our model comes from synchrotron emission, whereas typical models for
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the power law assume inverse Compton scattering of blackbody disk photons off nonthermal particles [149,

152]. Our model therefore predicts more strongly polarized emission for the soft state’s emission above 10

keV than other models where inverse Compton scattering dominates. Current polarization measurements set

an upper limit of 70% for Cyg X-1’s 0.4 - 2 MeV emission in the soft state [169], which does not constrain

the radiation mechanism.

The hard state of XRBs such as Cyg X-1 shows an excess above 400 keV that fits well to a hybrid

thermal/nonthermal model with a power-law electron distribution index between 3.5 and 5 [170]. The

nonthermal electrons in that model could also be accelerated by turbulence or magnetic reconnection. If the

hierarchy of timescales satisfies Equation 4.10, the multizone equilibrium model presented in Section 4.3

could be adapted to a geometry relevant to the hard state.

4.5.2 Model Limitations

Many of our model assumptions were motivated by GRMHD simulations. Our finding that ions

and electrons decouple in the plunging region is consistent with estimates of the thermalization time from

single-temperature, ideal GRMHD simulations [157]. In fact, the decoupling region could extend even

outside the ISCO. The Ref. [51] model artificially sets the radial velocity to zero at the ISCO, forcing a

thin disk at 𝑟 > 𝑟ISCO whereas the thin disk could in principle thicken at larger radii depending on the

dominance of Coulomb collisions. For simplicity, in our model, the ion temperature and thus the ratio 𝐻/𝑅

was discontinuous at the ISCO. This discontinuity is not present in full 3D GRMHD simulations; instead,

a transition region forms between a thin disk and the hot flow [79, 80]. Such a transition region would

likely result in a less distinct bump from the thermal electrons in the plunging region. GRMHD simulations

also motivate magnetic reconnection as an important dissipation mechanism, demonstrating hallmarks of

reconnection such as current sheets and plasmoids throughout a magnetically-dominated disk [171, 172].

Our prescription for 𝛾2 and 𝑝 does not include the impact of particle anisotropy or magnetic guide field on

the electron distribution [90, 173], which could alter the observed spectrum. Including a guide field tends

to steepen 𝑝 and decrease 𝛾2 for a pair plasma [85, 90]. Pitch-angle anisotropy in a pair plasma can also

lead to temperature anisotropy for the thermal bulk [116, 173], which could affect radiation from the thermal
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plunging region electrons. Unlike GRMHD simulations, our model does not include vertical structure and

we assumed a constant 𝐻/𝑅 = 1 and a uniform distribution of the dissipation throughout the plunging region

volume. Vertical structure would presumably lead to a dense equatorial region with more optically thin

upper parts of the plunging region. We also assume uniform dissipation such that 𝑄+ ∝ 𝜌, as commonly

done in disk atmosphere models [174].

For simplicity, we did not include full radiative transport in our model. Instead, we assumed that

the thermal plunging region electrons cooled solely through thermal bremsstrahlung, neglecting thermal

synchrotron radiation because the average Lorentz factor of the thermal particles was less than 2 (i.e.

temperatures less than ∼ 109 K). We also neglect synchrotron self-absorption, since this effect is only

important for frequencies below ∼ 1015 Hz [175], outside the range we consider. We neglect cyclotron

radiation for the same reason. We restrict the observed radiation from the nonthermal electrons to be either

from synchrotron radiation or from inverse Comptonization of soft disk photons, i.e. we neglect synchrotron

self-Compton emission (SSC). Neglecting SSC does not result in large errors for small optical depth and

spectral index > 1, where synchrotron emission dominates over SSC [176]. We also do not consider

synchrotron and inverse Compton processes simultaneously; instead, we assume one or the other dominates.

We also assume a simple thermal + power-law electron distribution function, whereas Fokker-Planck models

evolving a power-law electron distribution thermalizing under electron-electron collisions show a more

complicated structure [160]. Although pair production could become important in this regime, it remains

unclear how pair-regulated reconnection would change when synchrotron losses are included [177]. We

note that Compton reflection off the cold disk could increase the luminosity above 10 keV by order unity

for sandwich-type models [150]. Including Compton reflection of the plunging region radiation off the cold

disk could also increase the high-energy luminosity and lead to higher power-law fractions. More detailed

modelling of reflection features such as the Fe K𝛼 emission line is beyond the scope of this work.

4.6 Conclusions

We have presented a semi-analytic model for the soft state of XRBs where the high-energy power-

law tail is produced by nonthermal electrons in the plunging region. We demonstrated the feasibility of
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having nonthermal electrons in the plunging region by examining the hierarchy between electron-proton

thermalization time, electron-electron collision time, electron cooling time, electron acceleration time, and

the infall time (Section 4.2, Figure 4.2). Using an analytic dynamical background and the results of particle-

in-cell simulations of magnetic reconnection, we constructed a steady-state model for the electron distribution

function at each radius in the plunging region (Section 4.3). The nonthermal electrons in this model produce

an observable power law from 10− 1000 keV with a photon spectral index Γ ≳ 2 (Figure 4.5). By exploring

the model parameter space, we show that plunging region emission from nonthermal electrons dominates

over thermal electrons for strongly-magnetized models and vice-versa for less strongly-magnetized models,

suggesting a Ref. [157]-type model. We found fractions of power law to total X-ray luminosity (power-law

fraction, PLF) consistent with observations for all values of spin (Figure 4.7). We predict an increase in

the observed PLF with inclination angle (Figure 4.8). Although the PLF in our model is consistent with

observational values, testing the trend with inclination angle and spin will require more observations.

Future work using numerical simulations could explore how and where the decoupling happens, as

well as its possible role in spectral state transitions and jet/wind launching.
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Chapter 5

GRMHD Simulations of Accretion Disk Truncation due to Coulomb Collisions

In this chapter, I build on Ch. 4 to study the impact of Coulomb collisions on the structure of the

disk-corona system in a global sense. The geometry of the disk-corona system remains largely unknown,

although some observations have suggested a relatively compact corona. Fully 3D GRMHD simulations

often assume the accretion disk plasma has a single temperature. The single-temperature assumption does

not hold for the thick disks used by the disk truncation model to describe the inner parts of the accretion

flow during the hard state of black hole binaries. Having previously analytically calculated that electrons and

protons should decouple within the plunging region of a thin disk, I now investigate how Coulomb collisions

can shape the disk both outside and inside the ISCO. Previous work has suggested that Coulomb collisions

due to a changing accretion rate could lead to the collapse of a thick disk and thus a state transition. However,

modeling radiation in the intermediate accretion regime is quite challenging numerically. In this work, I

model radiation as a cooling function that only affects electrons. I aim to describe the transition between a

thin and thick disk (if it exists) as a function of magnetic field and accretion rate. This work is ongoing.

5.1 Introduction

In accretion disk theory, optical depth characterizes the zeroth-order type of accretion flow. The

standard thin disk has 𝜏 ≫ 1 [9], whereas the well-known advection-dominated accretion flow (ADAF) is

optically-thin [56]. Transitions between these two accretion modes could occur in X-ray binaries, whose

spectral states are consistent with a puffy, optically thin flow in the hard state and a thin, optically thick disk

in the soft state [48]. Recent numerical simulations suggest that the hard-to-soft spectral transition (and thus
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thick-to-thin disk transition) could be triggered due to the efficiency of Coulomb collisions between electrons

and protons at intermediate mass accretion rates, collapsing the thick disk [58]. However, the numerical cost

of the Monte Carlo radiation prevents the disk from evolving long enough to actually collapse. As tends to

be the case, the numerically challenging regime is also one of the most interesting regimes.

Treating radiation in accretion disks across optical depth regimes poses a challenge to existing numer-

ical methods in general relativistic magnetohydrodynamic (GRMHD) codes. In the optically thin regime

where the optical depth 𝜏 is much less than 1, Monte Carlo methods can capture the relevant physics [99, 100,

104]. On the other hand, in the optically thick regime of 𝜏 ≫ 1 where scattering can be considered local,

treating radiation as a fluid using an M1-closure suffices [101]. However, both methods have disadvantages

when moving to the opposite regime. The M1-closure suffers from problems when scattering becomes highly

nonlocal, whereas Monte Carlo methods become prohibitively expensive as the optical depth increases and

the number of scatterings of superphotons increases.

The transition from optically-thin to optically-thick flow has been modelled numerically a handful of

times. Introducing a bistable cooling function leads to a thick-to-thin transition [79], but of course depends

explicitly on the location of the temperature switch, which is put in by hand. More recently, a single

simulation using the M1-closure method showed the self-consistent development of an inner hot flow and an

outer thin disk around 20 𝐺𝑀/𝑐2 for a two-temperature plasma [80]. The truncation in this case was due to

magnetic torques in a strongly magnetized disk.

Our goal is to develop a method that inexpensively captures the impact of radiation while not assuming

strong Coulomb coupling, thereby allowing for a thick-to-thin disk transition. To that end, we propose

an electron-only cooling function. Cooling only the electrons emulates the fact that protons do not cool

radiatively, and will only cool if Coulomb collisions with electrons are efficient. If we assume that synchrotron

radiation or inverse Compton scattering is the dominant cooling mechanism in the inner disk [5], then

relativistic electrons should rapidly lose energy until they reach Lorentz factors 𝛾 ∼ 1, i.e. a temperature of

∼ 109 K. We will therefore begin by setting a target temperature 𝑇𝑒,target = 109 K, although in principle this

number can vary — and will, once synchrotron cooling no longer dominates and the plasma is no longer

optically thin.
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5.2 Methods

For demonstration purposes, consider the public GRMHD code ebhlight [99, 100] that solves the

general relativistic ideal magnetohydrodynamic equations using the HARM scheme [98, 178]; see Ch. 2.5.1.

Conservative codes such as ebhlight conserve their primitive variables, in particular the total energy and

total entropy. The total energy 𝑢𝑔 includes the proton and electron energies 𝑢𝑝 and 𝑢𝑒 respectively, which

sum together linearly:

𝑢𝑔 = 𝑢𝑝 + 𝑢𝑒 . (5.1)

Protons and electrons have different adiabatic indices: electrons are relativistic so 𝛾𝑒 = 4/3, whereas the

protons are nonrelativistic and have 𝛾𝑝 = 5/3. Because of this difference in adiabatic indices, the electrons

and protons in a given volume heat (or cool) by different amounts when the volume compresses (or expands).

This difference in heating follows from the relationship between internal energy density and temperature:

𝑃𝑘 = (𝛾𝑘 − 1)𝑢𝑘 , (5.2)

where the subscript 𝑘 labels the species (total gas, electron, or proton) and 𝑃 is the pressure. Therefore, from

Eq. 5.1, the total gas temperature is not simply a sum of electron and proton temperature. Instead,

𝑇𝑔 =
𝛾𝑔 − 1
𝛾𝑒 − 1

𝑇𝑒 +
𝛾𝑔 − 1
𝛾𝑝 − 1

𝑇𝑝 . (5.3)

Total entropy and electron entropy are also conserved. Here, we will refer to the quantity

𝜅𝑘 = 𝑃𝑘𝜌
−𝛾𝑘 = (𝛾𝑘 − 1)𝑢𝑘𝜌−𝛾𝑘 = 𝑒 (𝛾𝑘−1)𝑠𝑘 , (5.4)

where 𝑠𝑘 is the entropy per particle. Using Eq. 5.1, 5.2, and 5.4, we can write the total gas entropy in terms

of electron and proton entropy as:

𝜅𝑔 = 𝑃𝑔𝜌
−𝛾𝑔 = (𝛾𝑔 − 1)𝑢𝑔𝜌−𝛾𝑔 = (𝛾𝑔 − 1)

(
𝑃𝑒

𝛾𝑒 − 1
+

𝑃𝑝

𝛾𝑝 − 1

)
𝜌−𝛾 (5.5)

=
𝛾𝑔 − 1
𝛾𝑒 − 1

𝜌𝛾𝑒−𝛾𝑔𝜅𝑒 +
𝛾𝑔 − 1
𝛾𝑝 − 1

𝜌𝛾𝑝−𝛾𝑔𝜅𝑝 . (5.6)
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5.2.1 Electron Fluid

Modelling electrons separately from protons is important for capturing radiative effects accurately.

Previous implementations either assume that the electron temperature is the same as the gas temperature,

which is completely invalid in the low density gas, or assume a fixed ratio 𝑇𝑝/𝑇𝑒 that depends on variables

such as radial location or magnetic field [179, 180]. However, these models do not actually keep track of

the electron heating or cooling. In order to use prescriptions from PIC simulations (see Ch. 2.5.2) that

determine what what fraction of viscous heating goes into protons vs. electrons from magnetic reconnection

or turbulence [67, 85, 86], simulations must actually keep track of electrons separately from protons.

An electron fluid, evolved separately from the background fluid [103], heats via Coulomb collisions

and grid-scale dissipation. Codes like ebhlight assume that the electrons do not affect the fluid dynamics,

only the thermodynamics. The electrons heat via grid-scale viscous dissipation. The viscous dissipation is

calculated from the difference of the conserved total entropy 𝜅𝑔 and the entropy calculated from the conserved

gas internal energy 𝑢𝑔, i.e.

𝜅𝑔 = (𝛾𝑔 − 1)𝑢𝑔𝜌−𝛾𝑔 , (5.7)

where 𝜅𝑔 includes numerical viscosity and resistivity. Because the stress tensor is conserved to machine

precision, the numerical viscosity/resistivity appears in the code as entropy, 𝜅𝑔 − 𝜅𝑔. This entropy comes

from the truncation errors in the code and as such only obeys the second law of thermodynamics over long

time- and volume-averages. Because total energy 𝑢𝑔 is conserved, entropy in this implementation can only

occur when one form of energy converts to another, i.e. magnetic to kinetic energy.

With the introduction of an electron fluid, proton quantities are calculated as the difference between

the total fluid and the electron fluid. Proton entropy, for example, is never explicitly evolved.

The code updates the electron entropy and total fluid entropy and outputs the viscous heating 𝑄visc

for both electrons and protons. The total heating rate 𝑄visc is calculated from the difference between the

entropy-conserving and the energy-conserving variables as described above. A fraction 𝑓𝑒 of the total heating

rate goes into electrons, while the remainder (1 − 𝑓𝑒)𝑄visc heats the protons. The fraction 𝑓𝑒 is a source of

much uncertainty. Many early models use an analytic prescription based off Landau damping of the magnetic
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cascade [66]. Lately, PIC simulations have probed how 𝑓𝑒 changes with magnetization, guide field, and

temperature among other variables in both magnetic reconnection set-ups and magnetic turbulence [67, 68,

86, 181]. For this work, we will use the prescription from magnetic reconnection [68].

5.2.2 Electron-only Cooling Function

The cooling function described below affects only this electron fluid, in contrast to single-fluid

GRMHD cooling functions that affect the entire gas, implicitly assuming strong Coulomb coupling.

The implementation of the electron cooling function follows Ref. [98]. We assume that any radiative

cooling is optically thin, leaving the system without interacting with the gas. Assuming isotropic radiation

in the fluid’s rest frame, the radiation removes energy from the local energy conservation equation via:

𝐺𝜇 = −L𝑢𝜇, (5.8)

where 𝐺𝜇 = ∇𝜇𝑇 𝜇𝜈 , 𝑢𝜇 is the fluid four-velocity. The quantity L is the energy radiated per unit time in the

fluid’s frame. We take

L =
2𝑠𝑢𝑒𝑌𝑞

𝑡cool
, (5.9)

where 𝑢𝑒 is the electron internal energy density and 𝑌 = 𝑇𝑒/𝑇𝑒,target − 1. We typically set 𝑞 = 1 and 𝑠 = 1;

see Ch. 5.3 for a parameter scan of these values. The cooling time 𝑡cool depends on the problem parameters.

For a GRMHD simulation, we typically set 𝑡cool = Ω−1, where Ω = (𝑟3/2 + 𝑎)−1 is the Keplerian orbital

frequency. Inside the ISCO, we assume a constant angular momentum. Associating 𝑡cool with the dynamical

time provides a short timescale, but likely severely overestimates the actual cooling time, which should be

orders of magnitude shorter. To avoid cooling the electrons in the unphysical jet region, we do not apply

the cooling function in regions where the magnetization 𝜎 ≡ 𝐵2/𝜌 > 𝜎cut. Unless otherwise noted, we take

𝜎cut = 1.

Checks and benchmarking of this electron-only cooling function are ongoing and will be described in

the following sections.
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5.2.3 Injected Viscous Heating Test

Viscous heating is a major source of heating in the torus problem. As such, I want to test how viscous

heating, Coulomb heating, and electron cooling all interact in a controlled set-up, i.e. in my gas box. Ideally,

I would inject a certain amount of viscosity that I prescribe and control. To illustrate some subtleties of

the test and to explain some of the behavior I’ve been seeing in the gas box, I will draw on the previous

descriptions of how the electron fluid and electron heating are implemented.

Remember that total energy 𝑢𝑔 is conserved during the viscous heating process. From the right side

of the second equals sign in Eq. 5.4, the conservation of 𝑢𝑔 and 𝜌 while 𝜅𝑔 increases means that 𝛾𝑔 should

change. Ref. [103] acknowledges that assuming 𝛾𝑔 is constant does not hold if 𝛾𝑒 ≠ 𝛾𝑝, but argues that the

assumption is reasonable because the change will not be significant.

Because the total gas temperature is determined from 𝑢𝑔, that also means that the total gas temperature

𝑇𝑔 does not change during the viscous heating step. As a result, we can write the proton temperature change

as a function of the electron temperature change using Eq. 5.3:

Δ𝑇𝑝 = −
(𝛾𝑝 − 1)
(𝛾𝑒 − 1) Δ𝑇𝑒 = −2Δ𝑇𝑒 . (5.10)

The protons actually decrease in temperature during the viscous heating process. In gas box tests where I

fixed Δ𝜅𝑔, I confirmed that the proton temperature decreased by twice the amount the electron temperature

increased. The lack of a total gas temperature increase combined with the forced electron temperature

increase means that viscous heating will be completely counteracted by Coulomb energy exchange when the

electrons and protons start with the same temperature.

