An Efficient Construction of
Parallel Static Single Assignment Form
for Structured Parallel Programs

Harini Srinivasan

Dirk Grunwald

CU-CS-564-91 December 1991

&

University of Colorado at Boulder

Technical Report CU-CS-564-91
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

An Efficient Construction of
Parallel Static Single Assignment Form
for Structured Parallel Programs

Harini Srinivasan
Dirk Grunwald*
Department of Computer Science
University of Colorado

Boulder, Colorado

December 1991

Abstract

This paper describes an efficient method of computing Static Single Assignment form
explicitly parallel programs using parallel sections and wait clauses. Static Single As-
signment form [Cytron et al. 89] is an efficient intermediate representation and has been
used as a platform for various classical code optimization algorithms [Rosen et al. 88],
[Alpern et al. 88], [Wegman & Kenneth Zadeck 85]. We believe the SSA form will also
be useful in performing code optimizations on parallel programs and our techniques will
allow us to extend existing algorithms to optimize this class of explicitly parallel programs.

1 Static Single Assignment Form

Static Single Assignment (SSA) form [Cytron et al. 89| is an efficient intermediate represen-
tation and has been used as a platform for various classical code optimization algorithms
[Rosen et al. 88], [Alpern et al. 88], [Wegman & Kenneth Zadeck 85]. Algorithms that con-
vert a sequential program into SSA form traverse the program Control Flow Graph (CFG).
The Control Flow Graph of a sequential program is a 4-tuple (N, E, Entry, Ezit}). The set of

nodes, N, represents the basic blocks in the program. The set of edges, F, represents sequential

*This research supported in part by the National Science Foundation under NSF Grant CCR-9010624.

v = 4 vy, = 4

= v+5 = ©v1+5
v = 6 v9 = 6
= v+1 = vy +1

(a) Original Code Fragment (b) SSA Form

Figure 1: Conversion of Straight-Line Code to SSA Form

flow of control between basic blocks. Two distinguished nodes, Entry and Fzit, represent the
unique program entry and exit points of the program. If there is more than one entry point to
the program, edges are added from the Eniry node to the different entry points resulting in a
single entry point. Similarly, if there is more than one exit node, edges are added from these
nodes to the single Ezit node.

After converting a program into its SSA representation, every use of a variable has exactly
one reaching definition. That is, each variable has been assigned a single value. Transforming a
standard sequential program into SSA form introduces additional variables representing distinct
values of the original variables.

In the example shown in Figure 1(a) (taken from [Cytron et al. 89]), the variable v is
assigned two values. When using SSA form, the code fragment is transformed to the version
shown in Figure 1(b). The original variable v is renamed to v;, and the second definition, and
subsequent uses, are named vy. The original v is a variable name that may have some meaning
for the programmer. The names v; and v, are value names; all uses of a particular value defined
by an assignment use the same value name.

Because SSA only represents static dataflow, it can not determine the true value of variables
when two edges merge at a node in the Control Flow Graph (CFG). At such merge points,
¢-functions are introduced to merge distinct values, producing a new value name. The ¢-
functions are artifact of the SSA method; they are used to indicate that the precise value of a
variable is no longer known.

In the example in Figure 2(a), each branch of the conditional assigns a subset of the variables

v,t and w. The assignments in each branch of the conditional introduce new value names, and

RO SN OZOZ6)

(%1} =
t, =
M) Z _ if p
(2) if ; then wy; = 1; v, = 4
(3) thenw =1;v =4 y e_ls‘;("fvz :wo), tp =6
(4) elsew=0;t =6 v3 :¢(v1av§
5 =w+1 3 — 2y, U1
(3) 4« ts = @(t1,t2)
q =w3 + 1
(a) Original Code Fragment (b) Corresponding CFG (c) Final SSA Form

Figure 2: Introduction of ¢-functions

¢-functions are introduced in the merge node, node (5). For example, consider the value of
v at the merge node; unless the value of p at node (2) is known at compilation time, it is
impossible to know which value reaches the end of the conditional. Thus, the new value name
vg is introduced by a ¢-function, indicating that vs may have the value of either v; or v,.
Each definition of a value name is stored with a list of each use. Several code optimizations
can be efficiently rephrased using this def/use information. Many of these algorithms are
simplified because the SSA form explicitly indicates the live range of the values. For example,
transforming the program fragment in Figure 2(a) to that in 2(c) allows a simple register
scheduling method[Cytron & Ferrante 87| to allocate the three variables using two registers
without resorting to complex coloring algorithms. SSA form has also been used for constant

propagation, dead-code elimination, detecting equality of variables and so on.

