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In light of recent collisions and an increasing population of objects in Earth orbit, the space

situational awareness community has significant motivation to develop novel and effective meth-

ods of predicting the behavior of object states under the presence of uncertainty. Unfortunately,

approaches to uncertainty quantification often make simplifying assumptions in order to reduce

computation cost. This thesis proposes the method of separated representations (SR) as an efficient

and accurate approach to uncertainty quantification. The properties of an orthogonal polynomial

basis and a uni-directional least squares regression approach allow for the theoretical computation

cost of SR to remain low when compared to Monte Carlo or other surrogate methods. Specifically,

SR does not suffer from the curse of dimensionality, where computation cost increases exponentially

with respect to input dimension. Benefits of this low computation cost are shown in a series of low

Earth orbit test cases, where SR is used to accurately approximate non-Gaussian posterior distri-

bution functions. Here, the dimension of the problem is increased from 6 to 20 without incurring

significantly more computation time. Taking advantage of a large input dimension, this research

presents a global sensitivity analysis computed via SR, which affords a more nuanced analysis of

a previously examined case in the literature. By considering design variables, SR is formulated to

perform optimization under uncertainty. A novel method that utilizes a Brent optimizer to create

training data at unique times of closest approach is devised and implemented in order to detect

low probability collision events. This methodology is leveraged to design an optimal avoidance

maneuver, which would be intractable when using traditional Monte Carlo. Lastly, a multi-element

algorithm is formulated and presented to estimate solutions that are challenging for unmodified SR.

This multi-element SR leads to orders of magnitude in accuracy improvement when considering the

ability of unmodified SR to approximate discontinuous, multimodal, or diffuse solutions.
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Chapter 1

Introduction

1.1 Motivation

Space situational awareness (SSA) requires that an accurate estimate of a space object’s

state and uncertainty be known. This estimation is a major component in conjunction assessment

and computing the probability of collision, or reacquiring an object to facilitate a state update.

Collisions between catalogued objects [2, 71] has spurred investigations into typical methodologies

of SSA and increased interest in research for novel approaches to this problem. Research in this

field becomes increasingly important as the ratio of objects in space to telescopes on the ground

increases, which is expected with improving sensor technologies [68]. To meet demand, SSA analyses

must accurately propagate uncertainties over increasingly long time spans. Unfortunately, these

involve nonlinear dynamics that cause the position and velocity multivariate probability distribution

function (PDF) to possibly become highly non-Gaussian.

While SSA is traditionally viewed as restricted to the realm of Earth orbit, state awareness

is required in many environments. As the number of objects orbiting Mars grows, assessments of

their current and future states becomes necessary to avoid conflicts. State awareness and spacecraft

navigation also faces challenges in complex outer planet and small body systems such as asteroids

and comets [95, 93]. In the case of small bodies, the gravity may be highly asymmetric and relatively

unknown. Therefore if left uncontrolled for a short period, spacecraft may deviate significantly from

their planned trajectories or even impact the surface [95]. Complex planetary systems such as the

Jovian or Saturnian moon system also present challenges in maneuver planning and state estimation



2

or prediction. These environments often have many sources of perturbations, which complicate

analyses such as planetary protection. In addition to this, time between flybys of interest may be

so long that the ability to utilize satellite dynamics in order to minimize fuel use is limited [93].

Calculating the probability of collision between space objects necessitates an accurate as-

sessment of SSA, which in turn provides a representation of the uncertainty of a space object’s

state. This estimation process becomes increasingly difficult and important as the ratio of objects

in space to telescopes on the ground increases, which is expected with improving sensor technolo-

gies [83]. In order to identify and therefore avoid potential collisions, methods must be developed

such that the state of objects in orbit can be accurately determined and the probability of collision

estimated. This thesis seeks to aid the field of conjunction assessment by providing an efficient

means of propagating uncertainty without posterior assumptions, from which the probability of

collision can be computed. The developed methodology is then applied to an optimization problem

focused on avoiding the identified conjunction, thereby tractably performing a design that is robust

to uncertainty.

1.2 Uncertainty Quantification Background

Methods of uncertainty quantification (UQ) seek to estimate the variability of a system re-

sponse due to input and modeling errors. This variability results from, for example, force model

truncation and statistical uncertainties in inputs. One way of quantifying the system response is

to generate realizations of random variables and propagate each to a final state (e.g. Monte Carlo

simulation). Using this method, the statistical characteristics of the PDF can be analyzed but

at a large computational cost. However, a recent assessment of the Air Force Space Command’s

astrodynamic standards indicates a need for such sampling-based methods for UQ in certain sce-

narios [83]. Therefore, if the large computation cost of standard methods, such as Monte Carlo

(MC) simulation, is to be avoided, a more computationally efficient procedure is of interest.

Traditionally, uncertainty mapping using the state transition matrix (STM) is used to esti-

mate a posterior PDF [101]. As an alternative, the statistical method of MC may be used [96, 33].
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Unfortunately, each method has disadvantages. The accuracy of Monte Carlo is known to be in-

versely proportional to the square root of the number of samples used. The result of which is that

incremental improvements in the accuracy require significant increases in sample size and compu-

tation costs. On the other hand, the STM relies on a linearization scheme, which is undesirable in

the nonlinear regime of orbit propagation [70]. More recently, the unscented transform (UT) has

been used as an efficient uncertainty propagator due to its ability to do so nonlinearly. The UT,

like the STM, still assumes a Gaussian distribution and a posteriori Gaussian assumptions have

been proven to be inaccurate under common conditions [70]. Cases of high variance, significant

time between observations, or both tend to yield non-Gaussian posterior PDFs. Avoiding Gaussian

assumptions in high-dimensional stochastic systems is therefore important for proposed uncertainty

propagation techniques if the ratio of objects in space to sensors continues to increase.

Methods such as polynomial chaos expansions (PCEs) [50, 122, 68, 67, 66] and Gaussian

Mixture Methods (GMM) [62, 30, 32], which do not assume Gaussian distributions, have been

proposed as an alternative to current approaches [68]. While these new methods provide an im-

provement in efficiency, computation time still increases quickly (up to exponential) with respect

to the number of uncertain inputs or stochastic dimensions [36, 62]. This effect has been dubbed

the curse of dimensionality, the mitigation of which requires dimensional reduction or truncation,

while inaction leads to increased computation time [20, 36, 62]. State transition tensors (STT) are

also being researched as a method to nonlinearly propagate state uncertainty [85, 46, 80]. These

STT methods, however, require the derivation of complex partial derivatives or numerical methods

for their approximation.

In addition to solution statistics, it is often desired to determine the (global) sensitivity of the

solution of interest or its statistics with respect to uncertain inputs. A sensitivity analysis quantifies

the relative effects that random inputs have on uncertainty in quantities of interest (QOIs) [99].

The result of such an analysis can be represented via a sensitivity index based on the analysis

of variance (ANOVA). These indices are helpful in a variety of circumstances, including practical

(rather than mandatory) dimension truncation or prioritizing dimension determination. If the goal
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is to optimize reliability or minimize solution variance, among other desires, it is helpful to identify

the input that is most deserving of better determination in order to reduce the output uncertainty

by the largest amount possible [99]. The effects of the curse of dimensionality, however, can limit

the scope of sensitivity analyses by prematurely truncating stochastic dimension count for the

sake of such an analysis. Although PC has been shown to efficiently compute global sensitivity

indices [106, 21], the efficient generation of a PC expansion lies in the assumption of low stochastic

dimension or low polynomial degree.

1.3 Conjunction Assessment

Modern conjunction assessment (CA) requires the calculation of the probability of collision.

The calculation of this value includes a methodology of UQ due to the fact that the risk of collision

is a statistical event as long as the conjunction is not considered to be a deterministic process.

As research devoted to CA has progressed, methodologies have been introduced and developed

over time. Early attempts to determine a conjunction focused on the distance of closets approach

between two nominal trajectories. Due to the fact that this approach does not consider uncertainty,

the astrodynamics community later developed methods incorporating uncertainty in the form of

probability ellipsoids. The probability of collision could then be calculated via overlapping areas or

volumes [53]. Evolving from this, methods have been developed to incorporate these uncertainty

volumes or areas, as well as the shape of objects, often in the guise of hard body radii [4, 18,

86]. Although such approaches have proven themselves in operational environments, collisions do

still occur [87, 2, 71]. Typically, the established methods make assumptions such as posterior

Gaussian PDFs or constant velocity near the time of closest approach [89, 87, 88]. Oftentimes,

these assumptions are made for the sake of computational efficiency. Therefore, it is desirable to

provide a posterior estimation technique that is tractable and lessens the number of assumptions.

Both GMM [31, 45] and PC have been applied to CA, with PC currently used in operation on

the Magnetospheric Multiscale (MMS) Mission [68, 67, 66, 100]. Results have shown that these

methods provide improved efficiency in UQ and estimating the probability of collision. However as
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previously stated, both GMM and PC suffer from the curse of dimensionality.

As an alternative to distance of closest approach and probability of collision, Patera has pro-

posed a quantity known as the probability of conflict [87, 88]. Used within the aviation community,

the conflict probability is quantified by calculating the probability that the uncertainty of a pri-

mary object will enter a conflict volume of a predetermined shape. A cylinder is commonly used

in aviation, as altitude rarely changes, while Patera developed a method compatible with spheres

and ellipsoids. These shapes are more applicable to astrodynamics, as spacecraft are often in or-

bits which are not perfectly circular. When applied to publicly available operational conjunction

data collected over a calendar year, it was found that the probability of conflict reliably predicted

possible collisions while mitigating the chance of a false positive when compared to more common

methods such as the probability of collision or maximum probability of collsion [87]. Although a

promising quantity, the probability of conflict is still calculated while assuming Gaussian posteriors.

1.4 Optimization Application

Significant work in the astrodynamics community has undertaken the task of designing opti-

mal maneuvers for spacecraft, with a focus on a deterministic optimization problem. The Lambert

algorithm is familiar to the field, while recent work has helped address a miriad of scenarios [113].

For example, Izzo et al. [64] uses search space pruning to optimize a multiple gravity assist problem.

In Pontani et al. [92] and Pontani and Conway [91], particle swarms are utilized for optimizing mul-

tiple burn rendezvous trajectories as well as continuous finite thrust rendezvous trajectories in the

rotating Euler-Hill frame, respectively. In order to avoid the high computation cost of a brute force

optimization problem, e.g., one that relies on evaluations of a black box propagator, Peng et al. [90]

and Gano et al. [47] both use surrogates, with Gano et al. [47] comparing three methodologies.

Although these approaches are relevant for the stated deterministic problems, they are not robust

to system uncertainty.

Complex systems are often subject to uncertainty or stochastics due to incomplete models or

inadequate state knowledge. Once this uncertainty has been quantified, a deterministic optimization
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scheme does not adequately account for the statistical nature of the system. The methodology

of optimization under uncertainty (OUU) accounts for such uncertainty. OUU enables solving an

optimization problem while also taking into consideration the uncertainty of random inputs and the

resulting variability in a performance or reliability function [73]. In order to optimize a problem,

OUU supports the concept of reliability design as well as robust design [38]. Reliability design

focuses on finding an optimal solution that is constrained by a minimum allowed reliability index.

This index is based on a cumulative or complementary cumulative distribution function. Robust

design, on the other hand, emphasizes a constraint on the maximum allowed variance in a design.

OUU has recently become a topic of interest in the astrodynamics community. Utilizing

linear covariance propagation for UQ has seen a number of applications, while more advanced

methods of UQ (such as the unscented transform or state transition tensors) have also recently been

applied [82, 79, 125, 124, 123]. As an example of a robust maneuver design, Patera and Peterson [89]

considers uncertainty in a maneuver design methodology intended to avoid a potential collision.

The cited work covers an operational algorithm that is used to identify conjunction events and

quantify the risk of collision via probability of collision. The approach employs a two step method

for calculating a maneuver which avoids the identified possible collision. This process involves first

determining the gradient of the probability of collision with respect to maneuver direction, and then,

using a one dimensional root finding scheme, the optimal maneuver magnitude is computed [89].

Although the methodology provides an improvement in computational efficiency, it maintains a

Gaussian posterior assumption. In the case of Mueller and Larsson [82], the robust optimization

technique is applied to collision avoidance via maneuver design. Robust rendezvous planning is

addressed by Louembet et al [78] and Deaconu et al. [28] while respectively considering maneuver

error and navigation uncertainty. Robust rendezvous planning is again addressed by Dell’Elce and

Kerschen [29], where differential flatness is applied to the optimization approach. Considering the

various approaches to UQ, a review of the techniques therefore becomes of interest when applying

OUU to astrodynamics.
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1.5 Proposed Methodology

As an alternative to the discussed methods, we present the approach of separated represen-

tations (SR) for propagating uncertainties associated with the initial state of a satellite and other

parameters of an orbital system to a future time. SR, also known as canonical decompositions

(CANDECOMP) or parallel factor analysis (PARAFAC), provides a surrogate model to efficiently

quantify the response of a system to a set of inputs. The main idea behind SR is to decompose a

multivariate function of inputs into a sum of products of univariate functions of those inputs. First

introduced by Hitchcock in 1927, SR has been applied to several areas including data mining, ma-

chine learning [20] and chemistry [6, 58]. Recent work by [19, 40] shows that SR may be an effective

algorithm for estimating a function of many variables, while alleviating the curse of dimensional-

ity, i.e., SR shows promise to significantly reduce computation times for high-dimension stochastic

systems [35, 34, 84, 72, 36, 24, 54, 110, 94]. SR provides a means to propagate uncertainty with

nonlinear models where no assumptions of a Gaussian a posteriori distribution are made.

First applied to astrodynamics by [16] as part of this work, SR has also been used to produce

a direct solution of the Fokker-Planck equation for perturbed Keplerian mechanics [107]. The ex-

pectation is that, similar to studies in the literature, computation costs of orbit UQ will decrease

with respect to several other methods that fall prey to the curse of dimensionality [36]. Theoreti-

cally, as demonstrated by [20], the computational complexity of SR remains linear with respect to

the number of random inputs. With this fact in mind, the available suite of random or stochastic

dimensions can be expanded without significantly increasing computation time. This work presents

the mathematical tools required to use SR in astrodynamics, provides an initial proof of concept for

efficiently propagating orbit uncertainty and uses an SR to efficiently perform sensitivity analyses.

With the ability to efficiently propagate uncertainty, SR is proposed as a method for quantify-

ing the conjunction probability between objects in space. Once a statistically significant conjunction

has been identified, a natural next step in the process is to address this concern and attempt to

avoid the collision. Designing a maneuver for one (or more) of the involved objects is one such
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approach. PC has been used to perform OUU, and it has been shown to be both efficient and

accurate when compared to previously used methods [73, 39]. Feldehacker et al. [41] applies PC to

a mission design problem by utilizing the reduced computational burden of a surrogate within an

OUU problem. An assumption when using PC for OUU, however, is that the system is accurately

represented by a stochastic dimension that is low enough in order to avoid the curse of dimension-

ality. Therefore, SR has an expected benefit of reducing the computation time of OUU under high

stochastic dimension when compared to PC. In this thesis, we consider probability of collision test

cases with a dimension up to 18. This would be theoretically expensive for methods that suffer

from the curse of dimensionality.

1.6 Multi Element Improvement

The unmodified SR is most effective when estimating smooth, continuous functions. However,

this behavior is not guaranteed in many fields such as astrodynamics. Additionally, multimodal

posterior PDFs are challenging for polynomial surrogate methods to achieve a converged solution,

while diffuse PDFs with large variances also present issues. Multimodal behavior has been observed

in Molniya orbits along with expected difficulties in creating surrogate approximations [67]. Flybys

also pose estimation issues, and multimodal distributions have been documented while running

simulations of the Cassini mission [42]. This poses a risk to mission survival or planetary protection,

where it may be required to perform a tractable estimation of a non-Gaussian PDF, but it is possible

for a surrogate method to fail to converge. An additional problem is that of resonant dynamics,

where a “keyhole” problem subjects a very small number of samples to potential impacts. This is

seen in scenarios such as asteroid flybys or discarded rocket stage bodies [119].

Unstable resonant orbits have increasingly been used for tour design around outer planets

with moons. An application that has been of interest recently includes Jovian petit grand tours with

an emphasis on missions to Europa. Anderson and Lo showed that resonant orbits are integral to

understanding the dynamics of flybys for ballistic [11], impulsive [10], and low-thrust trajectories [9].

They have also been used directly in the design of tours and endgame scenarios with their invariant
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manifolds and heteroclinic connections [12, 7, 115, 116], as components in the overall tour design

strategy [23], and with optimization [75]. Resonant orbits have also been shown to be key to

understanding elements of the final approach to moons such as Europa [8, 13]. The instability

of these perturbed environments, in particular after flybys, can establish a discontinuous or multi-

modal relationship between the input and solution space. Therefore, computationally efficient tools

that are able to accurately converge onto such solutions are desirable.

As it is a similar methodology, we are able to look to research on PCEs for additional

techniques and enhancements in capability. For example, general PCEs have been modified to

include compressive sampling, which may reduce the required training sample count by eliminating

insignificant coefficients [56]. Although applying this approach to SR is not a topic of this research,

we focus on other research aimed at enhacing the performance of PCEs. Specifically, those made

to improve upon the reliance on a continuous relationship between random inputs and the solution

space. In an effort to accurately estimate a discontinuous solution, the Wiener-Haar method was

developed [76, 77]. The approach of this cited work relies on a wavelet basis rather than the

orthogonal polynomial method previously discussed. Therefore, in order to develop a method that

maintains the simple polynomial formulation of PCEs, Wan and Karniadakis [120] proposes a

multi-resolution support. This approach is a significant improvement due to the ability for a multi-

element generalized polynomial chaos method (ME-gPC) to remain accurate when considering

discontinuous functions or random inputs, while maintaining the same PCE solver methodology

with few modifications. These characteristics are equally desirable for an SR approximation, and

we seek a similar improvement in performance while remaining within the basic framework of

polynomial formulation.

1.7 Contributions and Overview

The contents of this thesis contain the background necessary to provide motivation for the

research of SR, its formulation and implementation, as well as various applications to the field of

astrodynamics. These applications are run on a number of test cases, and the accuracy of the
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surrogate technique is verified and compared to reference methodolgies. Taken together, this study

presents work comprised of the following contributions.

This work includes the first application of SR to the field of astrodynamics and considers

both relatively low and high dimension count. The efficacy of the method is quantified in both

computation cost and accuracy. Leveraging the benefits that SR provides to computation time,

a surrogate based sensitivity analysis is applied to two test cases. This is the first example of

using SR to compute Sobol indices for a global sensitivity analysis. The results of one of these

analyses provides additional insight to the relationship between input uncertainty and the variance

of the QoIs in a previously examined test case in [62]. A formulation for using SR with OUU is

then presented, which is also a new contribution. In a first for the astrodynamic community, the

process of using SR with OUU is later applied to a probability of collision case, where a maneuver

is designed to avoid two collisions. For the calculation of this probability quantity, a novel method,

which incorporates a one dimensional optimizer, is presented. Following the formulation for OUU,

a multi-element approach is discussed and formulated. Due to the multi-element formulation being

a unique contribution of this thesis, implementation guidelines are given in order to faciliate further

development. For the first time, a multi-element SR surrogate is applied to an astrodynamic test

case and the results compared to a single element SR, thus highlighting the benefits of this new

method.

The remaining chapters are used to introduce the formulation and theory of SR, discuss using

SR with OUU, introduce the formulation of multi-element SR, and present results on low Earth

orbit (LEO) test cases, an OUU application, as well as cases highlighting the increased performance

generated by a multi-element approach. Within Chapter 2, Section 2.5.2 introduces the method

of SR, its formulation and an implementation guideline. Following this, Section 2.5.3 presents

formulations for solution statistics and discusses an approach to sensitivity analysis. Chapter 3

examines the concept of OUU, and the formulation of SR needed for OUU is established in Sec-

tion 3.3. Chapter 4 discusses the general weakness of SR to capture multi-modal PDFs, introduces

a formulation to overcome this, and includes a rough implementation algorithm.
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In order to establish the performance of SR, its applications and any improvements to the

general methodology, a series of test cases are evaluated. Chapter 5 presents three test cases that

analyze the computation cost of SR, its ability to approxiate joint PDFs, and its capability of

performing sensitivity analyses. Following this, Chapter 6 considers an OUU application using the

formulation derived in Chapter 3. For this, we apply SR to a case where the probability of collision

must be calculated. Therefore, Chapter 6 contains sections on the calculation of this quantity,

the case that is considered, and the performance of SR when performing OUU on the problem.

Lastly, Chapter 7 takes the theory and implementation guidelines of Chapter 4 and applies this

methodology to a series of test cases. The accuracy of the multi-element approach is compared to

that of an unmodified SR, thereby proving both the requirement and improvement in estimation

of the multi-element method.



Chapter 2

Uncertainty Quantification

This chapter presents a more thorough exploration of the concept of uncertainty quantification

(UQ) than dicussed in Chapter 1. Here, we cover some of the more common methods of UQ, their

typical applications and defining characteristics. In addition to this, more recent developments in

UQ, as applied to astrodynamics, are introduced. Among these, surrogate methods are presented,

which include polynomial chaos expansions (PCEs) and separated representations (SR). The latter

is the focus of this work.

Therefore, a significant portion of this chapter is devoted to the theoretical description of

SR and the formulations needed for implementation. An algorithm for converging on a solution is

given, and, in addition to this, analytic expressions for the first two moments are derived, as well

as a method for calculating sensitivity indices. The latter is a topic which will be covered more

broadly at first, so that the advantages of a surrogate appproach can be appreciated.

2.1 Problem Setup and Objective

Consider (Ω,F ,P) to be a suitable probability space on which the random inputs for a given

system are defined. The sample space Ω contains the set of elementary events, while the probability

measure P exists on the σ-algebra F . The random inputs are represented by the vector quantity

y(ω) = (y1(ω), . . . , yd(ω)) : Ω → Rd, ω ∈ Ω and d ∈ N. Additionally, the stochastic function q(y)

exists on this probability space. For the purposes of an astrodynamics application of UQ, the state

of the satellite is usually the quantity of interest (QoI) of the stochastic function q(y) ∈ RM , and it
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is assumed to depend on d random variables y ∈ Rd. Here, M is the dimension of the QoI, and it

is indexed via m = 1, . . . ,M . For the case of Cartesian position and velocity, M = 6, for example.

These inputs characterize the uncertainty in the initial state and possibly other parameters such

as the coefficient of drag.

The state of the satellite at time t is denoted as q(t,y) and satisfies a set of ODEs

X (t,y; q) = 0 (2.1)

describing the temporal evolution of the satellite state. In this scenario, t ∈ [t0, tf ] is the temporal

variable and the initial condition

q(t0,y) = q0(y) (2.2)

is considered. For the interest of a cleaner presentation, the temporal dependence of q(y) is

restricted to a fixed instance of t and only the short notation of q(y) is use henceforth.

2.2 Traditional Techniques

Although a number of methodologies are used within the astrodynamics community, we

focus on two examples here. That is, we present Monte Carlo, as well as linearization and the state

transition matrix. These two techniques are chosen as they represent differing approaches, i.e., the

Monte Carlo method utilizes fully non-linear dynamics, makes no posterior assumptions and relies

on the law of large numbers to derive statistics from a sampling method, while the linearization

approach assumes a Gaussian posterior, with mean and standard deviation being direct properties

of this assumption. This choice of either full non-linear simulations or linearized propagation models

is representative of contemporary uncertainty quantification in the astrodynamics community.

2.2.1 Monte Carlo

In the case of Monte Carlo (MC) simulation, the statistics of q(y) are estimated by calculating

multiple realizations of q(y), organized in the set {q (yj)}NMC
j=1 , from the initial state condition

{(yj , q0 (yj))}NMC
j=1 , where yj denotes a realized sample of y. Similarly, the vector y ∈ Rd is indexed
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by i = 1, . . . , d, which results in the j-th sample of direction i being indicated by yi,j . The initial

samples are generated by applying various a priori statistical distributions to the initial conditions.

For example, many astrodynamics applications assume a Gaussian a priori distribution. Therefore,

samples at t0 are generated via q0 ∼ N (q̄0,Σ), with a given mean vector q̄0 and covariance matrix

Σ. Both the mean and covariance are intended to be dictated by an informed decision such as

measurement data or hardware specifications. Each sample yj is first mapped to an initial sample

q0(yj) via a Cholesky decomposition of Σ. Specifically,

q0 (yj) = q̄0 +Lyj , j = 1, . . . , N, (2.3)

where Σ = LLT, and yi has the probability density function

ρi =
1√

2πσ2
i

e
− (x−µi)

2

2σ2
i , (2.4)

with (in the case of this work) µi = 0 and σi = 1 for all values of i. Similarly, if the statistical

distribution considered is uniform, initial samples are generated as q0 ∼ U(qlower0 , qupper0 ), where the

inputs are the lower and upper bounds of the desired initial distribution. If we consider direction

i and yi ∼ U(0, 1),

q0,i (yi,j) = qlower0,i + (qupper0,i − qlower0,i )yi,j , j = 1, . . . , N, (2.5)

where q0,i is the initial quantity related to the i-th direction, and yi,j is sample j of this input

direction. Typically in this work, any uniform inputs y are bounded [−1, 1] in order to be consistent

with what is known as the Wiener-Askey scheme. The formulation of Eq. (2.5) is still valid, however,

as the inputs may be mapped to [0, 1] before the upper and lower bounds of the initial condition

are considered. More information on the Wiener-Askey scheme is presented later in this chapter

within Section 2.5.

The elements of q0 (yj) are then propagated using a desired integration method as a black

box to produce the set {q (yj)} at some time of interest. By leveraging the law of large numbers,

MC methods are able to utilize the full dynamics of the desired system and estimate moments of
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the QoIs. In addition to moments, the joint PDFs of q(y) may be approximated using a sufficiently

large number of realizations of q(y). However, it is well-known that large values of NMC may be

needed for an accurate estimation of these statistics, thus making the method computationally

intractable for certain orbit problems. Thusly, although MC methods may provide an estimation of

posterior PDFs without an assumption on the final distribution or a simplification of the dynamics,

applications are limited by the high computation cost. There is therefore an interest in finding

alternative, more efficient methods.

2.2.1.1 Solution Sensitivity

In addition to desiring the statistics or posterior PDF of q(y), a sensitivity analysis of the

solution may be performed. The results of such an analysis determine the effect that a random

input has on the the uncertainty of each QoI. Here, we first introduce the calculation of a sensitivity

analysis as performed by a traditional MC method. The structure of the presented algorithm

provides motivation for the construction of an approximation such as a surrogate method.

Sobol [104] discusses such an analysis and the difference between local and global sensitivities.

Local sensitivities specify the derivative of the solution with respect to a stochastic input at a given

realization of the inputs. Global sensitivities, however, consider the entire solution rather than a

single solution realization [104, 99]. That is, local sensitivity measures, such as differential analysis,

give values relative to single points in a multi-dimensional space, while global sensitivities quantify

the effect of an input on an output while considering the distribution of the input in question, as

well as the distributions of all other inputs [98].

We propose determining the global sensitivity indices using a Sobol approach [97]. Specif-

ically, the presented method determines the variability of each component of the QoI, qm, with

respect to each direction i. In order to compute the indices, we first generate two input matrices

Y =


y1,1 · · · y1,d

...
. . .

...

yNMC ,1 · · · yNMC ,d

 , Y ′ =


y′1,1 · · · y′1,d

...
. . .