5.3 Low Accretion Rates

We first test out the electron-only cooling function at low accretion rates where Coulomb coupling is

essentially negligible. In these tests, we can examine how electrons heat (due to adiabatic compression only,

no Coulomb heating) and cool due to “radiation”, i.e. the cooling function. These tests are 2D Fishbone-

Moncrief tori with an inner radius of 6𝑟𝑔 and a resolution of 160x128 cells in the 𝑟 and 𝜃 directions,

respectively.
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5.3.1 Parameter Scans

As shown in Fig. 5.1a’s blue line, the canonical simulation parameters lead to an electron temperature

that did not follow the target temperature. The electron temperature sits at the target of 109 K for radii larger

than 𝑟 ≳ 4𝑟𝑔. Within this radius, which is close to the ISCO, the electrons do not cool down to the target,

instead exceeding the target by a factor 7. One of the main topics of research for the first six months was

diagnosing why the electrons did not effectively cool down to the target.

Fig. 5.1 shows how the electron thermodynamics depend on a variety of parameters. One of our best

tools for controlling the electron thermodynamics is adjusting the cooling time. As shown in Fig. 5.1a,

lowering the cooling time to e.g. 𝑡cool = 1/(2Ω) does lower the temperature inside the ISCO, but does not

completely eliminate the problem of the electron temperature being above the target. Even extremely short

cooling times such as 𝑡cool = 1/(10Ω) (not shown) did not fully reach the target temperature. These lower

cooling times have an additional problem: they experience much more supercooling.

Another potential issue is the electron adiabatic index. Although the electrons are initially relativistically-

hot with an adiabatic index of 𝛾𝑒 = 4/3, when they cool down to 𝑇𝑒,target = 109 K, they are no longer

relativistically-hot and should have a nonrelativistic adiabatic index 𝛾𝑒 = 5/3. In the gas evolution, 𝑃𝑒𝑉
𝛾
𝑒

is constant and 𝑃𝑒𝑉 ∝ 𝑛𝑇𝑒 (ideal gas law). That means 𝑇𝑒𝑉𝛾𝑒−1 is constant. So, for the same volume

change 𝑉1 to 𝑉2, 𝑇1𝑉
𝛾𝑎−1
1 = 𝑇2𝑉

𝛾𝑎−1
2 , i.e. 𝑇2/𝑇1 = (𝑉1/𝑉2)𝛾𝑎−1. Then for our accretion disk problem of

compression, 𝑉2 < 𝑉1, i.e. (𝑉1/𝑉2) > 1 and 𝛾𝑎 increasing from 4/3 to 5/3 means (𝑉1/𝑉2)𝛾−1 increases

so 𝑇2/𝑇1 should be larger. Fig. 5.1b shows that increases the electron adiabatic index does indeed increase

the electron temperature, particularly within the inner regions where adiabatic compression is a dominant

heating source.

Variables such as the definition of the jet region or the arbitrary constant 𝑠 in Eq. 5.9 could also affect

the electron thermodynamics. As shown in Fig. 5.1c, the jet region defined by 𝜎cut does not greatly affect

the electron thermodynamics. Therefore, we keep 𝜎cut = 1 throughout these tests. In contrast, changing

the constant 𝑠 does affect the electron temperature since it is increasing the amount of energy removed from

the gas (Fig. 5.1d). Despite the benefit of a higher 𝑠 lowering the electron temperature within the ISCO, a
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Figure 5.1: Changing a variety of parameters did not eliminate the problem of the electron temperature
being much higher than the target at inner radii. The panels show the dependence of density-weighted shell-
averages time-averaged from 1500 to 2500 𝑟𝑔/𝑐 on a) electron cooling time, b) electron adiabatic index, c)
𝜎cut, and d) 𝑠. These parameters are defined in Eq. 5.9 or Sec. 5.2.2. Dotted vertical lines show the location
of the ISCO for this black hole spin of 𝑎 = 0.9375.
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higher 𝑠 also seems to overcool the gas, as can be seen by the orange line sitting below the target temperature.

Because this arbitrary factor moves the cooling function away from well-approximating a derivative, we keep

𝑠 = 1.

5.3.2 Tests Injecting Viscous Heating

The above tests are convincing evidence that the cooling function is not the problem. Next, we test the

idea that the sporadic, occasionally negative viscous heating could be interacting with the cooling function

in a way that leads to an electron temperature above the target. To test this idea, we use the injected viscous

heating test described in Sec. 5.2.3, which is best used when Coulomb collisions are negligible. We must

be careful not to inject too much viscous heating; otherwise the electron entropy floor or ceiling will trigger

and lead to unphysical behavior. As such, we inject a small amount of heating, 𝑑𝑄visc = 10−6 in code

units. Fig. 5.2 demonstrates the difference between the MHD heating described in Ch. 5.2.1 and the test

injected heating. The electrons are much hotter for a simulation that injects viscous heating but does not cool

electrons (blue line) compared to the MHD heating that does not cool electrons (orange line). In contrast,

the electrons in the injected viscous heating test case with cooling (purple) are colder within the ISCO than

the MHD heating case (green). In fact, the electrons almost exactly follow the target temperature for the

injected viscosity until radii where the cooling time becomes shorter than the simulation duration, around

20𝑟𝑔. This test suggests that the electrons will not reach the target temperature due to the nature of the code’s

viscous heating. As such, we will simply quantify viscous heating as a source of error within the ISCO.

5.4 Extending to High Accretion Rates

The goal of this project is to extend the electron-only cooling function to the intermediate mass

accretion regime where 10−6 ≲ ¤𝑚Edd ≲ 10−3. However, the ebhlight code’s implementation of Coulomb

collisions was never meant for high densities. In the high-density regime, explicitly solving for the Coulomb

energy exchange is unstable. In particular, solving a differential equation numerically ideally involves taking

small steps to approximate a derivative. High densities mean that the Coulomb exchange rate is large enough

to break the assumption of small steps. In the case of Coulomb heating, we are solving the following two
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Figure 5.2: Test 2D GRMHD simulations at low accretion rate ( ¤𝑚 ∼ 10−7 showing the impact of prescribing
viscous heating as opposed to the MHD heating method. Data are density-weighted shell averages, averaged
over times in the interval (3500, 4500)𝑟𝑔/𝑐. Dotted vertical line shows the ISCO; dashed horizontal line
shows the target temperature for the electron cooling function.
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equations:

d𝑢𝑒
d𝑡

=
𝑄coul(𝑢𝑒, 𝑢𝑝)

𝑢0 (5.11)

d𝑢𝑝
d𝑡

= −d𝑢𝑒
d𝑡
, (5.12)

where the Coulomb energy exchange rate 𝑄coul is given by Eq. 5.13.

The explicit evolution for Coulomb heating at high densities would calculate a value for the derivative

large enough to completely overshoot the equilibrium solution of 𝑇𝑒 = 𝑇𝑝 = 𝑇0. Of course, pushing the

Coulomb implementation beyond the low densities it was originally intended for leads to unphysical behavior.

In particular, the massive 𝑄coul would often trigger the code’s ceiling on the 𝑇𝑝/𝑇𝑒 ratio and therefore fix 𝑇𝑝

at a high value and 𝑇𝑒 at a low value, often several orders of magnitude below the electron target temperature.

In this section, I will discuss the issues I ran into when naively applying the explicit formulation of Coulomb

heating to high accretion rates, and the steps I took to address their shortcomings.

5.4.1 Analytic Estimates

To get a sense for how Coulomb heating depends on number density and the temperature difference

between electrons and protons, I will plot the analytic form of the Coulomb energy exchange rate from

Ref. [102]:

𝑄coul(𝑇𝑒, 𝑇𝑝) =
3
2
𝑚𝑝

𝑚𝑒
𝑛2

0Λ𝑐𝑘𝐵𝜎(𝑇𝑝 − 𝑇𝑒)
(

2(𝜃𝑒 + 𝜃𝑝)2 + 1
𝜃𝑒 + 𝜃𝑝

𝐾1(𝜃−1
𝑚 )

𝐾2(𝜃−1
𝑒 )𝐾2(𝜃−1

𝑝 )
) + 2

𝐾0(𝜃−1
𝑚 )

𝐾2(𝜃−1
𝑒 )𝐾2(𝜃−1

𝑝 )

)
,

(5.13)

where 𝜃𝑚 = 1/(1/𝜃𝑒 + 1/𝜃𝑝), 𝐾𝑖 are modified Bessel functions of the 𝑖th order, and 𝑛0 is the number density.

The Coulomb logarithm Λ is fixed to 20. Note that the derivative reaches zero when 𝑇𝑒 = 𝑇𝑝. Because the

Coulomb heating rate is proportional to density squared, a factor of ten increase in density results in a factor

of 100 increase in Coulomb heating.

Fig. 5.3 shows the properties of Coulomb heating rate. For a given proton temperature (assuming

𝑇𝑝 > 𝑇𝑒), the Coulomb heating rate decreases as electron temperature increases. For a given electron

temperature (assuming 𝑇𝑝 > 𝑇𝑒), the Coulomb heating rate increases as proton temperature increases.
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Figure 5.3: Coulomb heating rate as a function of a) electron temperature and b) proton temperature,
calculated using Eq. 5.13.

Roughly, Coulomb heating rate is directly proportional to proton temperature and inversely proportional to

electron temperature. The closer the temperatures get, the slower the heating rate.

Extending our simulations to the high-density regime where Coulomb heating is important risks

encountering a regime where the Coulomb heating in a single simulation time step is greater than the internal

energy density of the gas. To estimate whether such an error will occur in my accretion disk simulations, I

took characteristic densities and temperatures and calculated the “Coulomb quality factor”:

Coulomb Quality Factor =
𝑢𝑒/𝑄coul

𝐷𝑡
, (5.14)

where 𝐷𝑡 is the simulation timestep. A Coulomb quality factor of ≲ 1 or even 10 will likely result in

unphysical behavior, since it is not well approximating a derivative. In Fig. 5.4, I set 𝐷𝑡 = 6 × 10−3 as an

estimate pulled from the output of high accretion rate simulations. For the low accretion rate (Fig. 5.4a),

the simulation timestep is never an issue. For the large accretion rate (Fig. 5.4b), there is an interesting

dependence on electron and proton temperature. When the protons are about the same temperature as the

electrons but the electrons are hot (5×1010 K), the simulation timestep is very close to the Coulomb timestep.

These estimates suggest that cooling down the gas gradually might prevent unphysical behavior even in the

large accretion rate case.

Fig. 5.4c shows the specific case of electrons at the target temperature 𝑇𝑒,target = 109 K. From this plot

it is clear that protons need to be cooler than about 1010 K for the simulation timestep to be short enough at

high densities experienced in the simulation.
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Figure 5.4: Plots of the Coulomb quality factor (Eq. 5.14) at low accretion rates (panel a) and high accretion
rates (panel b) over proton temperature. Panel c fixes the electron temperature at a target value of 109 K and
shows how the Coulomb quality factor depends on mass density.
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5.4.2 Numerical Attempts with Explicit Coulomb Heating

Although we already know that ebhlight was never meant for higher accretion rates, estimates in

Ch. 5.4.1 suggest that if I can slow down cooling enough and approach the equilibrium solution slowly

enough, then perhaps the code will not crash. These approaches ultimately did not succeed and led to the

need to implement an implicit Coulomb solver, outlined in Ch. 5.4.3.

5.4.2.1 Empirical Markers of the problem

As described above, the large values for𝑄coul lead to reversals in the ordering of 𝑇𝑒 and 𝑇𝑝 that would

not occur if the derivative were well-approximated because it would reach zero. This error manifests in

several different diagnostics, beginning in 𝑄coul itself, moving to 𝑇𝑒/𝑇𝑝 and 𝑇𝑒, and finally affecting the

large-scale dynamics of the accretion disk because of the reaction on the total gas. The Coulomb quality

factor (Eq. 5.14) often provides even more evidence for this problem. Fig. 5.5 shows the difference between

high and low accretion rates for 3D simulations with resolution 320x256x160. In the problematic regions,

the electron temperature dips an order of magnitude below the target temperature (a), the ratio 𝑇𝑝/𝑇𝑒 hits its

ceiling value (b), the scale height-to-radius ratio 𝐻/𝑟 becomes wiggly (c), and the Coulomb quality factor

becomes less than 1 (d).

To further diagnose the problem, vertical slices taken at 𝜙 = 0 at a given time are shown in Fig. 5.6.

The top row shows that the electron temperature drops below the target in the midplane of the accretion disk,

where densities are higher and Coulomb coupling is stronger. The high 𝑇𝑝/𝑇𝑒 is driven by small electron

temperatures in the midplane. The energy exchange rates in the bottom row show how the magnitudes

compare. Viscous heating is sporadic but generally averages to a positive value. Electron cooling stops

occuring in the disk midplane around 20𝑟𝑔, presumably because the electron temperature has fallen below

the target. The last panel, with Coulomb energy exchange, shows that 𝑄coul is negative in the midplane. A

negative value for 𝑄coul means that electrons are hotter than protons, which contradicts the output of 𝑇𝑝/𝑇𝑒.

This figure demonstrates that the Coulomb overshoot happens within a single timestep.
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Figure 5.5: Illustration of unphysical behavior due to explicit evolution of Coulomb heating in the high-
density regime. Plots show density-weighted shell averages taken from high-resolution GRMHD simulations,
averaged over 13, 000 to 15, 000𝑟𝑔/𝑐.



111

Figure 5.6: The unphysical Coulomb exchange rate that breaks the explicit evolution happens predominantly
in the midplane of the accretion disk, where densities are highest. These slices are taken at 𝜙 = 0 at a
snapshot in time from high-resolution 3D GRMHD simulations.
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5.4.2.2 Attempted Solutions

Before moving to the best solution of an implicit Coulomb solver (see Ch. 5.4.3), many other attempts

to continue using the explicit evolution were made. Based off the idea that cooling and Coulomb exchange

generally needed to be slowed down (Ch. 5.4.1), we attempted to step closer and closer to the final equilibrium

state rather than start far from equilibrium and hope the algorithm held. For these attempts, we generally

restarted from a simulation with smaller accretion rate and changed variables such as the target temperature

and the cooling time. We also tried implementing a Coulomb limiter that would trigger whenever calling

the Coulomb function resulted in the ordering 𝑇𝑒 and 𝑇𝑝 reversing. Finally, we thought that implementing

isothermal electrons might fix the problem; see Ch. 5.C. However, none of these attempts at fixing the explicit

evolution led anywhere. Instead, we move on to implementing the implicit Coulomb evolution.

5.4.3 Implementing an Implicit Coulomb Solver

The way ebhlight implements viscous and Coulomb heating is with operator-splitting, which uses

the same fluid variables to calculate the values of source terms (viscous/Coulomb heating) and then adds

those together. The update of the final values 𝑢 𝑓𝑒 then reads

𝑢
𝑓

𝑒, 𝑓
= 𝑢

𝑓

𝑒,𝑖
+𝑄coul(𝑢𝑠𝑒)

Δ𝑡

𝑢0 , (5.15)

where the subscripts indicate the array (Pf or Ps). The explicit method simply sets 𝑄coul using 𝑢𝑠
𝑒,𝑖

, i.e. just

takes the values from the previous iteration and sets the Coulomb energy exchange rate.

To extend ebhlight to larger accretion rates, we need to implicitly solve for the Coulomb energy

exchange. We will therefore solve for 𝑢𝑠
𝑒, 𝑓

. From here on, we will drop the superscripts since they will all

be 𝑠; all that follows will serve to update 𝑢 𝑓𝑒 as in Eq. 5.15. Because total internal energy density 𝑢𝑔 is

conserved, we can condense the system of equations in Eq. 5.11 and 5.12 into a single equation using the

constraint of Eq. 5.1. The final equation reads:

d𝑢𝑒
d𝑡

=
𝑄coul(𝑢𝑒, 𝑢𝑔 − 𝑢𝑒)

𝑢0 . (5.16)

We discretize this equation with the Crank-Nicolson method [182] that takes the internal energy density 𝑢𝑛𝑒
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at step 𝑛 to 𝑢𝑛+1
𝑒 at step 𝑛 + 1.

𝑢𝑛+1
𝑒 − 𝑢𝑛𝑒
Δ𝑡

=
1
2

1
𝑢0

[
𝑄coul(𝑢𝑛+1

𝑒 , 𝑢𝑔 − 𝑢𝑛+1
𝑒 ) +𝑄coul(𝑢𝑛𝑒 , 𝑢𝑔 − 𝑢𝑛𝑒 )

]
. (5.17)

Because the right hand side of this equation is highly nonlinear in 𝑢𝑒 (see Eq. 5.13), we will solve it

numerically using Brent’s method [182]. Brent’s method requires an interval [𝑎, 𝑏] over which the right-

hand side switches side. With this problem we have an easy choice for the interval: assuming 𝑇𝑒 < 𝑇𝑝

initially, the minimum for 𝑇𝑒’s solution is 𝑇𝑒 and the maximum is the equilibrium temperature 𝑇0 (see

Appendix 5.A). In ebhlight, we could choose to use one of two arrays in calculating the values of Eq. 5.17.

We choose to maintain operator splitting, and therefore set the source terms and the difference 𝛿𝑢𝑒 = 𝑢𝑛+1
𝑒 −𝑢𝑛𝑒

using values from the Ps arrays, which are then used to update the Pf array’s 𝑢𝑒.

