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Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft

(sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree

direction accuracy is generally not available on such systems and disturbances to the local

flow field, induced by the airframe, introduce an additional error source.

An optical imaging approach to make a relative air velocity measurement with high-

directional accuracy is presented. Optical methods offer the capability to make a proximal

measurement in undisturbed air outside of the local flow field without the need to place

sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analy-

sis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated

hardware and intensity thresholding in low-background conditions. A new method is derived

and assessed using a particle streak imaging technique that can be implemented with low-

cost commercial cameras and illumination systems, and can function in imaged volumes of

arbitrary depth with complex background signal.

The new technique, referred to as particle streak anemometry (PSA) (to differenti-

ate from particle streak velocimetry which makes a field measurement rather than a single

bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected

component analysis and principle component analysis to detect streak ends in complex imag-

ing conditions. A linear solution for the air velocity direction is then implemented with a

random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-

convex optimization problem is then solved for the air speed through an iterative approach.

The technique was tested through simulation and wind tunnel tests yielding angular accura-

cies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed
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error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of imple-

mentation. While air speed sensing is secondary to accurate flow direction measurement,

the air speed results were in line with commercial pitot static systems at low speeds.
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Chapter 1

Introduction

1.1 Introduction

Small unmanned aircraft systems (sUAS) are increasingly used for high-accuracy, in

situ wind measurements in the atmospheric boundary layer (ABL) at relatively low cost

[19] for path planning [52], [8] or meteorology[56],[25],[27],[4]. With the advantage of three-

dimensional mobility, sUAS increasingly complement fixed and mobile mesonets, radar and

other land-based systems used for atmospheric sensing in the lower troposphere.

Key to accurate flow measurements from these systems is an accurate measurement of

the aircraft-relative flow direction [38]. Currently this measurement is most often made by

pitot-static multi-hole probe systems, flow-angle vanes and, sonic anemometers. However

these approaches are generally not well suited to sUAS applications. Typically sUAS have

poorly understood local flow fields which interfere with the accuracy of probes and vanes

that generally do not extend far enough from the aircraft to be relatively free of local effects.

Furthermore, the versions of these systems suited to sUAS size weight and power (SWAP)

and price constraints generally do not offer sub-degree direction sensing accuracy [13]. These

issues are especially impactful when high accuracy vertical and lateral flow components are

desired. In these cases, flow direction accuracy is of secondary importance to flow speed

accuracy. A need thus exists for flow sensing techniques with high directional accuracy that

are suitable for sUAS applications.

This work supports the development of a new class of sensors for sUAS using an
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optical particle streak imaging approach. Optical fluid flow measurement methods offer the

capability of non-intrusive flow measurements at greater standoff ranges than possible with

probes. Additionally the hardware can be safely protected within the vehicle, providing

greater survivability. This work mathematically develops a method using particle streaks to

determine the relative wind velocity from a fixed-wing sUAS and assesses its performance

using simulations validated by wind tunnel testing. The developed technique is primarily

geared to flow direction accuracy but also offers an air speed sensing capability.

In general, two classes of optical fluid flow sensing methods exist. The first are Doppler

methods. Laser Doppler velocimetery/anemometry (LDV/LDA) and light detection and

ranging (LiDAR). These methods rely on the frequency shift of light reflected by fine par-

ticulate to generate accurate velocity measurements along a single axis. By measuring over

multiple independent axes, a three-dimensional velocity measurement can be made.

The second are particle imaging methods. Traditionally, these methods have been

used in indoor environments and wind tunnel tests with particles seeded into the flow to

provide imagery. Differing methods are then used depending on the seeding density. Dense

particle environments are well suited to imaging clouds of particulate in successive images

and correlating a large number of separate interrogation windows across image sequences to

derive fine scale 2D velocities. This approach is known as particle image velocimetry (PIV).

In sparsely seeded flows individual particles may be tracked over a sequence of images in

an approach known as particle tracking velocimetry (PTV). A final approach is to track

individual particles by using the streaks they leave in a single long-exposure image. This is

known as particle streak velocimetry (PSV).

All of these imaging methods are generally used for 2D tracking though stereo exten-

sions exist to allow for three dimensional velocity measurement. The main objective in these

methods is to measure velocity fields which vary over the imaged domain.

Laser Doppler systems exist for making proximal air data measurements from aircraft,

however they are currently too large for use in sUAS [54]. As such, this work focuses on an
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imaging approach.

The problem of interest in this work is somewhat different than the typical measure-

ments made by optical imaging methods. Rather than determine two-dimensional air velocity

at fine resolution across an imaged plane, this work aims to determine a single mean three

dimensional velocity within an imaged volume of significant depth. This provides a single

measurement of the relative wind, analogous to measurements made by multi-hole probes,

air speed sensors paired with vanes, and sonic anemometers in similar applications.

To make this measurement a particle streak approach is used. Streaks are imaged

in a deep volume (as opposed to the thin sheets typically used in 2D particle velocimetry

methods) allowing streaks to result from motion in all three spatial dimensions. Streaks are

identified and, based on their position in the image, their end points are mapped to three-

dimensional unit vectors which are used to construct a solution matrix allowing for a linear

solution. To make such a measurement it is necessary that the mean velocity of particles

within the image dominates turbulent variations in velocity between particles within the

imaged volume. The validity of this assumption for small, fixed-wing sUAS is shown in

section 2.2

Because artificial flow seeding is not available in the outdoor environment, the aim of

this method is to be used with ambient particulate suspended in the atmosphere. A short

review of the lower troposphere particulate environment in which sUAS typically operate

is given in chapter 2. This review shows that sufficiently large particles may be suspended

in sufficient numbers for particle imaging to be a possibility depending on environment and

illumination intensity. Imaging capabilities are not investigated in detail, but a limited study

of particle densities and scattering characteristics and discussion of the potential for ambient

particulate imaging is given in the same chapter.

The proposed method for using the detected particles to make the desired flow measure-

ment is shown in chapter 3. This chapter describes the techniques for identifying particle

streaks in images taken in environments with noise and background; using the identified
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streaks to estimate flow direction; and estimating the air speed through knowledge of the

imaged volume dimensions. Using a simulation that includes realistic camera parameters,

background features, noise and turbulence, the proposed method is tested in chapter 4. The

results of this simulation are supported by wind tunnel test results shown in chapter 5.

1.2 Prior sUAS Wind Sensing Work

There have been a significant number of studies using sUAS for wind measurement.

The methods employed vary widely in cost and quality. A few are summarized below that

are broadly representative of the methods currently in use, ranging from relatively high cost

solutions using precise multi-hole probes and high-accuracy carrier-phase GPS units, to low

cost systems relying simply on measurements of aircraft ground speed and track.

In 2007 a group from the Technical University of Braunschweig and Mavionics GmbH,

tested a sUAS wind measurement system using a multi-hole probe with attitude data pro-

vided by a GPS-INS system using a carrier phase GPS receiver to compute inertial frame

accelerations [56]. Measured winds were compared with ground based SODAR and tower

measurements and showed generally good agreement although vertical velocity measurements

showed large standard deviations.

A similar mission in 2009, conducted by a group from Technische Universitat Carolo-

Wilhelmina Braunschweig, Eberhard Karls Universitat Tubingen, and the German Meteo-

rological Service, using the same hardware showed general agreement with measurements

from SODAR, tower, and wind profiler [33]. Wind measurement agreement was not as close

as in the prior testing however some of these differences may be explained by the physical

separation of the sensor systems and the averaging effects of the ground-based systems.

During the VORTEX2 tornado research mission in 2009 and 2010 a group from the

University of Colorado Boulder operated sUAS to collect meteorological data [20]. Wind

measurement was not a primary objective of this mission, however wind estimates from the

Piccolo autopilot system were recorded. These estimates were made without a complete
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air data system and were based on a kinematic model of the aircraft. While these were

not validated against another measurement source, they were compared in a simulation

environment where results indicated that the autopilot’s aircraft-dynamics based estimate

provided generally poor performance [18].

The Small Unmanned Meteorological Observer (SUMO) has been used in a number

of atmospheric sampling missions [36][47][49]. In order to maintain low cost, it often does

not carry an air data system instead making only horizontal wind measurements using a

technique that involves determining the wind based on increases and decreases in the air-

craft’s ground speed on either side of a circular orbit [48]. The approach keeps costs low

but reduces data rate significantly and effectively smooths measurements while providing no

vertical wind data.

These operations show the real-world viability of sUAS wind measurement but also

illustrate the need for low cost relative wind measurement systems that can allow for full

three-dimensional wind measurement without the expense and vulnerability of current sys-

tems.

1.3 Optical Fluid Flow Sensing Overview

The proposed method is an optical fluid flow sensing approach. Optical fluid flow sens-

ing uses light frequencies in the electromagnetic spectrum that can be observed by cameras

(as opposed to radar measurements) to determine relative wind velocities. A number of such

approaches have been developed and a brief review is presented here.

1.3.1 Doppler Approaches

Laser Doppler systems rely on a laser light source to illuminate airborne particles

and record the Doppler shift of the returned light. The Doppler shift of light reflected by

particles in the flow allows for an air speed measurement to be taken along the axis of the

laser illumination. By taking three measurements at different angles a full 3D flow velocity
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can be determined. Laser doppler measurements are used both in laboratory settings and in

outdoor sensing [22],[58]. They do not require actually imaging particles, allowing them to

be used to measure winds from air with only very small diameter aerosols.

Laser Doppler Velocimetry and Laser Doppler Anemometry are two names given to a

class of sensing techniques generally used for high accuracy laboratory measurements. These

use a split laser bear to create an interference or fringe pattern of standing waves in intensity,

perpendicular to the measured flow component [16]. Particles passing through this pattern

scatter light whose intensity varies with a frequency proportional to the velocity at which

they cross the pattern. Figure 1.1 shows a conceptual overview of how the technique works.

Doppler LiDAR uses the Doppler frequency shift of coherent light scattered by ambient

particulate to make a one dimensional flow speed measurement [23]. By taking measurements

along multiple independent axes, Doppler LiDAR provides a three-dimensional flow sensing

capability. Doppler LiDAR systems offer high accuracy and the benefit of being able to

take measurements well upwind of the sensor’s location but are expensive and somewhat

large compared to other wind sensors [29]. Additionally, laser operations from aircraft raise

significant regulatory difficulties. Doppler LiDAR systems have been used on sUAS for point

cloud sensing but not for wind sensing [57].

One existing airborne Doppler LiDAR system is the Wind Sceptor by Optical Air Data

Systems [54]. This system is mainly marketed at full-size helicopter applications. It offers

airspeed accuracy of roughly 0.5 m/s and flow angle accuracy of 0.25◦. This level of accuracy

is superior to that offered by small multi-hole probes but the system is too large for practical

use on sUAS.

1.3.2 Imaging Approaches

This class of methods use images of airborne particles to make flow measurements.

The proposed method uses this type of measurement because the hardware required can be

relatively simple (a camera and illumination source) making them potentially better suited
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Figure 1.1: Example of an LDA system from [16].
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to SWAP and price constraints on sUAS.

1.3.2.1 PIV

Particle image velocimetry (PIV) is a method for determining a flow field by imaging

particles added to a fluid flow. PIV is generally conducted in a closed laboratory environment.

Typically a laser source is used to illuminate the particles captured by high-speed, high-

resolution cameras. Image sequences are then captured in this fashion. The movement of

the particles within the plane of the images can then be assessed by correlating various

sections of the images in the sequence, interrogation windows, to produce vector fields [2].

A single vector is generated in each interrogation window. With high-resolution cameras,

large numbers of interrogation windows can be used allowing for high resolution 2-D fields.

Laboratory PIV requires high-end imaging systems and significant computational power. An

image of a flow field determined via PIV is shown in figure 1.2.

PIV allows for the sensing of specific structures within the flow in great detail. While

generally two-dimensional, three-dimensional extensions are possible through the use of mul-

tiple cameras and stereo processing [46]. Multi-camera systems are poorly suited to sUAS

applications. The required baseline is difficult to achieve if longer standoff ranges are desired

in the measurement and integration becomes far more difficult due to the need to precisely

align the cameras. Additionally, one, or possibly both, cameras would need to be placed on

the wings of a fixed-wing vehicle. Because the wings flex significantly in flight, maintaining

accurate camera alignment would be impossible. Furthermore, sufficient baseline to provide

range exceeding the rotor wash on multi-rotor craft may be difficult or even impossible to

achieve

One PIV-like approach has been proposed for sUAS by Pope et al. [45]. This approach

used a single interrogation window and a small, low-cost camera. Unlike in traditional PIV,

two illuminated planes were used. A two image sequence was taken with the first image

taken as particles passed through the first illuminated plane and the second image taken as
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Figure 1.2: Example of a flow field estimated using PIV from [15].
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the particles captured in the first image passed through the second plane. Results showed

potential for high accuracy lateral flow component sensing, this method however, requires

dense particulate clouds to get features for correlation as well as precise out of plane air

velocity sensing to allow for the precise timing required to capture the same particles in

successive images.

1.3.2.2 PTV

Particle tracking velocimetry (PTV) is similar to PIV but aimed at sparse particulate

environments. Rather than use interrogation windows to compare features in particle clouds,

PTV tracks the movements of individual particles through a sequence of images. This

requires techniques to determine the path of particles through multiple images [41]. Three

dimensional PTV is possible using multiple camera systems [31]. However these have the

same limitations for an airborne flow sensor as in stereo PIV.

1.3.2.3 PSV

Particle streak velocimetry (PSV) is an imaging technique where a single long exposure

image is taken of particles moving in the flow. This generates streaks in the image that can

be detected and used to indicate the flow direction and speed.

Such techniques used for indoor air flow tracking were reviewed by Fu et al. [21].

These techniques used relatively large tracer particles, generally helium filled-soap bubbles,

to track flows in interior spaces generated by ventilation equipment with multiple cameras,

similar to the stereoscopic methods for PTV and PIV.