...

y′NMC ,1
· · · y′NMC ,d

 , (2.6)



16

where Y and Y ′ are composed of independent samples of NMC random inputs that are appro-

priately distributed considering the density functions ρi dictated by the probability space of the

problem.

Following [97], the (total) sensitivity indices, {Si,m}Mm=1, are given by

Si,m =
V (E (qm|yi))

V (qm)
=
Ui,m − (E(qm))2

V (qm)
, (2.7)

where

Ui,m =

∫
(E(q̂m|yi = ỹi))

2 ρi(ỹi)dỹi (2.8)

and ρi(yi) is the marginal density function of yi. Eqs. (2.7) and (2.8) utilize the operator E(·),

which takes the the expectation value of a given input. Additionally, V (qm) here denotes the

variance of the quantity qm, and ỹi is a fixed value of yi. In practice, as detailed in [97], Ui,m in

Eq. (2.7) is estimated by MC sampling,

Ûi,m =
1

NMC − 1

NMC∑
j=1

q̂m (y1,j , . . . , yd,j) q̂m

(
y′1,j , . . . , y

′
(i−1),j , yi,j , y

′
(i+1),j , . . . , y

′
d,j

)
. (2.9)

It is in Eq. (2.9) where the overall approach of the sensitivity index algorithm is readily apparent.

If Y is thought of as the sample matrix and Y ′ as the resample matrix, then we can note how

Eq. (2.7) together with Eq. (2.9) is evaluating the variation of the QoI qm as the direction i also

varies. That is, we quantify the relative effect that an input direction i has on the variance of the

function q(y).

This result is significant, because the quantities {Si,m} provide valuable information. That

is, although the effects of an input direction on the uncertainty of a QoI is not quantified absolutely,

it is still compared to all other inputs. Therefore, operators or researchers are able to prioritize the

analysis, inclusion or even observation of specific directions. For example, if the semi-major axis is

found to dominate the variance of the QoIs, work can be done to mitigate these effects via oppor-

tunistic observations and/or particular observation types. Alternatively, models or approximations

may be generated that priorize the input of semi-major axis over all other inputs for the sake of

computational efficiency.
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2.2.2 Linearization and the State Transition Matrix

Uncertainty mapping using a linearization assumption and the state transition matrix (STM)

has enjoyed a long and successful history in the astrodynamics field [101]. Its applications are

numerous and include conjunction assessment, maneuver design and predicting close encounters

between the Earth and asteroids of interest (while the methodology remains accurate) [53, 4, 18,

86, 89, 52]. This methodology forgoes the sampling approach of MC and the reliance on random

variable as seen in Eqs. (2.1) and (2.2). Rather, a linearization of the problem is made by leveraging

the method of the Taylor series. We first begin with the definition of the Taylor series,

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 + . . . , (2.10)

where an approximation to the function f(·) evaluated at x is desired. Here, the Taylor series

expansion originates at the function evaluated at a. Since linearization and the STM is constructed

for use in a filter, we often consider the unknown true solution q(t) alongside a known reference

q∗(t). Thusly, the STM is derived from approximating the QoIs at a desired time q(t) by expand-

ing a Taylor series about the QoIs evaluated from a reference solution q∗(t). Therefore, regard

the previously defined function f(·) as the solution flow of the QoIs. Using this notion and apply-

ing Eq. (2.10), we desire to approximate the true solution by constructing a Taylor series about

the reference solution, i.e.,

q(t) = f(q(t0)) = f(q∗(t0)) +

[
δf(q(t0))

δq(t0)

]∗
[q(t0)− q∗(t0)] +Oq [q(t0)− q∗(t0)] , (2.11)

where Oq [·] are higher order terms in the series. The quantity
[
δf(q(t0))
δq(t0)

]∗
is equivalent to the STM

that we desire. However, this value is not typically known. To numerically approximate the STM,

we consider the time derivative of Eq. (2.11), i.e.,

q̇(t) = q̇∗(t) +

[
δq̇(t)

δq(t)

]∗
[q(t)− q∗(t)] +Oq [q(t)− q∗(t)] , (2.12)

where the notation (·)∗ indicates an evaluation of the QoI taken at a dynamical reference.

By dropping higher order terms, Eq. (2.12) simplifies to

∆q̇(t) = A(t)∆q(t), (2.13)
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where A(t) ≡
[
δq̇(t)
δq(t)

]∗
. The introduced quantities ∆q and ∆q̇ denote the QoI and time derivative

QoI deviations, respectively . We now have a linear differential equation which elegantly integrates

to

∆q(t) = Φ(t, t0)∆q̇(t0), (2.14)

where Φ(t, t0) is the STM. The STM linearly propagates the initial deviations ∆q(t0) to a desired

time t. Levergating the STM’s ability to propagate deviations, we now focus on the ability of the

STM to linearly propagate the initial covariance matrix Σ0 of the system, i.e.,

Σt = Φ(t, t0)Σ0Φ(t, t0)T, (2.15)

with Σt being the covariance at a designated time t, which represents the uncertainty of the chosen

object. Although the linearization of the problem results in the remarkably computationally efficient

STM, this uncertainty is linearly propagated (where accuracy is lost due to truncating the higher

order moments) and the posterior is assumed to be Gaussian. Since this has been shown to be

inaccurate under certain conditions, there has been motivation for further research [70].

2.3 Recent Advances

Due to the deisire to increase efficiency yet reduce assumptions and simplifications, research

on UQ has continued within the astrodynamics community. Methodologies such as the unscented

transform (UT) and Gaussian mixture methods (GMMs) leverage a wealth of information, tools

and applications that the long history of linearization and the STM has laid down as a foundation.

Other methods, such as differential algebra (DA), state transition tensors (STTs) and surrogate

methods, vary in approach and, in some cases, attempt to approximate a MC sampling process. The

UT has recently gained traction as a relatively simple yet significant upgrade over the STM, due

to its property of nonlinear uncertainty propagation, while certain surrogate methods are currently

being used in an operational setting [100].
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2.3.1 Unscented Transform

The unscented transform (UT) is utilized to provide a non-linear means of uncertainty propa-

gation for a filter known as the unscented Kalman filter (UKF). The UKF relies on the propagation

of deterministic sigma points to determine the mean and standard deviation of the uncertainty ellip-

soid, thereby not requiring any derivative work such as with the STM [69]. Typically, the number of

required sigma points is much smaller when compared to that of a MC method, so the UKF is able

to remain efficient even when compared to the linearization and STM methodology. These points

have been shown to be equivalent to those using a Gauss-Hermite quadrature rule [63]. In practice,

the UKF is used with the UT, which replicates a third order Gauss-Hermite quadrature rule [60].

Therefore, the number of required sigma points is 2∗M + 1, where M is the size of the state space.

Although the UKF utilizes a procedure which non-linearly propagates uncertainty, there is still an

assumption of a Gaussian posterior. Therefore, other methods are worthy of consideration.

2.3.2 Gaussian Mixture Methods

Gaussian mixture methods (GMMs), or Gaussian sum methods, approximate PDFs (without

distribution assumptions) as a weighted sum of Gaussian PDFs [5]. That is,

FN (y) =

ΛGMM∑
λ=1

wλN (y;µλ,Σλ), (2.16)

where FN (y) is the approximated PDF, ΛGMM is the total number of Gaussian elements indexed

by λ and wλ are the weights of the Gaussian PDFs with means µλ and variance Σλ. The weights are

constrained by the properties 1 =
∑ΛGMM

λ=1 wλ and wλ ≥ 0. This formulation provides advantages

such as facilitating parallelization over λ and compatibility with Gaussian filters and associated

methods. Unfortunately, the GMMs suffer from the curse of dimensionality, where the splitting

along input directions becomes a computational cost that increases exponentially. This can lead to

intractability and therefore motivates research in other areas.
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2.3.3 State Transition Tensors

By leveraging analytic expressions as an approximation for the solution flow of the Fokker-

Planck equation, Park and Scheeres [85] utilize state transition tensors (STT) to propagate uncer-

tainty in a series of test cases. The results compare well with that of fully non-linear propagations.

STTs rely on analytic high order Taylor series expansions to replace a solution flow function. The

method has been shown to be accurate for propagations lasting many (20) orbital periods in two

body dynamics and with a J2 gravity field [46]. Beyond pure uncertainty propagation, STTs have

also been applied to estimation filters [80]. As an analytic method, STTs are computationally

efficient, and, once derived, do not need to be altered as long as the dynamics are not changed.

However, the derivation of high order, analytic Taylor expansions is complex. For example, when

considering dynamics such as gravity fields beyond the J2 order, it is possible that deriving the

STT expression would be an overly involved process. Additionally, many operators have legacy

code which is treated as a blackbox. Because of this, it is desirable to explore methods that are

less intrusive.

2.3.4 Differential Algebra

Differential algebra (DA) is relatively new to the field of astrodynamics, and it relies on a high

order expansion to replace a solution flow [114, 81]. That is, DA imitates the analytic Taylor series

approximation of some function via an algebraic approach, which utilizes Taylor polynomials. Due

to being calculated in a computer environment, DA relieves some of the burden of an analytic Taylor

series. The reliance on these high order series affords the method a great deal of computational

efficiency and does not rely on large numbers of numerical integrations for the construction of

a DA model. Rather, DA propagates the Taylor polynomial over a desired time span in order

to intrusively create an efficient analytic model for further propagation purposes. Typically, DA

is capable of functioning in place of a traditional blackbox in a MC environment, and therefore

provides a sampling based method for determining solution statistics. DA, however, is entirely
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reliant on the Taylor series-like method and its limitations. Therefore, certain conditions, such as

discontinuity, prevent the approximation from converging to an accurate solution.

2.3.5 Kriging

As a non-intrusive method, kriging has received some attention in the astrodynamics litera-

ture. Originally conceived in the field of geostatistics, kriging approximates an unknown function

using a known trend function in addition to a Gaussian random function [47]. Using correlation

values between sample points, estimate values of a function are calculated for a given input. Gano

et al [47] uses kriging along with other surrogate techniques in various optimization problems, with

results showing that kriging performs relatively well when data is sparse. In addition to this, kriging

is compared to other non-intrusive methods of UQ such as PCEs [112]. In this case, generalized

kriging performed poorly when considering the accuracy of the various methods.

2.4 Sampling Techniques

Throughout various research topics, integrations are often performed. These calculations may

be done analytically, numerically or via approximations. For example, the first moment (mean) of

a function is denoted by

µ =

∫
f(x)ρ(x)dx (2.17)

where the function f(x) is reliant on the input x which has the distribution function ρ(x). Often,

this moment equation is approximated by the discrete form of the first moment, i.e.,

µ ≈ 1

N

N∑
n=1

f(xn). (2.18)

Here, N is considered to be a number of samples sufficiently large for Eq. (2.18) to converge to the

result of Eq. (2.17). This is a specific example illustrating the logic behind MC simulations where

the law of large numbers is leveraged.

It is possible to approximate Eq. (2.17) and other integrations without solely relying on very

large numbers of samples N as seen in the discrete Eq. (2.18). Techniques that utilize “smart”
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sampling are often able to reduce N to a tractable number. An example of this is collocation

method of Gaussian quadrature (GC). GC approximates an integral as a weighted sum, i.e.,∫ 1

−1
f(y) dy =

N∑
n=1

wnf(yn) +RN (f), (2.19)

where N is the total number of quadrature nodes and wn are the nodal weights determined via the

particular quadrature algorithm that is chosen. The error RN (f) of the approximation is zero if

the function f is a polynomials of degree 2N − 1.

Extending the univariate form of Eq. (2.19) to a mulivariate formulation is useful in the case

of astrodynamics, and this is possible via a tensor product of sets of univariate nodes. That is,∫ 1

−1
f(y) dy =

N1∑
n1=1

. . .

Nd∑
nd=1

wn1f(y1,n1 , . . . , yd,n1) . . . wndf(y1,nd , . . . , yd,nd) +RN (f). (2.20)

Due to the tensor products needed in Eq. (2.20), the computation cost of the multivariate GC

increases dramatically with respect to the input dimension d. Therefore, this method suffers from

what is known as the curse of dimensionality. In an effort to reduce the number of samples needed

for higher dimension problems, the Smolyak grid method was developed [103].

Based on the principles of a sparse grid, Smolyak’s method reduces the total number of

nodes needed for an accurate discretization by ignoring high-order interactions among dimensions.

Although a Smolyak grid based quadrature still maintains the curse of dimensionality, the cost at

higher dimensions is greatly reduced when compared to the full tensor product method of Eq. (2.20).

Jones et al [67] highlights the cost comparison by providing a table of required samples. As an

example, when assuming that all directions of a d = 7 case require the same number of nodes, if

N = 6, the full tensor quadrature requires 279,936 samples while a Smolyak approach reduces that

number to 8,583.

2.5 Surrogate Methods

The surrogate methods discussed in this work seek to approximate q(y) as a function of y,

i.e., the mapping y → q(y), which we will then use to estimate the statistics of q(y), such as the
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mean, standard deviation (STD), and possibly marginal and joint PDFs, as well as the sensitivity

of the components of q(y) to each random input yi. Explicitly, the approximation

q̂(y) = q(y) + ε (2.21)

is sought such that the error ε is below an acceptable level, where q̂(y) is given here as a generic

surrogate approximation to the multivariate, vector-valued function q(y). To find the left hand

side of Eq. (2.21), we train the surrogate on the black box propagationed samples. This collection

of samples and realizations is organized into the data set

D = {(yj , q (yj))}Nj=1 , (2.22)

which is referred to as the training data. Using a regression approach, the training data D is used

to construct the approximation of q(y), where the distance between q(y) and the approximation

q̂(y) is minimized at the samples {yj}.

The advantage of this approach is that the construction of q̂(y) by regression may require far

fewer realizations of q(y), in the form of D, than a MC approach would need in order to accurately

produce statistics or estimations of joint PDFs, that is, N � NMC . By reducing the number of

samples propagated in an ODE solver, the computation cost of calculating desired results is, in

turn, reduced. In the case of the two discussed methods of PCEs and SR, the surrogate is often

composed of a polynomial basis. This formulations offers many advantages. One of which is a

beneficial evaluation cost, where computing a sample q̂(yj) can be assumed to be significantly

more efficient than that of the complex blackbox q(yj). Therefore, the surrogate q̂(y) can be used

in lieu of a traditional MC but with a more tractable cost. An additional feature of this polynomial

formulation is the ability to compute analytical moments via the surrogate’s coefficients. This

approach provides an advantage over even the sampling of the surrogate itself, as the analytical

expressions do not rely on the law of large numbers for the moment approximation. As a final

example, the derivatives of the polynomial basis are generally known. Therefore, values such as

local sensitivities with respect to inputs can be computed with relative efficiency.
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For conciseness, we define the data-dependent (semi-) inner product of two vectors q(y), q′(y) ∈

RM as 〈
q, q′

〉
D

=
1

N

N∑
j=1

〈
q(yj), q

′(yj)
〉

2
, (2.23)

where 〈·, ·〉2 denotes the standard Euclidean inner product. The (semi-) inner product in Eq. Eq. (2.23)

induces the (semi-) norm

‖q‖D = 〈q, q〉1/2D , (2.24)

which is used hereafter and is referred to as the data norm. It is noted that if the inputs of the

data norm are scalar quantities rather than vectors, the result of Eq. (2.24) is the root mean square

(RMS) of a data set of size N .

2.5.1 Polynomial Chaos

As a surrogate method, polynomial chaos is a relatively recent UQ method in astrodynamics.

However, it has proven to to be efficent in research as well as operations [67, 100]. Leveraging

properties of orthogonal polynomials and their relations to random distributions via the Wiener-

Askey scheme, PCEs project a stochastic solution onto a polynomial basis. This approximation can

be evaluated in various methods as discussed earlier in this section, and the reader is encouraged

to explore earlier work on the topic if a large amount of detail and theory is desired [67, 66, 68].

A brief overview of the method is provided, however, as key portions of the theory impact the

motivation behind this research.

2.5.1.1 Polynomial Chaos Formulation

For PCEs, the surrogate approximation for a scalar function is given as

q̂PC(y) =
∑
λ∈ΛP,d

cλψλ(y), (2.25)

where Λ is referred to as the multi-index, P is the maximum order of polynomial desired, {ψλ} are

a set of multidimensional polynomials that are orthonormal with respect to the weighting function



25

of the random inputs y, and cλ are the polynomial chaos coefficients computed by the projection

of q(y) onto each basis function ψλ.

Remark 1. It is noted that Eq. (2.25) is an estimate of a multivariate function q(y) with a scalar

output. It is possible to formulate a PCE to produce the output of a vector function, and interested

readers are encouraged to investigate the cited works of Jones, et al., for this vector valued QoI

estimation. Here, we present the scalar formulation for the sake of simplicity.

The orthonormality of the polynomial basis can be expressed as∫
ψλ(y)ψλ′(y)ρ(y)dy = δλ,λ′ , (2.26)

where ρ(y) is the joint probability measure of the random inputs y. In Eq. (2.26), δλ,λ′ operates

as a Dirac delta function over a set, i.e.,

δλ,λ′ =


1 λ = λ′

0 otherwise.

(2.27)

Each basis function ψλ is a tensor product of univariate polynomials of degree λi ∈ N1
0, i.e.,

ψλ = ψλ1(y1), . . . , ψλd(yd), λ ∈ Nd0. (2.28)

As previously discussed, these univariate functions are known a priori due to the known relationship

between the polynomials and the chosen distributions of the random inputs y.

The set of multi-indices is

ΛP,d := {λ ∈ Nd0 : ‖λ‖1 ≤ P, ‖λ‖0 ≤ d}, (2.29)

where ‖λ‖1 =
∑d

i=1 λi and ‖λ‖0 = {i : λi > 0}. The cardinality of ΛP,d, that is, the number of

terms, is known via the equation

ΛPC =
(P + d)!

P !d!
. (2.30)

Eq. (2.30) highlights the exponential cost increase of PCEs with respect to dimension d. This

relationship is a product of the curse of dimensionality, and, as a result, increasing d can quickly

lead to the number of terms in the expansion growing rapidly.
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2.5.1.2 Solution Via Least Squares

Since the polynomial basis is known, it is therefore necessary to solve for the unknown

coefficients cλ for all values of λ ∈ ΛP,d. Although Jones et al. [67] explores multiple methods for

calculating the coefficients, including quadrature methods discussed in Sampling Techniques, this

presentation focuses on the least squares approach. Using least squares regression, we are able to

solve for cλ by considering the cost function

J(cλ) =

NPC∑
j=1

(q̂(yj ; cλ)− q(yj))2. (2.31)

Applying Eq. (2.25) to Eq. (2.31), we rewrite the least squares cost function as

J(cλ) = ‖HC − Y ‖2F , (2.32)

where ‖ · ‖F indicates the Frobenius norm. The matrices found within this norm are defined as

H :=


ψλ1(y1) · · · ψλΛPC

(y1)

...
. . .

...

ψλ1(yNPC ) · · · ψλΛPC
(yNPC )

 , C :=


cλ1

...

cλΛPC

 (2.33)

Y :=


q(y1)

...

q(yNPC )

 , (2.34)

where H ∈ RNPC×ΛPC is referred to as the measurement matric, C ∈ RΛPC is the collection of PCE

coefficients, and Y ∈ RNPC is the training data organized into a vector for computation purposes.

Minimizing the cost function Eq. (2.32) is possible by evaluating

Ĉ = (HTH)−1HTY , (2.35)

when NPC ≥ ΛPC . Here, the matrix Ĉ contains the previously unknown coefficients, thus com-

pleting the surrogate approximation seen in Eq. (2.25).
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2.5.2 Separated Representations

The separable approach is based on approximating a multivariate scalar function q (y) with

a sum of products of univariate functions. Consider the example function in Section 2.1, which

is presented as the state of an orbiting satellite. In the scalar setting, let the QoI q(y) be a

single element of the satellite state such as the x-position. In the framework of SR, the separated

approximation of the satellite state is then a sum of separable products

q(y) ≈ q̂(y) =
r∑
l=1

sl
d∏
i=1

uli (yi) , (2.36)

where q̂(y) is the estimation of q(y), and {ui(yi)}di=1, are unknown univariate functions to be

determined so that q̂(y) is as close as possible to q(y). Additionally, {uli(yi)}rl=1, i = 1, . . . , d are

referred to as factors, and {sl}rl=1 are normalization constants such that each uli(yi) has a unit norm,

as elaborated in Section 2.5.2.3. These normalization constants provide numerical stability to the

formulation of an SR. In Eq. (2.36), the a priori unknown constant r is referred to as the separation

rank and is ideally the smallest number of separated terms – to be determined in the construction

of SR – in order to achieve a desired accuracy in approximating q(y). The approximation q̂(y) is

considered to be low-rank if r remains small for the target accuracy. It is worthwhile highlighting

the fact that the separated representation Eq. (2.36) is a nonlinear approximation of q(y) with a

small number of parameters in which the expansion basis functions
∏d
i=1 u

l
i (yi) are not predefined;

they are sought such that the approximation error is minimized, as discussed in the following.

When q(y) admits a low separation rank r, this allows a fast decay of the error with respect

to r. In addition, as we shall explain in Section 2.5.2.3, the nonlinear approximation Eq. (2.36)

may be computed using multilinear approaches due to its separable form with respect to variables

yi. The combination of these two attributes of SR will allow its construction with a number of

samples that is linear in d, which is smaller than that of standard approximation techniques relying

on a priori fixed bases. For scenarios where the desired accuracy may not be achieved by a small

r, e.g., when q(y) is discontinuous in y along an arbitrary hyperplane, SR may not lead to an

efficient approximation. Therefore, in practice, it is crucial to assess the quality of a constructed
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SR – see Remark 2 and Chapter 5 – prior to using it to learn an arbitrary q(y) and its statistics.

Such an assessment is also a key step in the construction of other surrogate models. We refer

the interested reader to the review manuscripts [74, 25] and the references therein for examples of

successful application of SR to various types of problems in engineering and sciences.

The construction of the SR in Eq. (2.36) may be posed in the form of a nonlinear optimization

involving unknowns {uli(yi)} in order to minimize the distance between q(y) and q̂(y) at the samples

{yj},

min
{uli(yi)}

‖q − q̂‖2D , (2.37)

as detailed in Section 2.5.2.3. These unknowns are often approximated in an a priori selected

basis, thus allowing for a numerical solution to the optimization problem. Here, we consider the

approximation of each factor in a basis of Hermite polynomials in yi,

uli (yi) ≈
P∑
p=0

cli,pψp(yi), (2.38)

where ψp(yi) is the Hermite polynomial of degree p with maximum order P . In general, the basis

functions ψp(yi) are selected such they are orthogonal with respect to the PDF of yi, as given

by the Askey family of orthogonal polynomials [14]. This allows for selecting a different basis

for each direction i, depending on the distribution of yi. Given the discretization of factors in

Eq. (2.38), the optimization problem Eq. (2.37) is now reduced to finding the unknown coefficients

cli = [cli,0, . . . , c
l
i,P ] for each direction i and rank l via problem

min
{cli}
‖q − q̂‖2D . (2.39)

The number of unknowns in the optimization problem Eq. (2.39) is r · d · (P + 1), which is linear

in the dimension d, as far as the separation rank r is independent of d. As discussed in [20], this

linear scaling of the number of unknowns in turn suggests a linear (in d) growth requirement on

the number of samples N used to solve Eq. (2.39).
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Remark 2. While increasing the separation rank r improves the accuracy of SR, it is not possible to

determine a priori if an arbitrary q(y) lends itself to an accurate separated representation with low

separation rank. In practice, the accuracy of a constructed SR, q̂(y), may be assessed empirically

via, for instance, cross-validation techniques commonly used for other types of surrogate models,

e.g., based on multivariate polynomial expansions (See [43]). For certain classes of problems, e.g.,

linear elliptic, [26], semi-linear elliptic, [57], and parabolic, [59], partial differential equations with

random inputs, a priori error estimates have been derived, demonstrating the sparsity of the solu-

tion when expanded in multivariate polynomial bases. That is, only a small fraction of the basis

functions have non-negligible coefficients. When each SR factor uli(yi) is approximated in the same

(univariate) polynomial basis, as in Eq. (2.38), such sparse solutions are in principle guaranteed

to admit SRs with low separation ranks. This is because the two approaches employ basis functions

spanning the same space within which the solution exists or is well approximated.

2.5.2.1 SR of Vector-Valued Functions

In many cases, it is desirable to approximate a vector-valued QoI via SR. For instance, in the

current application to orbit uncertainty propagation, an estimate for the Cartesian components of

position and velocity is needed. In such cases, the SR approximation of q(y) ∈ RM is given by

q(y) ≈ q̂(y) =

r∑
l=1

sl ul0

d∏
i=1

uli (yi) , (2.40)

where the definitions and approximation of uli(yi) remains the same as in the scalar-valued SR. A

significant difference between Eq. (2.40) and Eq. (2.36) is the addition of the vector of deterministic

factors ul0 = [ul0,1, . . . , u
l
0,M ]T ∈ RM , which is used to extend the approximation from the scalar-

valued q(y) to the vector-valued q(y) by solving the optimization problem

min
{cli},{ul0}

‖q − q̂‖2D . (2.41)

In the case of Eq. (2.40), the set of scalars sl are now normalization constants such that both uli(yi)

and ul0 have unit norm. The method of determining these values is detailed in Section 2.5.2.3.
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2.5.2.2 Process of Constructing SR

As an introduction to the implementation of SR, a high level algorithm for the vector output

is provided in this section. The sampling approach to constructing SR requires the generation of

training data D, i.e., the set {(yj , q(yj))} of N samples from Eq. (2.22), that represent propagated

realizations of q(y) at (random) samples of inputs y. Such algorithms are dubbed non-intrusive

as the evaluation of q(y) does not require any alteration of the solvers for Eq. (2.1). In the context

of orbit state propagation where yj is Gaussian, the non-intrusive SR process may be summarized

by:

(1) Generate a set of independent, random realizations {yj}Nj=1, where each yj ∼ N (0, Id×d).

(2) Using the a priori state distribution, generate the set of samples {q0(yj)}Nj=1 at the epoch

time.

(3) Propagate each of the N samples to the time of interest using a given black box ODE solver

to get {q(yj)}Nj=1.

(4) Use the training data {(yj , q(yj))}Nj=1 to generate the SR approximation.

Steps 1 through 3 of Section 2.5.2.2 include the generation of D. Some of the data used in the

presented numerical results assume an a priori Gaussian PDF, i.e., q0 ∼ N (q̄0,Σ), with a given

mean vector q̄0 and covariance matrix Σ. Each sample yj is first mapped to an initial sample

q0(yj) via a Cholesky decomposition of Σ. Discussed later on in Chapters 3 and 6, some inputs

used in surrogate creation are uniform, i.e., y ∼ U(−1, 1). The reader is also reminded that the SR

methodology presented in this chapter is formulated such that any input-polynomial relationship

that follows the Wiener-Askey rule is applicable. The elements of q0 (yj) are then propagated using

a desired integration method as a black box to produce the set {q (yj)} at some time of interest.

Although the number of samples N required in D for an approximation is not known a priori,

the growth of N with respect to stochastic dimension d is linear. This relationship is discussed in

further detail within Section 2.5.2.4 and can be seen in Eq. (2.57).
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2.5.2.3 Solution via Alternating Least Squares

Step 4 in Section 2.5.2.2 is the generation of the SR approximation, which here is done

via alternating least squares (ALS) regression using a set of N training samples {(yj , q(yj))}.