To avoid solving the equations in the regime where we know ahead of time what the solution will be, we

avoid the implicit solver in the single-temperature regime. Specifically, if |𝑇𝑒 −𝑇0 |/𝑇0 < 𝜖 , |𝑇𝑝 −𝑇0 |/𝑇0 < 𝜖 ,

and the calculated change in internal energy is large enough that 10Δ𝑢𝑒 > 𝑢𝑒, the solver will simply set

𝑇𝑒 = 𝑇𝑝 = 𝑇0 instead of implicitly solving Eq. 5.17.

5.4.3.1 Gas Box Implementation Tests

For a well-controlled set-up, I test the implementation of the implicit Coulomb heating in a 2D,

doubly-periodic box with a Minkowski metric. This set-up eliminates any viscous heating and adiabatic

heating/cooling. With this set-up, I can look at individual time steps to examine the numerical method.

As a first example, consider the high-density regime and start with electrons at 108 K and protons at

2× 109 K. Without cooling (i.e. by setting the target temperature to a large value of 1012 K), the two species

should equilibrate at a temperature between 108 and 2× 109 K. As seen in Fig. 5.7, the explicit solver breaks

down in this regime — as expected, because it was never meant for this regime. The implicit solver, on the

other hand, quickly equilibrates and maintains the same temperature for both species.

We also need to compare the operator-split vs. not operator-split implementation of the implicit

Coulomb solver described in Ch. 5.4.3. In this set-up, the electrons and protons start with the same

temperature 𝑇𝑒 = 𝑇𝑝 = 1010 K, sitting above the target temperature of 109 K. When the simulation begins,
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Figure 5.7: Gas box test for Coulomb thermalization in the high-density, single-temperature regime where
the explicit solver (left) breaks and sets 𝑇𝑝/𝑇𝑒 to its ceiling value, compared to the implicit solver (right) that
is meant for high densities.
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the two species should stay in the single-temperature regime and cool down to the target temperature.

However, as seen in the left panel of Fig. 5.8, the operator-split method breaks down. The non-operator-split

method that uses Pf values to evaluate Coulomb heating behaves as physically expected. This difference in

the single-temperature regime motivates our use of the non-operator-split regime in subsequent tests.

We outline several more tests in Fig. 5.9 that all use the non-operator-split implicit Coulomb heating.

The first test (shown in panel a) investigates the Coulomb energy exchange without any interference from the

electron cooling function. The electron and protons evolve smoothly towards their equilibrium temperature.

The second test (panel b) shows the case of electron cooling in a very low density case such that Coulomb

collisions are negligible. As expected, protons cannot cool except via Coulomb collisions and thus remain at

high temperatures, whereas the electrons cool down to the target temperature. In the third test, the density is

high enough to thermalize protons and electrons all the time, such that when electrons cool down to the target

temperature, protons follow closely. Finally, the combination of Coulomb collisions and electron cooling

demonstrates how the electrons initially heat up due to a large temperature difference, then cool down as the

temperature difference decreases (see Fig. 5.3). All of these tests break the explicit solver due to the high

densities.

5.4.3.2 2D Torus Implementation Tests

Next, I show the comparison of the three methods for Coulomb heating in 2D GRMHD models of a

thick accretion disk. These tests are 2D Fishbone-Moncrief tori with an inner radius of 6𝑟𝑔 and a resolution

of 160x128 cells in the 𝑟 and 𝜃 directions, respectively. These simulations have a weak magnetic field. To

ensure that the implicit Coulomb coupling does not affect the gas dynamics, I first show the evolution in the

low accretion rate case where electrons and protons do not interact strongly. The evolution stays relatively

similar for all implementations, although the operator split implicit method heats up electrons more by about

a factor of 2 within the ISCO. The ratio𝑄coul/𝑄𝑒visc stays below one at all radii, indicating the subdominance

of Coulomb heating in this regime.

At high accretion rate ¤𝑚 ∼ 104 ¤𝑚0, high densities begin to bring parts of the accretion disk into

a regime where Coulomb collisions cannot be treated explicitly. The Coulomb quality factor (Eq. 5.14)
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Figure 5.8: Gas box test for Coulomb heating in the single-temperature regime. The electrons and protons
should cool down to the same temperature to the target, but the operator-splitting implementation breaks
down (left) whereas the non-operator-splitting implementation behaves as expected (right).
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Figure 5.9: Two-species thermalization tests for gas box in flat space-time.
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Figure 5.10: 2D GRMHD tests of the Coulomb heating implementation at low accretion rate M7, where
it should not make a difference to use an implicit or explicit evolution. Plots show density-weighted shell
averages time-averaged from 4500 < 𝑡𝑐/𝑟𝑔 < 5000. Blue lines show the explicit evolution, which holds for
this low density limit, while orange and green show the two implicit methods, one that uses operator-splitting
(green) and one that does not (orange). Compare to the high-density regime in Fig. 5.11.
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becomes less than 1 in some places, resulting in spikes in the ratio 𝑇𝑝/𝑇𝑒 for the explicit evolution as the

floor and ceiling values for this ratio kick in. As parts of the disk enter the single-temperature regime, the

operator split implicit method also begins to break down, seen in the small spikes of 𝑇𝑝/𝑇𝑒 in the green

line. Only the non-operator split implicit method maintains a smooth temperature ratio at the radii where

the disk begins to collapse. Because the Coulomb energy exchange rate 𝑄coul is effectively smaller in the

implicit implementation compared to the (unlimited) explicit implementation, the electron temperature is

higher within the ISCO for the implicit method. The higher electron temperature and higher ratio 𝑇𝑝/𝑇𝑒 also

leads to a thicker disk within the ISCO. The ratio of Coulomb to viscous heating crosses 1 right around the

ISCO, demonstrating that Coulomb collisions dominate outside the ISCO.

5.5 Results

Because implementation and testing of the implicit Coulomb solver is ongoing, all results presented

in this section are tentative. In particular, the 3D simulations do not have production-run resolution and

therefore do not resolve the MRI. Because the MRI is an important source of viscous dissipation in these

weakly-magnetized disks,𝑄visc is likely too small, which could artificially lead to collapse of the disk. These

simulations have a resolution of (160, 128, 80) cells in the (𝑟, 𝜃, 𝜙) directions, respectively. The higher

accretion rate simulations are restarted from the lowest accretion rate (M7) at a time of 7000 𝑟𝑔/𝑐.

5.5.1 Temporal Evolution

As seen in Fig. 5.12, the M3 simulation is not in steady-state: the proton temperature is decreasing

rapidly at both radii shown. The higher accretion rate simulation M1 reaches an equilibrium from the

outside-in. M1’s proton temperature at large radius 10𝑟𝑔 reaches the electron temperature shortly after

restarting, around 7500 𝑟𝑔/𝑐. At the ISCO, M1’s proton temperature reaches the electron temperature only

at 12500 𝑟𝑔/𝑐, 5500𝑟𝑔/𝑐 after restarting. The mid-accretion rate M3 simulation has not reached equilibrium,

but is evolving quickly.

The disk collapsing from the outside-in might run counter to naive expectations that the disk should

evolve from the inside-out, since the dynamical time is much shorter at smaller radii. Fig. 5.13 shows relevant
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Figure 5.11: 2D GRMHD tests of the Coulomb heating implementation at high accretion rate M3; density-
weighted shell averages time-averaged from 4500 < 𝑡𝑐/𝑟𝑔 < 5000. Blue lines show the explicit evolution,
which breaks down for this high density limit, as seen in particularly in the ratio 𝑇𝑝/𝑇𝑒. Orange and green
lines show the two different implicit method implementations. Because the operator split method (green)
shows signs of breaking down in the single-temperature limit, we prefer the non-operator split method
(orange). Compare to the low-density regime in Fig. 5.10.
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Figure 5.12: Density-weighted shell averages at 𝑟 = 2.04𝑟𝑔 (left) and 𝑟 = 10.0𝑟𝑔 (right) plotted over time
to demonstrate the lack of steady-state. The speed of equilibration depends both on the radial location and
the accretion rate. The target temperature 109 K is shown in the top row as a dotted horizontal line. Dotted
lines in the bottom row show the minimum and maximum ratios for 𝑇𝑝/𝑇𝑒 and the single-temperature case
of 𝑇𝑝/𝑇𝑒 = 1.
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timescales for protons and electrons, defined as follows:

𝑡𝑖heat =
𝑢𝑝

𝑄𝑖
visc

𝑡𝑒heat =
𝑢𝑒
𝑄𝑒

visc

𝑡𝑖Coul =
𝑢𝑝
𝑄coul

𝑡𝑒Coul =
𝑢𝑒
𝑄coul

𝑡cool =
1
Ω

𝑡𝑒cool =
𝑢𝑒
𝑄coo

.

(5.18)

Finally, 𝑡infall(𝑟) =
∫ ∞
𝑟
𝑢0 d𝑟 .

In absolute terms, 𝑡𝑒Coul is longer at larger radii. However, relative to the infall time, 𝑡𝑒Coul is much

shorter at 10𝑟𝑔 and close to the infall time at the ISCO. For M7, the Coulomb time is greater than the infall

time for both electrons and protons for 𝑟 ≲ 40𝑟𝑔. For M1 and M3, the Coulomb time is shorter than the

infall time until within the ISCO, where the infall time becomes shorter than the Coulomb time. For M1

and M3, the electron cooling and electron Coulomb time are practically identical, showing that these two

physical processes balance each other.

5.5.2 Radial Structure

Ideally, we would average over an infall time after the simulations reached steady-state. However, time

constraints limited the amount of time these simulations were run for. Given this caveat, it is nevertheless

interesting to examine the radial structure of the accretion disks as a function of accretion rate. Fig. 5.14

shows the electron temperature, 𝑇𝑝/𝑇𝑒, 𝐻/𝑟 , and 𝑄coul/𝑄𝑒visc shell-averages as a function of radius. As

noted in Ch. 5.2.3, the electron temperature does not reach the target temperature in the inner portions of

the accretion flow. The lowest accretion rate, M7, has protons that are orders of magnitude hotter than the

electrons everywhere within the inner 50𝑟𝑔. In contrast, the protons in the M3 run have begun to cool down

to the electron temperature. The highest coupling results in a disk at the single-temperature regime, seen by

𝑇𝑝 = 𝑇𝑒 for the M1 simulation. Both M3 and M1 appear to be cooling towards the thin disk 𝐻/𝑟 scaling.

The final panel shows that for M7 Coulomb collisions are always subdominant to viscous heating in that

𝑄coul/𝑄𝑒visc < 1. For M1 on the other hand, 𝑄coul/𝑄𝑒visc > 1 everywhere, showing that Coulomb collisions

dominate viscous heating. The simulation M3 experiences both regimes, where Coulomb collisions are

subdominant at 𝑟 ≲ 𝑟ISCO and dominant for 𝑟 ≳ 𝑟ISCO. It is this transition that could lead to disk truncation.
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Figure 5.13: Density-weighted shell averages of relevant proton and electron timescales for three different
accretion rates. Timescales are normalized to the dynamical time 𝑡dyn = 1/Ω. Here, the black vertical dotted
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Figure 5.14: Density-weighted shell averages, time-averaged over the interval 1.4×104 < 𝑡𝑐/𝑟𝑔 < 1.5×104.
Dotted vertical black line shows the location of the ISCO. Dotted vertical colored lines show the location of
the infall equilibrium radius 𝑟𝑒𝑞 where 𝑡 = 𝑟𝑒𝑞/|𝑣𝑟 |. Dotted black lines in the 𝑇𝑝/𝑇𝑒 and 𝑄coul/𝑄𝑒visc plots
shows where the ratio equals 1. Dotted black line in the 𝐻/𝑟 plot shows the theoretical thin disk scaling for
𝑇𝑝 = 𝑇𝑒 = 𝑇target.
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More diagnostics are plotted in Fig. 5.15. The first panel shows that the Coulomb quality time (Eq. 5.14

is much greater than 1 for all simulations, showing that the implicit Coulomb implementation successfully

avoids overcooling via Coulomb collisions. The second panel shows that 𝑄cool/𝑄coul ∼ 1 for M1 and M3,

indicating that these two simulations are in the regime where Coulomb collisions balance cooling. That is

in contrast to M7, where cooling instead balances viscous heating rather than Coulomb heating. The bottom

row shows the MRI quality factors to demonstrate that the simulations are rather severely underresolved,

leading to potential problems.

5.5.3 Vertical Structure

To get a sense for the vertical structure of the simulations, we plot phi-averaged slices, time-averaged

over the same time period as the density-weighted shell averages in Fig. 5.16. The higher accretion rate

simulations M3 and M1 become strongly magnetized in the inner disk regions, reaching 𝛽 < 1 particularly

within 𝑟 ≲ 25𝑟𝑔. Fingers of less-strongly magnetized gas reach all the way down to the event horizon. The

density, shown in code units, clearly increases and forms a dense core for M3 and M1. The highest accretion

rate simulation M1 has a denser outline surrounding the main body. The ratio 𝑇𝑝/𝑇𝑒 clearly shows how

Coulomb collisions bring the electrons and protons into thermal equilibrium. For M7, protons are always

much hotter than protons. For M3 and M1, the body of the disk has protons and electrons at the same

temperature. The highest accretion rate has a noticeably larger area where 𝑇𝑝/𝑇𝑒 ∼ 1, extending to larger

heights above the midplane. The final panel shows how Coulomb collisions dominate the electron heating

within the disk body, whereas viscous heating dominates at larger heights.

5.5.4 Higher Target Temperature

A constant electron temperature of 109 K would mean a disk scale height-to-radius ratio of 0.018 at

the ISCO. Such a small 𝐻/𝑟 pushes the limits of computational capabilities to resolve the MRI. As such, we

also examine a target temperature of 1010 K, which gives 𝐻/𝑟 = 0.057 at the ISCO. It is currently unclear

how much of an impact this change in target temperature will have on the overall physics of the disk, since

1010 K could be reaching into a physically different regime.
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Figure 5.15: Density-weighted shell averages, time-averaged over the interval 1.4×104 < 𝑡𝑐/𝑟𝑔 < 1.5×104.
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Figure 5.16: Azimuthally-averaged vertical slices for three accretion rates, time-averaged over the interval
1.4 × 104 < 𝑡𝑐/𝑟𝑔 < 1.5 × 104. The solid contour shows 𝜎 = 1. The dashed contours show 𝜌 = 1 and 10.
The dotted contours show 𝛽 = 1.



128

The results are shown in Fig. 5.17. Note that the simulation with a target temperature of 1010 K

shows that 𝑇𝑝 is dropping over the course of this time-average, and therefore has not reached steady state yet.

The electron temperature is obviously higher for the larger target temperature, but 𝑇𝑝/𝑇𝑒 is approximately

the same. The protons therefore have a higher temperature in the higher target temperature case. Neither

simulation has reached its target 𝐻/𝑟 , again probably due to the need for a longer evolution period. The ratio

𝑄coul/𝑄𝑒visc, however, looks similar.

5.5.5 Constant 𝐻/𝑟

In the thin disk regime, we might expect a constant 𝐻/𝑟 rather than a constant target temperature that

was motivated by optically-thin inverse Compton scattering. In this section, we explore preliminary results

for simulations where the target temperature was set to scale as 𝑇 ∝ 1/𝑟.

We compare the results in Fig. 5.18; note these are not yet in a steady state. As before, the higher

accretion rate simulation M1 has electron temperatures close to the target even within the ISCO. The M1

simulation’s proton-electron temperature ratio is only about a factor of 3 greater than the target, compared

to M3’s factor of 10 or more, though that could be due to M3 taking a longer time to equilibrate. The values

for 𝐻/𝑟 are not close to their targets (dotted lines), which could be a result of low spatial resolution or an

indication that steady-state has not yet been reached.

5.6 Discussion and Conclusions

Although this work is still in the early stages, we have demonstrated the potential of an electron-only

cooling function. After implementing an implicit solver for Coulomb energy exchange, we show that at

high accretion rates ¤𝑚 ∼ 0.1 ¤𝑚Edd, an initially hot accretion flow quickly approaches the single-temperature

regime. We have also found preliminary evidence for a puffy region within the ISCO at intermediate

accretion rates M3, which needs to be further explored. In the future, I aim to determine the persistence of

this transition and to examine its dependence on accretion rate in high-resolution simulations.
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Figure 5.17: Density-weighted shell averages, time-averaged over the interval 1.4×104 < 𝑡𝑐/𝑟𝑔 < 1.5×104.
Simulations have an accretion rate that is about the same, ¤𝑚 ∼ 10−3 ¤𝑚Edd.
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Figure 5.18: Density-weighted shell averages, time-averaged over the interval 1.4×104 < 𝑡𝑐/𝑟𝑔 < 1.5×104.
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5.A Coulomb Heating Equilibrium Temperature

Because total energy is conserved, we can easily solve for the equilibrium temperature 𝑇0 such that

𝑇𝑒 = 𝑇𝑖 under the influence of Coulomb collisions. The temperature is related to the internal energy density

as

𝑇𝑘 = 𝐴𝑘𝑢𝑘 , (5.19)

where 𝐴𝑝 = (𝛾𝑝 − 1)/(𝑛0𝑘𝐵) in SI units and 𝐴𝑝 = (𝛾𝑝 − 1) ∗𝑈unit/(𝜌 ∗𝑁unit𝑘𝐵) in code units. The electron

energy density has a different coefficient 𝐴𝑒 because it is found from the electron entropy:

𝑢𝑒 =
𝜅𝑒𝜌

𝛾𝑒

𝛾𝑒 − 1
(5.20)

𝑇𝑒 =
𝑚𝑝𝑐

2(𝛾𝑒 − 1)
𝑘𝐵𝜌

𝑢𝑒 = 𝐴𝑒𝑢𝑒 . (5.21)

Using Eq. 5.1, with 𝑇𝑒 = 𝑇𝑝 = 𝑇0 we have

𝑇𝑝 = 𝐴𝑝 (𝑢𝑔 − 𝑢𝑒) = 𝐴𝑝
(
𝑢𝑔 −

𝑇𝑒

𝐴𝑒

)
(5.22)

= 𝑇0 = 𝐴𝑝

(
𝑢𝑔 −

𝑇0

𝐴𝑒

)
. (5.23)

Now solving for 𝑇0, we obtain the equilibrium temperature in terms of the internal energy density 𝑢𝑔:

𝑇0 = 𝑢𝑔
𝐴𝑒𝐴𝑝

𝐴𝑒 + 𝐴𝑝
. (5.24)

This equation matches with Ref. [103] Eq. 13.