For a practical airborne system a single camera approach is expected to be superior

to a multiple camera approach because of simplicity and lower cost. One such method

for three-dimensional sensing using PSV is particle streak velocimetry optical coherence

tomography (PSV-OCT), which uses profiles of streak intensities as they cross through a

thin imaging volume to determine the out-of-plane velocity component in addition to the
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typical two-dimensional components typically detected by PSV [60]. This method allows for

a three-dimensional velocity field to be extracted from a single camera perspective, however

it requires accurate measurements of streak intensity patterns which is difficult in a high

background environment as encountered in the outdoors.

1.4 Differences in the Proposed Method Relative to Prior Art

The systems described in in the preceding sections can potentially provide very high

accuracies with relatively simple calibration. However, existing optical wind sensing methods

are relatively expensive and may require flow seeding and complex image processing, making

them unsuitable for low-cost sUAS applications.

Compared to earlier particle imaging techniques, the method presented here is aimed

at capturing accurate overall flow direction, rather than a two-dimensional velocity field.

The flows of interest have high out-of-plane velocity components. As such the method is

capable of dealing with deep imaging volumes rather than thin illuminated sheets. The new

method, which is referred to as particle streak anemometry (PSA) to distinguish it from the

velocity field measurements typically made in the various imaging velocimetry techniques,

is also geared at imaging in environments with high background signal and heterogeneous

particle sizes and species with sparse but variable densities. An illustration of the proposed

method compared to classical PSV is shown in figure 1.3.
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Figure 1.3: Conceptual comparison of PSA (right) to traditional PSV (left).



Chapter 2

Method Feasibility

2.1 Performance Requirements

The proposed system aims to achieve directional performance superior to existing pitot-

static air data systems. An example system is the Aeroprobe micro air data system [13]. The

published flow direction accuracy of this system is 1◦ in angle of attack and side slip. Air

speed accuracy is shown in figure 2.1. Each curve is the calibration curve for the differential

pressure transducer with the transducer range, indicated in the legend.

Figure 2.1: Air speed accuracy of commercial Aeroprobe, air data system from [13].

Because a driving motivation in this work is accurate sensing of vertical and lateral flow
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components high directional accuracy is of greater importance than high air speed accuracy.

For example, an aircraft raveling at 20m/s at a 5◦ angle of attack experiences a 0.34m/s error

in vertical velocity for a 1◦ angle of attack error but only a 0.09m/s error in that component

for a 1m/s airspeed error.

2.2 Validity of the Bulk Velocity Dominance Assumption

For the proposed method to function, it is necessary that particle motions within

the imaged volume are dominated by the vehicle-relative air velocity such that turbulent

fluctuations between particles play only a small role in determining a particle’s trajectory

during the exposure period. An analysis for a fixed-wing sUAS follows.

A typical flight airspeed for fixed wing sUAS developed by CU Boulder’s Research

and Engineering Center for Unmanned Vehicles (RECUV), and the Integrated Remote and

In-Situ Sensing Program (IRISS), ranges from about 10m/s to 50m/s. For this analysis it is

assumed that the imaged volume has side lengths on the order of 1m (a liberal upper bound

for imaged volume given the need to illuminate and capture returns from particles across

the extent of the volume).

Kolmogorov’s isotropic turbulence theory gives the magnitude of velocity variance over

a given distance as

(σδv)
2 ∼ Ck (ǫr)

2/3 (2.1)

where Ck = 1.5 is the Kolmorgorov constant [40]. Typical values of ǫ in the lower troposphere

are below 10−1m2/s3 [10] so it is expected that:

σδv < 0.6m/s (2.2)

As this is between one and two orders of magnitude below the typical air speed, treating the

flow as dominated by the relative wind velocity is a reasonable assumption. The impacts of

turbulent fluctuations within the volume on the solution quality are shown in greater detail

in chapter 4.
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2.3 Imaging Feasibility

The proposed method relies on the capability of the sensor to image ambient particles

in the atmosphere under powerful illumination. The PSA method detailed in chapter 3,

describes the process of going from particle streak images to flow measurement. As such

some discussion of the potential feasibility of acquiring such images is necessary.

2.3.1 Particulate Size Requirements

Particle images are captured using bright foreground illumination to create a contrast

between scattered light from the particle and the background scene. In general, brighter

illumination and enhanced contrast with the background, make particles more visible, giving

a high signal to noise ratio against the background scene. Because larger particles generally

scatter more light, they can be detected with less illumination power than smaller particles.

Thus at a basic level, more illumination power leads to smaller minimum detected particle

sizes. Additionally, because the method requires at least two imaged particle streaks to

execute, but becomes more accurate with larger numbers of detected particles (chapter 4),

the desired accuracy informs the minimum number of desired streaks and thus the choice of

illumination power level. Sparse particle environments can potentially be compensated for

by imaging larger volumes, although since this generally requires imaging at greater ranges,

and reflected light intensity falls off with range, this is not as straightforward a solution as

it initially appears.

Generally, as requirements for flow direction and speed accuracy increase, and particle

environments become more sparse, smaller particles must be detected and thus brighter

illumination must be used. Current expectations, based on the use of consumer grade imaging

equipment, are that feasible imaging will target particles on the order of 10µm. While larger

concentrations of particles exist at smaller sizes, imaging these from an sUAS is not thought

to be practical.
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2.3.2 Lower Troposphere Particulate Environment

sUAS typically operate in the lower troposphere. This region contains a wide variety

of particles from a diversity of sources [42],[43]. A number size distribution of particles

measured in a research flight over the North Pacific is shown in figure 2.2. Particle number

densities fall several orders of magnitude between particle sizes on the low end of the size

range, on the order of 10−2µm diameter, and those on the high end, on the order of 10µm

diameter. This general trend of a steep fall off in number density with size is true for

most particle species and environments; however, there may be significant differences in the

overall scale of the number concentration (multiple orders of magnitude) [11],[5],[44]. As

such, simple imaging may be effective in some environments but not in others.

Figure 2.3 from [42] shows the size ranges of a variety of particle species found sus-

pended in indoor environments. While not all of these species are found outdoors, many

clearly originate in the outdoor, lower troposphere environment (such as pollens), and are

in suitable size ranges for capture with consumer-grade equipment.

Figure 2.2: Number concentration of airborne particles against particle diameter from [11].
Data measured on a flight over the North Pacific is shown in green.

The larger atmospheric particles can be imaged relatively easily with consumer grade

camera equipment. An example demonstrating this is shown in figure 2.4 showing suspended

particles in an indoor environment captured with a Nikon D7200 SLR camera and 50mm lens,
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Figure 2.3: Size ranges of various types of airborne articles from [42].
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illuminated by a shaft of sunlight against a background in shadow. Generally, consumer-

grade digital single-lens reflex cameras (DSLRs) costing under $1000 can resolve detail as

well or better than the human eye, which can observe particles down to the order of 10µm,

as shown in figure 2.5.

Figure 2.4: Photograph of airborne particles in an indoor environment (the author’s bed-
room), illuminated by natural sunlight and photographed with a consumer-grade Nikon
D7200 DSLR camera.

2.4 Particle light scattering

For particles of similar order of magnitude to the incident light, Mie scattering provides

an accepted model of light scattering [14]. Since the particles of interest are only 1 − 2

orders of magnitude larger in diameter than incident light wavelengths in the visible and

near infrared spectra, where many camera systems function, a Mie scattering model was

used to investigate the properties of light scattered by the target particles. The BHMIE

code implemented in MATLAB by Christian Maetzler was used to determine Mie scattering

coefficients and derive the phase functions for several possible airborne particulate materials
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Figure 2.5: Visibility of various types of particles from [26].
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[35]. There has been relatively little work done to fully characterize the refractive indicies

of pollens so for the current analysis a particle of pure glycerol is simulated [9].

The simple model used here assumes spherical particles which are unlikely in reality.

Additionally, soot species are investigated at these larger sizes for comparison but are rarely

found in these very large diameters. As a result the outputs of these models should be taken

only as loosely suggestive of the true particle scattering behaviors. Due to the complexity

of accurate modeling of scattering the necessarily unknown size and shape of particles a

definitive model predicting the intensity of light scattered from any given set of ambient

particles is not possible, however the simple model used can provide some insights.

Scatter coefficients, representing the effective ratio of scattering cross section to true

cross section for a number of materials at three different particle diameters are shown in

figure 2.6, plotted against incident light wavelength. It is clear that there is relatively little

variation in total scattering intensity between the species tested over the wavelengths of

interest. The purpose of this plot is to show the insensitivity of the scatter coefficients to

the species and diameter of the particle.

Phase functions, representing the intensity of scatter in different directions are shown

in figure 2.7, these are plotted for 500nm incident light onto a 10µm particle diameter. The

model shows strongest scattering in the forward direction with significant power also in the

lateral direction (around ±90◦ scattering angles) for all species. Backscatter intensities vary

widely by species, with some providing moderate scatter in the backwards direction and

others providing nearly none. Between the backward and lateral direction there is extremely

limited scattering intensity. This has potentially important consequences for illumination

system geometry, though a full accounting of this is difficult without knowing the specific

geometry, size and species of the particles being targeted. Importantly, scattering phase

functions vary significantly based on species, particle size and incident light wavelength even

though scatter coefficients are broadly similar in the particles examined.
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Figure 2.6: Scatter coefficients for several species of airborne particles
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Figure 2.7: Scattering phase functions for several species of airborne particles
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2.5 Feasibility Summary

These results indicate a reasonable possibility of capturing ambient outdoor parti-

cles on consumer digital imaging equipment in certain environments with a well-designed

illumination-imaging system. Furthermore, while the cameras containing this imaging equip-

ment are large for sUAS payloads, much of their weight lies in batteries, cases, LCD screens,

viewfinders, auto-focus motors, flashes, and other features not needed for a system that could

capture images for the proposed method. As such, it may be possible to construct a camera

capable of capturing the imagery needed for the proposed method, using consumer sensors

and electronics, that is substantially lighter than existing DSLR cameras.



Chapter 3

Method Description

The PSA method takes as input an image of particle streaks taken against a back-

ground, identifies the individual streaks, then estimates first flow direction, and then air

speed. In order to get the greatest benefit from the extended standoff sensing range the

technique offers compared to probes and vanes, looking forward of the aircraft into the flow

is envisioned as the best employment scenario so is the focus of the following analysis and

discussion.

The first stage in the method is to capture an image of particle streaks. A light source

is applied to the incoming volume of air with the camera shutter open for sufficient time to

see particle motions (at typical sUAS flight speeds this is on the order of 10ms). A simulated

image of particle motion streaks is shown in figure 3.1.The simulated image is composite of

a landscape photograph that is intentionally blurred with diminished intensity and with

streaks superimposed to simulate particle traces.

Once an image is captured edge detection is used to identify potential streaks. The

edge detection method used here is described in section 3.5.2. The results of this detection

performed on figure 3.1 are shown in figure 3.2 which shows a binary image with white

regions depicting possible streak edges. The edge detection step produces a binary image

showing potential streak regions. These regions are then identified and tagged using con-

nected component labeling (CCL) [51]. Once labeled, a size threshold is applied to reduce

the effects of noise and background features.
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Figure 3.1: Simulated streak image.

Figure 3.2: Edge detection on simulated image in figure 3.1.
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Labeled features then have their endpoints detected using a principal component anal-

ysis (PCA) based approach. This step and the preceding CCL step are described in section

3.5.3. Figure 3.3 shows the streaks identified in figure 3.1. With streak endpoints detected

the direction solution described in section 3.6 is applied. This method determines a direction

unit vector that minimizes the error in a least-squares formulation based on the position of

streak end points in the image. The final step is to determine the flow speed. This approach

is described in detail in section 3.7.

Figure 3.3: Streaks identified from 3.1.

3.1 Coordinate Frames

All vectors are defined in a three dimensional sensor frame where the origin is at the

camera optical center. The x axis points forward. In the case analyzed here, this is the flight

direction. The y axis points to the right of the image, and the z axis points downward. This

axis system is shown in figure 3.4. Positions in an image are defined solely by their y − z

coordinates.
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Figure 3.4: Sensor axes used for the method.
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3.2 Image Capture

In order to capture images for processing, a three dimensional volume is illuminated for

the entire period of the exposure to capture streaks as particles traverse the volume traveling

with the flow. Images are captured with sufficient duration to capture particle motion as

streaks.

The method is extremely flexible in terms of illumination type and geometry. While

a wide-band, incoherent light source was used for wind tunnel testing, it is expected that a

coherent, narrow band source with band-limited imaging, would be more appropriate in the

outdoor environment to limit the influence of background imagery. Imaged volume edges

may be defined either by the imaging system or by the limits of illumination. Generally

illumination should cover the entire image to the y and z axis limits, though this is not

necessary for a solution to be possible. Imaged space that is not illuminated, adds increased

computational load with no performance benefit.

It is however necessary to set x axis limits, depth limits, on the imaged volume. Know-

ing these limits is vital to determination of the flow speed. This is explained in section

3.7.

For a monostatic sensor configuration, camera and illumination source co-located as

shown in figure 3.6, the image depth is most practically set using the camera’s focal depth. In

this case a camera with a larger aperture will blur particles so much at ranges significantly

longer and shorter than the focal distance that they will not be detectable despite being

illuminated. This case will be referred to as focus-limited. A simulation of a focus-limited

image is shown in 3.5.

In this focus-limited case the actual depth of feasible imaging can be estimated using

depth of field relations [12]. The hyperfocal distance H is:

H = f +
f 2

Nc
(3.1)

for focal length f , f-number N , and circle of confusion diameter c. The f-number is the ratio
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Figure 3.5: Simulated image of streaks in a focus-limited image.

Figure 3.6: Diagram of monostatic configuration.
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of focal length to aperture diameter. The circle of confusion is the acceptable diameter of

a circle over which a feature can be blurred and still considered in focus. This is measured

in length units on the camera sensor. For the specific case used here, the circle of confusion

is defined by finding the largest blurred streak width that can still be detected using the

streak identification method described here. In practice, this streak identification method

detects streaks blurred out to diameters of roughly 0.1mm on the sensor (roughly 25 pixels

on the Nikon APS-C sensor used in chapter 5). Some variation exists based on light return

strength of the particle.