This method reduces the larger nonlinear optimization process into a series of linear least squares

regression problems [20].

Overall approach. Given an initial r, e.g., r = 1, pre-selected basis {ψp(yi)}, and initial

coefficient values {cli} and {ul0}, the ALS algorithm updates the coefficients {cli} by alternating

through a sequence of one-dimensional and linear optimization problems. For the results contained

within this body of work, initial values of cli,0 = 1, cli,p = 0 p = 1, . . . , P and ul0,m = 0 are used.

Let i′ = 1, . . . , d denote one direction of interest for each of these problems. The coefficients {cli′}

are updated by solving the linear least squares regression

{cli′}rl=1 = arg min
{cl
i′}

r
l=1

‖q − q̂‖2D , (2.42)

while the coefficients {cli} for other directions i 6= i′ and {ul0} are fixed at their current values. The

ALS algorithm continues with a sweep through each direction i′ in alternation. After reaching the

final direction d, the values of {ul0} are solved for (completing what will be referenced as a full ALS

loop) using the linear least squares problem

{ul0}rl=1 = arg min
{ul0}rl=1

‖q − q̂‖2D , (2.43)

while fixing the coefficients {cli} for all i at their current values. Full loops of ALS are continued

until an a priori selected convergence criteria is met. Upon this convergence of the solution with

rank r, the SR solution is tested for solution precision when compared to the training data. If this

second convergence criteria is not met, then the separation rank is increased (r = r + 1) and the

ALS procedure is repeated to generate a solution for the larger set of coefficients {cli} and {ul0}.

The remainder of this section provides a more detailed description of the ALS method used

to generate an SR approximation.
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Updating stochastic coefficients {cli′}. Setting the derivative of the cost function ‖q − q̂‖2D

with respect to {cli′} to zero leads to the normal equation

(
ATA

)
z = ATh (2.44)

for the solution {cli′} to problem Eq. (2.42), organized in

z =

[(
c1
i′
)T · · ·

(
cri′
)T]T

. (2.45)

In Eq. (2.44),

A =


A11 · · · A1r

...
. . .

...

AN1 · · · ANr

 , (2.46)

where the (j, l) block of A, Ajl ∈ RM×P , is given by

Ajl = sl
[
ul0 ψ0(yi′,j) · · · ul0 ψP (yi′,j)

]∏
i 6=i′

uli (yi,j) (2.47)

and the data vector

h =

[
q(y1)T · · · q(yN )T

]T

∈ RMN , (2.48)

contains the samples of q(y). Before continuing to the next direction in the alternation, the values

of sl, and therefore cl, are updated via

cli′ ←
cli′

‖uli′‖D
and sl ← sl‖uli′‖D. (2.49)

Remark 3. Notice that, while the total number of unknowns in Eq. (2.42) is r·d·P + 1, only r·P + 1

of them appear in the one-dimensional optimization problems Eq. (2.44), which is independent of

d, as long as r does not depend on d.

Updating deterministic factors {ul0}. After cycling through all directions i′ = 1, . . . , d in the

ALS process to compute cli′ , the best estimate of {ul0} is found by setting the derivative of ‖q − q̂‖2D

with respect to ul0 to zero. The resulting normal equation associated with problem Eq. (2.43) is

(
ATA

)
Z = ATH, (2.50)
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where,

A =

[
A1 · · · AN

]T

∈ RN×r (2.51)

and each block Aj ∈ R1×r is of the form

Aj =

[
s1

d∏
i=1

u1
i (yi,j) · · · sr

d∏
i=1

uri (yi,j)

]
. (2.52)

Additionally, the solution and data matrices H and Z are, respectively,

H =

[
q(y1) · · · q(yN )

]T

∈ RN×M (2.53)

and

Z =

[
u1

0 · · · ur0

]T

∈ Rr×M . (2.54)

OnceZ is solved for using Eq. (2.50), ul0 is found an normalized using a method similar to Eq. (2.49),

ul0 ←
ul0∥∥ul0∥∥2

and sl ← sl
∥∥∥ul0∥∥∥

2
. (2.55)

After {ul0} has been estimated and normalized, and if the solution fails the criteria for convergence,

then either another rank is added or the alternation through the directions continues. As discussed

in [20], the error ‖q − q̂‖D can never increase throughout these ALS updates.

Rank increase and solution convergence. In order to develop an SR estimate that achieves

desired accuracies, a set of tolerances should be defined. One must consider the minimization of

error ‖q− q̂‖D between the surrogate and training data as well as the accuracy improvement from

one full ALS sweep to the next. In order to enforce a maximum r, the user could set the desired

maximum rank or aim for a particular solution precision. The method used in this work sets

a desired maximum rank, but a precision based solution achieves convergence when the relative

residual

γ =
‖q − q̂‖D
‖q‖D

< ε, (2.56)

in which ε is a desired relative tolerance. Theoretically, the approximation developed from SR

should decrease γ as the separation rank r is increased. However, there is a limit to the precision
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that can be reached with a fixed rank [20]. The ALS process is repeated until the difference between

the surrogate and training data no longer changes significantly from one iteration to the next. If

the ALS process has converged on a solution, but the minimum relative residual has yet to be

reached, another rank may be added.

In order to identify such a case, the current implementation uses the difference in relative

residuals Eq. (2.56) as an indication of convergence. Specifically, the rank is increased when the

solution convergence has not been met and the difference between the relative residual from the

most recent iteration and the relative residual from two iterations previous is below some desired

relative tolerance δ. This process is able to determine when improvement in the precision of the

surrogate stalls or becomes insignificant.

Remark 4. We highlight that choosing a small ε (or an unnecessarily large r) may result in over-

fitting; that is, the difference between q(y) and its SR approximation q̂(y) may be large, while

γ is small. To avoid this issue and as discussed in [36], the least squares problems Eq. (2.49)

and Eq. (2.50) may be regularized and appropriate error indicators may be utilized to estimate an

optimal value for ε or r.

2.5.2.4 ALS Algorithm and Computational Cost

In this section, two different approaches to depicting the construction of an SR surrogate are

presented. The first, Figure 2.1, illustrates the process used for creating a d = 3 surrogate of a scalar

output. The scalar output formulation of SR is chosen for the sake of illustrative simplicity. Here,

we see the algorithm alternating through the three sets of coefficient vectors represented in a color

scheme, i.e., {cl1}rl=1 in green, {cl2}rl=1 in blue, and {cl3}rl=1 in red. These coefficients go directly into

computing the most up-to-date approximation, such that the following coefficient is found using all

previously calculated sets of coefficients. Algorithm 1 summarizes the SR approximation process

in a pseudo-code fashion, unlike the illustration of Figure 2.1. Here, the focus is on the broader

algorithm, where processes such as updating sl are included.
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while γ decreases more than δ

{cl1}rl=1 = arg min
{cl1}rl=1

∥∥∥∥∥q −
r∑
l=1

sl
d∏
i=1

ul1 (y1)ul2 (y2)ul3 (y3)

∥∥∥∥∥
2

D

{cl2}rl=1 = arg min
{cl2}rl=1

∥∥∥∥∥q −
r∑
l=1

sl
d∏
i=1

ul1 (y1)ul2 (y2)ul3 (y3)

∥∥∥∥∥
2

D

{cl3}rl=1 = arg min
{cl3}rl=1

∥∥∥∥∥q −
r∑
l=1

sl
d∏
i=1

ul1 (y1)ul2 (y2)ul3 (y3)

∥∥∥∥∥
2

D

end

‖q − q̂‖D
‖q‖D

< ε end

r = r + 1; initialize cr1, cr2, cr3

yesno

Figure 2.1: Flowchart of the ALS process with d = 3

r = 0;
while γ > ε do

r = r + 1;
Initialize cri′ , i

′ = 1, . . . , d, ur0, and sr;
while γ decreases more than δ (See end of Section 2.5.2.3) do

for i′ = 1 to d do
Solve for cli′ as elements of z using least squares problem Eq. (2.44);

Update sl and cli′ using Eq. (2.49);

end

Solve for ul0 as columns of Z using least squares problem Eq. (2.50);

Update sl and ul0 using Eq. (2.55);
Generate q̂(y) using Eq. (2.40);
Calculate γ using Eq. (2.56);

end

end
Algorithm 1: Algorithm for an SR approximation
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As discussed in [20] and [36], when N � r(P +1), the total cost of generating and solving the

least squares problems Eq. (2.44) and Eq. (2.50) for a full ALS sweep isO(d·r2·(P+1)2·M ·N), which

is linear in d. The total number of unknowns in the vector-valued SR Eq. (2.40) is r·(P+1)·d+r·M ,

which is linear in d, assuming that the separation rank r is independent of d. This therefore suggests

a linear dependence of the number of samples N on d, i.e.,

N ∼ O(r · (P + 1) · d+ r ·M) (2.57)

for a successful SR computation. Assuming this estimate for N , the total cost of a full ALS sweep

grows quadratically in d. We highlight that, for situations where evaluating the QoI is significantly

expensive, this cost is reasonable.

Remark 5. As a reminder to the reader, the computation costs of PCEs are discussed once more.

For results discussed in Chapter 5, the PC expansion is computed using a least squares regression.

In this case, the number of required samples NPC is given by [55] as

N ∼ O (ΛPC) , (2.58)

where ΛPC is defined in Eq. (2.30).

As seen in Eq. (2.58) and its reliance on Eq. (2.30), the required number of samples N for a

PC expansion increases much faster with respect to dimension d than the largely linear relationship

of SR previously discussed in this section, i.e. N ∼ O(r · (P + 1) · d+ r ·M).

2.5.3 Solution Statistics

Once the coefficients {cli} and {ul0} have been calculated, the statistics of q(y) may be

approximated using the surrogate model q̂(y). This can be done by sampling q̂(y) using a Monte

Carlo method or analytically from the coefficients {cli} and the deterministic modes {ul0}. Either of

these methods may be applied to reduce the computation time of solution statistics when compared

to traditional Monte Carlo methods. Notice that the accuracy of the approximate statistics depends

on the accuracy of q̂(y), which may be first verified based, for instance, on validation experiments

as illustrated in the examples of Chapter 5.
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SR relies on a polynomial basis that is orthogonal with respect to the density of the inputs.

Following the Wiener-Askey theme, examples include using Hermite polynomials for Gaussian

inputs or Legendre polynomials for uniform inputs [14]. When integrated over the support of the

probability density function, the polynomials are shown to form an orthonormal basis, i.e.,∫
ψp(yi)ψp′(yi)ρ(yi)dyi = δp,p′ , (2.59)

where ρ(yi) is the probability density function of direction i, and δ is the Dirac-delta function,

indicating that ψp(yi) forms an orthogonal and normalized basis when considering ρ(yi).

The analytical mean and second moment of an SR solution are derived in [36]. The mean for

the mth entry of q(y) is

E (q̂m) =
r∑
l=1

sl ul0,m

d∏
i=1

cli,1, (2.60)

When considering the m × m′ covariance matrix for m = 1 . . .M and m′ = 1 . . .M , each value

COVmm′ = E
(
(q̂m − E(q̂m))(q̂m′ − E(q̂m′))

T
)

is computed as

COVmm′ =

r∑
l=1

r∑
l′=1

sl ul0,m s
l′ ul

′
0,m′

d∏
i=1

 P∑
p=1

cli,pc
l′
i,p

− E (q̂m)E (q̂m′) . (2.61)

Using Eq. (2.61), the variances of q̂ are found along the diagonal, or when m = m′.

For the low-order moments, these analytical methods are computationally more efficient than

a traditional Monte Carlo sampling performed on q̂(y). In general, higher order moments of qm

may be estimated using a method similar to Eq. (2.60) and Eq. (2.61), but a statistical sampling

method of q̂m may also be employed [36]. This sampling method may also be used to construct

the PDF of q. By evaluating the solution q̂(yj) for large N , an estimate of the PDF of q is found

without a large number of ODE solves. The results of this method can be seen in Chapter 5.

2.6 Solution Sensitivity

Unfortunately, in order to calculate {Si,m}, Eq. (2.9) must be computedNMC×d times. When

considering the law of large numbers and the convergence rate of MC, NMC is often an intractable

number of computations. Therefore, repeating this d times further exceeds tolerable amounts
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of computation time. Therefore, it is possible to significantly increase efficiency by replacing all

evaluations of qm(yj) in Eq. (2.7-2.9) with a surrogate approximation q̂m(yj). In the case of the two

presented methods, if d is large, then choosing SR over PCEs saves additional computation time

due to lower requirements in the number of training samples N . The advantage of an SR approach

lies in its separated structure and the relationship between computation costs and the dimension

of y. A larger dimension can be analyzed tractably when compared to methods that suffer from

the curse of dimensionality. Taking advantage of a large dimension ensures a more complete view

of the sensitivities, which leads to more informed decisions on system design and the selection of

random inputs for operations. The surrogate approach of PC has been previously shown to reduce

computation cost over a Monte Carlo based sensitivity analysis [21]. Chapter 5 provides examples

of comparing a PCE evaluated global sensitivity analysis to that of SR, including a discussion of

computation cost, as well as insight provided on case studies by the values of {Si,m}.



Chapter 3

Optimization Under Uncertainty

3.1 Introduction

A common application of UQ is that of a conjunction assessment. Although a simplification

of linear motion is appropriate in certain conjunction cases where relative velocities are large, non-

linear motion between objects has been shown to occur in cases of low relative velocity or long term

encounters [100, 66, 68, 31]. Therefore, we seek to develop a method of conjunction assessment that

does not make such a linear motion assumption. Once this capability is established, it is desirable

to physically avoid any identified possible collisions. Therefore, the methodology of OUU is applied

to maneuver design.

In order to present the material necessary for OUU with SR, this chapter first introduces

OUU in the context of Monte Carlo. We then introduce the SR formulation for OUU applications,

as well as the analytic moment equations that are compatible with an OUU problem. Motivation

for finding an alternative to MC is also discussed, due to the fact that the methodology of OUU

with MC is intractable as applied to this case. The presented alternative is that of separated

representation (SR). In Section 3.4, we provide two initial test cases on which the performance of

OUU with SR is compared to a MC approach as well as a known solution calculated via a Lambert

Solver. These provide a validation background, which Chapter 6 expands upon.
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3.2 Optimization Under Uncertainty

The methodology of OUU allows for the optimization of a problem while taking into account

the uncertainty or variability of a system [39, 73]. By doing so, a prescribed reliability index

or statistical constraint is considered along with the more traditional optimization problem, thus

producing a solution that is more robust than an approach that does not take uncertainty into

account. The work contained within this chapter utilizes a reliability index χ as a constraint in the

optimization problem. Using the presented notation, this reliability design is generally formulated

as

minimize f(ξ,θ)

subject to χ̄(ξ,θ) ≥ χ,
(3.1)

where the design variables θ characterize the design space of the problem. In Eq. (3.1), we have

some function of the random and design inputs f that we seek to minimize. A deviation from that

of a traditional optimization problem lies in the dependence of f not only on the design inputs θ

but also on the random variables ξ. A further difference of reliability design when combined with

traditional methods comes from the inclusion of the inequality χ̄(ξ,θ) ≥ χ. The value of χ̄(ξ,θ)

is that of the chosen reliability index dependant on the previously mentioned random variables, as

well as with the design inputs. These particular values of the design inputs θ are those that have

been computed in the minimization of f . A solution is found if the design inputs associated with

the minimized value of f(ξ,θ) also satisfy the stochastic inequality constraint.

As mentioned in Chapter 1, OUU also supports robust design. For a robust design based

OUU, Eq. (3.1) is altered such that the variance of the design is limited, i.e.,

minimize f(ξ,θ)

subject to σ2 ≤ σ̄2,

(3.2)

where σ̄2 is a maximum allowable variance of the design. The approach of robust design does not

necessarily rely on UQ, as “robustness” may be quantified using local derivatives. We note that

robust design, although applicable in many cases, is not utilized in the results of this thesis.
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As an example, consider the problem of designing a wrench to minimize material use but

also remain within an acceptable rate of mechanical failure [73]. OUU is applied by considering

manufacturing tolerance errors and the variability of applied forces, thereby altering the would-

be design that only acknowledged a perfectly determined system. These uncertainties introduce

statistics to the problem, allowing for a reliability index χ (such as the probability of failure) to be

defined and evaluated.

For the sake of clarity, additional notation is provided here. To reiterate, the input variables

of θ are those associated with the design space of the problem, while ξ remain those associated with

the inherent randomness of the system. These are referred to as the design and random variables,

respectively. In order to track the dimension of the problem, we introduce the variable d, which is

the total dimension of the problem. If one wishes to categorize the contributions to the dimension

of the problem, d can be split between the dimension of the design space dθ and that of random

variables dξ, where d = dξ + dθ.

The ability to consider optimization as an option is enabled by introducing design variables

to the problem. To apply the variables to the problem space, the design inputs are mapped to

parameters dictated by the problem design. When used in this application, the design variables

θ ∈ Rdθ are first given equal weight and defined over the domain [−1, 1]. The design variables are

then mapped to deterministic inputs considered for optimization using the equation

Ξ(θ) =
Ξmax − Ξmin

2
(θ + 1) + Ξmin (3.3)

where Ξmax and Ξmin indicate the upper and lower bounds chosen for a deterministic input. As

a function of θ, the deterministic inputs Ξ(θ) allow for the problem to explore a larger space of

solutions. For instance, consider Ξ to be an input in a black box representing the time of a rocket

launch, e.g., the span between 13:00 and 14:00 local time. For OUU purposes, the domain of θ is

mapped to the limits of Ξ, thus allowing for the variation of the time of the launch as an input. By

choosing a particular value of θ and evaluating the black box propagator MMC times with different

ξ, the uncertainty of a rocket launch (with user determined QoIs) can be quantified at any point
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along the launch window. Using the examples that we have discussed, a value of θ = 1 corresponds

to a launch time of 14:00, while θ = −1 accounts for a time of 13:00, and θ = 0 represents the time

of 13:30. Thus, it becomes possible that, with a chosen value of θ, the system can be optimized

with respect to some predetermined scheme, e.g., a launch time that minimizes the total velocity

needed from the third stage.

Remark 6. As can be inferred, the computational cost of OUU is directly related to that of the

black box propagator needed to evaluate MMC samples. This cost would be repeated every time a

new value of θ is considered by the optimization algorithm. Therefore if the optimizer requires

numerous iterations in the design space (as is typical), the cost of OUU becomes intractable when

considering an MMC large enough for converged statistics. Thus, there is motivation to replace a

traditional black box propagator with a more computationally efficient method.

3.3 Surrogate Approach

When considering an OUU formulation of Eq. (2.40), alterations are made such that

q(ξ,θ) ≈ q̂(ξ,θ) =

r∑
l=1

sl ul0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

uli (ξi) , (3.4)

where the previous presentation has been altered to include the relevant inputs of ξ and θ. The

index of i′ = 1, . . . , dθ is provided in order to separate the indexing of the design and random

variables.

Remark 7. It is brought to the reader’s attention that although we have provided a distinction

between ξ and θ for problem statement purposes, the product series seen in Eq. (3.4) is mathe-

matically equivalent to the product series found in Eq. (2.40) when considering y =

[
ξ θ

]T
. In

the context of this example, θ are implemented as uniform distributions while ξ are chosen only as

Gaussian, but this limitation is not a general rule. Indeed, the distinction of being defined over the

domain [−1, 1] with equal weight is not unique to the design variables, as random variables are not

excluded from being uniformly distributed.
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3.3.1 Analytic Moments

If the first or second moments are desired in the context of OUU, (2.60) may be rewritten to

include the separation of design variables from the random inputs

E[q̂(θ, ξ)] =
r∑
l=1

sl u
l
0

dθ∏
i′=1

uli′ (θi′)

〈 dξ∏
i=1

uli (ξi)

〉
, (3.5)

where the inner product is defined as

〈a1(ξ) · a2(ξ) · · · ad(ξ)〉 =

∫
a1(ξ) · a2(ξ) · · · ad(ξ)ρ(ξ)dξ. (3.6)

In Eq. (3.6), ad(·) is some general function of the inputs ξ. These inputs have the density function

ρ(ξ).

Considering the inner product in Eq. (3.5) is taken over the set of N random variables,

we leverage the independence of random inputs ξi,j . The inner product in Eq. (3.5) can then be

replaced with,

E[q̂(θ, ξ)] =
r∑
l=1

sl u
l
0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

(∫
uli(ξi)ρ(ξi)dξi

)
. (3.7)

As before, the univariate functions uli (ξi) may be approximated as

uli (ξi) =
P∑
p=1

clp,iψp,i. (3.8)

Therefore,

E[q̂(θ, ξ)] =

r∑
l=1

sl u
l
0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

∫  P∑
p=1

clp,iψp,i

 ρ(xi)dxi

 . (3.9)

Due to orthogonality, the general formulation for the analytic expression of an SR mean as a

function of design variables simplifies to be

E[q̂(θ, ξ)] =
r∑
l=1

sl u
l
0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

cl0,iψ0,i, (3.10)

where (in the case of an orthogonal polynomial) ψ0,i = 1,

∴ E[q̂(θ, ξ)] =

r∑
l=1

sl u
l
0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

cl0,i. (3.11)
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Using the same methodology, the analytic expression for the standard deviation σ may be derived.

Once again by separating the design and stochastic variables, the analytic expression for the second

moment is

E[q̂(θ, ξ)2] =
r∑
l=1

r′∑
l′=1

sl sl′ u
l
0 u

l′
0

dθ∏
i′=1

(
uli′ (θi′) u

l′
i′ (θi′)

)〈 dξ∏
i=1

uli (ξi) u
l′
i (ξi)

〉
. (3.12)

By replacing the inner product in (3.12) with an integral, the second moment is formulated as

E[q̂(θ, ξ)2] =
r∑
l=1

r′∑
l′=1

sl sl′ u
l
0 u

l′
0

dθ∏
i′=1

(
uli′ (θi′) u

l′
i′ (θi′)

) dξ∏
i=1

{∫
uli (ξi) u

l′
i (ξi) ρ(ξi)dξi

}
. (3.13)

Substituting (3.8) into (3.13)

E[q̂(θ, ξ)2] =
r∑
l=1

r′∑
l′=1

sl sl′ u
l
0 u

l′
0

dθ∏
i′=1

(
uli′ (θi′) u

l′
i′ (θi′)

)
dξ∏
i=1


∫  P∑

p=1

clp,iψp,i

 P∑
p=1

cl
′
p,iψp,i

 ρidξi

 .

(3.14)

Due to the orthonormality of ψp,i, ∫
ψp,iψp′,i = δp,p′ . (3.15)

(3.14) then simplifies to

E[q̂(θ, ξ)2] =
r∑
l=1

r′∑
l′=1

sl sl′ u
l
0 u

l′
0

dθ∏
i′=1

(
uli′ (θi′) u

l′
i′ (θi′)

) dξ∏
i=1

 P∑
p=1

clp,ic
l′
p,i

 . (3.16)

By taking the square root of the difference between the evaluation of (3.16) and the square of the

first moment, the standard deviation about the mean is found.

3.4 Initial Test Cases

As a proof of concept, two test cases are presented in this section. The purpose of the first

case is to compare the accuracy of an SR OUU application to a result in the literature as well as a

MC reference. The second case is contrived in such a way that the performance of optimizing with

the surrogate method can be compared to that of a deterministic method; specifically, we compare

to a Lambert Solver. For this, the only random inputs of the surrogate are design variables, thus

posing a deterministic optimization problem.
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3.4.1 Rosenbrock Application

In order to validate SR’s performance for OUU, a test case previously used in the existing

OUU literature is examined. The results of using PC for OUU by [39] are compared to MC and

SR results from this section. By using a relatively simple function to generate samples for a black

box optimizer, the optimization potential of SR can be compared with that of MC and established

research. In this case, the optimizer is MATLAB’s fmincon. As in [39], other optimizers, such

as DAKOTA [1], may also be used for minimization purposes. In this example, the SR will be

utlized inside fmincon to find the mean and standard deviation of a function with uncertainty. The

function in question is the Rosenbrock function

q(y) = 100(Ξ(θ)− ξ2)2 + (1− Ξ(θ))2 (3.17)

As discussed in Section 3.2, Ξ(θ) is the deterministic variable, while ξ is a source of uncertainty. As

a design variable, θ is a variable that is sampled within the optimizer. As the source of uncertainty,

ξ is a normally distributed random inputs. The optimization goal is to maximize a reliability index

βCDF

βCDF =
µ̄− z̄
σ̄

(3.18)

where z̄ = 10. In Eq.(3.18), the values of µ̄ and σ̄ correspond to the evaluations of the first

and second moment about the means found via Eqs.(3.11) and (3.16), respectively. Here, the bar

notation denotes that a particular value of θ is chosen by the optimizer.

The work by [39] uses a similar methodology by using means and standard deviations cal-

culated with PC and optimization done using the DAKOTA software suite [1]. In the case of the

Rosenbrock function, the design variable Ξ has the bounds −2 ≤ Ξ ≤ 2 and initial value of −0.75,

while ξ ∼ N (0, I). As stated previously, the goal is to maximize βCDF of (3.18). Using values of

N = 900, r = 3, P = 5 and δ = 10−6, an SR was created. The result of [39] is compared to opti-

mization results using fmincon with MC and SR. The MC results use 1, 000, 000 values of ξ during

the optimization process. Table 3.1 shows values for βCDF and Ξ calculated via each method. It is

important to note that fmincon tends to avoid Ξ values at either bound. Also included in Table 3.1
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are run times for fmincon using SR or MC to perform OUU. The elapsed time for using MC is

approximately eight times longer than using SR, primarily due to the need to generate 1, 000, 000

MC samples for each optimization iteration. Figure 3.1 shows the relative error between expecta-

Table 3.1: βCDF and Ξ of Optimized Rosenbrock Function

Method βCDF Ξ Run Time (s)

[39] 2.0913 −2 N/A
fminconSR 2.0913 −2 + 1.0425e− 06 0.085
fminconMC 2.0914 −2 + 1.0421e− 06 0.691

tion values derived from (3.11) and (3.16) and a MC analysis using 1, 000, 000 samples of ξ. In this

chapter, the relative error is defind as

εrel =

∣∣∣∣∣ λ̂− λλ
∣∣∣∣∣ , (3.19)

where λ is the quantity being approximated by λ̂. The abscissae contain the values of θ which

are used to generate all values of Ξ since Legendre polynomials are orthogonal on the bounds

−1 ≤ θ ≤ 1. It is possible that this systematic error is due to overfitting.
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Figure 3.1: Relative error of mean εµ and standard deviation εσ.
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3.4.2 Maneuver Design

One possible application of OUU in astrodynamics is maneuver design. Optimizing a ma-

neuver is crucial, because on board fuel often makes up a significant portion of a spacecraft’s

operational weight. This weight dictates launch costs and the scientific payload that can fit on the

remaining volume and weight budget. In addition to this, successive maneuver optimizations can

lead to a longer lifespan, thereby extending the operation and increasing the value of the craft.

As an example, consider the routine use of “stochastic maneuvers”. These particular changes in

velocity, also known as “clean-up maneuvers”, are used to correct errors introduced by previously

executed maneuvers. Therefore, it is possible to save fuel is these stochastic maneuvers are not

necessary. Due to the UQ required to characterize the system, OUU is a candidate for such a task.