5.B Thin Disk Scale Height

To calculate the expected value and scaling of the scale height to radius ratio, we start with

𝐻 =
𝑐𝑠

Ω
(5.25)

where the sound speed 𝑐𝑠 is defined as 𝑐2
𝑠 = 𝛾𝑃/𝜌 and we set the angular velocity to its Keplerian value

Ω = Ω𝐾 = 1/(𝑟1/5 + 𝑎). Reducing the sound speed more, we have

𝑐2
𝑠 = 𝛾𝑝

𝑃

𝜌
= 𝛾𝑝

𝑛𝑘𝐵𝑇𝑝

𝜌
= 𝛾𝑝𝑚𝑃𝑘𝐵𝑇𝑝 . (5.26)
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Plugging into Eq. 5.25, we have

𝐻

𝑟
=

√︄
𝑘𝐵𝛾𝑝

𝐺𝑀𝑚𝑃
𝑇

1/2
𝑝 𝑟

1/2
cm (5.27)

=

√︄
𝑘𝐵𝛾𝑝

𝑚𝑃𝑐
2𝑇

1/2
𝑝 𝑟

1/2
rg (5.28)

where the first line is in SI units and the second is in code units.

For a black hole spin of 𝑎 = 0.9375, we find that at the ISCO (𝑟 = 2.0𝑟𝑔),

𝐻

𝑟
(𝑇 = 109 K) = 0.018 (5.29)

𝐻

𝑟
(𝑇 = 1010 K) = 0.057 (5.30)

(5.31)

5.C Implementing Isothermal Electrons

As a way to bracket the uncertainty in the viscous MHD heating, we want to implement isothermal

electrons. The idea is that if we fix the electron temperature, we can see how viscous heating and Coulomb

heating differs from the consistently-evolved electron temperature and obtain an upper bound for the cooling

that occurs. There are multiple conceivable ways of implementing isothermal electrons: i) set the cooling

time to be dt (i.e. instantaneous cooling), or ii) set the electrons to be isothermal at the target temperature.

The first approach resulted in unphysical heating/cooling. That makes sense because the cooling function

is known to be unstable when the cooling time is close to the time step value (e.g. Ref. [99, Sec. 3.3]

Therefore, we pursue the second option. Note that to actually set the electrons to be isothermal, we do not

want to touch any of the fluid evolution, i.e. we only want to edit KEL, not KTOT. Also note that most of

this work was conducted with the explicit Coulomb implementation. It may be beneficial in the future to

examine isothermal electrons once the implicit Coulomb function implementation is fully tested.

To bracket the error due to viscous heating and our cooling function, there are two separate concepts

that we test separately. The first concept is that of isothermal electrons, i.e. fixing the electron temperature

at basically every step. The problem with that approach is that the output of 𝑄coul becomes essentially

meaningless (if not just zero always). The second idea is related to attempting to fix the crash at high
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accretion rates that is possibly due to Qcoul being large enough to trigger the 𝑇𝑝/𝑇𝑒 ceiling/floor – the

Coulomb time 𝑢𝑒/𝑄coul is on the order of the simulation time step. In this approach, we simply use the

electron target temperature to calculate the Coulomb energy exchange rate 𝑄coul, but do not actually reset 𝑇𝑒

at all. The benefit of this approach is that we can quantify the error — we know how much of a mistake we

make by setting 𝑇𝑒 = 𝑇𝑒,target because we output the actual 𝑇𝑒. We can then calculate what 𝑄coul would have

been if we had not made this assumption.

The isothermal electron implementation is flagged with the ISOTHERMALE tag, default False set in

the config.py file. Setting 𝑇𝑒 for 𝑄coul and nothing else is flagged as FIXEDTE. The idea is to just fix

𝑇𝑒 in the 𝑄coul method, and then fix KEL after applying the radiation force to the electrons. The goal is

to keep having a nonzero 𝑄cool and thus nonzero radiation pressure, but still having isothermal electrons.

To enforce isothermal electrons, we make changes in the electrons.c file, flagged by the ISOTHERMALE

tag. The very first change is in the init electrons function. The default initialization sets the electron

temperature by assuming that the electron internal energy is a fixed fraction fel0 of the total gas internal

energy. Adjusting the electron temperature to have the target temperature does decrease the gas temperature

(because 𝑢𝑔 = 𝑢𝑒 + 𝑢𝑝 is fixed and we’re increasing 𝑢𝑒). In a test, the electron temperature increased from

3.38 × 108 K to 109 K and the proton temperature decreased from 6.7 × 1010 K to 6.6 × 109 K. However, in

tests done later, the electron temperature could not be set to the target because it was hitting the Tp/𝑇𝑒 floor

(electrons much hotter than protons).

5.C.1 Using Fixed Electron Temperature in Coulomb Exchange

As seen in Fig. 5.19, the fake 𝑄coul is fine for low ¤𝑚, although it does have an error of almost 100% in

the inner 2𝑟𝑔 (without fake 𝑄coul, 𝑇𝑒 = 3 × 109 K, with fake 𝑄coul, 𝑇𝑒 = 5 × 109 K). The density 𝜌 is larger

with the fake 𝑄coul because 𝑄coul is larger. Why is 𝑄coul larger? Well, if 𝑇𝑝/𝑇𝑒 is the same but 𝑇𝑒 is 2 times

larger, then 𝑇𝑝 − 𝑇𝑒 and hence 𝑄coul is also two times larger:

𝑇𝑝𝑏 − 𝑇𝑒𝑏 = 𝑇𝑝𝑏
(
1 − 𝑇𝑒𝑏

𝑇𝑝𝑏

)
= 𝑇𝑝𝑏

(
1 − 𝑇𝑒𝑎

𝑇𝑝𝑎

)
(5.32)

=
𝑇𝑝𝑏

𝑇𝑝𝑎
(𝑇𝑒𝑎 − 𝑇𝑝𝑎). (5.33)
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Figure 5.19: Density-weighted shell averages from 2D GRMHD torus tests with isothermal electrons, time-
averaged over 4500 < 𝑡𝑐/𝑟𝑔 < 5000. This implementation sets 𝑇𝑒 = 109 K only while calculating the
Coulomb energy exchange rate. It does not fix the problems at high accretion rate, which are likely due to
using an explicit evolution for the Coulomb heating (Ch. 5.4.3).
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At the initial condition, the fake 𝑄coul results in a larger 𝑇𝑒 than we would have otherwise (𝑇𝑒 = 109

instead of 108 K), which lowers 𝑇𝑝 and makes 𝑇𝑝 −𝑇𝑒 smaller, i.e. 𝑄coul smaller. Then smaller 𝑄coul allows

𝑇𝑒 and 𝑇𝑝 to drift further apart. I actually think this implementation makes the problem worse, because 𝜌

being higher than it should be results in higher 𝑄coul, which triggers the 𝑇𝑝/𝑇𝑒 ceiling/floor cycle faster.

Indeed, the 𝑇𝑝/𝑇𝑒 ratio looks worse for the high ¤𝑚 fake 𝑄coul – it is basically at the ceiling at 𝑟 ∼ 20𝑟𝑔.

5.C.2 Hard-coding 𝑇𝑒 = 109 K

From Fig. 5.20, hardcoding the electron temperature whenever possible works fine for low ¤𝑚: 𝐻/𝑟

looks very similar. 𝑇𝑝/𝑇𝑒 is much larger for the isothermal electrons, i.e. the protons are hotter. In Ch. 5.4.1,

we see that for a given proton temperature, 𝑄coul is smaller for larger 𝑇𝑒. Since the initial condition changes

to have hotter electrons, maybe that is decreasing 𝑄coul.

For larger accretion rate, the problem of 𝑇𝑝/𝑇𝑒 going wild seems to be solved. The purple 𝑇𝑝/𝑇𝑒 looks

extremely similar to the small accretion rate isothermal case. Interestingly, 𝐻/𝑟 doesn’t seem to change with

accretion rate except within the ISCO, which may or may not be physical. Note that 𝑄coul is much larger,

but the protons are still basically virial. The Coulomb quality factor looks good, so 𝑄coul is probably under

control, i.e. it is circumventing the 𝑇𝑝/𝑇𝑒 ceiling/floor cycle. I had reset KEL after 𝑄coul, so 𝑄cool was super

low and didn’t back react on the gas at all, which could be the problem. Further tests will suss out what is

wrong with this implementation.
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Figure 5.20: Density-weighted shell averages from 2D GRMHD torus tests, time-averaged over 4500 <

𝑡𝑐/𝑟𝑔 < 5000. This implementation sets 𝑇𝑒 = 109 K only while calculating the Coulomb energy exchange
rate. Because 𝑄coul is extremely large with seemingly no impact on the disk structure and 𝐻/𝑟, something
must be wrong with this implementation.



Chapter 6

Summary and Conclusions

In this thesis, I study two-temperature and kinetic plasma physics processes in the accretion disks and

coronae around black holes. These processes can modify the underlying electron distribution and therefore

affect the nonthermal emission observed from accretion disks and coronae around black holes. In principle,

these processes can also affect the large-scale dynamics of accretion disks and their coronae, as discussed

below. In the three main chapters of this thesis, I explore these processes on progressively larger length

scales, moving from kinetic physics to MHD physics.

I begin by studying a small, local patch of plasma in the corona (Ch. 3). I ignore gradients in

background density and magnetic field in favor of probing the kinetic physics of the collisionless coronal

plasma with PIC simulations. To emulate how a corona sitting atop an accretion disk would receive energy

from the disk, I drive the system with asymmetric energy. I examine how the turbulent cascade’s formation

is slowed by this asymmetry and demonstrate that particle acceleration also proceeds on slower timescales

for this system. If the light-crossing time of the corona’s finite extent is shorter than the development time

of these high-energy particles, then the high-energy particles will not occur in the corona. In addition, I

discover a momentum-coupling mechanism that could launch relativistic winds from a corona. Future work

will determine whether this relativistic mechanism could affect the dynamics of a disk/corona system by, for

example, removing a significant amount of angular momentum.

Next, I discuss the possibility of accelerating particles within the plunging region of a thin accretion

disk (Ch. 4). I show that conditions are suitable for electrons to be accelerated to high-energies and to

remain at high energies until they radiate away their energy, rather than being thermalized. In addition, I
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use ray-tracing to show that power-law emission from within the plunging region comprises a fraction of

the total luminosity that is consistent with observations. I make predictions for observational trends of the

power-law fraction with black hole spin and the system inclination angle.

Finally, I simulate the two-temperature plasma in a full accretion disk (Ch. 5). I test the previous

chapter’s prediction that electrons and protons should decouple in the inner regions of an accretion disk

when Coulomb collisions become inefficient. This decoupling could significantly affect the structure of an

accretion disk, leading to the collapse of thick accretion flow or leading to a puffy disk at the inner parts of

a thin accretion disk. By using full GRMHD simulations, I can probe the radial structure of this transition

and how it depends on accretion rate. This work could lead to better understanding of the disk truncation

model for BHB state transitions.

Moving forward, there are currently two main avenues for investigating collisionless effects on scales

of an accretion disk. In the first, PIC simulations create prescriptions that GRMHD simulations can use

to model a nonthermal population of electrons atop a thermal fluid. This approach is useful to gain

a global understanding of how much small-scale physics should affect overall dynamics and observed

radiation. However, this avenue is slightly tricky due to the number of important variables, including

currently unknown parameters and transport of nonthermal particles. For example, my work in Ch. 3

showed that asymmetric energy injection can significantly impact the development of nonthermal electrons.

So far, GRMHD simulations using PIC prescriptions have not included the effect of asymmetric energy

injection, among other factors. Electron cooling in particular can drastically change the efficiency of particle

acceleration, as can the presence of a guide field during reconnection. The other avenue is to use PIC for

the entire accretion disk. This approach is extremely difficult computationally, and as such is still in the very

early stages of development.

Upcoming X-ray telescopes will provide more opportunities for interpreting emission from the

disk/corona system. Understanding the kinetic and two-temperature plasma physics of the disk/corona

is crucial for creating accurate observational models. X-ray polarization measurements are often cited as

a possible mechanism to distinguish between various coronal geometries, especially with the recent launch

of IXPE. However, these models make assumptions about the disk/corona geometry in the first place, and
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often assume a thermal electron distribution. In addition to IXPE, the soon-to-launch XRISM telescope will

provide energy spectra will excellent spectral resolution. The hope is that XRISM will separate out spec-

troscopic lines, particularly the iron lines that are commonly used to measure black hole spin. However, the

presence of these iron lines depends on an understanding of the ambient radiation distribution. The radiation

in turn depends on the kinetic physics and dynamics in the accretion disk/corona. In addition, non-optically

thin effects could completely change the interpretation of reverberation mapping data. Understanding where

in the accretion disk different regimes apply is crucial to interpreting a variety of observational data. In the

future, I hope to explore more ways to bridge the collisional and collisionless plasma physics regimes in the

plasmas around black holes.
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Appendix A

Local Simulations of Heating Torques on a Luminous Body in an Accretion Disk

Prologue

Objects such as stars and black holes can form in the thin accretion disk around a supermassive black

hole. Because these objects are embedded in the gas of the accretion disk, they can accrete material and

heat up the disk around themselves. Because these objects are not co-rotating with the disk, the torques

present due to the heated gas are asymmetric and can cause the object to migrate within the AGN disk. In

this paper, I examine the scaling of this torque with variables such as luminosity of the body and the thermal

conductivity of the gas. I use hydrodynamic simulations in a shearing box, a local simulation that captures

the shear flow but neglects vertical and radial structure of the accretion disk. This work was completed over

the course of the 2019 summer school at the Center for Computational Astrophysics under the guidance of

Phil Armitage and Yan-Fei Jiang. It was published in Ref. [7].

Abstract

A luminous body embedded in an accretion disk can generate asymmetric density perturbations that

lead to a net torque and thus orbital migration of the body. Linear theory has shown that this heating

torque gives rise to a migration term linear in the body’s mass that can oppose or even reverse that arising

from the sum of gravitational Lindblad and co-orbital torques. We use high-resolution local 3D shearing

sheet simulations of a zero-mass test particle in an unstratified disk to assess the accuracy and domain

of applicability of the linear theory. We find agreement between analytic and simulation results to better

than 10% in the low luminosity, low thermal conductivity regime, but measure deviations in both the non-
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linear (high luminosity) and the high thermal conductivity regimes. In the non-linear regime, linear theory

overpredicts the acceleration due to the heating torque, potentially due to the neglect of non-linear terms in

the heat flux. In the high thermal conductivity regime linear theory underpredicts the acceleration, which

scales with a power-law index of −1 rather than −3/2, although here both non-linear and computational

constraints play a role. We discuss the impact of the heating torque for the evolution of low-mass planets in

protoplanetary disks, and for massive stars or accreting compact objects embedded in Active Galactic Nuclei

disks. For the latter case, we show that the thermal torque is likely to be the dominant physical effect at disk

radii where the optical depth drops below 𝜏 ≲ 0.07𝛼−3/2𝜖𝑐/𝑣𝐾 .

A.1 Introduction

Planets, stars or compact objects orbiting within accretion disks perturb surrounding gas due to

gravitational forces [183], accretion [184], the release of heat or radiation [185–187], and winds [188]. It

is commonly the case that the resulting density perturbations leading and trailing the orbital motion are

asymmetric, producing a gravitational back-reaction and a non-zero torque on the body. The torque leads to

orbital migration—either an increase or a decrease in the semi-major axis—and evolution of any eccentricity

or inclination (usually in the sense of damping, but in the opposite sense when combined with the release

of heat [189]). In many circumstances of interest the time scale for migration is short compared to the disk

lifetime, making it probable that observable properties of the system are substantially shaped by the effects

of migration.

The longest-studied torque is that due to the purely gravitational perturbation of the disk-embedded

object. It is made up of two independent components, one from waves excited at Lindblad resonances and

one exerted in the co-orbital region [190], both of which scale as the square of the object’s mass. The

net Lindblad torque (summing the opposite-signed contributions from interior and exterior resonances) has

some dependence on disk properties, but is mostly due to intrinsic asymmetries in the interaction and almost

always leads to inward migration [191]. The co-orbital torque, on the other hand, can lead to either inward

or outward migration, and depends in a complex way on numerous properties of the disk [including radial

gradients of vortensity and entropy, viscosity, thermal diffusivity, and disk winds; 192, 193].
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Numerical simulations show that thermal effects, either in the disk gas in the vicinity of the planet or

associated with the release of heat or radiation from a luminous body, result in additional torques [185, 186,

194]. Unlike the purely gravitational torques, thermal effects can (in principle) remain significant even for

very low mass bodies. In particular, Ref. [187], using linear perturbation theory, identified a “heating torque"

that arises when an orbiting body injects thermal energy into the surrounding disk. The thermal energy leads

to the formation of low-density lobes near the planet, which are generically asymmetric, producing a torque.

