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. INTRODUCTION

In [1], we outlined the basic properties of electromagnetic wave-
guide modes propagating on a transversely periodic array of lossy dielec-
tric material. This laid the groundwork for a study of propagation in and
reflection from arrays of pyramid-cone absorbers as used in anechoic
measurement chambers. Indeed, the "tapered waveguide™ way of looking at
this problem was originally proposed by Katsenelenbaum [2] and carried
out for special cases and in various approximations in [3] and [4]. In this
report, we will extend the study of [1] to cover the low-frequency proper-
ties of these waveguide modes (i.e. for the case when the periods of the

material are small compared to a wavelength).

The exact analysis (by numerical or other means) of modes propagat-
ing on such periodic structures does not seem to have been carried out for
the case of electromagnetic waves. The analogous problem for elastic
wave propagation in periodic composite media has received some atten-
tion but is quite computationally intensive [5]-[7]. When the periods of
the structure become small (compared to a wavelength as well as to any
other length scale in the problem) and we care only about averaged values
of the fields over a period rather than their microstructure within a per-
iod, a technique known as homogenization can be used. In this method, the
averaged fields are found to satisfy Maxwell's equations wherein the
actual spatial distributions of permittivity and permeability are replaced
by homogenized (or effective) values of these parameters respectively.
The solution for averaged fields in a homogeneous medium is naturally’
much easier than for the exact fields in the periodically inhomogeneous

one.



There are several books available describing the homogenization
method [8]-[10],[14] and a large number of papers, the most relevant of
which to our problem are [11]-[1 3],[15]),[16]. Perhaps closest of these to
the results obtained in this report is [16], wherein it is shown that effec-
tive permittivity and permeability obtained for a static problem may also
be used when the period of the structure is small compared to a wave-
length. We will prove the same thing here for the problem of interest to

us.

Once this is done, we will be able to invoke one of several varia-
tional estimates available in the literature for calculating the static
homogenized permittivity and permeability coefficients. This will be
discussed in Section 3. Finally, in Section 4 we will evaluate the coupling
coefficients for tapered arrays (as derived in [1]) for low frequéncy limit.
By means of this calculation, the problem of low frequency reflection
from such tapered arrays will have been reduced to that ofr reflection from
an equivalent inhomogeneous, anisotropic plane layer. The analysis of this

problem will be the subject of a separate report.

Il. LOW-FREQUENCY BEHAVIOR OF QUASI-PLANE WAVE MODES

Let us recall some results of [1]. A uniform, transversely periodic
waveguide as shown in Figure 1 supports waveguide modes of propagation

which have the structure of Bloch waves in the transverse direction:



E(x,y,z) = e'jk‘;‘;?E(E) (1)
H(x,y,z) = e *" Fiyp)

Here, Fg and I—=H are periodic functions of x and y with periods a and b
respectively, p=xa, +ya, IS a transverse position vector, T =P +2a, is

the position vector itself, and

Kone = ki + Ba, = B (2)

The transverse component n, = Et/ ko of ng is to be regarded as fixed and

given. For each Et and frequency @ (corresponding to an assumed time

factor of ei®t), there are only certain allowed values of the propagation

constant B, corresponding to a discrete spectrum of modes.

It is reasonable to assume that there are certain of these modes for
which B approaches zero as ko — 0 with n, held fixed. The fields of these
modes will reduce to static ones in this limit, as we shall show below.

For reasons to be made clear shortly, we will call these modes quasi-

plane wave modes (in analogy with quasi-TEM modés which propagate at
low frequencies on inhomogeneously-filled transmission lines).

Formally, let us take as a small parameter & = kod, where d =1/a2+ b?
is the diagonal length of a period cell. We now assume that I_:E.l_—',.,and nz =

B/ko can all be expanded as power series in §:



'_:E'v EEO"’ SI_:E1 +...

