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Numerical quadrature over smooth surfaces with boundaries

By Jonah A. Reeger 1, Bengt Fornberg 2

This paper describes a high order accurate method to calculate integrals over curved surfaces

with boundaries. Given data locations that are arbitrarily distributed over the surface,

together with some functional description of the surface and its boundary, the algorithm

produces matching quadrature weights. This extends on the authors’ earlier methods for

integrating over the surface of a sphere and over arbitrarily shaped smooth closed surfaces

by also considering domain boundaries. The core approach consists again of combining

RBF-FD (radial basis function-generated finite difference) approximations for curved surface

triangles, which together make up the full surface. The provided examples include both

curved and flat domains. In the highly special case of equi-spaced nodes over a regular

interval in 1-D, the method provides a new opportunity for improving on the classical

Gregory enhancements of the trapezoidal rule.

Key words quadrature, radial basis function, RBFs, RBF-FD, Gregory’s

method, trapezoidal rule

1 Introduction

Algorithms for numerical quadrature typically determine weights, after which the evaluation

of integrals becomes a matter of multiplying these with actual function values, and adding

the results. In some cases (such as with Gaussian quadrature), the nodes (data locations)

have to be chosen in a very special way. In applications, numerical quadrature is usually a
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follow-up to some other task (such as collecting data, or numerically solving PDEs), making

it impractical to require node locations that are specific to the quadrature method. The

present algorithm is therefore designed to find the quadrature weights at whatever node

locations that are specified.

For N scattered nodes over the surface of a sphere, the algorithm described in [1] offers

spectral accuracy, but at the relatively high cost of O(N3) operations and O(N2) mem-

ory. The RBF (radial basis function)-based method in [2] gives quadrature errors of size

O(1/N2) (or equivalently O(h4) if h is a typical node separation distance) at costs of O(N2)

for both operation count and memory. The first method in the authors’ recent quadrature

investigations [3] achieves O(1/N3.5) (equivalent to O(h7)) accuracy at the much reduced

costs of O(N logN) and O(N) , respectively, as was also the case for the subsequent gener-

alization from a sphere to arbitrarily shaped smooth closed surfaces [4]. These convergence

rate and cost estimates hold again for the present further generalization to curved surfaces

with smooth boundaries.

The core numerical method used in this paper is known as RBF-FD (radial basis function-

generated finite differences). This approach has so far mostly been used to approximate

partial derivatives, with the key difference to regular finite differences that the node points

no longer need to be grid-based (in particular, Cartesian node layouts are now known to be

less-than-optimal [5], which can also be seen in figures 10 and 11). For surveys of RBFs and

of RBF-FD methods as these are applied to PDEs, see [6], [7].

The following Section 2 describes the present quadrature method. This starts with de-

composing the surface into curved surface triangles which, between them, cover the full

surface without any overlaps. Each of these surface triangles is then projected to a local

tangent plane, in which the RBF-FD approach provides accurate quadrature weights. The

integrals required in this step can be evaluated in closed form for triangles that do not share

a side with the domain boundary. For the ones that do, a line integral is instead evaluated

numerically. Another key component of the algorithm is a formula for converting quadrature

weights in the tangent plane to corresponding weights at the surface nodes. Section 3 de-

scribes some test examples, with illustrations of convergence rates and computational costs.

A Matlab implementation of the method is available at Matlab Central’s File Exchange [8].

To better motivate certain aspects of the implementation, especially focusing on the
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accuracy at the boundaries (for which the surface curvature is not a critical aspect), we

turn in Section 4 to some test cases for flat bounded domains. We note in particular that it

is beneficial at boundaries to use larger projected regions than what are needed for interior

triangles (consistent with similar observations in the context of using RBF-FD for PDEs

[9]).

The case for which the effect of boundaries on quadrature rules have been studied most

thoroughly in the literature (and certainly for the longest time) is the enhancement to the

trapezoidal rule that was developed by James Gregory in 1670 [10] (remarkably, before Leib-

nitz’ and Newton’s first publications on the topic of calculus, in 1684 and 1687, respectively).

A recent discussion of these Gregory end corrections can be found in [11]. When applying

the present RBF-FD method to this case of equispaced nodes in 1-D, it can not only match

but will typically even improve on the Gregory procedure. Results of the present method

applied to 1-D are given in section 5.

2 Description of the key steps in the algorithm

Consider computing (x ∈ R3)

IS(f) :=

¨

S

f(x)dS ≈
N∑
i=1

wif(xi)

where S is a finite surface defined implicitly. That is, x ∈ S if both h(x) = 0 and b(x) ≥ 0

(see figure 3 for examples). These equations define a surface with a boundary curve satisfying

the initial value problem

d

ds
x(s) =

∇h(x(s))×∇b(x(s))

‖∇h(x(s))×∇b(x(s))‖2
(1a)

x(0) = x0 (1b)

where s is arc-length along the boundary curve and x0 is a point on the boundary curve.

In this definition, both the surface h and the boundary b are described as level surfaces

in such a way that the inequality for b defines whether the surface is “above” or “below”

the boundary curve. Other definitions of the surface could also be used. For instance,

any combination of explicit and implicit parameterizations for the surface and boundary, or
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boundary curve, could be used.

