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Abstract

Lower bounds are derived on the number of comparisons to solve
several well-known selection problems. Among the problems are:
finding the t Tlargest elements of a given set, in order (Wt); find-

ing the s smallest and t Tlargest elements, in order (W_ ,); and

th

s,t
finding the t largest element (Vt)' The results follow from
bounds for more general selection problems, where an arbitrary partial

order is given. The bounds for W, and Vt generalize to the case

t
where comparisons between linear functions of the input are allowed,
The approach is to show a comparison tree for a selection prob-
Tem contains a number of trees for smaller problems, thus establish-
ing a lTower bound on the number of Teaves. An equivalent approach

uses an adversary, based on a numerical "chaos" function that measures

the number of unknown relations.
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1. Introduction

The discovery of a Tinear median-finding algorithm [BFPRT]
sparked an interest in determining the exact complexity of selec-
tion problems [H,Kir,PY,SPP,Yap]. This paper derives Tower bounds
for a number of well-known selection problems, using one basic
technique.

To define the problems, consider a linear ordered set, e.q.,
{1,...,n}. A permutation of the set, (el,...,en), is given. The
problem is to find certain elements, by comparing elements e and
ej. For example, the Nt problem is to find the t Tlargest ele-
ments, in order. (Thus for t = n, the problem is to sort the input
permutation.) Other problems are:

h

V. -- Find the t*

¢ largest element. (For t = Fg%, the

problem is to find the median.)

Ut -- Find the t Targest elements, as a set. (For
t = L%%%J , the problem is to find the elements in
the upper k percentiles.)

ws’t -- Find the s smallest and t Targest elements, in

order. (For s =t =1, the problem is to find the

maximum and the minimum.)

We investigate the worst-case number of comparisons needed to
solve selection problems. For this, the function wt(n) is defiﬁed ,
as the number of comparisons needed to find the t Tlargest elements;
similar functions are used for the other selection problems. (Occa-
sionally, we use Wt(n) to refer to the Wt problem on n elements;

no confusion results from this.)



We also inveétigate two variations of the basic selection prob-
lems. In the first variation, in addition to the input permutation
(el,...,en), we are given a partial order P of known relations on
elements e;. The functions Wt(P)’ etc., denote the number of com-
parisons to solve these problems.

| In the second variation, the input is a vector of real numbers
(ei,...,en); comparisons between arbitrary linear functions of the
input are allowed. The functions wz(n), etc., denote the number of
comparisons to solve these problems.

We present Tower bounds that are currently the best known for
the following functions: wt(n), Nt(P), wi(n), W, t(n), ws,t(P)’ Vt(P),

V;(n), Ut(P), Ut(n) . The basic method is to show that a comparison
tree for a selection problem (e.g., wt(n)) contains a number of com-
parison trees for a simpler selection problem (e.g., wl(n~t+1)). An

alternate formulation uses an adversary.

2. Element-to-Element Comparions

This section derives a Tower bound for wt(n), by means of com-
parison trees. An equivalent analysis based on an adversary is given.

The adversary is then applied to the n and P versionsof V,_, U

t? Tt

and ws,t.

An algorithm for a selection problem can be represented by a

labelled binary tree called a comparison tree. Each interior node

has a label, 1i:j 3 this represents a comparison made by the

algorithm between elements e and ej. If e; < ej , the

algorithm's subsequent comparisons are represented in the node's left



subtree; otherwise, e, > ej (since the input elements are assumed
distinct), and subsequent comparisons are represented in the node's
right subtree. Each leaf node is labelled with the appropriate

answer to the problem; e.g., for W a leaf lists the indices of

£
the t Tlargest elements, in order. Figure 1 shows a comparison

tree for w2(4). The height of a comparison tree is the (worst case)
number of comparisons used by the algorithm.

A node in a comparison tree is feasible if some imput permuta-
tion Teads to it. Throughout the discussion we assume comparison
trees contain only feasible nodes. This does not restrict the
generality of the results: It is easy to see infeasible nodes can
be eliminated without increasing the height of the tree. So a Tower
bound on the height of a tree with all nodes feasible holds in
general.