Based on the hyperfocal distance, the near and far limits, Dn and Df , of the focused

volume (the volume where any sharp feature will be defocused by no more than the circle of

confusion) is then given by the following relations:

Df =















Hs
H−s

, if s < H

∞, otherwise

(3.2)

Dn =
Hs

H + s
(3.3)

where s is the distance to the plane of focus, a camera setting. This relation provides a

method to determine the volume limits for the focus limited case.

A possible alternative to this method, for the focus limited case, is direct measurement.

This requires having a target with features similar to expected particle sizes and then moving

this target away from the focused subject distance s until the features are blurred beyond the

abilities of the streak identification technique used here. This approach requires taking a large

number of images with precise measured distances and creating a suitable simulated target.

While it was not attempted in this work using real hardware, it was used in simulation. A

comparison between the calculated depth limits, measured depth limits, and illumination-

limited case is shown in chapter 4.

While the light return strength will fall off with distance, and could conceivably be used

with an infinite depth of field, this is a poor method because in an uncontrolled particulate
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environment, larger and/or more reflective particles will be visible at greater distances and

the distance limit is hard to predict.

An alternative approach is a bistatic sensor configuration, with the camera and illu-

mination sources physically separated. In this configuration, the image depth can be set by

limiting the illumination depth. A schematic of a bistatic configuration is shown in figure

3.7. Limited illumination depth provides an advantage in creating sharper streak ends than

the monostatic configuration and more clearly defined near and far image limits, however

it requires that sensor platform allow for a bistatic configuration and good control over the

illumination edges. A simulated particle streak image with an illumination limited image

depth is shown in figure 3.8.

Figure 3.7: Diagram of bistatic configuration.
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Figure 3.8: Simulated image of streaks in an illuminated-limited image.
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3.3 Imaging System Trade-Offs

The imaging system parameters may be adjusted to achieve various results. A limited

explanation of the trade-offs of these choices follows.

To get good streak returns the camera must give bright enough images to show returns

from the particles. At the same time, increasing brightness of the overall image also increases

the background brightness, so increasing image brightness can make the streak signals diffi-

cult to detect. There are two methods available to make an image brighter without altering

exposure time.

The first is opening the camera aperture wider, decreasing the lens f-number. This

brightens the image but it also narrows the depth of field. This is helpful to an extent, both

for depth-limited processing (described later in this chapter) and to blur out background

features, however, if the depth of field is too small, streaks will pass through the entire

focused volume before the exposure time elapses, thus making accurate air speed solutions

impossible. At the opposite extreme, increasing the f-number too much makes the streak

returns too dark to detect, and may make background features sharper, leading to some

being interpreted as particle streaks, potentially causing flow estimation errors.

The second method for improving brightness is to increase the image sensor sensitivity,

or ISO number. This does not affect focus, but increasing it adds additional noise to the

image. Additional noise makes the edge detection steps used for streak identification difficult.

As discussed in chapter 2.3.2, large particles are sparse in the lower troposphere. To

capture more particles for a better solution, the imaging volume can be increased. To do

this, there are three methods available. The first is to widen the image by shortening the

focal length. This also increases the depth of field, further increasing the imaged volume

but also sharpening any background imagery unless the f-number is reduced (aperture size

increased). The second method is simply to increase the f-number with no other changes,

this increases depth of field and thus image volume. This has the consequences previously
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described (dimmer image, sharper background). The final method is to increase the subject

distance, the range to the plane of focus. This increases image volume by both widening the

imaged area (as the field of view is angular) and increasing the depth of field (see equation

3.2). However, it also moves the imaged volume farther from the camera, this makes particle

returns weaker as light returns fall off with distance and again, sharpens the background.

Another key factor in imaging is the sensor size. The size of the sensor affects the field

of view (shown under the pinhole model in equation 3.25). Smaller sensors narrow the field

of view, while larger ones widen it. Larger sensors require lenses that can cover the entire

sensor with light. This generally increases lens size and cost. The sensor pixel density also

effects performance. Higher pixel densities improve sharpness down to the airy disk radius

(see equation 4.1), improving the ability to resolve streaks. Again, these sensors bring higher

costs.

3.4 Background Suppression

As described in section 3.5.2, edge detection is used to identify particle streaks in

images. As such, it is important not only that particles are illuminated brightly enough to

show up against a bright background, but that background features not dominate streaks

in the streak identification steps. In order to accomplish this, the proposed method uses

a shallow depth of focus to keep background features blurred so they do not create strong

gradients that would potentially be detected as streaks. This shallow depth of field can also

be used for focus-limiting the depth of the imaged volume.

Further approaches to reduce background signal in captured images for a potential

practical field capable system are discussed in chapter 6.
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3.5 Streak Detection

3.5.1 Overview

Once a suitable image has been captured the next stage of the method is to detect

the endpoints of streaks in the image. Potential streak regions are identified by an edge

detection process. The end points of streaks are then identified by a combination of connected

component labeling and principal component analysis.

Figure 3.9 shows a conceptual overview of the streak identification process. Starting

from a base image shown in figure 3.9a, an edge detection process, described in section 3.5.2,

is used to produce a binary edge image, shown in figure 3.9b. Note that while most non-

streak features are eliminated, some remain. Connected component labeling is then used

to identify individual features, as shown in figure 3.9c. A pixel size threshold is applied at

this stage to eliminate features likely to small to be streaks. Finally, principal component

analysis is performed and used to identify the end points of probable streaks, as shown in

figure 3.9d. Note that large non-streak features that are sufficiently sharp may make it

through this process as shown. These are dealt with using the random sample consensus

technique described in section 3.6.

3.5.2 Edge Detection

While many PSV approaches use intensity thresholding to locate streaks [60],[32], this

does not work well in cases with strong background signal, as can be expected when operating

in outdoor environments under direct sunlight. Instead, PSA detects streaks by finding their

edges in an image. This allows for detection as long as the streaks create sufficiently strong

gradients in the image for background detection, which can be achieved even with significant

amounts of background signal (simulation of the effect of increased background signal with

this edge detection approach is shown in chapter 4).

To detect edges that may be streaks, a modified Canny edge detector is used [7]. The
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(a) Initial streak image. (b) Edge detection.

(c) Connected component labeling. (d) End point identification via princi-
pal component analysis

Figure 3.9: Conceptual summary of the streak detection technique.
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image is first smoothed to reduce noise using a Gaussian filter with kernel size 2, and σ = 1.4.

This kernel K5×5
g is convolved with the original image I to give the smoothed image Is.

Kg(i, j) =
1

2πσ2
e

(i−(k+1))2+(j−(k+1))2

2σ2 (3.4)

Is = Kg ∗ I (3.5)

Gradients in the smoothed image are then measured with the Sobel operator [50],[53].

This relies on two kernels, one for each direction in the image, Ksx and Ksy. These are

convolved with the smoothed image to give the gradient matrices Gx and Gy.

Ksx =













−1 0 1

−2 0 2

−1 0 1













(3.6)

Ksy =













1 2 1

0 0 0

−1 −2 −1













(3.7)

Gx = Ksx ∗ Is (3.8)

Gy = Ksy ∗ Is (3.9)

Here Gx and Gy are the components of the image intensity gradient vector at the corre-

sponding points in the image matrix. Gradient magnitude and direction matrices can then

be determined.

G =
√

G2
x +G2

y (3.10)

Θ = tan−1

(

Gy

Gx

)

(3.11)

Edges are identified as regions of strong gradient or regions of weaker strength bordering

strong gradients through a process called double thresholding. Strong gradients are identified

as areas above kstrong and stored in the binary matrix Bstrong while weak gradients to be
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counted only in proximity to strong gradients are identified as areas of gradient strength

below kstrong but above kweak and stored in the binary matrix Bweak.

Bstrongij =















1, if Gij ≥ kstrong

0, otherwise

(3.12)

Bweakij =















1, if kstrong ≥ Gij ≥ kweak

0, otherwise

(3.13)

Once strong gradient areas are identified, a mask is created by convolving the kernel

Knear with Bstrong. All non-zero elements of the resulting matrix are set to 1 and zero

elements left as 0 to create the mask Mnear.

Knear =



























1 1 1 1 1

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1



























(3.14)

N = Knear ∗Bstrong (3.15)

Mnearij =















1, if Nij ≥ 0

0, otherwise

(3.16)

This mask is then multiplied element-wise with Bweak to yield a binary matrix Bnear in which

every non-zero element represents a weak gradient within two pixels of a strong gradient

point. While the Canny edge detector generally only counts such gradients in direct contact

with a strong gradient, it was found in this work, that for the streak detection problem in the

presence of background, a two-pixel radius was more effective at capturing complete streaks

without gaps in the detected edge.

Bnear = Mnear ◦Bweak (3.17)
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Here ◦ is the Hadamard product operator (element-wise multiplication). Adding Bnear to

Bstrong and setting all non-zero elements to 1 gives the final binary matrix B showing all

detected edge regions.

C = Bnear +Bstrong (3.18)

Bij =















1, if Cij ≥ 0

0, otherwise

(3.19)

The standard Canny edge detector would then perform an edge-thinning step using

non-maximum suppression. This would attempt to thin edge regions to a single pixel in

width. For the specific problem of streak identification, this step proved to be unnecessary

and counterproductive. As described in section 3.5.3, the streak end identification depends

on the distribution of streak points and edge thinning does not provide any appreciable

benefits in this process. Furthermore, edge thinning often creates gaps in the detected

streaks that make it much harder to identify streaks via connected component analysis

(described section 3.5.3). Finally the non-maximum suppression step proved to be the most

computationally expensive element of the edge detection sequence and, as such, skipping it

provides a significant boost in performance.

Figure 3.2 shows the results of the edge detection method applied to the simulated

streak capture image in figure 3.1.

3.5.3 Streak Identification

With edge regions identified, it is possible to locate the streak ends. A connected

component analysis is performed on B to identify individual features. The MATLAB func-

tion bwconncomp was used to carry out this analysis for eight-connected regions [34]. This

function operates on binary images such as those that result from the edge detection step

outlined in section 3.5.2.
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To determine connected components, bwconncomp runs through all true pixels from

the edge detection binary image output until it finds an unlabeled one. This pixel is then

given the next label value and used as the start point for a flood-fill algorithm that fills all

connected pixels with the same label.

Connected components are defined as lists of pixel positions within B. In order to limit

analysis to actual streaks and reduce the impact of background features and noise that may

have made if through the edge detection step, only connected regions above a threshold size

are retained. The best value for this threshold is dependent on imaging system parameters.

In general, the threshold should be large enough to eliminate small features, and background

elements but small enough to retain most streaks.

Once connected components are identified and down-selected, a principal component

analysis is performed on the remaining connected components [59]. This identifies the prin-

cipal axes of each identified region. Principal component analysis (PCA) is a process that

determines the vectors that align with the greatest variances in a set of data. The first

component determined by the PCA is the component with the greatest variance, the second

component is the second greatest variance and so on. For this application only the first

component is needed.

This first component vector is referred to as the first loading vector, ~w. It must satisfy

the following relation.

~w = argmax
|~w|

∑

i

(

Xp(i) · ~w
)2

(3.20)

Here Xp is a l× 2 matrix where l is the number of points in the connected component. This

matrix contains the image positions of all the points in the connected component. Xp(i) is

the ith row of the matrix.

The MATLAB function pca provides a solution to this problem as an orthogonal axis

system where the first axis is this weighting vector. The output of this analysis is a 2 × 2

matrix R of unit vectors for the principal axes of each connected region. This matrix can be
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used to transform the pixel positions stored as a m × 2 matrix P from the image axes into

the local principal axes. The position list in the principal axis frame is Pp. This rotation is

performed for each component identified. For every connected element i ∈ (1 : n) where n

is the total number of connected elements

P i
p = P iRi (3.21)

The ends of the ith streak are now easily identified as the points on the principal axis with

the largest and smallest values in the first column of P i
p which corresponds to the longest

principal direction of the identified feature. The indices of these points are now used to

identify the end points of the streak in the image frame by finding the elements of P i with

the same indices. Figure 3.10 illustrates the image and principal axes for a single streak.

This process yields a list of streak endpoint pairs for each identified feature. These

identified end points are used to estimate the flow velocity as described in the following

sections.

3.6 Direction Determination

With streak ends identified, the flow direction can be estimated. To do this, a con-

ceptual understanding of the imaging process is needed. A pinhole camera imaging model is

used in this analysis. A diagram of this is shown in figure 3.11[24].

In this model, if an imaged object is at location (xo, yo, zo), the corresponding displace-

ment to the location of the object in the image plane, with the image flipped so that up in

the image corresponds to up in the world and right in the image corresponds to right in the

world, is then.

~h =
fd
xo













−xo

yo

zo













(3.22)
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y

z

y

streak

Figure 3.10: Diagram of principal component axes and image axes with principal component
axis system shown in red.

Figure 3.11: Diagram of camera pinhole model.
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Here fd is the focal length (distance to the sensor plane from the optical center). The result

is that the y − z coordinates in the image of the object are

yi = yo
fd
xo

(3.23)

zi = zo
fd
xo

(3.24)

where yp and zp are the coordinates of the resulting point in the image plane. Generally,

points in the image are measured in units of y and z pixels while points in the world are

measured in meters. Thus scale factors must be applied to convert from pixels to length

units.

yp = yo
py
sy

fd
xo

(3.25)

zp = zo
pz
sz

fd
xo

(3.26)

where yp and zp are the coordinates of the imaged object in the resulting image in pixels.

Expressed as a function of ~d with the output as a vector, equation 3.25 becomes

~Pi =













0

yo
py
sy

zo
pz
sz













fd
~xo

(3.27)

Allow the displacement to the object position to be ~po. Then the image displacement function

can be expressed as a function.

~Pi = Im (~po) (3.28)

Here ~Pi is a vector displacement to the point in the image, expressed in pixels which may

not be square (py
sy

6= pz
sz
) Equation 3.27 allows a position in the world to be converted to a

pixel position in the image. Here pz and pz are the y and z pixel dimensions of the image

sensor respectively while sy and sz are the dimensions of the sensor in in meters.

