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Multiscale Landform Characterization for Land Use Evaluation using Fuzzy Sets 

Thesis directed by Assistant Professor Stefan Leyk 

  

   

        A multi-scale geomorphometric landform model was created through the use of fuzzy 

semantic import models and fuzzy overlay to measure distribution of landforms within parcels of 

the Conservation Reserve Program in a portion of the Delaware River Sub-basin in Northeast 

Kansas.  Different fuzzy logic operators (intersect, algebraic mean, and fuzzy gamma) were used 

to test the impact of different model mechanisms on the resulting distributions of crisp and fuzzy 

membership values, and classification uncertainty measured by entropy values.  Across scales 

(900 m
2
 to 16,900 m

2
 window sizes), only one crisp class (drainages) showed an optimal scale 

for detection area.  The statistical distribution of fuzzy membership values were significantly 

different between the same classes derived from different overlay operators, but this had limited 

impact on the agreement between crisp landforms derived from the three operators at a single 

scale.  Within each pairing of overlay operator and scale, the landform classes backslopes and 

flats had the highest proportional representation of classes at most entropy levels  (0.95, 0.90, 

0.85, and 0.75) except for locations within the single-highest entropy level (0.99), where the 

class proportions were more variable.  This is significant, as both of these classes were dominant 

at different scales (backslopes at finer scales, and flats at coarser scales) within CRP Parcels.  

The fuzzy and multi-scale approach provides flexibility in assessing class-level uncertainty that 

had been previously unaddressed in the use of geomorphometric systems for mapping, modeling, 

and applied management applications. 
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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 Project Summary 

 

        Within landform taxonomies derived from geographic information systems, uncertainty 

exists as a result of three primary mechanisms.  First, landforms are a scale-specific 

phenomenon, and the range of surface measurements used to parameterize a location, and thus 

the extent of landform objects and classes changes with changing scale.  Secondly, because 

landforms are derived from data in the form of continuous fields, such as elevation, representing 

landforms as crisp entities assumes all important change occurs at the boundary of a specific 

class or object and ignores gradation and transitional states in the landscape.  Finally, landforms 

are defined by linguistic concepts, and the semantics that define them, such as rolling, flat, or 

hilly or inherently vague, and can vary significantly between different paradigms. 

In this thesis, a method is developed to evaluate spatial positioning of patches of conservation 

easement programs based on the underlying morphometric classification, which allows the 

estimation of relevant metrics such as erosion potential.  It incorporates a multi-scale approach to 

derive landform classes based on differential geometry and Fuzzy Set theory in order to examine 

the stability and scale-dependence of the analysis, and account for the afore-mentioned 

uncertainties present when deriving landform taxonomies. Fuzzy sets account for inherent 

uncertainty in defining semantic morphometric classes by assigning membership degrees on a 

continuous scale.   Different semantic fuzzy constructs based on terrain attributes are overlain to 

create fuzzy semantic landform classes.  Change trajectories between the resultant classifications 

are evaluated through cross-tabulation matrices, similarities between fuzzy membership values 
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are measured through the Wilcoxon ranked-sum test, and variance and classification ambiguity 

are measured through Classification Entropy.  Such semantic models based in geomorphometry 

are potential tools to evaluate conservation programs with regard to distributions of landforms, 

and the potential impact resulting from changes in the extent and distribution of conservation 

areas.  This method of exploring landform patterns could become the basis for more advanced 

decision-making regarding enrolments in such programs. 

        The method is demonstrated using data from the Conservation Reserve Program, a 

voluntary land retirement program managed by the Farm Services Agency (F.S.A.) of the United 

States Department of Conservation (U.S.D.A.).  Since its inception in 1986, the program has 

grown to more than 34 million acres nation-wide, protecting and enhancing a variety of 

ecological services.  Over the next five years, over 21 million acres are due to expire.  These 

potentially huge conversions of land cover change would have significant effects on natural 

resource health.  Semantic knowledge of where conversions would occur, and subsequent 

potential for erosion, sedimentation, and nutrient loss would aid in forecasting landscape-scale 

impacts of land cover change. 

        Previous authors (Arrell et al., 2007) have suggested that within landform classification, 

high confusion or entropy indices, indicating similarity between two or more landform classes, 

could represent transitional areas of the landscape.  Thus, transitional locations with a high 

degree of confusion may be understood as potentially susceptible parts of the landscapes, or 

areas with high misclassification potential in landform taxonomies. This research project 

supplements and extends previous research by focusing the fuzzy morphometric analysis on a 

single categorical best management practice (BMP) designation, and testing the impact of 

varying spatial scales on the spatial properties of the semantic landform classes. 
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The goals of this thesis are to investigate the following research questions: 

 

1) How significantly do the semantic geomorphometric classes change with scale?  Is one 

class more stable than others?  How does terrain attributes impact the changes? 

  

2) How do different fuzzy logical operators impact final crisp classifications?  How similar 

or dissimilar are the distribution of fuzzy membership values for different operators used 

for fuzzy overlay? 

3) Do spatial locations of high entropy represent transitional states between semantic 

geomorphometric classes?  Are high degrees of entropy related to specific classes? 

 

4) Based on 1-3, what are the implications for application of multi-scale geomorhpometric 

mapping to land use management and pedological and vegetative mapping?? 

 

1.2 Project Scope 

 

        To derive a system of simplified landform classes applicable across scales and regions from 

which basic mechanistic processes and physical soil properties could be inferred, a six-class 

system was derived (Speight, 1990; Qin et al., 2009).  To do so, (1) terrain attributes were 

calculated using a second-order polynomial (Evans, 1972) and converted to fuzzy semantic 

constructs (Burrough et al., 1992), which describe the characteristics of semantic landforms, (2) 

fuzzy overlay was carried out to develop semantic fuzzy representations of each landform class 

across multiple window sizes, and (3) iteratively defuzzified landform regions were derived to 

examine spatial stability of resulting classification across scales for the spatial hierarchies pixel, 
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patch, and semantic-class.  The scales examined in this study ranged from the data resolution (10 

m) to the maximum window size (100 – 200 m) suggested for capturing in-hillslope variation 

(MacMillan and Shary, 2009) which is appropriate for the described study to be able to describe 

the variation in geomorphometric landform distribution within singular agricultural easement 

parcels whose average size is .072 km
2
. 

        To overcome limitations in Classic Set theory, which restricts memberships to a 1 or 0, 

fuzzy set theory assigns the membership of a location to a range of values more suitable for 

dealing with uncertainty in spatial topographic data.  Semantic import models based on first-

order polynomials (Burrough et al., 1992; Robinson, 2003) were utilized to convert terrain 

attributes to fuzzy membership values on a continuous scale [0,1], in order to develop the 

corresponding semantic constructs for landforms.  Within each model, central concepts were 

based on existing definitions; parameters and dispersion indices were taken from previous 

models and the statistical distribution of the terrain attributes over the study area to maintain a 

degree of generality of the approach.  For each terrain attribute, multiple semantic constructs 

were derived to describe the relative surface shape and landscape position of each location 

(pixel).  

        Semantic representations of landform classes were created for each spatial scale by 

combining surfaces of semantic constructs in a fuzzy spatial overlay operation. Different fuzzy 

operators were tested, such as fuzzy intersection (MIN operator), algebraic mean, and fuzzy 

gamma coefficients (Robinson, 2003) to produce 6 surfaces, each representing one fuzzy 

semantic landform class (crest, shoulderslope, backslope, footslope, flat, and drainage).  

        For each spatial scale the degree of classification stability was measured by calculating the 

classification entropy.  Low values of entropy indicate that there is one dominating class; high 
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values of entropy indicate there are at least two classes of similar high membership at the same 

location, thus this location is more ambiguous (Wood, 1996; Burrough et al., 1997). The stability 

of memberships of each location was tested based on the distribution (spatial and statistical) 

across scales. 

        Changes in spatial distributions of semantic landform classes (fuzzy and crisp) at the three 

spatial hierarchies will be examined across scales to examine the stability and scale-dependency 

of the final classification. The highest amount of stability and least amount of uncertainty was 

expected within crests and highest areas in the landscape, but the degree of flux across scales is 

unknown.  Since CRP enrollment occurs across physiographic regions, a generic model based on 

land-surface parameterization could be an adaptive tool for multi-scale assessment to expand 

pixel-based classification and identify semantic classes in landform taxonomies that have high 

classification uncertainty.   
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CHAPTER II 

BACKGROUND 

 

2.1.        The Conservation Reserve Program 

 

2.1.1     Background 

 

        The Conservation Reserve Program (CRP) was established by the U.S. Congress through 

the Title XII of the Food Security Act of 1985.  The program is administered by the Farm 

Services Agency (FSA) of the U.S. Department of Agriculture (USDA).   The program was 

authorized during a period when the United States had excess supplies of wheat and feed grains 

(Secchi et al., 2009) after the expansion of agricultural exports in the 1970s skyrocketed to 

record levels and producers responded by bringing additional land into production (Zinn, 1997).  

Excessive rates of erosion, excess capacity, and insufficient markets resulted when the boom 

ended.  The program‘s primary goal is to reduce soil erosion by maximizing the amount of 

sensitive and highly erodible cropland taken out of production.  Secondary objectives are to 

protect the nation‘s long-term capability to produce food and fiber, reduce sedimentation, 

improve water quality, create wildlife habitat, control production of commodities, and provide 

financial support to agricultural producers. Benefits of the CRP have included erosion control, 

enhanced wildlife habitat, reduction in surplus commodities, and farm income support (Dao, 

2000).  Most often the program has been credited with substantial reduction in wind and water 

erosion of marginal croplands (Moore and Nieber, 1989). 
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         CRP  works as a voluntary program in which farmers agree to temporarily retire land from 

agricultural production in exchange for annual rental payments and cost-share assistance from 

the federal government (Ferris and Siikamaki, 2009).  It is unique in that it seeks limited-

duration conservation easements rather than the outright purchase of land.  The initial program 

put aside 14.7 million acres nationally, and was eventually capped at 36.5 million acres.   Under 

the initial guidelines, a farmer placing marginal cropland into CRP makes a commitment to 

retiring the land for at least ten years for approved conservation use. The program has been 

renewed in 1990, 1996, 2002, and 2008 with varying revisions (Ferris and Siikamaki, 2009).  

The 1990 bill focused on water and water quality.   The 1996 re-authorization mandated stricter 

environmental benefits to the requirements for contract renewal or new enrollment.  In 2009, 

CRP had a total enrollment of 34.7 million acres on 430,000 farms with a total payout of $1.8 

billion (Ferris and Siikamaki, 2009).  Nationwide, CRP enrollment is capped at 36,000,000 

acres, with a maximum of 25% of any individual county that can be enrolled (Babcock et al,. 

1995). 

    There have been many modifications to the initial enrollment criteria, such as increasing the 

threshold for years previously cropped, and the introduction of an environmental benefits system 

(EBI) for a more holistic natural resource management approach (Ribaudo et al., 2001).  The 

main criteria to be eligible for enrollment must include one of the following (Ferris and 

Siikamaki, 2009): 

 cropped in two of the previous five years (later changed to four), 

 be highly erodible land, 

 be located within a national or state priority area, 

 be part of an expiring CRP contract,  
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 considered a cropped wetland, 

 Be devoted to a highly beneficial environmental practice (stream buffers, etc.), 

        The main quantitative criterion for enrollment is that a tract of land is classified as ‗highly 

erodible land‘ (HEL), based on the physiographic and pedological characteristics of the land.   

Highly erodible land is defined by the Erodibility Index (EI), developed by the NRCS to 

determine the inherent susceptibility of land to either sheet or rill erosion (water erosion) or wind 

erosion in relation to the amount of soil loss that can be tolerated for a particular soil type (Batie 

1997).   

        The EI allows the estimation of the potential erodibility of a tract of land and is composed 

of two factors, the water and wind erodibility indices.  The water erodibility index is comprised 

of factors found in the Revised Universal Soil Loss Equation (Wischmeier and Smith, 1978: 

National Research Council, 1986; Renard, 1996), used for calculating sheet and rill erosion from 

rainfall and runoff in a landscape where overland flow occurs.  Less than 20% of enrollments are 

in regions where water erosion is greater than wind erosion, and in most cases total EI is 

measured by combining water and wind erosion indices (Ribaudo et al., 2001; Egbert, 2002).  

The equation for water erosion is: 

T

RK(LS)
EI water   (2.1) 

where R is the rainfall erosivity factor that accounts for energy and intensity of rainstorms (m
2
 kg 

ha
-1

 hr
-2

), K is the soil water erodibility factor (hr m
-2

), LS is the dimensionless product of slope 

steepness and slope length factors, and T is the soil loss tolerance for a specific soil for high level 

of crop production (kg ha
-1 

hr
-1

) (Wischmeier and Smith, 1978).  RKLS is considered erosion 

potential, and can be normalized for soil type by dividing by T, the soil loss tolerance (Moore 
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and Nieber, 1989).  Generally soils high in silt have greater erosion potential, correlating with 

higher K and T values.  Wind erosion indices are computed from: 











T

I
CEI wind

 (2.2) 

where C is the wind erosion climate factor, I is the soil wind erodibility factor (kg ha
-1

 hr
-1

), and 

T is the soil loss tolerance (Wu et al., 2002).  CRP enrollment uses an area-weighted EI threshold 

of eight or greater to determine whether or not land is highly erodible (Batie et al., 1997), while 

‗Excessively Erodible Lands‘ have an EI > 15.  Erodibility indices can be computed spatially 

through the use of the regional climatic data and information from the Soil Survey Geographic 

Database (SSURGO), which contains soil attributes for each geographic entity in the database 

known as the map unit, a distinct polygon comprised of one to three soil types (Park and Egbert, 

2005).  Additionally, the original coefficients of the LS factor, which were empirically-derived 

from experimental plots across the United States, can be represented by multiple geospatial 

methods within a gridded digital elevation model (DEM) (Moore and Burch, 1986, Moore and 

Wilson, 1992; Mitasova, 1993; Desmet and Govers, 1996).  Many of these methods primarily 

use surface parameters and measurements derived from a digital elevation model (DEM) as a 

way of better representing detachment and deposition processes, and flow convergence or 

divergence.  Several limitations to current geospatial EI calculations exist.  When using raster 

data, calculations are constrained by the use of the smallest window size to calculate slope and 

other parameters, where there is a higher magnitude of noise and errors in surface measurement.  

An area-weighted EI also ignores the spatial distribution of erodible lands within a parcel. 
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2.1.2        Conservation Reserve Program in the Northern Plains States 

 

        Currently, more than 34 million acres are enrolled within the CRP in all 50 states.  Of the 

states participating, Kansas has the fourth highest number of active acres enrolled in CRP in the 

United States.  The central part of the Great Plains, including Kansas, Nebraska, North and South 

Dakota,  account for 21% of all CRP contracts in the United States (Figure 1) (Park and Egbert, 

2005). 

 

Figure 1.  U.S. Department of Agriculture Farm Production Regions and percentage of 

Conservation Reserve Program Contracts within the Regions in 2001 (Allen, 2005). 

 

      CRP enrollments ballooned to an all-time high of around 37 million acres in 2007, and have 

decreased since to 33.6 million acres.  One of the criticisms of CRP is that the majority of the 

benefits are concentrated on small percentages of the land.  According to Babcock et al. (1995),  

98% of total surface water quality benefits are obtained by enrolling land on less than 27% of 



11 
 

CRP land, 90% of wind erosion and groundwater vulnerability are concentrated on 32% of the 

land, and 43% of CRP lands achieve 90% of the water erosion benefits. 

       Within the next five years, 20 million acres of CRP contracts are scheduled to expire across 

the United States (Figure 2).  Such a potential land conversion could have an enormous impact 

on a large number of environmental issues across many scales, ranging from soil loss, 

sedimentation, and nutrient enrichment of waterbodies, to contributing to input of the hypoxia 

zone of the Gulf of Mexico, and habitat preservation along the mid-continental migratory 

flyway.   

 

Figure 2.  CRP acres expiring by year and region, including the results of 2006 re-enrollment and 

extension offers. (Baker and Galick, 2009) 

 

        Because of the wide variability of soil conditions across regions and even within single 

fields, developing a model to understand where CRP enrollments are situated in the landscape 

and the terrain characteristics of expiring acres and annual enrollments could be a tool for long-

term planning in an uncertain future of climate change, and for adapting to the fluctuation of 

conservation budgets, commodity prices, and environmental goals. 
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2.2 Geomorphometric Terrain Analysis 

 

        Characterizing the terrain and its biological and geophysical properties of the land surface 

are the primary goals of geomorphometric terrain analysis.  The magnitudes of many 

hydrological, geomorphologic, and biological processes active in the landscape are sensitive to 

topographic position (Moore et al., 1991).  The spatial distribution of terrain attributes can 

therefore be used as an indirect measure of the spatial variability of these processes (Odeh, 

1994).  Geomorphometric measures derived from digital elevation models vary depending on the 

data resolution and the scale of analysis.   

        Land surface morphology is fundamental to mapping and many GIS applications.   The 

field of geomorphometry is defined as ―the science which treats the geometry of the landscape 

and attempts to describe quantitatively the form of the land surface‖ (Chorley et al., 1957).  

Identification of elementary landform units is important to the study of past and present 

geomorphologic processes, and spatial aspects of interaction among landforms, soil, vegetation, 

topoclimate, and hydrological regimes (Minar and Evans, 2008).  The characterization of surface 

shape has evolved from the need to describe topography more exactly than terms such as ‗flat‘ or 

‗rolling‘ (Pike 1988), to modeling how geophysical processes shape the landscape and affect 

ecological systems. 