We first examine comparison trees for wl. These trees find

the maximum element.

n-1

Lemma 1: A comparison tree for wl(n) has at least 2 leaves.

Proof: In a sequence of comparisons that determines the maximum
element, every non-maximum element compares low at least once. Thus
at Teast n-1 comparisons are needed. So any path in the comparison
tree from the root to a leaf contains at least n-1 interior nodes.

If all paths to leaves contain exactly n-1 interior nodes, there

n-1

are 2 Teaves; otherwise there are more.

Now we analyze W by showing a comparison tree for wt(n)

t9
"contains" a Targe number of comparison trees for wl(n-t+1).



Theorem 1: For any t, n, where 1 <t <n,
wt(n) >n -t + [1g n(n-1)...(n-t+2) 1. *
Proof: Let T be a comparison tree for Wt(n). A leaf in T

Tists the indices of the t 1largest elements. We show every sequence

2n_t lTeaves as the indices of

of t-1 indices is Tisted in at least
the t-1 Targest elements. This implies the Theorem. For there are
n(n-1)-...-(n-t+2) sequences of indices, whence at least
n(n-l)-...-(n—t+2)2n't leaves. Any binary tree with % Tleaves has
height at least [1g &7. This gives a lower bound on the height of T,

which is the desired bound on wt(n).

So fix a sequence of t-1 indices. For ease of notation, let
the sequence be n,n-1,...,n-t+2. Imagine these are the indices of
the t-1 Tlargest elements (in order), i.e., for any i, j, n-t+2 < i < n,
1<j=n, if i>7J thene, >e..

1 J
these relations. Specifically, suppose a node x compares some

Prune T to a tree S, using

hp n-t+2 < i < n. One of the above relations gives the outcome of
the comparison. Replace x by the son for the appropriate outcome.
(This eliminates x and one of its subtrees.) S results from making
all such replacements. For example, Figure2shows S 1if T is the
tree of Figure 1, and the sequence of largest indices is 4.

Now we examine S. Let e be a permutation of 1,...,n-t+l,
e = (el"”’en-t+1)' Form f, a permutation of 1,...,n, by making

~

N,...,n-t+2  the indices of the t-1 Tlargest elements, i.e.,

* Throughout this paper, "1g" denotes logarithm to the base 2.



f= (el""’en-t+l’ n-t+2,...,n). It is easy to see e Tleads to

the same Teaf in S as f Teads to in T.

This implies a leaf in S Tists n,...,n-t+2 as the t-1 Tlarg-

est indices. So the Theorem follows if we show S has at least

2n—t lTeaves. A Teaf 1lists the index of the tth largest element of

f. This is the index of the Targest element of €. So S (with a

minor modification of labels) is a comparison tree that finds the
n-t

maximum of n-t+l elements. Now Lemma 1 shows S has 2 leaves, [J
Let wt(n) be the bound of Theorem 1, wt(n) =n-t
+ [1g n(n-1)...(n-t+2)7. Now we examine its accuracy.
Corollary 1: For any t, n, 2 <t <n,
(a) wt(n) < wt(n) < wt(n) +t -2
Mg n] - =
(b) forn=2 t-1+t - 2, wt(n) = wt(n).
Proof: The algorithm of repeated tree selection [Kis;Kn,
n
p.212] shows W (n) <n - t+ ] [1g i1. To get w,(n) from
i=n-t+2
, o n n ;
this upper bound, we just change J [1g i1 to | } 1g i .
i=n-t+2 i=n-t+2

For (a), note the definition of [ ] guarantees this change decreases
the value at most t-2. For (b), note if the condition on n is

true, there is no change in value. 0

Part (a) shows wt(n) is exact for t=2; 1t is obviously
exact for t=1. (This result was obtained previously by Kislitsyn
[Kis].) The hypothesis of (b) holds when n is a sufficiently large

power of 2. Thus for any t, wt(n) is exact for infinitely many



values of n. However it is not always exact. For example, wn(n)
is the information-theoretic bound on sorting, and so is off by 1
for n=12 [W;Kn,pp.188-193]. Also it can be shown w3(6)=9, whereas
w3(6)=8 [M]. Nonetheless, the gap of t-2 given by part (a) does
improve the previous gap of over (t—l)2 [PY].