For a brief proof of concept, a scenario of a maneuvering craft seeking to intercept an object

at a given location is considered. The spacecraft starts in an equatorial, circular orbit with an

altitude of 200 km. Assuming a flight time of t = 46.755 minutes, a Lambert solver is used to

determine the trajectory and ∆V necessary to reach the target 179◦ away at an altitude of 500

km. This ∆V0 is considered the nominal maneuver and is included in Table 3.2 along with other

parameters used in the design of the orbits and maneuver. It is noted that no truly random inputs

are used in this particular example. It is formulated such that the focus is on deterministic inputs

and the ability of SR to solve for a known optimization solution. In this case, the reference optimal

maneuver is calculated via the previously mentioned Lambert solver.

Considering this, the nominal maneuver is used as the mean of the design inputs Ξ∆Vx(θ1),

Ξ∆Vy(θ2), Ξ∆Vz(θ3). Using 10% of ‖∆V0‖ to dictate the bounds of our deterministic inputs Ξ, the

surrogate is able to consider the following bounds of maneuver components

0.0214 ≤∆Vx ≤ 0.0505 km/s

0.1266 ≤∆Vy ≤ 0.1557 km/s

−0.0145 ≤∆Vz ≤ 0.0145 km/s,

(3.20)
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Table 3.2: Parameters of the Maneuver Scenario

Value Units

a1 6571 km
a2 7071 km
e1 0 N/A
e2 0 N/A
ν1 0 degrees
ν2 179 degrees
∆Vx 0.035997 km/s
∆Vy 0.141187 km/s
∆Vz 0 km/s
‖∆V0‖ 0.145704 km/s

Using a two body propagator, training samples for the position and velocity of the craft at time t

are created. These training samples are used to create an SR that outputs Cartesian position and

velocity of the spacecradt and is a function of the d = 3 design inputs θ. Figure 3.2 illustrates

the PDF of the spacecraft at time t, as well as the SR estimation evaluated at 50,000 independent

input samples. The PDF of each element is highly non-Gaussian, but via a qualitative assessment,

it is shown to be estimated well by the SR surrogate.
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ẏ

km/s
-0.02 0 0.02
0

1000

2000

3000

ż
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Figure 3.2: PDFs of MC (bins) and SR solution (red line) for the maneuver test case
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To test SR’s capabilities with OUU as applied to astrodynamics, we consider the simple case

of minimizing the distance between the craft and target at time t. Because the only inputs are that

of the design variables, the optimized values of the burn should be that of the nominal solution

∆V0. As expected, on the limits of −1 ≤ θ ≤ 1, the SR and fmincon converged to an accurate

estimation of the nominal solution. The SR solution is accurate to within at least five digits, and

the results can be seen in Table 3.3.

Table 3.3: Results for Maneuver Optimization

Method ∆Vx(θ1) ∆Vy(θ2) ∆Vz(θ3)

Lambert Solver 0.035998 0.14119 0
fminconSR 0.035972 0.14118 2.452e− 07
Relative Error 7e− 4 1e− 05 N/A



Chapter 4

Multi-Element Separated Representations

4.1 Introduction

First formulated in [120], ME-gPC is presented as a method of adaptively discretizing the

random space to achieve K-PPC convergence, where K is the number of elements, or partitions, in

random input space and PPC is the polynomial chaos order. By leveraging a method to detect the

need for spatial decomposition, splits, or elements, are created along input directions where needed.

The approach of partitioning a large, difficult problem into more numerous smaller problems allows

ME-gPC to accurately converge to a solution when unmodified PCEs require a prohibitively high

order expansion. This adaptive method is presented in [120] with examples using uniform inputs.

The work of [121] generalizes the approach by applying an arbitrary probability measure method

of ME-gPC to Gaussian and Beta distributions. Due to the decomposition of the input space

effectively removing the orthogonal relationship between input space and polynomial basis, care

is needed when formulating a PCE for an element. Therefore, [121] demonstrates the numerical

construction of orthogonal polynomials (with respect to an element’s conditional PDF) for an

arbitrary distribution.

As applied to astrodynamics, ME-gPC is shown to provide a performance improvement re-

garding accuracy when compared to general PCEs [42]. Since PCEs suffer from the curse of dimen-

sionality, high dimension systems quickly become intractable for general PCEs without mitigation.

The potential for high computation costs is motivation to research a multi-element formulation

of SR (ME-SR). Theoretically, an ME-SR surrogate would be capable of efficiently estimating a
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high-dimensional, multi-modal stochastic function without making posterior PDF assumptions.

4.1.1 Chapter Overview

Although the multi-element approach has been devised for PCEs, modifications should be

made when applying the methodology to SR. The unique formulation of SR (when compared to

a PCE) dictates a different approach to choosing an input direction to decompose. Therefore, we

present the processes necessary for constructing a ME-SR approximation. In order to do so, we

first provide the methodology utilized to decompose the sample space. With this as a foundation,

the formulation of SR is altered such that multiple elements of input space are considered. The

unique approach to detecting the need and direction of element creation is then introduced. These

processes are then organized into an algorithm which adaptively creates a multi-element surrogate

for SR.

4.2 Multi-Element Separated Representations

For this chapter, we present the ME-SR surrogate formulation. Beginning with the decom-

position on the input space, the properties of a surrogate element are described. Following this,

insight is given on the construction of polynomials within these elements, while the last section

covers the adaptive procedure that is implemented to identify and create splits in the random in-

put space. It is noted that the notation and mathematics of this chapter are largely based on that

found in [120] and [121] with customizations for SR as indicated. In this work, we provide a ME-SR

formulation that is valid for scalar QoIs. A vector QoI is equally valid, and the absence of such a

formulation is for the sake of simplicity.

4.2.1 Input Space Decomposition

Due to the same relationship between the polynomial base and the random inputs (which

follows the Wiener-Askey scheme), both PCEs and SR have identical processes when considering

the decomposition of input space. Thusly, we establish the random variables y on B = ×di=1 [ai, bi]
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where ai and bi are the limits of the random variables for direction i. These limits can be finite or

infinite on R. The decomposition D of B is then defined as

D =



Bk = [ak,1, bk,1)× [ak,2, bk,2)× · · · × [ak,d, bk,d],

B = ∪Kk=1Bk,

Bk ∩Bk′ = ∅ if k 6= k′,

(4.1)

where K is the total number of elements, and k = 1, . . . ,K. In order to evaluate equations over

the entire input space B, we define an indicator function IBk , that is

IBk(y) =


1 if y ∈ Bk,

0 otherwise .

(4.2)

Therefore, we are able to reconstruct the total sample space Ω via the union of all elements which

result in a positive result for Eq. (4.2), i.e.,

Ω = ∪Kk=1I
−1
Bk

(1). (4.3)

Conversely, a property of these elements, and therefore the indicator function, is that there is no

overlap of the probability space

I−1
Bk

(1) ∩ I−1
Bk′

(1) = ∅ for k 6= k′. (4.4)

Given the properties of the decomposed sample space, it is therefore possible to formulate Eq. (2.36)

such that all of Ω is able to be considered via the random inputs y even though it is decomposed

into D. First, we consider the SR surrogate of an individual element k. Utilizing Eq. (4.2),

q̂k(y) = IBk(y)
r∑
l=1

slk

d∏
i=1

ulk,i (yi) , (4.5)

with the element index k now included for the normalizing constants slk and univariate functions ulk,i.

The approximation of q(y) on the k-th element is parsed with respect to the random inputs by the

indicator function IBk , such that only inputs found in the k-th element are non-zero. Using Eq. (4.5),
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it is possible to now formulate an equation for a global approximation of q(y) using a multi-element

expression, i.e.,

q(y) ≈ q̂K(y) =
K∑
k=1

q̂k(y), (4.6)

where the composition of the SR surrogate now includes a sum over the number of elements K. It

is noted that although Eq. (4.6) is a sum of all elements, only one term is nonzero when considering

an input y. The indicator function IBk , found in Eq. (4.5), is only nonzero for the appropriate

surrogate q̂k.

4.2.2 Adaptive Element Construction

While the previous sections discuss how a surrogate is defined on an individual element k,

the logic behind the creation of an element is to be elaborated upon. As in [120] and [121], we

present an algorithm for determining when and where to split the input space. Due to differences

in formulation, however, ME-SR differs from ME-gPC in the detection of the direction needing to

be split. The performance of this algorithm is later tested in Chapter 7.

Considering Eq. (4.5) with the analytic moments in Eq. (2.60) and Eq. (2.61), we first give

the moments of each individual element as

µk = E [q̂k] =

r∑
l=1

slk

d∏
i=1

cli,0,k, (4.7)

σ2
k = E

[
q̂2
k

]
=


r∑
l=1

r∑
l′=1

slk s
l′
k

d∏
i=1

 P∑
p=0

cli,p,kc
l′
i,p,k

− µ2
k. (4.8)

With the equations of the moments for each element, it is then possible to formulate the global

mean µ̄ and variance σ̄2 of the multi-variante function q(y). Since the input spaces for the elements

are disjoint, moments for the QoI are given by summing the moments of each element with weights

chosen based on the probability of y ∈ Bk, i.e.,

µ̄ =
K∑
k=1

µk Pr(IBk = 1), (4.9)

σ̄2 =

K∑
k=1

[
σ2
k + (µk − µ̄)2

]
Pr(IBk = 1). (4.10)
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In Eqs. (4.9) and (4.10), the quantity Pr(IBk = 1) is introduced. This indicates the cumulative

probability of the element Bk within B, with the reliance of IBk on y dropped for conciseness.

As seen in later results, the error of estimating the variance of q(y) usually exceeds that of the

estimated mean. Therefore, it is of interest to formulate a splitting algorithm which relies on

quantities derived from the second moment.

Similar to previous ME-gPC work, this formulation of ME-SR relies on evaluating the relative

contribution of the highest order polynomials of each element’s variance. That is, we utilize the

standard deviation of an individual element, presented in Eqs. (4.7) and (4.8), to define the decay

rate parameter

ηk =

r∑
l=1

r∑
l′=1

slk s
l′
k

d∏
i=1

cli,P,kc
l′
i,P,k

σ2
k

, (4.11)

where it is noted that there is no sum over the polynomial order, due to the order of coefficients fixed

at the maximum value P . The formulation of Eq. (4.11) differs from that found in [120] and [121]

due to the use of the multi-index in ME-gPC. Here, the separable nature of SR does not mimic

the combinatorial nature of the highest multi-indices in ME-gPC. Following the previously cited

works in ME-gPC, we seek a K-type refinement. That is, the element k is decomposed if the

probabilistically scaled decay rate parameter exceeds a certain value

ηγk Pr(IBk = 1) ≥ θ1, 0 < γ < 1. (4.12)

The values of γ and θ1 are predetermined constants or tuning parameters. Since ηk is considered

the decay rate parameter, this work refers to θ1 as the decay check parameter when necessary.

Once an element has been determined to require a split, it is important to determine which

direction in which to decompose the input space. In order to reduce exponential growth in com-

putation cost (due to combinatorial effects of splitting more than one input at a time), it is best

to split as few directions as possible. As previously mentioned, PCEs utilize a combinatorial multi

index. Thusly in [120] and [121], the detection of which direction(s) to split is calculated via the co-

efficient associated with the highest order polynomial of direction i being divided by a sum over the
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highest multi indices over all directions. This sum over a multi-index is not a sum that is separable

with respect to dimension as seen in Eq. (2.36). Therefore, SR requires a different approach.

In the current methodology to determine the direction(s) that should be split, we propose

the method of constructing uni-directional surrogates. The direction that constructs a surrogate,

which has the most significant improvement in the RMS error of a validation data set, is then

considered the most sensitive direction. That is, we first construct an individual surrogate q̂i(yi)

for each dimension which minimizes the error of ‖q(y)− q̂i(yi)‖D. Explicitly, the formulation of

each uni-directional surrogate is given as

q̂i(yi) = IBk(yi)

r∑
l=1

sl uli (yi) . (4.13)

This one-dimensional surrogate is then evaluated for some validation data set independent of the

training data

Dval = {(yi,j , q(yj))}Nvalj=1 , (4.14)

where Nval is the sample size of the validation data set, and the sensitivity parameter is calculated

using the RMS value of the uni-directional surrogate’s validation error.

Thusly, the directional sensitivity parameter is formulated as

ri = ‖q(y)− q̂i(yi)‖D, i = 1, . . . , d. (4.15)

If Eq. (4.12) results in a split requirement, then the results of Eq. (4.15) are used to determine

which input direction(s) require further decomposition. A direction i is split if

ri ≤ θ2 · min
i′=1,...,d

ri′ , θ2 ≥ 1, (4.16)

where θ2 is a prescribed tuning parameter which dictates the tendency of the algorithm to split

more than just the minimum ri (most sensitive) direction. In the case of more than one dimension

satisfying Eq. (4.16), a combinatorial approach is taken to create elements such that the proper-

ties of Eq. (4.1) are maintained. Due to this, Eq. (4.16) is significant in maintaining a desired

computational cost, as the number of elements increases exponentially with respect to dimension.
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Once the directions to split are identified, the bounds of the new elements are created. As an

example, we consider a “parent” element k that is split in one direction, resulting in two “children”

k′ and k′′. For this given direction i, the bounds are evenly divided such that

bk′,i = bk,i

ak′,i =
1

2
(ak,i − bk,i)

bk′′,i =
1

2
(ak,i − bk,i)

ak′′,i = ak,i

(4.17)

whereafter the element k is destroyed, and the newly created bounds of elements k′ and k′′ are

organized in the decomposition of the input space, i.e. [bk′,i, ak′,i) and [bk′′,i, ak′′,i) are now the

bounds of the i-th direction within the input spaces of Bk′ and Bk′′ respectively. As previously

stated, the splitting process results in an exponential increase of elements when considering the

number of directions to split. That is, the choice to include the newly created upper or lower

bounds found in Eq. (4.17) is a binomial coefficient problem. If d′ is the number of directions which

satisfy Eq. (4.16), the change in the total number of elements (when splitting a single element) is

∆K =
d′∑
i′=0

(
d′

i′

)
− 1 = 2d

′ − 1 (4.18)

where ∆K is the stated change, and the subtraction accounts for the destruction of the parent

element k.

4.3 Implementation Guidelines

Decomposing the input space into a series of elements creates implementation challenges.

Therefore, this section is devoted to covering a number of issues to consider. First, numerical

matters are presented with an approach to mitigate precision problems. Due to a need for an ME-

SR algorithm which is compatible with arbitrary distributions, background is provided for various

methods of constructing orthogonal polynomials. Lastly, an implementation algorithm is supplied

as a guide for an overall view of the ME-SR methodology.
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4.3.1 Numerical considerations

As in [120] and [121], this implementation also utilizes a random inputs normalization tech-

nique. As the difference between element bounds, e.g. bk,1 − ak,1, becomes smaller, the absolute

difference between random input samples within these bounds also becomes smaller. This tighten-

ing of the bounds may lead to numerical issues in the evaluation of orthogonal polynomial bases,

and it results in underflow. To avoid underflow, we begin with the transformation of random inputs

with limits of [−1, 1] to some desired limits, i.e.,

yki (ȳ) ≡ y(ȳ; k, i) =
bk,i − ak,i

2
ȳ +

bk,i + ak,i
2

, (4.19)

where ȳ is a random variable in [−1, 1]. With Eq. (4.19), the density function of a particular

direction in an element can then become a function of ȳ, that is ρ(y(ȳ; k, i)). To reduce notation

clutter, we introduce the shorter ρk,i(ȳ) ≡ ρ(y(ȳ; k, i)).

The test cases within Chapter 7 contain random inputs which include uniform and Gaussian

distributions. Although the uniform distributions require no special treatment, the method of

constructing polynomials orthogonal to the infinite bounds of a Gaussian distribution pose certain

difficulties in the execution of the adaptive algorithm. To numerically generate polynomials, the

implementation of this ME-SR algorithm utilizes truncated Gaussian distributions on the limits

[−6, 6], where ∞ and −∞ are not considered for choices of ak,i or bk,i. Since the cumulative

probability of sampling outside of these bounds is ∼ 1.9 × 10−9, the modeling errors imposed by

not considering the infinite bounds of a true Gaussian are deemed acceptable.

4.3.2 Constructing Orthogonal Polynomials

When an input space is decomposed into more than one element, the orthonormal properties

of Eq. (2.59) are likely lost. For a uniform distribution, it is possible to simply rescale the inputs

to the [-1,1] limits required by the Legendre basis in order to maintain orthogonality. When con-

sidering a truncated Gaussian distribution for example, this simple rescaling does not result in an

orthonormal relationship due to the weighting function of the k-th element ρk,i(ȳ) differing from
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that of the unbroken input space regardless of any scaling parameter. An illustration of decom-

posed input spaces is seen in Figure 4.1. Here, the relatively simple decomposition of the uniform

distribution is contrasted with that of the Gaussian distribution. For the latter, a linear scaling of

the weighting function with respect to the element bounds does not maintain orthonormality with

the same basis polynomials. Therefore, a new polynomial base must be constructed.
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Figure 4.1: Probability density functions of Gaussian (left) and uniform (right) distributions with
two elements

For such a construction, we first consider the three-term recurrence relation that is indicative

of an orthogonal polynomial system

πp+1(y) = (y − αp)πp(y)− βpπp−1(y), p = 0, 1, . . . ,

π0(y) = 1, π−1(y) = 0,

(4.20)
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where the coefficients αp and βp correspond to the unique weighting function for which the orthog-

onal polynomial system is defined. This recurrance property is useful for a number of reasons. The

first of which is that the reliance on the two parameters αp and βp allows for a compact representa-

tion of the polynomials. That is, only a linear array of 2(P +1) coefficients is needed. Furthermore,

the derivatives of the polynomials may also be derived recursively using the derivative of Eq. (4.20)

and the linear array of coefficients. Therefore, computing these coefficients is of interest in creat-

ing a three-term recurrance formula for an orthogonal polynomial basis. Together with yki (ȳ) and

ρk,i(ȳ), the newly constructed polynomials are able to satisfy Eq. (2.59) when considering the input

bounds of the numerically stable ȳ and the particular probability density function of the element’s

inputs.

In order to calculate such polynomials, two approaches are typically considered: the Stielt-

jes procedure and a modified Chebyshev method. In this work, we utilize the Python package

Py-Orthpol for computing the coefficients. This package is based on FORTRAN code, which is

elaborated upon in [49]. The following sections are devoted to a discussion of properties of or-

thogonal polynomials and how the two methods can be used to recursively construct a desired set

of these functions. The Stieltjes procedure is introduced, followed by the Chebyshev, its modified

version and a methodology for discretizing numerically ill-conditioned equations.

First, let dλ(y) be a nonnegative measure on the real line R. This measure can have compact

or infinite support, and its moments are defined as

µr =

∫
R
yr dλ(y), r = 0, 1, 2, . . . , (4.21)

where r, in this case, denotes the r-th moment of the measure dλ(y). If this measure is absolutely

continuous, then Eq. (4.21) simplifies to

µr =

∫
R
yrρ(y) dy, r = 0, 1, 2, . . . , (4.22)

where ρ(y) is a non-negative function and
∫
R ρ(y) dy > 0 [109]. In the literature, ρ(y) is referred to

as the weighting function. Considering the application of the orthogonal polynomial basis for SR,
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we consider the probability density function of the variable y, as seen in Eq. (2.59). Together with

Eq. (4.20), Eq. (4.22) allows us to construct both αp and βp.

4.3.2.1 Stieltjes Procedure

The construction of the Stieltjes procedure begins with considering Eq. (4.20). A character-

istic of polynomials satisfying this formula is that the values of αp and βp can be found via

αp =

∫
R yπ

2
pρ(y) dy∫

R π
2
pρ(y) dy

, p = 0, 1, . . . ,

βp =

∫
R π

2
pρ(y) dy∫

R π
2
p−1ρ(y) dy

, p = 1, 2 . . . .

(4.23)

Although the usefulness of Eq. (4.23) is not immediately apparent, it is known that both π0(y) = 1

and β0 =
∫
R ρ(y) dy [48]. This allows for the computation of α0 and β0, which then set off the

recursive relationship of Eq. (4.20), as πp+1 is a function of αp, βp and the previously computed

πp. The formulas of Eq. (4.23) were independtly developed by both Darboux and Stieltjes, from

which the name of this method originates [48, 27, 105]

The Stieltjes procedure, although reasonably computable, is not numerically stable. Any

rounding errors in the moment calculations needed for Eq. (4.23) will quickly propagate and grow

throughout the recursive process. Considering that any SR computations will be done on a com-

puter with finite precision, left unmodified, this method is not tenable.

4.3.2.2 Chebyshev Algorithm

As an alternative to the Stieltjes procedure, the Chebyshev algorithm is also capable of

solving for the coefficients αp and βp [48]. This is done by first computing

σp,l =

∫
R
πp(y)ylρ(y) dy, (4.24)
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and using these terms to then solve for the coefficients

α0 =
σ0,1

σ0,0
, β0 = σ0,0,

αp =
σp,p+1

σp,p
− σp−1,p

σp−1,p−1
,

βp =
σp,p

σp−1,p−1
.

(4.25)

A property of the terms σp,l is that they may be generated recursively from the moments µl via

σp,l = σp−1,l+1 − αp−1σp−1,l − βp−1σp−2,l, l = p, p+ 1, . . . , 2 ∗ (P + 1)− p− 1,

σ−1, 0 = 0, σ0,l = µl.

(4.26)

Therefore, Eq. (4.22) is used to compute the first 2(P + 1) moments, such that the first (P + 1)

coefficients of α0, . . . , αP and β0, . . . , βP are evaulated via Eqs.(4.26) and (4.25). However, the

mapping from moments to coefficients is once again ill-conditioned, and any rounding errors will

quickly expand within the recursive algorithm. Therefore, a modification is desired.

4.3.2.3 Modified Chebyshev Algorithm

In order to expand upon the Chebyshev algorithm, modified moments are proposed [48].

That is, consider orthogonal polynomials separate from those we are attempting to generate which

still obey a recursion formula

Πp+1(y) = (y − ap)Πp(y)− bpΠp−1(y), p = 0, 1, . . . ,

Π0(y) = 1, Π−1(y) = 0.

(4.27)

For our polynomials Πp, we assume that ap and bp are known. Therefore, this is a familiar orthogonal

polynomial such as Legendre or Hermite. We then have the modified moment equation of

νr =

∫
R

Πr(y)ρ(y) dy, r = 0, 1, 2, . . . . (4.28)

The modification continues by inserting the known polynomials into Eq. (4.26), i.e.,

σp,l =

∫
R
πp(y)Πi(y)ρ(y) dy. (4.29)



62

Thusly, this alteration to the σp,l equation also changes the calculations in Eq. (4.25). The initial-

ization of the algorithm begins with,

σ−1,l = 0, l = 1, 2, . . . , 2(P + 1)− 2,

σ0,l = νl l = 0, 1, . . . , 2(P + 1)− 1,

α0 = a0 +
ν1

ν0
,

β0 = ν0.

(4.30)

Using the values of Eq. (4.30), we are then able to construct σp,l and, as a result, αk and βk. That

is,

σp,l = σp−1,l+1 − (αp−1 − al)σp−1,l

− βp−1σp−2,l + blσp−1,l−1, l = p, p+ 1, . . . , 2 ∗ (P + 1)− p− 1,

αp = ap +
σp,p+1

σp,p
− σp−1,−
σp−1,p−1

,

βp =
σp,p

σp−1,p−1
.

(4.31)

As seen in the results of [48], the modified Chebyshev algorithm maintains a stability that surpasses

both the unmodified Chebyshev and the Stieltjes procedure.

4.3.2.4 Discretized Algorithms

Taking into account the transition from the measure dλ(y) to the weight function ρ(y)dy

(as seen in Eqs. (4.21) and (4.22)), we now consider the weight function ρ(y) to exist on (−1, 1).

Therefore, it is possible to approximate the newly bounded integrals, e.g., Eq. (4.22), using a

quadrature rule, i.e.,∫ 1

−1
φ(y)ρ(y) dy =

N∑
n=1

wnφn(yn)ρ(yn) +RN (φρ), N > (P + 1), (4.32)

where φ(y) is a generic function and N total quadrature points or nodes are taken.

By using this rule in place of continuous integrals throughout the recursive construction of

the polynomials and their coefficients, we achieve a numerically stable algorithm [48]. Indeed, if
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ρ ∈ Ps, then RN (φρ) = 0 for all φ ∈ P2(P+1)−1 as long as N ≥ 2(P + 1) + s. Here, the term s is

dependent on the type of quadrature used, e.g., classical Gaussian s = 1. It is noted here that the

use of Eq. (4.32) requires that the input space have finite bounds. This choice of finite bounds is

previously referred to in Section 4.3.1.

4.3.3 Algorithm

For the purposes of implementation, an ME-SR algorithm summary is provided. It is noted

that the following pseudocode serves primarily as an overall review of the ME-SR process, and it

does not contain nuances such as ALS convergence criteria that are covered in [17, 20, 36]. It is

emphasized here that this algorithm relies on convergence in the K-sense. Therefore, quantities

such as element validation error are not considered as stopping criteria, and the outer loop of the

algorithm relies on the statement while any ηγk Pr(IBk = 1) ≥ θ1. In other words, the ME-SR

construction process continues until all elements satisfy the limit set by the decay check parameter

θ1.
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Create single element SR surrogate;

Check for need to split Eq. (4.12);

while any ηγk Pr(IBk = 1) ≥ θ1 do

Knew = 0;

for k = 1 to K do

if ηγk Pr(IBk = 1) ≥ θ1 then

Compute directional split sensitivities using Eq. (4.13) and Eq. (4.15);

Determine the d′ directions which satisfy Eq. (4.16);

Create element “children” following the example of Eq. (4.17) and binomial

coefficient logic;

Using Eq. (4.18), Knew += ∆K;

end

end

Destroy all elements satisfying Eq. (4.12);

Add element children to input space decomposition D;

K += Knew;

for k = 1 to K do

if q̂k(y) is new then

Convert y to ȳ;

for i = 1 to d do

Construct polynomials orthogonal to ρk,i using algorithm of choice (such as

Py-Orthpol);

end

Perform ALS to construct q̂k(y);

Compute ηk using Eq. (4.11);

end

end

end

Algorithm 2: Algorithm for ME-SR
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In Algorithm 2, the introduced variable Knew is used to keep track of the total number of elements

to be added. The exact number of elements required to achieve a solution converged to a desired

accuracy is not known a priori. Therefore, it is up to the operator’s choice of θ1 to dictate how

flexible or inflexible the adaptive algorithm is.



Chapter 5

Low Earth Orbit Applications

As discussed in the Introduction, there is motivation to provide UQ techniques in low Earth

orbit (LEO). Updating the state of an object in orbit via observations requires knowledge of where

that object could possibly be. The results of [70] show that it is possible for Gaussian assumptions

to become inaccurate. Additionally, the risk of a collision between a spacecraft and another object

is unacceptable to an operator, and steps must be taken to mitigate or identify any threat to a

mission. In order to be able to perform a conjunction assessment, the operational procedure must

first have a method of quantifying the uncertainty of the system. Therefore, we present a series

of test cases in LEO, which we have applied SR for the purposes of UQ. The framework on which

these test cases are built upon serves as a blueprint for later applications found within this thesis,

such as the probability of collision work in Chapter 6.