 

2.2.1 General and Specific Geomorphmetry 

 

        There are two directions of geomorphometry, as distinguished by Evans (1972).  Specific 

geomorphometry measures the geometry of specific types of landforms, such as drumlins, 



13 
 

cirques, or karst pits.  General geomorphometry is the measurement and analysis of those 

characteristics of landforms that are applicable to any continuous surface.  General 

geomorphometry deals with measurement of surface altitude, gradient, distance, and elevation 

derivatives, which allow for more variability in operational definition.  This approach provides 

the basis for the quantitative comparison of qualitatively different landforms, and can adapt 

methods of surface analysis used outside geomorphology (Evans, 1972).    

        All measures of land surface form can be considered to be representative of the roughness 

of the surface (Mark, 1975).  Roughness refers to the irregularity of a topographic surface, which 

can be expressed by the terms texture, grain, and relief.  Geomorphologists have long sought 

after a single measurement to quantify the extent through which the land has been ‗opened up‘ 

(dissection or aeration), especially by erosion or denudation (Evans, 1972).  Earlier attempts to 

define such measures include periodicity and spectral analysis to quantify relief placement (Bull, 

1975; Pike and Rozema, 1975; Pike, 1988) or hypsometric and slope frequency curves in 

drainage basin morphometry (Chorley et al., 1957). 

 

2.2.2 Derivatives of Elevation 

 

Any topographic surface can be represented through a z = f(x,y) bivariate function, and can be 

analyzed through differential geometry and mathematical vector analysis (Moore et al., 1993; 

Jordan, 2003).  Building upon Tobler (1969), Evans (1972; 1980; 1984) suggested a unifying 

framework for geomorphometric analysis through analysis of the zeroeth, first, and second-order 

derivatives of elevation, known commonly as relief, slope, and curvature.  Terrain parameters 

should be sensitive to process as well as morphology (Wood, 1996), and these measures are 
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process-related and directly applicable to specific and general geomorphometry.  The three 

derivatives provide five descriptions of surface form: altitude (zeroeth-order derivative), slope 

and aspect (first-order derivatives), and plan and profile curvature (second-order derivatives).  

Each derivative provides a map of point values producing statistical distributions that may be 

characterized by their mean, standard deviation, and dimensionless skewness (Evans, 1972).   

Correlation and factor analyses have shown that the five categories are complementary; each 

category measures topography in a profile that the other four do not (Evans, 1972; Mark, 1975; 

Pike, 1988).  The five derivatives also play a role in characterizing regions, describing the 

surface shape and deriving areas of uniform curvature properties.  The advantage of using 

derivatives of altitude as measures of terrain is that they can be determined for any point sampled 

over a surface or continuous field (Evans and Cox, 1999).  A schematic diagram of the primary 

and secondary derivations of elevation is shown in Figure 3. 

        Slope is the first derivative of altitude, and is represented as a data vector with two 

components; gradient (slope angle) and aspect (azimuth) (Evans and Cox, 1999).  Slope gradient 

is arguably the single-most important parameter of topographic form, since surfaces are formed 

completely of slopes, and slope angles control the gravitational force available for geomorphic 

activity (Strahler, 1952; Wood and Snell, 1960; Evans, 1972).   Besides obvious uses in 

topoclimatic and vegetative modeling, slope aspect is used in hydrological modeling as a 

surrogate for flow direction and flow accumulation vectors.   Statistics calculated for slope in 

most landscapes approach distributions similar to the Gaussian curve (Pike, 1988). 
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Figure 3.  Measures of curvature on a surface in relation to gradient (slope).  (Schmidt et al., 

2003) 

         

         

        Slope Curvature is the second derivative of altitude.  Curvature is defined as the angle 

subtended by three or more adjacent elevations along an elevation profile and is represented by a 

symmetrical 2 x 2 tensor with three independent components (Evans and Cox, 1999).  The 

importance of profile and plan convexities rests in their control of acceleration/deceleration and 

convergence/divergence of near-surface flows (Evans, 1980).    A signed distinction is applied to 

curvature by designating convex curvatures as positive and concave slopes as negative (Pike, 

1988).  The first two independent components, vertical curvature (rate of change down a slope 

line), and horizontal curvature (rate of change along a contour), can be represented by the terms 

profile and plan curvature (Evans and Cox, 1999).  The third component of curvature is 

expressed by aspect change downslope, and may be too abstract for modeling most surface 



16 
 

processes.  Convexity varies from high positive values (convexities), to high negative values 

(concavities) and the tails of distributions are always long with the great majority of values near 

zero (Evans and Cox, 1999). 

        Profile curvature is the derivative of the gradient vector magnitude and reflects the change 

in gradient along the slope line that controls the change of velocity of mass flowing down the 

slope curve (Jordan, 2003).   At areas with convex profile curvature, flow velocity, and thus 

sediment detachment and entrainment increases, and at areas with concave profile curvatures, 

flow velocity decreases and sedimentation increases (Shary, 1995).  Plan curvature measures the 

derivative of aspect vector magnitude and measures the angular change of the two-dimensional 

aspect vector.  Plan Curvature reflects the influence of converging and diverging flows on a 

surface (Jordan, 2003).  Some have advocated the use of Tangential Curvature in place of Plan 

Curvature because its incorporation of the slope vector (Mitasova, 1996; Wilson and Gallant, 

2000).  Plan and Tangential Curvature are related through the sine of the slope angle, and their 

computed distribution of convex and concave areas are the same, but the distribution of values 

for Tangential Curvature are closer to that of Profile Curvature (Jordan, 2003). 

        Spatial influence of the five derivatives was initially recognized in pedology by Aandahl 

(1948) and in geomorphology by Speight (1968) among others.  Evans proofs (1972, 1980) and 

Young (1978) are considered the seminal work for quantitatively representing the definitions of 

all five derivatives.  The majority of the focus in geomorphometry and geomorphology has been 

on slope gradient and curvature, since these are the most pertinent to physical processes such as 

erosion and deposition.    

        Surface derivates have a significant effect on surface processes.  Soil water content has been 

related to curvature (Zaslavsky and Sinai, 1981), slope and aspect (Moore et al., 1991), as well as 
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slope and plan curvature (Burt and Butcher, 1986).  Infiltration is affected by profile and plan 

convexity.  Profile convexity affects the acceleration of surface flow, and plan convergence 

affects the convergence, divergence, and depth of flow, leading to considerations of slope 

position and area drained (Schmidt, 1998).  Kirkby and Chorley (1967) noted that areas which 

are most frequently saturated are those adjacent to flowing streams, lines of greatest slope 

convergence, and local concavities.  Slope and curvature have been related to slope instability, 

fault recognition (Florinsky and Kuryakova, 1996), landslide susceptibility (Pike, 1988; 

Gorsevski et al., 2003), A-horizon depths, calcium carbonate concentrations, and gleyed horizons 

(Pennock et al., 1987).  Heerdegen and Beran (1982) used terrain statistics that describe overland 

flow patterns such as gradient and curvature of flow path to quantify source areas of overland 

flow, such as hollows with strong concavities and convergent flow.    

 

2.2.3 Geomorphometric Objects 

 

        Many have advocated a parametric (attribute-based) approach to description of land systems 

with the objective of facilitating the comparison of land systems based on elevation derivatives 

Speight, 1974; Bull, 1975).  The problem of integrating scale, spatial extent, and resolution 

makes single object classifications of landscapes unfeasible (Wood, 1996).  Hence, a system of 

landforms tends to be classified either according to homogeneous regions (Speight, 1968; Dikau, 

1989), or specific features such as streamhead locations (Tribe, 1991).   

        Geomorphometric components are grouped into two parts, the ‗geomorphometric point‘ and 

the ‗geomorphometric object‘.  As the land surface is represented by a continuous and infinite 

number of geomorphometric points (elevation), the three dimensional space can be characterized 

by geomorphometric parameters, or terrain attributes, most simply represented by the derivatives 
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of elevation (relief, aspect, curvature, etc.) (Schmidt and Dikau, 1998).  Geomorphometric 

objects are areal or linear elements of the land surface consisting of an array or matrix of 

geomorphometric points and given a semantic definition, such as a hillslope, ridge, channel, or 

crest.  Within each object, there may exist indices to translate semantic knowledge to a set of 

rules to quantify the point-object relationships, such as the internal frequency of point attributes 

(height, slope, curvature), and their spatial arrangement (geomorphometric structure) (Schmidt 

and Dikau, 1989).  Within geomorphometric objects, Dikau (1989) proposed form facets (units 

with homogeneous gradient, aspect, and curvature) and form elements (units with homogeneous 

plan and profile curvature) as basic components of landforms (Figure 4). 

 

Figure 4.  Dikau‘s 15 form-facets; sloped elements distinguished by combinations of signs of 

profile and tangential curvature, and flat elements distinguished through combination of signs of 

maximum and minimum curvature (Dikau 1989). 

 

        Primary geomorphometric parameters, or terrain attributes, are defined as indices of the 

geomorphometric point and can be split into three groups:  simple, complex, and compound 
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parameters (Schmidt and Dikau, 1998).  Simple geomorphometric parameters can be generated 

from a gridded DEM through moving-window operations and include the first five derivatives of 

elevation, and primary flow direction (Schmidt and Dikau, 1998; Wilson and Gallant, 2000; 

Jordan, 2003).  Complex geomorphometric parameters are derived through the analysis of the 

whole matrix of the DEM and contain structural information about the surrounding 

neighborhood, such as drainage area, slope position, and flow length (Schmidt and Dikau, 1998).  

Compound or combined geomorphometric parameters are calculated from simple or complex 

analytical functions, and express the effect of landforms in modeling different processes, such as 

soil-water distribution, surface water saturation, incoming solar radiation, and potential for sheet 

erosion (Moore et al., 1991; 1993).  Prime examples of compound geomorphometric parameters 

include the Compound Topographic Index or Wetness Index (Beven and Kirkby, 1979), 

Sediment Transport Capacity (Zhang and Montgomery, 1994), and modifications of the Length-

Slope Steepness Factors from the original and Revised Universal Soil Equations (Moore et al., 

1991).  In areas with small amplitudes of relief, non-local and compound topographic variables 

are the most significant correlators of phytocoenosis properties (Florinksy, 1996).  Table 1 (pg. 

26) distinguishes commonly used geomorphometric parameters, and their significance in 

hydrology, terrain analysis, and soil-landscape modeling. 

        A geomorphometric object is a clearly defined object or unit, such as a flow path, hillslope, 

or catchment.  The objects are subdivided into two main subclasses, linear objects and areal 

objects (Schmidt and Dikau, 1998).  Analysis of primary geomorphometric parameters is used 

for the identification and extraction of geomorphometric objects.  The geomorphometric object 

can be viewed as a hierarchical, multi-scaled systems, including slopes, valleys, or drainage 

basins (Dikau, 1989).  Such a hierarchical system allows finer scale geomorphometric objects to 
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be used for deriving coarser scale objects using their geomorphometric attributes (Chorly, 1984).  

In addition, processes controlled by attributes with meanings at scales of macrorelief (10
6
 , 

magnitude of meters) such as drainage density, attribute dispersion or variability, may not hold 

meaning at the scale of microrelief or mesorelief where  aspect, curvature, and connectiveness 

have a higher degree of control over the dominant geophysical processes (Dikau, 1989). 

Table 1.  Geomorphometric Parameters.  (Wilson and Gallant, 2000). 

Attribute Definition Significance 

Slope Gradient Climate, vegetation, energy 

Catchment Area 
Area draining to catchment 

outlet 

Time of concentration and 

flow prediction 

Specific Catchment Area 
Upslope area per unit width of 

contour 
Runoff volume, soil moisture 

Flowpath Length 
Maximum distance of water 

flow to point in catchment 

Sediment yield, time of 

concentration 

Elevation Percentile 

Proportion of cells in a user-

defined neighborhood lower 

than the focal (center) cell 

Landscape position, flora and 

fauna distribution, viewshed 

analysis 

Roughness 

Magnitude of elevation 

variability in user-defined 

neighborhood 

Orographic effects, 

trafficability, water storage, 

flora and fauna movement 

Profile Curvature Slope profile curvature 
Flow acceleration, erosive 

energy 

Tangential Curvature 
Contour curvature normalized 

by the slope 

Flow convergence and 

divergence, soil properties 

Wetness Index 
Specific catchment area divided 

by slope 

Zones of saturation, runoff 

generation 

Stream Power Index 
Measure of erosive power based 

on unit stream power theory 

Erosive power of runoff, 

locations of detachment and 

deposition, channel initiation 

Radiation Indices 

Estimations of incoming or 

ongoing short- and longwave 

radiation 

Energy balance, snowmelt, 

flora and fauna distribution 
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Advances in data resolution such as LIDAR, improved modeling capabilities such as object-

based segmentation (Blaschke et al., 2006), and established representations of hierarchical 

relationships through methods such as artificial neural networks (Moller et al., 2008), create 

opportunities to carry out research on higher efficiency in algorithms in order to integrate the 

data wealth generated for GIS, and to incorporate complex objects into operable scenarios. 

 

2.2.4 Uncertainty in Geomorphometric Objects 

 

       Traditional landform classification based in geomorphometry has utilized a system of units 

with maximum internal homogeneity and maximum external heterogeneity (Dikau, 1989).   This 

paradigm is referred to as the ‗double-crisp‘ model (Burrough et al., 1997), explained in more 

detail later.  This model is incorporated into the polygons of the Soil Mapping Units (SMU) of 

the NRCS Soil Surveys (Figure 5), traditionally the basis for land resource planning in the 

United States. 

        Within a GIS environment, elevation is primarily represented through a gridded digital 

elevation model (DEM) or its derived surfaces such as a Triangulated Irregular Network (TIN).  

DEMs exist theoretically as a continuous field of elevation represented by a series of discrete 

objects (pixels or cells), each continuing a unique elevation value, and exhibiting internal 

homogeneity within the pixel area.  Many existing parameters used for surface characterization 

are dependent upon both the resolution of the DEM and the analysis window used to compute 

them (Schmidt and Andrew, 2005).  Landforms have been described as a mixture of different 

processes at different scales (Chorley et al., 1984), and likewise surface parameters should be 

expressed at a variety of scales (Wood, 1996).  Despite this, many of the approaches still rely on 

existing techniques and ignore the incorporation of scale effects (Schmidt and Andrew, 2005).   
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Figure 5.  Soil Mapping Units from SSURGO within the study area, each color-coded soil 

mapping unit (polygon) is composed of several soil types bounded by definite boundaries and 

conceptualized to have maximum external heterogeneity and internal homogeneity, but fails to 

take into account spatial variation of biophysical processes, the gradation of terrain units. 

 

        With this theoretical context, representation of an elevation surface should take into account 

(Burrough et al., 1997; Schmidt and Andrews, 2005): 

 Vagueness, uncertainties, and transitional states present within a continuous dataset, 

 That properties of a single location may relate to or determine a number of classes, 

 Precise boundaries cannot be defined, 

 Properties of a single location relevant at one scale may change with increasing or 

decreasing scale. 
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2.3 Fuzzy Set theory 

 

2.3.1 The use of Fuzzy Set theory in Geomorphometry 

 

        Traditionally, the soil-landscape model is characterized by what is referred to as a ‗Double-

Crisp Model‘ (Burrough et al., 1997), composed of entities having fixed and uniform conditions 

within each entity and abrupt boundaries between entities (MacMillan et al., 2000).  In early 

Geomorphometric work, landform classes were defined through the central concepts of each 

class and the salients of class boundaries.  However, this conceptual model fails to take into 

account the strength of membership of a location to one class, and relative confusion between 

classes (McBratney and Odeh, 1997).  The use of crisp classes is sometimes inappropriate for 

terrain and soil modeling because of the continuous nature of elevation and its derivatives, soil 

properties, and the processes that influence them (Burrough, 1989).  Problems encountered with 

previous efforts include fragmented or chaotic spatial patterns, and the inflexibility of Boolean 

classifications that require adjustment for different types and scale of landforms, and lack of 

generality across different landscapes (MacMillan et al., 2000).   

        Due to dependence on the user‘s perception and semantics of their specific paradigm 

(Moller et al., 2008), landscape and semantic landforms lack a clear definition have been 

increasingly conceptualized as vague phenomenon (Burrough et al., 1992; Brandli., 1996; Fisher 

et al., 2004).  With the continuous nature of elevation surfaces, spatial representation of terrain 

features should also emphasize that the transition between adjacent landforms is gradual, not 

abrupt (Qin et al., 2009).  The use of Fuzzy Set theory allows soft boundaries and uncertainties to 

be represented as a part of the landscape structure, and specific parts of the landscape to be 
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partial members to one or more landform classes on a scale of 0 to 1, with 1 indicating 

prototypical or full membership.   Because of the multi-scale variation in feature identification, 

the use of fuzzy set theory would allow a user represent multi-scale uncertainty. 

 

2.3.2 Fuzzy Set theory 

 

       Zadeh (1965) introduced the idea of working with fuzzy sets as a method of dealing with 

inexact concepts and non-ideal classes.   Fuzziness is a type of imprecision characterizing classes 

that cannot have, or do not have sharply defined boundaries (Burrough, 1989).  Crisp sets based 

on Boolean theory allow only binary membership (true or false), and allow for no overlap of 

membership (i.e. there is no union between sets A and A‘) (Robinson, 2003) (Figure 6).   

 

 

Figure 6.  An alphabetical sequence (x:A:E) represented within the attribute space of Classic 

Boolean theory (a) and Fuzzy Set theory (b).  In Classic Boolean theory, membership to the set is 

restricted to A,B, and C while D and E are non-members.  In Fuzzy Set Theory all members of 

the set have some degree of membership to the set noted by the grayscale (Klir and Yuan, 1995). 

 

This allows for no expression of imprecision, partial membership, or errors of misclassification 

or measurement.  These rules are termed as the Law of the Excluded Middle and the Law of 

Contradiction.  The rules assume that all important changes occur at the defined class boundary 
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(Burrough et al., 1992), and cannot deal with the inexactness qualitative ambiguous terminology 

such as ‗poorly drained‘, ‗slightly susceptible‘, or ‗very shallow‘ (Burrough, 1989). 