Now we express the derivation of Theorem 1 in terms of an ad-
versary, and then apply the adversary to other selection problems.

We could obtain the same results by arguments similar to Theorem 1
[FG]. We use the adversary for convenience and because of possible
improvements it suggests.

The adversary is based on a function called "chaos" that measures
the relevant information unknown to the algorithm. We represent the
information known to the algorithm by a partial order P on elements
CERRRTL P contains all relations e, > ej that have been indi-
cated by comparisons. For example, Figure 3 is the Hasse diagram of
P when the Teftmost interior node of Figure 1 (labelled 4:2) is
reached. In Figure 3, a downward edge from i to j denotes e; > ej.

An element e 1is méxima] in P if there is no element f, f > e.
The function m(P) gives the number of maximal elements in P. In
Figure 3, m(P) = 1.

Next we define the orders that are "consistent" with P. Let a

be a 1-1 assignment, defined on some subset of {el,...,en} with values

in {l,...,n}. Call a consistent with P if it can be extended to a

1-1 assignment a, defined on all of {el,...,en} with values

{1,...,n}, such that e > f implies a(e) > a(f). The set Ak(P)

contains all consistent assignments defined on k elements of

fes..ohe s with values {n,n-1,...,n-k+1}. Also, let a-P denote



the partial order formed by removing all elements that a s defined
on. In Figure 3, if a(el) = 4, a(e4) = 3 and a(e2) = 2, then
aeA3(P), and a-P contains the single element es.
Now define the chaos in P as

a-P)-1

where t s an integer in 1 <t < n. The term Zm( is the

number of leaves in a comparison tree that finds the tth

largest
element, given P and the t-1 Tlargest elements specified by a.
Hence Ct(P) corresponds to our bound on the number of leaves in a
comparison tree. For example, in a partial order PO containing no
relations, the chaos is maximum; each of n(n-1)...(n-t+2) possible

assignments is consistent, so

(P = n(n-1)...(n-t+2)2""t

(1) C
The chaos is minimum in a partial order Pf where the t Targest

elements are known (see Figure 4); here
(2) c, (P

By convention if P is not a partial order, Ct(P) = 0.

A basic fact is that total chaos does not decrease when a com-
parison is made. More precisely, suppose elements e and f are
compared. Let P be the partial order before the comparison. Define
P_ as the order P with the relation e > f added. (Note P, s
a partial order, unless e > f 1introduces a cycle.) Define P_

similarly.



Lemma 2: Ct(P) < Ct(P>) +fCt(P<).

Proof: If only one of P_, P_ is a partial order, say P_,

then it is easy to see Ct(P>) = Ct(P) and the Lemma holds. So assume
both P_ and P_ are partial orders. Consider any a ¢ At—l(P)'

We will show

(3) Zm(a.P) < Zm(a'P>) + Zm(a.P<)

(If a 1is not consistent with P_ then om(a-P )

is 0, by conven-
tion; similarly for P_). Inequality (3) suffices to prove the Lemma,
since multiplying by 2'1 and summing over all a ¢ At—l(P) gives the
desired inequality.

To show (3), first suppose a 1is consistent with only one out-
come, say e > f. Then af(e) 1is defined, e 1s not in a-P, a-P>=
asP, and (3) follows.