Here the approach described in [4] for computing quadrature weights for surface integrals

will be extended to surfaces like S. In this sequel, it is still assumed that a set, SN , of N

quadrature nodes on the surface and a triangulation T = {tAkBkCk
}Kk=1 (which maps one-to-

one onto the set T = {τAkBkCk
}Kk=1 of curved “surface triangles” that covers S) are provided

by the user. Since the method in [4] considers each triangle in T separately so that

IS(f) =
K∑
k=1

¨

τAkBkCk

f(x)dS (2)

this generalization requires only that “boundary triangles” (with at least one edge, i.e. at

least two vertices on the boundary) be handled differently from “interior triangles”. The

method in [4] can be used without specifying h(x, y, z) by approximating normal vectors to

the surface. Likewise, the present method could be adapted so that only a set of nodes,

a triangulation of the set of nodes, and an ordered list of the nodes on the boundary are

required from the user.

This method for determining quadrature weights for approximating the surface integral

can be summarized in the same five steps as in [4]:

1. For each of the triangles in T , find a projection point.
2. From the projection point, project a neighborhood of the three vertices of the triangle

(points in SN ) on S into the plane containing the corresponding triangle in T . This
neighborhood will include the n−3 nodes nearest to the triangles midpoint and beyond
the three vertices.

3. Find quadrature weights over the local projected node set for numerical evaluation of
the definite integral over the projected central planar triangle.

4. Convert quadrature weights in each plane to corresponding weights for the surface.
5. Combine the weights for the individual triangles to obtain the full weight set for the

surface.

However, in general steps 1 and 3 are handled differently when a boundary triangle is being

considered. It should be noted that when b(x) = nTb x (with nb a constant vector, i.e. a

planar boundary) the method in [4] can easily handle such a case with only a change in the

definition of the projection point in step 1 with no modifications to step 3. Similarly, in

the case where h(x) = nThx (with nh a constant vector), that is, the surface is planar, the

present method reduces to steps 3 and 5 only.

The remainder of this section will describe the steps in the algorithm and the modifica-
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tions needed for steps 1 and 3 when considering boundary triangles.

2.1 Step 1: Locate a Projection Point

In the method described in [4], the first step requires that a projection point be found by

first defining “cutting planes” along the edges of the curved surface triangles in T . The left

frame of figure 1 illustrates a flat triangle tAkBkCk
, its curved counterpart τAkBkCk

, and a

projection point xOk
. The right frame illustrates how a flat triangle meets another triangle

along each of its edges. The curved counterparts to any two adjacent triangles must meet

without any gap or overlap. For each side of the central triangle, this requirement defines

a plane in which xOk
must be located. With three sides, we get three planes, and xOk

is

chosen as their intersection point. In vector notation [4]:

xOk
= xAk

+
nOkBkCk

· (xBk
− xAk

)

nOkBkCk
· vOkAk

vOkAk
.

where nOkAkBk
= nAkBk

× (xBk
− xAk

), nOkCkAk
= nCkAk

× (xAk
− xCk

), and vOkAk
=

nOkAkBk
×nOkCkAk

, with× the vector cross product. Here nAkBk
= 1

2

(
nAkBkCk

+ sign
(
nTAkBkCk

nAkBkEk

)
nAkBkEk

)
is the average of the normals nAkBkCk

and nAkBkEk
of tAkBkCk

and tAkBkEk
, respectively,

pointing in the same general direction (that is, the angle between them is less than π
2 ). The

right frame of figure 1 illustrates this definition of the projection point.

2.1.1 Modifications to Step 1: Defining the “Cutting” Plane

If tAkBkCk
is a boundary triangle and b(xAk

) = 0 and b(xBk
) = 0, then there is no triangle

in T sharing the edge AkBk, and nAkBk
must be defined in a different way.

First, suppose that b(x) is not the equation of a plane (or, at least, the algorithm does

not know it is). Then nAkBk
is set equal to the normal vector, nAkBkCk

, to the triangle

tAkBkCk
.

Next, suppose that b(x) is the equation of a plane which, since xAk
satisfies b(xAk

) = 0,

could be written

b(x) = nb · (x− xAk
)

where · represents the vector dot (inner) product on R3. In this case, the vector nAkBk

is defined to be perpendicular to the vector xAk
− xBk

and parallel to the plane b(x) (i.e.
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Figure 1: (left) A single flat triangle, tAkBkCk
, (outlined by solid lines) and its curved

counterpart, τAkBkCk
, (outlined by dashed lines). (right) An illustration of a central flat

triangle and its three immediate neighbors, all with the normal vectors shown as solid
arrows. The three dashed vectors are displayed as originating from the projection point
associated with the central flat triangle, and each goes through one side of it. These
dashed vectors are defined by nAkBk

= 1
2 (nAkBkCk

+ sign(nTAkBkCk
nAkBkEk

)nAkBkEk
),

nBkCk
= 1

2 (nAkBkCk
+ sign(nTAkBkCk

nBkCkFk
)nBkCkFk

) and nCkAk
= 1

2 (nAkBkCk
+

sign(nTAkBkCk
nAkCkDk

)nAkCkDk
) .

perpendicular to nb). That is, nAkBk
should be in the direction of the vector

nAkBk
=

nb × (xAk
− xBk

)

‖nb × (xAk
− xBk

)‖2
.