        The idea of Fuzzy Set Theory and Fuzzy Logic is to allow entities to belong to more than 

one class to varying degrees, violating both the Law of the Excluded Middle and Law of 

Contradiction.  A fuzzy set is expressed as: 

 )(, xUXA A  Xx  (2.1) 

where Xx  denotes a field of objects, and )(xU A is the grade of membership of x  in A for all x  

in X .  The grade of membership is a range from 0 to 1, 1 representing prototypical, or full 

membership to A, and 0 representing non-membership (Burrough, 1989).  It is important to note 

that the grades of membership of x  in A  reflect the possibility of membership, not the 

probability (Klir and Yuan, 1995). 

 

2.3.3 Fuzzy K-Means Algorithm 

 

        Fuzzy Classification methods can be divided into two groups; Similarity Relation Models 

(SR) and the Semantic Import Model (SI) (Burrough et al., 1992).  SR models utilize the Fuzzy 

k-means or c-means algorithm based on the methods of Bezdek et al. (1984).  The SR model is 

based on numerical taxonomy and discriminatory analysis (Burrough, 1989), and is an 

exploratory approach that utilizes clustering algorithms to find a natural partition of objects in 

multivariate space into a user-defined number of classes.  Within GIS this has been utilized for 

climatic classification (McBratney and Moore, 1985), soil science (McBratney and de Gruijter, 

1992; McBratney and Odeh, 1997), topoclimatic landscape classifications (Burrough et al.,  

2001), and landslide susceptibility (Gorsevski et al., 2003).  The main advantage of this approach 
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is that it helps the user define natural classes based on an infinite number of datasets.  The main 

disadvantage is that the natural classes may be vague or arbitrarily based on cluster differences 

(Burrough, 1989).  The resulting classes and class definitions are optimized for a particular site, 

and will never be exactly the same for any two sites (MacMillan et al., 2000). 

        To construct a Fuzzy K-means clustering classification, the user selects a number of 

parameters to base the classification on.  In geomorphometry and soil-landscape modeling, these 

are usually multiple geomorphometric parameters (Burrough et al., 2001).  Based on each spatial 

location Xij, and its parameter values, the algorithm iterates through the parameters and partitions 

the data clusters based on a user-defined number of classes and a fuzzy exponent to determine 

the amount of fuzziness or overlap between the clusters/classes.  Thus, each spatial location, or 

pixel within a DEM, is given a fuzzy membership to each cluster/class, which sum to 1 for each 

location.  The shorter the attribute distance to each cluster center, the greater similarity of the 

location Xij to that class.  A number of additional algorithms, such as the partition coefficient and 

classification entropy can be used to determine the optimal number of classes based on variation 

in the clusters.  Figure 7 shows a four-class solution to a Fuzzy K-means classification utilizing 

slope, plan and profile curvature, compound topographic index, and stream power index for a 

portion of the study area.  The resultant classes can be considered ‗natural classes‘ in that they 

are partitioned almost exclusively by their attribute distance, and may not correlate with real-

world classes (such as soil-mapping units defined previously) defined linguistically or through 

artificial boundaries.  
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Figure 7.  Four-class Fuzzy K-means solution for portion of study area.  Lighter areas indicate 

locations with membership degrees higher to the cluster center, while darker areas represent low 

degrees of membership to corresponding cluster center.  Top of the page corresponds to North, 

which is repeated for the remaining map figures in the thesis. 
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2.3.4 Fuzzy Semantic Import Model 

 

        The second approach to building a fuzzy set is to specify class-limits on the basis of expert 

knowledge and construct mathematical functions around these definitions (Burrough, 1989).   

MacMillan and Shary (2009) characterized three types of knowledge-based models used to infer 

environmental conditions based on knowledge of environmental processes:  

 Very-limited knowledge, where expertise is confined to an expert‘s ability to correctly 

identify specific instances or cases of a desired class or outcome, 

  Partial knowledge, where an expert has a general idea of what the objects to be predicted 

look like, where they typically occur in space, and the main conditions, processes, or 

controls under which they typically develop, 

 Exact knowledge, forms of expert knowledge considered to be complete and perfect. 

        Within the context of partial knowledge, information and data can be input into fuzzy 

semantic import (SI) models, based on heuristic rules.  The fuzzy semantic import model permits 

formal recognition of imprecise and overlapping semantics used to classify data.  This method is 

useful for scenarios where qualitative definitions of classes exist, but the definitions are 

inherently uncertain (Burrough et al,. 1992), while allowing incorporation of expert knowledge 

and judgment (MacMillan et al., 2000).  Thus, a membership function can be constructed to 

represent a vague linguistic concept, or semantic construct, based on underlying quantitative 

information.  For example, the semantic construct ‗steepness‘ may hold a different meaning in 

the Central Plains than it does in the Rocky Mountains due to the difference in magnitude for 

slope steepness, but the steepest areas of either landscape would be represented by similar high 

membership values. 
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        Based on the data distribution, salient criteria, or heuristic rules for each terrain attribute, a 

fuzzy SI membership function can be fit to the data to produce a fuzzy set, or semantic construct 

(Robinson, 2003).   The SI model utilizes a fuzzy membership function to convert an attribute 

value from XA to a fuzzy membership value UA, and thus defines the degree of membership of a 

location to a central concept, prototype, or a semantic construct such as ‗steepness‘ or ‗highness‘ 

(Burrough et al., 1992).  For more detailed overviews of the types of functions used in the SI 

Model, refer to Burrough (1989), Burrough et al. (1992), and Robinson (2003).   

        General examples of membership functions are the first order polynomials: 

2(a)
c)/d)((x1

1
xu




 (2.2) 

                                          )((x/c)1

1
xu

d(a)




   (2.3) 

where u(a)x is the membership value or similarity of attribute (x) to the central concept, or 

standard index (b) and d is the dispersion index controlling the shape of the curve (Burrough, 

1989; MacMillan and Shary, 2009).  The dispersion index determines that the value at the 

crossover point is the point at which the grade of membership = .5, which is generally considered 

the lower-bound for membership to a fuzzy set.  The central concept is the attribute value at 

which membership to a class is 100% (x=c), and receives a full membership value (1.0), and 

decreases from 1.0 on both sides of the central concept. Variables can be modeled as closed or 

open functions, with closed functions allow non-zero values only in a bounded interval, whereas 

open functions allow non-zero values along the entire 0-1 range (Robinson, 2003).     Equations 

2.2 is referred to as a Gaussian Model (Figure 8a), and Equation 2.3 is generally referred to as 

the S-curve (right, Figure 8b) (MATLAB, 2010).  
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Figures 8a and 8b.  The Gaussian (Figure 8a, left, Equation 2.2) and S-Curve (Figure 8b, right, 

Equation 2.3) fuzzy membership functions (MATLAB, 2010) where the y-axis is the fuzzy 

membership value, and the x-axis represents the value of the attribute being fuzzified. 

 

Equation 2.2 can be modified by additional conditions to convert it to an S-curve or a Z-curve 

(the left-shoulder asymmetric version of the S-curve), with Equation 2.4a  representing the 

asymmetric right-shoulder function (S-curve), and Equation 2.4b representing the asymmetric 

left-shoulder function (Z-curve): 

2(a)
c)/d)((x1

1
xu


  for cx0    

1xu (a)   for cx    (2.4a) 

1xu (a)  for cx   (2.4b) 

 

2.3.5 Fuzz Overlay 

 

         Within multi-dimensional attribute space, it may be desirable to combine information from 

several fuzzy sets to produce a final fuzzy surface which represents the outcome of the 

interaction of multiple fuzzy membership values.  Within geomorphometric landform 

classification, this involves an overlay of surfaces such as elevation, slope, curvature, or other 

surfaces to create a fuzzy layer representing a single semantic landform.  These operations 

require the use of fuzzy operators, connectives, or aggregations.  The main operators in Fuzzy 
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Set Theory are similar to those in Boolean logic as initially proposed by Zadeh (1965) and later 

expanded by Kaufman (1975) and Kandel (1986) comprising the intersect, union, and 

complement (Robinson, 2003). 

        The initial operations defined for fuzzy sets are union, intersection, and complement.  For 

two fuzzy sets, A and B, the union of two fuzzy sets A and B is denoted by A B: 

A  B = (x)/xU(x)U
x

BA  (2.5) 

where v is the symbol for maximum, and union corresponds to the logical connective OR.  The 

symbol ‗/‘ should be interpreted as meaning ―with respect to‖, and the integral sign symbolizes 

‗for the universe of objects x‘ (Kandel 1986).  The intersection of fuzzy sets A and B is 

represented through the notation:  

A  B = (x)/xU(x)U
x

(B)A  (2.6) 

where   denotes intersection, and the intersection command corresponds to the logical 

connective AND (minimum operator).   Applied to ecology and pedology, this has its theoretical 

basis in the Limiting Factor Principle of Ecology (Qin et al., 2009). The complement of a fuzzy 

set A is defined by:  

A  = (x))/xU(1
x

A  (2.7) 
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which corresponds to the logical connective NOT.  Because of the Boolean nature of the 

intersection and union operators in taking only the best/worst case characterizations (Robinson, 

2003), the above operators cannot compensate for the degree of similarity or dissimilarity 

between the two sets being intersected or unioned.  However, aggregation operators allow for 

more complex operations with more expert-driven input (Robinson, 2003).   

        The algebraic product, of two fuzzy sets, A and B, can be defined as  

AB = (x))/xU*(x)(U
x

BA (2.8) 

with the product of two fuzzy sets being interpreted as a soft AND.  The algebraic mean of two 

fuzzy sets is referred to as the cartesian product if the fuzzy sets are unweighted, or the convex 

combination model if different weights (that sum to 1) are applied to each fuzzy set used in the 

algebraic mean (Kandel, 1986).  Convex-combination is often used because of its abilities to 

integrate preferences for multiple criteria from multiple layers into the final fuzzy membership.  

The convex-combination Model is expressed as: 

 (2.11)        )(xU*WF iji

m

1i

i




  

 

where )(xijUi is the membership value of class i to the j
th 

location, and Wi is the weight assigned 

to layer i, where the sum of weights equals one, and Wi > 0 (Robinson, 2003).  Thus, relative 

weights can be assigned based on the relative importance of each layer (MacMillan et al., 2000; 

Robinson, 2003).  The use of convex combinations is especially helpful when linguistic 

modifiers are used.  Oberth et al. (2000) used convex combination to combine sets of soil 

properties into soil quality indices.  Burrough et al. (1992) utilized convex combinations applied 

to weights of six variables (water supply, nutrients, oxygen, erodibility, soil depth, and slope) to 
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create a land suitability map.  The extensive study of McMillan et al. (2000) calculated fuzzy 

membership values for landform classification based on a weighted linear average of the 

individual membership functions.   In this case, attributes such as slope and curvature were given 

more weight because of their use in the Pennock‘s hillslope model (1987), which the study 

incorporated. 

 

2.3.6 Measures of Membership and Confusion 

 

        Before creating defuzzified or crisp classes, several additional measures of classification 

variance and confusion are useful to determine areas of ambiguity between the classes.  The most 

commonly used measures are the confusion index and normalized class entropy, which measure 

class overlap in attribute space and variability of classes.  With multiple surfaces representing 

membership values to different classes, there will be locations where the fuzzy membership 

value of one class will dominate the other and vice-versa, and others where fuzzy membership 

values of two classes are very similar.  Measurements of class overlap may be used to adjust 

parameters in the original membership function or logical operators used in fuzzy overlay.  

Class-specific relationships may be established based on these measures as well. 

        The Confusion Index (CI) is a measure of class similarity and how well each location has 

been classified.  The CI is calculated as: 

j(max)1)maxj(j /uuCI


  (2.12) 

where (max)ju is the fuzzy membership value of the class with maximum membership value at 

location j,  and )a(maxju  is the fuzzy membership value of the class with the second-largest 

membership at location j (Burrough et al., 1997).  If CI is close to zero, one class dominates the 
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location.  As CI edges closer to one, there is a higher degree of similarity between two classes, 

and hence more confusion.  Thus, areas with low confusion indices represent more crisp zones 

with low uncertainty, and areas with high confusion indices represent more fuzzy zones with 

higher uncertainty.  A Confusion Index created from the previous 4-class Fuzzy K-means 

landform classification is shown in Figure 9. 

 

Figure 9.  Confusion Index of four-class Landform system derived from Fuzzy K-means 

clustering.  Lighter locations (lowlands and drainages) represent areas of higher confusion, while 

darker areas (ridges) represent areas of lower confusion. 

     

        When considering the variance of the classification or the ambiguity of a spatial location 

with regards to the diversity of classes and their membership values, classification entropy is a 

key measurement, and is derived from the Shannon-Weiner Diversity Index.  Like fuzzy 



35 
 

membership values or the confusion index, entropy can be standardized between 0 (fuzzy 

membership value for one class dominates) and 1 (fuzzy membership values fairly equal 

between all classes) (Wood, 1996).  Classification Entropy for a single scale is measured as: 


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Where Hj  is the entropy value at location j, Aju is the standardized fuzzy membership value for 

class type i at location j, and n is the number of classes (Fisher et al., 2004).  Entropy can thus be 

standardized on a 0 to 1 scale by dividing Classification Entropy by Standardized Entropy 

(Hj/Hmax)  (Wood, 1996).  This is also referred to as the Classification Entropy (H) (Burrough et 

al., 2001). 

        The defuzzification of a single fuzzy membership value to a crisp sets is referred to as an 

alpha-cut (-cut).  The alpha cut is a fuzzy membership value that is used as a threshold to 

delineate contours of equal value, where locations that are equal to or greater than the alpha-cut 

value as members of the set (Boolean ‗1‘), while those outside the threshold are coded as non-

members (Boolean ‗0‘) (Fisher et al., 2004).  Alpha-cuts are often used with Fuzzy k-means 

clustering when there is no expert-knowledge in determining the distribution of fuzzy 

membership values. 

 

2.4 Incorporating Scale Effects in Geomorphometry 

 

        The most important aspect of terrain analysis based on a finite-resolution DEM is the scale-

dependency of the relationship under investigation (Hengl and Evans, 2009).  The continuous 
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nature of the Earth‘s surface contains patterns may occur across a full range of sizes and scales.  

The extent of the surface that is sampled is important because the land surface is a non-stationary 

variable (Evans and Cox 1999).  The fidelity with which the DEM models the true surface will 

depend on the surface roughness and DEM resolution (Wood, 1996).  Some of the key problems 

in modeling environmental systems are the effects of scale and accuracy on topographic 

attributes and the incompatibilities between scales at which many physically-based models 

operate.  Moore et al. (1993) listed four major scale related issues: 

 Object (landform) size in which homogeneity is assumed, 

 The method of analysis used to derive the terrain attribute values,  

 Aggregation of data derived from different resolution, accuracies, and structures, 

 Scale differences between model process representation and data available for model 

        The first point ties into the vagueness of morphometric features.  Within quantitative 

geomorphometry, semantic vagueness is derived from both a lack of well-defined boundary 

conditions, and epistemic vagueness in which the class to which an object belongs varies with 

perception (Figure 10) (Fisher et al., 2004).  Issues with boundary conditions are related to the 

‗double-crisp‘ soil-landscape model mentioned earlier, and can be accounted for using fuzzy set 

theory and geostatistics.  The second form of uncertainty is due primarily to the scale of 

geographic measurement under which the object, or landform, is derived.  Many applied 

classifications of landforms are specific to a particular scale, and tend to treat variation in the 

land surface that occurs below a given scale as random noise (MacMillan and Shary, 2009) 
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Figure 10.  Demonstration of how measurements at various scales can change surface 

characteristics (Fisher et al. 2004). 

 

        The limitations for any grid-based representation of the surface are constrained by the 

resolution of the DEM and the accuracy of its interpolation (Wood, 1996).  Most acknowledged 

problems in elevation interpolation come from noise at a finer scale than the DEM or variations 

at a coarser scale than the sampling method.   Parameters like gradient and curvature are heavily-

dependent on the scale inherent in the attribute calculation technique (Schmidt and Andrews, 

2005), and noise amplifies variation and errors in the calculation of surface derivatives.  The 

scale implied by the resolution of the DEM is not always optimal for landscape characterization, 

and many of the classical approaches to derivative calculation are based on fixed-scale 

approaches, as represented by the use of Horn‘s (1981) and Zevenbergen and Thorne‘s (1987) 

algorithms to calculate slope, aspect, and surface curvature within moving windows of fixed 

window size (3 x 3) in ESRI ArcGis toolbox and thus only represent the surface over one 

window size, and are unable to represent surfaces derived from multi-scale measurements 

(Figure 11). 
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Figure 11.  Maps of Tangential Curvature calculated with a 3x3 window (left) and 13x13 

window (right); zones of flow convergence are darker  in color, and flow divergence lighter 

 

        The question then becomes what scale and resolution are appropriate to model the surface?  

Moore et al. (1993) and Zhang and Montgomery (1994) both argue that the appropriate scale for 

such modeling processes is somewhat finer than the hillslope scale identifiable in the field.  For 

modeling the surface with direct field applications, there is a consensus that horizontal resolution 

of 5-10 meters and a vertical resolution of .5 meters is the necessary minimal resolution for 

describing the surface form for individual hillslopes.   