Next suppose a 1is consistent with both outcomes. The relation
e > f can decrease the number of maximal elements in a-P by at most
1, 1i.e., m(a'P>) > m(a-P)-1. Similarly m(a-P<) > m(a-P)-i. These

two inequalities imply (3). A

This non-decreasing property of chaos is the basis for our

adversary. (An adversary, also called an oracle, is a rule specifying
the outcome of a comparison. It tries to force the algorithm to make
“a large number of comparisons.) Suppose the partial order P repre-

sents the relations known, and the algorithm compares elements e and

f. The adversary specifies the outcome according to the rule:
(*) If Ct(P>) > Ct(P<)’ then e > f. Otherwise, e < f.

If (*) chooses e > f, the P> is the new partial order, and by Lemma

2, Ct(P) < 2Ct(P>); similarly if e < f . A similar statement holds if



(*) chooses e < f . Thus if P, 1s the partial order after the algo-
rithm makes i comparisons, Ct(Po) < 21Ct(P1). Hence if f 1is the
number of comparisons to solve a problem using the adversary,

(4) f2 Mg (¢ (P)/C,(P))T .

Note (4) is a property of the adversary, and holds for any selection
problem and algorithm.
Now it is easy to analyze selection prob1ems’where a partial

order P is given.

Theorem 2: For any P, t, n, where P s a partial order on n

IA

elements and 1 < t n,

(a) W, (P) = T1g C.(P)T 5
(b) Vi (P) = [1g(C(P)/(t-1)1)T ;
(c) U (P) = Mg(c,(P)/ENT .
Proof: Applying the adversary to each problem, (4) holds with

P_=P. It is only necessary to calculate ¢

o (Pf) and substitute.

t

For wt(P), the final partial order Pe s shown in Figure 4,

and (2) holds. Thus (4) implies part (a).

h

For Vt(P), Pf is shown in Figure 5(a): the tt largest

element e 1is known to be less than t - 1 elements and greater
than n - t elements. For a ¢ At—l(Pf)’ a-Pf has only one maximal
element, e. There are at most (t-1)! possibilites for a (pos-
sibly fewer, since some permutations of the t - 1 elements larger

(P2) < (t-1)!. Sub-

than e may be inconsistent with Pf). Thus ¢ f) <

t
stituting in (4) gives part (b).
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For Ut(P)’ Pf is shown in Figure 5(b): t elements are

known greater than the remaining n - t. If a e At_l(Pf),ng

contains exactly one maximal element, one of the t Targest

.F

elements. There are at most t! possibilities for a. Thus

C (Pf) < t!l, and part (c) follows. 0

Most previous bounds on selection functions do not apply to
arbitrary partial orders. However Floyd [Kn,p.219,ex.6] has complete-

ly determined WZ(P)’ as follows: If P has m maximal elements,

th

where the j maximal element is immediately above Qj elements in

m
the Hasse diagram, then WZ(P) =m- 2+ [19.2 2*31 . Theorem 2

gives an alternate proof of the lower bound part of this equality:

th

There are m consistent assignments, the j one having

m-2+9 .
12 3, and Floyd's

Hi~13

m- 1+ Qj maximal elements. Thus Ct(P) =
J
lTower bound follows.

Now we specialize Theorem 2 to the standard W_, V., and Ut

t’ 't
problems. When P contains no relations, the chaos is given by (1).
Substituting in Theorem 2 gives Theorem 1 for wt(n), and also the

following bounds.

Corollary 2: For any n, t, where 1 <t <n,

Vi(n) >n -t + g (t?1)1 :

‘ n
Ug(n) =n -t + [g((Z)/ENT . O
Vt(n) has been extensively studied. Our bound is stronger than

several others over large regions ([H,PY]). However it can be %-t

smaller than Kirkpatrick's bound [Kir]. For the interesting case of
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the median (t=[n/27), our bound is approximately %41, compared
with Yap's bound of %%n [Yap]. Similar remarks apply to Ut(n).

The above results are special cases of a bound for the General
Partition Problem P(il,...,ik). This problem was 1ntroducei by
Yap [Yap]. We are given a set of n elements, where n = .Z i.,
and must find the set of il largest elements, 12 next 1g:éest
elements, ..., ik smallest elements. So for example the wt(n)
problem is P(1,...,1,n-t), where there are t 1's. Using the chaos
function Cn"ik in (4) gives

n

(5) P(iqseeesi) = 1y + [1g (11,12,...,1k} /(3,07
A similar bound holds for the General Partition Problem when we are
given an inital partial order.