This heating torque is due purely to the injection of luminosity into the surrounding gas; the effect of the

planet’s gravitational potential leads to another type of thermal torque called the “cold thermal torque". The

cold and the heating thermal torques can be separated and studied independently in the linear regime, that is,

whereas the cold thermal torque is only present for a massive planet, the heating torque can be studied for a

massless planet. Both the heating torque and the cold thermal torque can be on the same order of magnitude

as other torques that cause migration (such as the Lindblad torque), and typically lead to outward migration.

The consequences of thermal torques on the migration rate of disk-embedded objects have been

studied in the context of low-mass planet formation, where Lindblad torques alone would cause planets with

masses of the order of the Earth’s mass to migrate toward the central star on a timescale shorter than the

disk lifetime. The luminosity on these mass scales typically results from pebble accretion [195, 196]. The

heating torque modifies the predicted map of where in the disk inward and outward migration occur [197],

though the consequences for the final population of planets that form may be modest [198].

Heating torques could also impact the migration rate of luminous bodies such as stars and accreting

stellar-mass black holes, which can be captured [199] or form [200–203] in the gas disks around supermassive

black holes. Heating torques could interact with other gas torques (e.g. Lindblad torque, corotation torques)

to form a migration trap—a radius in Active Galactic Nuclei (AGN) disk where the net torque is zero.

Such migration traps would host an increased density of objects and provide a possible formation location

for intermediate-mass black holes [204] or for stellar-mass black hole binaries [205, 206]. Stellar-mass

binaries merging within an AGN disk could contribute to the observed LIGO population [207, 208], while

stellar-mass black holes merging with the central supermassive black hole are future LISA sources, whose

detailed properties may be modified by migration torques [209].
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Heating torques have been studied analytically [187] and using global numerical simulations [185,

186, 194]. Here, we complement these prior studies using a local shearing box model for the disk. By

simulating a luminous body in the limit where its mass goes to zero, using 32 zones per characteristic

wavelength of the heating torque, we are able (a) to isolate the heating torque from the cold thermal torque

and (b) to fully resolve the influence of the heating torque on the disk. Our work effectively extends the

thorough numerical investigation of a luminous body travelling through a homogeneous medium [210, 211]

to the case of a luminous body embedded within a shear flow. An important difference between these

past studies and the present study is the massless nature of our planet, a piece of physics which we do not

consider because the so-called “cold thermal torque" due to the gravitational potential of the planet should

be separable from the heating torque in the linear regime [187]. The main questions we seek to answer are:

(i) What are the numerical prerequisites needed to reproduce the [187] linear theory, and how accurate

is that theory when the approximations involved are relaxed?

(ii) When do non-linear effects set in, and how do they change the linear theory’s prediction for the

thermal torque?

(iii) Is the heating torque important for stars and accreting compact objects embedded within AGN

disks?

The structure of the paper is as follows: we summarize the analytic theory for the heating torque

resulting from a luminous body in a shear flow in §A.2.1 and describe our numerical methods in §A.2.2.

Our numerical results are presented in §A.3. §A.4.1 discusses the limits to the analytic theory, and §A.4.2

discusses applications of the model to luminous objects in AGN and protoplanetary disks. We conclude in

§A.5.

A.2 Methods

A.2.1 Analytic Results

Analysis of the local hydrodynamic equations with thermal conductivity shows that the effects of

a massive body’s gravitational potential and its luminosity on a surrounding disk can be separated and
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studied independently in the linear regime [187, Eq. 34]. We take advantage of this separation to focus

solely on the “heating torque", the torque due to the density perturbation that is sourced by thermal energy

diffusing outward from a luminous body, though in the presence of orbital eccentricities and inclinations the

applicability of the linear regime is limited [189, 194, 212]. Fig. A.1 illustrates how the asymmetry in this

perturbation, resulting from the displacement of the orbiting body from co-rotation, leads to a net torque.

To aid in the interpretation of our numerical results, we summarize the key assumptions and results from

Ref. [187].

v
φ
(r)

dP/dr

orbiting
body

corotation

xp

λc

H

linearized
shear

ordering
of scales

hot low density
lobe of gas

perturbed force 
from exterior lobe

perturbed force 
from interior lobe

net force

r

direction of
frame rotation

global description

local shearing sheet

x

ysimulation
coordinate frame

Figure A.1: Illustration of the physics leading to a heating torque (the gravitational potential of the body is
neglected). Heat diffusing away from a luminous, disk-embedded body, is sheared by the sub-Keplerian disk
flow, forming hot low density lobes. These lobes are asymmetric interior to / exterior to the body, because
the body is displaced from exact co-rotation due to the presence of a pressure gradient in the disk gas. The
gravitational back-reaction from the heated lobes exerts a positive torque on the orbiting body, as illustrated
by the vectors showing the perturbed force in the azimuthal direction, i.e. the difference between the force
on a luminous massless body and the force on a non-luminous massless body. Other components of the force
(e.g. in the radial direction) are not drawn because they are opposite and equal and thus do not contribute to
the total torque.

Ref. [187] linearizes the hydrodynamic equations (see eqs. (A.9) to (A.11)), assuming a steady-state,

in a local (“shearing box") frame that co-rotates with the orbiting body. In this local frame, 𝑥 corresponds to

the radial direction, 𝑦 to the azimuthal, and 𝑧 to the vertical direction (perpendicular to the disk midplane)

as illustrated in Fig. A.1. If there is a radial pressure gradient in the disk, there is an offset 𝑥𝑝 between the
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orbiting body and disk gas that has the same orbital velocity. This distance from co-rotation is given by,

𝑥𝑝 = − 𝜕𝑥 𝑝0

2𝑞Ω2
0𝜌0

. (A.1)

Here 𝑝0 (𝜌0) is the equilibrium background pressure (density), 𝑞 is the shearing parameter (equal to 3/2 for

Keplerian disks), and Ω0 is the angular velocity of the local frame. For typical pressure profiles that decrease

as a function of radius 𝑥𝑝 is positive, implying that the body will sit further away from the central body than

the gas rotating at the same angular velocity, experiencing a headwind.

Three characteristic scales enter the problem: the distance from co-rotation 𝑥𝑝, the characteristic size

of the density perturbation caused by the body’s luminosity 𝜆𝑐, and the pressure scale height of the disk 𝐻.

In the linear calculation it is assumed that the following hierarchy holds,

𝑥𝑝 ≪ 𝜆𝑐, (A.2)

𝜆𝑐 ≪ 𝐻. (A.3)

We refer to the first requirement for scale separation (Eq. A.2) as Assumption II and the second (Eq. A.3) as

Assumption III (the first assumption is that of linearity). Assumption III allows the vertical density gradient

of the local box to be neglected (justifying our use of unstratified simulations, although stratification can

cause oscillatory torques when the opacity is not constant; [213]), while the small parameter associated with

Assumption II is used extensively to expand the expected gravitational force from the under-density caused

by the body’s luminosity. The relative importance of these two hierarchies and the validity of the predicted

net force on the body (Eq. A.5) is explored in § A.4.1.1.

The characteristic size of the disturbance and the net azimuthal force experienced by the body as a

result of the heating torque mechanism are predicted to be [187, Eq. 83, and Eq. 109],

𝜆𝑐 = 2𝜋𝑘−1
𝑐 = 2𝜋

√︂
𝜒

𝑞Ω0𝛾
, (A.4)

𝐹𝑦 =
0.322𝑥𝑝𝛾3/2(𝛾 − 1)𝐺𝑀𝐿𝑞1/2Ω

1/2
0

𝜒3/2𝑐2
𝑠

. (A.5)

Here 𝛾 is the adiabatic index (𝛾 = 5/3 in all of the following simulations), 𝑐2
𝑠 = 𝛾𝑝0/𝜌0 is the equilibrium

sound speed, 𝐿 is the luminosity emitted by the body, 𝜒 is the disk’s thermal conductivity, and 𝑀 is the mass
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of the body. Crucially, Eq. A.5 is linear in the mass of the body. This feature of the heating torque allows

us to calculate the force per unit mass (i.e. the body’s acceleration) without needing to explicitly include the

body’s mass at all in the simulations.

The heating torque is of interest because it can be the same order of magnitude as the other torques in

the system (such as the Lindblad torque). Defining

𝐿𝑐 =
4𝜋𝐺𝑀𝜒𝜌0

𝛾
, (A.6)

the heating torque can be written as [187, Eq. 144]

Γℎ𝑒𝑎𝑡 = 1.61
𝛾 − 1
𝛾

𝑥𝑝

𝜆𝑐/2𝜋
𝐿

𝐿𝑐
Γ0, (A.7)

where

Γ0 =
√

2𝜋𝜌0𝐻𝑟
4
0Ω

2
0

(
𝑀

𝑀∗

)2 (𝑟0

𝐻

)3
, (A.8)

is of the order of the Lindblad torque. Here 𝑟0 is the semi-major axis of the body, 𝑀∗ is the mass of the

central object, and 𝐻 is the pressure scale height of the disk. Note that this definition of Γ0 differs from the

more widespread definition (in for instance [192]) by a factor of 𝑟0/𝐻.

In summary, the formula given by Eq. A.5 for the net force on a body (due to the asymmetric

gravitational forces caused by the body’s luminosity distributed by differential rotation) is predicted to hold

under three conditions:

• Assumption I: perturbations of density and pressure should be much less than equilibrium values

(linearity, 𝜌′ ≪ 𝜌0).

• Assumption II: the offset from corotation 𝑥𝑝 should be much less than the size of the disturbance

𝜆𝑐 ( 𝑥𝑝 ≪ 𝜆𝑐 ).

• Assumption III: the disturbance should be much smaller than the pressure scale height of the disk

(𝜆𝑐 ≪ 𝐻).

In this work, we test the validity of the linear theory when one or more of these assumptions is violated.
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A.2.2 Simulations

The linear theory is developed in the local “shearing sheet" approximation [187], which translates

directly into a well-studied numerical set-up. We solve the inviscid hydrodynamic equations in a local

approximation of a Cartesian box rotating around a massive body (a star or black hole, for instance) with

orbital frequency Ω0, and add a source term to the energy density equation to model the luminosity. With 𝜌

the mass density, 𝑒 the energy density, 𝑃 the pressure, and V the velocity, the equations read,

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌V) = 0, (A.9)

𝜕𝜌V
𝜕𝑡

+ ∇ · (𝜌VV + 𝑃I) = −𝜌∇Φ𝑡 − 2𝜌Ω 𝑧 × V, (A.10)

𝜕𝑒

𝜕𝑡
+ ∇ · [V(𝑒 + 𝑃) + 𝐹𝐻] = 𝐿 𝛿(𝑥 − 𝑥𝑝), (A.11)

where 𝐹𝐻 = −𝜒𝜌∇ (𝑒/𝜌) is the heat flux and 𝐿 is the total luminosity emitted by the body and 𝛿(𝑥 − 𝑥𝑝)

is the Dirac delta function. The gas has an adiabatic equation of state. Φ𝑡 = −𝑞Ω2
0(𝑥 − 𝑥𝑝)

2 is the tidal

potential due to the central object. The vertical density gradient is neglected, both for consistency with

Ref. [187] and for the same physical reasons discussed there, and the radial density gradient is modelled

through a non-zero offset from co-rotation (it is neglected in the shearing-box, as justified by assuming that

the background pressure does not change significantly over the short radial scales under consideration). The

shearing parameter 𝑞 is equal to 3/2 for the Keplerian flows studied in this work.

The Athena++ code is used to solve the above equations in the luminous body’s rest frame on a

uniform Cartesian mesh [214, 215, Stone et al., 2020, submitted] with the Harten-Lax-van Leer-Contact

Riemann solver. The simulation’s origin sits at the radial location where the gas orbits at the same frequency

as the luminous body, such that the position of the body is fixed over the course of the simulation (10 orbits).

We discuss the consequences of neglecting the radial motion of the body in response to the generated torque

in §A.4.2.2. Both the origin and the body sit at the mid-plane of the disk (𝑧 = 0). In the fiducial run L1K1,

the simulation domain spans [4.13, 12.4, 4.13]𝐻 in the 𝑥 (radial), 𝑦 (azimuthal), and 𝑧 (vertical) directions

respectively, where 𝐻 is the pressure scale height of the disk (defined through 𝐻 = 𝑐𝑠/Ω0). The fiducial run

L1K1 has a resolution of [256, 192, 256] cells (i.e. [62.0, 20.7, 62.0] cells/𝐻) and a value 𝑥𝑝 = 0.097 𝐻.

Convergence with resolution and domain size is studied in §A.3.5.



173

The body’s luminosity is modelled by directly injecting internal energy density into the gas via the

energy density equation (A.11). In the analytic theory the injection term is 𝐿 𝛿(𝑥 − 𝑥𝑝) (as in Eq. A.11).

Since injection at a single point is not possible numerically, we implement this term in the simulations by

adding an energy density ℓ𝑣 × Δ𝑡 at each time to each cell whose center lies within an injection radius

𝑟rad. Here, ℓ𝑣 is the (constant) luminosity per volume and Δ𝑡 is the time step as determined by the Courant

condition. The total luminosity 𝐿 injected at each time step can be calculated as 𝐿 = ℓ𝑣 × 𝑛 × 𝑣, where 𝑛

is the number of cells included in the injection region and 𝑣 is each cell’s volume; thus the total luminosity

𝐿 depends on both the luminosity per volume ℓ𝑣 and the injection radius 𝑟rad. Unless otherwise specified,

the injection radius is set such that the luminosity is evenly distributed into the eight cells neighboring the

body. The effect of a finite injection radius (rather than a strict Dirac delta function) is explored in §A.3.5.

We note again that according to the linear theory the torque due to the gravitational potential of the body

can be separated from the torque due to the body’s luminosity [187]. In this work we model only the heating

torque, and do not include the gravitational potential of the body.

As is standard for the shearing-box set-up, all simulations use periodic boundary conditions in the

azimuthal and vertical directions and shearing-periodic boundary conditions in the radial direction, the

effects of which are discussed in §A.3.5. Generic units 𝐻 (disk scale height) for length, Ω−1 (2𝜋/Ω is one

orbit) for time, and 𝑃0 (background pressure) for energy density are used. The sound speed thus has units of

𝐻Ω, acceleration has units of 𝐻Ω2, thermal diffusivity has units of 𝐻2Ω, and total injected luminosity has

units of 𝑃0𝐻
3Ω. These values can be scaled to various astrophysical systems, which are discussed in §A.4.

A.2.3 Diagnostics

Linear theory provides a prediction for the total gravitational force 𝐹𝑦 experienced by the orbiting body

as a result of the perturbed gas density (purely from the body’s luminosity, not its gravity). We calculate this

azimuthal force per unit body mass in the simulation on spherical shells by calculating the distance between

the body and each cell, assuming that all of the cell’s mass is located at its center, and using the y-component

of the inverse square law with 𝐺𝑀 = 1 in code-units. The resulting acceleration can be plotted as a function

of radius or summed over radius to directly compare to Eq. A.5. To avoid introducing artificial asymmetry



174

to the force (i.e. a systematically larger force on the 𝑥 < 0 side), the summation stops at the shortest radius

that fits inside the simulation domain in all directions. The limiting radius is thus 𝐿𝑥 − 𝑥𝑝, where 𝐿𝑥 is the

half-width of the box in the 𝑥 (radial) direction and 𝑥𝑝 is the body’s distance from corotation. This restriction

is not expected to change the results significantly since the excluded portions are not a large fraction of the

box, the gas there is not as perturbed, and the force from the gas there is attenuated by the inverse square of

the radius).

The fractional change 𝑓 in a quantity 𝑓 is useful to establish the linearity of density perturbations,

𝑓 =
𝑓 (𝑡) − 𝑓 (𝑡 = 0)

𝑓 (𝑡 = 0) =
𝑓 ′(𝑡)

𝑓 (𝑡 = 0) , (A.12)

where 𝑓 ′(𝑡) = 𝑓 (𝑡) − 𝑓 (𝑡 = 0) is the perturbation from equilibrium. We describe a simulation as being in

the linear regime if the deviation from equilibrium values is no more than 5%.

To facilitate direct comparison with previous work (specifically, Ref. [187]’s Fig. 1), we calculate the

perturbation in surface density 𝜎′ as the 𝑘𝑧 = 0 mode of the Fourier transform 𝜌̂(𝑥, 𝑦, 𝑘𝑧) of the density

perturbation 𝜌′ in the 𝑧-direction, i.e.

𝜌̂(𝑥, 𝑦, 𝑘𝑧) =
∫ ∞

−∞
𝜌′(𝑥, 𝑦, 𝑧)𝑒−𝑖𝑘𝑧 𝑧𝑑𝑧, (A.13)

𝜎(𝑥, 𝑦) = 𝜌̂(𝑥/𝑘𝑐, 𝑦/𝑘𝑐, 0). (A.14)

Separating into the effect due to zero offset from corotation (𝜎 (0) ) and the first order effect due to nonzero

offset (𝜎 (1) ), we find [187, Eq. 114]

𝜎′(𝑥/𝑘𝑐, 𝑦/𝑘𝑐) = 𝜎
′ (0) (𝑥/𝑘𝑐, 𝑦/𝑘𝑐) + 𝑥𝑝𝜎

′ (1) (𝑥/𝑘𝑐, 𝑦/𝑘𝑐). (A.15)

Note that 𝜎′ is the perturbation of the surface density; the unperturbed surface density 𝜎 is constant. The

expected offset of 𝜎′ (1) is 𝑥𝑝𝑘𝑐 = 0.59 relative to Ref. [187]’s Fig. 1b.