        Since landforms are a multi-scale feature, and hillslope position a multi-scale phenomenon 

(Weiss, 2001), the designation of a point to a single morphometric class can change over 

different scales, as well as carry more than one piece of information at one scale about 

biophysical processes and landscape position.  Thus there is a need to incorporate techniques that 

allows computed terrain attributes to show scale-specific variations, and enable a point to be 
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classified over multiple scales to allow consideration of both its spatial context and uncertainty 

(Moller et al., 2008). 
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CHAPTER III 

LITERATURE REVIEW 

 

3.1 Introduction 

 

        This section covers previous work relevant to the incorporation of scale and fuzzy set theory 

into Geomorphometry, specifically those studies dealing with landform classification.  The 

problems of scale, spatial extent, and resolution make single objective classifications of 

landscape unfeasible (Wood, 1996).  Landforms tend to be classified either according to 

homogonous regions (Speight, 1968; Dikau, 1989), or specific features (Werner, 1988; Tribe, 

1990; Dietrich and Montgomery, 1989).  No single object classification of the land surface 

exists, and local form, size, neighborhood calculations, surface roughness, and geostatistics have 

all been used to characterize landforms (Schmidt and Hewitt, 2004).  Minar and Evans (2008) 

recognized three axioms pertinent to land surface characterization: 

 Land surface form can be analyzed as a continuum, 

 At a given scale, the land surface may exhibit discontinuities, 

 These discontinuities result from morphological processes, the majority of which are 

gravitation work, 

        In addition to vagueness by definition, a vital problem in defining a semantic term such as 

landscape or hillslope position is how to spatially represent both local uncertainty and 

uncertainty across scales.  Representing these uncertainties in a quantitative way plays a central 

role in the understanding of topographic phenomena.  Traditional approaches to landform 
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taxonomy lack both the integration of landform representation over multiple scales and have a 

tendency to treat semantic classes as double-crisp Boolean boundaries entities.   

        With each location in a continuous field, a degree of association can be assigned to each 

class in a set of rules-based classes based on terrain attributes.  Since the fuzzy character of real 

terrain is a result of past cross-scale geomorphic processes, incorporation of multiple 

membership values may reveal a greater scope of knowledge into potential landscape evolution 

and development than a traditional crisp system.   

 

3.2 Landform Taxonomy 

 

        The modern study of landforms can be traced back to surface and hillslope models 

presented by Wood (1942), Troeh (1964) Dalrymple et al. (1968), and Ruhe (1969).  Since the 

introduction of digital elevation models in the late 1960s, terrain analysis has diverged into 

several distinct areas of research (MacMillan et al., 2004).  The first area studies the general 

form of the surface through signs of curvature, drawing from Ruhe‘s hillslope model (1969) and 

the six-unit classification of Peucker and Douglas (1974), an early automated landform 

classification model that divided a DEM into pits, peaks, passes, ridges, flats, and channels based 

on neighborhood relationships    This method was utilized among others by Dikau (1989), Wood 

(1996), and Schmidt and Hewitt (2004), and the derived classification systems are generally 

referred to as geometric or morphometric units. 

        A second area of research is the utilization of surface shape and slope gradient in attempts 

to quantify relative landform position and interrelate landform position and geomorphic process.  

These systems attempt to describe taxonomic units, or topographic position, along the continuum 
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of a single, scale-less hillslope.  Pennock et al. (1987), Speight (1990), Zhu (1997), MacMillan et 

al. (2000), Qin et al. (2009) all utilize such a system that draws from theoretical models such as 

Wood (1942) Dalympre et al. (1968), and Ruhe (1969).  These systems are referred to as 

geomorphometric units. 

        The third area of research utilizes explicit calculations such as flow accumulation and flow 

direction to extract hydrologic objects from a DEM such as stream segments, catchments, and 

links between them, including work from Mark (1984), Band (1986), Jensen and Dominguez 

(1988), Dietrich and Montgomery (1989), Quinn (1991), and Tarboton (1997).  Many of the 

ideas are converging towards Sombroek‘s terrain elements (FAO, 1995), which contended that 

hydrologic and land use models should be integrated.  This review of previous work will focus 

on the first two groups of research as they are the most commonly used and the most applicable 

to this study. 

 

3.2.1 Morphometric Units  

 

        Taxomony of morphometric units relies on combinations of surface curvature and slope and 

ignores larger landscape context, landform position, or geostatistical relationships.  Peucker and 

Douglas (1974) introduced one of the first automated methods to detect spurious landforms 

(peak, pass, pit, plane, channel, and ridge) on the basis of a rules-based detection utilizing 

positive and negative arrays of elevation differences between a location and its neighbors (Figure 

12).  Toriwaki and Fukumura (1978) used a similar theory to divide a grayscale image on the 

basis of connectivity relations between points and structurally thinned connected components 

into regions.  As previously mentioned in Section 2.2.3, Dikau (1989) created a 15-class 
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landform system to identify form elements of convex, planar, and concave curvatures for profile 

and tangential curvature for sloping elements, and six combinations of maximum and minimum 

curvature for non-sloping elements, since curvature is undefined for areas with no slope.       

 

Figure 12.  Landform classes developed by Peucker and Douglas (1974). 

 

        Using Peucker and Douglas‘s classes, Wood (1996) derived a multi-scale landform 

characterization utilizing mean, minimum cross-sectional, longitudinal curvature, and a slope 

threshold to differentiate the six landforms.  More recent work from Shary (2002) is a 12-unit 

slope model utilizing a combination of Gaussian, tangential, differential, mean, and profile 

curvature.  Several authors have taken the topological relationship between the line features from 

the Douglas-Peucker model (channel, ridge) in attempts to formulate consistent spatial 

relationships between them (Werner, 1988; Brandi, 1996).  This approach has mainly been a 

theoretical one, as the lack of relative landscape position or spatial relationships between the 

units makes them somewhat ambiguous 
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3.2.2 Geomorphometric Units 

 

        Besides identifying landform elements on the basis of surface form, there have been efforts 

to describe the relative topographic position (upland, midland, lowland),  a loosely defined 

variable that is inherently a multi-scale phenomenon (Weiss 2001) and is often used without any 

quantitative criteria to discriminate between classes (Coops et al., 1998).  Field observations 

describing topographic position may only capture information relevant at a single scale and 

ignore finer or coarser scale observations that could have significant control on local process and 

form (Wood, 1996).  The advantages of geomorphometric systems is that they can be combined 

with relevant physiographic, and geologic models to relate the synergistic relationships between 

topographic position, abundance and type of flora and fauna, pedological characteristics, and 

landscape evolution (Figure 13).   

        Primarily these efforts describe the relative position (upland, midland, lowland) by using 

additional measures and attributes in addition to slope and curvature to describe surface form.  

Often single measures such as the Relative Position Index (Skidmore, 1990), Topographic 

Position Index (Weiss, 2001) and Maximal Dispersion Area (Shary, 2005) may be too dependent 

on user-defined parameters, meaningful to a specific area or dataset, and too abstract to be used 

as a generic measure of landform position.   

        Many existing Geomorphometric taxonomies incorporate theoretical hillslope models 

(Wood, 1942; Dalympre et al., 1968) into their descriptions to supplement their description of 

surface form (Figures 14a-b).  Examples of these taxonomies are well represented in Pennock et 

al. (1987), Speight (1990), and Zhu (1997).  Pennock et al. (1987) represented different slopes 

(shoulder slopes, back slopes, footslopes) through hard ranges of plan and profile curvatures and  
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Figure 13.  An example of how topographic position (geomorphometric units) provides the 

framework for detailing more complex ecological relationships from the Missouri Ecological 

Landtypes (ELT) model (Nigh et al., unpublished) 
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slope gradient in hummocky terrain in Sasketchawen (Figure 15).  One of the more formal 

systems was developed by Speight (1990), based on previous experience with multi-scale 

landform mapping and aerial photograph interpretation (Speight 1968; 1974; 1976).   

 

Figure 14a-b.  Wood‘s (left) and Dalrymple et al.‘s hillslope models (right) 

        

 

Figure 15.  Pennock et al.‘s Hillslope Model (1987) 
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Speight‘s system has been incorporated into several automated GIS classifications (Coops et al., 

1998; klingseisen et al., 2008), and relies on measures of elevation percentile, object adjacency, 

size thresholds in addition to slope and curvature to characterize landforms and landform 

position.  Speight also incorporated an organizational hierarchy to his system, discussed later. 

        An area of continued developments is the delineation of slope units and slope break lines, as 

break lines represent topological links between adjacent landforms.  Slope units are defined as ―a 

section of two-dimensional downslope profile having relatively homogeneous form, process, and 

lithology with upper and lower boundaries located at breaks of slope‖ (Giles and Franklin, 1998).  

Klingseisen et al. (2008) use a slope break generation algorithm derived from Giles and Franklin 

(1998) for locating and segmenting breakpoints within a DEM.  More recently, Jordan (2003) 

suggested the use of hypsometry by identifying breakpoints as class breaks in the area/slope 

curve to avoid errors associated with the calculations second-order derivatives in identifying 

slope breaks in the DEM.  The use of surface curvatures remains the most popular method of 

delineating slope units within a gridded DEM (MacMillan et al., 2000; Schmidt and Hewitt, 

2004; Qin et al., 2009). 

        Qin et al. (2009) incorporated ideas from the SOILIM System introduced by Zhu (1997) for 

representing spatial uncertainty in slope breaks.  The system is characterized by five slope units, 

ridge or summit, slope shoulder, backslope, footslope, and valley.  Qin et al. (2009) took the 

procedure to a finer scale and decomposed the midland section of shoulder slope, backslope, and 

footslope into 12 finer classes based on Pennock et al. (1987).  Central concepts of each 

landform class are defined for each terrain attribute:  elevation, slope, profile curvature, and 

Relative Position Index (RPI) (Skidmore, 1990).  A fuzzy semantic import model for each terrain 

attribute is then used to convert terrain attributes to fuzzy membership values through a semantic 
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import model.  Thus each terrain attribute, profile curvature for example, is composed of three 

semantic constructs, profile convexity, planarity, and concavity.  The differentiation between 

slope positions is accomplished through distinguishing between convex, planar, and concave 

signatures of profile curvature, and selecting heuristic thresholds for both RPI and slope, each 

using a Fuzzy Membership Function similar to those in Burrough (1989) and Burrough et al. 

(1992).  The minimum operator was applied to designate final membership to a slope position.   

 

3.3 Incorporation of Scale into Landform Taxonomy 

 

        Within landform detection in a GIS-environment, the classifications are commonly specific 

to a particular scale or a narrow range of scales.   Scale is accounted for in two ways in landform 

taxonomy; hierarchical theory integrated into previous morphometric classification to suggest 

appropriate scales for classifying objects such as nested classification systems (Dikau, 1989; 

1990), and explicit methods to calculate surface parameters over a range of scales for a single 

landform taxonomy (Wood, 1996; Schmidt and Hewitt, 2004). 

         Dikau (1989; 1990) represented hierarchical units within landform taxonomy, 

differentiating between hierarchies of time, size, and form, where form facets represent a unit of 

relatively homogeneous shape nested within a more complicated form element.  While slope and 

curvature may be used to differentiate form at the hillslope scale, attributes such as grain, 

topographic roughness and variability, ridge density, or bifurcation ratio may be needed to 

differentiate landform pattern at coarser scales.  Different proposed hierarchies are shown in 

Table 2. 
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Table 2.  Hierarchy in Landform Taxonomy, suggested data sources, and scales of analysis 

(Dikau, 1989; Dehn et al., 2001; MacMillan et al., 2004) 

 

Scale of Analysis DEM Resolution Proposed Unit Name 

1:2,000 to 1:5,000 1 x 1 m Undefined 

1:5,000 to 1:10,000 5 x 5 m Landform Element 

1:10,000 to 1:50,000 10 x 10 m Landform Type 

1:50,000 to 1:125,000 25 x 25 m Undefined 

1:125,000 to 1:250,000 100 x 100 m Physiographic System 

1:250,000 to 1:1,000,000 500 x 500 m Physiographic District 

1:1,000,000 to 1:5,000,000 1 x 1 km Physiographic Region 

1:5,000,000 to 1:10,000,000 9 x 9 km Physiographic Province 

   

 

        A recent approach composes Dikau‘s original 15 form facets (Section 2.2.3) recognizing 

eight distinct terrain units (ridge, shoulder, backslope, hollow, spur, terrace, footslope, and valley 

bottom), then uses a  TOPHAT function (Rodriguez, 2002), similar to Weiss‘s Topographic 

Position Index (2001) to classify those eight elements into uplands (hill), midland (hillslope), and 

lowland (valley) elements based on local elevation roughness. 

         Hierarchy in Landform Taxonomy is also represented in Speight‘s system, composed of 

two-level system of landform patterns and landform elements representing the idea of singular 

landforms.  Landforms are a mosaic of tiles, the larger tiles being landform patterns in the order 

of 300 meters in radius.  Landform patterns can be described by topographic roughness, relief, 

stream occurrence, and drainage pattern.  The landform patterns are represented by a series of 

smaller landform elements approximately 20 meters in radius and are described by slope, 
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topographic position, morphological type, and geomorphological agent.  There are nine elements 

in Speight‘s system, although several are rarely used.  Ridge, crests, and hillocks comprise the 

upland elements, and simple, upper, mid, and lower slopes comprising the sloped elements.  Two 

additional elements, flats and depressions may occur at any part of the landscape. Flats occurring 

on ridge-tops and valleys may be separated by a slope or elevation percentile threshold.  Methods 

based on Speight‘s system initially identified crests, flats, and depressions before slopes and 

created a sequence of precedence rules where: 

Crests > depressions > flats > slopes 

A separate slope classifier command built on pre-existing algorithms was used for breaking the 

slopes into upper, middle, and lower slopes based on their profile curvature.  Versions of 

Speight‘s models have incorporated categorical similarity (Haagen, 2004) as a way of 

representing the uncertainty and fuzziness of landform boundaries (Klingseisen et al., 2008), but 

don‘t account for specific attribute similarity. 

        The second method to incorporate scale is to calculate surface parameters across a range of 

different scales This method was originated by Wood (1996), who used the multi-scale 

measurements to extract Peucker and Douglas‘s six landform classes from a DEM over multiple 

scales by signs of secondary curvatures (cross-sectional, maximum, minimum curvature, and a 

slope threshold) through a set of rule-based procedures.  This was later expanded to include 

fuzzy set theory, with fuzzy membership values for each class at a location equaling the 

percentage that a location was classified as a class type divided by the total number of multi-

scale interpolations.  Final membership was determined by the modal membership value of all 

observations.  Many studies have shown that predictive values of profile curvature for estimating 
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soil properties such as moisture or solum depth in a regression model vary with scale (Schmidt 

and Hewitt, 2004; Smith et al., 2006).   

        In landform taxonomies based on both morphometric and geomorphometric systems, it is 

inherent that some of the classes are either more crisp, or more fuzzy and ambiguous than others 

depending on variables being modeled, or fuzzy conditions being set.  If a single semantic 

landform class displays high ambiguity in measures of classification stability (confusion index or 

classification entropy) across different scales and different fuzzy operators, it can be considered 

an unstable class.  Thus with an unstable class, there should be a larger amount of errors of 

commission and a higher potential to misclassify several different classes to this single, unstable, 

ambiguous class.  Such errors have critical implications to the accuracy of soil and vegetation 

mapping, and operational assumptions about a location‘s role in an ecosystem, and 

geomorphological and biological agents at operation, especially at scales related to field or 

parcel-specific agronomic and natural resource management decisions.   
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CHAPTER IV 

METHODS 

 

4.1 Description of Study Area 

 

        The dataset of CRP enrollments used for the study spans the upper portion of the Delaware 

River Basin (Hydrologic Unit Code 10270103) in Northeast Kansas (Figures 16).  For computing 

and time constraints Spring Creek, a smaller tributary within Jackson and Nemaha counties, was 

selected as the study area due to a fair amount of CRP enrollments within the watershed, and a 

prevalence of steeper slopes (Figure 17).  The area is part of the Glacial Drift and Loess Hills 

physiographic region, a dissected glacial drift plain covered by a thick layer of loess, with soils 

that are high in clay content.  Local relief can reach up to 200 feet, with stream valleys that are 

narrow with steep banks in some places, and the ridgetops can vary from level to strongly 

sloping over a short distance (USDA, 2006).   

        The Catchment covers approximately 153 km
2
 in area.  The area has a mean elevation of 

361 meters A.S.L., ranging from 298 to 428 meters.  Soils are deep with high clay content and 

moderately to highly erodible (USDA, 2006).  77% of the area are soil capability classes 1-3 

(slight to severe limitations for agriculture) and the remainder soil capability classes 4-8 (not 

suitable for agriculture) (NRCS, 2008).  Mean annual precipitation for the area ranges from 73-

99 cm (USGS, 1995). 
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        Pre-settlement vegetation for the area was tallgrass prairie, Oak-Hickory Savannahs in the 

uplands, and Cottonwood, Maple, and other Riparian species along the riverways and valley  

bottoms (USDA., 2006).  Agriculture is common on the flatter loess hills and bottoms, while 

rangeland is supported on many of the deep clay loams.  The U.S.D.A. (2006) lists the specific 

resource concerns for the Delaware River Basin pertaining to soil erodibility: 

 Classic gully and streambank erosion in pasture and hayland are concerns due to 

overutilization of the plant resource and unabated livestock access to stream corridors and 

banks, 

 Residue, nutrient, and pest management; vegetative practices, and structural practices are 

necessary to control erosion, protect water quality, and improve soil conditions, 

 For cropland, sheet and rill erosion is greater on steeper slopes, 

 Over application of nutrients and organics has created surface water quality concerns. 