This bound is superior to one derived from the information-
theoretic bound on sorting [DM]. Let S(n) be the number of compari-
sons needed to sort n elements, so S(n) = [1g n!]. Since an algo-
rithm for P can be used as the first step in a sort of n elements,

we have

S(i.).

P(il,...,ik) > [1g n!l - £ 545

J

1)

Subétituting an upper bound for S(ij) 7giveskthe desired Tower bound on
P. However, since S(ij) > [1g 1j!1, it is easy to see such a lower
bound is at most [1g(11,.?.,1k)], which is no larger than the right-
hand side of (5). (The bound (12) below is often better than (5).)

We turn now to WS This problem involves both Targest and

ot
smallest elements, so for a good bound we must modify the definition
of chaos. Pohl's proof that wl 1(n) = [3411 - 2 [Po] motivates the

definition.
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An element e s minimal if there is no f, e > f. So the maxi-
mal and minimal elements e divide into three classes: isolated (no
comparison involves e, i.e., e is both maximal and minimal); proper

maximal (e is maximal but not minimal) and proper minimal (e is minimal

but not maximal). Define functions that count the number of elements in
each class: is (P), max (P), and min (P) are the number of isolated,
proper maximal, and proper minimal elements in P, respectively.

Define the set Ai(P) to contain all consistent assignments

defined on j + k elements of {el,...,en} with values 1in
{1,...,3} v {n-k+1,...,n}.

Finally to define chaos, set
mm (P) = max (P) + min (P) + %--15 (P) - 2,

_ (a-P)
Cs t(P) _ omm(a

For example, if the partial order P0 contains no relations,

§--(n—s-t)+1
P) = n(n-l)...(n—s—t+3)22

If in the partial order Pf the s smallest and t Targest elements

are known, then
(7) Cs,t(Pf) =1 .

Now we show this function has the non-decreasing property.

Lemma 3: Cs,t(P) S‘Cs,t(P>) + Cs,t(P<) .
Proof: As in Lemma 2, it suffices to show that for any
a e AP,

t-1
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(8) om(a-P) _ ,mm(a-P ) . mm(a-P )

L

where a s consistent with both partial orders P_, P_. Without

loss of generality, suppose
(9) mm(a-P<) < mm(a-P>) .

Now welinvestigate how mm can decrease going from a-P to a-P_.
The relation e < f can change e's class, thereby decreasing

mm. We classify the possible changes below. For each change, we give

e's original class in a-P, followed in parentheses by the decrease

in mm due to the change in e's class.

(1)  isolated (3) ,
(ii)  proper maximal (1),

(ii1) no change.

For examp1e in (i), e 1s isolated in a-P; in a*P_, e is propef
minimal; so is decreases by 1 and min increases by 1, giving a
net decrease of %— in mm.

Similarly a change in f's class, due to the relation e < f,
decreases mm as follows:

(iv)  disolated (%—) ,

(v) proper minimal (1) ,

(vi) no change.

Note any of (i)-(iii) can occur together with any of (iv)-(vi).
We show below that in each case, (8) holds.

First suppose the changes in class together decrease mm by
2. Thus (i1) and (v) hold. Clearly the relation e > f does not

change mm, di.e., mm(a-P) = mm(a-P>), and (8) follows.
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Next suppose the changes decrease mm by %~. Thus (i) and
(v),or (ii) and (iv), hold. By symmetry, suppose the former. When
e >f 1is added to P, e changes from isolated to proper maximal,

while f does not change; thus mm decreases by %—. So the right-
3 1

hand side‘of (8) is (2 2, 2"3?)2mm(a-P), larger than 1.06.2™M(aP)
Thus (8) holds.

In all other cases, the changes in class together decrease mm
by 1 or less. By (9), the right-hand side of (7) is at Tleast

(a-P)-l.