1.1 Dominance Relations

A central problem when constructing SSA form is determining the minimal set of nodes where
¢-functions must be introduced. The efficient algorithm given in [Cytron et al. 89] uses the
concepts of dominance relation and dominance frontier. For two nodes X and Y, X dominates
Y (expressed X >Y) if X appears on all paths from Entry to Y. In Figure 2, node (2) dominates
(2), (3), (4) and (5). Nodes (3) and (4) do not dominate any other node shown. Node (1)
dominates node (2) and all nodes dominated by (2). A node X strictly dominates Y, or
X>Y,if X>Y and X # Y. In Figure 2, node (2) dominates itself, but does not strictly
dominate itself. The immediate dominator of a node X, denoted idom(X), is the closest strict
dominator of X; in figure 2, the idom(2) is node (1) and node (2) is the immediate dominator
of nodes (3), (4) and (5). The immediate dominator of a node is unique and can be used
to construct a dominator tree with an edge from every node to its immediate dominator; the

following figure shows the dominator tree for Figure 2.

®

ololo

The Dominance Frontier of a node X (denoted DF(X)) in the CFG is the set of all nodes
Y, such that X dominates a predecessor of Y but does not strictly dominate Y. For example,
in figure 2, the predecessors of node (5) are (3) and (4). Node (3) dominates itself, but does
not dominate node (5). This is an example of the definition with X = (3) and Y = (5); thus,
node (5) is in the dominance frontier of node (3) (and, by symmetry, node (4)).

To place the minimal set of ¢-functions when transforming to SSA form, [Cytron et al. 89]

show they should be placed at the iterated dominance frontier of the definition nodes. In

[Cytron et al. 89], an algorithmis given to compute minimal SSA form in time O(E+T+|DF|),
where F is the number of edges in the CFG, T is the total number of ordinary assignments

and ¢-functions in the program and |DF| is the total size of all dominance frontiers.

2 Parallel Constructs

The SSA form has been used for a number of optimizations for sequential programs. We
believe the SSA form can be similarly applied to explicitly parallel programs. The remainder
of this paper extends Control Flow Graphs to model some parallel control flow constructs and
describes how to derive the SSA form of such explicitly parallel constructs.

This paper considers a subset of the parallel constructs from the PCF Parallel Fortran
extensions [Parallel Computing Forum 91]. We consider structured parallelism using Parallel
Sections with wait clauses.

The Parallel Sections construct is a block structured construct that specifies parallel
execution of identified sections of code, akin to the cobegin ... coend notation. Each section
of code identified in a Parallel Sections construct is interpreted as a parallel thread. The
parallel sections must be data independent except where an appropriate synchronization mech-
anism is used. The wait clause specifies a partial ordering among the sections of code. All
sections whose names are listed in the wait clause must complete before the section with the
wait clause can begin execution.

When sections synchronize, any shared variables are made consistent. For example, if
a section modifies a variable used by another section, the updated value must be copied or
updated after the sections synchronize. Note that this does not imply a strict copyin-copyout
semantics. Rather, it means that values cached in registers or stored in cache must be updated
at the synchronization points; however, the values may be updated prior to this on, e.g., a
system with strongly consistent memory.

Parallel sections with wait clauses are analogous to sections using post and wait stat-

ments at the end and beginning of the respective sections of code. Semantically, the concepts

are identical, but wait clauses are syntactically simpler and do not result in unstructured
parallelism.

Although we only consider wait clauses in this paper, we must model the wait clauses as
post and wait events. In our restricted set of programs using only wait clauses, sections may
only wait for other sections in the same parallel sections construct.

If two sections modify the same variable in an unsynchronized manner, the resultant value
is undefined. Such programs are considered non-standard conforming PCF Fortran programs

and we do not consider them in this paper; they will be addressed in a forthcoming paper.

3 Parallel Flow Graphs

Parallel Flow Graphs are a variant of CFG’s extended to handle the parallel sections with
wait clauses, as described in the previous sections. The Parallel Flow Graph is similar to the
the Program Execution Graph [Balasundaram & Kennedy 89] and the Synchronized Control
Flow Graph [Callahan et al. 90].