        Many of the surface water bodies in the area have fair to poor surface water quality 

conditions, with 52% of the waterbodies within the Delaware River sub-basin not meeting their 

designated uses under the Clean Water Act (USDA, 2006).  The primary pollutants for streams 

within the watershed is Fecal Coliform Bacteria and pollutants of concern in the lakes and ponds 

include ammonia (NH3) that can cause eutrophication, and atrazine, a  broad applicant chemical 

herbicide used in agriculture.  Atrazine‘s moderate solubility and slow rate of degradation make 

it highly prone to transport from surface runoff (Stamer, 1995).  This is notable as the Delaware 

River Basin was one of the first areas in the nation where Atrazine was noticed as a major 

pollutant of surface waters.  As a result, the basin became the first pesticide management area in 

1994.  The primary source of surface water pollutants within the Delaware Basin is row crop 

agriculture. 
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4.2 Data Preparation 

 

        A polygon feature class of conservation reserve program tracts was attained from the USGS 

Fort Collins Data Center (http://www.fort.usgs.gov/about/).  The layer has parcels from the first 

twelve enrollment periods of the program spanning eight years (1986-1993).  The data also 

included ancillary data for enrollment year, cover type, previous crop plantings, farm 

information, and common land unit information.  The data was hand-digitized from NRCS 

County Parcel/Common Land Unit Maps at 1:24,000.  Spring Creek Catchment, which spans 

parts of Jackson and Nemaha Counties, contains the entirety or portions of 139 parcels, 

encompassing a total area of 10.12 km
2
, an average area of .072 km

2
 per enrollment parcel, 

approximately 7% of the total area. 

        10-meter digital elevation models (DEMs) were downloaded from the USGS Seamless data 

server (http://seamless.usgs.gov/).  The DEM covered the 7.5-minute quadrangles Goff, Soldier, 

Wetmore, Circleville, Horton Northwest, and Netawaka, Kansas.  The DEMs are Level II, 

created through complex linear interpolation and have been processed or smoothed for 

consistency and edited to remove identifiable systematic errors that may have been derived from 

hypsographic and hydrographic data digitizing, such as contour line bias or striping.  This 

procedure produces a maximum root mean square error (RMSE) of ½ a contour, or three meters 

for height errors in the vertical plane (McMasters, 2002). 

        After the DEMs were tiled, the ArcGIS Hydrology Toolset (ESRI, 2008) was used to 

extract the basin boundary.  Sinks within the DEM were filled to create continuous flow 

accumulation and flow direction grids based on the D8 flow direction algorithm and steepest 

slope descent through FLOW DIRECTION and FLOW ACCUMULATION commands.  With 
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the exception of recently glaciated or karst landscapes, pits in an elevation surface may be 

considered data errors or local noise (Band, 1986).  The filled DEM was only used to extract the 

basin boundary and not on surface characterization.  A point feature class was created, 

representing the basin pour point or seed point, and located to extract the watershed boundary 

using the WATERSHED tool.   

        Many algorithms employed in terrain analysis operate on the basis of the focal 

neighborhood, an odd-numbered N x N dimension of grid cells whose expression is then 

transferred to the focal cell at the center.   Cells near the edge may have null values (‗NaN‘ or ‗-

9999‘), which in some algorithms may be inadvertently incorporated as part of their focal 

neighborhood due to the size of the moving window, known as edge contamination (Olaya 

2009).   To account for this, the watershed boundary grid was converted to a polygon without the 

simplification of the polygon boundary preserving the pixilated edge.  The polygon was buffered 

by 200 meters to account for the edge effects beyond the largest anticipated window size (130 

meters by 130 meters).  This allows the source cells that define the headwaters or ‗walls‘ of the 

watershed to be properly represented within their landscape context.  The buffered polygon was 

then used as a mask to extract the basin elevation grid.   

        A large source of error when calculating higher order elevation derivatives is the sensitivity 

to DEM noise.  Sensitivity is greatest in functions of second derivatives (curvature), and least 

sensitive in first derivatives (slope, aspect).  DEM pre-processing is a recommended procedure to 

remove gross errors and artifacts and make a better approximation of the land surface (Reuter et. 

al., 2009).   Shary et al. (2002) suggested a parametric isotropic smoothing operation before 

calculating derivatives and terrain attributes off a DEM surface to reduce the noise and non-

systematic errors within the DEM.  Statistical properties of point attributes are more stable if the 
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DEM is smoothed, while reducing noise and discrepancies between various gradient calculation 

algorithms (Evans, 1972).  The initial isotropic smoothing algorithm for a 3 x 3 neighborhood is: 
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  (3.1) 

Where z1-z9  represent the 9 elevation points of a local 3 x 3 neighborhood, z5* is the filtered 

elevation value at the focal cell of the neighborhood, z2,z4, z5,z6,z8 represent local elevation 

values from the local neighborhood, and h is the smoothing factor, which used the value of .5 as 

recommended by Shary et al. (2002).  After simplification, the algorithm breaks down to a 

simpler form: 
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As recommended for the appropriate resolution, the isotropic smoothing algorithm was iterated 

twice over the DEM before surface characterization was performed as suggested for interpolation 

type and resolution (Wilson and Gallant, 2000).   

        The simplified workflow for the methodology is shown in Figure 18.   

Conceptual definitions of the landform classes, semantic constructs (highness, steepness, 

etc.), and appropriate terrain attributes to describe the constructs were defined for each class 

were created based on relevant geomorphometric models (Figure 18, Step I).  Terrain 

attributes (TA(x))) relevant to the classes and semantic constructs were calculated from the 

DEM (Step II).  Fuzzy membership functions were used to convert terrain attributes (TA(x))) 

to fuzzy membership values (u(a)x) on a 0 (non-membership) to 1 (full membership) scale 

(Step III) to express the semantic constructs.  Fuzzy overlay was performed on the semantic 

constructs to derive fuzzy landform layers for each semantic landform class (Step IV).   
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For each set of fuzzy landform classes derived, the maximum values were taken to create a 

crisp layer of final membership (Step V).  The entire operation was repeated for all six 

window sizes (90 m
2
 through 1690 m

2
) over which the terrain attributes are calculated. 

 

 

   

 

 

 

 

 

Figure 18. Basic flowchart of methodological steps 

 

4.3 Building Semantic Classes (Step I) 

 

        For landform classification procedures directly relevant to soil-landscape modeling and 

applicable to agriculture, McMillan et al. (2000) list a number of criteria to be met: 

 The defined units should exhibit meaningful differences in soil properties, moisture 

regimes, and crop yield, 

 The procedures should apply to a wide range of types and scales of agricultural 

landscapes, 

 The procedures should be based on a single model or protocol and should produce simple 

output consisting of a limited number of landform classes with defined characteristics, 
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 The landform classes should support a limited number of protocols for assigning standard 

management prescriptions for each defined landform unit. 

        Because of their basis in agricultural landscapes and incorporation of geomorphometric 

context, a combination of elements in selected previous work was utilized to establish classes 

and semantic constructs (Speight, 1990; Coops et al., 1998; Qin et al. 2009). These allow for the 

differentiation of upland, midland, and lowland sections, and provide further criteria for the 

delineation of the midlands to shoulder slope, back slope, and foot slopes.   Building upon these 

systems allows one to distinguish shedding and receiving areas of the landscape on the basis of 

surface shape and landscape position.  More complicated systems with a higher number of 

classes (MacMillan et al., 2000; Schmidt and Hewitt, 2004) would impede an analysis of cross-

scale behavior of landforms without more specific knowledge of the study area.   

        Semantic meanings of the landforms based on specific terrain attributes were explored 

before quantitatively defining the suite of characteristics that compose each landform class.   

Definitions of the landform classes at their simplest should reference both relative elevation and 

shape of the local land surface, and reflect surface shape to infer the dominant geomorphological 

process, and landscape position to distinguish the semantic membership of each location (Coops 

et al., 1998; Klingseisen et al. 2008).  Although the thresholds of terrain attributes or 

distinguishing characteristics will differ in applications to different regions, a general concept 

based on generic semantics should be able to be applied repeatedly with consistent results across 

other landscapes.  Semantic geomorphometric classes are represented in the schematic diagram 

in Figure 19. 
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Figure 19.  Schematic diagram of six semantic landform classes 

 

 Crests – crests are the highest areas in the landscape; generally flat with little slope, convex 

in tangential curvature (shedding area) with planarity in profile curvature. 

 Slopes – Slopes are the transitional areas between uplands and lowland, and are broken into 

three general classes, although further discriminations exist; shoulderslopes, backslopes, and 

footslopes.  The three classes are generally separated on thresholds of curvature and 

landscape position.  Shoulderslopes represent areas higher in the landscape adjacent to crests 

that are areas of greatest erosion and detachment potential from overland flow.  Profile 

curvature is positive, denoting an increasing rate of slope in the downhill direction (higher 

erosion potential).  Backslopes can be described as mid-slopes where the profile curvature is 

relatively planar and detachment potential is relatively equal to deposition potential.  

Footslopes are the lowest slope class and are characterized by having concave profile 

curvature where sediment deposition is greater than erosion potential.   

 Flats – Flats are depositional areas of flatness, low-gradient, and planar or undefined 

curvature, although flats may not be necessarily associated with lowland parts of a landscape.  
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Expansive flats within valleys are represented by terraces formed by floods and other alluvial 

activity, and have a positive correlation between their size and stream order of adjacent 

streams and rivers. 

 Drainages – In other taxonomies this may be represented by hollows or open depressions, 

where overland flow converges during precipitation events.  Drainages are the antithesis of 

ridges, with concave tangential curvature and profile curvature, and are the lowest locations 

in the landscape.  These features can be associated with obligatory vegetation species, or 

hydric soils.   

 

4.4 Calculating Terrain Attributes (Step II) 

 

        Terrain attributes to define the semantic constructs based on relevant models (Speight, 

1990; Coops et al., 1998; Qin et al., 2009) were calculated from the DEM.  Slope gradient and 

curvature were calculated using the second-order polynomial finite-difference method first 

introduced by Evans (1972).  Least-squared fit using second-order polynomials are regarded as 

the most robust technique for approximating surfaces and hillslope elements (Schmidt et. al., 

2003; Shary, 2002).  The bivariate form was later modified by Young (1978), Wood (1996), and 

most recently Shary (1995; 2002).  The method used here is the Wood procedure, a modification 

of Evans-Young.  This method has been shown to be less sensitive to local variations of data 

than other methods, most notably the one by Zevenbergen and Thorne (Florinsky,1998; Schmidt 

et al., 2003; Schmidt and Andrews, 2005).   

        Through the use of normal equations and matrix algebra, Wood (1996) developed a method 

to approximate surfaces using different window sizes in regularly-gridded DEMs.  The 
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procedure fits a local coordinate system of an odd-numbered N x N window into a series of 

normal equations.  The unknown coefficients from the polynomial expression are simplified to 

just four terms needed to solve for the six coefficients through the use of matrix algebra.  This 

allows slope and curvature to be calculated over different window sizes and from the same set of 

coefficients, a significant advantage over the 3x3 neighborhood methods of Zevenbergen and 

Thorne (1987) and Horn (1981) present in many geospatial analysis programs. 

        In Wood‘s modification of the Evans-Young algorithm, a local neighborhood of N x N 

dimensions is fitted with the bivariate quadratic function: 

feydxcxybyaxz 22   (4.1) 
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The six coefficients are then represented within the matrix expression as:  
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The four constants of the matrix ( ),,, 2224 Nxyxx iii   are solved once for a given window size (N) 

(Wood, 1996).  The coefficient matrix (a through f) is then solved using matrix algebra. 

        Once the six coefficients (a-f) are solved for each window size, a number of surface 

parameters can be easily calculated.  The rate of elevation change, or slope magnitude in both the 

x and y direction is used to identify the direction and magnitude of the steepest gradient (Wood, 

1996).  The slope in degrees is represented as: 
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22 edarctan)Slope(     (4.4) 

        The two secondary derivatives Profile and Plan Curvature separate curvature into two 

orthogonal components where the effects of gravitational process are either maximized down a 

hillslope profile (profile curvature), or minimized across a hillslope profile (contour or plan 

curvature).  Profile curvature is the curvature of the normal plan section in the gradient vector 

direction, and plan curvature is the curvature of the horizontal plan section in the direction 

perpendicular to the gradient vector.  Profile Curvature (4.5) and Plan Curvature (4.6) are 

represented as (Wood, 1996; Jordan, 2003): 

  2222

22

ed1ed

2cdebead
  ProfCurv




  (4.5) 

22

22

ed

2cdeaebd
PlanCurv




  (4.6) 

        Tangential curvature was first proposed as an alternative to plan curvature by Shary and 

Stepanov (1991) and later by Mitasova (1993).  Tangential and Profile curvature are both 

curvatures of normal sections and exhibit similar statistical distributions, whereas plan curvature 

has markedly different statistical distributions, with a standard deviation up to ten times greater 

than that of profile curvature (MacMillan and Shary, 2009).  Tangential Curvature (4.7) is the  

curvature of the line formed by intersection of surface with plane normal to the flow line (Jordan, 

2003): 

  2222
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        Units of curvature from equations 4.5-4.7 are initially dimensionless (Z units/Z units).  To 

present  more meaningful values and differentiate values of convex curvature (positive) from 
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values of concave curvature (negative), curvature values are multiplied by -100 to represent  Z 

units/100 Z units: 

 100*CurvFinalCurv   (4.8) 

        Besides derivatives of elevation, several other terrain attributes were calculated.  Elevation 

Percentile (EP) is the ratio of elevation values less than the elevation of a reference point.   

Within a gridded DEM of constant resolution, elevation percentile can be computed for the focal 

center of local neighborhoods of dimension n x n.  Elevation Percentile is used as a 

distinguishing concept for crests and valleys, and is a key component of landform classification 

in Speight‘s system (1990) as well as ridgetop and valley bottom flatness indices (Gallant and 

Dowling, 2003).  Elevation Percentile is expressed as (Klingseisen et al., 2008): 
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zz
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where zi is the elevation at location i within, z0 is the focal center of, and nc the of cells in a 

neighborhood sized N. number 

        Because secondary derivatives are sensitive to small errors in the DEM quality and may 

contain noise, several other measures of relative curvature are useful in characterizing the mass 

balance or erosion potential of a location.  One alternative attribute is Relative Profile Curvature 

(RPC) (Behrens et. al 2006).   Relative Profile Curvature is a measure of local mass balance, and 

is a ratio of the average slope of all cells within a neighborhood with a higher elevation of the 

focal cell to the average slope of cells within the neighborhood with a lower elevation of the 

focal cell.  With the magnitudes of slopes and curvature differing greatly, relative profile 

curvature allows a standardized measure of balance to be created and compared across scales.  

Relative Curvature Profile is calculated as: 



65 
 


 




N

1i 0i

o

2

0i

o

1

zzu

zzu
Curvature Profile Relative   (4.10) 

where o

1u  is the mean slope of cells zi in focal neighborhood of sized N with a greater elevation 

than cell z0 at the focal center, and o

2u  is the mean slope of cells zi in focal neighborhood of sized 

N with an greater than cell z0 at the focal center.  

        Several post-processing operations needed to be completed to correct minor errors and 

anomalies in the Relative Profile Curvature Layer.  Cells with an empty numerator (pits) or an 

empty denominator (peaks) were assigned a ‗-1‘ or  ‗1.#INF‘ value.  To replace the  ‗1.#INF‘ 

values, a neighborhood focal mean was calculated for each neighborhood size while ignoring ‗-

1‘ or ‗NaN‘ values.  This new value replaced the original ‗1.#INF‘ within each layer.  

        After deriving appropriate algorithms, terrain attributes were computed for each spatial 

scale within Python and MATLAB computing environments (Van Rossum, 2005; MATLAB, 

2010).  Spatial scales over which to derive the landform classes were partly based on literature 

(Zhang and Montgomery, 1994; McMilllan and Shary, 2009), and feasibility of incorporating 

relevant information within the units of study, CRP easements, which occur over a range of sizes 

and shapes.  Predictive capabilities of DEMs decrease rapidly at details coarser than the hillslope 

scale (Pike, 2000).  If average hillslope lengths are in the order of 100-200 meters, a scale greater 

than 200 meters may not be able to capture within-hillslope variability of hydrologic processes 

(Moore et al., 1993).  The spatial scales were thus composed of dimensions of length of 3, 5, 7, 

9, 11, and 13 cells representing areas of 90, 250, 490, 810, 1210, and 1690 square meters.  

Within each spatial scale, terrain attributes were calculated for the focal cell at the center of the 

neighborhood, before moving to the next cell. 
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4.5 Converting terrain attributes to fuzzy semantic constructs (Step III) 

 

        Semantic constructs to define the landform classes were derived with the use of fuzzy 

semantic import models (SI).  The S-curve (Figure 20a, below-left) and the Z-curve (Figure 

20b, below right), were used to convert terrain attributes (TA(x)) to fuzzy membership values 

(u(a)x) on a 0 (non-membership) to 1 (full membership) continuous scale. 

 

Figures 20a-b.  Fuzzy membership functions used to convert terrain attributes (TA(x)) to 

fuzzy membership values (u(a)x) (MATLAB, 2010) 

 

 

The primary forms of SI models used to convert terrain attributes to fuzzy membership values 

for each semantic construct were first-order polynomials: 

2(a)
c)/d)((x1

1
xu


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1xu (a)   for cx    (4.11a) 

1xu (a)  for cx   (4.11b) 
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where u(a)x is the membership value of terrain attribute x to semantic construct a, with c as the 

central concept and d as the dispersion index, and equations 4.11a and 4.11b act as modifiers to 
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equation 4.11 in order to create the S-curve (4.11a) and Z-curve functions (4.11b).  Multiple 

semantic constructs (Table 3, column 2)  were derived to represent linguistic properties of 

landforms from terrain attributes (Table 3, column 1) through semantic import models (Table 3, 

column 3) and the use of fuzzy operators.     Central concepts, dispersion indices, and bounding 

criteria (Table 3, columns 4-5) were based on parameters within the literature, and refined based 

on visual results and statistical distributions of terrain parameters within the entire study area.  

Thus, for each location (pixel), a membership grade to each semantic construct is calculated.  

These semantic constructs are then overlaid to compute the degree of membership of a 

considered location to a semantic landform class.  This is known as the heuristic rules approach   

(Schmidt and Hewitt, 2004).  A schematic diagram of landform classes and associated semantic 

constructs (number from Table 3, column 2) is shown in Figure 21. 