2, oM Thus again (8) holds.

Now we define a demon by the (*) rule. Since Lemma 3 is the
analog of Lemma 2, the analog of (4) holds for CS £ Thus we have

the following bounds.

Theorem 3: For any s, t, n, where s,t =1, and s + t <n,
W, L(n) = T3 (n-s=t) + 1+ 1g n(n-1)...(n-s-£43)] .

If P is a partial order on n elements, then

v

W t(P) g Cs’t(P)W .

Proof: Substitute (6) and (7) in the analog of (4) .
Aside from Pohl's result, the only other bound on ws {n) is

Floyd's upper bound [Kn,p.220, ex.17],

n n
WStM)s(%n]-s-—t+ ) [1g i1+ ) Mg i1 .
? : i=n-s+2 i=n-t+2

This can be slightly improved, as follows.
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Lemma 4: For any s,t,n, where s,t > 1, s + t < n,

3 d :
We o(n) < T5nl -s-t+ 7§ Mg 17
s>t 2 i=n-s-t+2
i#Fn-min(s,t)+1
Proof: An algorithm for this upper bound is similar to Floyd's.

It uses repeated tree selection, the method used for wt(n) [Kn, p.212].

Without loss of generality, assume s < t. First find the s smallest

n
elements by tree selection. This uses n - s + y [1g i1 com-
i=n-s+2
parisons. Then find the t 1largest elements from among the remaining
n-s
n-s elements. This uses n-s-t+ ) [1g i1 comparisons.
i=n-s-t+2

However at least L%;l— s of these comparisons are made in the first
tree selection and need not be repeated. The total number of compari-

sons is thus given by the Lemma. il

Now we estimate the accuracy of Theorem 3. Let the lower bound
on Ws,t(n) be Ws,t(n) = [%-(n—s—t) + 1+ 1g n(n-1)...(n-s-t+3)7.
Note Wy 1(n) is identical to Pohl's bound and so is exact. If
s+t =n, W, t(n) is the information-theoretic bound on sorting.

In general we have the following.
Corollary 3: For any s,t,n, where s,t >1, s+t <n,

g ¢(n) = Wg L (n) < w () + 15 (s+t)) - 3.

Proof: First note %~(n-s-t) +1 > f%ﬂn] - L%~(s+t)} . Thus

(10) ws,t(n) > f%ww] - s -t +[1g n(n-1)...(n-s-t+3)] - L%—(s+t)]
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Further,

n n

(11) T1g n(n-1)...(n-s-t+3)]+ s + t - 3= ) Mg i1= ) Mg i] .
i=n-s-t+3 i=n-s-t+2

i#Fn-min(s,t)+1

Combining (10), (11) and Lemma 4 gives the desired upper bound on

ws’t(n). 0

The chaos function CS t gives another bound on the General
Partition Problem P(il,...,ik), for k = 3. Choose j in 1< J <k,

and set s = il S R S

510 t =4, + ...+ i then (4) gives

j*l

. . 3. n . .
(12)  P(ipse.ndy) = [7 Ty il ) Uye) ]

The best bound is achieved when 1j = max(iz,.. If

iy _q)
1j > §~max(i1,ik), then the above bound is usually better than (5).

For example in the interesting special case 11 = ... = 1k = %

(and k = 3), the Tower bound is n(lg k + g%~) + 0(1g n).

3. Comparisons with Linear Functions

Much work has been done on sorting and selection problems when
the input is numerical, and comparisons involve functions (in particu-
lar, linear functions) of the input [DL,Fr,Ra,Re,Sp,Yao]. Lower
bounds in this more realistic model of computation can be used to give
plausible arguments for the optimality of algorithms in seemjng]y
unrelated areas [e.g., SH]. This section extends the bounds of Séction
2 to allow c0mpariscns‘invo]v1ng linear functions. The problems con-

. - * *
sidered are Wt(n), Vt(n), and Ut(n).
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Suppose an algorithm takes as input a vector of real numbers

g = (el,...,en), and solves a selection problem by making comparisons

~

involving Tinear functions of e. We represent the algorithm by a

labelled ternary tree, called a linear function tree. Each interior
n

node is labelled with a Tinear function, 2(e) = rjej+s (rj and
j=1

s are real numbers.) The subtrees of the node correspond to the

possibilities 2(e) > 0, 2(e) = 0, and 2(e) < 0. Each leaf is
labelled with the answer to the selection problem.