EH”'_:HO+8,_:H1+' -

(3)

Ny~ Nyo+ 3N, + 82n22+ -
Now, Maxwell's equations (equation (3) of [1]) can be written as

dV,x Fg=js[ nex Fe- Lol Fu]

o (4)
thXFH=15[neXFH'§_rFE]
0

where Lo = (no/eo)1/2. Substituting (3) into (4) and equating like powers of

5, we find:

(5)

VtXI_:Eo'-‘O '80
VtXI—:H0=O '

V. x EE1 =:T[(Ht "‘gzno) X Fgo- Coltr Fhol

(6)

V. x Fy =i‘[(at +a,Ng) X EHO*‘%:FEO]

VIX I_:Ez'-"g[(;t + gzno) X FE1 - co].l I'FH1 + N4az X FEO] : 2
I

_ _ _ _ o (7)
V. X Fyp = y [(ny + azng) x Fyy +-§—;FE1 +N4a,; X Fygl



Consequences of (6) and (7) which follow after taking the transverse

divergence of these equations are

V" (e,Fed =0

o (8)
Vt. (uI’FHO) = 0
(e Fe) < r(m .o ny.F
V. (e F—E1) = d (nt_"' az_"o) FEO (9)
V. (1 Fy) =%(nt +a;Ng) * Fo
Of course, l_:Ei andl—:Hi ,1=0,1,2,. .., like their parent functions l_zEand I_:H ,

are periodic in x and y with periods a and b respectively.

From (5) and (8), we observe that I_:Eo and I_zHo are in fact source-
free, spatially periodic (in x and y) static field solutions for the compo-
site medium of Figure 1. For I—:Eo , there will be two linearly independent
solutions of this type from which any arbitrary solution follows by super-
position (roughly speaking, two orthogonal polarizations). To discuss
these solutions, we first introduce the averaging operation over a period

cell C(x,y) centered at the point x,y (Fig. 2). For any function f(x,y), define

fadXoy) = )., F(XY") S (10)

Using known results from vector calculus (see, e.g., [15]), we can show
that



Vi ay= fg f(x',y")a, dlI'

B(x.y)

1 ' 1,0 '
- 5 IC(X.Y)Vt f(x 24 ) dS (1 1 )

=Dl ,

where B(x,y) is the boundary of C(x,y) and a, is the outward unit normal

vector to B(x,y) in the xy-plane. Similarly,

vV, x I_:av= (Vtxl—z)av
7% Fav= (Vt " Fay (12)

and so on.

If f is a periodic function of periods a and b, then fay = const, and by

(11) the periodic function Vif has average value zero:
(Viflav = 0 . (13)

On the other hand, if Vif is a periodic function, then (Vif)av =K=A1§x

+Aza, = const and, by (11),
fav=A1x+A2y+A3=K-5+A3 (14)

where A1, A2 and As are constants. Then f - fav has average value zero,



and following [11] we can show that f - fay is also periodic, for the com-

ponents of Vifav can be calculated using only line integrals instead of

integrals over C:

_ e
ax'thav=-gf v/ i(p)-d’
4
- . T 1%
a, Vlfav=3f v/ i) d"
4

To see this, note that these integrals are constant (independent of p) due
to the periodicity of Vif and the fact that the integrals are independent of
the choice of integration path. Because they are constants, one further
averaging (in the y or x direction respectively) yields the same constant,

namely the appropriate component of Vifay. Then by (15) ,

p+aa, piag, -
[f- f oyl -=f Vi(f- fa) - di
" (16)
=aay - V(f-f)0=0

P + ba
and similarly for [f- favla y and thus f - fav is periodic.

Finally (also as in [11]), if Fand V. f are bounded and Vi- F = 0, the

(—IE * V[ﬂav= [th(f'fav)] avt (F_sz av) av
(17)

1 - : —
=+ JF V() ds+F, V£,



But by the divergence theorem, the first term on the right hand side is

1 (= 1 —
& f F.V (f£,)dS = Eﬂ (f-f)a Fdl=0
because F and f - fay (see above) are periodic. Thus,
(F . th)av = Fav . Vt fav (1 8)

Returning to (5) and (8), we see that I?Eo and '_:HO must be gradients of

scalar potentials and that their z-components are constant. Let us denote

Flso,av = E_0 ’ FHO,av = ﬁ0 (19)
Then
Feoe =- Vio ; Fuoe =-ViW%o (20)
and
FEoz = Eoz =const; FHoz = Hoz = const (21)