A.3 Results

A.3.1 The Linear Regime

Fig. A.2 shows the mid-plane pressure and density perturbations derived from simulations in the

linear and non-linear regimes of luminosity injection. Values of ℓ𝑣 = 1.42 𝑃0Ω (Fig. A.2 left column;
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physical values are discussed in A.4.2.2) lead to perturbations that are less than 5% of the equilibrium

values, which we take to be in the linear regime. The measured pressure perturbations are two orders of

magnitude smaller than the density perturbations. This is consistent with Ref. [187]’s estimation (Eq. 36)

that 𝑃′ ≪ 𝐻2Ω2
0𝜌

′ ≈ 𝑐2
𝑠𝜌

′. With the value 𝑐2
𝑠 = 𝛾𝑃/𝜌 = 1.00 𝐻2Ω2, 𝑃′ should be much less than 𝜌′.

The non-linear regime is illustrated in the right column of Fig. A.2, which injects two orders of magnitude

more energy per timestep (ℓ𝑣 = 142 𝑃0Ω; simulation L100K1). The qualitative appearance of the pressure

and density perturbations remain similar for this much higher rate of energy injection. Both simulations, as

expected, quickly reach an equilibrium within approximately two orbits.

Figure A.2: Slices in the 𝑧 = 0 plane of simulations with 𝜒 = 0.017 𝐻2Ω at 𝑡 = 5.0 orbits. Top row: density
perturbation as a percentage of initial (equilibrium) condition. Bottom row: perturbation in pressure as a
percentage of initial (equilibrium) condition. Left column: ℓ𝑣 = 1.42 𝑃0Ω (fiducial simulation L1K1, linear
regime). Right column: ℓ𝑣 = 142 𝑃0Ω (high luminosity simulation L100K1, non-linear regime). Note
that (though similar in shape) the perturbations in L100K1 are larger in magnitude than the perturbations
in L1K1. Velocity streamlines with the background shear profile subtracted are plotted in the lower panels,
normalized to their maximum values for ease of comparison between L1K1 and L100K1. The distance from
co-rotation 𝑥𝑝, the characteristic wavelength 𝜆𝑐, and the direction of shear are marked with black arrows.



176

A.3.2 Net Azimuthal Acceleration as a Function of Radius

We take the ℓ𝑣 = 1.42 𝑃0Ω run as our fiducial simulation L1K1 so as to be firmly in the linear regime.

Using the technique described in §A.2.3, we plot as a function of radius the net gravitational force on the

body per unit body mass as a result of the gas perturbed by the object’s luminosity. Fig. A.3 shows the result

of summing up gas in front of and behind the body (𝑦 > 0 and 𝑦 < 0, respectively), as well as the total force

(green; right-hand scale). The bottom panel shows how the net azimuthal acceleration differs ahead/behind

the body from the initial acceleration (which is non-zero on either side but which sums to zero) as well as

how close the net azimuthal acceleration summed over all radii is to the linear prediction (horizontal lines).

The noisiness of the data in Fig. A.3 is due to the fact that no interpolation was used in the calculation of the

acceleration. Measurements from this simulation agree with the linear prediction to better than 10%.

A.3.3 Perturbation of the Surface Density

In addition to the value of the net force acting on the body, Ref. [187] calculates a map of the surface

density perturbation predicted by the analytic theory. Fig. A.4 reproduces this map with simulation data

(compare to Ref. [187]’s Fig. 1). The upper panel Fourier transforms the density perturbation of a simulation

with no offset (𝑥𝑝 = 0), as outlined in §A.2.3. The lower panel Fourier transforms the density perturbation

with the equilibrium value of 𝑥𝑝, then subtracts the zero offset case and divides by 𝑥𝑝 to extract 𝜎′(1) . The

perturbations are smaller in amplitude than expected, largely because the peak expected amplitude is very

close to the luminous body and is not as resolved. However, the general shape of the perturbation agrees

well with the linear prediction.

A.3.4 Scaling Relations

Linear theory predicts a linear dependence of the net gravitational force on the total luminosity 𝐿

emitted by the body and a power-law dependence 𝐹𝑦 ∝ 𝜒−3/2 on the thermal conductivity (Eq. A.5). To test

these predictions we ran two suites of simulations: one that fixes the thermal conductivity and varies the

total emitted luminosity, and one that fixes the total emitted luminosity and varies the thermal conductivity.
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Figure A.3: Snapshot of gravitational acceleration on the body in the fiducial simulation L1K1 as a function
of distance away from the body at 𝑡 = 5.0 orbits. The top panel plots both the one-sided forces due to gas in
front of (𝑦 > 0) and behind (𝑦 < 0) the body, as well as the sum of the forces (dashed green line; right scale).
Vertical dashed lines show the size of the luminosity injection radius 𝑟rad = 0.04 H and half the characteristic
wavelength 𝜆𝑐 = 0.52 𝐻. The bottom panel shows the difference between the initial condition (which has
net force equal to zero but one-sided forces on the order of the top panel’s vertical values) and their values
at five orbits. For reference the sum over all radii (with value 3.03 × 10−3 𝐻Ω2) is plotted as a dash-dot
horizontal line, and for comparison the linear theory’s predicted value of 2.82 × 10−3 𝐻Ω2 is plotted as a
dotted horizontal line.

For the first suite we fixed 𝜒 = 0.017 𝐻2Ω and varied ℓ𝑣 over three orders of magnitude: from

ℓ𝑣 = 0.142 𝑃0Ω to 142 𝑃0Ω. Simulations are considered to be in the linear regime if the perturbation never

exceeds 5% of the equilibrium value. Fig. A.5 reveals a tight agreement with the linear prediction even

an order of magnitude into the non-linear regime (indicated by green squares). As the injected luminosity

increases even more, the linear theory begins to over-predict the measured force because of non-linear effects;

this over-prediction is discussed in §A.4.1.2. In the linear regime at least, we are able to reproduce both the

scaling and the normalization of the net force to within 10%.
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Figure A.4: Perturbation of surface density in units of 𝛾(𝛾 − 1)𝐿/𝜒𝑐2
𝑠 due to the luminous body’s heat at

𝑡 = 3.5 orbits. Contour levels on the left are a geometric series with a ratio of
√

2 from −0.03 to −0.48. On
the right, contour levels have a ratio of 2 between them and run from ±0.01 to ±0.16. Solid contour are
positive values; dashed are negative. Thermal conductivity is 𝜒 = 0.017 𝐻2Ω, ℓ𝑣 = 1.42𝑃0Ω. Similar to
Ref. [187, Fig. 1].

Figure A.5: Net azimuthal acceleration due to the gas’s gravity as a function of total injected luminosity.
Thermal conductivity is fixed at 𝜒 = 0.017 𝐻2Ω. The linear theory’s prediction (slope: 1.0; red dotted line)
matches the data well even into the non-linear regime, although the fit (slope: 1.0± 6.5× 10−7; black dashed
line) was determined using only the linear data points. Simulations are summarized in Table A.1.
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𝐿 [𝑃0Ω𝐻
3] ℓ𝑣 [𝑃0Ω] 𝐹𝑦 [𝐻Ω2] (Linear Prediction) 𝐹𝑦 [𝐻Ω2] (Measured)

1.91×10−5 0.142 2.82×10−4 3.05×10−4±9.76×10−7

3.83×10−5 0.284 5.64×10−4 6.10×10−4±1.95×10−6

1.15×10−4 0.853 1.69×10−3 1.83×10−3±5.75×10−6

L1K1 1.91×10−4 1.42 2.82×10−3 3.03×10−3±9.46×10−6

3.06×10−4 2.28 4.51×10−3 4.83×10−3±1.50×10−5

* 3.83×10−4 2.84 5.64×10−3 6.02×10−3±1.85×10−5

* 1.91×10−3 14.2 2.82×10−2 2.83×10−2±8.02×10−5

* L100K1 1.91×10−2 142 2.82×10−1 1.69×10−1±4.59×10−4

Table A.1: Summary of simulations used to calculate the scaling of net azimuthal acceleration with total
injected luminosity 𝐿 (Fig. A.5). All simulations have 𝜒 = 0.017 𝐻2Ω, corresponding to 𝜆𝑐 = 0.52 𝐻,
while all other parameters (e.g. resolution, offset of the body from corotation, described in the text) are that
of the fiducial simulation L1K1. This set of simulations keeps 𝜆𝑐/𝐻 and 𝑥𝑝/𝜆𝑐 constant at 0.52 and 0.187,
respectively. * indicates a simulation that has density fluctuations greater than 5% of the equilibrium value
and has thus entered the non-linear regime. Simulation L1K1 is often referred to as the fiducial simulation,
and L100K1 as the high luminosity simulation. Measured values are presented as the average between 1 and
10 orbits plus/minus one standard deviation of the value in time.
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Assessing the validity of the analytic prediction for the scaling of the net force with thermal conductivity

is substantially harder, because changing the conductivity also changes the characteristic wavelength 𝜆𝑐. It

is difficult to find a numerically tractable set of parameters that both (a) remains in the linear regime and (b)

maintains the hierarchy of scales required by Ref. [187], over a substantial range in 𝜒.

Fig. A.6 shows the measured dependence of the net force as a function of the thermal conductivity,

at fixed luminosity. For sufficiently low values of the thermal conductivity, heat cannot diffuse away fast

enough, causing the system to enter the non-linear regime (indicated by a green square). For high values of

the thermal conductivity, the required scale separation 𝑥𝑝 ≪ 𝜆𝑐 ≪ 𝐻 is lost (shown as orange dots). Only

the blue crosses, at intermediate 𝜒, remain linear and respect the scale hierarchy.

Fitting the data only at intermediate 𝜒, we find that the dependence of net gravitational acceleration on

conductivity is close to 𝜒−1, rather than the expected 𝜒−3/2. We caution, however, that this fit is made over only

a very limited range of 𝜒. If, instead, we consider simulation data at higher values of 𝜒, we find a dependence

that appears to be closer to the analytically predicted power-law. The ideal regime for matching the linear

theory appears to be around 𝜒 = 0.017 𝐻2Ω, which in the simulations presented has ratios 𝑥𝑝/𝜆𝑐 = 0.187

and 𝜆𝑐/𝐻 = 0.519. Simulations using 𝜒 = 0.0061 𝐻2Ω to obtain ratios 𝑥𝑝/𝜆𝑐 = 0.311 = 𝜆𝑐/𝐻 measured

an acceleration lower than the linear prediction by a factor of two. This suggests that the requirement that

𝑥𝑝 ≪ 𝜆𝑐 is more important for matching linear theory than 𝜆𝑐 ≪ 𝐻. This hierarchy of the assumption is

reasonable since the former is used in expanding the net force, whereas the latter is used to drop vertical

density stratification [187]; see §A.4.1.1.

A.3.5 Numerical Considerations

In order to assess the robustness of the numerical results, we explored the dependence of the simulation

results on domain size, resolution, boundary conditions, and injection radius. Of these factors, we find that

the most important numerical effects are related to the size of the injection region. The analytic assumption

that all the body’s luminosity is deposited at a single point is both an approximation to the physical situation,

and an idealization that cannot be achieved in grid-based numerical simulations. We find that for the fiducial

parameters and a resolution that allows for an injection radius of 𝑟rad = 0.04 𝐻, the measured azimuthal force
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Figure A.6: Net azimuthal acceleration due to the gas’s gravity as a function of thermal conductivity.
Total luminosity is fixed with 𝐿 = 1.96 × 10−4 𝑃0Ω𝐻

3 (ℓ𝑣 = 1.42 𝑃0Ω). The linear theory (red dotted
line) predicts a power-law index of −1.5, whereas the fit (black dashed line) determines a power-law index
of −1.0 ± 1.6 × 10−4 and total luminosity 𝐿 = 6.7 × 10−3 𝑃0Ω𝐻

3. The fit was determined solely from
the simulations satisfying the hierarchies 𝑥𝑝/𝜆𝑐 < 0.3 and 𝜆𝑐/𝐻 < 0.6 (blue crosses). Simulations are
summarized in Table A.2.

𝜒 [𝐻2Ω] 𝜆𝑐/2 [𝐻] 𝐹𝑦 [𝐻Ω2] (Linear Prediction) 𝐹𝑦 [𝐻Ω2] (Measured)
* 5.97×10−3 1.54×10−1 1.36×10−2 7.96×10−3 ± 4.24 × 10−5

* 6.14×10−3 1.56×10−1 1.31×10−2 7.79×10−3 ± 3.98 × 10−5

8.53×10−3 1.84×10−1 7.97×10−3 5.95×10−3 ± 2.61 × 10−5

1.02×10−2 2.01×10−1 6.07×10−3 5.06×10−3 ± 2.04 × 10−5

1.19×10−2 2.17×10−1 4.81×10−3 4.37×10−3 ± 1.64 × 10−5

L1K1 1.71×10−2 2.60×10−1 2.82×10−3 3.03×10−3 ± 9.46 × 10−6

1.72 × 10−2 2.61×10−1 2.78×10−3 3.00×10−3 ± 9.46 × 10−6

1.88 × 10−2 2.72×10−1 2.44×10−3 2.74×10−3 ± 8.32 × 10−6

3.41 × 10−2 3.67×10−1 9.97×10−4 1.37×10−3 ± 3.54 × 10−6

5.12 × 10−2 4.50×10−1 5.43×10−4 8.24×10−4 ± 2.17 × 10−6

8.53 × 10−2 5.80×10−1 2.52×10−4 4.21×10−4 ± 1.35 × 10−6

L1K10 1.71 × 10−1 8.21×10−1 8.91×10−5 1.65×10−4 ± 8.04 × 10−7

L1K50 8.53×10−1 1.84 7.97×10−6 1.93×10−5 ± 2.92 × 10−7

Table A.2: Summary of simulations used to calculate the scaling of net azimuthal acceleration with conduc-
tivity 𝜒 (Fig. A.6). All simulations have 𝐿 = 1.9× 10−4 𝑃0Ω𝐻

3 (ℓ𝑣 = 1.42 𝑃0Ω), while all other parameters
(e.g. resolution, offset of the body from corotation) are that of the fiducial simulation L1K1. The value of
𝜆/𝐻 is easily read off; the value of 𝑥𝑝/𝜆𝑐 is obtained by noting that 𝑥𝑝 = 0.097 𝐻. * indicates a simulation
that has density fluctuations greater than 5% of the equilibrium value and has thus entered the non-linear
regime. Simulation L1K1 is often referred to as the fiducial simulation, and L1K10 as the high conductivity
simulation. Measured values are presented as the average between 1 and 10 orbits plus/minus one standard
deviation of the value in time.
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is 7.6% larger than the linear theory’s prediction. Doubling the injection radius to 𝑟rad = 0.07 𝐻, at half

the resolution, leads to an error with respect to the linear prediction of −25% , i.e. a decrease in resolution

results in a measured azimuthal force smaller than the linear theory’s prediction. An even higher resolution

with a correspondingly small injection radius could result in even better agreement with the linear theory;

however, at this point the question of more detailed physics close to the body would likely be more pressing.

To isolate the effect of changing spatial resolution from the effect of differing injection radii, we test

for convergence with spatial resolution by keeping the same injection radius and changing the resolution.

Due to the discretization of the region around the body, increasing the resolution will result in an injection

region that closer approximates a sphere rather than a rectangular prism (as is the case for the low resolution

simulation, which injects energy evenly into eight neighboring cells). Because of the slight change in

injection volume, the total injected luminosity will also be modified; since we have an excellent prediction

of what a simulation with a slightly different total luminosity would be (see Fig. A.5), we can control for

the difference in total luminosity and isolate the influence of the injection region’s shape. We compare

two simulations, both with an injection radius of 0.07 𝐻, conductivity 𝜒 = 6.1 × 10−3 𝐻2Ω, and injected

luminosity per volume ℓ𝑣 = 1.42 𝑃0Ω but one with fiducial resolution and the other with half the fiducial

resolution, resulting in total injected luminosity 2.5 × 10−4 𝑃0Ω𝐻
3 and 1.5 × 10−4 𝑃0Ω𝐻

3, respectively.

We find that the net force per unit mass agrees between these runs at approximately the 10% level. (Note

that for this value of the conductivity neither the high nor the low resolution simulation recover the analytic

prediction to high accuracy.)

From Fig. A.3 it is apparent that the heating torque arises from within approximately 0.5𝐻 of the

body for simulation L1K1, well within the size of our fiducial simulation domain. Nonetheless, the use

of periodic boundary conditions does introduce artefacts that are visible in the plots of the density and

pressure perturbations as structures close to the edges of the box that re-appear on the opposite side of the

box (sheared, in the case of the y-edges; see Fig. A.2). To test for possible errors introduced by the use

of periodic boundaries, we compared simulations in which the box size was increased to twice that of the

fiducial simulation L1K1’s in each direction, while maintaining all other variables constant. The measured

accelerations agreed to better than 1% at every point in time, including the time (between 0.4 and 0.7 orbits)
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when density perturbations had re-entered the fiducial simulation domain but had not yet reached the edge of

the doubled simulation domain, as well as the steady state at later times. The same holds when the box size

of L1K10 is doubled. Somewhat larger changes, at the 5% level, occur if we compare against a box with half

the resolution, but three times the box size, of the fiducial simulation L1K1, likely due to the aforementioned

increase in the injection region. The lack of impact that the artificially heated gas has on the measurement

of the azimuthal acceleration is because the density perturbations near the edges of the box are on the order

of two orders of magnitude lower than the regions closest to the body (Fig. A.2). The combined effects

of the low magnitude of the density perturbations and their larger distance from the body, which reduces

their contribution to the net azimuthal force, suggest that the density and pressure perturbations that exit and

re-enter the box through artificial periodic boundary conditions do not impact the force calculation at the

level of accuracy we are interested in here. For the extremal simulation L1K50, however, the perturbations

are of the same magnitude close to and far away from the body, resulting in the increased deviation from the

linear prediction seen in Fig. A.6.