It is relatively simple to reverse the mapping. Because the image is two dimensional,

the reverse mapping generates only direction information which can be stored in a unit vector
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d̂. For a point in the image (yp, zp), the reverse mapping is

~di =













fd

ypi
sy
py

zpi
sz
pz













(3.29)

d̂i =
~di

|~di|
(3.30)

Using equation 3.29, any point in the image can be mapped to a unique unit vector in three

space.

If a particle moves from position pa to position pb with velocity ~V (the flow velocity)

over exposure time ∆t and leaves a streak in the image its motion can be described as

follows. Define the unit vector pointing from the image axis center in the direction of pa as

d̂a (Determined from equation 3.29 for the pinhole model used here) and the vector pointing

from the axis center in the direction of pb as d̂b. Then the displacement to pa from the axis

center is d̂ara and the displacement to p2 is âbrb where rb and rb are the scalar ranges to pa

and pb respectively. Therefore

d̂brb = d̂ara + ~V∆t (3.31)

~03×1 = d̂ara + ~V∆t− d̂brb (3.32)

Equation 3.32 is the fundamental relation used in the determination of the velocity vector

direction.

Note that a single streak gives a system of three equations for five unknown quantities

(the three components of ~V , r1, and r2). Adding another streak; with the first streak terms

now defined by subscript 1 and the second by subscript 2; adds an additional two terms for

the two streak end ranges to the system.

d̂b1rb1 = d̂a1ra1 + ~V∆t (3.33)

d̂b2rb2 = d̂a2ra2 + ~V∆t (3.34)
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~03×1 = d̂a1ra1 + ~V∆t− d̂b1rb1 (3.35)

~03×1 = d̂a2ra2 + ~V∆t− d̂b2rb2 (3.36)

Rewriting this as a linear system gives:

~06×1 =

































∆t 0 0 d̂a1(1) −d̂b1(1) 0 0

0 ∆t 0 d̂a1(2) −d̂b1(2) 0 0

0 0 ∆t d̂a1(3) −d̂b1(3) 0 0

∆t 0 0 0 0 d̂a2(1) −d̂b2(1)

0 ∆t 0 0 0 d̂a2(2) −d̂b2(2)

0 0 ∆t 0 0 d̂a2(3) −d̂b2(3)



























































~V

ra1

rb1

ra2

rb2



























(3.37)

~06×1 = Fy (3.38)

A has six rows so rA ≤ 6, where rA is the rank of A. The zero vector ~06×1 lies in the column

space of F (the zero vector lies in the column space of any linear mapping) so a solution

exists. y has 7 unknowns but the rank of F is ≤ 6 so the dimension of the right null space of

F is ≥ 1. As such non-trivial solutions to ~06×1 = Fy exist. Thus there are infinite non-trivial

solutions to equation 3.37.

To resolve the issue, divide all terms by ra1:

~06×1 =

































∆t 0 0 d̂a1(1) −d̂b1(1) 0 0

0 ∆t 0 d̂a1(2) −d̂b1(2) 0 0

0 0 ∆t d̂a1(3) −d̂b1(3) 0 0

∆t 0 0 0 0 d̂a2(1) −d̂b2(1)

0 ∆t 0 0 0 d̂a2(2) −d̂b2(2)

0 0 ∆t 0 0 d̂a2(3) −d̂b2(3)



























































~V

ra1

rb1

ra2

rb2



























1

ra1
(3.39)
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Now shift the terms multiplying ra1 to the LHS:







−d̂a1

~03×1






=

































∆t 0 0 −d̂b1(1) 0 0

0 ∆t 0 −d̂b1(2) 0 0

0 0 ∆t −d̂b1(3) 0 0

∆t 0 0 0 d̂a2(1) −d̂b2(1)

0 ∆t 0 0 d̂a2(2) −d̂b2(2)

0 0 ∆t 0 d̂a2(3) −d̂b2(3)



















































~V

rb1

ra2

rb2



















1

ra1
(3.40)

Now let ra1 = 1:







−d̂a1

~03×1






=

































∆t 0 0 −d̂b1(1) 0 0

0 ∆t 0 −d̂b1(2) 0 0

0 0 ∆t −d̂b1(3) 0 0

∆t 0 0 0 d̂a2(1) −d̂b2(1)

0 ∆t 0 0 d̂a2(2) −d̂b2(2)

0 0 ∆t 0 d̂a2(3) −d̂b2(3)



















































~V

rb1

ra2

rb2



















(3.41)

(3.42)

This leaves a standard linear equation of the form:

~b = M~x (3.43)

3.6.0.1 Direction Solution Considerations

The result of the above is a linear system with a unique solution, when M has full

rank, where all solution distance units are ra1. To see the cases where M is not full rank,

consider the determinant of M .

det(M) =
∆t3 fd sy sz py

3 pz
3 (ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)

q
(3.44)
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where:

q = py pz

√

fd
2 py2 pz2 + py2 sz2 za22 + pz2 sy2 ya22 . . .

√

fd
2 py2 pz2 + py2 sz2 zb12 + pz2 sy2 yb12

√

fd
2 py2 pz2 + py2 sz2 zb22 + pz2 sy2 yb22 (3.45)

As long as fd,py and pz are non-zero positive values, as they must in a real camera system, q

has a non-zero positive value. Similarly the scale factor ∆t3 fd sy sz py3 pz
3 in the numerator

is also positive as long as ∆t, sy and sz are also positive and non-zero, which again, they

must be in a real camera system. As such M is singular when:

(ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1) = 0 (3.46)

Consider a line that passes through the two endpoints of the first streak with slope m1 and

z-intercept p1

z = m1y + p1 (3.47)

So that

za1 = m1ya1 + p1 (3.48)

zb1 = m1yb1 + p1 (3.49)

Now consider a line that passes through the two endpoints of the second streak with slope

m2 and z-intercept p2

z = m2y + p2 (3.50)

So that

za2 = m2ya1 + p2 (3.51)

zb2 = m2yb1 + p2 (3.52)

Substituting these relations into equation 3.46 and simplifying gives:

(ya2 − yb2) (p1 − p2 +m1 yb1 −m2 yb1) = 0 (3.53)



48

Note that this relation is true if ya2 = yb2, for cases of finite m1 and m2 (infinite cases will be

considered below, in which case, the second streak has zero length. It is also true if p1 = p2

and m1 = m2, the case where the streaks are collinear. In this case, no unique solution exists

for equation 6.2.2. More broadly, no unique solution exists if:

p1 − p2 +m1 yb1 −m2 yb1 = 0 (3.54)

Allow m1, yb1, p1 to be arbitrary finite values (for an arbitrary first streak). Then the deter-

minant is 0 if:

m1 yb1 + p1 = m2 yb1 + p2 (3.55)

zb1 = m2 yb1 + p2 (3.56)

That is, if point b on the first streak lies on the line passing through the second streak. This

set of cases obviously includes the collinear case. At this point, note that in the non-collinear

variants of this case, the streak endpoints can be swapped (a for b) and M becomes invertible

without any change to the actual streaks (because which end of a streak is the beginning

and which is the end is unknown). However, in the collinear case, this switch results in

point b from streak 1 still lying on the line of streak 2 and thus does not make M invertible.

Therefore only the collinear case is truly without a unique solution.

Now consider the case of infinite slope streaks, that is streaks that are vertical in the

image plane. If streak 1 is vertical

yb1 = ya1 (3.57)

and za1 and zb1 are arbitrary. Using this relation in equation 3.46 with the relations from

equations 3.51 and 3.52 the determinant of M is zero if

(ya2 − yb2) (p2 − zb1 +m2 ya1) = 0 (3.58)

Which again occurs if ya2 = yb2, which is the case where streak 2 has zero length when m2
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is finite.

0 = p2 − zb1 +m2 ya1 (3.59)

zb1 = m2 ya1 + p2 (3.60)

zb1 = m2 yb1 + p2 (3.61)

Note that this is the same condition as in the finite m1 case. So the above statement is

unchanged. Now consider a case where m2 is infinite and m1 is finite such that:

yb2 = ya2 (3.62)

Then the determinant of M , determined using this relation and the relations from equations

3.48 and 3.49 is 0 when:

(ya2 − yb1) (za2 − zb2) = 0 (3.63)

In this case again, if streak 2 has zero length (za2 = zb2) M is not invertible. If ya2 = yb1 the

determinant of M is again 0. In this case point b is again on the line that passes through

streak 2, the same condition found in the other cases. Again if the lines are not collinear,

the endpoints can be swapped and M becomes invertible.

The final case to consider is one where both streaks are vertical, m1 = m2 = ∞. Then:

yb1 = ya1 (3.64)

yb2 = ya2 (3.65)

In this case the determinant of M is zero when:

(ya1 − ya2) (za2 − zb2) = 0 (3.66)

As such the determinant of M is zero only when streak 2 has zero length or ya2 = ya1, which

is the same as the streaks being collinear since, with both being vertical, they are parallel

by definition.
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Thus for all streak direction cases the determinant of M is zero for arbitrary direction

and length streak 1, if streak 2 has zero length or streak 2 is collinear with streak 1. If the

endpoint of streak one falls on the line that passes through the endpoints of streak 2 then

the determinant of M is zero, but M can be made invertible by swapping the endpoints of

streak 1 if streak 2 is not collinear with streak 1. Since the selection of which endpoint is

a and which is b is arbitrary (streak direction is ambiguous), this can be done. Note that

in for streaks that are near collinear and result in poorly conditioned M , the resulting poor

solution is typically discarded by the RANSAC method used in the method implementation

described in section 3.6.0.2.

Thus a matrix M determined from two streaks cannot be made invertible if either

the two streaks are collinear or the second streak has zero length. Therefore, as long as

the streaks are not collinear and the second streak has non-zero length, M has full rank

and equation 6.2.2 has a unique solution. This allows solution of ~V using any pair of non-

collinear streaks with finite length (note that zero-length streaks cannot be detected by the

streak identification method described in section 3.5.3) scaled by the unknown range, ra1.

For clarity, the velocity expressed with this unknown unit will hereafter be referred to as

~Vs. The solved velocity from this equation has units of ra1/s. Since ra1 is unknown, the

velocity magnitude cannot be determined from this in known units, but the direction can

be. Resolving the flow speed uncertainty is handled in section 3.7.

With the non-invertible cases thus described, the next consideration is the physical

feasibility of solutions. Scaled ranges are given relative to the camera optical center. Note

that it is not possible for a particle to be detected if it has a negative range under this

definition. However, because the streak directions are ambiguous a valid physical solution

may give some negative scaled ranges. To see this recall equation 3.32:

~03×1 = d̂ara + ~V∆t− d̂brb (3.67)
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(a) Crossing Streaks.
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(b) Streaks where the line through one
intersects the other.

Figure 3.12: Examples of streak images with non-physical solutions.

Switch the signs on ra and rb

~03×1 = −d̂ara + ~V∆t+ d̂brb (3.68)

~03×1 = d̂brb + ~V∆t− d̂ara (3.69)

Note that this is equivalent to swapping points a and b. Because the streak directions are

ambiguous this swap can easily occur in the endpoint identification steps. Thus allowing

negative ranges is necessary to account for the streak direction ambiguity.

While negative ranges are thus potentially physically valid there is one important case

in which they are not. This is the case where the scaled ranges to the two streak endpoints

have opposite signs. In this case regardless of the role of streak direction ambiguity one of

the points would be associated with a particle position behind the optical center, but such a

position cannot be imaged. This leads to a class of cases where M is full rank and a solution

is possible but the solution is not physically possible. Generally this is associated with

streaks that cross or where the line passing through the endpoints of one streak intersects

another streak. Example cases are shown in figure 3.12

By solving the system in equation 6.2.2 symbolically in MATLAB, the scaled ranges
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are found as follows:

rb1 = −
hb1 (ya1 za2 − ya2 za1 − ya1 zb2 + yb2 za1 + ya2 zb2 − yb2 za2)

k (ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.70)

ra2 =
ha2 (ya1 zb1 − yb1 za1 − ya1 zb2 + yb2 za1 + yb1 zb2 − yb2 zb1)

k (ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.71)

rb2 = −
hb2 (ya1 za2 − ya2 za1 − ya1 zb1 + yb1 za1 + ya2 zb1 − yb1 za2)

k (ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.72)

hb1 =
√

fd
2 py2 pz2 + py2 sz2 zb12 + pz2 sy2 yb12 (3.73)

ha2 =
√

fd
2 py2 pz2 + py2 sz2 za22 + pz2 sy2 ya22 (3.74)

hb2 =
√

fd
2 py2 pz2 + py2 sz2 zb22 + pz2 sy2 yb22 (3.75)

k =

√

fd2 py2 pz2 + py2 sz2 za12 + pz2 sy2 ya12 (3.76)

The hi and k factors are positive for real values and ra1 = 1, which is positive, so a non-

physical case occurs if

0 ≥ −
(ya1 za2 − ya2 za1 − ya1 zb2 + yb2 za1 + ya2 zb2 − yb2 za2)

(ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.77)

(3.78)

or if

(ya1 zb1 − yb1 za1 − ya1 zb2 + yb2 za1 + yb1 zb2 − yb2 zb1)

(ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.79)

and

−
(ya1 za2 − ya2 za1 − ya1 zb1 + yb1 za1 + ya2 zb1 − yb1 za2)

(ya2 zb1 − yb1 za2 − ya2 zb2 + yb2 za2 + yb1 zb2 − yb2 zb1)
(3.80)

have opposite signs. In these cases a solution is possible but the solution represents a

physically impossible situation.
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3.6.0.2 Solution Implementation

The matrix M is extensible to any number of streaks. For n streaks, this extended

system is:







−d̂a1

~03(n−1)×1
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=
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. . .
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(3.81)

~be = Mexe (3.82)

Adding a new streak adds two unknown range terms and three new rows. Thus the size of

Me is 3n × 2n + 2.Note that in this system the addition of more data, in the form of more

streaks, also adds to the solution complexity by adding unknowns.