Formally, a Parallel Flow Graph (PFG) of an explicitly parallel program is a tuple

(Vp, Ep, Entry, Ezit), where Entry and FExit correspond to unique entry and exit points of
the program; V), represents the set of nodes in the Parallel Flow Graph. A node can represent
a basic block, a fork node (corresponding to a parallel sections statement), a join node
(corresponding to an end parallel sections statement), Entry or Ezit. The set E, is the
set of edges in the PFG and is the union of the sequential flow edges E,; (edges representing
sequential flow of control) and consistency edges E..

The consistency edges represent the potential update of a subset of the program values; for
example, the head of the edge points to a wait statement and the tail originates from a post.
In this model, the parallel sections command is essentially a post statement that enables
the different sections. The semantics of PCF Fortran actually allow the values to change at any
point in a parallel sections construct; that is, the semantics are not strict copy-in copy-out,

but the compiler may choose to ignore intermediate values in order to keep values in registers or

caches or perform other optimizations. Values from distinct sections of the parallel sections
must be made consistent when the wait clause synchronizes.

For the compiler, the consistency edges serve a purpose similar to one aspect of control
flow edges; the consistency edges indicate that values may change, and indicates the block
containing the new values. The presence of consistency edges requires the compiler to relax
assumptions about the current value of variables; in effect, new value names are introduced
using ¢-functions. The semantics of wait clauses, and the more general post and wait events,
actually define precedence relations, but the consistency edges specify a weaker constraint. In
particular, if additional precedence edges are added to the graph, the scheduling opportunities
for the program are changed. Introducing additional consistency edges may not affect the
scheduling of the program; it simply reduces opportunities for optimization. Removing edges
may affect the program semantics; in practice, edges from post and wait statements should
not be removed. If we only consider wait clauses or post/wait synchronization, the semantic
distinction between consistency edges and precedence edges is slight. In an actual compiler,
both precedence and consistency edges would be needed, but for different purposes; in this
paper, we need only consider consistency edges.

Our goal is to introduce the minimal set of new value names for variables updated across
control flow and consistency edges, providing more opportunities for optimization.

As in a Control Flow Graph, certain nodes are distinguished by their function; for example,
in a CFG, conditional and loop nodes are distinguished. We distinguish nodes at the beginning
and end of parallel section and nodes containing post and wait statements introduced by
converting wait clauses. Each section has a sequence of implicit or explicit wait statements
followed by a number of sequential statements and ending in a sequence of implicit post
statements. In practice, each wait and post statement would be a distinct node, allowing the
graph to be modified between post and wait statements; our examples consolidate many of
these nodes for expository simplicity.

A fork node is either a parallel sections statement or an implicit post statement in a

section that introduces consistency edges to other waiting sections. Likewise, a parallel merge

(1)
(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9)
(10)

(11)

f =0.9
Parallel Sections
Section (4)
a =0.5
if (P) then
b = a*x*2
f =1;
else
b
endif
Section (B)
c =28
d = 3.9
if (Q) then
d = d + cx*x4
endif

a/(a+5b)

Section (C), Wait (4)

a=a-0.2
f = axb

End Parallel Sections

(a) Parallel Program

fof e

/

80 O

)
RO

1o

|
I

N

N
N

o

(b) Parallel Flow Graph

Figure 3: Example 1: Parallel Program with Wait clauses

(O86)

ON
@i@ %

—
~ - ~,

(a) Simplified Parallel Flow Graph (b) Parallel Dominator Tree

Node| 3 |4|5]| 6 7 9
Dominance Frontier | 11 | 6 | 6 | 11 | 11 | 11

oo
—_
o

=]
—_
—

(¢) Non-null Dominance Frontier entries

Figure 4: Parallel Flow Graph and Dominator Tree for Example 1

SR,

node begins with wait statements and has at least two incoming consistency edges; examples
include an individual section or an end parallel sections statement.

Figure 3(a) illustrates a parallel program with the parallel sections construct and wait
clauses. The corresponding Parallel Flow Graph is shown in Figure 3(b). Node (2) is a fork
node and (11) is a parallel merge node. The dashed edges represent consistency edges, the
other edges are sequential flow edges. Node (10) receives values from the fork node as well as
from node (6). In certain cases we can remove redundant consistency edges. In particular if
a node X has at least one incoming consistency edge and there is another path from idom(X)
to X that does not contain a definition of any variable appearing in the other path, the edge
can be trivially removed, provided another path from idom(X) to X remains. This is a special
application of a more general result, to be shown in a later paper. In Figure 3(b), this means
the edge between nodes (2) and (10) can be removed, because an edge from (6) to (10) exists,
and no variable is modified in the path from (2) to (10). The edge between (6) and (10) can
not be removed. If these trivial edge removals are not performed here, they will introduce
additional ¢-functions that will be removed by the algorithm in §4. The simplified Parallel
Flow Graph is shown in Figure 4(a).