By (8) and (14), we see that ®¢ and ¥y satisfy the two-dimensional static

potential equations

Vi (&Vi®o)=0; Vi-(uViPo)=0 (22)

with average values



Do,av = - (Eox X + Eoy y); Wo,av = - (Hox X + Hoy ¥) (23)

The functions ®o - ®o,av and ¥o - ¥o,av will be periodic (the arbitrary

additive constants in (23) have been taken to be zero).
If our interest is only in average field values rather than their fine
(periodic) structure, then only a single tensor quantity from each of the

static problems is needed. These are the effective (homogenized)

permittivity [eh] and permeability [uh). They are defined as

€o(€r FEo )av =[eh] - E_o
(24)

Ko (pr FHo)av = [ubh] - Ho

for any average fields Eo and Ho , and can be calculated from a knowledge

of the static fields Feo and Fo. Since €r, pr, FEot and FHot depend only on x

and y, while Feoz and FHoz are constant, we see that [eh] and [uh] have the

structure: i
h i h ]
[et] 0 [Mt] 0
" = o|: n = 0
) h (25)
0 Oe, i 0 0 M2z
where



h €,
€,,=€yE),, = Py f e(x,y)dS

Tl uo(ur)av=%§ f (x,y)dS (26)

h
while [g,]and [uﬁ are symmetric 2 x 2 tensors. These latter can be

approximated quite well by variational methods, as discussed in Section 3.

Now, averaging (6) and (9) over a period cell C results in
n, — —
?XEO_[’-L}I]‘HO=O :
a (27)

n, — h _
FeXHO-F[G]‘EO:O
and
— h
ne’[ﬁ]'E():O
N (1" Hy=0 (28)

where ¢ = (1o €0)-1/2 is the speed of light in vacuum. Of course, (28) can
also be obtained directly from (27). These are simply the relations obeyed
by the vector amplitudes EyandH, of a plane wave propagating with wave
vector ko ne in a homogeneous but anisotropic medium characterized by
[en] and [uh].

For our purposes, it is the transverse field components which are of

interest, as they will obey ordinary transmission-line equations. From

the transverse parts of (27) we have

10



nz_ E Ht - h] = _
'é_azx ot+—c_xaonz’[ut 'Hot‘o

n,- — n - h o _
< 22X H,+ e a,Hg,-[€]-Ey,=0

and from the z-components,

ot X Eg - p Hopa, =0
—C—x ot" Hzz Hoza, =

n, - h _ _
F X H0t+ ezz Eozaz =O

Eliminating Eoz and Ho: from these equations gives

lg xE H,=0
?azx ot” [ue] ot—

n,- - —
?azx Hy,+ [e])- E,=0

where
i -
1 My NixNyy
[ed = ] +—— )
cE,l Dpllyy Ny ]

2
h 1 'nty ntxnty
[e]=[e]+—— 2
ClU, | Doty Mg

Since (as is shown by direct computation)

3, {ID1- A} =D @,- &)

11
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(30)

(31)

(32)

(33)

(34)



where At is any transverse vector, [D] is a 2 x 2 matrix and [D¢] is the

matrix of cofactors of [D] (transpose of the classical adjoint or adjugate):

[De] = {det (D) [D-1}T (35)
=[Dyy 'DYX]
'ny Dxx '
then we have by taking the cross-product of a; with (31):

n,_ - =
FEOI"'[HQ'(az xH,)=0 (36)

Equations (32) and (36) form a matrix analog of the transmission-line

equations. We can eliminate a; x Hot between them to get

) |
{“*3 '[se]‘n—;}'EFO (37)

c

That is, the values of nf/c2 are eigenvalues of the matrix [ug - [e], and, if
these eigenvalues are distinct, they correspond to two orthogonal

—(1 —2
vectors Efn) and Efn)t

=1 =2
Ey - Eot =0 (38)

These are polarizations of quasi-plane waves which will maintain their
identity when propagating through the homogenized medium. Further, from
(32) or (36), (38) also implies

=1) - —Q2) =@ - (0
Eot 'azXHotont 'aZXHot (39)

12



This could also have been deduced from the orthogonality property (15)
of[1], together with property (18) of the averaging operator, as well as (5)
and (20).