The number of rows of Me is 3n but the rank is necessarily ≤ 2n + 2, the number of

columns of Me. For n > 2, the number of rows is thus greater than the rank. As such, when

n > 2 the left null space is non-trivial. Therefore it is possible that, for some systems, no

solutions exist. However, as long as M has full column rank, the Gramian matrix, MT
e Me

has full rank and a linear least squares estimate is possible. Preliminary study indicates this

is the case as long as any two of the streaks used to build Me are not collinear and do not

have zero length.

To see this, note that when the two streaks making up M are collinear the rank of M ,
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determined using the MATLAB symbolic toolbox, is 5. When extending Me to three streaks

adding a streak collinear to a previous streak increases the rank of Me by 2 whereas adding

a streak that is not collinear to a previously used streak, increases the rank of Me by 3. This

was again the case when adding a fourth streak. Further study is needed to determine if this

is the case generally.

If this is the case in general then the following conclusion could be reached. Because

each streak added to Me adds two unknowns, if the initial streak pair is not collinear (so the

rank of Me with the initial pair is 6) then Me will never become rank deficient no matter

how many additional collinear streaks are added. If the initial streak pair is collinear (so

the rank of Me with the initial pair is 5) the rank of Me will be one less than the number

of columns of Me if only collinear streaks are added, as each streak adds two unknowns and

increases the rank by two. Thus if a single non-collinear streak is added to a rank deficient

Me it will become full column rank as the rank will increase by three making the rank equal

to the number of columns.

While a least squares solution is possible, to reduce the impact of any image artifacts

of linear background features a random sample consensus (RANSAC) approach is used [39].

In this approach, a random pair of streaks is created from the streak list and the scaled

velocity is solved by performing ~x = M−1~b. This result is then tested for validity with the

remaining streaks. This is done by testing to see if the line created in the image plane that

runs through one end of the streak and the point reached by d̂1 + ~Vsdt projected into the
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image plane is parallel to the streak itself. This allows the definition of a cost for each streak:

Ŝp =
Im
(

d̂a + ~Vs∆t
)

− Im
(

d̂a

)

‖Im
(

d̂a + ~Vs∆t
)

− Im
(

d̂a

)

‖
(3.83)

Ŝm =













yp1

zp1






−







yp2

zp2













1
√

(ypb − ypa)
2 + (xpb − xpa)

2
(3.84)

~c = Ŝp × Ŝm (3.85)

J = |~c(1)| (3.86)

where Im is the image projection function defined in equation 3.27. An illustration of this

cost function is shown in figure 3.13. The cost function tests how close to parallel the

direction vectors Ŝm and Sp are in the image plane.

Figure 3.13: Illustration of the RANSAC cost function. The cross product of Ŝm and Sp is
taken to determine how close to parallel the two are.

A tunable cost threshold is set and the number of streaks whose costs are below this

threshold is counted up. If the total number of such streaks exceeds a tunable threshold
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amount, a least-squares solution is run using all the streaks that fell below the cost threshold

(as noted, the matrix M can be arbitrarily extended to any number of streaks) and the

solution is stored as a candidate. This candidate’s cost is then assessed by applying equation

3.83 to every streak.

The cost and solution are stored and the above method rerun until a suitable number

(another tunable threshold) of solutions have been found. The one with the lowest cost is

retained as the solution.

One final issue must be confronted at this point. The issue with using a streak method

is that the sign of the flow direction is arbitrary. Two equally valid solutions are possible, one

positive and one negative. Because this method is aimed at fixed wing sUAS applications, a

basic assumption that the vehicle travels forward can be used to assume that the flow vector

points into the rear hemisphere of the sensor axis system. This is sufficient information

to give the appropriate sign to the solution scaled velocity vector. For applications where

flow direction could come from any angle, potential methods of resolving this ambiguity are

discussed in section 6.2

This solution direction vector must then be scaled to get the relative air velocity into

the selected units. That is, the air speed must be solved for.

3.6.1 Image Distortion Effects

The preceding derivation relied on a distortion-free pinhole camera model. In reality,

optical systems distort images. The general distortion model of Brown provides a model for

this distortion that is widely used [6]. The Brown model provides a functional relationship

between the position of a pixel in a distorted image and its position in an undistorted image

of the same scene. Under this model yd and zd, the distorted positions, have the following
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relationship to the undistorted image positions:

r =

√

(yu − yc)
2 + (zu − zc)

2 (3.87)

yd = yu
(

1 +K1r
2 +K2r

4 + . . .
)

+
(

P2

(

r2 + 2y2u
)

+ 2P1yuzu
) (

1 + P3r2 + P4r
4 + . . .

)

(3.88)

zd = zu
(

1 +K1r
2 +K2r

4 + . . .
)

+
(

P2

(

r2 + 2z2u
)

+ 2P1yuzu
) (

1 + P3r2 + P4r
4 + . . .

)

(3.89)

Here (yc, zc) is the distortion center, generally taken as the principal point of the image. The

K1, K2, . . . terms are the radial distortion terms while the P1, P2, . . . terms are the decentering

distortion terms.

The effects of distortion are to invalidate the relationships in equations 3.27 and 3.29.

This can create substantial error if the distortion is large. The effects of a simple first-order

radial distortion are shown in section 4.9.

Fortunately many commercial tools exist to both determine and correct camera distor-

tion [1]. As a result distortion is not a major obstacle to the proposed method, however, a

low-distortion optical system may not require correction and as such could provide a com-

putation time benefit.

3.7 Flow Speed Determination

With the flow direction determined, the final step is to determine the flow speed. This

is accomplished by requiring that streak start and end points fall within the imaged volume.

This is a single degree of freedom optimization problem.

In practice however, some particles will leave the imaged volume during the exposure.

Those that leave the lateral edges (y and z directions) of the volume are easily identified by

having end location located on or very near the image edges. Streaks with one endpoint at

the image edge can thus be eliminated from the optimization. However those that exit the

front or back of the volume are harder to identify. As such the associated streaks cannot be
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eliminated, thus ensuring that getting all endpoints to fall within the volume is not possible.

Let ~r be a vector of all the scaled range elements of ~x that correspond to streaks that

do not have endpoints on the image edges. All these ranges are scaled by the length of ra1.

The objective then is to pick a value of ra1 that places all elements of r1a~r within the depth

limits of the imaged volume.

Thus, if n is the total number of elements in ~r, a basic cost function can be defined as

follows

~Jri (ra1) =















1, if ra1~ri ≥ 0

0, otherwise

(3.90)

Jr (ra1) =
n
∑

i=1

~Jri (ra1) (3.91)

Then

argmax
r1a

~Jri (ra1) := {ra1 ∈ R≥0} (3.92)

yields the optimal range scale.

While 3.92 describes the optimization problem generally, implementing a practical

solution is somewhat more complex. Simply minimizing the relation created issues in practice

when the first streak end, ra1 happened to be on a streak that left either the front or back

of the volume, had its start and end points improperly identified, or was eliminated because

it crossed an image edge.

Instead an iterative minimization approach was used. First ~r was sorted from shortest

to longest element, yielding the column vector ~rs. Because streaks entering or leaving the

volume have their length shortened, their scaled distances are longer (due to the nature

of the motion, shorter streaks are solved as being farther away). Thus, if any streaks fall

completely within the volume, it is likely the streak with the closest apparent scaled range

does. Points are then processed by moving down ~rs from the shortest to longest element.
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For each element of ~rs to be processed, the next step is to create a range scale vector ~s.

This row vector contains a range of scale factors from smallest to largest, where the smallest

value multiplied by the current element of ~rs places the product position on the near side

(smallest x component) of the volume and the largest value. Increasing the resolution of this

vector (number of elements in ~s) increases the precision of the resulting air speed solution

at the expense of computation time.

To keep this relation easy to handle in practice, ~s is created by first creating a vector

of ranges between the minimum and maximum ranges in the volume with a resolution in

distance equivalent to the desired resolution in air speed (for 0.01m/s resolution in air speed

a 0.01m range resolution in this vector would be used). This vector is then divided by the

current element of ~rs to give the appropriate scaling vector with desired precision.

The product of the sorted range and the scaling vector is a matrix R where each column

is a list of ranges to the streak ends for each scaling.

Rij = ~rsi~sj (3.93)

With R determined, a binary matrix can be created that reflects if any point in R is inside

the volume. Allow rmax to be the far extent of the volume andrmin to be the near extent of

the volume.

Brij =































1, if Rij ≥ rmax

1, if Rij ≤ rmin

0, otherwise

(3.94)

Because the streaks with shorter scaled ranges are more likely not to be truncated, it

is more important that their end points lie inside the volume when selecting an appropriate

scaling. A simple weighting vector ~w is created that weights solutions that keep the nearer

(more likely not to be truncated) streaks in the volume:

~wi = r−1
i (3.95)
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This weight vector allows a weighted sum of the number of streak ends falling outside the

volume for each range scaling option in ~s to be determined:

~j = ~wBr (3.96)

The minimum value in ~j gives the cost for the current point being processed and the optimal

scale factor based on the processed point. If there are multiple minima in ~j, the scale factor

chosen is the one closest to the mean value of all the scale factors associated with minima

in ~j.

The chosen scale factor for the point being processed then has a new cost determined as

the total fraction of end points that fall within the volume using the scale factor determined

Js =
li
n
where li is the number of line end points in the volume using the determined scale

factor. Each processed point thus receives a cost and scale factor, points are marched through

from shortest to longest scaled range until a the line fraction cost is below a user-tunable

threshold. The first point have Js above this threshold has its associated scale factor sf

taken as the solution.

With the scale factor determined the final estimated velocity is:

~Ve = sf ~Vs (3.97)



Chapter 4

Simulation Results

To test the method with a variety of imaging conditions and parameter alterations,

a simulation environment was created in MATLAB. This environment creates simulated

images using the pinhole camera model described in chapter 3. These simulated images

allow for application of varying lens focal lengths, subject distances, f-numbers, sensor sizes

and exposure times, as well as adding distortion effects, random noise, background imagery

and particle velocity fluctuations (providing a crude model of turbulence).

4.1 Simulation Environment

The simulation model assumes an environment of particles that have a single pixel

diameter when imaged. Thus when in sharp focus, the particles produce an image on the

sensor whose size is determined by their Airy disk radius [3]:

rairy = 1.22λN (4.1)

for f-number N .

For the purposes of the simulation, the light intensity was assumed to peak at roughly

λ = 500nm. Particles not in sharp focus were simulated as providing a uniform light intensity

distributed across their blur disk. The radius of the blur disk from [28] is given as follows:

rblur =
fms

N

|r − s|

r
(4.2)

again for a subject focus distance s and blurred object at range r.
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To create images, a random cloud of particles, with a uniform spatial distribution and

user-tunable density, is created inside a rectangular prism. This prism’s dimensions are set

as the largest limits of the imaged volume (the depth limits described in chapter 3 along

with the largest y and z values covered by the pinhole model of the camera with the given

parameters). In the focus-limited case, the simulated depth limits were extended by a factor

of two in the simulation to allow particles to naturally come into and out of focus, while

in the illumination-limited case, particles were shown only when actually present inside the

imaged volume. These limits are then extended to cover the volume that will move through

the imaged volume during the exposure.

A bulk velocity is specified and individual particles have their velocities perturbed

with a simple Gaussian additive noise with a variance from section 2.2. While not a true

turbulence model, this does allow for a limited ability to explore the effects of velocity

fluctuations parameterized by the dissipation rate.

Particle motion is then simulated with a forward Euler integrator with fixed time step

(as the particles all move in straight lines in this model). The integrator is run for the

duration of the exposure time. The fixed time step allows for modeling the particle light

returns by simply adding the returns at each step, this accurately portrays how particles

with lower lateral motion on the sensor generate brighter streaks.

To model particle light return strength, the model assumes a fixed strength C at a 1m

distance from the lens. The light source is assumed to be at a distance from the particles

equal to the distance from the particles to the camera. The strengths of individual particles

then follow an inverse quartic profile (in agreement with the radar range equation [17])

scaled by this fixed strength. Because the real particulate environment is heterogeneous,

attempting to model particle light return strengths in greater detail would be complex, and

necessarily inaccurate, and so was not attempted.
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Particle light return strength Sp for a particle at range r is then:

Sp = Cr−4 (4.3)

The return strength for each particle is then spread evenly over the larger of the blur disk

radius rblur or airy disk radius rairy. While this is not an accurate depiction of the the airy

pattern, the airy disk sizes for the camera systems modeled are very small and in practice

the airy limit is only achieved for relatively small segments in only some streaks, thus it has

minimal effect on simulation accuracy.

An image matrix is created that sums all these strength returns from each time step

at each pixel, applies a simple saturation model, and then normalizes the result to create

a gray-scale image of particle streaks. Such an image for a focus-limited case is shown in

figure 4.1. This serves as a base to apply various error sources.

Figure 4.1: Particle streaks simulated accounting for light fall-off and depth of field.

First a background image is added. To provide this image, the simulation relies on
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photographs. The best practice is to take a photograph with settings as close as possible to

those being used in the simulation. This photo provides the background signal matrix B.

This is scaled by tb, a scale factor defined such that when tb = 1 the strongest return in the

background is equal to the maximum value in the streak image Is. The scaled B matrix is

then added to In to produce the simulated image with background Ib:

Ib = tbB + Is (4.4)

Figure 4.2 shows the simulated image from figure 4.3 with background imagery added.

Figure 4.2: Streak image from 4.3 with background added.

Next, a simple additive Gaussian noise is applied to simulate camera sensor noise. This

is parametrized with a variance scaled to the strongest streak return. Let Z be a matrix of

the same size as Ib with components distributed according to a zero-mean Gaussian. For a
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streak image with background Ib, the resulting noisy image In is then:

σ = tn max(Is) (4.5)

Z = N (0, σ2) (4.6)

In = Ib + Z (4.7)

where N (0, σ2) is the normal distribution with zero mean and standard deviation σ, and

tn is a scale factor for the noise, that is set as a simulation parameter. Figure 4.3 shows a

simulated image with camera noise added.

Figure 4.3: Streak image from 4.1 with noise added.