2.2 Step 2: Project a neighborhood of a curved surface triangle

Once the point xOk
is available, points x in a neighborhood of τAkBkCk

, which is the region

of S that projects onto tAkBkCk
(including its boundary), must be projected into the plane

containing tAkBkCk
for the interpolation procedure described in section 2.3. The projection

occurs by determining the intersection of this plane and the line through xOk
and in the

direction of (x− xOk
). Further, a two-dimensional coordinate system is defined in the

plane containing tAkBkCk
that ensures that the midpoint of this triangle is the origin of the

coordinate system. This projection process can be summarized by

χk(x(s)) =

 1 0 0

0 1 0

Rk 1

nAkBkCk
· (x(s)− xOk

)
(nAkBkCk

× ((x(s)− xOk
)× (xMk

− xOk
)))

(3)
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Figure 2: An illustration of the projection of a triangle and its neighbors. Left: Here
τAkBkCk

is the central triangle and n = 12 of its nearest neighbors (including the 3 vertices)
are projected from xOk

into the plane containing the vertices of τAkBkCk
. The dashed line

segments originating at xOk
illustrate the projection of each of the nearest neighbors into

the plane. Right: The 2D coordinates of the nearest neighbors from the left frame, which
are computed from (3). This figure is adapted from [4].

where xMk
= 1/3(xAk

+ xBk
+ xCk

), xOk
is the projection point for tAkBkCk

, nAkBkCk
is

the normal vector to tAkBkCk
with components nxk

, nyk and nzk , and

Rk =


nxk

nzk√
n2
xk

+n2
yk

√
n2
xk

+n2
yk

+n2
zk

nyk
nzk√

n2
xk

+n2
yk

√
n2
xk

+n2
yk

+n2
zk

−
√
n2
xk

+n2
yk√

n2
xk

+n2
yk

+n2
zk

−nyk√
n2
xk

+n2
yk

nxk√
n2
xk

+n2
yk

0

nxk√
n2
xk

+n2
yk

+n2
zk

nyk√
n2
xk

+n2
yk

+n2
zk

nzk√
n2
xk

+n2
yk

+n2
zk

 ,

is a rotation matrix (as long as
√
n2xk

+ n2yk 6= 0 in which case Rk = I). An example

projection neighborhood containing 12 neighboring vertices is illustrated in the left frame

of figure 2. The right frame of figure 2 illustrates the two-dimensional coordinate system in

the plane.

In the case of a planar surface h(x), (3) reduces to (with nAkBkCk
= nh for each k)

χk(x(s)) =

 1 0 0

0 1 0

Rk (x(s)− xMk
) . (4)
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2.3 Step 3: Find Quadrature Weights for Integrating Over a Projected Triangle

Consider the double integral of a function g(χk) over a planar triangle tAkBkCk

ItAkBkCk
(g) :=

¨

tAkBkCk

g(χk)dA (5)

It can be evaluated approximately by integrating the RBF interpolant of g(χk) with basis

functions φ
(∥∥χk − χk,j

∥∥) centered at the projections of the n points in Nn
k (the set of n

nearest neighbors in SN to the midpoint of tAkBkCk
), which are all in a neighborhood of

tAkBkCk
.

It is common to construct the RBF-interpolant as

s(χk) :=
n∑
j=1

cRBF
k,j φ

(∥∥χk − χk,j
∥∥)+

M∑
l=1

cpk,lπl(χk) (6)

where cRBFk,1 , . . . , cRBFk,n , cpk,1, . . . , c
p
k,M ∈ R are chosen to satisfy the interpolation conditions

s(χk,j) = g(χk,j), j = 1, 2, . . . , n, along with constraints
∑n
j=1 c

RBF
k,j πl(χk,j) = 0, for

l = 1, 2, . . . ,M . Here the set {πl(χk)}Ml=1, with M = (m+1)(m+2)
2 , contains all of the

bivariate polynomial terms up through degree m.

By integrating the interpolant the approximation of the integral of g is reduced to

ItAkBkCk
(g) ≈

∑n
j=1 w

RBF
k,j g(χk,j), where the weights can be found by solving the linear

system ÃkWk = Ĩk with

Ãk =

 ATk Pk

PTk 0

 ,Wk =

 wRBF
k

wp

 , and Ĩk =

 IRBFk

Ipk

 .
Here, Ak,ij = φ

(∥∥χk,i − χk,j
∥∥), Pk,il = πl(χk,i), wRBF

k,j = wRBFk,j , IRBFk,j = ItAkBkCk

(
φ
(∥∥χk − χk,j

∥∥)),
and Ipk,l = ItAkBkCk

(πl(χk)), for i, j = 1, 2, . . . , n and l = 1, 2, . . . ,M [7, Section 5.1.4].

The integrals Ipk,l = ItAkBkCk
(πl(χk)), l = 1, 2, . . . ,M , can be evaluated exactly via,

for instance, Green’s theorem or through the conversion of the integral to barycentric co-

ordinates. When considering interior triangles or boundary triangles whose edges are pro-

jected via (3) as straight lines, exact evalutations of IRBFk,j = ItAkBkCk

(
φ
(∥∥χk − χk,j

∥∥)),
j = 1, 2, . . . , n, are described in detail in [3], where the integration over an arbitrary planar



Numerical quadrature over smooth surfaces with boundaries 9

triangle is replaced by a combination of integrals over six right triangles (all available ana-

lytically). The results presented at the end of this article use the basis function φ(r) = r7,

with r =
∥∥χk − χk,j

∥∥
2
, where the integral over a right triangle, t, with χk,j a vertex located

at one of the acute angles has closed form

¨

t

r7dA =
η
(

105η8 sinh−1
(
ζ
η

)
+ ζ
√
η2 + ζ2

(
279η6 + 326η4ζ2 + 200η2ζ4 + 48ζ6

))
3456

. (7)

In the preceding expression η is the distance (the base) between χk,j and the vertex at

the right angle and ζ is the length (the height) of the opposite side. Such expressions can

also be found for many of the most popular choices of RBFs, including φ(r) = rl (l odd)

and φ(r) = rlln r (l even), and for Gaussian, multiquadric, and inverse multiquadric basis

functions. For example, in the case of the inverse multiquadric, the counterpart to (7) is

(with ε the shape parameter)

¨

t

1√
1 + (εr)2

dA =

1

ε2

[
− tan−1

(
η
√
ε2 (η2 + ζ2) + 1

ζ

)
+ ηε sinh−1

(
ζε√

η2ε2 + 1

)
+ tan−1

(
η

ζ

)]
.