The Parallel Flow Graph is similar to the Parallel Control Flow Graph [Wolfe & Srinivasan 91|
used in a previous formulation of parallel SSA form. However, in [Wolfe & Srinivasan 91|, par-
allel blocks, or supernodes, are distinguished from ordinary basic blocks. In the Parallel Flow
Graph, we distinguish between consistency edges and sequential flow edges and do not need
data structures to represent parallel blocks.

We can extend the existing notions of precedence, successor, dominator, immediate dom-
inator and dominance frontier to PFG’s by ignoring the distinction between consistency and
sequential control-flow edges. In the Control Flow Graph, each arc represents a path by which
information may possibly be transferred between basic blocks. The same is still true in the
Parallel Flow Graph; both sequential and consistency edges indicate the propagation of values.
In our final formulation of parallel SSA, a variable update at a merge node will only occur if

that variable is modified. Thus, the compiler is free to make assumptions about variables not

10

updated in those sections; in particular, the values may be cached in registers or other private
memory.

Figure 4(b) shows the dominator tree for the PFG in Figure 4(a). Nodes (3) and (7)
are dominated by node (2), even though they are connected by consistency edges. Likewise,
applying the definitions of §1, nodes (6) and (9) have the same dominance frontier, node (11).

In sequential programs, ¢-functions are introduced to indicate when the compiler is unable
to determine the precise value of a specific variable due to merges in the Control Flow Graph.
The ¢-functions are placed at the nodes defined by the iterated dominance frontier set; in short,
they are placed at each node where control flow merges and a value for the variable in question
is defined along one of the incoming paths.

For example, in Figure 4, the variable f is defined in nodes (1), (4) and (10). Figure 4(c)
lists the non-null dominance frontier sets for the simplified PFG. The dominance frontier of
node (4) contains node (6). A ¢-function would be introduced at node (6), because a live value
of £ could reach node (6) from node (4) or node (1). The ¢-function indicates that values may
reach along either branch of the conditional statement.

By comparison, values from all branches of consistency edges may reach a merge node. The
semantics of PCF Fortran indicate that a program is undefined if more than one value reaches
such a node. Since we only consider standard conforming PCF Fortran programs in this paper,
it would appear that the ¢-functions introduced by consistency edges would be identical to
those introduced by sequential edges. However, consider the previous case where a value is
defined along a single edge; if we place ¢-functions for consistency edges analogous to those of
sequential edges, a ¢-function would be introduced indicating that a previous value and a new
definition reach the same node. For example, the variable f is defined in node (10) and node
(1); a ¢-function is introduced in node (11) since it is in the dominance frontier of node (10).

The semantics of the parallel constructs dictate that the definition in node (10) eclipse that
of node (1). Although it is not incorrect to introduce a ¢-function in this case, it inhibits
potential optimizations. In particular, if a value is defined along one path in a parallel section,

that value should be propagated to successive sections. The compiler can use such information

11

to better optimize the program. By needlessly placing a ¢-function at a merge point for
consistency edges, inefficient code may be generated.

If we simply apply the algorithms for sequential SSA to programs with wait clauses, ignoring
the distinction between sequential and consistency edges, a number of these spurious ¢-functions

will be introduced.

4 Translating to SSA form

In his section, we show how to compute parallel SSA form for the parallel constructs discussed.
The method involves computing standard SSA form, followed by a ‘clean up’ phase where
spurious ¢-functions are removed. In a latter paper, we extend the algorithms in this paper to
handle parallel sections with arbitrary post and wait events, and non-standard confirming
programs where values are modified in unsynchronized sections.

As mentioned in §3, parallel merge points may introduce spurious ¢-functions. The distinc-
tion between a parallel merge node and a sequential merge node can be seen in Example 1.
Node (9) is a sequential merge point (corresponding to an endif statement) and (11) is a paral-
lel merge point (corresponding to a end parallel sections statement) We need a ¢-function
for d at (9) since d is defined in the if statement depending on the condition Q. However, at
(11), we do not need a merge function for the variable £ since £ will be assigned at node (10)
and only this value should reach the end of the parallel block. Using the SSA algorithms as
in [Cytron et al. 89|, a ¢-function for £ will be introduced at node (11). Therefore, we must
eliminate such spurious merge functions.