Now the mode fields (in the notation of [1]), in their quasistatic

limits, become (denoting mode indices by +1 and +2):

— — ke p=(1,2)
& 1,2t (ik‘)ECﬂ pFEO[

— — . Tk p=(12) (40)
‘%I,Zt (ikt) = C+J pFHot

and

g-1,2t (ky) = 61,21 (tk,)

- — 41
Ky 5 () =- 32 (41)

1,2t z El)

since (5) and (8) are independent of Tit. Then by formula (21) of [1], the
norms of the fundamental modes are
Ni2@Ek)=-N k)
—=(1,2) _—(1,2) —
= } Fgot XFyo - a,dS

—2) —12) _
=abE, "xH, -a,

(42)

Once again we have used (18), (5) and (20).

13



3. APPROXIMATIONS FOR THE HOMOGENIZED PARAMETERS

For the uniform array of cylinders, our lowest order approximation
problem can be regarded as solved if we can calculate[ej and[u?]. This has
been done numerically for some specific geometries using the finite
element method [17] - [20]. However, there has also been some work done
using variational methods to calculate upper and lower bounds for the
effective parameters when erand pur are purely real.* The earliest and
most widely known set of bounds was derived originally by Hashin and
Shtrikman [23] and later generalized in a number of ways [24] - [28], [50].
For the case of a two-phase medium (er and Ur are piecewise constant and
take on only two distinct values) with appropriate symmetry in the x and y

directions, the effective tensors are simply multiples of the identity

h te0 h 0 43
[et]=[‘ ] ; [u[]={”‘ } ; (43)
Oe, Op,

Then the Hashin-Shtrikman bounds are

tensor:

g |1+1, SE Sg|l+1,
(1 +f)e+1f, g,

82 +81 82_81

(44)

£, fe, +(1+ f))e,

*When €r and |ir are complex, we can obtain separate upper and lower bounds for the

real and imaginary parts of the effective parameters by replacing €r and [ir in the following
formulas by their real or imaginary parts respectively. Stricter bounds related to the Hashin-
Shtrikman bounds (but in the complex plane) are given in [21], [22].

14



where €1, €2 > €1 are the permittivities and f1, fo = 1-f1, the fractional

areas occupied by the phases 1 and 2 within a period cell C. These are the

best bounds obtainable using only the parameters €1, €2, f1 and f2. For the
case of a square array of circular rods, the Hashin-Shtrikman lower bound
in (44) was originally obtained by Rayleigh [29] and rediscovered many
years later by Corti et al [30].

A second set of bounds which used more geometrical information
about the array was obtained shortly after the Hashin-Shirikman bounds
by Jackson and Coriell [31]-[33], and developed further by subsequent
workers [34]{38] and [10, p. 139]. When applied to a medium whose

effective parameters are given by (43), the Jackson-Coriell bounds are:

d 1
€ —Y __ <e<¢,
: : (45)
dx
f E(X.Y) _ 4
0 o

b
f € (x,y)dy
0 0

For the case of a rectangular array of rectangular rods, the upper bound in
(45) had been given earlier by Collin [39] as an approximation based on the
neglect of fringing fields.*

To assess the accuracy of these various bounds, we consider the
case of a square array of square rods as shown in Fig. 3. This case will

have practical application to the pyramid-cone absorbers used in anechoic
chambers. Let g = a2/a be the ratio of the side of the rod to the period of

"The labellings of the dimensions t1,2 and d1,2 in Fig. 3 of [39] appear to have been
mistakenly interchanged.