2.3.1 Modifications to Step 3: Find Quadrature Weights for Integrating over

the Projection of a Boundary Triangle

On the other hand, if b(x) is not the equation of a plane, then it is unlikely that any definition

of nAkBk
will lead to the portion of the boundary curve between xAk

and xBk
being projected

as a straight line into the plane containing tAkBkCk
. The projection of this portion of the

curve will likely be still another curve in the plane containing tAkBkCk
. Assuming that the

boundary curve satisfying (1) does not self-intersect, this projected curve and the projections

of the sides BkCk and CkAk altogether form a simple closed (piecewise) curve. Therefore,

to integrate a function g(χk) (for instance, a RBF) over the area contained by the simple

closed curve, Green’s theorem can be employed. As a reminder χk ∈ R2 are the coordinates

in the 2-dimensional coordinate system resulting from the projection described in step 2 of

the method in [4].
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For the simplicity of discussion consider approximately evaluating the double integral of

a function g(χk) over an area Ak in the 2-dimensional coordinate system. Suppose that the

boundary of this area, C is a piecewise simple closed curve with segments given by CAkBk
,

CBkCk
, and CCkAk

, where, for instance, the projections of xAk
and xBk

represented in the

2-dimensional coordinate system are the endpoints of CAkBk
and the curve is traversed from

the transformation of xAk
to that of xBk

.

If two functions L(χk) and M(χk) are chosen so that

g(χk) =

∇×


L(χk)

M(χk)

0


 ·


0

0

1

 ,

then by Stoke’s or Green’s theorem,

¨

Ak

g(χk)dA =

ˆ

C

 L(χk)

M(χk)

 · dχk. (8)

Suppose that CAkBk
is not the projection of a boundary curve. That is, b(xAk

) > 0

and/or b(xBk
) > 0. Then CAkBk

is a line and can be parameterized explicitly via

χk(t) = χk,Ak
+ t(χk,Bk

− χk,Ak
), 0 ≤ t ≤ 1 (9)

so that

ˆ

CAkBk

 L(χk)

M(χk)

 · dχk =

1ˆ

0

 L(χk(t))

M(χk(t))

 · (χk,Bk
− χk,Ak

)dt (10)

On the other hand, if CAkBk
is the projection of a boundary curve, then the solution to

the system (1) is an explicit parameterization with respect to arc length along the boundary

curve, as long as the arc length between xAk
and xBk

is known. Denote this arc length by

sAkBk
and let x(s) be the solution to (1) with x0 = xAk

and 0 ≤ s ≤ sAkBk
. The solution

can be transformed into the two coordinate system via (3) or (4).

Given (3) or (4) the differentials in (8) can be expressed in terms of the differential ds.
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That is,

dχk = ∇x(s)χk(x(s))
d

ds
x(s)ds,

where ∇x(s)χk(x(s)) is the Jacobian of χk(x(s)) with respect to the entries of x(s). With

this differential

ˆ

CAkBk

 L(χk)

M(χk)

 · dχk =

sAkBkˆ

0

 L(χk(x(s)))

M(χk(x(s)))

 · (∇x(s)χk(x(s))
d

ds
x(s)

)
ds. (11)

It is unlikely that the line integrals over the curves CAkBk
, CBkCk

and CCkAk
can be

computed in closed form, so they are computed numerically. Here a Newton based root

finding method and the system (1) are used to numerically determine (if needed) the arc

length, sAkBk
, between xAk

and xBk
(given the Euclidean distance between the two points

as a guess). This is done by finding the root of the function

σ(sAkBk
) = ‖x(sAkBk

)− xBk
‖22 . (12)

Notice that from (1)

d

dsAkBk

σ(sAkBk
) =2 (x(sAkBk

)− xBk
) · d

dsAkBk

x(sAkBk
)

=2 (x(sAkBk
)− xBk

) · ∇h(x(sAkBk
))×∇b(x(sAkBk

))

‖∇h(x(sAkBk
))×∇b(x(sAkBk

))‖2
,

where x(sAkBk
) can be found by solving (1) numerically with the initial value x0 = xAk

.

When CAkBk
is not the projection of a boundary curve, the value of the integral (10) is

computed numerically by adaptively solving the initial value problem

d

dt
ICAkBk

(t) =

 L(χk(t))

M(χk(t))

 · (χk,B − χk,A) (13a)

ICAkBk
(0) =0 (13b)

for ICAkBk
(1) or by applying numerical quadrature directly to (10). In this case, quadrature
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nodes are easily chosen since the parameterization (9) can be directly evaluated for any

choice of t. Likewise, when CAkBk
is the projection of a boundary curve, the value of the

integral (11) is computed numerically by adaptively solving simultaneously

d

ds
ICAkBk

(s) =

 L(χk(x(s)))

M(χk(x(s)))

 · (∇x(s)χk(x(s))
d

ds
x(s)

)
(14a)

ICAkBk
(0) =0 (14b)

d

ds
x(s) =

∇h(x(s))×∇b(x(s))

‖∇h(x(s))×∇b(x(s))‖2
(14c)

x(0) =xAk
(14d)

for ICAkBk
(sAkBk

) or by applying numerical quadrature to (11). In this case, the system

(1) must be solved with initial value x0 = xAk
for each choice of s needed as a quadrature

node.