A non-determinant or anomalous update occurs if more than one value can potentially
reach a parallel merge node. Non-determinate updates may be introduced by non-standard
conforming PCF Fortran programs. Detecting and reporting such anomalies at compile time
is the topic of another paper; in this paper we treat only standard conforming programs.

Translation of standard-conforming parallel programs using wait clauses to SSA form in-

volves the following steps:

12

Variable S DF(S) | DFT(S)

a (1), (3), (10) | (11) (
(1), (4), (5) (6) | (6)
(1), (7) (11) (
), (7) i

» (8) @ |0
(1), (4), (10) | (6), (11) | (6

=IR="1EKsNE=a
—
o
—~~~
-3

Figure 5: Table showing the iterated dominance frontier corresponding to each variable in
Example 1

1. Convert the wait clauses into into the equivilent post/wait events.

2. For each variable, we compute the iterated dominance frontier set of the set of nodes, S,
that contain definitions for the variable. The iterated dominance frontier set, DF*(S), is

as defined in [Cytron et al. 89,

DFf = DF(S)
DF}, = DF(SUDF})

The dominance frontier is from the Parallel Flow Graph rather than the control flow
graph. The iterated dominance frontier set for the parallel program in Example 1 is

shown in figure 5.

3. In [Cytron et al. 89], the set DF*(S) defines the set of nodes where ¢-functions are placed
for the variable being examined. The same is true at this stage for the parallel flow graph.
While placing ¢-functions, we check if the node is a parallel merge point i.e., at least one
of the the incoming flow edges are consistency edges. In this case, we use -functions
to denote ¢-functions that occur in parallel merge nodes. All statements that apply to
¢-functions apply similarly to t-functions; we simply introduce this notation to refer
to ¢-functions occurring in parallel merge nodes. A set of nodes with ¢-functions is

maintained for later use.

13

4. We rename each variable using the standard algorithm (see [Cytron et al. 89]) such that

each use of a variable has exactly one reaching definition.

5. We remove spurious -functions; this may introduce simple assignments (e.g., f2 = f1)

that can be removed using the standard algorithm.

The algorithms to compute the dominance frontiers, place ¢-functions and to rename vari-
ables are as in the sequential case (see [Cytron et al. 89]). We record all nodes where -

functions are introduced, and then visit each node in step (5) to remove spurious ¥-functions.

4.1 Removing Spurious ¥-functions

A -function introduces a new value name to indicate that the value of variable may have
changed. Applying the standard SSA algorithms to PFG’s may produce spurious ¥-functions.
These arise when more than one value is visible at a merge point, and some subset of the values
are not definitions within the parallel code leading to the merge point.

Determining if a ¥-function is spurious involves examining the reaching definitions of each
argument of the function. We simply remove those arguments that do not correspond to parallel
updates of the variable. If the resulting -function has just one argument i.e., the variable is
updated on only one path, then the w-function is spurious and can be removed. Spurious
1-functions reduce to trivial assignments; this is done in order to preserve the SSA properties.
Such trivial assignments are later removed by dead code elimination.

A ¢-region corresponding to a parallel merge node X is a subgraph of the Parallel Flow
Graph defined by all paths from idom(X) to X. The node ¢dom(X) represents the closest node
that joins all paths leading Entry to X. If a data value reaches node X, it is either generated by
some predecessor of ¢dom(X) or in one of the paths from idom(X) to X. At least one definition
must be defined in the ¢-region, otherwise no ¢-function would have been placed at the node
X. In the following we assume the ¢-region has vertices V, and edges E, where V, and F, are

the nodes and edges that appear on all paths from idom(X) to X.