Finally In is distorted using only the first order radial term from the Brown model

described in section 3.6.1. This is a crude representation but allows some exploration of the

effects of image mapping errors in a quantifiable manner. The distorted image I is then

processed using the method described in chapter 3. A final image with severe distortion (for

illustration) is shown in figure 4.4 compared to the undistorted image from figure 4.3.



66

Figure 4.4: Streak image from 4.3 shown on the left with distortion added on the right.

4.2 Simulation Parameter Settings

Tables 4.1, 4.2, and 4.3 list the parameters used in the simulation by default, with

adjustments made as described in the following sections. Default imaging system parameters

were chosen to match the system available for wind tunnel testing (described in the next

chapter)

4.3 Error Quantification

Because the direction and airspeed are solved separately, errors are quantified sepa-

rately for direction and air speed. Direction errors are described in terms of simple vertical

and horizontal angles:

∆θvert = arctan

(

~Ve(3)

~Ve(1)

)

− arctan

(

~Vtrue(3)

~Vtrue(1)

)

(4.8)

∆θhorz = arctan

(

~Ve(2)

~Ve(1)

)

− arctan

(

~Vtrue(2)

~Vtrue(1)

)

(4.9)

Airspeed error is simply:

∆AS = |~Ve| − |~Vtrue| (4.10)

For the varying error parameters, a Monte Carlo approach was used to determine

relations between the mean and variance of each error quantity and the values of the error



67

Table 4.1: Simulation Environment Imaging Parameters

Parameter Value

focal length 50mm
f-number 8
aperture diameter 6.25mm
sensor size (mm) 25.3× 15.6mm
sensor size (px) 6000× 4000
exposure time 0.05s
illumination wavelength 500nm
particle density 100particles/m3

subject distance 1m

source parameters listed in 4.2. A span of 100 values of each parameter was tested with

100 simulated images for each value. Plots were then made comparing the error quantities

to the error source parameters. This allowed for determination of relationships between

error sources and method accuracy. For the default particle density used here, the number

of detected streaks was typically on the order of 10. The expected accuracy under ideal

conditions (no error sources) for this number of streaks can be seen in the following section.

Sections 4.6, 4.7, 4.8, and 4.9 show the impacts of velocity fluctuations, bakcground signal,

image noise and mapping errors (as described in chapter 3) on the error quantities.

4.4 Accuracy Convergence

To investigate the impact of the number of streaks in an image on solution accuracy, a

single image with a high streak density was created using the simulation environment. 242

streaks were identified in the image. Starting with a set size of two streaks and increasing

the set size to 242, 242 random sets were selected and the velocity solution performed on

each (Allowing unique sets in the 241 streak case). Note that in the 242 streak case this

amounts to using the same set every time but due to the random start set of the RANSAC

approach this still results in different solutions.

Figure 4.5 shows the impact on angle accuracy of increasing the streak size. Errors
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Table 4.2: Simulation Environment Error Source Parameters

Parameter Value

tb 0
tn 0
radial distortion 0

turbulence dissipation rate 10−2 m2

s3

were near zero mean so were parameterized only by RMSE. Note that sub degree accuracy

which is good relative to existing systems, is possible with small numbers (less than 10)

streaks, but larger sets (over 50) can deliver RMSE values below 0.1◦.

Figure 4.6 shows the impact on air speed accuracy of increasing the streak set size.

Note that while increasing the set size results in a decreasing random air speed error it

does not have nearly any significant impact on the air speed bias. As a result, RMSE does

not drop significantly with larger sample sizes beyond numbers in the low tens of streaks

used for the solution. This indicates that further improvements are needed in the air speed

estimation approach to reduce this bias.

4.5 Depth-Limiting Approaches

Using the simulation method described in section 4.1, the different depth-limiting ap-

proaches derived in chapter 3 can be compared. For each possible approach 1000 simulated

images were tested. In the illumination limited case an f-number of 25 was used.

Figure 4.7 shows the distribution of air speed errors using a focus-limited approach with

the limits calculated using equation 3.2. Note that the errors are large and significantly biased

to overestimates with significant outliers beyond 15m/s (the spike in the largest bin represents

the total of values falling beyond the plotted range). This relatively poor performance results

from a combination of factors in the focus-limited case. Firstly, extremely blurred streaks

appear longer than they actually are (because focus blur extends each end), this leads to

solutions for the air speed that are too high (longer streaks are associated with higher air
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Figure 4.5: RMSE of flow angle errors against the number of detected streaks available for
the solution.

Figure 4.6: RMSE, standard deviation, and mean bias error of air speed errors against the
number of detected streaks available for the solution.
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Table 4.3: Simulation Environment Solver Parameters

Parameter Value

edge detection Gaussian kernal size 2 pixels
edge detection Gaussian filter σ 1.4

edge detection weak gradient threshold max(G)
30

edge detection strong gradient threshold max(G)
15

RANSAC direction solver minimum sets to test 100
RANSAC direction solver minimum solution sets to reach 20
RANSAC direction solver minimum number of streaks for solution set 5
RANSAC direction solver maximum cost for set inclusion 0.25
air speed solver minimum distance from streak end to image edge 50 pixels
air speed solver minimum fraction of line ends in image depth 0.7

speeds). The second issue is that due to light falloff, heavily blurred streaks near the camera

(those near Dn) still have strong enough gradients to appear in the edge detection, but

equivalently blurred streaks far from the camera (those near Df ) do not. This effectively

shifts the true imaged volume closer to the camera, making the calculated limits inaccurate.

This shift will generally bias the results to be too high.

Figure 4.8 shows the distribution of vertical angle errors using the same calculated

depths. The method delivers accuracy well under 1◦ in this case. A handful of outlying

cases are noted which result from cases where all the streaks present in the image are closely

aligned. This makes solutions very difficult as multiple aligned streaks do not provide more

information than a single streak. The frequency of such cases is inherently dependent on the

particle density as larger numbers of identified streaks are less likely to align.

Figure 4.9 shows the distribution of vertical flow angle errors. The distribution is

very similar to the horizontal angles. Again there are some outliers resulting from streak

alignment but these are minimal and the standard deviation remains below 0.2◦.

Figure 4.10 shows the distribution of air speed errors with measured image depth. Re-

sults are similar to the calculated-limits case, and in fact slightly poorer. Because the depth

limits were measured in simulation as the ranges where streaks blurred beyond detectable
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Distribution of Air Speed Errors  = 2.2 m/s
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Figure 4.7: Normalized histogram of air speed errors using focus-limited depth with cal-
culated limits. Note that outliers in the edge bins have been excluded from the standard
deviation.
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Distribution of Horizontal Angle Errors  = 0.14o
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Figure 4.8: Normalized histogram of vertical angle errors using focus-limited depth with
calculated limits.
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Figure 4.9: Normalized histogram of vertical angle errors using focus-limited depth with
calculated limits.
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thresholds, it is likely the same issues of light fall-off are in play here. Additionally the

measurements relied on a test image and it is possible that results from this image cannot

be translated broadly. Overall these results suggest little if any benefit to attempting direct

measurement of image depth limits.

Angular error distributions shown in figures 4.11 and 4.12 again yield excellent ac-

curacy. The small differences are likely driven by differing numbers of samples with larger

errors (due to the narrow distribution, limited numbers of these cases have measurable effects

on the standard deviation).

The air speed error distribution for the illumination-limited case is shown in figure 4.13.

Performance is markedly improved over the focus-limited cases, with fewer outliers and a

narrower distribution. A bias to positive values is again noted. This is likely a consequence

of prioritizing the smaller scaled ranges in the solution resulting in a tendency to ensure their

points are always solved with enough range to fall inside the illumination range. However, for

streaks that have short scaled ranges and short lengths; those that point almost directly at

the camera at close range; the streak lengths may be slightly extended by the edge detection,

resulting in an overestimate of air speed.

Again, direction accuracy is very good, though slightly poorer than the focus limited

cases. This is likely from a combination of two factors. Firstly, longer streaks give better

direction accuracy as the PCA can more accurately align to the true streak direction. In

focus limited cases some streaks are bright enough to be detected beyond the anticipated

volume (noted earlier as a source of air speed error). This allows for somewhat longer streak

lengths that may contribute a slight improvement in accuracy.

A second potential cause is that some defocused streaks are detected by the edge

detection algorithm as two streaks which point towards an intersection where the streak

would be focused in the image. This can limit the angle errors when all streaks in the image

are aligned, reducing the amount of error in such images. So even though such images would

not provide accurate direction in either case, in the focus-limited case, this false intersection
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Distribution of Air Speed Errors  = 2.5 m/s
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Figure 4.10: Normalized histogram of air speed errors using focus-limited depth with mea-
sured limits.

Distribution of Horizontal Angle Errors  = 0.17o
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Figure 4.11: Normalized histogram of vertical angle errors using focus-limited depth with
measured limits.
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Distribution of Vertical Angle Errors  = 0.11o
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Figure 4.12: Normalized histogram of vertical angle errors using focus-limited depth with
measured limits.

Distribution of Air Speed Errors  = 1.6 m/s
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Figure 4.13: Normalized histogram of air speed errors using illumination-limited depth limits.
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Distribution of Horizontal Angle Errors  = 0.20o
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Figure 4.14: Normalized histogram of vertical angle errors using illumination-limited depth
limits.
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Figure 4.15: Normalized histogram of vertical angle errors using illumination-limited depth
limits.
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may lead to the estimation of smaller (but still incorrect) direction angles in some of these

images, and thus smaller overall variance.

Overall, the direction accuracy predicted here is similar for all cases and compares very

favorably to existing flow sensing systems commonly used on sUAS systems. However, air

speed errors remain a major issue in all cases. While the primary aim of this work was to

improve flow direction sensing, improved air speed sensing should be a focus of future work.

Some potential approaches to improve the method performance in this regard are described

in chapter 6.

For the remainder of the simulations presented, an illumination-limited approach is

used so that the impacts of the error sources on air speed are not dominated by errors

resulting from the depth-limiting approach.

4.6 Turbulence

The impacts of increasing the simulated dissipation rate are shown in figures 4.16, and

4.17. Directional errors remain generally on the order of 0.1◦ up to ǫ ≈ 3 × 10−2m2/s3.

This is near the top of measured values of the dissipation rate in the lower troposphere

[10] Beyond this point variance increases though mean error remains in the sub 0.1◦ range

up to ǫ ≈ 1m2/s3 which is roughly two-orders of magnitude above the typical top of the

physical range for turbulence in the lower troposphere. For these simulations, 1000 images

were utilized rather than 100 to clarify the trends.

Results show that in lower turbulence environments the angular accuracy delivered by

the method can be exceptional, slightly above 0.1◦. In higher turbulence environments, there

is minimal biasing allowing the potential to average multiple measurements to keep errors

low.

Air speed errors are larger but show a similar trend in error behavior with increasing

ǫ. Air speed accuracy may be acceptable for some applications at low levels of turbulence

but at higher levels the errors climb into the same range as the measurement itself.
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Figure 4.16: Plots of standard deviation and mean errors in flow angles against the turbulent
dissipation rate determined from simulation.
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Figure 4.17: Plots of standard deviation and mean errors in air speed against the turbulent
dissipation rate determined from simulation.
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4.7 Background Effects

The background image used for this test is shown in figure 4.18. The image is focused

at a short range as would be done for a measurement system, hence it is blurred. The

impacts of increasing the simulated background strength ratio, tb, are shown in figures 4.19,

and 4.20.

Figure 4.18: Photograph used for background image in simulation

The angle errors resulting from increasing tb are generally small. They remain in the

low sub-degree range through tb = 1 and then begin to increase as tb climbs above the streak

returns strength. Results show that the method is relatively robust against tb, a necessary

quality for a potentially field-capable system.

Air speed errors are also shown to be relatively insensitive to background signal strength

with the image used here. Accuracy across the range remained on the order of 1m
s
. This

performance is similar to what was predicted in the base case in section 4.5. Curiously,

at higher values of tb, bias decreases somewhat. This may be a result of streaks getting

effectively shortened as brighter background imagery reduces streak contrast and thus makes
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Figure 4.19: Plots of standard deviation and mean errors in flow angles against tb determined
from simulation.
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Figure 4.20: Plots of standard deviation and mean errors in air speed against tb determined
from simulation.
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the generally more blurred streak ends weaker and results in edge detection not picking up

the entire streak. This may effectively shorten many detected streaks introducing a negative

bias that counters the typical positive bias.

Because background signals may vary widely based on environment and camera settings

a definitive statement about the method’s sensitivity to all background signals cannot be

made, but these simulations do indicate that the method at least may be relatively robust

to this error source. A future testing campaign to provide more definitive results could make

use of a variety of background images captured from sUAS in flight.

4.8 Image Noise

The impacts of increasing the simulated image noise are shown in figures 4.21, and 4.22.

The data show that the method is relatively robust to noise over the ranges tested. However,

the values of tn used in these simulations was limited by an abrupt breakdown in the method

slightly above the upper end of the range shown in figures 4.21, and 4.22. This breakdown

results from the point where the noise is so strong that even after the Gaussian blurring in the

edge detection, the noise is still detected as possible streak returns. This results in an abrupt

jump in the number of streaks from a few seen real streaks to many thousands of spurious

returns. This results in the solution method requiring a massive amount of processing time,

making Monte Carlo runs prohibitively expensive.

Air speed errors were similar to those seen in the base case with no discernible trends

against tn observed over the range tested. Again the method breaks down slightly above the

range shown. A possible future improvement would be to quantify the noise in the image

prior to processing and either skip extremely noisy images or increase the strength of the

Gaussian blur step in the edge detection.
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Figure 4.21: Plots of standard deviation and mean errors in flow angles against Gaussian
noise parameterized by tn determined from simulation.
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Figure 4.22: Plots of standard deviation and mean errors in air speed against Gaussian noise
parameterized by tn determined from simulation.
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4.9 Lens Distortion

The impacts of a basic 1st order lens distortion are shown in figures 4.23, and 4.24.