2.4 Step 4: Convert Quadrature Weights in the Plane to Weights for the

Surface Integral

The projections developed in the previous sections amount to changes of variables in the

integrals in (2) that relate the surface integral to an integral over an area in a plane. Denote

the surface normal to S to be

nS(x) :=
∇h(x)

‖∇h(x)‖2
. (15)

Let nPk
be the unit length vector in the direction of nAkBkCk

. Then the surface integral

over an individual curved “surface” triangle τAkBkCk
is

¨

τAkBkCk

f(x)dS =

¨

tAkBkCk

f(x(χk))
nPk
· (x(χk)− xOk

)

nS(x(χk)) · (x(χk)− xOk
)

(
nAkBkCk

· (x(χk)− xOk
)

nAkBkCk
· (xAk

− xOk
)

)2

dA.

(16)

A description of the last two factors in (16) can be found in [4]
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Applying step 3 to the double integral (16) over a flat triangle tAkBkCk
∈ T gives, for

instance

¨

tAkBkCk

f(x(χk))
nPk
· (x(χk)− xOk

)

nS(x(χk)) · (x(χk)− xOk
)

(
nAkBkCk

· (x(χk)− xOk
)

nAkBkCk
· (xAk

− xOk
)

)2

dA

≈
n∑
j=1

wRBF
k,j f(xk,j)

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)2

. (17)

2.5 Step 5: Combine the Weights Over the Entire Surface

Summing over all of the curved triangles in T leads to the approximation of the surface

integral over S

IS(f) ≈
K∑
k=1

n∑
j=1

wRBF
k,j f(xk,j)

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)2

. (18)

Let Ki, i = 1, 2, . . . , N , be the set of all pairs (k, j) such that χk,j 7→ xi. Then the surface

integral over S can be rewritten as

IS(f) ≈
N∑
i=1

 ∑
(k,j)∈Ki

wRBF
k,j

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(
nAkBkCk

· (xk,j − xOk
)

nAkBkCk
· (xAk

− xOk
)

)2
 f(xi)

=

N∑
i=1

wif(xi). (19)

3 Test examples of quadrature over curved bounded surfaces

The test surfaces in this paper are a family of surfaces generated by rotating the Cassini

ovals about the x-axis. The current default settings for the method are used with n = 80

(number of nearest neighbors) and m = 7 (maximum order of bivariate polynomial terms

in interpolation) and the RBF φ(r) = r7. Consider the level surfaces defined by

h(x) = h(x, y, z) = (x2 + y2 + z2)2 − 2α2(x2 − y2 − z2) + α4 − β4 = 0, (20)

which depend on the two parameters α and β. The demonstrations here will consider α = λβ

for 0 < λ < 1 (specifically, λ = 0, 0.8, 0.95). The parameter β in this work is chosen so that
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Figure 3: Examples of the surface S defined implicitly by h(x) = h(x, y, z) = (x2 + y2 +
z2)2 − 2α2(x2 − y2 − z2) + α4 − β4 = 0 when α = 0 and β chosen that the surface area
(of the closed surface) equals 1. The surface is shown for two different boundary surfaces
b(x) = b(x, y, z).

the surface area (of the closed surface) is equal to 1, and since the area of this surface of

revolution is not known explicitly, β is chosen numerically.

Further, two boundary surfaces b(x) are considered. First, let b(x) = b(x, y, z) = z. This

is the xy–plane, and the surface with boundary is the upper half of the original surface.

Second, take b(x, y, z) = z − 0.1 xy
x2+y2 , where for λ = 0 this creates a “scalloped” sphere.

The surface area of any of these surfaces with their boundary is 0.5. The case of λ = 0 is

shown for either boundary in figure 3.

There are also four test integrands considered for surfaces in this paper. These test

integrands lead to integrals that can be computed in closed form over the closed surfaces.

Denote S+ to be the surface bounded by b(x, y, z) ≥ 0 and S− to be the surface bounded

by −b(x, y, z) ≥ 0. Then, S+ ∪ S− is a closed surface, where S+ ∩ S− is only the boundary

curve specified by (1). Summing the integrals over the two halves of the closed surface also

allows consideration of maximum absolute errors after 1000 random rotations of each half

about the x-axis. These are the errors that will be shown in this section for the first three

test functions, since the fourth test function is not amenable to any sort of rotation.
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Figure 4: Maximum absolute error after 1000 random rotations about the x-axis when
evaluating IS+(f1) + IS−(f1) with the two different boundary surfaces b(x, y, z).

First, consider

f1(x) =
1

3
x · nS(x), i = 1, 2, 3

where nS(x) is defined in (15). From the Divergence Theorem

I+S (f1) + I−S (f1) =
π

6α

[
2α(β2 − 2α2)

√
α2 + β2 + 3β4sinh−1

(
2α
√
α2 + β2

β2

)]

is the volume of the closed surface. The integrand f1(x) is smooth and, as with the methods

discussed in [3] and [4] from which the present method is developed, the convergence order

is O(N−3.5) for either a planar or curved boundary. The absolute errors when computing

the volume are shown in figure 4.