A node in a linear function tree is feasible if some input
vector leads to it. The following result shows it suffices to con-

sider only feasible nodes.

Lemma 5: For any linear function tree T, there is a linear
function tree F for the same problem, with height at most that

of T, and all nodes feasible.

Proof: We first show that in T, a feasible interior node
has either one or three feasible sons. To do this, let x be a
feasible node with two feasible sons. We show the third son is
feasible.

Let f and g be input vectors leading to two feasible sons
of x. It is easy to see for some ¢ > 0 and every & in
-e<8<1+e, thevector h=ef + (l-8)g Tleads to a son of x.
Let 2 be the label of x. If o(f) >0 and z(g) = 0, then
2(h) <0 fore <0; if 4(f) >0 and 2(g) <0, then 2(h) =0

for some 6 1in 0 < 8 < 1. These two cases imply that in general,

all three sons of x are feasible.
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To construct the tree F, prune T as follows: Repeatedly
remove a node with only one feasible son, and replace it by that son.

It is easy to see F has the desired properties.

In dealing with linear function trees, it is useful to consider

the reduced tree ([Yao]). This tree is formed by removing all sub-

trees for outcomes 2(e) = 0; so an interior node has two sons, cor-
responding to 2(e) < 0 and 2(e) > O.
Now we prove the analog of Lemma 1 for comparisons involving

1inear functions.

Lemma 6: A linear function tree for W?(n)' has at Teast 3”‘1

leaves, and its reduced tree has at least 2n-1 Teaves.

Proof: Reingold [Re] shows by Tinear algebra that if a leaf
is feasible, its distance from the root js at least n - 1. Lemma 5
shows we can assume all leaves are feasible. The Lemma follows

easily. 0

The bound on wz(n) is analogous to Theorem 1.

Theorem 4: For any t, n, where 1 <t <n,

wz(n) =n-t+[1g n(n-1)...(n-t+2)7 .

Proof: Let T be a linear function tree for w:(n), and let
R be its reduced tree. It suffices to show R contains
n(n—l)...(n—t+2)2n”t leaves, since R 1is binary and is included in

T. To do this, we show (as in Theorem 1) every sequence of t-1 in-

Zn_t

dices is listed as the t-1 Targest indices in at least leaves.

¢

Since there are n(n-1)-...-(n-t+2) sequences, the Theorem follows.
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For ease of notation, let the sequence of t - 1 Tlargest indices
be n,n-1,...,n-t+2. Prune R to S, a reduced tree for an input

vector (el""’en—t+1)’ as follows. Suppose an interior node x

n
has Tabel %(e) = ) rjej+s, where some coefficient rj with

j=1
J=zn-1t+2 1s non-zero. Let k be the Targest index for such a

coefficient. If re > 0, replace x by the son corresponding to
2(e) > 0. Similarly if Py < 0, use the son for 2(e) < 0. Repeat
this for each such node x. The resulting tree is S.

Consider an arbitrary vector = (el”"’en—t+1)' If M is

2 -
t 1)

e
sufficiently large, the vector f-= (e MMM

1> Cnot41
leads to the same leaf in R as e leads to in S. (M 1is easily

computed as a function of max{leil,lrj|,|s|}, and min{lrjl rj¢0}.)
The label of the Teaf in R Tists the t Tlargest elements of

f. Thus a leaf in S 1ists n,...,n-t+2 as the t - 1 Tlargest

th

indices. The t Targest index of f s the largest index of e.