 

Table 3.  Summay of terrain attributes, semantic constructs, and fuzzy membership function 

parameters.   
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Figure 21.  Semantic landforms and the constructs used to define them (in parentheses) 

 

Additional information on the distinguishment of the parameters for the Fuzzy Membership  

functions area listed below: 

 Flatness and steepness - Slope is utilized for the Semantic Constructs flatness and steepness.  

A Slope threshold is needed to separate flat areas (crests and flats) from steep areas (slopes).  

Because the distribution of slopes approaches the Gaussian ideal with minor positive skew, a 

cumulative mean of the slope distribution across all scales of analysis was used to distinguish 

flat and steep areas and serve as the crossover point, which has equal membership to both 

flatness and steepness.  Means of slope distribution ranged from 6.68
0
 at the 9-cell 

neighborhood to 5.21
o
 at the 169-cell neighborhood, with a mean of 5.94

o
, so 6

o 
was utilized 

as the central concept to separate the two constructs of flatness and steepness.  Equation 4.12 

was used to derive steepness, with flatness derived using the complementary operator.  The 
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dispersion index was visually tested, and found in agreement with existing sources (Gallant 

and Wilson, 2003). 

 Curvature constructs - Profile Curvature is used to construct three semantic constructs, 

profile convexity, profile planarity, and profile concavity, with tangential convexity and 

concavity the two constructs for tangential curvature.  Two functions are used to define the 

constructs profile convexity and profile planarity with values from either side of zero, 

negative values representing concavity, and positive values representing convexity.  Equation 

4.11 was used to model profile convexity with the modification of equation 4.11a.  Central 

concepts and diversion indices were tested, beginning with the use of statistical distributions 

of the terrain attribute over scales of analysis (c =  x (profile curvature) = .085, d = 

½ (profile curvature) = .042).  A central concept of .10 was determined as optimal, with the 

dispersion index of .05 based upon this threshold identifying 1/3 of the landscape as convex, 

and being in agreement with central concepts utilized in previous studies in similar terrain 

(Pennock et al., 1987; MacMillan et al., 2000; Qin et al., 2009).  The same form was used for 

deriving semantic construct tangential convexity from terrain attribute tangential curvature.  

Because of the dichotomous relationship of convexity and concavity in their identical 

distribution on both sides of zero, equation 4.11b with a sign reversal in the denominator was 

utilized to derive the constructs for profile and tangential concavity.  To derive profile 

planarity, a simple equation was derived to produce full membership of the construct where 

curvature is close to 0.  The difference between the constructs profile convexity and profile 

concavity was subtracted from 1 (Construct 7 in Table 3).  Thus the crossover point for both 

profile convexity and profile concavity is the location of full membership to profile planarity. 
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 Highness and lowness - Elevation Percentile is used to define two semantic constructs, 

highness and lowness.  Elevation Percentile has been utilized in several studies (Coops et al., 

1998; Gallant and Dowling, 2003; Klingseisen et al., 2008) to define areas high and low in 

the landscape.  Existing thresholds for defining a crest are an elevation percentile of at least 

.65.  Equations 4.11a was used to derive the constructs, where .65 is the central concept, c, 

for highness, and .2 is the dispersion index.  For the semantic construct lowness, the 

complement operator was used (Construct 2, Table 3) 

 Balance constructs - Relative profile curvature is used to produce three constructs; negatively 

balanced for areas like crests and shoulderlsopes (implying sediment detachment), balanced 

for areas where the net sediment loss is relatively equal to deposition, and positively 

balanced for areas of net deposition.  The distribution of Relative Profile Curvature is 

relatively stable across the scales of analysis ( x =1.14 to 1.17 between 9-cell neighborhood 

and 169-cell neighborhood,  =.68 to .66 in same range).  The same membership function 

model was used for balance as the profile curvature constructs with Equation 2.4 and 

modification of Equation 2.5.  Negatively balanced was initially modeled with the central 

concept (1.45) derived from the mean relative profile curvature across scales (1.15) + ½ the 

approximate standard deviation (rounded down to .3).  ½ the standard deviation was also 

used for the dispersion index, giving a fuzzy membership value of the semantic construct a 

crossover point at approximately the mean of the dataset across all scales (1.15).  For the 

additional semantic constructs, positively balanced was created through the complement of 

Negatively balanced, and  balanced was created the same way as profile planarity, by 

subtracting difference of fuzzy membership values between negatively balanced and 

positively balanced from one. 
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4.6 Fuzzy Overlay and Defuzzification (Step IV and V) 

 

        Fuzzy overlay was performed to derive surfaces of all semantic landform classes (crest, 

shoulderslope, backslope, footslope, flats, and drainage) using the corresponding set of semantic 

constructs (Table 3, Figure 21) and applying three different operators.  The products of this step 

are six fuzzy landform layers, with cell values indicating the degree of membership to a 

particular class.  Previous discussion of overlay and operators can be found in section 2.  The six 

fuzzy landform layers generated by one of the operators (Fuzzy Gamma) at the 49-cell window 

size can be seen in Figure 20.  

 

 

Figure 22.  Fuzzy landforms generated by the fuzzy gamma operator at the 49-cell window 

size.  Lighter areas represent higher membership values to that class (upper left-crests, upper 

center-shoulderslopes, upper right-backslopes, lower left-footslopes, lower center-flats, lower 

right-drainages). 
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        The three operators used for fuzzy overlay, intersect, algebraic mean, and fuzzy gamma, 

have been used extensively in soil-landscape modeling(MacMillan et al., 2000; Qin et al., 2009), 

risk analysis related to soil erosion (Metternicht and Gonzalez, 2005), ordination of vegetation 

(Roberts et al., 1986), and other geomorphometrically-related subjects (landslide susceptibility, 

subsurface mineral deposits) (Tangestani et al., 2004).  These operators vary in levels of 

constraint, liberation, and mathematical complexity: 

 Intersect – The intersect operator assigns a location the minimal value of multiple fuzzy sets 

(semantic constructs) and responds to the logical connective ‗AND‘ between semantic 

constructs A,B,C, and D: 

.364,.36,.45)min(.76,.9U DA    (4.13) 

The intersect operator is the least liberal and most constraining of the three operators tested, 

with no interacting or compensating effects between the fuzzy sets that are overlaid.  

 Algebraic Mean – The algebraic mean, is calculated as the mean of multiple fuzzy sets, and 

responds to the relational algebra operator ‗Cartesian Product‘: 
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Algebraic mean is the middle ground between the constraining effects of the intersect 

operator and the compensatory effects of the fuzzy gamma operator (see below). 

 Fuzzy Gamma – The fuzzy gamma operator is a combination of the algebraic product and the 

algebraic sum (An et al., 1991).  Within two fuzzy sets, A and B, the Algebraic Sum is 

written as the complement of the Algebraic Product: 

  x)u*x(ux/1uxuxu BABAC   (4.15) 
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where membership to a new set uc, is defined via intersection  as the difference between sum  

of two membership values and their product.  The fuzzy gamma operator is then stated as: 
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  (4.16) 

where   is the fuzzy gamma coefficient, and a coefficient value of 0 equals the fuzzy 

algebraic product and a value of 1 equals the fuzzy algebraic sum.  Because the outputs of a 

fuzzy algebraic sum are increasive, and outputs of the fuzzy algebraic product are decreasive, 

the fuzzy gamma operator is seen as a flexible compromise between the two where there is no 

indication which of the semantic constructs may be the limiting factor of.    Among the fuzzy 

operators, the fuzzy gamma operator can be viewed as having the highest amount of 

compensatory effects between the set of semantic constructs.  Fuzzy gamma coefficient 

values ( ) closer to 0 give heavier weight to the fuzzy algebraic sum, while values closer to 1 

give heavier weight to the fuzzy algebraic product.  Because of a lack of background research 

on expert-driven effects of changing gamma operator threshold, arbitrarily chosen fuzzy 

gamma coefficients of .25, .5, and .75 were tested.  The range of the derived membership 

values varied widely, although less than .05% of cells changed crisp classes between the three 

coefficients within the same scale when the six fuzzy layers were defuzzified.  It was decided 

to use the fuzzy landform layers derived from the fuzzy gamma coefficient at the .5 level, and 

use it as a basis to compare against landforms derived from algebraic mean and intersect 

operator.   

        The most liberal and least constraining operator and direct opposite of the intersect 

operator, union, was not used because it produced the least realistic visual results.  Figure 23 

demonstrates results of defuzzified landforms derived from the fuzzy gamma and union 

operators at the 49-cell window size. 
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Figure 23.  Differences in crisp landforms derived from the fuzzy gamma operator (left) and 

the union operator (right) at the 49-cell window size.  The high incoherency of the union 

landforms precluded it from further analysis. 

 

        To derive a final, crisp layer of six landform classes, a final overlay operation was applied 

to the six fuzzy landform layers utilizing the maximum of membership (MOM) method (Zadeh, 

1965).  This is referred to as defuzzification, where a final, quantifiable result is mapped to a 

crisp set from given multiple fuzzy sets and membership (Klir and Yuan, 1995).  Many other 

defuzzifcation methods are available for inference or rule-based system, which do not apply 

here.  For each set of classes derived from the three operators, the semantic landform class with 

the highest membership value was taken to create a boolean, crisp layer of final membership at 

each scale. Crisp layers derived from fuzzy gamma (left), algebraic mean (center), and intersect 

(right) operators (49-cell window size) are shown in Figure 24 underlying a single CRP tract. 
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Figure 24.  Defuzzified landform layers derived from the Fuzzy Gamma (left), Algebraic 

Mean (center), and Intersect (right) operators underlying a single CRP Tract. 

 

4.7 Analysis of Stability, Fuzzy Membership, and Entropy          

 

        To understand the distribution of crisp landforms, the effect of overlay operators on the 

fuzzy membership values, and the resultant classification stability of the crisp landforms, the 

analysis is split into three sections.  The first section covers the relationships between the crisp 

class areas across scales, utilizing gross cell counts and the cross-tabulation matrix to measure 

specific categorical trajectories between different scale-steps.  The second section analyzes the 

distribution of fuzzy membership values for each of the three operators using a Wilcoxon test for 

non-parametric data.  The final part combines the crisp and fuzzy portions of the analysis by 

examining the underlying classification stability of each semantic landform class using the 

measure of classification entropy.  This framework allows for separate analysis of crisp 

landforms, fuzzy membership values, and a combination of crisp and fuzzy. 
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        Cross-tabulation matrices were constructed to compare changes in semantic landform 

distributions between spatial scales and between operators.  These tables are commonly-used 

tools for multi-dimensional change analysis or accuracy assessment in land cover/land use with 

multiple time steps (Pontius et al., 2004).  An example of a cross-tabulation matrix is shown 

below in Table 4. 

 b=1 b=2 …. b=j Total (b) Losses 

a=1 P11 P12 … P1j P1+ P1+ - P11 

a=2 P21 P22 … P2j P2+ P2+ - P22 

… … … … … … … 

a=j Pj1 Pj2 … Pjj Pj+ Pj+ - Pjj 

Total (a) P+1 P+2 … P+j 1  

Gains P+1 - P11 P+2 - P22 … P+j – Pjj   

 

  Table 4. Template cross-tabulation matrix (based on Pontius et al., 2004), where a and b 

represent two datasets with j classes, a representing the reference map, and b representing the 

comparison map.    The proportional values of agreements between two sets for a given class (a 

=1 and b = 1 at a given location) are located on the diagonal.  Comparison map total for class a = 

1, etc. are located in the column Total (b) and reference map total in row Total (a).  Totals for 

both column and row equal 1 (100% of the landscape).  Pab denotes portion of the landscape 

experiencing a change of category between the reference map and the comparison map. 

 

        The resulting matrix can be used to summarize total agreement between two datasets, and 

the categorical trajectory from one class to another (the direction of change).  Within land cover 

change analysis, the terms gain and loss are used to describe additions and subtractions from or 

to class j, while swap refers the location of category changing over time while the overall class 

quantity remains the same (Pontius et al 2004).  In this case for geomorphometry, gains, losses, 

and swaps use coarsening scales rather than change across time as frame of reference in 

determining directions of change between crisp classes. 
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Analysis of cross-tabulation matrices allows only insight into the Boolean memberships 

of the landform classes.  To test the similarity or dissimilarity of the fuzzy membership values 

for each fuzzy landform class are between values derived from the intersect, algebraic mean, and 

fuzzy gamma overlay operators, the Wilcoxon ranked-sum test for paired samples was 

performed.  The Wilcoxon ranked-sum test is a non-parametric method for determining if two 

independent data vectors come from the same distribution, even if one vector is shifted to the left 

or right of the other.  Hypotheses for Wilcoxon ranked-sum test for two populations, x1 and x2, 

are as follows: 

Ho: u1/2 (x1) = u1/2(x2)  (4.17) 

Ha: u1/2 (x1) ≠ u1/2(x2)  (4.18) 

where u1/2(x) is the median of population x (MATLAB, 2010).  Unlike parametric methods like 

Student‘s t or paired t-tests, there are no general assumptions for the test; though not required, it 

is often assumed that the populations have similar shapes and dispersions (Wuensch, 2010).  In 

addition, the test has shown to perform with only slight losses with vastly different sample sizes 

(Sawilosky, 2005).   

        In the Wilcoxon Ranked-sum test, both populations are ranked numerically from greatest to 

smallest, and the ranks are summed.  Under the null hypothesis, the sampling distribution or the 

sum of ranks, T, has the following statistical distribution: 
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where ut is the mean and 2

t  the standard deviation  of the two vectors being compared, n1 and 

n2.  If the rank of sums, T, is higher or lower than tu beyond the upper or lower bounds of the 
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rejection regions of the critical value of level of significance tested, the null hypothesis is false 

and the two distributions are not equal.  If random locations share similar distributions of 

membership values for each class derived from the three overlay operators, it could be said there 

is no significant difference in how the overlay operators assign fuzzy memberships. 

        To quantitatively define locations of high classification ambiguity or uncertainty and 

determine if specific classes displayed high ambiguity, classification entropy (H, equations 2.13-

2.14) was utilized.  Classification entropy is a form of Shannon-Weiner Diversity Index which 

measures the variance in fuzzy membership in a dataset with a finite number of classes (Foody, 

1997).  Theoretrical application of the classification entropy was previously discussed in section 

2.3.6. 

        Previous examples of the use of entropy in measuring in categorical classification stability 

include Brown (1998) to measure boundary vagueness in presettlement forest types.  It has been 

used extensively in Soil-landscape modeling to assess the results of Fuzzy K-means 

classification of landform classes.  Wood (2001) used entropy measures in combination with 

analysis of fuzzy membership values to determine pits at valley confluences are an artifact of a 

DEM. 

        Similar to the Wilcox Ranked-sum tests, the fuzzy membership values of the six fuzzy 

landforms derived from each overlay operator at each scale were normalized on a 0-1 scale 

(equation 4.19).  Classification entropy was then calculated at each pairing of scales and operator 

using MATLAB (MATLAB, 2010).  To compare the classification entropy of different 

landforms, the proportional relationships of the six Boolean classes at different levels of entropy 

were examined, an idea similar to exploring the effect of different  cut levels (section 2.3.6) 

on the areas of a defuzzified fuzzy set.  
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        Proportional percentages of the range of classification entropy for each operator were 

calculated.  Entropy levels to examine class proportionality were chosen at 0.99, 0.95, 0.90, 0.85, 

and 0.75 percentile to give more weight to identifying areas with highest classification entropy 

(high uncertainty and ambiguity).  The specific values of entropy to examine in each pairing of 

scales/overlay operators at which to examine class proportions were determined by the range of 

each entropy surface: 

)EP(EEE x(min)x(max)x(max)P   (4.22) 

where Ep  is the entropy value at each proportional percentage, P (0.99, 0.95, 0.90, 0.85, 0.75), 

Ex(max) is the maximum classification entropy of the entropy surface, and Ex(min) is the minimum 

classification entropy.  The proportion of semantic classes at each entropy level was examined 

for each pairing of scales/overlay operators.  Because of the variety of operators and scales being 

tested, a semantic landform class could be considered ‗ambiguous‘ if it is a high proportion of 

the noted locations of high entropy between operators and across scales.  Many vegetation and 

soil-mapping applications that rely on relative landscape position to predict community 

composition based  on moisture availability, dominant processes, such as surface runoff versus 

groundwater recharge regimes.   
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CHAPTER V 

RESULTS 

 

5.1 Variance of Terrain Attributes and Landform area over Scales 

 

        Some of the basic distributions of terrain attributes have been discussed earlier in building 

Fuzzy Membership Functions.  Each terrain attribute showed a markedly different behavior 

across the different scales of measurement.  Bar plots of the mean and standard deviation of 

slope are shown in Figure 25.  Means of terrain attributes across all scales of measurement are 

shown below in Table 4.  With the exception of elevation percentile, the standard deviations of 

all terrain attributes decreased with decreasing scale, which is what would be expected as local 

noise is smoothed out as the range of measurement increased.  Based on simple linear trends of 

the terrain attributes across scales, slope was the most volatile attribute with the steepest slope (m 

= .295). 
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Figure 25. Change in mean (points) and standard deviation (bars) of slope measurements across 

window sizes. 
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 Window Size 

Attribute 9-cell 25-cell 49-cell 81-cell 121-cell 169-cell 

Slope 6.6794 6.4021 6.0969 5.792 5.4975 5.2178 

Prof. Curv. -0.0015 -0.0011 -0.0008 -0.0008 -0.0007 -0.0007 

Tan. Curv. 0.0026 0.0021 0.0018 0.0016 0.0015 0.0015 

RPC 1.1127 1.1197 1.1138 1.1029 1.0893 1.0755 

EP 0.4404 0.4777 0.4887 0.4937 0.4965 0.4984 

Table 5.  Mean of terrain attributes calculated over window sizes (Prof. Curv. = profile 

curvature, Tan. Curv. = tangential curvature, RPC = relative profile curvature, EP = elevation 

percentile).  Units of slope are degrees and profile and tangential curvature Z units/100 Z units.  