14

ag = 0
bo =0
Cop < 0
dg =0
jb = 0.9

Parallel Sections
Section (4)

a; = 0.5

if (P) then
= a1¥*2
=1

o
[y
|

. oM
N
|

= a3/ (a;+5)

f2 = ¢(f1, fo)s
bs = ¢(b1, by)
Section (B)
c1 = 8
dl = 3.9
if (Q) then
d2 = dl + c1**4
endif
ds = ¢(dy, dy)
Section (C), Wait (4)
asg = a1 -~ 0.2
f3 = as * b3
End Parallel Sections
fa = ¥(f3, fo)
az = Y(az, a1)
by = ¥ (b3, bo)
C2 P (c1, co)
ds = ¥ (ds, do)

(a) SSA Form with Spurious -functions

(b) After removal of Spurious ¢-functions

ag = 0
bo =0
Cop < 0
dg =0
jb = 0.9

Parallel Sections
Section (4)

a; = 0.5

if (P) then
= a1**2
H=1;

o
=
|

a1/ (a;+5)

. oM
Y
1]

ja:: ¢(fﬁ,fb);

bs = ¢(b1, by)
Section (B)

c1 = 8

dl = 3.9

if (Q) then

d2 = dl + c1**4

endif

ds = ¢(dy, dyi)
Section (C), Wait (4)

ag = a1 -~ 0.2

f3 = as * b3
End Parallel Sectiomns

fa=1s
as = az
by = b3
C2 = 1
dg = d3

Figure 6: SSA form of Example 1 with spurious -function

15

Theorem 1 Let v, = ¥(v1,...,vn_1) be a Y-function at a parallel merge node X,,. Let X; be

the node corresponding to the reaching definition of v; V i = 1,2,...,n-1. Then,

1. Node X; is in the ¢-region of X,, only if idom(X,) dominates X;.

2. Ifidom(X,) does not strictly dominate X; then we can remove the argument corresponding

to X; (v;) from the v¥-function.

Proof: By definition of the ¢-region of X,,, X; is a node in the ¢-region if and only if X; is
on some path from the entry point of the ¢-region to X,,. By definition of dominance relation,
tdom(X,,) dominates X;. If idom(X,,) does not strictly dominate X;, then the value v; is defined
in idom(X,) or outside the ¢-region. By definition of dominance frontier, a v-function would
have been placed at X,, only if there exists some other definition, v;, of variable v within the
¢-region, excluding idom(X,). A -function would have been placed only if there were an
incoming consistency edge, meaning that the variable v; reaches along a consistency edge to
X,,. Parallel semantics require that values be made consistent along this consistency edge.
Hence, v; must reach the parallel merge point X,,; in other words, v; will be eclipsed by v;.
Therefore, v; can be removed from the -function.

O

Once redundant value names have been removed from a -function, it may be a candidate

for removal:

Theorem 2 When the application of theorem 1 has reached a fizpoint, and if a Y -function at
a parallel merge point has exactly one remaining argument, it is a spurious Y -function and can

be removed.

Proof: By theorem 1, an argument of the t-function is removed if it is defined outside the
¢-region under consideration. If there is only one argument remaining in the t-function after
applying theorem 1 on all the arguments then the variable is defined exactly once inside the

¢-region. Since a t-function is required at a parallel merge point only if there is a merge of

16

for each Y-function, ¥; do

X < node();)

n « num-arguments (¢;)

for each argument v; of v, do
X; < node(w;)
if (¢dom(X) % X;) then

remove-argument(v;, v;)

endif
n«—mn-—1

endfor

if (n < 1) then
remove-1 (1);)

endif

endfor

Figure 7: Algorithm to remove spurious #-functions

more than one update of the same variable inside the ¢-region, this ¥-function is spurious and
can be removed.

O

Figure 7 gives the algorithm to remove spruious -functions; the algorithm uses theo-
rems 1 and 2. The function remove-argument removes an argument from the corresponding
1-function; remove-1 replaces the 1-function with a trivial assignment; node(4);) returns the
node that contains the -function, ;. The algorithm assumes knowledge of all the 1-functions
and the nodes they appear in the parallel SSA form of the program.

For example, in Figure 4(a), the idom((10)) is node (6); any value used by node (10) is
either produced in node (6) or a predecessor of node (6). The value of £ is modified in node
(4), resulting in a ¢-function in node (6). This is a standard ¢-function introduced by the
standard SSA algorithm. This value, f» reaches node (10) because section (C) has a wait
clause for section (A). No ¢-function is needed because there is a single consistency edge
reaching node (10); if the redundant consistency edge removed in §3 remained, the process in

the next example would remove it.