5.1 Analysis Methodology

In order to visualize the distributions of a test case and characterize the accuracy of an

SR-based PDF, MC runs of 100, 000 samples are created for all examples within this section. In

addition to this, 100, 000 evaluations of an SR surrogate are created using independent sets of

samples of the inputs and the appropriate uncertainties. By computing these data sets side-by-

side, this approach is used in all test cases to produce figures on which the PDFs are qualitatively

compared. Thus, the efficacy of SR to estimate the PDF of an object in LEO is analyzed. The

histograms of the MC results are displayed as a solid line (derived from interpolating the centers
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of the bins) plotted over the histograms of the SR-generated samples. This method allows for

qualitative assessments of SR’s ability to capture the third and higher moments. Each test case is

also examined quantitatively. These analyses consist of relative residuals calculated for the mean

and STD of QoIs. The relative residual provides information for knowing the digits of accuracy in

a solution. Previously defined in Chapter 3, we remind the reader that this quantity is calculated

by

εrel =

∣∣∣∣∣ λ̂− λλ
∣∣∣∣∣ , (5.1)

where εrel is the relative residual, λ is a reference value, and λ̂ is an estimate of this reference. The

output of Eq.(5.1) is used throughout the results of this work, and its overall format remains the

same. Additionally, the accuracy of each surrogate is estimated by evaluating absolute residuals of

a small set of random samples, which are not used in the training of the surrogate. This process

computes the difference between the deterministic solution using the block-box propagator and

the surrogate-based solution, with each method using the same random inputs. The RMS of the

difference is taken over the number of validation samples and provided a quantitative measure for

determining the goodness of the surrogate and solution convergence. Such a strategy is referred

to as cross-validation (or validation for brevity) and may be extended to multiple constructions of

the surrogate and residual evaluation on independent samples of the QoI, see, e.g., [44, Chapter

7]. Validation results are included for each test case in Tables 5.4, 5.5, 5.6 and 5.12, which include

the RMS of the difference taken over the number of validation samples as well as the RMS of the

MC-based samples for comparison.

5.2 Case Characteristics

When considering Sections 2.1 and 2.5.2, test cases for this section seek the estimation of

the function q(y). As discussed in Section 2.1, realizations of this function are the position and

velocity state of a spacecraft at a considered time. These states are propagated using an ODE

integrator and are ultimately derived from an initial condition and Gaussian random variables as
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seen in Section 2.5.2.2. Therefore, the final states {q(yj)} are treated as training samples and,

along with associated random variables {yj}, are used to estimate the coefficients {cli} and {ul0}.

These coefficients are used to construct an SR surrogates from Eq.(2.40). This surrogate evaluates

many more sets of samples of the inputs, and the resulting sets of QoIs are then used to create

an approximate PDF. As we shall demonstrate, the QoI considered in the following test cases

admit small separation ranks r, which range from r = 3 to r = 6 depending on the case, for the

considered accuracies. Such small separation ranks lead to accurate estimation of statistics of the

QoIs, its PDFs, and sensitivities with respect to the input variables, using relatively small numbers

of samples of QoI. For scenarios where the separation rank is not small, one shall not anticipate

similar accuracies as in these experiments.

Each test compares the performance of SR with that of a PC result that is converged with

respect to STD. PC is chosen as a reference solution due to its proven nature of converging efficiently

and accurately [68]. In the case of high stochastic dimension, PC is still used, albeit with high

computation cost due to the curse of dimensionality. All test cases incorporate a 50× 50 spherical

harmonics model of the Earth’s gravity perturbations, as determined by GRACE GGM02C gravity

model [111], as well as atmospheric drag perturbations based on the exponential cannonball model

presented in [113]. All cases are propagated for 36 hours using a Dormand-Prince 5(4) integrator

with a tolerance of 10−13.

The first test case considers STDs of 1 km and 1 m/sec in the initial position and velocity,

respectively, generating a stochastic dimension of d = 6. The second case is similar to the first,

with the exception that 14 random inputs (to bring the total to d = 20) are added in the form of

uncertainty in the low degree Stokes coefficients, drag parameters and the gravitational parameter.

The Stokes coefficients used as random inputs are included in Appendix A. Initial values and

uncertainties are taken from [111]. Parameters for the a priori state PDF for Test Case 2 can be

seen in Table 5.1. Test Case 1 uses the first six random inputs in the form of ECI coordinates

and velocity. In both test cases, ECI position and velocity as a function of the random inputs are

estimated using the SR surrogate for a vector-valued function.
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For the third test, a problem presented in [62] is analyzed using SR in place of the original ex-

amination with a GMM. In this case, ECI coordinates are replaced with equinoctial elements. This

coordinate system is composed of the semimajor axis and five additional elements. The equations

for these additional elements as a function of the Keplerian elements are included in Appendix B.

Each sample in equinoctial elements is transformed into ECI coordinates and propagated for 36 hrs.

The propagated ECI state is then transformed back to equinoctial elements to be used as a training

sample. In this case, all six equinoctial elements are estimated using the SR estimation process

for a vector-valued function. All random inputs and their relevant uncertainties are presented in

Table 5.2.

Table 5.1: Random inputs and associated STDs for the first two test cases

Mean STD

x (km) 757.700 1.0
y (km) 5222.607 1.0
z (km) 4851.800 1.0
ẋ (m/s) 2213.210 1.0
ẏ (m/s) 4678.340 1.0
ż (m/s) -5371.300 1.0
µ (km3/s2) 3.986× 105 10−3

CD 2.0 0.398
A/m (m2/kg) 0.01 1.7× 10−3

Table 5.2: Random inputs and associated STDs for Test Case 3

Mean STD

a (km) 6980.0 20.0
h 0.0 10−3

ke 0.0 10−3

pe 0.0 10−3

qe 0.0 10−3

λM (rad) 0.0 10−2 π
180

In all cases, canonical units are utilized for estimation and plotting. Therefore, all units of

distance have been normalized with respect to the Earth’s mean radius (r⊕ = 6371 km), resulting
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in distance units DU, while seconds have been normalized with the time unit TU, where

TU =
√
r3
⊕/µ, (5.2)

and µ is the gravitational parameter. The result of using canonical units is a data set that is mostly

of the same magnitude with respect to quantities of interest and therefore more numerically stable.

5.3 Test Case 1

For an initial example, a case of a satellite in low Earth orbit is examined. The initial condi-

tions for position and velocity in Table 5.1 are used as the initial mean solution, with the respective

uncertainties being applied with the methodology described in Section 2.5.2.2. Figure (5.1) depicts

the distribution of Radial-Intrack-Crosstrack (RIC) coordinates after 36 hours when considering

100,000 MC samples.All RIC plots (MC- and SR-based) are generated using the same MC propa-

gated position and velocity sample, pulled from the training data set, as the center of the coordinate

frame. This sample is unique for each test case, and the particular value was randomly chosen as it

puts the origin of the frame at a possible realization of the posterior PDF. As depicted, the a poste-

riori position distribution is non-Gaussian. This is most evident in the Radial-Intrack plot, where a

large amount of skewness is evident. Hence, any Gaussian assumptions on the posterior are invalid

when attempting to accurately estimate the PDF. Therefore, this case requires a higher-fidelity

method.

Using 350 training samples, r = 5, P = 4 and δ = 10−7, an SR surrogate is created for

approximating the ECI state of the satellite. With (2.60) and (2.61), means and STDs for each

random input of the satellite’s state are compared to those of a converged PC solution. The results

can be seen in Table 5.3. Since the reference solution is converged with respect to STD, relative

residuals for the third and fourth moments are not provided. Table 5.4 includes the validation

results for Test Case 1. The table presents RMS values of the absolute residuals for 70 independent

samples of random inputs, as well as the RMS values of the MC-based validation samples. By
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Figure 5.1: MC results for Test Case 1 plotted in RIC coordinates. Note that the colorbars illustrate
object count.

comparing the RMS of the residuals with the RMS of the MC-based validation samples, we observe

the accuracy of the SR in predicting the states at samples of inputs not included in the training

samples.

Qualitatively, it can be seen in Figure 5.2 that the SR solution captures the non-Gaussian

distributions well. In the case of ẋ, the distribution is highly non-Gaussian. The histogram of the

SR solution follows the MC distribution well, capturing the overall skewness and kurtosis. The

results of the SR evaluation are also transformed to the RIC frame and plotted in Figure 5.3. In

addition to these qualitative fits, three digits of precision or more are captured in the first and

second moments when comparing the converged PC solution to that of SR. Figure 5.4 depicts the

change in STD (computed via (2.61)) as a function of N , which may be used as one metric to

illustrate solution convergence. With increasing values of N , change in the STD is quantified via

a relative difference, which provides one convergence metric without the use of validation samples.

The decreasing difference value indicates convergence of the SR surrogate on its solution for the

QoIs. The relative difference is computed via non-consecutive STD approximations to avoid local

minima. It is important to note that the plot illustrates solution precision, while results from
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validation methods (e.g., see Table 5.4) provide information on the surrogate’s accuracy. Figure 4

demonstrates the reduced change in the solution with larger N . For this case, the N = 350 solution

retains a precision of three digits or more, and STD estimates do not vary significantly with more

training samples. The convergence tolerance employed to identify a sufficiently large N varies with

the application.
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Figure 5.2: Histograms of SR results for quantities of interest in Test Case 1.

Table 5.3: Agreement between SR- and PC-based mean and STD for Test Case 1

Ref. Mean Ref. STD Rel. Mean Rel. STD

x 0.075765 (DU) 0.02498 (DU) 9.8e-05 2.7e-04
y -0.34683 (DU) 0.07986 (DU) 6.5e-05 1.8e-04
z -1.06680 (DU) 0.02534 (DU) 3.4e-06 1.5e-04
ẋ -0.26786 (DU/TU) 5.13e-03 (DU/TU) 2.0e-05 1.0e-03
ẏ -0.859985 (DU/TU) 0.02238 (DU/TU) 4.3e-06 1.8e-04
ż 0.2603 (DU/TU) 0.06937 (DU/TU) 1.3e-04 3.0e-04
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Figure 5.3: SR results for Test Case 1 plotted in the RIC coordinates. Note that the colorbars
illustrate object count.

Table 5.4: Residual RMS of 70 SR- and MC-based validation samples for Test Case 1

MC Sample RMS Residual RMS Units

x 0.07679 1.0e-04 (DU)
y 0.3705 3.9e-04 (DU)
z 1.0620 2.9e-05 (DU)
ẋ 0.2685 1.2e-04 (DU/TU)
ẏ 0.85600 4.7e-05 (DU/TU)
ż 0.2823 3.0e-04 (DU/TU)

5.4 Test Case 2

For Test Case 2, the previous initial conditions are kept but the stochastic dimension is ex-

panded to include all elements from Table 5.1, in addition to the Stokes coefficients from Table A.1.

Theoretically, an estimation method that suffers from the curse of dimensionality would require

significantly more samples than a method, such as SR, that increases the number of samples linearly

with respect to stochastic dimension. This cost comparison is elaborated upon in Section 2.5.2.4

and its associated Remark 5.
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Figure 5.4: Plots of relative differences between approximated STD values for Test Case 1. Note
the black line highlighting the choice of N for the surrogate.

Using N = 750 training samples, P = 4 and δ = 10−7, an SR surrogate is created for

estimating the ECI state of the satellite. In this case, results are included for surrogates of rank

3, 4 and 5 with each using the same 750 training samples. By presenting results for these three

choices of r, a clearer picture of the convergence of an SR surrogate can be seen. Figure 5.5

presents the 100,000 MC realizations in the RIC frame, which resembles that of Figure 5.1. This

figure can then be compared to the results presented in Figures 5.6, 5.7, and 5.8. Each of these

figures illustrates realizations generated by the SR surrogates of ranks 3, 4 and 5. Convergence to

the MC distributions can been seen as the ranks increase, with r = 5 providing a good qualitative

fit.

Table 5.5 includes the quantitative validation results for Test Case 2. The table presents

RMS values of the residuals for 150 independent random input vectors as evaluated by either a

rank 3, 4 or 5 surrogate, as well as RMS values of the MC-based validation samples. Although no

improvement in accuracy may be readily apparent in the ECI frame, when the error is transformed

to the RIC frame as displayed in Table 5.6, the estimate of the crosstrack state improves with

each additional rank. By comparing the validation results of the MC-based RMS with the residual
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RMS, the sample RMS in the crosstrack direction indicates a smaller mean compared to the radial

and intrack directions. In this case, the r = 5 case is the only solution to yield a residual RMS

smaller than the sample RMS. As illustrated in Figures 5.7 and 5.8, the crosstrack QoI lies within

bounds on the order of 10−4. As seen in Table 5.6, the crosstrack error magnitude for ranks 3 and

4 indicates that one digit of accuracy has not been achieved. The improvement of adding a fifth

rank, however, is enough for the crosstrack accuracy of the rank 5 solution to be on the order of

10−5 and therefore accurate enough to capture the crosstrack distribution.

As this discussed investigation utilizes the a priori knowledge found in Figure 5.5, an op-

erational implementation concerned with crosstrack accuracy would require a different approach.

Table 5.7 contains STD values of Test Case 2 approximated by the previously discussed SR solu-

tions and transformed into the RIC frame. By comparing these values to those of Table 5.6, it can

be seen that the STDs of the crosstrack direction for the rank 3 and 4 surrogates are smaller than

each correspoding residual RMS by an order of magnitude or more. The rank 5 approximation of

crosstrack STD, however, is larger than the respective residual RMS. Although this is not proof of

solution convergence to STD, it does explain the inability to capture information from the PDFs

using the rank 3 and 4 solutions. With a residual RMS larger than the STD, the approximation of

the crosstrack direction variance is largely due to the accuracy of the solution and not the actual

PDF. It should be noted that although the approximate value of STD for the crosstrack direction, as

seen in Table 5.7, increases by an order of magnitude with each increase in rank, a solution of rank

6 yields a crosstrack STD of 1.6e-04 DU. This value compares well with the rank 5 approximation.

Figure 5.9 illustrates the precision of STD estimates in Test Case 2 as a function of N .

The methodology for the generation of the figure is the same as the previous case, but with the

covariance matrix rotated into the RIC frame to match other results for Test Case 2. This figure

also exhibits the previously noted slow convergence in the crosstrack direction when compared to

radial and intrack. The N used for the calculation of the presented results retains a precision of

three digits or more for the radial and intrack STD. The crosstrack quantity has a precision of
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Figure 5.5: MC results for Test Case 2 plotted in RIC coordinates. Note that the colorbars illustrate
object count.

Figure 5.6: SR results for Test Case 2 plotted as radial and intrack.

one digit that continues to improve with N . When considering the implications of this figure, it

should be noted that the STD value of the crosstrack direction is smaller than the radial and intrack

values by an order of magnitude or more (see Table 5.6). Comparing the surrogate computed for the
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Figure 5.7: SR results for Test Case 2 plotted as radial and crosstrack.

Figure 5.8: SR results for Test Case 2 plotted as intrack and crosstrack.

results of the presented case (N = 750) and a surrogate computed in the previous non-consecutive

step (N = 740), the absolute difference for each estimated RIC STD is on the order of 10−6 DU.

Hence, relative and absolute differences may be considered to present a more complete picture of
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Table 5.5: Residual RMS of 150 SR- and MC-based validation samples for Test Case 2

Residual RMS

MC Sample RMS r = 3 r = 4 r = 5 Units

x 0.0790 1.7e-04 1.6e-04 1.0e-04 (DU)
y 0.3594 3.8e-04 2.7e-04 2.7e-04 (DU)
z 1.0658 1.1e-04 1.9e-04 1.7e-04 (DU)
ẋ 0.2680 1.2e-04 1.3e-04 1.1e-04 (DU/TU)
ẏ 0.8592 1.3e-04 1.6e-04 1.4e-04 (DU/TU)
ż 0.2724 3.2e-04 2.2e-04 2.2e-04 (DU/TU)

Table 5.6: Residual RMS of 150 SR- and MC-based validation samples in RIC frame for Test Case
2

Residual RMS

MC Sample RMS r = 3 r = 4 r = 5 Units

Radial 1.1239 1.9e-04 2.5e-04 2.3e-04 (DU)
Intrack 0.0896 3.6e-04 2.3e-04 2.2e-04 (DU)
Crosstrack 1.8e-04 1.3e-04 1.3e-04 6.5e-05 (DU)

Table 5.7: STD estimates in RIC frame for Test Case 2

STD

r = 3 r = 4 r = 5 Units

Radial 4.8e-03 4.8e-03 4.8e-03 (DU)
Intrack 8.7e-02 8.7e-02 8.7e-02 (DU)
Crosstrack 8.3e-06 2.7e-05 1.5e-04 (DU)

solution convergence as a function of N .

As r = 5 provides the best fit, further results are calculated with a surrogate corresponding

to that rank. Figure 5.10 shows the SR result as a histogram plotted alongside a 100,000 MC

result. Once again, it can be seen that the SR solution captures the non-Gaussian distributions

well. The skewness and tails of the non-Gaussian distributions are represented in both the MC

and SR PDFs. In addition to these qualitative fits, Table 5.8 shows that three digits of precision

or more are captured in the first and second moments, when compared to the PC result that has
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Figure 5.9: Plots of relative differences between approximated STD values for Test Case 2. Note
the black line highlighting the choice of N for the surrogate.

been converged with respect to STD.
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Figure 5.10: Histograms of SR results for quantities of interest in Test Case 2.

Figure 5.11 illustrates the convergence of SR as a function of N and compares it to that of

MC. The figure shows the relative errors of the estimated STD for the x-position of 100 independent

SR solutions. For each chosen N , 100 independent calculations of an SR surrogate and subsequent
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Table 5.8: Agreement between SR- and PC-based mean and STD for Test Case 2

Ref. Mean Ref. STD Rel. Mean Rel. STD

x 0.075765 (DU) 0.024985 (DU) 1.4e-05 4.0e-05
y -0.346831 (DU) 0.079863 (DU) 4.6e-06 3.0e-05
z -1.066805 (DU) 0.025340 (DU) 2.9e-07 3.2e-05
ẋ -0.26786 (DU/TU) 5.135e-03 (DU/TU) 1.8e-05 5.8e-04
ẏ -0.859985 (DU/TU) 0.02238 (DU/TU) 1.5e-06 3.2e-04
ż 0.260341 (DU/TU) 0.069376 (DU/TU) 8.8e-04 3.6e-05

STD estimation are performed. This is done using the Test Case 2 initial conditions with fixed

SR parameters excluding the number of training samples. The ordinate axes of the plots are

logarithmic, the middle lines of the boxes are the medians, and the top edge of the boxes are

the 75th percentiles (upper quartile) with the bottom edges being the 25th (lower quartile). The

upper and lower whiskers cover 1.5 times the interquartile range for the upper and lower quartiles,

respectively, which is 99.3% of the data if it was normally distributed. The remaining outliers are

marked as blue dots. Here we use (2.61) to approximate σ for the SR solutions and sampling based

method for the MC results. The fast convergence of SR estimates of STD (as a function of N)

can be seen in the left plot of Fig. 5.11, and, when compared to the right plot, the relatively slow

convergence of MC can also be seen.

5.4.1 Sensitivity Analysis

Using surrogates to evaluate Eq.(2.7), a sensitivity analysis is applied to the results of Test

Case 2. Reference values found using a PC expansion are included in Tables 5.9 and 5.10 along

with absolute residuals found when approximating the indices with 106 SR realizations. The PC

results, which are generated such that they provide six digits of precision, utilize an analytic

method for calculating sensitivity indices [21], and serve as a baseline for assessing SR accuracy.

Therefore, some values are stated as ∼ 0, as the calculated indices are less than or equal to

10−6. Each of these values represents, at most, 10−8 percent of the total variance contribution

to a QoI due to the fact that total Sobol indices sum to one or greater [102]. The indices in
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Figure 5.11: STD relative residuals. SR on left and MC on right

Tables 5.9 and 5.10 show that the ECI random inputs contribute variability that is large enough

to be quantified, with the x-position having the smallest contribution out of the six. In addition

to these six random dimensions, the sensitivity index of µ is included. Using the indices as a

guide, it can be concluded that uncertainty in µ produces little variability in the final solution for

this test case. Figure 5.12 shows the absolute value of univariate functions {uli} for the random

inputs provided in Tables 5.9 and 5.10. Constructed using {cli}, the appropriate polynomial bases

and a set of samples of the inputs, the figure illustrates the variability of each element. The

behavior of each uli is represented well by respective sensitivity indices. For example, the univariate

functions of x and µ exhibit less variability than the other shown random inputs. The results in

Tables 5.9 and 5.10 quantitatively reflect this, with x and µ having low index values. In Fig. 5.12,

the values of {uli} for the other 13 random inputs are omitted due to the lack of variability. The

sensitivity indices for the Stokes coefficients, CD and A/M are all negligible (smaller than 10−6)

and are omitted for brevity. The low sensitivity index values for these random inputs, including µ,

agree with intuition due to the physics of the high-altitude orbit. Gravitational perturbations as

well as atmospheric drag effects are not significant in relation to position uncertainty at an altitude
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of around 790 km.
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Figure 5.12: Plot of the absolute values of the univariate factors uli(yi) for Test Case 2.

Table 5.9: Sensitivity indices Si,m and residuals of position QoIs for Test Case 2

Quantities of Interest

Random x y z

Inputs PCE Resid. PCE Resid. PCE Resid.

x 5.28e-03 8e-05 6.10e-03 3e-05 6.43e-03 3e-05
y 0.280 9e-04 0.279 1e-03 0.285 1e-05
z 0.235 1e-03 0.236 1e-03 0.238 8e-04
ẋ 0.0437 4-e04 0.0423 1-e04 0.0440 2-e04
ẏ 0.192 1-e04 0.193 2-e04 0.201 6-e04
ż 0.244 2-e04 0.244 8e-03 0.251 1e-05
µ ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A

5.5 Test Case 3

For Test Case 3, a scenario presented by [62] is considered. For this, the initial conditions,

random inputs and relevant standard deviations are found in Table 5.2. The distribution of 100,000

MC samples in RIC coordinates and the non-Gaussian distributions can be seen in Fig. 5.13.
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Table 5.10: Sensitivity indices Si,m and residuals of velocity QoIs for Test Case 2

Quantities of Interest

Random x̂ ŷ ẑ

Inputs PCE Resid. PCE Resid. PCE Resid.

x 4.30e-03 6e-05 5.93e-03 1e-05 5.99e-03 3e-05
y 0.291 2e-04 0.284 1e-03 0.277 2e-04
z 0.239 1e-04 0.244 1e-03 0.236 7e-04
ẋ 0.0386 7e-03 0.0428 6e-04 0.0426 1e-04
ẏ 0.207 5e-03 0.194 6e-04 0.192 4e-04
ż 0.257 5e-03 0.251 2e-04 0.246 1e-03
µ ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A

Figure 5.13: MC results for Test Case 3 plotted in the RIC coordinates. Note that the colorbars
illustrate object count.

Using N = 200 training samples, r = 6, P = 4 and δ = 10−6, an SR surrogate is estimated

for the six equinoctial elements. Figure 5.14 presents the 100,000 SR realizations in the RIC

frame, which compares well to Figure 5.13. The results of the moment analysis, and therefore the

quantitative fit, can be seen in Table 5.11. Three digits or more of accuracy is shown by the relative

residuals for mean and standard deviation. Figure 5.15 illustrates the change in STD for Test Case 3
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as a function of N . Generated in the same manner as the previous cases, the figure depicts changes

in the estimated STD values for the six equinoctial elements. For this test case, the N = 200

value used for the SR solution yields a precision of three digits or more. Table 5.12 includes the

validation results for Test Case 3. The table presents RMS values of the relative residuals for 40

independent random input vectors, as well as the RMS values of the MC-based validation samples

for comparison. In addition to this, Figure 5.16 shows the SR result as a histogram plotted alongside

a 100,000 MC result. Qualitatively, it can be seen that the SR solution captures the distributions

well.

Figure 5.14: SR results for Test Case 3 plotted in the RIC coordinates. Note that the colorbars
illustrate object count.

In [62], it is stated that uncertainty in the semimajor axis a has the largest effect on the

uncertainty of the final PDF. At a qualitative glance, Figure 5.17 appears to agree with this

conclusion. The figure is derived similarly to that of Fig. 5.12, with the appropriate cli, u
l
0, and

polynomial bases being used in lieu of those in Test Case 2. Higher ranks have been omitted

from the figure due to the lack of variability with respect to the scale of the image. Depicting the

univariate functions for each dimension and rank, the figure shows that the first rank of dimension



85

Table 5.11: Agreement between SR- and PC-based mean and STD for Test Case 3

Ref. Mean Ref. STD Rel. Mean Rel. STD

a 1.095586 (DU) 3.1368e-03 (DU) 2.6e-07 7.6e-05
he 4.673e-04 1.15e-03 7.8e-04 2.2e-03
ke -2.130e-03 1.115e-03 1.5e-04 7.2e-04
pe 1.85e-05 1.0005e-03 4.2e-03 4.6e-05
qe -7.05e-06 9.9948e-04 4.7e-03 1.3e-05
λM 2.46646 (rad) 0.606994 (rad) 1.1e-06 2.2e-06

Table 5.12: Residual RMS of 40 SR- and MC-based validation samples for Test Case 3

MC Sample RMS Residual RMS Units

a 1.09614 4.4e-05 (DU)
he 1.3e-03 3.8e-04 (N/A)
ke 2.3e-03 4.1e-04 (N/A)
pe 9.1e-03 2.0e-05 (N/A)
qe 1.02e-03 1.8e-05 (N/A)
λM 2.4063 4.8e-04 (rad)
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Figure 5.15: Plots of relative differences between approximated STD values for Test Case 3. Note
the black line highlighting the choice of N for the surrogate.

a contains significantly more variability than any other univariate function.
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Figure 5.16: Histograms of SR results for quantities of interest in Test Case 3.
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Figure 5.17: Plots of the absolute values of factors uli(yi) for Test Case 3

5.5.1 Sensitivity Analysis

In order to quantitatively validate these conclusions, a sensitivity analysis is applied to the

results of Test Case 3 and compared to a PC baseline. The results of this analysis can be found

in Tables 5.13 and 5.14. As in Test Case 2, the PC baseline is converged to six decimal places.
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Therefore, some values have been stated to be approximately 0. In [62], it is deduced that uncer-

tainty in a is the most important contribution to equinoctial element variance. In particular, the

variance of λM relies largely on uncertainty in a. Tables 5.13 and 5.14 show that variance in a

and λM does indeed rely mostly on uncertainty in a. However, the Sobol indices present a more

detailed analysis. The results are indicative of a relatively independent system, where the variabil-

ity of each QoI is most affected by the variability of its corresponding random input. Figure 5.18

Table 5.13: Sensitivity indices Si,m and residuals of a, he and ke for Test Case 3

Quantities of Interest

Random a he ke

Inputs PCE Resid. PCE Resid. PCE Resid.

a 0.999 1e-03 0.249 5e-03 0.200 3e-03
he ∼ 0 N/A 0.723 8e-03 0.0297 4e-04
ke 2e-06 2e-07 0.0267 1e-03 0.769 3e-03
pe ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A
qe ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A
λM ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A

Table 5.14: Sensitivity indices Si,m and residuals of pe, qe and λM for Test Case 3

Quantities of Interest

Random pe qe λM

Inputs PCE Resid. PCE Resid. PCE Resid.

a 4e-06 3e-06 4e-06 4e-06 0.999 1e-03
he ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A
ke ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A
pe 0.963 2e-04 0.0364 3e-07 ∼ 0 N/A
qe 0.0364 3e-05 0.963 1e-03 ∼ 0 N/A
λM ∼ 0 N/A ∼ 0 N/A ∼ 0 N/A

illustrates the variability of the QoI pe propagated with uncertainty only in a or uncertainty in pe.