Relative profile curvature is unit-less and elevation percentile is a proportion. 

        

        Cell counts for the six classes were plotted to compare the non-spatial distributions and 

behavior of landform areas across scales between the three overlay operators (intersect, algebraic 

mean, and fuzzy gamma).  Percentages of each landform class across scales for each operator are 

shown in Table 6 through 8.  Three general trends could be observed for the three operators.  

First, as scale decreased, the area (pixel counts) of slopes decreased while the area of flats and 

crests increased for each fuzzy operator.  Second, slopes showed similar areas for all three 

overlay operators; backslopes showed larger area than either backslopes or shoulderslopes.  

Third, the only landform class which displayed a clear optimal scale for area or feature detection 

was drainages, which exhibited a parabolic-like behavior for each overlay operator, with the 

vertex of the parabola occurring at either the 49 or 81-cell neighborhoods and decreasing towards 

smaller and larger scales (Figure 26).  Drainages over three scales are shown in Figures 27a-c.   
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                 Figure 26.  Area of landform class drainages over window sizes  
       

                                       

Figure 27a-c.  Landfrom classes derived from the Fuzzy Gamma operators represented at the 25-cell (Figure 27a, left); 81-cell (Figure 

27b, center) and 169-cell (Figure 27c, right) window sizes.   
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Table 6-8.  Proportions of crisp classes derived over window sizes from intersect (Table 6), 

algebriac mean (Table 7), and fuzzy Gamma (Table 8) overlay operators (Cr. – crests, SS – 

shouldeslopes, BS – backslopes, FS – footslopes, Fl. – flats, Dr. – drainages) 

 

Table 6.  Proportions of crisp classes generated from intersect operator 
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 Cr. SS BS FS Fl. Dr. 

9 13.09  22.60  27.65  16.54 16.21 3.92 

25 12.81  21.98  26.42 16.25 18.27 4.26 

49 15.03  20.28  26.49 14.83 19.02 4.35 

81 16.92  19.22  25.02  13.55 21.33 3.95 

121 18.66  18.17  23.38  12.25 24.11 3.43 

149 20.20  16.99  21.89 10.82 27.26 2.83 

 
 

Table 7.  Proportions of crisp classes generated from algebraic mean operator 
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 Cr. SS BS FS Fl. Dr. 

9 11.56  23.16  26.07  17.62  18.17  3.41  

25 14.88  21.65  24.76  16.62  17.87  4.22  

49 18.48  19.52  23.41  14.92  19.50  4.17  

81 21.33  17.85  21.41  13.36  22.45  3.61  

121 23.87  16.11  19.46  11.78  25.84  2.94  

149 26.21  14.28  17.76  10.06  29.51  2.18  
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Table 8.  Proportions of crisp classes generated from fuzzy gamma operator 
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 Cr. SS BS FS Fl. Dr. 

9 5.41  21.73 25.19 19.38 22.17 6.13 

25 8.89  20.50 26.86 18.16 18.83 6.75 

49 11.52  18.81 26.37 16.74 19.17 7.39 

81 13.77  17.20 24.74 15.53 21.37 7.39 

121 15.81  15.44 22.95 14.28 24.66 6.85 

149 17.67  13.6 21.34 12.83 28.71 5.85 

 
        

 

         The main difference in distribution of landforms between operators occurred when 

considering the classes in two groups.  Upland classes (crests, shoulderslopes, and backslopes) 

were more frequently represented in crisp landform layers derived from the intersect and 

algebraic mean overlay operators as compared to the fuzzy gamma operator, for which a higher 

proportion of lowland classes occurred (footslopes, flats, and drainages). 

        Within CRP parcels, there was a disproportionate representation of classes semantically 

representing both upland and lowland areas.  A greater proportion of upland classes (crests, 

shoulderslopes, and backslopes) and a lesser proportion of lowland classes (footslopes, flats, and 

drainages) were represented in CRP parcels as compared to the rest of the study area across all 

three fuzzy overlay operators (Figure 28).  This discrepancy in upland and lowland proportions 

was greatest at the intermediate scales and lowest towards both coarser and finer spatial scales. 
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Figure 28.  Proportional differences of landform classes generated by fuzzy gamma  operator 

between CRP parcels and study area  

 

        Cross-tabulation matrices were calculated between pairs of scales for each of the three 

operators resulting in a total of 63 tables. Tables 9 and 10 (below) represent cross-tabulation 

matrices between the 25-cell and 81-cell window sizes (Table 9) and 81-cell and 169-cell 

window sizes (Table 10) for fuzzy landforms generated by the fuzzy gamma operator.  Only two 

examples are given, as the majority of change directions between crisp landform classes were 

similar in all three overlay operators.  Gains of classes between the 25-cell and 81-cell window 

sizes are noted by the red italicized cells, losses by the green-colored italicized cells, and 

agreement between scales is noted by the bolded diagonal. 
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Table 9.  Cross-tabulation matrix between 25-cell and 81-cell window size derived from the 

fuzzy gamma operators (Cr. = crests, BS – backslopes, SS – shoulderslopes, FS – footslopes, Fl. 

– flats, Dr. – drainages) 

  25-cell window size  

  Cr. SS BS FS Fl. Dr. Total Losses 

8
1
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w
in
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o
w
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iz

e
 

Cr. 7.47 0.42 0.45 0.23 0.30 0.04 8.89 1.43 

SS 2.10 12.89 3.92 0.57 0.84 0.18 20.50 7.61 

BS 1.43 3.08 16.65 2.68 2.68 0.35 26.86 10.21 

FS 0.35 0.11 2.60 11.15 1.66 2.29 18.16 7.01 

Fl. 2.34 0.53 0.84 0.58 14.23 0.30 18.83 4.59 

Dr. 0.09 0.18 0.27 0.32 1.66 4.23 6.75 2.52 

Total 13.77 17.20 24.74 15.53 21.37 7.39 100.00* 66.97 

Gains 6.31 4.31 8.08 4.38 7.14 3.16   

  *Cross-scale agreement: 66.62% 

 

Table 10.  Cross-tabulation matrix between 81-cell and 169-cell window size derived from the 

fuzzy gamma operator. 

 

  81-cell window size 

  Cr. SS BS FS Fl. Dr. Total Losses 

1
6
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Cr. 12.13 0.25 0.67 0.29 0.42 0.01 13.77 1.64 

SS 2.33 11.64 2.25 0.06 0.84 0.07 17.20 5.56 

BS 1.48 1.31 16.59 1.81 3.42 0.12 24.74 8.15 

FS 0.22 0.01 1.14 10.19 2.71 1.26 15.53 5.34 

Fl. 1.46 0.33 0.46 0.34 18.61 0.17 21.37 2.76 

Dr. 0.05 0.06 0.23 0.14 2.70 4.21 7.39 3.18 

Total 17.67 13.60 21.34 12.83 28.71 5.85 100.00*  

Gains 5.54 1.36 4.75 2.64 10.10 1.64   

  *Percent Agreement: 73.37% 
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        The matrix gives more information on specific trajectories across scales.  Areas of both 

crests and flats continually increase in area with coarsening scale, though flats is the only class 

where one can see that both gains increase and losses decrease as scale becomes coarser (losses 

for flats decrease from 4.59 to 2.76 between the two sets of scale comparisons, while gains 

increase from 7.14 to 10.10 (Table 9 and Table 10).  Correspondingly, all three slope classes 

decrease in area as scale becomes coarser.  Figures 29a-c exhibit how a single class (backslopes) 

changes between sets of scales.   

        Specific change directions between classes are also observable.  There is an increasing 

association in gains and losses between drainages and flats at coarsening scales.  Losses for the 

other four semantic classes (crests, shoulderslopes, backslopes, footslopes) are split more evenly 

among the other classes.  For example, in Table 9, a cumulative total of 10.21% of losses that 

occurred in the backslopes class between semantic landforms generated from the 25-cell window 

size and those generated in the 81-cell window size. Of the losses that occurred in the backslopes 

class, 1.43% were classified as crests, 3.08% as shoulderslopes, 2.68% as footslopes, and 2.68% 

as flats at the 81-cell window size.  For losses in the drainages class at the same scale 

comparison, over 60% of the losses for drainages were locations reclassified as flats at the 81-

cell window size.  This proportion increased to over 80% as window size increased from 81 cells 

to 169 cells in Table 10.
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Flats

Shoulderslopes

Drainages

BackslopesCrests

Footslopes  

Figures 29a-c.  Change of class distribution over window sizes.  Backslopes are symbolized with black and other classes dropped back in visual 
hierarchy to help highlight the behavior of a single semantic landform class.  Window sizes are 25-cell (Figure 29a, left), 81-cell (Figure 29b, 

middle), and 169-cell (Figure 29c, right) and crisp landforms are derived from the Fuzzy Gamma operator.  Based on visual results, one would 
expect the shape and perimeter indices for each class to reflect a greater magnitude of change at the finer scales; characteristics that may not be 

visible through analysis of the gross, crisp cell counts or the cross-tabulation matrix. 
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        To visually compare the differences of cross-scale agreement between the three operators, 

the percent total agreement for each cross tabulation matrix within each operator was plotted 

against the ratio of the comparison map (larger window size) to the reference map (smaller 

window size), as shown in Table 4.  This ratio decreased as the scales being compared 

coarsened.  For example, percent agreement between the 9-cell (reference map) and 25-cell 

window sizes (comparison map) would result in a scale ratio of 2.78 (25/9), and a comparison of 

landforms generated at the 121-cell (reference map) and 169-cell (comparison map) window 

sizes would give a ratio of 1.4 (169/121).  This ratio thus takes into account the size of the 

window sizes at the two scales being compared as well as the relative sizes of the scales.  Figure 

30 shows the relationship between percent agreements for each pair of scales plotted against a 

ratio of window size of the two scales for comparisons within each operator.   

 

Figure 30.  Percent agreement between the ratio of comparison map window size to reference 

map window size across all scales. 
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        Percent agreement was related to both magnitudes of window sizes for scales being 

compared and the magnitude of the difference between them.  For example, there was 77.27% 

agreement comparing landforms derived from the 9-cell and 25-cell window sizes (ratio of 

window sizes ((x) = 2.87), 78.39% between 25-cell and 49-cell window sizes (x=1.96), up to 

85.87% agreement between landforms derived at the 121-cell and 169-cell window sizes 

(x=1.40).  The percent agreement between the three operators was similar at small ratio sizes, 

(e.g. 86.35% agreement for the Gamma Operator, 85.91% for the Algebraic Mean, and 85.87% 

for the Intersect Operator between 121-cell and 169-cell window sizes, x=1.40).  There is less 

variation between the levels of agreement of the three operators as both the scales coarsen and 

the size difference between the scales being compared decreases.  Agreement between different 

overlay operators at the same scale was also examined (Figure 31).  In this instance, the two 

datasets (reference maps and comparison maps) being analyzed represent crisp layers generated 

from overlay operators at the same scale.  Highest agreement between the three operators at the 

same scale could be observed at the 25-cell window size. 
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Figure 31.  Agreement between the three operators over window sizes. 
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5.2 Similarity in the distribution of fuzzy membership values 

 

        To determine whether the distributions of fuzzy membership values come from similar 

distributions between the three different overlay operators, the distribution of fuzzy membership 

values of each semantic class were compared with the distributions of the same class derived 

from the other overlay operators within each scale.  A 5% level of significance was used for the 

test.  1000 random points were generated across the study area and fuzzy membership values 

were extracted for each of the fuzzy landform classes derived from each overlay operator at 

every scale.  Fuzzy membership values generated by the three overlay operators at the 49-cell 

window size for crests and flats are shown in Figure 32a-c and 33a-c.  To attempt to scale the 

membership values for equal dispersion (range), the membership values were normalized to a 0-

1 scale so the fuzzy membership values of the six fuzzy landforms derived for the same overlay 

operator summed to unity: 





6

1i n

i
i(r)

u

u
u  (4.19) 

 

where )(riu is the normalized fuzzy membership value for class i, iu  is the unscaled fuzzy 

membership value, and   nu is the sum of unscaled fuzzy membership values for the six fuzzy 

landform layers derived by an overlay operator for a single location.  Distributions of normalized 

fuzzy membership values for the semantic landform class flats derived from the fuzzy gamma 

operator at the 49-cell window size is shown in Figure 34.
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Figure 32a-c.  Fuzzy layers for the semantic class crests from the intersect (32a, left), algebraic mean (32b, center), and fuzzy gamma 

(32c, right) overlay operators at the 49-cell window size. Lighter locations indicate a higher degree of membership to crests. 

 

                     

Figure 33a-c.  Fuzzy layers for the semantic class flats generated by the intersect (33a, left), algebraic mean (33b, center), and fuzzy 

gamma (33c, right) overlay operators.  Lighter locations indicate a higher degree of membership to flats. 
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Figure 34.  Normalized distributions of fuzzy membership values of the semantic landform flats.  

Flats was the only class to show close to normal statistical distributions. 

 

        Once the fuzzy membership values for the six fuzzy landform layers were normalized, 

MATLAB was used to run the Wilcoxon ranked-sum test.  At each scale, fuzzy landform layers 

for each class were compared between operators, resulting in a total of 108 paired tests.  Results 

of the tests are shown in Table 11, and scales were the distributions were significantly similar 

noted below. 

 

Table 11.  Times the null hypothesis for Wilcoxon Ranked-sum test is rejected (p =5%) 

 Crests Shoulderslopes Backslopes Footslopes Flats Drainages 

Intersect-

Gamma 
0 0 0 0 0 0 

A.mean-

Gamma 
0 0 1

a 
0 3

b 
1

c 

A.mean-

Minimum 
0 0 0 0 0 0 

a
= 25-cell window size 

b
=9-cell, 81-cell, 121-cell window sizes 

c
=25-cell window size 
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        While there is similarity in the distribution of membership values for flats between the 

algebraic mean and fuzzy gamma operators, it is clear that the three operators distribute fuzzy 

membership values in significantly different ways independent on the underlying scale.    

However, this analysis has two significant shortcomings.  First, it is independent of spatial 

arrangement due to the assumptions that were made in choosing the test on the underlying 

datasets.  Secondly, there is no interaction or comparison with the other fuzzy membership 

values at each location.  While we can assume that each operator distributes fuzzy membership 

values for each class in distinctly different fashions, the results of agreement between overlay 

operators at a each scale (72-76%, Figure 32) indicates there is a large amount of overlap in the 

maximum of membership method (MOM) in determining which semantic class has the dominant 

fuzzy membership value at each location.  To compensate for the lack of spatial significance and 

interaction with other fuzzy membership values of semantic classes, a dual approach is needed to 

incorporate spatial significance, and crisp and fuzzy membership values. 

 

 5.3.  Entropy and Classification Stability 

 

        To determine the uncertainty and ambiguity of crisp classes and the interaction between 

crisp classes and underlying fuzzy membership values, a combined crisp-fuzzy approach was 

used.  This approach utilized three components to compensate for weaknesses of the previous 

analysis: 

 The crisp membership value of each location, 

 The classification entropy to incorporate the FMVs of every semantic class at a given 

location, 
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 Crisp class proportions at different levels of entropy, an extension of the idea of 

utilizing cuts for determining crisp memberships from a single fuzzy set; instead 

determining class proportions at different levels of uncertainty or vagueness 

The approach outlined in section 4.6 was utilized to examine if there were specific semantic crisp 

classes that exhibited high levels of entropy, how the proportions of classes changed at different 

entropy levels, and if these relationships between class proportions and entropy levels were 

consistent across scale and between operators. 

       Normalized fuzzy membership values derived from the Wilcoxon ranked-sum test were used 

to calculate classification entropy (H) (equation 2.13-2.14).  Entropy grids were calculated for 

each pairing of scales/operators.  Entropy surfaces for the three overlay operators generated at 

the 49-cell and 169-cell window sizes are shown in Figures 35a-c and 36a-c.  The increased 

smoothness in crisp semantic landforms layers with coarsening scale is reflected in a similar 

fashion in the spatial patterns of entropy.  As scale coarsens, lower entropy values (areas of less 

ambiguity and uncertainty), were increasingly located in ridgetops (crests and shoulderslopes) 

and higher entropy values (areas of high ambiguity and uncertainty) were increasingly located in 

the areas in between (slopes classes).  However, at the finer scales, these trends are less obvious 

based on visual inspection of the entropy surfaces. 

        Even after normalization of the FMV used to calculate entropy, there were distinct 

differences in the distributions of entropy between the three overlay operators at the same scale.  

Although the distribution of all three entropy surfaces were left-skewed, entropies generated by 

the intersect operator had a much smaller range and standard deviation than either distribution of 

entropy values generated by the algebraic mean or fuzzy gamma operators (Figure 36b and 37b).  

The frequency distributions of entropy values produced by the algebraic mean and fuzzy gamma 
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operators were very similar in shape, and had similar peaks and sub-peaks in frequency curves.  

This made analyzing the proportion of classes at standard entropy values (0.99, 0.95, 0.90, 0.85, 

0.75) unfeasible.  To attempt to analyze the three operators at the noted entropy levels while 

taking into account the different distributions of entropy, equation 4.22 was utilized to calculate a 

range-weighted entropy value specific to each pairing of scales and operators.  The locations 

(grid cells) within each entropy level were identified, and proportional relationships of the six 

semantic classes were determined from at each entropy level.  From these simple extractions, the 

frequency at which specific classes occurred at specific entropy levels was gauged for pairing of 

operators and scales.  Classes with a natural degree of high or low uncertainty should exhibit 

similar proportional rankings compared to the other classes at each pairing of scales and overlay 

operators.    
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Figure 35a-c.  Entropy surfaces for the intersect (35a, left), algebraic mean (36b, center), and fuzzy gamma (37c, right) overlay 

operators at the 49-cell window size.  Higher values (lighter colors) indicate more ambiguous areas where fuzzy memberships of two 

of more classes are similar, while lower values (darker colors) show crisper areas dominated by few classes.  Differences in range of 

entropy values between the algebraic mean and other two is clearly seen. 