15



the array. Then f2 = g2, and we may adapt the bounds of (44) and (45) to

this configuration. By symmetry, the transverse tensors have the fo}m

(43), and we have (for €1 < €2, and both real)

A€, ey (HS) (46)

g2 € 1+g2
1+ g2)81 + (1 - gz)ez
&, +€ - |
g <E 1+g2( - 1\ . (HS) (47)
€ }g2‘°,1+(2—g2)a2
€,-&
€,2¢€; 1+g2 2 1
€8 +8&(1-g) (JC) (48)
2 €,-&
€, <g |l+g
g,(1-g+ g)+ e.8(1-g) (JC) (49)

In Fig. 4, we plot the estimates (46) - (49) for € vs g for the case when

€2=10€0, €1=€0. We also plot numerical results for this case, obtained

from [18] using Keller's scaling theorem [40]. There is some error
involved in reading these results from a graph, so that this curve in Fig. 4
occasionally exceeds an upper bound or falls below a lower bound by a
small amount. We see from Fig. 4 that the HS upper bound (47) is not very
accurate. Moreover, both JC bounds (48) and (49) are of moderately good
accuracy (about 7.5% in error at worst case) and the HS lower bound (46)

is in excellent agreement with numerical results (the worst error is 4%

16



which is comparable to the error in reading the graph in [18]). Based upon

this evidence, we conjecture that (46) is the best of the approximate

formulas for et in this geometry and that its use can be extended to

complex values of €; and €. Howe;ler, no numerical results for this latter
situation are available for comparison to settle the matter definitively.
The problem must be left to futu're study.

We may also consider the case of the generalized checkerboard array
shown in Fig. 5. For a filling fraction f2 < 1/2, we have an array of square
absorbers oriented at 45° relative to the array axes, while for f2 > 1/2,
we have the complementary structure of square air voids embedded in an
absorbing backdrop. Numerical results for this configuration have been
given in [17], [52] and [53]. The Hashin-Shtrikman bounds are, as ever,

given by (44). The Jackson-Coriell bounds, upon evaluating (45), are found

to be 82 h 2
(1—-1/‘)+ «/_ (1c) f2=—2<; (50)
a

€€, )

+

a1
g, €, (I-Eﬁ
a

— 2
In [1+82 ! %w/?] ac) (f2=h—2 <%) (51)

€€, 3] a

2
I 1

while for f2=1-—>5 weleth - 1 and e1-» e2in (50) and (51). Here, h, I
a

and a are defined as in Fig. 5. A check of these bounds against the
numerical results of [17], [52] or [53] shows that no single one is as
accurate an approximation here as (46) is for the square array of squares.
If, however, we take the square root of the product of the Jackson-Coriell

bounds:

17



172

(A-1)(1-g) - A ln[1+g(Al 1] (52)
§,SE, '
(A-1)(1-g) +in[1+g(A - 1)]
where h 5 1
€En=€;; g==Y2; A=—=for f, <3
a 81
l & 1 53
En=8;; g=;ﬁ; A=— for f, >3 (53)
3
we find a relatively good approximation for all values of g. When £,/e,=10,

the maximum error of (53) is 8%.

graphically.

In Fig. 6, we illustrate these values

18



4. HOMOGENIZED DESCRIPTION OF SLOWLY-TAPERED ARRAYS

We now again permit (as in [1], section 4) € and pu to be functions of
z, so that nz, FE and FH, as well as the quantities derived from them (like
nzo, Eo, Ho, etc.), will also depend parametrically on z (Fig. 7). If the
variations in z are on a length scale which is large (compared with local
wavelength, periods a and b, and so on), then the coupled-mode formalism
developed in [1] will be especially suitable for describing propagation in
this structure. ,

From [1], we find that the transverse (xy) fields in the tapered
region can be written as a sum of modal Bloch waves of the type (1). The
amplitudes Am(z) of these waves then satisfy coupled-mode equations ([1],
eqn. (31)). When variation with z is sufficiently weak, we find that
coupling between different modes is quite small, and that the set of
coupled-mode equations may be truncated to include only the amplitudes
A+(z) and A-(z) of the forward and backward traveling fundamental (quasi-

plane wave) modes 1 or 2 alone. This truncated system has the form:

A @) +iP@A(2) = C, (2)A2) +C, (DA (2)
A'_(z) -iB@A_(z)=C_ DA @)+ C. (DA(2) (54)

where the coupling coefficients C++ are given by ([1], eqn. (32)). Here and
afterwards, we may drop the explicit indication of polarization 1 or 2,
since the coupling between them is neglected. ,

From ([1], eqn. (32)), and (40) - (42), and once again using properties

(18), (15) and (20), we find that
C_.=-C,

_ 1 dN,
N, & (55)

19



and

(56)

where (32) has been used to eliminate  3,xH,, from (56).