The uncertainty used in this analysis is taken from the respective values in Table 5.2. Therefore,

the dependence of the variability of pe with respect to uncertainty in a and pe can be compared.
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As illustrated, the effect of uncertainty in pe is two orders of magnitude larger than the variability

introduced by a. This independent behavior repeats for he, ke and qe and explains the relatively

high rank, r = 6, needed for solution convergence.

Figure 5.18: Plots of pe propagated with uncertainty in a or pe

5.6 Summary of Results

Containing the first applications of SR to the field of astrodynamics, the results of Chapter 5

establish the capability of SR to accurately estimate the PDFs of objects in LEO. Considering

large initial uncertainty and long propagation times, the non-Gaussian posterior PDFs of a ref-

erence solution are accurately approximated by a surrogate which does not suffer from the curse

of dimensionality. The overall linear increase in required training sample count is seen in Sec-

tions 5.3 and 5.4. As the input dimension is increased from d = 6 to d = 20, the required number

of samples does not increase exponentially. In addition to this, ANOVA global sensitivity analyses

are tractably performed by SR. For the case found in Section 5.5, the sensitivity analysis reveals

nuances in the relationships between inputs and QoIs in this equinoctial element example. Specif-

ically, the analysis shows that the system is largely independent, where the growth in uncertainty
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of each QoI is due to the associated random input.



Chapter 6

Probability of Collision Quantification and Optimization

6.0.1 Introduction

For this chapter, we present a tractable approach to designing a collision avoidance maneuver

while considering uncertainty. SR is used for computing the probability of collision between one or

more space objects. The capability provided by this surrogate method is then combined with the

presented OUU approach such that a reliability design is computationally efficient. This approach

is subject to a minimization function and a set of constraints, both of which are functions of

uncertainty of the system. We demonstrate the proposed framework to design a single maneuver

that avoids collisions in sequence with multiple debris objects. Therefore, we introduce SR as

a tractable method for designing a collision avoidance maneuver that is robust with respect to

uncertainty.

The tests and numeric results contained in this chapter consider the use of SR methods for

the creation of polynomial surrogates that are able to map the relationship between inputs and

quantities of interest (QoIs). The resulting surrogates are used for the propagation of orbit state

PDFs without a posterior Gaussian assumption. Using a sampling method, the probability of

collision is estimated over a time span. The ability to efficiently generate these sample sets with

a surrogate is used within an OUU process in order to facilitate a reliability based design of a

maneuver in orbit about the Earth.
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6.1 Problem Setup

The presented problem, which serves as the focus of this chapter, is that of three objects

orbiting the Earth. In this scenario, object 1 is scheduled to perform a maneuver for orbit mainte-

nance. However, it is found that object 1 may collide with object 2 or object 3 depending on the

applied ∆V . Thus, a maneuver must be found such that object 1 avoids objects 2 and 3, while

desiring to change the prescribed maneuver as little as possible. In this case, we only consider

maneuver design for object 1. An illustration of this scenario is included in Figure 6.1. It is noted

that the presented picture is a notional diagram and serves as a visual aid for the timeline of events,

including the first propagation to the maneuver time t∆V and the three maneuvers mentioned and

calculated in this chapter. It is also noted that the overall approach taken in this chapter (that

of using SR for reliability design) is not limited to designing a maneuver for one object to avoid

two sequential collisions. In fact, the problem presented in this section and those following is an

expression of the general formulation shown in Eq. (3.1). The following subsections cover the work

necessary to perform such an analysis with a sampling approach such as MC.

Figure 6.1: Illustration of the possible conjunction events and associated maneuvers.

6.2 Probability of Collision Calculation

As a general case, we present the calculation of the probability of collision via MC by con-

sidering the states of two independent objects in orbit about the Earth. Each is dependent on a

separate vector of random variables such that r1(t,η) and ṙ1(t,η) are the position and velocity
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state of object 1 at time t, while r2(t,ω) and ṙ2(t,ω) are likewise for object 2. Here, η and ω

are vectors of independent random variables, where the state of each object is dependent on these

separate vectors, and it is not necessary for the dimension of η to be the same as ω.

Using the states of the two objects, we may begin to consider the time at which the distance

between the two is at a minimum, and, using this time and distance, we seek to compute the

probability of collision over a period of time rather than at a single epoch. This parameter is also

known as the time integrated probability of collision, but, for the sake of brevity, it will be referred

to in this work as the probability of collision, or Pc, hereafter. To enable the calculation of this

parameter, a MC approach is presented. As described later, SR allows for rapidly generating the

required samples to enable Pc estimation in reliability design.

In order to determine the probability of collision, it is necessary to know the distance between

two objects at the time of closest approach. To begin our definition, we present the square of the

separation distance to be calculated as

s2(t,η,ω) = (r1(t,η)− r2(t,ω)) · (r1(t,η)− r2(t,ω)), (6.1)

where t is time. Therefore, if we would like to find the minimum separation distance between two

objects over a period of time, we evaluate Eq. (6.1) at the time of closest approach. In this work,

this epoch is denoted as T , which satisfies

T (η,ω) = arg min
t

s2(t,η,ω). (6.2)

Upon combining the initial state PDF for the two spacecraft with realized independent random

variables, the realizations of the state at t0 may be generated. These random samples are propa-

gated to compute a set containing MMC samples of the minimium separation distances (or closest

approaches) between the two objects. Evaluating the process of Eqs. (6.1) and (6.2) MMC times

results in the set {s2(Tj ,ηj ,ωj)}MMC
j=1 . The process and computation of this methodology are dis-

cussed in further detail within Section 6.1. In order for statistics to be calculated to some desired

accuracy, it is necessary for MMC to be chosen such that the set is sufficiently large. We also
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introduce the more compact notation

Tj ≡ T (ηj ,ωj) (6.3)

where Tj is the time of closest approach as a function of the jth random input.

Remark 8. As seen in Eqs. (6.1) and (6.2), when applied to the set of data {s2(Tj ,ηj ,ωj)}MMC
j=1 ,

each sample j is a function of the two vectors of random inputs ηj and ωj. In order to reduce

notation clutter, the two random input vectors are combined such that

ξj =

ηj
ωj

 , (6.4)

where the random inputs are organized into the set {ξj}MMC
j=1 , and each random input vector is sized

such that ξj ∈ Rdξ . Here, the dimension dξ is a result of combining the stochastic dimension of η

and ω.

In turn, the set of distance samples is now explicitly dependent on both sets of random inputs

η and ω, and, with the assistance of compacted notation, is denoted as

{s2(Tj , ξj)}MMC
j=1 . (6.5)

The probability of collision is then estimated as

Pc =
count(s2(Tj , ξj) ≤ R2)

MMC
. (6.6)

where the operator count() indicates the number of positive tests over the j = 1, . . . ,MMC test

points, and R is defined as the keep out radius.

Due to the fact that the convergence of a MC analysis is known to be inversely proportional

to the square root of the number of samples used, it is possible that generating enough samples to

compute a converged Pc via Eq. (6.6) would be computationally expensive. Therefore, alternative

methods of calculating the Pc have been investigated. Using PC, Jones and Doostan [66] evaluates

Eq. (6.2) using a discretized time variable tk ∈ [t1, . . . , tK ] in order to calculate Tj and the data set
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of Eq. (6.5). This method relies on the assumption that the discretized times tk are dense enough

to detect collisions. The work by Jones et al [68] expands on this methodology by introducing an

approximation of the system that is continuous with respect to time. To find the minimum square

distance between the two objects, an interpolating polynomial, one for each j = 1, . . . ,MMC , is

used to compute solutions at times between the discrete steps of tk. The resulting polynomial is

used as a surrogate in a given optimization algorithm (such as Brent’s method) in order to find the

estimated time of closest approach within the continuous problem. For the work presented in this

chapter, we consider the creation of a surrogate whose output is at the time of closest approach for

any given sample. Therefore, no extra computation work is needed to find the samples at this time

of interest for collision analyses.

6.3 Quantities of Interest

Using the initial conditions of three objects in Earth orbit, it is desired to know the uncertainty

of the orbital state at a later time in the form of realizations of the state. The set of stochastic

ODEs

F (t, ξ,θ; r1(t0), ṙ1(t0),∆V , r2(t0), ṙ2(t0), r3(t0), ṙ3(t0)) = 0, (6.7)

describe the temporal evolution of the states of the three objects in Earth orbit, where F is a

stochastic ODE operator, and t ∈ [t0, tf ] is time. It is noted that the realized maneuver ∆V is not

only dependent on the random variables ξ but also on the design variables θ, i.e., ∆V (ξ,θ). The

dependence on the random variables is due to the modeling of maneuver execution error, which

highlights the need for OUU in this case. The optimization methodology must account for both

random variables ξ and determinstic design inputs θ if a reduction in system information is deter-

mined to be undesirable. If ξ were to be excluded, the optimization problem would be deterministic,

i.e., non statistical, and unable to consider approaches such as those including reliability indices

(as seen in Eq. (3.1)).

By evaluating Eq. (6.7) for the state of each object MMC times, sets of data are collected, e.g.,
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{r1(Tj , ξj ,θj), ṙ1(Tj , ξj ,θj)} and {r2(Tj , ξj ,θj), ṙ2(Tj , ξj ,θj)}, and the uncertainty of the system

represented in Eq. (6.7) is quantified. These data sets, with each sample propagated to Tj , are

then evaluated in Eqs. (6.1) and (6.2) so that the Pc can be computed in Eq. (6.6). We note that

each value of Tj is not known a priori. The process used for finding these values is discussed later

in Section 6.4. Because the considered case involves three objects and two potential collisions,

notation is introduced to aid in identification. The QoIs discussed in this chapter consist of the

position of an object, i.e.,

q(β)
α (ξ,θ) = rα(T (β), ξ,θ) (6.8)

where the position components of object α = 1, 2, 3 are considered the elements of a single QoI

vector. Eq. (6.8) is a generality of the QoIs, i.e., not yet sampled and organized into a set. It is

noted that Greek letters α and β are used in lieu of Latin alphabet characters in order to distinguish

the indices from subsequent indexing used for SR and other equations. Here, we also introduce the

index of β = 1, 2. This value tracks the considered collision (the first or second) such that confusion

between data sets is reduced. Explicitly, we have

q
(1)
1 (ξ,θ) 6= q

(2)
1 (ξ,θ), (6.9)

where Eq. (6.9) indicates that the state of object 1 at the first time of closest approach (that with

object 2) is not equal to that of object 1 at the second time of closest approach (that with object

3). This work therefore focuses on four distinct states, i.e, q
(1)
1 , q

(1)
2 , q

(2)
1 and q

(2)
3 .

Remark 9. Eq. (6.8) denotes the composition of the quantity of interest vector q
(β)
α (ξ,θ). It is

emphasized here that the dependence of the QoI on time has been dropped due to the fact that

rα(T (β), ξ,θ) and ṙα(T (β), ξ,θ) are a function of a fixed time T (β), and the QoI is therefore only

valid at this single point in time. The vector q
(β)
α (ξ,θ) is still dependent on the inputs ξ and θ.

6.4 Data Generation

The MC sampling approach of data generation begins by mapping random variables, asso-

ciated with the object’s state, to an initial condition of rα(t0) and ṙα(t0). As an aid, we provide
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the example of adding uncertainty to the state of object 1. For the random inputs associated with

object 1’s state, samples of Gaussian distributions are generated and each sample ξi,j ∼ N (0, 1) is

first mapped to the position and velocities for the object at t0 via the state covariance Σ. Therefore,

the jth sample of the perturbed state is

r1(t0, ξj)

ṙ1(t0, ξj)

 =

r1(t0)

ṙ1(t0)

+ Γ


ξ1,j

...

ξ6,j

 , (6.10)

where Γ is the lower triangular Cholesky decomposition of Σ, and we consider the first six entries

of ξ to be associated with the position and velocity of object 1.

The state of object 1 is updated at the time of maneuver t∆V in order to reflect the change in

velocity that the maneuver imparts, here modeled as an instaneous change in velocity. It is at this

point that the design variables contribute to the propagated state. In this case, each design input

sample is uniformly distributed over the bounds [−1, 1], i.e., θi,j ∼ U(−1, 1) where i = 1, . . . , 3

indexes the three components of the maneuver velocity. Using Eq. (3.3), we have

Ξ(θj) =


Ξ1(θ1,j)

Ξ2(θ2,j)

Ξ3(θ3,j)

 , (6.11)

the bounds of which are covered later on in Section 6.5. Eq. (6.11) is used to update the state

velocity

ṙ1(t∆V , ξj ,θj) = ṙ1(t∆V , ξj) + Ξ(θj) + Γ∆V


ξ7,j

ξ8,j

ξ9,j

 . (6.12)

In Eq. (6.12), we have Γ∆V , which is the Cholesky decomposition of the maneuver error covariance

matrix Σ∆V . Here the 7-th, 8-th, and 9-th entries of ξ are associated with the maneuver error of

object 1. Although presented as an example centered around object 1, Eqs. (6.10)-(6.12) may be

further generalized and applied to other objects.
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Initially, the position elements of each object are solved for at a series of discrete times tk

which straddle the nominal T (β) at the times tk ∈ [t1, t2, . . . , tK ]. Using this set of position vectors

{rα (tk, ξj ,θj)} the distances between the objects can be computed. Searching through the set

of realizations at all times tk, the minimum distance is found over the discrete set. The solution

tk̂ to the minimum distance is initially a rough estimate for T (β)
j . It is further refined using the

Brent optimization algorithm among the bounds [tk̂−1, tk̂+1]. A basic illustration of this process is

included in Figure 6.2. The states at time steps tk ∈ [t1, t2, t3, t4] are included for each object and

superimposed over the respective continuous orbit. Although the overall geometry is exaggerated,

the basic behavior is representative of that found in the methodology. Even though tk̂ = t2 may

appear to be the time at which the objects are at a minimum distance when only considering the

discrete samples, the actual T (β)
j is at a point between t2 and t3. This distance and the associated

T (β)
j are then found using a Brent optimizer and the black box propagator [22]. For the results

presented in this chapter, the Brent optimization function found in the Python Scipy library is

used with a relative tolerance of 10−10. By using a method such as Brent’s, the full dynamics of

the problem are utilized.

Once a value of T (β)
j has been found, the corresponding sample j can be propagated to the

time of closest approach in order to yield q
(β)
α (ξj ,θj). Thus, the MC data are calculated and

subsequently organized into the data set of {(ξj ,θj , q(β)
α (ξj ,θj))}MMC

j=1 . This data set is then used

to solve for various statistics or to analyze the PDF for methodologies such as determining the

probability of collision. In order to quantify the risk of collision, the probability of collision, as seen

in Eq. (6.6), is utilized.

6.5 Optimization and constraints

The goal of this analysis is to constrain the probability of collision to be below an acceptable

value while also minimizing the changes to the previously scheduled maneuver. Because Pc is a

value fundamentally reliant upon a probability density function (that of ξ), including it in the

constraints of an optimization algorithm requires the approach of OUU presented in Eq. (3.1).
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Figure 6.2: Illustration of the data {rα (tk, ξj ,θj)} and the location of the time of closest approach
T .

Therefore the resulting optimization approach is

minimize f = ‖∆V (ξ,θ)−∆V0‖

subject to
P

(1)
c (ξ,θ) ≤ κ

P
(2)
c (ξ,θ) ≤ κ,

(6.13)

where f is the function to be minimized, ∆V (ξ,θ) is the maneuver to be designed, ∆V0 is the

nominal maneuver, and κ is the acceptable threshold for the probability of collision. The particular

value of θ that satisfies the contraints and minimizes f is given the notation θ̄(1,2), where the bar

notifies that this particular vector of design variables is the argument which satisfies Eq. (6.13),

and the superscript indicates compliance with avoiding both collision (1) and (2). Therefore, the

maneuver which avoids collisions (1) and (2) is denoted as ∆V (ξ, θ̄(1,2)). From here on, the notation

of the designed maneuver is simplified for conciseness

∆V
(1,2) ≡∆V (ξ, θ̄(1,2)). (6.14)

In Eq. (6.13), the reliability index β introduced in Eq. (3.1) is replaced by κ. The switch

from the ≥ inequality to that of ≤ is due to the fact that the time integrated probability of collision

considered in this chapter is the compliment of the probability of survival, i.e., Pc = 1−Ps. Rather
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than present the case of constraining the problem to a Ps greater than some desired survival index,

we maintain our use of the probability of collision which must remain below or equal to a threshold

value.

The designed maneuver ∆V
(1,2)

is computed by dictating a vector of design variables θ̄(1,2)

from the given design space. This design space of the maneuver is created by mapping the design

variables to the nominal maneuver ∆V0 in the NTW frame. This coordinate frame has the T̂ or

transverse axis pointed in the direction of the velocity vector. The Ŵ axis is then parallel to the

angular velocity, while the N̂ direction completes the orthogonal coordinate frame. The respective

upper and lower limits, as depicted in Eq. (3.3), are user determined, e.g., based on absolute or

relative bounds. In the case of this work, the following variables are bounded,

∆V lower
N ≤Ξ1(θ1) ≤ ∆V upper

N

∆V lower
T ≤Ξ2(θ2) ≤ ∆V upper

T

∆V lower
W ≤Ξ3(θ3) ≤ ∆V upper

W .

(6.15)

Therefore, a solution to the function and constraints of Eq. (6.13) is searched for by applying

an optimization algorithm to explore the design space of ∆V (ξ,θ) represented by the values of

Ξ(θ) found in Eq. (6.15). As mentioned in Note 6 however, the computational cost of repeatedly

evaluating MMC samples for each candidate vector of design variables can be prohibitive. Therefore,

there is motivation to evaluate Eq. (6.13) with a different methodology.

6.6 Surrogate Notation

For the purposes of this application, Eq. (3.4) is adopted with the following notation

q(β)
α (ξ,θ) ≈ q̂(β)

α (ξ,θ) =

r∑
l=1

sl ul0

dθ∏
i′=1

uli′ (θi′)

dξ∏
i=1

uli (ξi) , (6.16)

where the previous presentation has been altered to reflect the introduced notation of object

and collision indexing. The surrogates q̂
(β)
α (ξ,θ) are constructed using the training data D =

{(ξj ,θj , q(β)
α (ξj ,θj))}Nj=1, and the resulting separable polynomial functions are evaluated MMC
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times to compute the sets {q(β)
α (ξj ,θj)}MMC

j . From these sets, statistics and the probability of

collision P
(β)
c are calculated.

6.7 Results

As discussed in Section 6.1, this chapter considers the case of an object (object 1) attempting

to avoid sequential collisions with objects 2 and 3. Each object state is computed with a Runge-

Kutta 7(8) propagator that considers solar radiation pressure, gravitational perturbation from the

Moon and Sun, as well as a 50×50 spherical harmonic representation of the Earth’s gravity field [37].

Object 1 undergoes a small maneuver 24 hours after the case’s epoch time (September 12, 2017,

23:58:51.817 UTC), modeled in the NTW frame. Noting a potential collision with object 2 three

hours after the maneuver time, an alteration to this nominal maneuver is calculated using the

optimization problem presented in Eq. (6.13). Since object 3 is not yet a concern, design inputs

θ̄(1) are solved for such that the cost function is minimized with only the first constraint considered,

i.e., P
(1)
c (ξ, θ̄(1)) ≤ κ. This resulting maneuver ∆V

(1) ≡∆V (ξ, θ̄(1)) is then found to send object

1 onto a collision course with object 3. By introducing a possible collision between objects 1 and

3, this change artificially complicates the collision avoidance procedure necessary for the object 1

and 2 conjunction.

Therefore, the following results present a potential collision over two encounters, where a

maneuver, designed to avoid a statistically significant collision with object 2, is not viable due

to another potential collision with object 3. As an aid, we refer the reader to Figure 6.1, which

illustrates the described scenario. The nominal maneuver ∆V is seen as resulting in a conjunction

with object 2 in red, while the first optimized maneuver ∆V
(1)

is labeled as “collision (1) avoidance”

and results in a conjunction with object 3 in blue. The desired optimized maneuver ∆V
(1,2)

, which

is the ultimate goal of the optimization problem, avoids collisions (1) and (2). We note that this

test case is based on “Case 3“ from Alfano [3]. Alterations have been made for the sake of increased

complexity, including a maneuver, and a third object.
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6.7.1 Case Conditions

The initial conditions of the three objects are considered as random inputs for the stochastic

problem, and the values of these states are located in Table 6.1, along with additional random

inputs in the form of the nominal maneuver components ∆V0 = [∆V0,N ∆V0,T ∆V0,W ]T. These

initial conditions are used as the means of the initial density functions, upon which uncertainty

is applied. As a reference aid, Table 6.2 contains a list of the major events that occur during the

studied case, along with the time of the events relative to the epoch, and the objects for which a

surrogate is created. The times of the first and second collision are calculated via the mean states

of each object. For the case of object 1, the initial condition found in Table 6.1 occurs at the epoch

time t0. Objects 2 and 3, however, have initial PDFs originating at the time of maneuver t∆V .

Therefore, the state of object 1 is propagated for 24 hours longer than either object 2 or 3.

Table 6.1: Random inputs for objects 1, 2, and 3

Mean

Object 1 Object 2 Object 3

x (m) -27891608.7 -33021744.7 -31062467.4
y (m) -30077310.3 -24238863.3 18517034.2
z (m) 196242.2 -643450.3 3874262.4
ẋ (m/s) -2296.4 -1855.7 777.8
ẏ (m/s) 2092.3 2498.6 3149.9
ż (m/s) -384.1 -374.4 194.7
∆V0,N (m/s) 0.1 N/A N/A
∆V0,T (m/s) 0.5 N/A N/A
∆V0,W (m/s) 0.1 N/A N/A

Table 6.2: Timeline of Nominal Events

Event Time (s) Surrogates

Begin Time (t0) 0 N/A
Maneuver (t∆V ) 86400 N/A

First Collision T (1) 367200 Object 1 (q̂
(1)
1 ), Object 2 (q̂

(1)
2 )

Second Collision T (2) 378000 Object 1 (q̂
(2)
1 ), Object 3 (q̂

(2)
2 )
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For the given case, object 2 is 1000 times more uncertain (with respect to variance) than

object 3. This represents a lack of knowledge of object 2’s state when compared to object 3.

For this chapter, the uncertainty of the object at the epoch time is quantifiably represented by

covariance matrices, i.e.,

Σα =

Σpos
α 0

0 Σvel
α

 . (6.17)

Equation (6.17) depicts the uncertainty of the random inputs in the form of a covariance matrix

for each object, which is applied to the initial conditions by way of Eq. (6.10). It is noted that the

covariance matrices used for objects 1 and 3 (and subsequently object 2) are taken from Alfano [3]

and rotated to reflect a rotation of the object states from that presented in the referenced material.

Each matrix segment is of size 3 × 3. The sections associated with the position uncertainty

of an object Σpos
α are,

Σpos
1 =


0.0569 −0.0234 0.0035

−0.0234 0.0722 −0.0048

0.0035 −0.0048 0.0407

 m2, (6.18)

Σpos
3 =


0.0574 −0.0235 −0.0035

−0.0235 0.0718 −0.0047

0.0035 −0.0047 0.0407

 m2, (6.19)

while the values associated with the velocity Σvel
α are

Σvel
1 = Σvel

3 = 10−8 · I3 m2/s2. (6.20)

The covariance of object 2 is based on that of object 2, where

Σ2 = 1000×Σ3. (6.21)

For this particular case, the covariance of the maneuver random inputs Σ∆V
1 is in the NTW coor-

dinate frame

Σ∆V
1 = 4× 10−8 · I3 m2/s2. (6.22)
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In the case of object 1, uncertainty is applied to the initial conditions contained in Table 6.1 using

appropriate random variables and Σ1. Each sample j is forward propagated the 24 hours until

the maneuver time t∆V . At this point, the maneuver (with errors and design inputs) is added to

object 1’s velocity as seen in Eq. (6.12), and the state is further propagated until Tj . For objects 2

and 3, there is no initial propagation of 24 hours. Thus, the states of object 2 and 3, presented in

Table 6.1, are perturbed using random inputs and the respective covariances and propagated from

t∆V until T (β)
j .

In addition to quantifying the uncertainty, this case also considers a design space which is

applied to the OUU approach presented in Eq. (6.13). The parameters needed to complete the

OUU analysis are included in Table 6.3. This table contains values for the upper limits of the

allowable probability of collision κ, the designated keep out radius R used in Eq. (6.6), and the

lower and upper bounds on the maneuver design space. In this case, the design space is dictated

to be ±10% of the nominal maneuver components. It is also noted that the value of κ = 10−4 is

implemented due to its use in the astrodynamics community (e.g., Schilling et al [100]).

Table 6.3: OUU Parameters

Value Units

κ 10−4 N/A

R 70 m

∆V lower
N 0.09 m/s

∆V upper
N 0.11 m/s

∆V lower
T 0.45 m/s

∆V upper
T 0.55 m/s

∆V lower
W 0.09 m/s

∆V upper
W 0.11 m/s

Remark 10. Because there are 3 objects each with a minimum of 6 random inputs associated with

respective initial conditions, the addition of Σ∆V
1 and θ could, at first glance, result in a dimension

greater than 18. The methodology of creating the training data D, however, limits this dimension

to d = 18. Due to the fact that each value of T (β)
j is only reliant upon the two objects corresponding
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to the conjunction β, the inputs attributed with the irrelevant object are not included in the training

data. Therefore, they are not included as inputs in the creation of the relevant surrogates.

6.7.2 Probability of Collision: OUU

Once a converged solution is found for the system response at times T (β)
j as a function of

the input variables, it then becomes possible to consider an OUU application. For this analysis,

the scenario presented in Section 6.5 is the problem of interest: with the available bounds of the

maneuver design space, the goal is to avoid two possible collisions while minimizing the change

to the nominally chosen maneuver. Here, we utilize the computational efficiency of the surrogates

q̂
(β)
α (ξ,θ) in order to add tractability to the optimization process.

6.7.2.1 Surrogate Creation and Testing

Using N = 2000, r = 10 and P = 5, an SR solution for each object’s Cartesian position is

calculated from a single set of training data D. It is here that we note that, for the generation

of each surrogate, the total dimension d = 18. The results of samples generated with an SR

solution and those generated by the reference propagator are contained in Figures 6.3 and 6.4 for

an examination of the fit. For these figures, an independent set ofMMC = 105 MC samples is used as

a reference. These values are displayed as the black bins of the histograms. The trained surrogates

q̂
(β)
α (ξ,θ) are then evaluated at the associated random inputs, and the results are overlayed on the

MC histograms as red lines. Qualitatively, the samples produced with the SR surrogate appear

to approximate the distribution of the reference solution well. It is noted that the histograms of

Figures 6.3 and 6.4 do not display PDFs due to the variation of the deterministic design inputs.

When considering the Wiener-Askey scheme and the orthogonal relationship between a polynomial

base and its associated distribution, however, it is helpful to think of the design inputs as random.

In this case, the distributions of both figures emphasize the evolution from the prior Gaussian

distributions to the posterior non-Gaussian distributions. In particular, the PDFs estimated in

Figure 6.3 are neither representative of a Gaussian or uniform distribution, thus they are not a
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simple fit to either the Hermite or Legendre bases of which the SR surrogates are composed of.