Finally, we note that the simulations assume that the luminous body’s location remains fixed over a

small multiple of the local dynamical timescale. In principle, for sufficiently high luminosities and local

disk surface densities, the resulting torque might be able to migrate the body fast enough to invalidate this

assumption. Analogous physics has been studied in the context of gravitational torques, where motion of the

gravitating body can lead to a dynamical co-rotation torque and “Type III" migration [216, 217]. We do not

explore this possibility here, but note that caution and additional study would be needed in any circumstance

where the implied migration speed due to the heating torque exceeded a fraction of 𝐻Ω.

A.4 Discussion

A.4.1 Limits of the Linear Theory

The analytic theory for the heating torque relies both on linearity, and on satisfying hierarchical

separation between the scales of the displacement from co-rotation, the induced density perturbation, and

the disk scale height. By numerically solving the full set of hydrodynamic equations, we can test the limits
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Figure A.7: Time-averaged azimuthal profiles at the body’s position of the density (dashed line) and
temperature (solid line) perturbations 𝜌′ and 𝑇 ′ for the fiducial simulation L1K1 (blue crosses), and a high
conductivity simulation L1K10 (orange dots), and a high luminosity simulation L100K1 (green squares).
Each line has been normalized to its maximum value (0.14 and 0.15 times L1K1’s density and temperature
perturbation maxima for L1K10; 81.3 and 137.6 times L1K1’s density and temperature perturbation maxima
for L100K1) and time-averaged over the last seven orbits, 𝑡 = 3 to 9.6 orbits. Filled-in portions denote one
standard deviation over time.

of these various assumptions.

A.4.1.1 Testing the Hierarchy Requirements

The first set of assumptions are the hierarchies given by Eq. A.2 and Eq. A.3, i.e. that 𝑥𝑝 ≪ 𝜆𝑐 ≪ 𝐻.

Fig. A.6 shows how the derived acceleration scales as these assumptions are broken. The simulations closest

to the analytic prediction do not have equal ratios of 𝑥𝑝/𝜆𝑐 and 𝜆𝑐/𝐻; rather, they prefer a smaller 𝑥𝑝/𝜆𝑐.

As thermal conductivity increases, 𝜆𝑐 becomes larger whereas the offset from corotation 𝑥𝑝 and disk scale

height 𝐻 stay constant. This results in a decrease in the ratio 𝑥𝑝/𝜆𝑐 and an increase in 𝜆𝑐/𝐻, i.e. Eq. A.2

becoming better satisfied and Eq. A.3 becoming less satisfied. The result is that the characteristic wavelength

of the perturbations is less well-contained by the simulation domain, particularly in the case of L1K50,

whose characteristic wavelength of 3.6 𝐻 does not fit in the simulation domain at all. Extending L1K50’s

simulation domain to a scale height where all three scales are separated by a factor of 10 (i.e. the offset

from co-rotation is a factor of 100 smaller than the scale height) would require upwards of 1200 cells in each

direction to resolve a single scale height, which is not even large enough to capture the full decay of higher

conductivity simulations. The computational cost of such simulations is beyond the scope of this work.
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A.4.1.2 Non-linear Effects

Another assumption is that the perturbations are small compared to their equilibrium values: 𝜌′ ≪ 𝜌0.

By increasing the luminosity, we can study how the acceleration departs from the linear prediction as we enter

the non-linear regime where 𝜌′ ∼ 𝜌0. The scaling relation of acceleration with fixed conductivity (Fig. A.5)

shows that higher luminosity simulations that are in the non-linear regime (indicated by green squares)

measure a smaller acceleration than the linear theory would predict. Because the role of periodic boundary

conditions was determined to be negligible in §A.3.5, this difference could be due to either the computational

issues with resolving hierarchies listed in the previous section or to non-linear effects that are not adequately

captured by the linear theory. A term is considered non-linear if it contains the product of two or more

perturbations, e.g. 𝜌′𝑇 ′, and is hence neglected in the linear theory, which only carries the perturbations

to first order under the assumption that the perturbation is much smaller than its equilibrium value. The

interaction of the linear perturbations 𝜌′ and𝑇 ′ through terms such as the heat flux (described below) provide

a mechanism through which the simulations presented (which solve the full set of hydrodynamic equations)

can differ from the linearized model of Ref. [187]. In this section we show that the measurement of the

difference in azimuthal acceleration is physical, i.e. that the linear theory’s neglect of higher-order terms

leads to an overprediction (underprediction) of the actual non-linear net azimuthal acceleration for L100K1

(L1K10).

There are two properties of the steady-state perturbations that could contribute to the final density

distribution: their profiles’ shapes and their amplitude. Time-averaged azimuthal profiles of the density

perturbation (Fig. A.7) in which the high luminosity (L100K1) and fiducial (L1K1) simulations’ profiles

lay directly on top of each other once normalized demonstrate that the shape for these two simulations is

not contributing to the measured differences. Similarly, Fig. A.8 shows the non-linear term ∇ · [𝜒𝜌′∇𝑇 ′]

(the divergence of the heat flux’s contributions by non-linear terms; this term is subtracted from the time

derivative of the internal energy density in Eq. A.11). The normalized profiles of the heat flux from perturbed

quantities of both the fiducial (L1K1) and high luminosity (L100K1) simulations overlay one another within

one standard deviation. These similarities in shape show that the relevant length scales are indeed the same
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for these two simulations, further suggesting that it is not the shape but rather the amplitude of the profiles

that contributes to the measured differences. Indeed, the magnitude of the higher luminosity run’s heat flux

is four orders of magnitude larger than the fiducial simulation. In contrast, the azimuthal density and heat

flux profiles of the high conductivity run L1K10 (which has a larger characteristic wavelength 𝜆𝑐 ∝ 𝜒1/2)

do not line up with the fiducial and high luminosity runs even when normalized. In the high conductivity

run, the heat more readily diffuses from its injection region to the 𝑦 > 0 region, resulting in a broader high

temperature region with a lower maximum temperature compared to the L1K1 and L100K1 simulations

(Fig. A.7). For the same reason of heat diffusion, the azimuthal profile of density perturbations in Fig. A.7

appears more symmetric close to the body than L1K1 and L100K1. As discussed below, the increased

symmetry results in a smaller net acceleration close to the body in L1K10 than in L1K1. This change in

the shape of the density’s azimuthal profile is not captured by the linear theory, which predicts that the

three-dimensional distribution of the density perturbation does not depend on thermal conductivity [187, Eq.

119].

To quantify what the shape of the heat flux and density/temperature azimuthal profiles means for

the acceleration of the body, Fig. A.9 plots the net azimuthal acceleration from the gas as a function of

distance from the body (very similar to Fig. A.3’s plot of the sum of the azimuthal acceleration in either

y-direction), normalized to the values of the fiducial run at every point. Because the linear theory predicts

that only the size of the low density perturbation and not the shape should change with varying luminosity

and conductivity, we use the fiducial simulation as a template to predict the azimuthal acceleration profile

and scale it by 𝐿/𝜒. These profiles are plotted as horizontal lines in Fig. A.9. In this figure, the high

luminosity (L100K1) simulation’s acceleration profile is modified only close to the body, where it is lower

than might be expected from linear theory. Notably, the magnitude of the perturbations is also the highest

close to the body (as seen in Fig. A.2), suggesting that non-linear effects such as the heat flux term profiled

in Fig. A.8 cause the deviation from linear theory. On the other hand, the azimuthal acceleration on the

body in L1K10 is less than the linear prediction within about half a scale height of the body as suggested

by the symmetry seen in Fig. A.7, but grows steadily due to higher value of the density perturbations at

𝑦 > 0.5 𝐻 compared to those at 𝑦 < −0.5 𝐻. The azimuthal acceleration saturates at a value approximately
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Figure A.8: Time-averaged azimuthal profiles at the body’s position of the divergence of the heat flux’s
non-linear contribution ∇ · [𝜒𝜌′∇𝑇 ′] for the fiducial simulation L1K1 (ℓ𝑣 = 1.42 𝑃0Ω, 𝜒 = 0.017 𝐻2Ω;
blue crosses), the high conductivity simulation L1K10 (ℓ𝑣 = 1.42 𝑃0Ω, 𝜒 = 0.17 𝐻2Ω; orange circles), and
the high luminosity simulation L100K1 (ℓ𝑣 = 142 𝑃0Ω, 𝜒 = 0.017 𝐻2Ω; green squares). Each line has
been normalized to its maximum value (0.004 and 2.9× 104 times the fiducial simulation’s maximum value,
respectively) and time-averaged over 𝑡 = 3 to 9.6 orbits. Error bars denote one standard deviation over time.

twice as high as the linear theory, ultimately leading to a measured azimuthal acceleration larger than the

linear prediction (see Fig. A.6). Although the increased value of the acceleration far from the body might

suggest that periodic boundary conditions are artificially increasing the measured acceleration, this density

distribution was achieved in larger boxes before the density perturbations re-entered the simulation domain

and is thus physical (see §A.3.5), suggesting that it is indeed physics neglected by the linear theory that alter

the symmetry of the density distribution.

We again note that the separation of the effect of the body’s luminosity from its gravitational potential

is only valid in the linear regime. In the non-linear regime, interaction between these two effects (which

linearly act in the same way to provide a net outward migration) could result in deviation from the linear

prediction. Exploring aspects of this interaction is left to future studies.

A.4.2 Physical Parameter Regimes

A.4.2.1 Stars or Accreting Compact Objects in a Thin Disk

Migration processes may be important in geometrically thin AGN accretion disks. Stars may form

within such disks as a consequence of gravitational instability [201, 202], and they may also be captured
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Figure A.9: Snapshot of the radial profile of the net azimuthal acceleration on the body at a time of 9 orbits
for a high conductivity simulation L1K10 (ℓ𝑣 = 1.42 𝑃0Ω, 𝜒 = 0.17 𝐻2Ω; orange dash-dot line), and a high
luminosity simulation L100K1 (ℓ𝑣 = 142 𝑃0Ω, 𝜒 = 0.017 𝐻2Ω; green dotted line), normalized at every point
to the fiducial simulation L1K1. As in Fig. A.3, the injection radius 𝑟rad = 0.04 𝐻 for all three simulations
(black vertical line) and half the characteristic wavelength for L1K1 and L100K1 (𝜆𝑐/2 = 0.26 𝐻) and
L1K10 (𝜆𝑐/2 = 0.82 𝐻) are plotted. Horizontal lines are the profiles that L1K10 and L100K1 would have
if they had the same shape as L1K1, i.e. the linear theory’s prediction.
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from a cluster whose orbits intersect the disk gas [199]. Either circumstance could lead to a population of

luminous stars, or accreting stellar-mass compact objects, orbiting within an AGN disk.

The full ramifications of having a population of stellar-mass objects within AGN disks are complex,

and we do not discuss them here. Rather, we assume that we have a single luminous object orbiting on a

circular, non-inclined orbit, with the same sense of rotation as the disk gas. The question we seek to answer

is whether the heating torque is large enough, compared to previously studied torques arising at the Lindblad

and co-orbital resonances, that it should be included in models of migration within AGN disks.

We assume, consistent with our numerical results, that the analytic result given as Eq. A.7 provides

a good estimate of the ratio of the heating torque, Γheat, to the fiducial torque scaling, Γ0. We assume a

Keplerian disk (𝑞 = 3/2) in which the pressure 𝑝0 ∝ 𝑟−𝑛. At 𝑟 = 𝑟0 the relevant quantities can then be

written as,

𝑥𝑝 =
𝑛𝑐2
𝑠

3𝑟0Ω
2
0𝛾
, (A.16)

𝜆𝑐 = 2𝜋

√︄
2𝜒

3𝛾Ω0
, (A.17)

𝐿𝑐 =
4𝜋
𝛾
𝐺𝑀𝜒𝜌0. (A.18)

Here 𝜒 is the thermal diffusivity in the disk gas surrounding the luminous object. If the diffusivity is

physically the result of radiative diffusion, we can write [192, correcting the factor of 4 typo],

𝜒 =
16𝛾(𝛾 − 1)𝜎𝑇4

3𝜅𝜌2
0𝐻

2Ω2
0

, (A.19)

where 𝜅 is the opacity, 𝑇 is the temperature, and 𝜎 is the Stefan-Boltzmann constant.

For both massive stars and accreting compact objects, the Eddington luminosity provides a very rough

but reasonable estimate of how the likely luminosity scales with the mass. We write,

𝐿 = 𝜖𝐿Edd =
4𝜋𝜖𝑐𝐺𝑀

𝜅
, (A.20)

where 𝜖 is an efficiency factor that may be larger than one. The above formulae then give a scaling,

Γheat

Γ0
∝

(
𝐻

𝑟0

)
𝑐2
𝑠𝜅

1/2𝐻
2𝜌2

0Ω
3/2
0

𝑇6 . (A.21)
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The numerical pre-factor depends upon the assumed vertical structure of the disk. Taking 𝜌0 = Σ/𝐻 and

𝑐𝑠 = 𝛾𝐻
2Ω2

0 we find,
Γheat

Γ0
≃ 0.053

𝑛𝜖

𝛾(𝛾 − 1)1/2

(
𝐻

𝑟0

)
𝑐𝜅1/2

𝜎3/2

𝐻2Σ2Ω
7/2
0

𝑇6 . (A.22)

There is no dependence on the mass of the luminous object. We note that the above analysis has assumed in

various places that the disk is optically thick, that it is supported by gas pressure, and that the luminosity of

the embedded object is transported out by radiative diffusion.

Given a disk model, for example a Shakura-Sunyaev disk in one of the gas pressure dominated regimes

[9], it is straightforward to estimate the ratio of Γheat/Γ0. The result is fairly complex expressions that obscure

the basic question of whether Γheat can be neglected when considering migration. It is more illuminating to

forego explicit reference to the opacity, and write Eq. (A.22) in a manifestly dimensionless form that involves

the optical depth 𝜏. To do so we need the following results for a thin accretion disk in a steady state [46]:

𝜏 = Σ𝜅, (A.23)

𝑇4 =
3𝜏 ¤𝑀Ω2

0
8𝜋𝜎

, (A.24)

𝜈Σ =
¤𝑀

3𝜋
, (A.25)

𝜈 = 𝛼𝑐𝑠𝐻. (A.26)

(We have dropped some unimportant numerical factors from these expressions.) Using these results, and

adopting reasonable values for the adiabatic index and pressure gradient parameter (𝛾 = 5/3, 𝑛 = 3) we

obtain,
Γheat

Γ0
∼ 0.07

(
𝑐

𝑣𝐾

)
𝜖𝜏−1𝛼−3/2, (A.27)

where 𝑣𝐾 is the Keplerian velocity in the disk. The condition for the heating torque to be important (relative

to the Lindblad and co-orbital torques, again as defined by [187] rather than [192]), Γheat > Γ0) is then,

𝑣𝐾𝜏𝛼
3/2 ≲ 0.07𝑐𝜖 . (A.28)

In an AGN disk we expect 𝛼 < 1, and across most of the region where stars would form or be captured

𝑣𝐾 ≪ 𝑐. It is then clear that an embedded object, radiating a luminosity of the order of the Eddington limit

(𝜖 ∼ 1), will experience dominant heating torques at any radii where the optical depth is modest.
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As a specific example, we apply the criterion in Eq. A.28 to the model of a constant Toomre parameter

disk [201]. Taking the standard parameters presented in this model, we use a central black hole mass of 108

solar masses, a radiative efficiency E = 𝐿/ ¤𝑀𝑐2 = 0.1, assume that the viscosity is proportional to the total

pressure rather than the gas pressure, and use the electron-scattering opacity 𝜅 = 0.4 cm2/g. Although this

model cannot be directly mapped onto a Shakura-Sunyaev disk, it is useful as an example. From Ref. [201]’s

Eq. 10, the radius at which gravitational instability sets in is at 𝑟𝑄=1 ≈ 103𝑅𝑠. Using a value of 𝛼 = 0.01

appropriate for MRI turbulence and assuming a luminosity on the order of the Eddington limit, the resulting

bound is

𝜏 ≲ 2200. (A.29)

Using Ref. [201]’s Eqns. 16 and 18 to calculate the temperature and surface density at 𝑟𝑄=1 and the

prescription in Eq. A.19 for thermal conductivity, the relevant length scales are

𝑥𝑝 ∼ 0.02𝑅𝑠 (A.30)

𝜆𝑐 ∼ 8𝑅𝑠 (A.31)

𝐻 ∼ 10𝑅𝑠 . (A.32)

The assumption that 𝑥𝑝 ≪ 𝜆𝑐 < 𝐻 holds for this model of a luminous object in an AGN disk, although

the characteristic wavelength 𝜆𝑐 and the gas scale height 𝐻 are the same order of magnitude, similar to the

simulations presented in this work (see Table A.3).

A.4.2.2 Low-mass Planets in a Protoplanetary Disk

Thermal torques were originally proposed and studied in the context of low-mass planets in proto-

planetary disks, where under some circumstances they can be of the same order of magnitude as Lindblad

torques. Prior simulations focused on this regime include the work of Ref. [185] and that of Ref. [186].