We will hereafter specialize to the case of interest for the tapered
absorber problem--when [e:‘] and [p{‘] are diagonal and invariant to
interchange of x and y, as in (43). Then with no loss of generality we can

take

n,=a, sin 6 (57)

where 6 can be thought of as an angle of incidence with respect to the z-

axis in a free space region. Then E,, , by (37) and (33), is either x-

polarized (parallel polarization to the xz-plane) or y-polarized

(perpendicular polarization).  We are now free to normalize E,,=a, or a,

respectively (independent of z) for these cases, whence dEo/dz = 0, and
C,, =-C._=C_,

1 dZ, (58)
77, dz

where the intrinsic wave impedance Zc for each mode is defined as

Eot'Eot __'512
=~ "N, (59)

Ze=——0
az°Eot ><Hot

C

Since by (33), we have

20



K- , b 0
[ ¢ Ez
0 W,
(60)
g, 0
[e.] =
0 sin’@
t 2 h
CH,

we can summarize the properties of the two polarizations as follows (cf.

(32) and (37)):

Parallel Polarization:

(62)

21



Perpendicular Polarization

(64)

2 h
CHz
We now pass to a conventional transmission-line description from

(54) by putting

E@)=Az)+A(2)

A@-A
ey = A0AD 5)

and using (58) to obtain

E'(z) + JBZH() = ZH()
- (66)

j Z
H'(z) + %E(z) =- 7: H(z)

But finally, the terms on the right sides of (66) are small because of the
slowly-varying assumption which allowed us to set the other coupling
coefficients to- zero. We thus arrive at the ordinary transmission-like
equations

E'(2) +jpZH(z) =0

H@ +$Ee = 0 (67)
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The gently tapered composite medium is, to this order of approximation,
equivalent to an inhomogeneous (in z only) but anisotropic medium. The
calculations of fields in such an equivalent medium are considerably
simpler than are those of the original problem.

This result has previously been obtained for the wedge geometry by
Bucci and Franceschetti [3] (for normal incidence only) and by Bell et al.
[41], Bouchitte and Petit [42] and Borovskii and Khizhnyak [56] (for
arbitrary incidence perpendicular to the edges of the wedges). An
analogous result for the scalar problem and circular cone geometry was
obtained earlier by Kohler gt al, [43] and more generally for the scalar
problem by Bakhvalov [51]. The present result constitutes the full
generalization to the three-dimensional electromagnetic case.

5. Conclusion

In this report, we have demonstrated the low-frequency equivalence
between an array of gently-tapered pyramid-cone absorbers (or other
slowly varying transversely periodic structures) to a one-dimensionally
inhomogeneous but anisotropic medium. The application of this
equivalence to the calculation of reflection coefficients of such absorbers
will be dealt with in a subsequent report.

It should be noted that the restriction to slowly varying structures
in the z-direction may not be essential. There are a number of papers [44]
[49], [14], [54], [55], [57], [58] dealing with discontinuities between
different periodic structures. These seem to indicate that the equivalent
boundary conditions on the average field are also those dictated by the
equivalent parameters of the bulk medium as found in section 2. A precise
assertion of this fact, however, does not seem to have been made in the

literature.
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Fig. 1: Uniform transversely periodic waveguide.

C(x.,y)

Fig. 2: Geometry of a period cell C(x,y).
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Fig. 3: Square array of square absorbing rods.
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Fig. 4: Comparison of the approximate and numerical results for &,
of the array of Fig. 3, with €2 =10 €;:
finite-element [18]. — - eqn. (49),

— —— __€eqn. (48), — -__eqn. (47), ----eqn. (46).
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Fig. 6: Comparison of approximate (— — —, eqn. (52)) and
numerical ( _, [17], [52)) results for &, of the array
of Fig. 5 with €2= 10 €1.
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