In order to provide quantitative proof of convergence, validation samples are calculated. For

this, 1000 samples of the QoIs are computed with the same methodology used for the creation of

the training data D. The associated random inputs are then used as inputs to the constructed

surrogates, and the output is compared to the black box reference values. By comparing absolute

residuals of these small sets of data, which are independent from the training of the surrogate, this

validation process evaluates the accuracy of the SR solutions better than comparing solutions of

data used during the fitting process. Due to the relatively small number of samples required, this

validation approach is more indicative of that used in an operational environment when compared

to a process that utilizes large numbers of samples (such as that presented later in Table 6.9). The

RMS for each QoI is taken over the number of validation samples and provided as a quantitative

measure for identifying solution covergence. The RMS of the differences is presented in Table 6.4.

As seen in the table, the validation test indicates that an error of 17.5 m is achieved for any single

position component.

Table 6.4: Residual RMS of 1000 SR- and MC-based validation samples for the test case

MC Sample RMS Residual RMS Units

x
(1)
1 0.01466e04 0.0175 km

y
(1)
1 4.17156e04 0.0105 km

z
(1)
1 0.36377e04 0.0044 km

x
(1)
2 0.01499e04 0.0109 km

y
(1)
2 4.17156e04 0.0038 km

z
(1)
2 0.36376e04 0.0012 km

x
(2)
1 2.98324e04 5.586e-04 km

y
(2)
1 2.91666e04 5.375e-04 km

z
(2)
1 1.00684e04 3.941e-04 km

x
(2)
3 2.98358e04 1.456e-04 km

y
(2)
3 2.91588e04 1.678e-04 km

z
(2)
3 1.00670e04 3.876e-04 km
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Figure 6.3: Histograms of collision (1) QoIs for the OUU case. Note, all units are in meters.
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Figure 6.4: Histograms of collision (2) QoIs for the OUU case. Note, all units are in meters.

6.7.2.2 OUU Results

Following the optimization scheme presented in Eq. (6.13), the SR surrogates are leveraged

in MATLAB’s fmincon in order to produce results for the design variables chosen by the optimizer
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at each step. In this process, default option values of the MATLAB version 2017a are utilized with

the exception of the minimum change in design inputs for calculating finite-difference gradients. A

value of 10−1 is used for this test case due to the need for the probability of collision to differ between

choices of the design inputs. This issue arises because values of P
(β)
c used within the constraint

functions are calculated by counting the number of hits between objects, and these discrete values

may not change with small variations in the design inputs even though the overall distributions of

the QoIs have been altered by such a change1 . This change in settings emphasizes the care that

must be taken when approaching an optimization problem for a given test case.

For the purpose of numerical accuracy, the surrogates are used to produce a set of MMC = 106

samples for each object at each design input candidate vector. These sets are then computed

to calculate the value of P
(β)
c to be used in Eq. (6.13), and the associated value of ∆V

(1,2)
is

subsequently checked for compliance with respect to the minimization requirement. This process is

repeated until the optimization algorithm determines that the optimal value of ∆V
(1,2)

is found.

For the ∆V
(1,2)

result presented in this chapter, fmincon took 12 iterations. As discussed in Note 6,

the computation of propagating MMC = 106 MC samples would be repeated for each of these 12

iteration using a black box propagator if the SR surrogates are not leveraged.

Table 6.5 contains the optimization results relevant to the designed maneuver. In it, the

values of the design variables that comply with the optimization requirements θ̄(1,2) are included,

along with the corresponding change in the maneuver δ∆V = ∆V
(1,2) −∆V0. For comparison,

the results of ∆V
(1)

are included in Table 6.6. Only avoiding the collision between objects 1

and 2, ∆V
(1)

is inadequate when constraining both P
(1)
c and P

(2)
c . The N and W components of

each optimization are orders of magnitude less than the T component. It is suspected that this

behavior is due to relative insensitivity between the PDF and the directions in question. A change

in velocity in the transverse (T) direction directly correlates with a change in semimajor axis and

orbital energy. Therefore, there is a potential application for an optimization alogrithm focused on

1 For this particular application, the setting change for the minimum difference used to calculate finite-difference
gradients is the DiffMinChange variable within fmincon’s optimoptions function
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sparseness in future work.

Unoptimized (i.e., based on the nominal maneuver) and optimized probability of collision

P
(β)
c values are included in Table 6.7. This table contains values calculated with maneuvers corre-

sponding to the nominal ∆V0, as well as the first optimization attempt, i.e., ∆V
(1)

, and the OUU

case result ∆V
(1,2)

. For each of these maneuvers, there is a reference MC result computed via

MMC = 105 black box calculations as well as those computed by evaluating the q̂
(β)
α (ξ,θ) surro-

gates with a set of MMC = 106 random inputs (SR). The choice of inputs θ corresponds with the

particular maneuver, e.g., θ = 0 for ∆V0.

An addditional column SRval is included in Table 6.7 as a further check of the optimization

results. For these data, the same SR parameters from the OUU analysis, e.g., r and N , are utilized

in a surrogate that is fitted to training data that has been generated by fixing θj = θ̄(1,2). When

constructing this surrogate, the dimension is reduced to d = 15, due to the lack of variation among

the design space. By evaluating 106 random samples via this representation q̂
(β)
α (ξ), we obtain a

validation on the P
(β)
c values for the optimized case. A check of this contribution indicates that

the inputs dictated via the optimization scheme do indeed avoid collisions with objects 2 and 3.

A quick check of Table 6.7 shows values of P
(β)
c that are similar to varying degrees between

MC and SR results. As presented in Schilling et al [100], confidence intervals are a valuable tool for

determining the possible error of a statistical estimation. Specifically, the exact Clopper-Pearson

(CP) interval provides bounds that, although conservative, contain the true probability with a high

rate of accuracy. The following bounds are given for the CP interval

CP =

[
B−1(α/2;nH ,MMC − nH + 1), B−1(1− α/2;nH + 1, N − nH)

]
, (6.23)

where nH is the number of observed hits, and B−1() returns the value producing a probability from

the cumulative Beta distribution. When evaluating Eq. (6.23) using the P
(β)
c values of the MC

results (and the associated MMC = 105), bounds are produced given a 95% confidence interval.

That is, the true probability is contained within the calculated bounds under 95% of independent

analyses. These bounds are included in Table 6.8, and the results suggest that both the SR and
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MC results are within the expected error of each other when considering a MMC of 105. These

results are further supported by the histograms of Figure 6.5. The histograms of this figure are

produced by evaluating the surrogates using appropriate design variables and 100 independent sets

of random variables where MMC = 106. Therefore, the variability between independent estimations

of P
(β)
c using q̂

(β)
α (ξ,θ) can be seen. Due to a complete lack of variation from the values presented

in Table 6.7, results for P
(2)
c are omitted. From this, we observe that the estimated values of P

(1)
c

remain within their respective CI bounds of Table 6.8.

Table 6.5: Reliability design of ∆V
(1,2)

for the OUU case

Value Component δ∆V

θ̄1 -1.632e-03 N -1.632e-03 cm/s
θ̄2 0.2074 T 1.037 cm/s
θ̄3 5.655e-03 W 5.655e-03 cm/s

Table 6.6: Reliability design of ∆V
(1)

Value Component δ∆V

θ̄1 -1.051e-03 N -1.051e-03 cm/s
θ̄2 -0.2140 T -1.070 cm/s
θ̄3 3.603e-04 W 3.603e-04 cm/s

As an additional validation check, the 105 nominal MC samples used for the creation of the

data in Table 6.7 are compared by evaluating the same random inputs in the surrogate (q̂
(β)
α (ξ,0)).

This test is expanded by computing 105 additional MC samples, this time with the design inputs

resulting from the OUU analysis found in Table 6.5, i.e., θ = θ̄(1,2). These samples are then

compared to surrogate outputs (q̂
(β)
α (ξ, θ̄(1,2))) using the same inputs as the MC samples. The

results of these two analyses are included in Table 6.9. When considering the results of Table 6.4

to Table 6.9, the errors of the validation samples compare well those computed with the larger

set of MC samples. This table also contains a third column dedicated to the post-optimization
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Table 6.7: P
(β)
c results for the OUU case

∆V0 ∆V
(1)

∆V
(1,2)

MC SR MC SR MC SR SRval

P
(1)
c 1.89e-02 1.87e-02 1.50e-04 7.50e-05 1.30e-04 1.00e-04 1.23e-04

P
(2)
c 0.0 0.0 1.0 1.0 0.0 0.0 0.0

0.0184 0.019
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Figure 6.5: Histograms of 100 estimations of P
(1)
c using surrogates and independent sets of random

variables. Values for P
(2)
c are omitted due to lack of variation.

surrogates q̂
(β)
α (ξ) that have been fitted to training data reliant only upon random inputs and not

Table 6.8: CP bounds for the MC results of Table 6.7

∆V0 ∆V
(1)

∆V
(1,2)

P
(1)
c [1.81e-02, 1.98e-02] [8.39e-05, 2.47e-04] [6.92e-05, 2.22e-04]

P
(2)
c [N/A, 3.68e-05] [0.999, N/A] [N/A, 3.68e-05]
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design inputs. Due to the computation time needed to propagate 105 MC samples, it is noted that

this sort of validation check is not typical under operational conditions. It does, however, provide

a more complete evaluation of the surrogate accuracy. The quantitative results found in Table 6.9

show that both surrogates that include design space have reached an accuracy of at least 10 m in

the estimation of the position QoIs. The surrogates q̂
(β)
α (ξ), trained on the post-optimization data

that does not include design inputs, show a similar accuracy.

Table 6.9: Residual RMS of 105 SR- and MC-based validation samples for the nominal and opti-
mized case

q̂
(β)
α (ξ,0) q̂

(β)
α (ξ, θ̄(1,2)) q̂

(β)
α (ξ) Units

x
(1)
1 9.14e-03 8.16e-03 6.19e-03 km

y
(1)
1 7.69e-03 7.76e-03 1.08e-03 km

z
(1)
1 3.13e-03 3.40e-03 6.13e-04 km

x
(1)
2 7.68e-03 6.62e-03 6.10e-03 km

y
(1)
2 1.46e-03 1.27e-03 1.53e-03 km

z
(1)
2 8.72e-04 8.30e-04 1.03e-03 km

x
(2)
1 1.04e-04 1.05e-04 1.35e-04 km

y
(2)
1 1.16e-04 1.02e-04 1.46e-04 km

z
(2)
1 3.98e-05 2.51e-05 3.04e-05 km

x
(2)
3 1.64e-04 1.57e-04 9.59e-05 km

y
(2)
3 1.69e-04 1.49e-04 9.47e-05 km

z
(2)
3 1.46e-04 1.32e-04 2.64e-05 km

6.8 Summary of Results

Building on the results of Chapter 5, the work contained within Chapter 6 seeks to apply

the established UQ capabilities of SR to the field of conjunction assessment. Specifically, SR is

used to quantify the probability of collision between objects in Earth orbit. This capability is then

expanded to include design inputs, thus allowing the surrogate method of SR to be utlilized in an

OUU problem. Although computationally prohibitive using a MC method, the OUU application of

SR is both efficient and accurate. By considering variables that account for initial uncertainty as
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well as deterministic adjustments to a collision avoidance maneuver, a methodology is developed to

optimally design an maneuver that includes state uncertainty. In this particular case, the change

in maneuver is minimized while multiple probability of collisions are constrained.



Chapter 7

Multi-Element Applications

7.1 Test Case Introduction

In order to analyze the performance of the heuristic ME-SR algorithm, a series of test cases

are chosen. First, we consider a test case from the ME-gPC literature. Wan et al. [120, 121] applies

ME-gPC to a formulation of the Kraichnan-Orszag problem in order to test the ability of the multi-

element method to account for disconinuities near the origin. Here, we apply the method of ME-SR.

After this, a test case examines an Earth orbiting object. For this orbital scenario, a spacecraft is

in a Molniya orbit with initial uncertainty, and its state is propagated for approximately 10.5 days,

resulting in a posterior PDF that is difficult to approximate using SR due to large variances and,

potentially, a bimodal nature.

In order to highlight the computational efficiency of SR with respect to input dimension, the

number of directions within the Molniya case input space is then increased from d = 6 to d = 10.

The former case utilizes a Keplerian element propagator, which results in posterior distributions

with large variances. Due to the long propagation time and large standard deviations, unmodified

SR has difficulty converging to an accurate solution. Therefore, this example stands to benefit from

splitting the complex problem into smaller, more managable problems to approximate with ME-SR.

The latter case of d = 10 results in bimodal distributions due to gravitational perturbations. Here,

ME-SR is once again expected to improve in accuracy when compared to unmodified SR. Next, we

apply ME-SR to an orbit case in the circular restricted three body problem (CRTBP) where the

PDF of the spacecraft state is considered during a flyby. For all three cases, we compare the results
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of ME-SR to a single element SR surrogate, as well as a MC reference. From these comparisons,

we are able to make conclusions about the performance of the ME-SR algorithm.

The authors note that the provided value of N for each test case is for the number of training

samples used in each element, regardless of the value of Pr(IBk = 1). Therefore, the total number

of samples used in a ME-SR surrogate is N ×K. Due to the current implementation of the ME-SR

algorithm, however, more than N×K are utilized in the full training process of a ME-SR surrogate.

This is due to the fact that the training data D is not preserved from one iteration of decomposition

to the next. The properties of orthogonal polynomials displayed in Eq. (2.59) dictate that simply

transferring inputs from one iteration to the next is mathematically incorrect. Here, the relationship

between orthogonal polynomials and the probability density function of the related input direction

is seen. As K increases, the bounds of the constructed orthogonal polynomials and associated

inputs change. Therefore, the probability density functions are altered as well. As an example,

consider the tail of a Gaussian distribution. The density function of an element bounded from 5σ to

6σ is relatively uniform when compared to randomly sampling a normal Gaussian density function

until a desired number of samples within the bounds are collected. That is, samples pulled from

the full Gaussian are more skewed towards the mean when compared to samples generated directly

within the stated tail. This phenomenon is most prominent in areas of low probability (such as

Gaussian tails), and a biased sample distribution results in inaccurate surrogate solutions. Reusing

samples is possible by utilizing a methodology including weighted least squares, such as that found

in [55]. Although more than N ×K samples are needed for the implementation presented in this

work, results include the theoretical sample count, as each surrogate is effectively trained on this

number of samples. Achieving this theoretical cost is the subject of further research.

For the results presented in this section, an unmodified SR surrogate is constructed in order

to compare with the accuracy of ME-SR. This single element SR is trained on the same total

number of samples used in the comparitive ME-SR ALS process, i.e., N × K samples, in order

to provide a level of “fairness” with regards to the training of the surrogates. For case results

presented with multiple examples of K or N , e.g., some results are evaluated with K = 4 and some
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with K = 8, the number of training samples used for an unmodified SR surrogate is the total used

for the comparitive ME-SR surrogate.

For the quantitative results presented in this section, a MC data set of MMC = 105 sam-

ples (independent of surrogate training) is utilized as a reference comparison. As an indicator of

individual sample accuracy, an RMS of relative error εrel is taken, where the data norm

εrel =
‖q(yj)− q̂K(yj)‖D

‖q(yj)‖D
(7.1)

is taken over the reference MC sample size of MMC . Additionally, empirical values of the STD are

taken over the output of each method and compared as a relative error, i.e.,

σrel =
|σMC − σ̂|
σMC

. (7.2)

In Eq. (7.2), the values of σMC and σ̂ are the empirical standard deviations computed from data

sets of the MC reference and surrogate output, respectively.

7.1.1 Kraichnan-Orszag Problem

Analyzed in previous ME-gPC literature, the Kraichnan-Orszag (KO) problem is known to

be discontinuous near y1 = 0, which unmodified PCEs fail to converge on [120, 121]. Although

the KO problem can be formulated with one, two or three random inputs, this work focuses on

the d = 2 case, as it provides a multidimensional case to exercise the ME-SR algorithm on, while

remaining easier to illustrate than the d = 3 case. The KO ODE

dY1

dt
= Y1Y3,

dY2

dt
= −Y2Y3,

dY3

dt
= −Y 2

1 + Y 2
2 ,

(7.3)

are utilized in the generation of test samples, with initial conditions

Y1(0) = 1, Y2(0) = 0.1y1, and Y3(0) = 0.1y2. (7.4)
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Uncertainty is added to these initial conditions in the form of truncated Gaussian variables on the

[−6, 6] limits discussed in Section 4.3, and the resulting set of initial samples is propagated from

t = 0 to t = 10. The QoI taken to be estimated is Y2.

For this case, an exploration of the decay check parameter θ1 is performed. As θ1 approaches

zero, it is expected that the ME-SR algorithm will produce more element splits than if θ1 ≈ 1.

Figure 7.1 illustrates the accuracy of the ME-SR surrogate and a single element SR as the value

of the decay check parameter is altered. For this analysis, the values of N = 250, P = 4, r = 3,

γ = 0.5, and θ2 = 1.75 are fixed, while a range of θ1 = 10−1, . . . , 10−6 is used. Displaying values

of εrel as relative error in Fig. 7.1(a) and relative standard deviation error in Fig. 7.1(b), the plots

show the comparative inability of the unmodified SR to converge on an accurate result. However,

the accuracy of the ME-SR surrogate improves as the value of θ1 approaches zero, while the number

of elements increases.
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Figure 7.1: Plots of relative errors and element count for the K-O case as a function of θ1.

Using ME-SR and SR surrogates from the decay check parameter analysis, the lower and

upper limits of θ1 are chosen to illustrate the fitness of the surrogates. Displaying the MC reference

as a filled histogram, the solid line represents the fit of the ME-SR surrogate, while the dashed line

is that of the single element. We note that the abscissa limits of the plots are truncated so that the
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PDFs are easily discernible. It is shown that the ME-SR surrogate improves as θ1 becomes smaller,

and the methodology is able to accurately approximate the posterior distribution of Y2. The single

element SR, however, fails to converge even as the total number of training samples N×K becomes

large.
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(a) θ1 = 10−1
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(b) θ1 = 10−6

Figure 7.2: Normalized histograms of the MC reference, as well as the ME-SR and single SR
surrogates for the KO problem.

In order to illustrate the error of the surrogates with respect to the input space, Figure 7.3

displays the values of εrel on the ordinate axis with the associated input of y1 on the abscissa. The

inputs and QoIs of the reference MC data are used for this analysis. In this figure, two plots are

provided. The first plot contains results for the θ1 = 10−2 example, while the second presents the

θ1 = 10−6 case. Here, θ1 = 10−2 is chosen in order to investigate the relatively inaccurate ME-SR

solution. As in Figure 7.1, the accuracy of the ME-SR surrogate improves as the magnitude of

θ1 decreases. The inaccuracy of the ME-SR solution in the θ1 = 10−2 case is discernible near the

origin of Figure 7.3(a). Here, a series of larger values of εrel are surrounded by samples of relatively

low error. This behavior is responsible for the higher RMS error value seen in Figure 7.1(a), and it

is reduced as θ1 decreases in magnitude. This reduction is seen in Figure 7.3(b).

As visualization aids, the plots of Figure 7.4 depict two versions of the input space of the KO

ME-SR surrogate. The first occurs when the decay check parameter is relatively large, producing
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(a) θ1 = 10−2 (b) θ1 = 10−6

Figure 7.3: Plots of relative errors and associated inputs for the ME-SR KO case.

K = 9 elements, while the second choice of θ1 is smaller and contains K = 57 elements. It is noted

that the splitting of the input space appears to occur primarily around the origin, and, in particular,

the splits are along the y1 direction. As previously discussed, the KO problem is discontinuous near

y1 = 0. Therefore, the splitting behavior seen in Figure 7.4 supports the deliberate and adaptive

behavior of the ME-SR algorithm. The choice of θ1 = 10−3 for Figure 7.4(b), rather than a smaller

magnitude value, is dictated by the number of splits created by smaller values in the analysis

displayed in Figure 7.1. The large values of K create plots which contain indiscernible input

bounds.

7.1.2 Molniya Orbit - d = 6

Previously examined in [67, 42, 117], a Molniya orbit case is considered as an introductory

orbit test case for this chapter. First presented in [67], long propagation times and large ini-

tial uncertainties lead to a diffuse distribution of the true anomaly. The characteristics of this

posterior PDF result in an un-converged PCE. Both [117] and [42] utilize different multi-element

methodologies to improve on the performance of a single element PCE. The work of [117] leverages

a Gaussian mixture approach with overlapping elements, while [42] follows the implementation
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Figure 7.4: Plots of the decomposed input space for the KO case.

guidelines of [120, 121]. Therefore, it is expected for a single element SR surrogate to not converge

to an accurate solution, while a ME-SR should improve on the accuracy of the surrogate approach.

Although the posterior distributions of this example are not multi-modal, ME-SR proves to be ef-

fective due to its ability to pose the previously diffuse and complex estimation problem as a number

of smaller and simpler problems.

Table 7.1 contains the initial conditions of the orbit as Keplerian elements, while Table 7.2

presents the initial conditions in Cartesian coordinates along with the standard deviations used

as uncertainties in the inputs. The orbit is propagated for 868,105 s (∼10.5 days) using a simple

two-body Keplerian propagator.

Table 7.1: Initial conditions in orbital elements of the Molniya orbit

Orbital Element Mean

semi-major axis 26562 km
eccentricity 0.741
inclination 63.4◦

argument of perigee 90◦

RAAN -90◦

true anomaly 0◦
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Table 7.2: Molniya orbit initial means as Cartesian elements with associated random input standard
deviations

Input Mean STD

x 3.08038e06 10 m
y 0.0 10 m
z -6.15138e06 10 m
ẋ 0.0 1 m/s
ẏ 1.004e04 1 m/s
ż 0.0 1 m/s

Using r = 3, P = 4, θ1 = 10−8, γ = 0.5, and θ2 = 1.25, the ME-SR algorithm is utilized to

construct surrogates for each Cartesian QoI. In [68], the variance of the posterior PDF is considered

most sensitive to the input associated with the ẏ direction. Therefore, it is expected for the

ME-SR algorithm to prioritize splitting this direction. When run using the previously mentioned

parameters, only this direction is split via the adaptive algorithm. The number of elements required

via the choice of θ1 varies among each QoI, and, additionally, varies in relation to the number of

training samples used.

Figures 7.5, 7.6, and 7.7 illustrate an exploration of this behavior. By increasing the number

of training samples per element N , an ME-SR is constructed based on the criteria imposed by θ1.

Therefore, these figures depict information gathered via the K-type convergence of ME-SR as a

function of N . For each QoI presented, the top plot contains relative error εrel for both ME-SR

as well as an unmodified SR. As previously stated, the unmodified SR utilizes all N ×K training

samples of the comparable ME-SR in order to maintain consistency in blackbox computation cost.

Below each error plot, there is a graph containing the number of elements split K (represented by

the triangle markers and solid line) for the ME-SR, as well as the total number of training samples

required, i.e., N ×K (depicted as the plus-sign markers and a dashed line).

Figures 7.5, 7.6, and 7.7 highlight the ability of ME-SR to converge more rapidly to an

accurate solution when compared to an unmodified SR. Indeed, the accuracy of the SR solution

does not improve markedly as the total number of training samples increases. Each figure starts
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Figure 7.5: Plots of error and sample count for the x-position QoI of the Molniya d = 6 case.
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Figure 7.6: Plots of error and sample count for the y-position QoI of the Molniya d = 6 case.
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Figure 7.7: Plots of error and sample count for the z-position QoI of the Molniya d = 6 case.

with N = 100 and increases this value until N = 4000. At low values of N , it can be seen that the

ME-SR algorithm creates many elements in order to converge in a K-sense. Figure 7.5 illustrates

this behavior and the resulting large number of total training samples needed at N = 100. However,

as the number of training samples increases, the number of elements created by the algorithm begins

to decrease. Around N = 300, the x-position ME-SR surrogate requires significantly fewer elements

than at N = 100, and the total number of samples is ultimately lower as well. This toal number

of required samples N × K eventually increases. Although K slowly decreases after the initial

drop from N = 100 to N = 500, the increasing value of N creates an overall trend of increasing

the total number of training samples. An interesting behavior seen in these plots is that although

the number of training samples per element N as well as the total number of elements K vary,

the accuracy of the ME-SR surrogate does not fluctuate signficantly. Therefore, the accuracy of

the ME-SR surrogate may be more sensitive to other parameters such as P , r, or the decay check

parameter θ1.



123

It is noted that the QoIs of the velocity components are left out in order to provide conciseness

to this results section. The same behavior is displayed for the velocity QoIs as in the position

components, i.e., an initial large K at N = 100 followed by an overall decline in K as N increases.

Although not displayed in a figure due to required computation times, the number of elements K

for each choice of N varies as a function of the training data set. That is, due to the stochastic

nature of the generation of training data, it is possible to experience a difference in the fit from

one independent construction of ME-SR to the next. Therefore, validation techniques used for

statistical model fitting, such as cross- or k-fold validation are recommended. Here, k denotes the

number of equal sized training subsamples rather than the index for input space decomposition.

Figure 7.8 provides an illustration of the qualitative improvement in estimating the posterior

distribution of the Molniya x-direction QoI with N = 300 training samples per element as compared

to a single element SR. The shaded region of the histogram represents the bins of the MC reference,

while the solid line (which closely follows this region) demarks the bins of the ME-SR posterior

PDF histogram. The dashed line depicts the histogram of the unmodified SR surrogate, and its

performance is readily compared to that of the ME-SR result. For this particular result, the

algorithm converged to K = 11 elements. Therefore, a total of 3300 training samples are used.

Table 7.3 provides a quantitative analysis of the ME-SR approximation for the Molniya case.

Here, the performance of the unmodified surrogate approach is compared to that of the ME-SR by

utilizing relative differences in sample and empirical STD estimation. As previously discussed, the

reference solution is that of a 105 MC sample set. With respect to the single element SR results,

significant digits of accuracy are gained when the ME-SR algorithm splits the random input space.

In addition to Table 7.3, Table 7.4 is provided as an aid for quantifying the computation cost of

the N = 300 ME-SR surrogates by counting the total blackbox propagations.

As a brief exploration into the solution space of a QoI in this test case, the z-position com-

ponent is considered. For the chosen parameters of this case, the ME-SR fit, while improved in

relation to the unmodified SR, gains approximately a digit of precision over the single element solu-

tion. Because increasing the amount of training data does not significantly improve the accuracy of
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Figure 7.8: Normalized histograms of the x-position Molniya QoI with the MC reference, unmodified
SR, and improved ME-SR results

Table 7.3: Performance analysis of N = 300 surrogates for the QoIs of the d = 6 Molniya problem

Value Method x y z ẋ ẏ ż

σrel
SR 2.1e-03 1.2e-02 1.8e-03 2.1e-02 4.7e-02 1.8e-02

ME-SR 2.7e-06 4.5e-05 1.4e-05 1.2e-03 1.8e-05 9.9e-06

σ Reference MC 2840.2 km 908.5 km 5671.9 km 0.30577 km/s 0.75150 km/s 0.610610 km/s

εrel
SR 1.9e-01 1.4 1.5e-01 1.4e-01 2.9 1.3e-01

ME-SR 2.7e-05 5.9e-05 1.0e-02 2.7e-03 8.9e-02 4.3e-04

RMS(·) Reference MC 10199.5 km 17251.6 km 20368.1 km 1.6569 km/s 0.75648 km/s 3.3089 km/s

Table 7.4: Element and total sample count for N = 300 ME-SR of the d = 6 Molniya QoIs

x y z ẋ ẏ ż

K 11 27 7 13 10 14
N ×K 3300 8100 2100 3900 3000 4200

the ME-SR surrogate, the decay check parameter is tightened from θ1 = 10−8 to 10−11. Addition-

ally, the maximum order is lowered to P = 3 in order to mitigate potential overfitting. With this
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change, the relative RMS error of εrel drops to 3.9e − 05. The change in these two parameters is

followed by a growth in K. That is, given the surrogate parameters and θ1, the ME-SR algorithm

creates 20 splits instead of 7. Therefore, if greater accuracy is desired for the z QoI, a smaller value

of the decay check parameter is encouraged. The behavior of increasing accuracy with decreasing

magnitude of θ1 is seen in the analysis of the KO problem in Section 7.1.1. Although not included

for the sake of brevity, applying the same procedure to the other QoIs results in an increase in

surrogate accuracy. For example, the error of the ME-SR fit of the x-velocity component decreases

from 2.7e− 03 to 5.4e− 05.