17

Now, consider node (11); ¢dom(11) is node (2). Figure 6(a) shows the ¢-function introduced
after the end parallel sections statement by the standard SSA algorithm. The variable f
is modified in node (10), and node (11) is in the dominance frontier of node (10), causing a
1-function to be introduced; since this occurs in a parallel merge node, a 1-function is used
and considered for cleanup. The reaching definitions of arguments to this i-function originate
prior to node (2) or in the left or right hand paths from node (2) to node (11); in particular, f3
is defined in node (10) and fo is defined in node (1). In Figure 4(b), we see that node (10) is a
child of node (2) in the dominator tree. This indicates the definition occurs in a path from node
(2) to node (11), and can not be removed from the ¥-function. By comparison, fo is defined in
node (1), which is not a child of node (2) in the dominator tree; this means the value fy is not
defined within the ¢-region, and can be removed from the t-function. This leaves us with the
assignment f; = 9(f3) which can be reduced to fy = f3; the value name f; will eventually be
renamed to f3 by dead-code elimination using a standard SSA algorithm. Figure 6(b) shows
the final SSA form before dead code elimination.

For this algorithm to be efficient, a rapid method is needed to determine parent/child
relationships in the dominator tree. Once the tree is constructed, a total ordering can be
applied. Each node, n, in the tree is labeled with its position in a left-to-right (£(n)) and
right-to-left (R(n)) pre-order traversal of the tree. Given this ordering, node z dominates
node y iff L(z) < L(y) and R(z) < R(y). After this construction, determining dominance

relationships takes constant time.

5 Conclusion

We have described the Parallel Flow Graph, a simple data structure to handle explicitly par-
allel constructs with structured parallelism. The Parallel Flow Graph is similar to the the
Program Execution Graph [Balasundaram & Kennedy 89] and the Synchronized Control Flow
Graph [Callahan et al. 90]. We have shown how to compute Static Single Assignment form
of such parallel programs using the Parallel Flow Graph by a simple extension to the stan-

dard SSA algorithms for sequential programs. The algorithms presented here differ from those

18

in [Srinivasan 91] in that they do not work on a recursive data structure and the concept of
factoring used in [Srinivasan 91] is no longer needed here.
We plan to extend this work to handle the full range of synchronization and parallel state-

ments available in PCF Fortran.

References

Alpern et al. 88 Alpern, B., We mar, M., and Zadeck, F. Detectin equality of variables in
g g
prograrins. In [POP 88], pages 1-11.

[Balasundaram & Kennedy 89] Balasundaram, V. and Kennedy, K. Compile-time detection
of race conditions in a parallel program. In Proc. 3rd International Conference on
Supercomputing, pages 175-185, June 1989.

[Callahan et al. 90] Callahan, D., Kennedy, K., and Subhlok, J. Analysis of event synchro-
nization in a parallel programming tool. In Second ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 21-30, Seattle, Washington,
March 1990. ACM Press.

[Cytron & Ferrante 87] Cytron, R. and Ferrante, J. What’s in a name? (the value of re-
naming for parallelism detection and storage allocation). Technical Report RC
12785(#55984), IBM T.J. Watons Research Center, 1987.

[Cytron et al. 89] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, K. An
efficient method of computing static single assignment form. In Conf. Record 16th

Annual ACM Symp. on Principles of Programming Languages, pages 25—35, Austin,
TX, January 1989.

[Parallel Computing Forum 91| Parallel Computing Forum. Pcf fortran. Fortran Forum, 10(3),
September 1991. (special issue).

[POP 88| Conf. Record 15th Annual ACM Symp. Principles of Programming Languages, San
Diego, CA, January 1988.

[Rosen et al. 88] Rosen, B., Wegman, M., and Zadeck, F. Global value numbers and redundant
computations. In [POP 88], pages 12-27.

[Srinivasan 91| Srinivasan, H. Analyzing programs with explicit parallelism. M.S. thesis 91-
TH-006, Oregon Graduate Institute of Science and Technology, Dept. of Computer
Science and Engineering, July 1991.

[Wegman & Kenneth Zadeck 85] Wegman, M. N. and Kenneth Zadeck, F. Constant propaga-
tion with conditional branches. In Conf. Record 12th Annual ACM Symp. Principles
of Programming Languages, pages 291-299, January 1985.

19

[Wolfe & Srinivasan 91] Wolfe, M. and Srinivasan, H. Data structures for optimizing programs
with explicit parallelism. Technical report, Oregon Graduate Institute, February
1991. To appear in the First International Conf. of the Austrian Center for Parallel
Computation, Salzburg, Austria, September 1991.

20