Second, the test integrand f2(x) = f2(x, y, z) = 2
π tan−1(z) is again smooth, but features

a steep gradient near z = 0 and IS+(f3) + IS−(f3) = 0. The method also achieves a

convergence order of O(N−3.5) for either boundary, and the absolute errors for computing

this surface integral are shown in figure 5.
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Figure 5: Maximum absolute error after 1000 random rotations about the x-axis when
evaluating IS+(f2) + IS−(f2) with the two different boundary surfaces b(x, y, z).

Third, f3(x) = f3(x, y, z) = sign(z) so that IS+(f3) + IS−(f3) = 0. This integrand is

discontinuous where z = 0 and so it achieves a convergence order between O(N−0.5) and

O(N−1). In this case, the errors are shown in figure 6.

Finally, to explore the impact of node clustering on convergence orders where the inte-

grand includes rapidly changing features, the integrand

f4(x) =
1

2
+

tan−1(1000(z − 9999
10000

1
2
√
π

)))

π
(21)

is also considered, but only for the case where the λ = 0 for the test surface. This test

integrand is smooth, but features a sharp spike near the point
(

0, 0, 1
2
√
π

)
. This surface

integral for this integrand evaluates exactly to

IS+(f4) + IS−(f4) =
5000π + 10

√
π log

(
1 + 99980000

1+400π

)
− 9999 tan−1

(
9999
20
√
π

)
+ cot−1 (20

√
π)

20000π
.

We use clustered nodes generated by a modification of the algorithm described in [12] with

a node separation function d(x, y, z) = ω
√
x2 + y2 + (z − 1.2)2 that are scaled to a sphere
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Figure 6: Maximum absolute error after 1000 random rotations about the x-axis when
evaluating IS+(f3) + IS−(f3) with the two different boundary surfaces b(x, y, z).

of radius 1
2
√
π

(λ = 0 in (20)). Changing the parameter ω varies the density of the nodes.

In this study ω ranges from 0.005 to 0.1 in increments of 0.001. A comparison of N = 1024

clustered nodes against the same number of nearly uniformly spaced nodes appears in figure

7. The errors displayed in figure 8 highlight that clustering nodes near features of the

integrand can lead to significant improvements on the order of accuracy of the approximate

surface integral without degrading the convergence rate.

The methods developed in [3] and [4] both require O(N log N) time and O(N) memory

to construct a set of quadrature weights, even on node sets numbering in the millions. The

computation time is O(N) when the number of nodes is low enough so that the O(N log N)

cost of finding nearest neighbors does not dominate. Figure 9 illustrates similar cost in

computation time and memory when boundaries are introduced. Note, however, that there

is the possibility of greater variability in computation time over different sets of nodes when

boundaries are present due to the iterative method required to find the root of (12) and the

initial value problem solvers required to solve (1), (13) or (14) (since adaptive solvers are

recommended in this case). Since the method considers each curved triangle individually,

the method is again embarrassingly parallel [3]. Further, if a GPU is available, the Matlab
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Figure 7: Left: 1024 nodes generated by a modification of the algorithm described in [12]
with a node separation function d(x, y, z) = ω

√
x2 + y2 + (z − 1.2)2 that are scaled to a

sphere of radius 1
2
√
π

(λ = 0 in (20)). Right: 1024 Nearly uniformly spaced nodes on the

sphere of radius 1
2
√
π

(λ = 0 in (20)).

Figure 8: Maximum absolute error when evaluating IS+(f4)+IS−(f4) with the two different
boundary surfaces b(x, y, z), but only for the choice of λ = 0 in (20).
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Figure 9: Left: CPU time (in seconds) to compute quadrature weights for evaluting IS(f)
where f is a scalar function. Right: Required memory (in Bytes) required to compute the
quadrature weights. The computations in this figure were performed in Matlab on a laptop
with 32 GB of DDR3 1500MHz memory and an Intel Core i7-4900MQ processor featuring
four cores at 2.80 GHz.

function pagefun allows all of the linear systems to be solved at near peak GPU speeds.

The errors illustrated in figures 4, 5, 6 and 8 and the computation time and memory use

illustrated in figure 9 are similar to those illustrated in [4] for varying N . To understand

the effect of different choices of n and m on errors, CPU time and memory use, the reader

should refer to [4], figure 4.

4 Test examples in planar (flat) bounded regions, focusing on bound-

ary effects

To illustrate the effects that node placement and the choices of bivariate polynomial order,

m, and number of nearest neighbors, n, can have on the present method consider the

bounded planar region that is the unit square centered at the origin, i.e., the square with

the vertices
(
− 1

2 ,−
1
2

)
,
(
− 1

2 ,
1
2

)
,
(
1
2 ,

1
2

)
, and

(
1
2 ,−

1
2

)
. Here h(x, y, z) = z and b(x, y, z) is

defined piecewise by four planes whose normals lie in the xy-plane. Next consider the test
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integrand

f(x) =
1

1 + 25((x+ 0.45)2 + (y − 0.4)2)
, (22)

(peaked near the top left corner of the domain). Also, consider three different node sets. The

first are evenly spaced nodes on a lattice generated using Matlab’s meshgrid command. The

second are nearly uniformly spaced and are generated using distmesh2d [13] with equally

spaced points on the boundary. The third node set is a subset of the Halton set in 2-

dimensions supplemented by equally spaced points on the boundary [14]. Figure 10 displays

the relative error when evaluating the integral of (22) over each triangle in T individually

with m and N fixed and for three different choices of n. Notice that for n = 36 nearest

neighbors, below which the matrix Ãk will be singular, the errors in the case of the meshgrid–

generated nodes are many orders of magnitude larger than for the distmesh–generated and

the Halton nodes. Also, in the case of the distmesh–generated nodes many of the triangles

along the boundary exhibit larger errors. This is most apparent where the alignment of

the triangles is much more regular along the top and bottom boundary. As n increases to

43, the large errors persist near the boundary in the case of the meshgrid–generated and

distmesh–generated nodes, while the interior triangles in the meshgrid–generated case have

errors comparable to the interior triangles of the other two node sets. It might seem that

the boundary errors prohibit the use of this method in the presence of regularly aligned

points near the boundary; however, if n is increased enough–to n = 81 in this case–the large

errors on the boundary disappear. This is in agreement with the observations made in [9],

that as the number of nearest neighbors (or stencil size) increase, the RBFs in (6) play a

prominent role in mitigating the Runge-phenomenon (see also section 5).