7.1.3 Molniya Orbit - d = 10

The previously presented Molniya case is extended to include four more random inputs.

These uncertain directions take the form of the gravitational parameter of the earth µ, the area to

mass (A/M) ratio of the modeled spacecraft, an uncertain coefficient of drag Cd, and the coefficient

of reflectivity Cr. Rather than a Keplerian element propagator, the initial conditions are run using

a more complex numerical propagator which contains a dynamic model of the atmosphere, solar

radiation pressure effects (SRP) and a 10 × 10 spherical harmonics gravity model, as determined

by the GRACE GGM02C gravity model [111]. It is noted that for both drag and SRP, a simple

canonball model is utilized. Table 7.5 contains the initial means and uncertainties (in the form of

STD) for the additional parameters of this case.

Theoretically, a PCE for a d = 6 and p = 4 case would require N = 210 training samples,

while a d = 10 and p = 4 requires N = 1001 samples for the training data set. This relationship is

dictated via the equation

ΛPC =
(PPC + d)!

PPC ! d!
, (7.5)

where PPC is the total order of the PCE expansion, and ΛPC are the number of terms required to

solve for. This exponential in the number of required training samples with respect to the input

dimension is indicative of the curse of dimensionality. Due to the ALS format of the solving for

SR, this rapid increase in required training sample count is avoidable.
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Table 7.5: Additional initial means and standard deviations for uncertain parameters of the d = 10
Molniya case

Mean STD

µGP (km3/s2) 3.986e05 10e-03
A/m(m2/kg) 9.09e-02 1.0e-02
Cd 2.2 5e-02
Cr 1.2 5e-02

Using N = 500, P = 4, θ1 = 10−8, γ = 0.5, and θ2 = 1.25, an ME-SR surrogate is constructed

for each QoI in the d = 10 molniya case. A qualitative analysis of ME-SR is included for each QoI

in Figure 7.9. Here, we see the highly non-Gaussian PDFs of the position and velocity components,

and the fit via ME-SR (solid line). The authors note that single-element SR results are excluded

from these plots due to a lack of convergence. In the case of the position QoIs and ẏ, the multi-

modal distributions are represented well by the ME-SR surrogates. This multi-modal behavior,

as opposed to that from the d = 6 case, is due to the gravitational perturbations, as well as the

more complex gravity model, creating variations in the mean motion of the propagated states. In

order to quantify this accuracy, Table 7.6 presents relative error for both individual samples and

STD as in the previous case. In this table, multiple digits of precision are gained when comparing

ME-SR to SR. In particular, the STD estimate is improved by approximately four digits. As in

the previous d = 6 Molniya case, Table 7.7 includes the number of elements and total training

surrogates required by the chosen ME-SR parameters.

As in the previous case, we continue to explore the fit of one of the QoIs. Specifically, the

ẋ QoI is considered. The histogram of the PDF in question is displayed in Figure 7.9(d). Here,

a relative RMS error of 0.24 is achieved via ME-SR. Searching for a more accurate solution, two

approaches are taken: increasing N or using a smaller value of θ1. For the former, the number of

training samples is doubled to N = 1000, and the rest of the surrogate parameters are kept the same.

Doubling the number of training samples results in a similar relative RMS error, i.e., εrel = 0.24,

suggesting that the accuracy is insensitive to increases in training data. This relationship is broadly
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seen in Figures 7.5, 7.6 and 7.7. On the other hand, changing θ1 from 10−8 to 10−11 and P from

4 to 3 (in order to mitigate overfitting) increases the accuracy to 2.9e − 03. This improved fit

can be seen as the dashed red line in Figure 7.9(d) where it is labeled as ME-SRalt. Therefore, it

is again concluded that an operator, seeking accuracies greater than those found in Table 7.6, is

recommended to explore altering the decay check parameter and order of an ME-SR surrogate.
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Figure 7.9: Normalized histograms of the d = 10 Molniya case with the MC reference, unmodified
SR, and improved ME-SR results

Table 7.6: Performance analysis of N = 500 surrogates for the QoIs of the d = 10 Molniya problem

Value Method x y z ẋ ẏ ż

σrel
SR 1.7 8.8e-01 3.2e-01 1.0 3.6 1.8e-01

ME-SR 2.5e-06 1.1e-06 1.5e-06 8.6e-05 1.1e-05 1.1e-05

σ Reference MC 2449.1 km 10487.3 km 4851.9 km 2.132 km/s 2.853 km/s 4.266 km/s

εrel
SR 34.7 11.3 53.8 6.9 246.0 14.7

ME-SR 6.6e-03 4.9e-03 2.2e-02 2.4e-01 6.1e-03 3.1e-03

RMS(·) Reference MC 2497.7 km 10489.2 km 4949.7 km 2.141 km/s 6.486 km/s 4.267 km/s
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Table 7.7: Element and total sample count for N = 500 ME-SR of the d = 10 Molniya QoIs

x y z ẋ ẏ ż

K 12 11 10 10 12 14
N ×K 6000 5500 5000 5000 6000 7000

7.1.4 Europa-Jupiter CRTBP Case

Many of the unstable resonant orbits that are of particular interest for tour design are very

unstable and have close flybys of the secondary. One such orbit that is used in this work is the

5:6 resonant orbit shown in Figure 7.10. The circular restricted three-body problem (CRTBP) is

the model used in this study for the flyby orbit. See Szebehely [108] for a detailed discussion of

the CRTBP, but a brief overview of the problem will be given here. In this model, two bodies

orbit in circular orbits around their barycenter, and the motion of a third infinitesimal mass (the

spacecraft) is modeled. Using this formulation, the x axis of a rotating coordinate system is chosen

so that it is aligned with the two bodies with the origin at the barycenter. The relevant quantities

are typically made dimensionless so that the larger body (the primary) has mass 1 − µ, while the

smaller body (the secondary) has mass µ. The distance between the two bodies, the mean motion,

and the gravitational constant are all one in this model, while the period of the rotating system is

2π. The primary is located on the x axis at x1 = −µ and the secondary is located at x2 = 1 − µ.

Given this model, the equations of motion for the spacecraft in the rotating frame are

ẍ− 2ẏ =
∂Ω

∂x

ÿ + 2ẋ =
∂Ω

∂y

z̈ =
∂Ω

∂z

(7.6)

where

Ω =
x2 + y2

2
+

(1− µ)

r1
+
µ

r2

(7.7)

and
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r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x− 1 + µ)2 + y2 + z2. (7.8)

This orbit has a period of approximately 38.2 dimensionless units and a Jacobi constant of C

= 2.99736448718112. The close approach results in a highly non-linear propagation of uncertainty,

which is of interest when navigating these types of trajectories. An illustration of the orbit examined

in this case is found in Figure 7.10. For the case found in this chapter, an uncertain initial condition

of an orbiting spacecraft is propagated to various times near the nominal flyby time tf . Utilizing

a uniformly distributed random input y5, QoIs are propagated from half a period away from the

nominal until ±10% of this nominal flyby time. Here, y5 functions as a deterministic variable. That

is, although y5 is randomly sampled for surrogate training, we purposefully select it as an input

in the constructed surrogate, thus allowing for the PDF of the spacecraft at a desired time. The

mapping of y5 to the time of propagation is done via

t(y5) =
tmax − tmin

2
(y5 + 1) + tmin, (7.9)

where tmax and tmin are the respective lower and upper bounds of our flyby “window” and t(y5) is

the chosen time for the spacecraft.

Therefore, d = 5, and the surrogate is able to produce posterior distributions of the QoIs at

any time along this flyby “window”. This is done post surrogate construction by deterministically

choosing y5 and leaving all other inputs to be randomly selected. This approach of constructing

a surrogate, such that one of the inputs is deterministic, is not unlike a previous application

of surrogate methods to optimization under uncertainty for conjunction assessment. For further

details on this methodology, the works of [41, 15] are recommended. The initial conditions of this

orbit and the uncertainty (or bounds) of the inputs are given in Table 7.8.

As in the K-O example, the value of θ1 is varied in the exploration of this case. Specifically, a

range of θ1 = 10−1, . . . , 10−9 is used. While the decay check parameter changes for the construction

of each surrogate, the values of N = 250, P = 4, r = 3, γ = 0.5, and θ2 = 1.25 are fixed. Figure 7.11

illustrates the evolution of εrel as well as σrel over the range of θ1 for the ẋ QoI. Predictably, we
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Figure 7.10: 5:6 resonant orbit in the Jupiter-Europa rotating frame.

Table 7.8: CRTBP orbit initial conditions with associated random input standard deviations and
bounds

Mean STD or Bounds

x 1.00462 10e-05
y 0.0 10e-05
ẋ 0.0 10e-07
ẏ 0.11599 10e-07
Flyby Window N/A (15.27810,22.91715)

see the number of elements K increase as θ1 approaches zero. Additionally, as more elements are

split, there is an overall trend of accuracy improvement with ME-SR. However, as seen before, the

accuracy of the unmodified SR does not significantly improve even as the total number of training

samples N ×K increases.

Regarding the splitting of the sample space, it is noted that the algorithm emphasizes de-

composing the y5 direction. This choice is intuitive, as the object state distribution is sensitive to

the choice of propagation time. Figure 7.12 displays the splitting of this direction. Unlike the K-O

example, the ME-SR algorithm split only one dimension, precluding the need for a “mesh-like”
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(b) Empirical STD relative error σrel

Figure 7.11: Plots of relative errors and element count for the ẋ QoI of the CRTBP case as a
function of θ1.

illustration. Rather, the value of y5 is found on the abcissa, while the ordinate axis represents the

overall length of the element, i.e., the distance between bounds of element k. Figure 7.12(a) shows

the space of this direction as a single element. As the magnitude of the exponent of θ1 grows,

increased refinement of the input space is seen. Figure 7.12(b) illustrates an input space that has

been split into five nearly equal length pieces. However, Figure 7.12(c) shows that, by θ1 = 10−5,

the splits are clustered around y5 = 0 or t = tf . A qualitative assessment of this behavior notes that

at y5 = 0 the object is passing by Europa at the nominal time of closest approach. This behavior

remains largely intact in Figure 7.12(d). Finally, Figure 7.12(e) presents a highly refined input

space (indicated by the ordinate axis) that exhibits relatively little priority to particular locations

on the bounds of y5.

For the purposes of a qualitative analysis, normalized histograms are once again provided in

Figure 7.13. As in previous examples, the MC reference is displayed as a solid histogram, the solid

line represents the fit of the ME-SR surrogate, and the dashed line is that of the single element.

Unlike in previous analyses however, the results displayed in the histograms contain a deterministic

input. Therefore, these are not the PDFs of ẋ at a single time but over all times that are originally

sampled in the reference data set. Although the single-element SR fit improves marginally from
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(e) θ1 = 10−9

Figure 7.12: Plots of sample space for the y5 input and ẋ QoI.

Figure 7.13(a) to Figure 7.13(b), the ME-SR fit of the latter case is almost indistinguishable with

the MC reference when compared to the dashed line of the single element surrogate. In this case,

θ1 = 10−3 and θ1 = 10−9 are chosen to represented in Figure 7.13 due to the lack of spltting

at θ1 = 10−1 as seen in Figure 7.11. In addition to this visual comparison, Table 7.9 provides a

quantitative analysis for the results of both SR and ME-SR under the θ1 = 10−9 conditions. These

results are promising for future applications, such as planetary protection schemes which seek to

quantify the probability of colliding with a planet or moon at multiple times during a flyby.

To illustrate the behavior of a surrogate with a deterministic input, Figure 7.14 displays

evaluations of q̂K(y) using 101 equally spaced values of y5 spanning the bounds [−1, 1]. For this

figure, fixed values of all other inputs are used, thereby quantifying one possible trajectory, i.e, an

analysis using a single realized value of y. Here, the orbit seen in Figure 7.10(b) can be compared.

It is noted that due to the continuous uniform distribution of y5 on which the ME-SR surrogate

is trained, any possible value of time bounded by the initial condition is a valid input, not just
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MC MĖSR SR

(a) θ1 = 10−3

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15
̇x

0

2

4

6

8

10

MC MĖSR SR
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Figure 7.13: Normalized histograms of the reference MC, unmodified SR and ME-SR PDFs for the
ẋ QoI of the CRTBP case

Table 7.9: Performance analysis of θ1 = 10−9 surrogate methods for the QoIs of the CRTBP case

Value Method x y ẋ ẏ

σrel
SR 1.7e-03 5.1e-04 1.5e-02 2.1e-03

ME-SR 5.9e-07 1.6e-06 1.6e-07 5.6e-07

σ Reference MC 3.88e-02 3.60e-02 7.66e-02 8.27e-02

εrel
SR 2.5e-03 4.6e-01 99.2 1.6

ME-SR 1.1e-05 9.6e-03 1.7e-02 1.1e-03

RMS(·) Reference MC 1.04 3.60e-02 7.66e-02 8.43e-02

the 101 chosen here. The results presented in Table 7.9 depict a promising methodology for an

application such as planetary protection, and the ability for an ME-SR to create Figure 7.14 is one

such illustration of the ME-SR surrogate’s capability. However, future work is needed in order to

accurately estimate a quantity such as the probability of collision with Europa.

7.2 Summary of Results

Chapter 7 applies the formulation of ME-SR presented in Chapter 4 to a series of test cases

in order to evaluate the behavior and efficacy of the methodology. For this, a 2D iteration of the
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Figure 7.14: ME-SR estimation of one possible trajectory in the CRTBP case

Kraichnan-Orzsag (KO) problem is examined. A need to split the input space in two directions

is seen, while the convergence properties of ME-SR, with respect to the decay check parameter,

are analyzed and plotted. The accuracy of ME-SR in this case compares favorably to an attempt

to construct an unmodified SR solution. Following this, ME-SR is applied to a Molniya case of

dimension 6 and 10. Due to the fact that SR does not suffer from the curse of dimensionality,

ME-SR is capable of fitting to the 10 dimension case without exponentially increasing in cost

when compared to the 6 dimension version of the orbit propagation. For the Molniya case, the

convergence of ME-SR with respect to the size of training samples is considered. This analysis shows

that increasing the amount of training data does not necessarily improve the surrogate accuracy,

although the number of element splits may decrease. Leveraging the conclusions of both the KO and

Molniya convergence analyses, the accuracy of one of the Molniya ME-SR surrogates is improved

by reducing the magnitude of the decay check parameter. Lastly, ME-SR surrogates are created

for a CRTBP orbit. For this example, a flyby is considered over a bounded timespan, and the state
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of the spacecraft is estimated using ME-SR. The algorithm is shown to create splits primarily in

the direction of the deterministic input associated with the flyby time, and the accuracy of the

approximation improves as more splits are made in this direction. In all three test cases, ME-SR

affords multiple orders of magnitude improvements in the accuracy of STD and sample estimation

when compared to SR.



Chapter 8

Conclusions and Future Work

8.1 Summary of Contributions

The work presented in this thesis began with the history and background of UQ in the field

of astrodynamics (Chapter 1), covered various UQ methods in use and currently being researched

while presenting the method of SR (Chapter 2), discussed OUU and the formulation needed to

apply SR (Chapter 3), and introduced a multi-element methodology for SR that relies on the

decomposition of input space (Chapter 4). This body of work provided the foundation necessary

for the results contained within the subsequent chapters. Chapter 5 explored three basic test cases

in LEO so that the accuracy, convergence properties, computation cost and sensitivity analysis

performance could be analyzed. After confirming the relative efficiency and accuracy of SR, the

work contained in Chapter 6 applied SR to OUU. This optimization problem introduced a novel

method of quantifying the probability of collision while designing an avoidance maneuver. Lastly,

Chapter 7 illustrated the effectiveness of ME-SR to adaptively fit to a solution that is discontinuous

with respect to the input space.

8.2 Conclusions

Altogether, the content of this thesis presents a surrogate method that is novel to the field

of astrodynamics, yet is shown to be tractable, accurate and adaptable to complex dynamical

systems. As identified in Chapters 1 and 2, there is a need in the astrodynamics community for

further research in UQ due to cases of unidentified collisions [2, 71] and increasing numbers of
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objects in space [83]. Previous work on the surrogate method of PCEs has shown that surrogate

methods can work in the field of astrodynamics [67, 41, 100]. It was therefore hypothesized that

the promising surrogate method of SR would be found to be applicable as well. After presenting

the formulation and implementation algorithm in Chapter 2, the SR methodology was shown to

perform well in a variety of test cases. Although no method is universally applicable to UQ in

astrodynamics, SR is now known to provide valuable analyses in LEO, especially when considering

conjunction assessment with no posterior assumptions. Future applications are possible, and the

following section discusses some possibilities.

With regards to quantitative conclusions, SR was shown to accurately reproduce results to

four or more digits of precision with respect to a MC reference. Considering a case in LEO,

uncertainties of 1 km/s and 1 m/s in position and velocity, respectively, were propagated for 36

hours to produce noticeably non-Gaussian posterior distribution, thereby necessitating a need for

a method that does not assume Gaussian posteriors. By increasing the input dimension from d = 6

to d = 20, the computational tractably of SR was tested. Since PCEs suffer from the curse of

dimensionality, the theoretical computation cost for this example would increase from N = 210 to

N = 10, 626 training samples. Due to SR’s linear relationship between required training samples

and input dimension, the resulting training samples count was N = 150 and N = 750 for the

d = 6 to d = 20 cases, respectively. Leveraging the computational efficiency of SR to compute large

data sets, an SR based ANOVA sensitivity analysis shed additional light on a test case previously

examined in the literature [62]. With this analysis, it was determined that the equinoctial system in

question had a largely independent relationship between inputs and QoIs. This discovery highlights

the benefits made possible by an efficient means of UQ such as SR.

In addition to proving itself as a valuable UQ tool, SR has also been shown to work well in

conjunction with optimization algorithms that consider uncertainty. Along with the succesful multi-

element formulation of SR (ME-SR), the surrogate method is proving to follow relatively closely in

the footsteps of PCEs. That is not to say that the methodologies are interchangeable. However,

it does highlight that certain surrogate approaches to UQ are both effective and adaptable in the
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regime of astrodynamics. With regards to applications with OUU, this work focused on the regime

of conjunction assessment. In particular, it was desired to quantify the probability of collision

while also designing a maneuver to lower this value to an acceptable level. Previous work by Jones

et al. had used discretized time “snap shots”, as well as interpolation over time, to quantify the

probability of collision over a given time span [66, 68]. Rather than generate a large number of

surrogates to cover this span, we presented a method which only considers the QoIs at the time

of closest approach. By training an SR surrogate using this approach, the probability of collision

was computed. This novel method of computing the probability of collision is both efficient and

accurate, and other scenario applications are possible.

As previously stated, SR has also been shown to be compatible with the concept of sample

space decomposition. That is, in order to increase surrogate accuracy when fitting to a solution that

is discontinuous with respect to input direction(s), the methodology of ME-SR splits the input space

into element spaces and fits a surrogate to each individual element. While process has been applied

to PCEs in the form of ME-gPC, some customization is needed in order to create a functioning

multi-element algorithm for SR. The novel algorithm introduced in Chapter 4 relies on a decay

check parameter for K-type refinement. This parameter quantifies the relative contribution of the

highest order polynomials to the standard deviation of the QoI. Once a split is deemed necessary,

the direction(s) to split is determined via an error analysis of unidimensional surrogates. Applied

to test cases of various systems, the ME-SR algorithm shows orders of magnitude improvement

over the unmodified SR approach when solving for a solution that is discontinuous with respect to

one or more input directions.

8.3 Future Work

Work is still to be done, however, and a number of future goals have been identified. The first

two topics relate to the method of OUU. Although, SR has been shown to perform well with OUU,

the application remains limited to working with MATLAB’s fmincon. The performance of SR with

other optimizers, with or without established presence in the astrodynamics community, should be
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explored. An example is that of the SNOPT optimizer [51]. SNOPT is used within several trajectory

software packages such as Copernicus, AeroSpace Trajectory Optimization and Software, General

Mission Analysis Tool, and Optimal Trajectories by Implicit Simulation. A feature of SNOPT, and

of other optimizers, is the ability to utilize a function gradient in order to aid the optimization

algorithm. Since an SR surrogate is a linear combination of known polynomials, the gradient of

the surrogate with respect to input directions is trivial to compute. Once the coefficients of sl, cli,p,

and ul0,m are calculated via ALS, it is possible to compute the gradient given a table of pre-derived

polynomial derivatives.

Leveraging local minima to find an optimal global solution has also been shown to be effec-

tive [118]. It is expected that this technique, often called “basin hopping”, could be utilized in an

OUU application with SR. Just as the polynomial formulation of SR aids in gradient calculation, lo-

cal minima are also efficent and trivial to calculate. Although gradient based optimization methods

should be explored, some optimization functions are not smooth or continuous. Therefore, there

is motivation to explore the application and formulation of solvers for non-smooth functions. The

optimization problem presented in Chapter 6 contains such a scenario. Specifically, the constraint

functions of Eq. (6.13) are not smooth. An investigation of the effects that this has on the current

implementation is desirable, as is an application of an optimizer that specializes in such functions.

In addition to gradient computations and optimization package exploration, the application

of ME-SR to OUU is of interest. Presented in Chapter 7, ME-SR shows potential to increase the

accuracy of SR when presented with a discontinuous relationship between input directions and the

QoIs. In particular, a test case is formulated such that one of the input directions is effectively

a design input. By including a uniform input as a function of the time of flight, an ME-SR

surrogate is fitted to QoIs representing the state of a spacecraft as it endures a flyby of Europa. A

potential application of this surrogate is to utilize it in conjunction with an optimization algorithm

to determine the maximum risk of collision with Europa. Indeed, this particular formulation may

be altered to include the probability of collision method found in Chapter 6. By considering a

maneuver with design space, a procedure could be developed to minimize the risk of planetary
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contamination by a spacecraft with initial uncertainty.

Previously mentioned in Chapter 7, the efficiency of the presented ME-SR algorithm sampling

method has the potential to be improved. The inefficiency results from the fact that the current

implementation discards previous training samples when new splits in the input space are made.

A new set of training samples are generated for the ME-SR surrogate construction of each new

input space Bk. This is because the set of probability density functions {ρk,i}di=1 are unique to each

Bk, and inputs generated for Bk′ , where k 6= k′, will not maintain orthogonality with polynomials

constructed for {ρk,i}di=1. Therefore, without modification, the previously generated inputs do not

satisfy the orthogonal relationship depicted in Eq. (2.59). Because of this, the computation time

needed to generate an ME-SR surrogate is larger than that of the theoretical computation cost

associated with N ×K required training samples.

To rectify this disparity and mitigate an increase in computation time, a weighting scheme

similar to that of the work presented in Hampton et al. can be used [55]. Consider the weights,

wk,i =

√
ρk,i
ρi
, (8.1)

where wk,i is the weight of direction i in the k-th element, and ρi is the probability density function

of the original, un-split input variable. This orthogonal polynomial generated for direction i in the

k-th element is then multiplied by the appropriate weight, satisfying the orthogonal relationship.

If we consider yi to be some input variable from the previously unsplit distribution and ψk,p(·) to

be a polynomial orthogonal to the element k, then∫
ψk,p(yi)

√
ρk,i
ρi
ψk,p′(yi)

√
ρk,i
ρi
ρi dyi = δp,p′ , (8.2)∫

ψk,p(yi)ψk,p′(yi)ρk,i dyi = δp,p′ , (8.3)

thereby allowing inputs yi and polynomials ψk,p(·) to maintain an orthogonal basis on element k.

If wjk,i is the determined weight of ξi,j , then the combined weight of input vector ξj is

wjk(ξj) =

d∏
i=1

√
ρk,i
ρi
. (8.4)
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These combined weights are organized into an N ×N diagonal matrix W , such that

W =


w1
k(ξ1)

. . .

wNk (ξN )

 . (8.5)

When considering a scalar output ME-SR, Eq. (2.48) is replaced by

h′ = Wh, (8.6)

thereby weighting the data vector in the ALS process and accounting for the difference between

sample probability density functions. By implementing such a process, the computation cost of the

ME-SR algorithm would improve.

Lastly, the field of directional statistics shows promise as a mathematically rigorous means

of UQ with surrogates when considering an input direction associated with an angle quantity.

This development is significant in the field of astrodynamics, because many coordinate systems or

hardware models rely on an angle quantity. Examples include Keplerian and equinoctial elements,

attitude, and maneuver pointing. It is possible for any of these quantities to be a relevant and

uncertain input. As a PDF for circular data, the Von Mises (VM) distribution has been proposed

for astrodynamics applications [61]. Another possible distribution for circular data is the wrapped

normal distribution (WND). For the WND, Roger-Szegő polynomials form a basis that is orthogonal

to the density function. For VM, however, one of the analytic processes described in Section 4.3.2

of Chapter 4 is currently needed to construct an orthogonal basis. Preliminary results suggest that

surrogate methods such as PCEs and SR are capable of accurately accounting for circular data when

given proper orthogonal bases [65]. However, there is work to be done. Currently, the accurate

construction of an orthogonal basis for the VM distribution is only possible for diffuse inputs.

Additionally, SR has exhibited over fitting issues when adding excessive ranks to a surrogate model.

Therefore, it is desirable to further investigate polynomial bases for the VM and other directional

inputs (such as Gaussian-like distributions on a sphere), as well as the convergence properties of

SR when considering directional inputs.
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Appendix A

Stokes Coefficients

Table A.1: Low degree Stokes coefficients

Value STD

C2,0 -4.8416e-04 6.1e-11
C2,2 2.4393e-06 3.1e-11
C3,0 9.5721e-07 1.1e-11
C3,1 2.0304e-06 1.6e-11
C3,2 9.0479e-07 2.2e-11
C3,3 7.2127e-07 2.6e-11
C4,0 5.3999e-07 8.2e-12
S2,2 -1.4002e-06 3.1e-11
S3,1 2.4820e-07 1.6e-11
S3,2 -6.1898e-07 2.2e-11
S3,3 1.4143e-06 2.6e-11



Appendix B

Equinoctial Elements

Note that fr is a retrograde factor, where it is +1 for all direct orbits and −1 for nearly

retrograde orbits [113].

he = e sinω + frΩ (B.1)

ke = e cosω + frΩ (B.2)

pe =
sin i sin Ω

1 + cosfr i
(B.3)

qe =
sin i cos Ω

1 + cosfr i
(B.4)

λM =M+ ω + frΩ (B.5)