There are physical differences between these simulations and those presented in this paper. In particular, in

Ref. [185] the planet has mass but no luminosity (and hence is affected by only the cold thermal torque),

while in Ref. [186] the planet is both luminous and massive (and hence is affected by both the cold thermal

and the heating torque). Table A.3 compares parameters for these two simulations and the simulation L1K1.
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Ref. [185] Ref. [186] Fiducial Simulation (L1K1)

𝜆𝑐 2 cells†/0.014 AU† 2.34 cells§/0.0238 AU† 41.3 cells/0.084 AU
𝑥𝑝 0.85 cells/0.006 AU† 0.98 cells§/0.01 AU∗ 6 cells/0.0122 AU
𝐻 28 cells/0.196 AU 21.3 cells§/0.19 AU∗ 62 cells/0.126 AU

𝐿 [erg/s] N/A 6.0 × 1027† 6.0 × 1030

𝜒 [cm2/s] 1.5 × 1015 cm2/s† 4.35 × 1015† 1.0 × 1017

𝜆𝑐/𝑥𝑝 2.33 2.38 6.88
𝐻/𝜆𝑐 14† 8 1.5

Table A.3: Summary of important values for different simulations. Ref. [185] studies the cold thermal
torque (no luminosity), while Ref. [186] studies the cold and heating torques in a semi-global simulation.
The values in the table were obtained either from Sec. 5.3.2 in [187] (†), by private communication (∗; in
particular 𝐻/𝑅 = 0.036), or by calculation from parameters found in the respective work (§). Unmarked
values are straightforward calculations from other values. Physical values for the fiducial simulation L1K1
were calculated assuming a body orbiting at 5.2 AU (the same as [186]) around a solar-mass central body.
Here 𝜆𝑐 ≡ 𝑘−1

𝑐 rather than as in Eq. A.4 in accordance with Ref. [187]’s definition.

Although Ref. [185] and Ref. [186] are more comprehensive physically than the present study, it is useful to

compare the results of these two works to those presented in §A.3 to investigate the importance of resolving

the region within one characteristic wavelength of the body. Additional studies investigate global effects such

as the excitation of orbital eccentricities and inclinations [189, 194, 212] and horseshoe streamlines [213],

which the local unstratified simulations in the present study do not capture; for instance the gas flow that

would be significantly altered around a hot planet [213] is not seen in the streamlines of L100K1 plotted

in Fig. A.2. Though these global-scale simulations could be subject to the same limits of resolution as

Ref. [185] and Ref. [186], they are not discussed in detail for the sake of clarity and brevity.

Although the results of both Ref. [185] and Ref. [186] highlighted the importance of thermal effects

for an accurate assessment of the migration rate, there was a significant mismatch between the quantitative

values obtained and the subsequent analytic theory of Ref. [187]. Inspection of Table A.3 and the results of

§A.3.5 suggest that this discrepancy may well be due to the difficulties inherent in resolving the relevant scales

in a global simulation. Compared to previous simulations [185, 186], our fiducial simulation L1K1 better

resolves the characteristic wavelength of the density perturbation. Ref. [185] has approximately two cells

spanning 𝜆𝑐 [187], whereas Ref. [186] has approximately 2.3 cells to resolve 𝜆𝑐. By using a local domain,

our fiducial simulation L1K1, which resolves 𝜆𝑐 with 41 cells, is better poised to capture the full effect of
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the thermal torques, since as Fig. A.3 and A.9 show, most of the contribution to the azimuthal acceleration

comes from material within 𝜆𝑐/2 of the body. Limited resolution could be one of the reasons that Ref. [186]

sees a net force about an order of magnitude below the predicted value [187]. As for physical parameters, our

fiducial simulation L1K1’s luminosity is three orders of magnitude larger than those presented in Ref. [186],

leading to a large value for the heating torque. However, the results should continue to scale down to lower

values of luminosity, where the assumption that the planet does not change its distance from corotation over

the course of the simulations should be more accurate.

Our simulations also explore a different regime in terms of the scale hierarchy. The simulation of

Ref. [185] has 𝐻/𝜆𝑐 = 14, whereas our simulations have 𝐻/𝜆𝑐 = 1.5; similarly, in Ref. [185], 𝜆𝑐/𝑥𝑝 = 2.3

and in our fiducial simulation L1K1 𝜆𝑐/𝑥𝑝 = 6.88 (Table A.3). We have better scale separation between

𝜆𝑐 and 𝑥𝑝 at the expense of less scale separation between 𝜆𝑐 and 𝐻. Our closer-to-linear results support

our argument that the first criterion is more essential to the linear theory than the second. As discussed in

§A.4.1.1, the restriction on scale height is not a physical requirement but rather an ease-of-computational

one; therefore this work simply explores a slightly different physical parameter regime.

We conclude that poor resolution of the characteristic wavelength contributes to the mismatch between

previous simulations’ measurement of the heating force and the linear theory’s prediction. This conclusion is

supported by the resolution study in §A.3.5 wherein a decrease in resolution led to a decrease in the measured

value of azimuthal acceleration to below the linear prediction, similar to how Ref. [186]’s measurement was

an order of magnitude smaller than the predicted value [187]. Using a higher resolution (possible in a

local setup), we obtain agreement to within 10% with the analytic theory. The remaining discrepancies are

usually small, exceed the analytic prediction, and reduce with higher resolution. Exceptions are simulations

with thermal conductivity much smaller than the fiducial value. This trend suggests that a more precise

value depends on the exact physics close to the body, which would be better modelled with a self-consistent

luminosity prescription to capture accretion onto the body. Compared to previous global studies, in local

shearing box simulations, the relevant small scales are better resolved and the net azimuthal acceleration is

within 10% of the linear theory in the linear regime.
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A.5 Conclusions

In this work, we have used three-dimensional local simulations of a zero-mass test particle in an

inviscid unstratified disk to test the analytic theory for the heating torque developed by Ref. [187]. The

heating torque arises from the interaction between a luminous disk-embedded body and Keplerian shear,

which distorts low-density regions that were heated by the body into asymmetric lobes that exert a net

gravitational force on the planet. In the regime where the resulting density perturbations are linear, we find

good agreement between the results of our direct numerical simulations and the analytic theory. We surmise

that prior global simulations probably lacked enough resolution of the energy injection region, leading to an

under-estimate of the magnitude of the heating torque. Going beyond the linear theory, we explored regimes

of high thermal conductivity and high luminosity. We find that at high luminosity the derived torque is

smaller than the linear prediction, and attribute this as being due to non-linear terms in the heat flux. In the

high conductivity regime we infer a higher acceleration than predicted by the linear theory. We find that both

the non-linear terms in the heat flux and computational limitations contribute to this larger value.

At the linear level the heating torque can be considered separately from other contributions to the

migration of disk-embedded bodies. Although numerically convenient, there are few if any physical circum-

stances where gravitational [190] and other thermal torques [185] would not also need to be considered. In

most cases, study of these torques requires a combination of analytic theory, local, and global numerical

simulations, whose results can partially be encapsulated in relatively simple torque formulae [192, 218]. In

the context of low-mass planet migration, using such formulae, the heating torque is estimated to be most

important (relative to the sum of all other torques) for masses on the order of one Earth mass [187]. This study

neglects additional physics to better isolate the impact of the heating torque on low-mass planet migration;

inclusion of the body’s gravitational potential, disk stratification, and viscosity among other physics can be

included in later studies.

A second environment where the heating torque might be important is for the migration of luminous

objects (massive stars or accreting compact objects with luminosities of the order of the Eddington limit)

in AGN disks. Using simple scaling arguments, and the analytic theory of Ref. [187], we find that the
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heating torque is expected to provide a dominant contribution to the total migration torque at disk radii

where the optical depth drops below a critical value. The heating torque may therefore impact models for

the migration, trapping, and growth of objects embedded within AGN disks, and should be considered in

future analyses of such systems. In the case where the disk-embedded body is itself an accreting compact

object, the mechanical luminosity of outflows may also modify the local density distribution and generate a

migration torque [219].

Using local simulations on a uniform grid, we have been able to verify the analytic predictions for the

strength of the heating torque at approximately (in the most favorable cases) the 10% level. More precise

tests would be possible using static mesh refinement methods, which would also allow a fuller mapping of

how the thermal torque scales with the control parameters in regimes where the assumptions of the analytic

theory fail. It would also be valuable to relax the assumptions of a constant energy injection rate and

conductive energy transport. Simulations that consistently resolve accretion onto disk-embedded objects,

and the radiative feedback that accretion produces, are challenging but are becoming increasingly feasible.
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Appendix B

The Kerr Metric and Thin Accretion Disk Properties

B.1 Introduction

In this note, I will cover some properties of the Kerr metric and Novikov-Thorne [49] thin disks that

are particularly relevant to my research involving gas dynamics within the innermost stable circular orbit

(ISCO) around a black hole. A given black hole in astrophysics carries two propertiesa in addition to its

spatial location and velocity relative to some observer: its mass 𝑀 and its angular momentum 𝐽, which I

often refer to via the dimensionless spin 𝑎 ≡ 𝐽/𝑀 b. I define the coordinate system such that the black hole

angular momentum ®𝐽 points along the 𝑧-axis.

In Boyer-Lindquist coordinates, the Kerr metric reads [220]:

𝑑𝑠2 = − Δ

𝜌2

(
𝑑𝑡 − 𝑎 sin2 𝜃𝑑𝜙

)2
+ sin2 𝜃

𝜌2

(
(𝑟2 + 𝑎2) 𝑑𝜙 − 𝑎 𝑑𝑡

)2
+ 𝜌

2

Δ
𝑑𝑟2 + 𝜌2 𝑑𝜃2, (B.1)

where

Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2 (B.2)

𝜌2 = 𝑟2 + 𝑎2 cos2 𝜃. (B.3)

Throughout this chapter, I will refer to three different frames:

(i) Coordinate frame. The Boyer-Lindquist coordinate time is labelled as 𝑡.

a Astrophysical black holes probably have charge 𝑄 = 0, because any charge will attract material with opposite charge over a short

timescale.

b I use geometrized units 𝐺 = 𝑐 = 1 in this section.
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(ii) Locally non-rotating frame (LNRF; [221]). An observer at Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙)

will have proper time labelled as 𝜏. This frame includes the effects of frame-dragging. It is also

known as the Eulerian frame or the zero-angular momentum observer (ZAMO).

(iii) Fluid frame. This frame only exists in the presence of fluid comprising an accretion disk and

depends on the 4-velocity of the fluid at Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙). It will be labelled

with proper time 𝜏0.

B.1.1 Properties of the Kerr Metric

B.1.1.1 Prograde, Midplane Surfaces in the Kerr Metric

For simplicity, in this section I will only consider surfaces in the midplane of the black hole relevant

for particles with angular momentum aligned with the black hole’s spin (i.e. no retrograde orbits).

The first important surface is of course the (outer) event horizon, which occurs as a coordinate

singularity in Boyer-Lindquist coordinates when the metric component 𝑔𝑟𝑟 goes to infinity. From Eq. B.1,

we see that this singularity occurs when Δ → 0, i.e. 0 = 𝑟2
𝐻
− 2𝑀𝑟𝐻 + 𝑎2. Taking the positive root for the

outer event horizon, we have

𝑟𝐻 = 𝑀 +
√︁
𝑀2 − 𝑎2. (B.4)

Any light or massive object that enters the event horizon cannot escape from it.

The next surface, the ergosphere, defines where the black hole drags spacetime along with it at the

speed of light, such that a particle must move in the direction of black hole spin. Because this forced rotation

means that particles gain energy, particles that escape the ergosphere can effectively remove rotational

energy from the black hole itself (known as the Penrose process [222]). Extracting rotational energy from

an astrophysical black hole can power relativistic jets [223] and limit the spin-up of black holes [224]. The

ergosphere sits outside the event horizon at radius 𝑟𝐸 where [220]:

(𝑟𝐸 − 𝑀)2 = 𝑀2 − 𝐽2 cos2 𝜃. (B.5)

At the midplane, 𝜃 = 𝜋/2 gives

𝑟𝐸 = 2𝑀. (B.6)
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Interestingly, the ergosphere location is independent of black hole spin.

Much of my research, many accretion disk models, and many methods for measuring black hole spin

rely on the location of the innermost stable circular orbit (ISCO). The ISCO is defined as the smallest radius

where a massive test particle can still have a stable circular orbit around the black hole. For 𝑟 < 𝑟ISCO, the

test particle’s orbit becomes predominantly radial rather than circular, earning the region within the ISCO

the name “the plunging region”. The ISCO lies at radius [220]:

𝑟ISCO = 3 + 𝑍2 −
√︁
(3 − 𝑍1) (3 + 𝑍1 + 2𝑍2 (B.7)

where

𝑍1 = 1 + (1 − 𝜒2)1/3
(
(1 + 𝜒)1/3 + (1 − 𝜒)1/3

)
(B.8)

𝑍2 =

√︃
3𝜒2 + 𝑍2

1 (B.9)

and 𝜒 = 𝐽/𝑀2 = 𝑎/𝑀 .

A couple more surfaces I will discuss here also rely on the concept of orbits around black holes. In

particular, at radii beyond the marginally bound radius 𝑟𝑚𝑏, a massive particle can still have a bound orbit; it

just will not be a stable circular orbit. Finally, the photon sphere determines the last location 𝑟𝑝ℎ of a circular

orbit for a massless particle (i.e. a photon). The photon sphere was particularly important in measuring the

black hole shadow [225]. These surfaces are given by [220]:

𝑟𝑚𝑏 = (1 +
√︁

1 + 𝜒)2 (B.10)

𝑟𝑝ℎ = 2
[
1 + cos

(
2
3

cos−1 𝜒

)]
. (B.11)

Fig. B.1 illustrates the location of these surfaces as a function of black hole spin. For a low spin black

hole (𝑎 ≲ 0.94), a portion of the plunging region (volume within the ISCO) lies outside the ergosphere, i.e.

there are no stable circular orbits for massive particles that experience frame dragging; they are all unstable.

For 𝑎 ≳ 0.94, the entire ISCO is within the ergosphere, i.e. there are stable circular orbits that experience

frame dragging.
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Figure B.1: Black hole surfaces as a function of black hole spin 𝑎. The hatched area with 𝑟 < 𝑟ISCO is the
plunging region (only unstable orbits). The yellow-filled region with 𝑟𝑚𝑏 < 𝑟 < 𝑟ISCO hosts unstable circular
orbits, while the green-filled region with 𝑟𝑝ℎ < 𝑟 < 𝑟𝑚𝑏 has unstable bound orbits. At 𝑟 < 𝑟𝑝ℎ, no circular
orbits are possible, even for massless particles such as photons. The red region shows where there are stable
circular orbits within the ergosphere (𝑟ISCO < 𝑟𝐸), which only occurs for large spins 𝑎 ≳ 0.94.
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B.1.1.2 The Lapse Function

The lapse function 𝛼 is a property of the metric itself and is independent of the accretion disk flow.

It describes how much spacetime is bent: far from the black hole, the lapse function approaches 1, whereas

close to the event horizon it approaches 0. The lapse function is defined as:

𝛼 ≡ 𝑑𝜏

𝑑𝑡
=

1√︁
−𝑔𝑡𝑡

. (B.12)

Fig. B.2 shows the lapse function over radius for two different values of black hole spin.

B.1.2 Relativistic Thin Disk Properties

In this section, I will outline some important properties of the relativistic thin disk model [49]. This

model makes a variety of assumptions, including local thermodynamic equilibrium such that local dissipation

immediately radiates away.

In curved spacetime, the fluid Lorentz factor is not simply the zeroth component of the 4-velocity. In

fact, the Lorentz factor is defined relative to the LNRF as:

𝛾 ≡ 𝑑𝜏

𝑑𝜏0
. (B.13)

Meanwhile, the 4-velocity is given by

𝑢𝜇 ≡ 𝑑𝑥𝜇

𝑑𝜏0
, (B.14)

and in particular that means the zeroth component reads

𝑢0 =
𝑑𝑡

𝑑𝜏0
=
𝑑𝑡

𝑑𝜏

𝑑𝜏

𝑑𝜏0
(B.15)

=
1
𝛼
𝛾, (B.16)

where the lapse function is defined in Eq. B.12. See Ref. [226, Eq. 5.28]. The Lorentz factor for the

Novikov-Thorne model is shown in Fig. B.3a (see their Eq. 5.4.4b). A nonspinning black hole reaches

Lorentz factors of 1.15 at the ISCO (𝑟 = 6𝑟𝑔), whereas a black hole with 𝑎 = 0.95 reaches Lorentz factors

close to 1.3 at the ISCO (𝑟 ∼ 2𝑟𝑔).
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Figure B.2: Lapse function (Eq. B.12) over radius for two different black hole spins 𝑎.
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Imagine a particle with a stationary orbit such that it has constant (𝑟, 𝜃) and a uniform angular velocity

Ω =
𝑑𝜙

𝑑𝑡
. (B.17)

Note that this stationary frame does not have to coincide with the LNRF frame, though it can for a certain

value of Ω. A distant (asymptotic) observer sees the particle complete one orbit in a time 𝑡orbit = 2𝜋/Ω; in

this sense, Ω is the angular velocity measured from infinity [220, Problem 33.2]. The particle (or a stationary

observer) measures the time to complete an orbit as

𝜏orbit = 𝑡orbit

(
−𝑔𝑡𝑡 − 2Ω𝑔𝑡 𝜙 −Ω2𝑔𝜙𝜙

)1/2
. (B.18)

For an LNRF observer with Ω = −𝑔𝜙𝑡/𝑔𝜙𝜙, the factor in parentheses is simply the lapse function defined in

Eq. B.12.

The gas at each radius orbits with the Keplerian angular frequency Ω𝐾 , modified by a relativistic

correction [220, Eq. 5.4.3]:

Ω𝐾 =
𝑀1/2

𝑟3/2 + 𝑎𝑀1/2 . (B.19)

Fig. B.3b shows the ratio 𝜏orbit/𝑡orbit for a stationary observer with angular velocity Ω𝐾 as a function of

distance from the event horizon for a nonspinning and rapidly-spinning black hole. The measured time

over an orbital period by an asymptotic observer is about a factor of three greater than the proper time for

a stationary observer at the ISCO of a black hole with spin 𝑎 = 0.95, and about 1.4 times greater for a

stationary observer at the ISCO of a nonspinning black hole.
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Figure B.3: a) Lorentz factor 𝛾 for the Novikov-Thorne relativistic thin disk as a function of radius for two
dimensionless spins. b) Ratio of fluid proper time to observer at infinity for gas with angular velocity given
by the Novikov-Thorne thin disk model.
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