This behavior is also visible in figure 11 which displays the relative errors when integrat-

ing (22) for fixed N and various choices of m and n over the entire unit square. Considering

a fixed choice of m in the cases of meshgrid–generated or distmesh–generated nodes, errors

decrease sharply when n & (m+ 1)(m+ 3), which is in agreement with the choice of n = 81

in figure 10. Because of this behavior near the boundary it is recommended to increase n

near the boundary while using smaller stencil sizes further from the boundary to reduce

computational cost.



Numerical quadrature over smooth surfaces with boundaries 21

Figure 10: log10 of the relative error when evaluating the integral of (22) over the unit
square for various node sets and choices of n. Notice that as n increases beyond n = 81,
boundary errors in the presence of regularly spaced nodes decrease.
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Figure 11: log10 of the relative error when evaluating the integral of (22) over the unit
square for three different node sets. The lower dashed parabola in both plots represent the
boundary n = (m+1)(m+2)/2 below which the linear system ÃkWk = Ĩk becomes singular.
The upper dashed–dotted parabola represents n = (m+ 1)(m+ 3) above which boundaries
no longer pose an issue. The roles of these parabolas are discussed also in [9], c.f. its figure
2.

5 1-D equispaced case: Comparison with Gregory’s method

To better understand the observations of the previous section, concerning the number of

nearest neighbors (stencil sizes) close to boundaries, this section considers the approach

applied to the highly special case of equispaced nodes in 1-D. In this case, the method

not only becomes essentially equivalent to the classical Gregory method [10], but it further

improves on it in two ways:

1. The 1-D nodes need not be equispaced (this is not a novelty; such Gregory general-

izations are discussed for a one order improvement of the trapezoidal rule in [15], in

more conceptual form in [16], and for arbitrary orders of accuracy in [11]).

2. For increasing orders of accuracy, the Gregory weights become large and oscillatory,

with some becoming negative beyond order 9. Inclusion of RBFs in the present ap-

proach avoids these adverse effects while maintaining the increased orders of accuracy.

5.1 Summary of the classical Gregory scheme for equispaced nodes in 1-D

For notational simplicity, consider the case of approximating
∞́

0

f(x)dx with trapezoidal

type approximations on the semi-infinite unit-spaced node set xi, i = 0, 1, 2, 3, . . .. Knowing
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that the dominant trapezoidal rule errors for smooth functions comes from the ends of the

interval, it is natural to try to find correction terms for the ends. For the remainder, let the

left end be at x = 0 and the right end far to the right.

With the notation ∆f(xi) = f(xi+1)−f(xi), powers of the ∆ operator can be represented

as differences:

∆0f(0) = f(0)

∆1f(0) = f(1)− f(0)

∆2f(0) = f(2)− 2f(1) + f(0)

∆3f(0) = f(3)− 3f(2) + 3f(1)− f(0)

...
...

The coefficients can be recognized from Pascal’s triangle. Thus, consider the trapezoidal

rule enhancement

∞̂

0

f(x)dx =

∞∑
i=0

f(i) +
[
b0∆0 + b1∆1 + b2∆2 + b3∆3 + · · ·

]
f(0) (23)

Substituting f(x) = e−zx into (23)3 gives, after a few quick simplifications,

1

z
=

1

1− e−z
+
[
b0 − b1(1− ez) + b2(1− ez)2 + b3(1− ez)3 + · · ·

]
.

Changing variables w = 1− ez , i.e. z = −log(1− w) gives

1

log(1− w)
+

1

w
= −b0 + b1w − b2w2 + b3w

3 −+ · · · ,

and the unknown coefficients can therefore be picked up by Taylor expanding the function

3A general function on x ∈ [−∞,∞] can be thought of as a linear combination of Fourier modes exp(−zx)
with z purely imaginary. For a semi-infinite interval, the Laplace transform suggests allowing z to also have
a real part. In either case, Taylor expanding errors around z = 0 gives accuracy orders.
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1

log(1−w)
+ 1

w around w = 0. This gives

b0 = −1

2
, b1 =

1

12
, b2 = − 1

24
, b3 =

19

720
, b4 = − 3

160
, b5 =

863

60480
, b6 = − 275

24192
, · · ·

For each coefficient that is included, the overall accuracy will increase with one power of h

(in the case of using a spacing of h rather than just the special case of h = 1).

5.2 The sequence of Gregory weights

When converted to weights at node points, extending from the left boundary, the Gregory

procedure gives for orders 2-10 the weight sets:

0.5000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4167 1.0833 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3750 1.1667 0.9583 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3486 1.2458 0.8792 1.0264 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3299 1.3208 0.7667 1.1014 0.9813 1.0000 1.0000 1.0000 1.0000 1.0000
0.3156 1.3922 0.6240 1.2441 0.9099 1.0143 1.0000 1.0000 1.0000 1.0000
0.3042 1.4604 0.4535 1.4714 0.7394 1.0825 0.9886 1.0000 1.0000 1.0000
0.2949 1.5259 0.2570 1.7989 0.4119 1.2790 0.9231 1.0094 1.0000 1.0000
0.2870 1.5890 0.0360 2.2409 -0.1406 1.7209 0.7021 1.0725 0.9921 1.0000

Table 1: Weights for the Gregory procedure for orders 2 (top row) to 10 (bottom row).