Thus S is essentially a reduced tree that finds the largest of
n-t+1 elements. Lemma 6 shows S contains Zn't leaves, as

desired. 0
The bound on U:(n) is analogous to Corollary 2.
Theorem 5: For any t,n, where 1< t < n,

Ui(n) = n -t + Tg((1)/0)1 .

Proof: Let R be a reduced tree for U;(n). It suffices to
show each set of t - 1 indices is included in the set of t Tlargest

indices in at least Zn't leaves. For there are ( n ) sets of
t-1
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t - 1 indices. A given leaf is counted for at most t of these

n

t_1)2n't/t leaves. This implies

sets. So there are at least (
Theorem 5.

For ease of notation let the set of t - 1 indices be
{n,n-1,...,n-t+2} . We proceed as in Theorem 4, pruning R to a
reduced tree S for Ni(n-t+1). (The sequence  (e;,...

w2, mthy )

’en—t+1)

corresponds to Then S contains

(egsvvese 411>

on-t Teaves, as desired. 0

The bound on Vz

ment below shows V:(n) > Uz(n), a fact first observed by Yao [Yao].

(n) s also analogous to Corollary 2. The argu-

Theorem 6: For any t,n, where 1 <t <n,
* n
Vt(n) >n-t+ ng(t_l)T .

Proof: Let R be a reduced tree for V*(n). A leaf of R

t
specifies the tth largest index. We show that in addition, the

set of t - 1 Tlargest indices is known. (Note from Figure 4 this is
true for Vt(n).) This suffices to prove Theorem 6, since it implies
there are 2n—t leaves for each of the possible (tTI) sets of t -1
largest indices. (The argument is analogous to Theorem 5.)

To show the t - 1 Targest indices are known, we argue by con-
tradiction. Let y be a Teaf of R. For ease of notation, let 1

th

be the label of y, i.e., e is the t largest element in a vector

leading to y. Let f and g be vectors leading to y, whose sets

of t -1 Targest indices differ. Again for ease of notation,

assume fl < fz, 91 > 9o-
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For every 6 in 0 <6 <1, the vector h = of + (1-08)g

~

leads to y. Let ¥ be the unique value of 6 in 0 < 6 <1 where

the first two components of h agree, h1 = h2. For ¢ < ¥, h, > h

1 2’

SO h2 is not one of the t - 1 Tlargest elements. It is easy to see

that for 6 = v, there are t - 1 elements hi’ i# 1,2, with

value hi > h, = h2. These t - 1 elements hi’ and also h2, can

1
be increased slightly so each is greater than hl’ and the resulting
vector h' still Teads to y. (Note all comparisons on the path
leading to y have outcomes > or <.) But hi is not the tth largest
element of h'. Thus tree R gives a wrong answer. This is the

desired contradiction. 0

Note if the tree is not reduced, the t - 1 Targest indices are
not known at a leaf. For example, the median of (el,ez,e3) can be
found in one comparison if 2e1 -8y - ey 0. However it is not
known whether e, or e, is the Targest element.

The only other bound on any of these linear selection functions

is due to Yao [Yao],

V;(n) =n+t-2, for t <n/2.

~ Theorem 6 is superior for small t; VYao's bound is better at the
median, by a lower order term 0(1g n).

Theorems 4-6 can be extended to get bounds analogous to Theorem 2
for w;(P), U% (P), and Vz(P). A more interesting selection problem
is when, instead of P, we are given a collection of relations,
2(g) > 0. It may be possible to define a chaos function for this
problem, thus obtaining a Tower bound. However we have not been able

to carry out this approach. Also open is the problem of finding a

*
good bound on ws,t.
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Figure 1:
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Figure 5:
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A comparison tree for W,(4).

o

The tree of Figure 1 pruned so 4 is always the maximum
element.

The Hasse diagram for the leftmost interior node in
Figure 1.

Pf for the Wt problem: The vertical chain has t
elements.

(a) Pf for Vt: The top set has t - 1 elements,
the bottom n - t.

(b) Pf for Ut: The top set has t elements, the
bottom n - t.
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