Negative 1st order values lead to barrel distortion, as illustrated in figure 4.25 showing the

most extreme negative case simulated at K1 = −1.5 × 10−8. Positive 1st order values lead

to pincushion distortion as illustrated in figure 4.26 showing the most extreme positive case

simulated at K1 = 1.5× 10−8. Because the distortion is purely radial in this model a small

angle of attack was given to simulate a realistic flight condition so that the streaks would

not be oriented along the direction of distortion.

The horizontal and vertical angle accuracy show a similar trend, increasing away from

the zero distortion case. The errors in the vertical angle have greater magnitude, since the

flow is off the center axis in the vertical but not the horizontal direction. Both also show

larger errors for the negative values (barrel distortion) than the positive values (pincushion

distortion). This may be because extreme levels of barrel distortion pull streaks out of the

imaged area, while extreme pincushion distortion pushes streaks into the imaged area. The

loss of streaks in strong barrel distortion could account for the larger errors.

Air speed error trends are less clear. Some extremely large errors occur in the barrel

distortion case (likely a consequence of losing streaks off the image edges) but there is not

a clear trend overall. This unaccounted for distortion is a form of mapping error. It can be

corrected for by replacing the pinhole model with a model correctly matching the distorted

lens.
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Figure 4.23: Plots of standard deviation and mean errors in flow angles against the first
order distortion parameter determined from simulation.
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Figure 4.24: Plots of standard deviation and mean errors in air speed against the first order
distortion parameter determined from simulation.
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Figure 4.25: Barrel distortion under first order model used in the simulation at the extreme
negative case: K1 = −1.5× 10−8.

Figure 4.26: Pincushion distortion under first order model used in the simulation at the
extreme positive case K1 = 1.5× 10−8.



Chapter 5

Simulation Verification

In order to verify the simulation results a limited wind tunnel testing campaign was

conducted. Due to limited resources a full system characterization was not possible. Instead

the tests aimed to determine if samples taken in the wind tunnel delivered performance

similar to what was expected based on the simulation results shown in chapter 4.

Tests were conducted in the National Center for Atmospheric Research low speed wind

tunnel. This tunnel uses a suck-through design for low-turbulence. The tunnel measurement

equipment is capable of measuring air speed with a resolution of 0.01m/s and an accuracy

of 0.1m/s [37]. The tunnel has a mount allowing single-degree sideslip angle accuracy.

A photograph of the test set up is shown in figure 5.1 and diagram is shown in figure

5.2. A Nikon D7200 camera was used with a 50mm Nikkor AF lens to capture images. The

camera was mounted to a hinged piece of 80-20 aluminum attached to a long vertical piece

of 80-20 that fit directly into the adjustable mount for the tunnel. The angle of attack was

measured with a digital inclinometer allowing 0.1◦ accuracy. Though control of the angle

was strictly by hand adjusting the hinge, limiting control to roughly ±1◦. Camera control

was performed via computer commanding a sequence of images (generally 30 or 60 images

in a sequence). A pair of 60W LED lights were used to provide illumination in the volume

ahead of the camera. Due to the diffuse nature of the light source, a focus limited approach

was used with f-number 8 and subject distance 0.49m. This resulted in predicted image

depth limits Dn = 0.42m and Df = 0.59m.



91

Figure 5.1: The image capture portion of the test setup. The flocking paper was used to
reduce bright reflections off the tunnel walls.

Figure 5.2: Diagram of the wind tunnel test setup.
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Early studies found an insufficient number of large particles present in the wind tunnel

room to use only ambient particles with the imaging and illumination equipment available, so

additional particles were added through seeding. Seeding was provided by a crude fluidized

bed particle seeder [55]. A photograph of the seeder is shown in figure 5.3 and a conceptual

overview of the device is shown in figure. 5.4. This device used a battery powered pump to

push air into a cavity below the seeding particles which were suspended on a layer of screen

material. Particles were thus forced upward through a second screen to prevent large clumps

from being thrown out of the device.

In practice it was difficult to reliably send the resulting particle stream through the

image zone. The seeder was moved around throughout the sampling period to ensure at

least some images were captured with particle returns.

For seeding particles, chalk was used. Due to its tendency to clump, it forms heteroge-

neous sized particle clouds providing an approximation to ambient atmospheric particulate.

Additionally chalk was affordable within the limited test resources available. One issue with

the seeding system used, was that it generally over-seeded the flow (providing an excessive

particle density). The large number of particles accreted on the lens eventually blocking out

particle returns. As a result, image sequence length had to be limited to allow regular lens

cleaning.

Three different angles of attack −5.9◦,−0.8◦, and 9.8◦ were tested at two different

sideslip angles 0◦ and 10◦ (8◦ at 9.8◦ angle of attack, to avoid catching too much of the

tunnel wall). These angles were limited due to the geometry of the tunnel and illumination

setup. Angles had to be chosen that did not include significant amounts of either the brightly

illuminated tunnel walls or the lights. These elements are so bright that they overpower the

streak returns. The lights cause excessive lens flare if the camera is pointed close to their

direction.

Three air speeds were tested at each orientation 5m/s, 10m/s, and 15m/s. The upper

air speeds were limited to avoid damage to flocking paper used to reduce reflections from
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Figure 5.3: The particle seeder used for testing with chalk dust.
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Figure 5.4: Diagram of the particle seeder used for testing.



95

the tunnel wall.

5.1 Testing Issues

The testing campaign was limited in scope and the techniques used limited the total

number of samples captured. The biggest single limitation was getting the stream of seeding

particulate to pass through the imaged volume consistently. This led to a number of images

that lacked any particle returns. An improved seeding approach with a lower seeding fre-

quency covering a wider cross-section of the tunnel would be necessary to provide a higher

rate of successful sampling (images with particle streak returns).

A secondary issue was catching reflections from the tunnel wall. The white tunnel walls

led to very strong returns in images taken at the positive angle of attack and positive side

slip condition. Using a camera with automatic exposure control on the sensor this effectively

reduced the brightness of streaks making them more difficult to detect and was analogous

to the high background signal condition explored in the simulations in chapter 4.

A third issue was generally weak particle returns in all positive side slip angle condi-

tions. This is potentially a result of the particle scattering phase functions being generally

low between the narrow cone of backscattering around 180◦ and 90◦. However since the scat-

tering phase functions for coarse mode chalk particles shown in this work were simulated on

spheres the accuracy of these simulations is necessarily questionable for real particles that

do not necessarily have spherical shape. These weak returns led to many images lacking

streaks that could be detected with te settings used. While adjusting the streak detection

parameters may have allowed for detection of these streaks, the goal of the tests was to match

simulation conditions, and manual tuning of streak detection is not realistic for a system to

be used in the field.

Due to the limited number of samples, testing results are not adequate to make defini-

tive conclusions on method performance;, however, the preliminary data collected did show

promising performance. These results are shown in the following sections.
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5.2 Centered Flow Results

Figure 5.5 shows an example image of particle streaks taken with the camera pointed

at a −0.8◦ angle of attack and 0◦ side slip angle. Figure 5.6 shows the distribution of angle

estimates with the camera aligned at this orientation at the three air speeds tested. Figure

5.7 shows a detailed view of the points near the true angles. Points in gray are those measured

at other positions. Figure 5.8, shows the distribution of air speed errors from the estimates

made in this position.

Figure 5.5: Example image of particle streaks in the centered flow case.

The results show a relatively tight clustering in angle errors. The spread of errors

is a bit wider than predicted in simulation Most errors are in the sub-degree range. The

horizontal angle measurements show a slight bias (around −1◦); however, this angle could

only be measured to an accuracy on the order of 1◦ so this may simply be an error in the

measurement of the camera position.
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Figure 5.6: Flow angle estimates in centered position wind tunnel tests.
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Figure 5.8: Distribution of air speed errors in centered position wind tunnel tests.
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There is a slight bias to negative readings in the vertical angle, roughly. This could be

the result of a small measurement error in the vertical angle (the measurement was made at

the front glass of the camera which may not be perfectly aligned with the sensor). Another

possibility is that the larger particles have a slight downward trajectory due to gravity. This

would also explain why the errors shift more positive at higher flow speeds. Angle errors

are somewhat larger than the simulation results predict, but some amount of additional

turbulence is injected into the flow by the seeding device and the seeding operator creates a

minor blockage at the tunnel entrance which contributes additional turbulence. This added

turbulence likely results in a slightly larger standard deviation of angle errors as predicted

in section 4.6.

Air speed errors are generally large, however at low flow speeds the errors are smaller,

generally within 1 − 2m/s. This compares favorably to simulation results which predicted

a bias of roughly 1m/s and standard deviation of around 2m/s for a focus-limited case.

Interestingly, the bias seen in the simulation is not apparent in the 5m/s air speed results,

however far more data is needed to make a determination about whether the real results are

or are not biased. The lower speed results are likely superior for two main reasons. Firstly,

the slower flow speeds lead to brighter streaks and thus more accurate detection of streak

end points. Secondly, particle displacements are shorter and thus the probability of a streak

being shortened by the particle entering or leaving the volume during the exposure are lower.

5.3 10◦ Side Slip and −0.8◦ Angle of Attack Flow Results

Figure 5.9 shows an example image of particle streaks taken with the camera pointed

at a −0.8◦ angle of attack and 10◦ side slip angle. Figure 5.10 shows the distribution of

angle estimates with the camera aligned at this orientation at the three air speeds tested.

Figure 5.11 shows a detailed view of the points near the true angles. Points in gray are those

measured at other positions. Figure 5.12, shows the distribution of air speed errors from the

estimates made in this position.
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Figure 5.9: Example image of particle streaks in the 10◦ side slip and −0.8◦ angle of attack
flow case.
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Figure 5.10: Flow angle estimates in 10◦ side slip and −0.8◦ angle of attack wind tunnel
tests.
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tests, detailed view.
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Figure 5.12: Distribution of air speed errors in 10◦ side slip and −0.8◦ angle of attack wind
tunnel tests.
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Horizontal and vertical angle errors are somewhat larger in this case, generally falling

outside the 1◦ envelope and showing some potential bias. The horizontal angle errors are

mostly around 2◦ off which is substantially greater than the predicted errors from simulation.

this error also appears to be more of a bias than merely a wider random distribution (though

the limited number of samples precludes a definitive answer on this). The probable reason

for this is that the pinhole model used for mapping image positions to three-dimensional

directions is not perfect for this real camera system. The pinhole model was used for a

simple implementation in this method but can easily be replaced with a different mapping.

As was shown in chapter 4, mapping errors can lead to both increased bias and a wider

distribution of estimates. A possible further source of error in this orientation is reduced

intensity of light scattering. The scattering angle at this orientation to the camera is roughly

100◦, which lies in a region of reduced scattering for chalk particles in the tens of micron

range under the assumption of spherical particles as described in section 2.4. As a result,

light returns from particles in this test configuration may be dimmer leading to reduced

streak detection accuracy.

Air speed errors are also much larger than the 5m/s case in the centered flow alignment,

with many being 5m/s or more too low. While the predicted performance from the simulation

for the focus-limited approach was positive-biased air speeds, the airspeeds in this case are

mostly estimated too low. Likely reasons for this are the the same mapping errors affecting

the angle estimates combined with a generally lower quality of images captured at this angle

resulting in streak lengths being inaccurately detected.

5.4 8◦ Side Slip and 9.8◦ Angle of Attack Flow Results

Figure 5.13 shows an example image of particle streaks taken with the camera pointed

at a 9.8◦ angle of attack and 8◦ side slip angle. Figure 5.14 shows the distribution of angle

estimates with the camera aligned at this orientation at the three air speeds tested. Figure

5.15 shows a detailed view of the points near the true angles. Points in gray are those
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measured at other positions. Figure 5.16, shows the distribution of air speed errors from the

estimates made in this position.

Again, angle errors are larger than in the centered case which likely results from map-

ping errors. Angle errors are generally near or above 1◦ which is poorer than the simulation

prediction. Few samples were collected at this orientation and to what degree measurements

are biased as opposed to simply random cannot be stated. Air speed errors remain significant

and again, tend to be too low, mostly from 1−4m/s. Again this disagrees with the predicted

performance of positive bias from simulation. Streak detection was complicated in this case

by the bright tunnel wall, as can be seen in figure 5.13 but still allowed for direction sensing

in most cases. The main issue this caused was that the camera’s automatic exposure ad-

justment, with the bright tunnel wall in the field of view, dimmed streaks, making for more

difficult detection and thus likely contributed to increased error. The potentially reduced

scatter returns at this side slip angle also may have contributed.

5.5 0◦ Side Slip and 9.8◦ Angle of Attack Flow Results

Figure 5.17 shows an example image of particle streaks taken with the camera pointed

at a 9.8◦ angle of attack and 0◦ side slip angle. Figure 5.18 shows the distribution of angle

estimates with the camera aligned at this orientation at the three air speeds tested. Figure

5.19 shows a detailed view of the points near the true angles. Points in gray are those

measured at other positions. Figure 5.20, shows the distribution of air speed errors from the

estimates made in this position.

Angle and air speed accuracies were poor in this case. A wide distribution of angle

estimates is seen in the data, with multiple estimates off by 5◦ or more, far worse than

predicted under the simulation. The 15m/s data seems to be the poorest, likely because

the fainter streaks in this case lead to inaccurate detection. The apparent bias in horizontal

angle of around 1◦ may again result from simple incorrect measurement of the horizontal

angle. While mapping error likely played a part, overall low quality of captured imagery
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Figure 5.13: Example image of particle streaks in the 8◦ side slip and 9.8◦ angle of attack
flow case.
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Figure 5.14: Flow angle estimates in 8◦ side slip and 9.8◦ angle of attack wind tunnel tests.
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Figure 5.15: Flow angle estimates in 8◦ side slip and 9.8◦ angle of attack wind tunnel tests,
detailed view.
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Figure 5.17: Example image of particle streaks in the 0◦ side slip and 9.8◦ angle of attack
flow case.
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Figure 5.18: Flow angle estimates in 0◦ side slip and 9.8◦ angle of attack wind tunnel tests.
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Figure 5.19: Flow angle estimates in 0◦ side slip and 9.8◦ angle of attack wind tunnel tests,
detailed view.
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tunnel tests.
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likely contributed. The image shown in figure 5.17 was one of the higher quality images

captured in this orientation and shows poorly defined streak returns.