The top row amounts to the regular trapezoidal case. The bottom row shows the first

instance of negative weights. In the comparison that follows, consider the weights in the

next-to-last row

0.2949 1.5259 0.2570 1.7989 0.4119 1.2790 0.9231 1.0094 1.0000 1.0000

or in exact form

1070017
3628800

5537111
3628800

103613
403200

261115
145152

298951
725760

515677
403200

3349879
3628800

3662753
3628800 1 1 · · · .

Figure 12 illustrates the data in table 1, with the top table row in front, then the next

row behind, etc., finishing with the next-to-last table row. The bars that are colored white

indicate trivial weights that are equal to one. In figure 12, where color is available, the

front row displaying the nontrivial weight 1
2 of the trapezoidal rule is indicated with a

green bar and the nontrivial weights for the bottom row of table 1 are illustrated in red.
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Figure 12: The Gregory weights near the left end of an interval, for increasing orders of
accuracy (2, 3, 4, . . . , 9). Trivial weights (with the value one) are shown as white bars that
also continue to the right of what is shown. Where color is available, the front row displaying
the nontrivial weight 1

2 of the trapezoidal rule is indicated with a green bar and the nontrivial
weights for the bottom row of table 1 are illustrated in red.

It is graphically obvious that the entries for successive rows (orders of accuracy) become

increasingly oscillatory.

5.2.1 Weights produced near the left boundary with the present RBF-FD ap-

proach

In the RBF-FD approach using φ(r) = rl (l odd) or φ(r) = rllog r (l even) with polynomial

terms, there are three parameters: n (the number of nodes in each stencil, i.e. the number of

nearest neighbors), l (the power in the RBFs), and m (the degree of polynomials included in

(6)). In the 1-D case of n = m+ 1, the weights become purely polynomial based. Choosing

as such an example n = 8, l,m = 7 produces the quadrature weight set

0.2942 1.5307 0.2425 1.8230 0.3878 1.2934 0.9183 1.0100 1.0000 1.0000

with exact form

278
945

185153
120960

3667
15120

8167
4480

733
1890

156451
120960

2777
3024

905
896 1 1 · · ·
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This weight set differs from the Gregory coefficient set of the same width by (exactly)

− 2497

3628800
×
{

1 −7 21 −35 35 −21 7 −1

}

This difference is a small coefficient times an approximation for h7f (7)(ξ), i.e. for smooth

integrands, an O(h7)-sized quantity. The present scheme is here constructed to integrate

polynomials of up to degree 7 exactly. As discussed in [11], the Gregory scheme in this case

will also integrate polynomials of degree 7 exactly. The small coefficient difference between

the schemes involves no contradiction since, when integrating x7, this difference term will

cancel between the two ends of the interval.

The two approaches (Gregory and the present) are essentially equivalent for equivalent

widths of end corrections in the purely 1-D equispaced node case.

5.2.2 Advantages of the present scheme in the 1-D case

The back row in figure 12, with nontrivial weights displayed by red bars, indicates a short-

coming in case corrections to increasing high orders are desired. Not surprisingly (being

purely polynomial-based), a version of the Runge phenomenon enters, and the weights start

to grow increasingly large in magnitude. The present approach offers a remedy for this if

one keeps m fixed while increasing n (as was noted earlier in [9] for the task of approxi-

mating derivatives near a boundary). The front row in figure 13, with nontrivial weights

displayed as red bars, is the (essentially equivalent) counterpart to the last row in figure

12–very highly oscillatory. Just including more nodes while keeping the polynomial order

fixed preserves the accuracy order but is nevertheless seen to rapidly eliminate the oscilla-

tions in the weights. The non-trivial weights revert quite closely back to the trapezoidal

rule weights of { 12 , 1, 1, 1, . . .}. The back row of figure 13 illustrates the nontrivial weights

in green for the far less oscillatory case of n = 20. Present Gregory-based literature offers

no counterpart to this type of high order oscillation-free end corrections.

6 Conclusions

The key novelty in the present study is that the authors have supplemented their previous

RBF-FD based approach for smooth surfaces [4] with a strategy for incorporating bound-

aries. As is well-know from interpolation and numerical differentiation, errors are usually
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Figure 13: The non-trivial RBF-FD weights near the left end of an interval, for quadrature
accuracy held fixed at O(h9) while increasing the number of nodes in each RBF-FD stencil
(by including cubic RBFs). Trivial weights (with the value one) are shown as white bars
that also continue to the right of what is shown. The front row, with nontrivial weights
displayed as red bars, is the (essentially equivalent) counterpart to the last row in Figure
12–very highly oscillatory. The back row illustrates the nontrivial weights in green for the
far less oscillatory case of n = 20.
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larger near boundaries (where data is available from only one side, bordering on notoriously

unstable extrapolation) than it is in domain interiors. The fact that the present method

improves on the classical Gregory method in 1-D indicates that it is very effective in its

boundary treatment. In fact, it does not seem to have been previously noted in the litera-

ture that quadrature methods can achieve high orders of accuracy near boundaries, without

either local node clustering or weights becoming large and highly oscillatory.
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