5.6 0◦ Side Slip and −5.9◦ Angle of Attack Flow Results

Figure 5.21 shows an example image of particle streaks taken with the camera pointed

at a −5.9◦ angle of attack and 0◦ side slip angle. Figure 5.22 shows the distribution of

angle estimates with the camera aligned at this orientation at the three air speeds tested.

Figure 5.23 shows a detailed view of the points near the true angles. Points in gray are those

measured at other positions. Figure 5.24, shows the distribution of air speed errors from the

estimates made in this position.

Generally better streak image quality at this position led to improved angle error,

especially seen at the 5m/s speed. While there is an apparent bias of close to 1◦ the horizontal

component is consistent with biases seen in other positions and may result from the inherent

inaccuracy of the horizontal angle measurement. The vertical component may be driven by

mapping error. Most estimates are clustered within 1◦ which is close to the prediction from

simulation. A larger distribution of estimates is seen in the vertical angle which would be

expected fora radial distortion as shown in chapter 4. With smaller angular separation of

the flow from the image center, mapping errors would be expected to have a smaller impact.

Some bias is seen in the vertical angle which could again result from mapping errors and/or

small additional downward velocity due to gravity overcoming fluid-dynamic forces on larger

particles.

Air speed performance remains relatively poor as in most of the other cases tested.

Once again the large number of overly low estimates is a contrast with the simulation pre-

diction, with estimates often too low by 5m/s or more. Again a mix of method errors,

incorrectly identified streak ends and distortion effects likely contributed.
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Figure 5.21: Example image of particle streaks in the 0◦ side slip and −5.9◦ angle of attack
flow case.
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Figure 5.22: Flow angle estimates in 0◦ side slip and −5.9◦ angle of attack wind tunnel tests.
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Figure 5.23: Flow angle estimates in 0◦ side slip and −5.9◦ angle of attack wind tunnel tests,
detailed view.
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wind tunnel tests.
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5.7 10◦ Side Slip and −5.9◦ Angle of Attack Flow Results

Figure 5.25 shows an example image of particle streaks taken with the camera pointed

at a −5.9◦ angle of attack and 10◦ side slip angle. Figure 5.26 shows the distribution of

angle estimates with the camera aligned at this orientation at the three air speeds tested.

Figure 5.27 shows a detailed view of the points near the true angles. Points in gray are those

measured at other positions. Figure 5.28, shows the distribution of air speed errors from the

estimates made in this position.

Angle accuracy is poorer in this case than the −5.9◦ angle of attack and 0◦ side slip

angle case. This is again indicative of the mapping not matching the pinhole model. In-

terestingly a bias of around 2◦ is seen in the horizontal angle but most of the data cluster

within±1◦, while in the vertical angle there is smaller apparent bias, perhaps 1◦, but a wider

random distribution. The distribution in vertical angles is larger than predicted from simu-

lation which could be some result of the details of the mapping error, or could result from

gravitational effects adding vertical velocity components to some particles, and depending

on the particle set captured, this could have a smaller or larger effect.

Air speed errors remain very large, an issue seen in most of the cases measured in these

tests. Again the errors are largely negative bias which is contradicts the simulation results

that indicated positive bias. Again very large errors of several m/s are seen. The 10m/s case

is especially poor, with most of the results too low by more than 5m/s. A possible reason for

the generally low air speeds seen throughout testing is that the streaks are being detected as

too short because the way the ends of the streaks appear are different than the way they are

seen in simulation and the method used does not capture the full streak length as a result.

5.8 Validation Testing Result Summary

The number of samples gathered in this test effort was relatively low due to issues with

the test setup used. The limited samples taken showed relatively good angular estimation
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Figure 5.25: Example image of particle streaks in the 10◦ side slip and −5.9◦ angle of attack
flow case.
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Figure 5.26: Flow angle errors in 10◦ side slip and −5.9◦ angle of attack wind tunnel tests.
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Figure 5.27: Flow angle errors in 10◦ side slip and −5.9◦ angle of attack wind tunnel tests,
detailed view.
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wind tunnel tests.
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performance in the centered flow case, where radial distortion mapping errors have a minimal

impact (since the errors are symmetric about the image center). Performance was similar to

predictions from simulation with small numbers of streaks detected. Sub-degree flow angle

accuracy seen in the limited samples collected is competitive with, or superior to, existing

systems. Off-center cases showed wider errors, these were generally similar or poorer than

existing systems. These were unsurprising given that the true lens mapping was not known

and the method relies on a pinhole model. Extending the method to improve performance

in these cases is discussed in chapter 6. Test conditions with bright features or weak particle

returns (possibly due to scattering conditions), generally led to poorer performance. Conclu-

sive test results would require an improved test approach with better seeding equipment to

allow for larger numbers of samples to be captured. Mapping errors must also be addressed

by using a more accurate camera mapping model in future tests.

Air speed errors were large but in cases with good streak returns (a limited subset of

tested cases due to the relatively crude test arrangement), air speed errors were no worse, and

in some cases better, than the predicted performance in air speed. In many cases however,

where streak returns were weaker, air speed estimation was extremely poor even when angle

error performance was relatively good. While air speed performance was not the primary

focus of this work, improvements to the approach need to be a focus for future work. Some

potential changes are discussed in chapter 6.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The PSA method has been shown capable of estimating three-dimensional local flow

velocity from particle streak images with limited information in imaged volumes of arbi-

trary depth in difficult imaging conditions. The method provides relatively high directional

accuracy compared to existing systems, in some cases exceeding their abilities. This is crit-

ical for determining vertical and lateral flow components from fixed-wing-sUAS. Sub-degree

accuracy capability has been shown in simulation and preliminary test results indicate the

potential for similar performance in practice. Simulation data indicates that for large num-

bers of detected streaks, accuracy below 0.1◦ in flow angles may be possible. In practice

though, detecting such large numbers of streaks may be very difficult. The method could

be used to develop a sensor for determining relative flow velocity for fixed-wing aircraft op-

erating in suitable particle environments, such as those potentially encountered by sUAS

operating in the lower troposphere.

This work showed the potential for air speed measurements for illumination-limited

imaging geometries that could achieve competitive flow accuracy to existing systems, with

errors in the 1−2m/s range; however, in focus-limited cases, airspeed accuracy was relatively

poor in simulation, with errors of 3m/s or more, due to the uncertain limits of the image

volume. This compares poorly to existing systems. In physical testing air speed errors were

also generally large, with only the centered 5m/s case providing estimates that could roughly
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match existing systems. Further work is needed to improve air speed sensing accuracy.

Simulated results were backed by preliminary wind tunnel results further indicating

the potential for high angular accuracy, though due to focus limiting of imaging, air speed

accuracy was again poor. The method shows potential for use in simple flow sensing appli-

cations but several extensions and improvements are possible. These are discussed in the

next section.

6.2 Future Work

The work presented here demonstrated the potential capabilities and limitations of the

proposed method. However a large number of extensions are possible. Significant further

work is also needed to create feasible systems for use as aircraft air data systems on sUAS

(a driving motivation of this work). In this chapter a number of areas for potential future

developments are identified.

6.2.1 Computational Performance

A full assessment of computational performance of the method is needed. Some pre-

liminary work was done to keep computational loads reasonable. For example edge detection

was done using integer operations, and the separate flow direction and air speed determi-

nation stages allowed the direction to be determined with an unconstrained linear approach

and the airspeed estimation to be maintained as a single degree of freedom problem. How-

ever, more work is needed to assess the areas of greatest load and estimate the total loads

for typical estimates. Such information could then be used to help optimize computation to

allow for higher performance.

A true assessment of computational complexity is complicated by the use of RANSAC,

which results in a variable number of solutions being calculated, and because the method

was implemented in MATLAB with many built-in functions which vary the methods they

use on the fly, resulting in differing loads depending on the circumstance. In testing though,
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edge detection was generally the most expensive step and is fortunately an area where vast

improvement is possible as built in Canny edge detection in MATLAB is faster than the

modified method used here and the modified method is simpler in principle, meaning the

modified method should be as fast or faster if efficiently implemented.

6.2.2 Performance Improvements

Performance limitations were observed in validation testing and simulation results.

Angular accuracy was good in centered cases but degraded at larger angles in wind tunnel

testing. This is thought to be largely a result of the true lens mapping not matching the

pinhole model used in the method as described in chapter 3. The direction vectors in equation

are derived from this pinhole model, but determining them with a more accurate mapping

calibrated to the camera system in use does not change the ability to solve the direction

problem.

6.2.2.1 Air Speed Estimation

While the primary goal of this work was accurate flow direction sensing, an air speed

solution was attempted. However, in practice this method showed generally mediocre to

poor performance relative to existing sUAS flow sensing systems. A number of alternative

approaches could likely be investigated. A superior approach could potentially be derived

by using an assumed range scale based off the known subject distance and the widths of

detected streaks (by scaling the narrowest, in focus, parts of streaks to be at the subject

distance).

Under this approach the air speed estimation step would not be necessary as the scale

factor for ~Vs would be chosen by assuming the range to the first endpoint, probably as the

range to the center of the imaged volume. The air speed error under this approach would

be determined by the x distance from the center of the imaged volume to the true position

of the first endpoint. Thus, the accuracy of the method will improve as the x thickness of
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the imaged volume decreases relative to the x distance to the center of the imaged volume.

A similar method would be to assume the ranges to the starting points of all streaks,

for example that they lie near the more distant side of the imaged volume from the candle.

Then the assumed final endpoints are all determined by ~V∆t. This would reduce the number

of unknown quantities to 3, the elements of ~V , which would decrease computational load.

There would be no need to compute the scaled ~Vs. The accuracy of such an approach however

would necessarily rely on same ratio of the x thickness of the imaged volume to the x distance

to the center of the imaged volume noted in the previous proposed method.

6.2.3 Extension To Arbitrary Volumes

The method as described here relies on imaging depth limits that are constant laterally

across the image. However this may not be optimal for certain set ups and vehicle integration

strategies. While not necessary when using focus-limiting, if using illumination-limiting, it

will be necessary to allow for depth limits that vary across the image. Thus one potential

area for future work is to extend the solution method to deal with arbitrary illumination

geometries.

In order to achieve this, it is necessary to allow for a direction dependent depth in the

air speed solution. This would allow for placing each line end point in the illumination range

based on the limits of that range along the line that passes from the camera through that

point. To do this, the illumination limits will need to be functionally defined in terms of the

direction vectors to the end points. Determining an efficient method for accomplishing this

and ascertaining the effects on system performance are suitable areas for future research.

6.2.4 Optimization of Imaging Systems

This work focused on using captured particle streak images to determine a local flow.

The details of the optical system were modeled and accounted for, but no effort was made to

optimize the system (in large part because the available optical systems for testing were lim-
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ited). As noted in section 3.3, there are a large number of design trade-offs in imaging system

parameter selection. A promising area for further study is to determine the optimal set of

camera features taking into account size, weight, power, cost, and computing requirements

associated with changing the various parameters.

Alternative camera systems could also be designed for capturing the smaller, far more

numerous particles present in the atmosphere. This would allow for the proposed method

to be used for sensing air data in a wider variety of environments.

One element of improving the imaging system for use in the outdoor environment is

developing closely matched illumination and imaging systems. In the outdoor environment,

the sun provides powerful broadband illumination, creating overpowering background signal.

To mitigate this, a narrow band illumination approach could be used. By band limiting the

illumination and filtering the camera signals the amount of background signal can be cut

while still providing a large amount of particle illumination. This method could potentially

be further improved upon by using a polarized filter to limit light to the expected polarization

angle of light scattered from the particles.

One possible method for maximizing background suppression with this approach is to

match the illumination and imaging wavelengths to atmospheric absorption bands. These

are light wavelengths where the sun’s intensity is reduced by absorption by atmospheric gases

[30]. An illustration of these bands is shown in figure 6.2. However, due to re-radiation from

the Earth’s surface, selecting a wavelength for optimal background suppression is likely to

be more complicated.

Further complexity in selecting imaging wavelength results from the properties of the

imaging sensors themselves. The sensitivity of digital image sensors (CCD and CMOS),

the quantum efficiency, varies with wavelength. The quantum efficiency curves for several

example sensors are shown in figure 6.1. As such optimizing the imaging system is a complex

problem requiring a road study of imaging systems and extensive testing. Ultimately the

results of such work could be used to design a purpose-built camera and illumination system
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for capturing the images needed for this work.

Figure 6.1: Quantum efficiencies of several digital camera sensors. Image credit: Point Grey

Research, Inc.

6.2.5 Resolving Directional Ambiguity

While the targeted application of this method is initially fixed wing UAS an obvious

benefit exists if such a method could be used on a rotary wing aircraft. The standoff capabil-

ity of the measurement allows a potential for measuring air-relative velocity from multi-rotor

UAS without interference from the strong local flow fields. However, in the direction solution

for this method there is a sign ambiguity. Assuming a forward velocity is a feasible solu-

tion for fixed wing vehicles, but not for rotary wing vehicles which can hover. Determining

reliable methods for resolving this directional ambiguity is another area of potential future

work.

To resolve this ambiguity a number of approaches could be investigated. One would be

to use a separate sensor or vehicle state information (for example vehicle tilt) to provide a

rough flow direction and use this to resolve the ambiguity and allow for a solution. Another

option would be to use two or more images in rapid succession. Streaks could then be tracked

from one image to the next to determine which end of a streak is the beginning and which is
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Figure 6.2: Spectrum of sunlight intensity on Earth’s surface [30].
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the end. This would also allow for a method to determine what streaks remain in the volume

for the entire image period and which enter or leave. This could be done by taking a three

image sequence and then using only the streaks from the middle image that can be linked to

streaks in the first and last images. Yet another approach could be to use a frequency coded

light source to give streak start and end points different colors, though this would be difficult

to work into a narrow band illumination with matched image filtering strategy.
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