 

                    

Figure 36a-c.  Same entropy surfaces for the three operators from landforms generated at the 169-cell window sizes.
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         The surfaces representing locations within entropy levels at 0.95, 0.85, and 0.75 are shown 

for the three operators at the 49-cell window size in Figures 37a-c (intersect operator), 39a-c 

(algebraic mean operator), and 41a-c (fuzzy gamma operator).  Accompanying graphs for each 

set of entropy figures (Figures 40a-c for the intersect operator, 42a-c for the algebraic mean 

operators, and 44a-c for the fuzzy gamma operator) show the proportional relationship of 

semantic classes at the entropy levels for the 9-cell, 49-cell, and 169-cell window size.   

        Before discussing the class proportions at each entropy level, it‘s worth noting some of the 

differences and similarities between the three operators in the area identified within each entropy 

level.  The intersect operator generated larger areas (number of pixels) at the three highest 

entropy levels (0.99, 0.95, 0.90) than either the algebraic mean or fuzzy gamma operators.  For 

example, the area identified at the highest level of entropy (0.99) for fuzzy surfaces generated by 

the intersect operator (from .2 to .4 % of the total area from the 9-cell to 169-cell window sizes) 

was three times the order of magnitude larger than the area at the same entropy-level generated 

by the fuzzy gamma operator (3.2 x 10
-3 

to 3.9 x 10
-4

 % of the total area) and two times the order 

of magnitude larger than generated by the algebraic mean operator (1.3 x 10
-2 

 to 1.2 x 10
-3

 % of 

the total area).  In contrast to the two other operators, the area (pixel count) of locations within 

the three highest entropy levels (0.99, 0.95, and 0.85) within the intersect operator increased as 

scale was coarsened.  This effect of scale on this process was generally decreasive in the other 

two operators. 
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Figure37a-c.  Levels of Entropy (0.95 - Figure 37a (left), 0.85- Figure 37b (center), 0.75 - Figure 37c (right)) calculated from fuzzy 

membership values of semantic landforms derived by the intersect operator at the 49-cell window size.  Locations within each entropy 

level are shown in black.  The green polygon indicates a CRP parcel 

 
  Figures 38a-c. Proportional relationships of classes at different levels of entropy in landforms generated by the intersect operator.  
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Figure39a-c.  Locations of entropy levels 95-75% calculated from the algebraic mean operator at the 49-cell window size. 

 

   
Figures 40a-c.  Proportional relationships of crisp classes derived from the algebraic mean operator over multiple window sizes. 
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Figure41a-c.  Locations of entropy levels 95-75% derived from the algebraic mean operator at the 49-cell window size calculated from 

fuzzy gamma operator. 

 

   
 

 Figures 42a-c.  Proportional relationships of classes at the five levels of entropy generated from the fuzzy gamma operator.
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        The spatial patterns of entropy vary between the overlay operators at the 0.95 level, 

although this may be a function of the different number of locations within that entropy level 

between the operators (pg. 102).  However, at the lower entropy levels tested (0.85 and 0.75),  all 

three overlay operators exhibited similar spatial patterns of entropy locations; these locations 

were increasingly located within the slopes classes, with only scattered locations within the 

extreme top and bottom of the hillslope profiles (crests, shoulderslopes, drainages).       

        There were three major similarities that were exhibited with this procedure.  First, across all 

operators, scales, and levels of entropy, the semantic classes backslopes and flats had the highest 

proportions at each entropy level.  This was remarkably consistent across all scales, operators, 

and level of entropies, with one exception (Figures 39, 41, and 43). This was the proportion of 

classes located at the highest level of entropy (0.99).  At the highest level of entropy, there were 

a larger variety of classes with large proportions than at any other entropy level.  Within the 

intersect operator, crests and drainages had much higher proportions at the 0.99 entropy level 

across different scales (8.96% to 32.62% for drainages; 18.10% to 29.17% for crests) than at the 

other entropy levels (<4% for drainages; <11% for crests).  Within entropy levels derived from 

the algebraic mean operator, it was crests, footslopes, and shoulderslopes that exhibited this 

same behavior.  In those derived by the fuzzy gamma operator, it was primarily crests at the finer 

scales, and drainages at the coarser scales.  Finally, backslopes exhibited a much lower 

proportion at the 0.99 entropy level than at the remaining entropy values.  As scale was 

coarsened, the proportion of backslopes gradually decreased, flats increased, with inconsistent 

trends in the other four classes. 

 The final aspect was to determine the locations of high entropy jointly shared between the 

three operators, and the resulting proportions in different crisp classes.  Pixel locations common 
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to all three operators at two entropy levels (0.90, 0.95) were determined, and used to determine 

class proportions.  This was done across three window sizes (9-cell, 49-cell, and 169-cell).  

Results are shown in Table 12. 

Table 12.  Entropy locations (0.95, 0.90) and their crisp proportions  that are common to all three 

operators (Cr. – crests, SS –shoulderslopes, BS – backslopes, FS – footslopes, Fl. – flats, Dr. – 

drainages). 

 Entropy >= 0.95  Entropy >=.90 

 9 49 169  9 49 169 

Total Pixels 
542 2530 533 

 
290879 324890 173429 

Proportions 
   

 
   

Cr. 
0 1.98 0.19 

 
0.37 7.53 0.12 

SS 
0 1.23 5.25 

 
3.26 1.90 1.58 

BS 
50 69.76 57.79 

 
71.39 60.46 56.72 

FS 
0 0.20 0.19 

 
6.81 7.78 11.34 

Fl. 
50 26.84 36.59 

 
17.92 25.78 30.22 

Dr. 
0 0.08 0.00 

 
0.25 0.06 0.02 

 

   The proportion of high entropy locations common to all three operators was greatest in the 

mid-scale range (2530 cells for locations in top 95% of entropy levels and 324,890 for locations 

in the 0.90 level).  The proportions of backslopes were just as in these common entropy locations 

(50 to 71.39%) as they were within a single operator (39 to 78%, Figures 39 through 43). 
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PART VI 

DISCUSSION AND CONCLUDING REMARKS 

 

        The goal of this project was to 1) analyze change trajectories of crisp geomorphometric 

classes across scales derived from fuzzy set theory, 2) determine how different fuzzy logic 

operators impact the distribution of crisp and fuzzy membership values, 3) determine if spatial 

locations of high entropy represent transitional states between semantic geomorphometric classes 

and if high degrees of entropy are related to specific classes, and 4) speculate implications of  1-3 

on applications of multi-sale geomorphometric models to vegetative and pedological mapping, or 

land use-land cover parcels such as the Conservation Reserve Program.  The discussion 

presented here will follow the train of thought of the research goals. 

       Each terrain attribute showed a markedly different behavior across the different scales of 

measurement (Figure 25, Table 5), with slope shown to be the most volatile attribute across 

scales.  Implications for the magnitude of change of terrain attributes are different within each 

operator.  This is an important consideration, as within the intersect overlay, low membership 

values of a single terrain attribute can act as the constraining factor in assigning the final 

membership from the overlay operation to a location.  In contrast, with the algebraic mean or 

fuzzy gamma operators, the values of all semantic constructs are weighted or taken into account.  

Within a physical process-based investigation, the use of a minimum operator might be more 

relevant than other fuzzy operators, as many physical and ecological processes are steered based 

on single limiting factors (Qin et al, 2009). 

  The crisp layers derived from the fuzzy surfaces from the three overlay operators 

demonstrated the same general change trajectories between the six crisp classes across scales 
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(Tables 6-8).  The semantic classes crests and flats were increasive in area as scale was 

coarsened, while the three slopes classes were decreasive in area.  Drainages was the only class 

that showed a single optimal scale for detection area (Figure 26, 27a-c).  This is more evidence 

that the most accurate representation of specific classes is optimized by a specific combination of 

scale of measurement and DEM resolution, which are then dependent on the terrain 

characteristics of the study area, such as terrain roughness.  In features such as streams, the size 

of these adjacent flats can be related to stream order. 

        This is unique in several ways.  Being primarily a linear feature, drainages showed the 

greatest connectivity at the larger scales (9-cell and 25-cell window sizes).  The mainstem of Big 

Spring Creek is clearly shown delineated in Figure 27.  As scale decreased, areas and widths of 

the drainage segments increased as connectivity between them decreased (Figures 26 & 27).  The 

greatest increase in area for drainage features occurred in areas considered as zero-order basins 

or first-order streams, while the larger order streams, such as features representing Big Spring 

Creek, became increasingly dissipated and disconnected as scale was coarsened.    

Within higher-order stream features, terrain attributes and semantic constructs take on 

more of the characteristics of adjacent floodplains (flats) than the handful of cells defining the 

channel features as the window size over which the terrain attributes are measured increases.  

The extent and degree of flatness of these features are correlated with stream order, so this effect 

is not seen in small-order drainage features, such as ‗zero-order‘ catchments in headwater and 

channel initiation areas.  Utilizing the theory of stream order, membership to semantic constructs 

such as steepness, and tangential and profile concavity increase as stream order decreases.  This 

represents a problem in attempting to link feature hierarchy, such as stream ordering, and 

detection scale.  Stream initiation thresholds could have been utilized to create stream networks 
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based on flow accumulation values, but it was decided not to incorporate global 

geomorphometric parameters into the landform models based on lack of specific knowledge of 

the study area, and instead to base the classes strictly on surface-shape parameters to create an 

approach that was as generic as possible. 

       Based on the cross-tabulation matrices, the percent agreement of crisp landforms between 

two scales increased as scale became coarse.  When comparing the largest window sizes, the 

three operators had similar agreement (Figure 30).  Change trajectories generally reflected the 

trends seen in gross cell counts between scales, and specific trajectories between drainages and 

flats mentioned was evidenced (Table 9 and 10).  One missing aspect in the examination of  

multi-scale landform change is the absence of any change analysis on the spatial properties of 

individual landform classes or objects (patches), and the importance of defining adjacency and 

neighborhood relationships between the objects (Arrell et. al., 2007; Moller et. al 2008). Object-

based segmentation has accounted for some of these shortcomings.   However, a greater variety 

of geospatial procedures, such as landscape metrics, or shape and pattern descriptors may be 

required to completely understand change patterns in landform characteristics across scales 

above and beyond non-spatial methods that deal only with categorical change such as the cross-

tabulation matrix.   For example, the percent agreement between the two scale comparisons 

(66.62% Table 9 and 73.37% for Table 10) are clearly not reflective of the complete picture of 

semantic landform class changes in the two scale steps when the crisp landforms are examined 

visually.  There is clearly a larger amount of noise, patchiness, and perforation exhibited by the 

semantic landforms at the 25-cell window size that is absent from landforms at the other two 

scales. 
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        To analyze distribution of the fuzzy membership values for each class between the three 

operators, the Wilcoxon ranked-sum test was utilized.  The three overlay operators distributed 

fuzzy memberships in significantly different ways, with only six significant results out of 108 

tests (Table 11).  When computing fuzzy membership values for a single landform (Shi et. al, 

2005; Gallant and Wilson, 2003), or testing for crisp areas generated by an alpha-cut, this test 

would have more meaning.  The lack of consideration of spatial relationships and exclusion of 

the fuzzy membership values of other classes placed limitations on the spatial interpretations of 

the Wilcoxon test.   

        An alternative to the Wilcoxon test would have been a paired mean difference t-test to test if 

the difference of means between FMV generated from a pair of overlay operators were 

significantly different from each other.  Such a result would have given more weight to the 

spatial location since it compare a pair of FMVs for a single class/different operators at a single 

location, rather than the two populations ranked numerically prior to comparison.  There were 

two assumptions made regarding the fuzzy membership values that prevented use of such a test.  

First, because the overlay operators generated fuzzy membership values in different ways based 

on the underlying mathematics and logical operators, it was assumed the distributions of fuzzy 

membership values (FMV) were the most part not normal.  Few classes exhibited distributions 

close to Gaussian (Figure34), and most did not.  Secondly, because the overlay operators utilized 

at least one identical semantic construct in each of their logical operations, it could not be 

assumed the three different FMVs derived for a class by the three operators came from 

independent distributions.  

        Another weakness behind analyzing fuzzy membership values distributions via the 

Wilcoxon ranked-sum test is not accounting for diversity of all six FMV at a single location.  
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Many previous approaches to analyzing fuzzy geomorphometric landforms have constituted 

approaches at examining effects of multiple window sizes or resolutions (Gallant and Dowling, 

2003), attribute distance-similarity (Shi et al., 2005) or alpha-cuts (Minglian, 2009) on singular 

fuzzy morphometric classes, so there such a measure is still useful in understanding how the 

parameters of the semantic import model (central concept, dispersion index) or different overlay 

operators impact the range of FMV for a single semantic class. 

        However, contrarily to the Wilcoxon results, we can assume some similarity in the spatial 

distribution of maximum membership values between the operators based on the results of the 

Boolean analysis.  The main evidence for this is the percent agreement of classification ranging 

from 72% to 78% (Figure 31) when classes from all three operators were compared at each scale.    

Thus, the trajectories of maximum of membership overlay method in assigning final crisp 

membership were consistent between the three operators.  

        The final aspect of the results to discuss is the proportional relationships of classes at the 

different level of entropies (0.99, 0.95, 0.90, 0.85, and 0.75).  This portion of the results shows 

how levels of vagueness and ambiguity can be higher in specific classes independent of scale and 

overlay operators.  As with the crisp landforms and terrain attributes, noise and variance 

decreased within entropy surfaces calculated at coarser scales, with areas of low entropy 

increasingly concentrated around crests and shoulderslopes and drainages, and with areas of 

high entropy in the slopes in between (Figures 35-36).  This may be construed as an artifact of 

the semantic constructs and specific terrain attributes used to define each class, but the approach 

of creating landform classes with different parameters is a well-defined in its theoretical and 

conceptual foundation (Speight, 1990; Coops et al., 1998; MacMillan et al., 2000; Qin et. al. 

2009). 
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 For four out of the five entropy levels within each operator (0.95, 0.9, 0.85, and 0.75), 

backslopes and flats consistently had the highest proportion of all classes (Figures 37, 39, and 

41).    This was remarkably consistent across all scales.  The only inconsistency is the 

proportional classes identified at the highest level of entropy (0.99).  The dominance of 

backslopes decreased, and there were greater proportions of other classes.  This can be construed 

in two ways: 

 

1) the semantic classes backslopes and flats can truly be interpreted as transitional 

classes, in that backslopes act as the transition between uplands and lowlands area 

(sediment detachment and sediment deposition), and flats primarily as the transitional 

zone between slopes and drainages, the area of the highest level of hydrologic 

activity (figure 21). 

 

2) the areas of highest uncertainty (0.99-level entropy locations) are less tied to specific 

classes and are more tied specific locations of high instability, due to high variation in 

the land surface.  The class proportions identified in these lie outside of patterns 

shown at other levels of entropy, and are independent of scale or overlay operator. 

 

3) Locations at the highest level entropy may be independent of the overall uncertainty 

and ambiguity of the classification system and more as a result of artifacts from DEM 

processing or measurement.  In considering previous work (Wood, 2001; Shary et al., 

2002), these locations may exist purely as a result of DEM artifacts or random errors, 

which are not a natural consequence of scale or overlay operation. However the fact 
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that these conditions exist even at entropy locations at the largest window size lends 

doubt to this idea, as it was previously shown how visually and quantitatively local 

nose and variation was removed by increasing the scale of measurement  

 

        The evidence for point one is fairly clear.  Besides those two classes generally having the 

highest entropy levels across scales and between operators, backslopes as noted on p. 93, had the 

highest proportion of losses within the cross-tabulation matrices (Tables 9 & 10), which were 

more evenly proportioned among four other classes (crests, shoulderslopes, footslopes, and flats) 

than any other of the semantic classes.  

        The most direct application for the knowledge gained in this thesis is its application in 

accounting for accuracy and uncertainty in landform mapping.  Since assumption of topographic 

position is inherent to vegetative and pedological mapping, a key component in accuracy 

assessment efforts should be to account for different levels of uncertainty in different classes, 

and specific classes may display an inherent higher of level of uncertainty, and systems will 

behave differently depending on what scale landform-terrain attribute relationships are derived, 

and the overlay or cumulative operators use to map the crisp sets. 

        For specific application within the CRP, the crisp classes backslopes (at finer scales) 

(Figure 28) and flats (at coarser scales) were shown to be dominant classes, and backslopes were 

shown to be present at proportions higher in CRP than in the entire study area.  Because of the 

high level of uncertainty in crisp representation of these two classes, targeted land management, 

conservation practices, or ecological modeling incorporating topographic position (such as the 

ELT (figure 13)) as an assumed variable may be introducing an unintended source of error into 

their models.  It is never encouraged to imply process from surface shape (Gallant and Wilson, 
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2000), but remote sensing and GIS applications utilizing supervised or semi-automated machine-

learning approaches for large-scale ecological mapping and monitoring could benefit from 

incorporating and weighing uncertainty of different objects and classes in underlying data layers. 

        Within this project, one source of uncertainty, boundary vagueness (The Law of the 

Excluded Middle, section 2.3.2), was accounted for through the use of fuzzy set theory that 

allows defining boundaries in datasets defined as continuous fields.  By testing the effects of 

three different overlay operators on fuzzy membership values, and repeating the analysis over 

multiple scales we accounted for thematic vagueness and allowed for locations to have multiple 

fuzzy memberships (The Law of Contradiction, section 2.3.2), and a location to take on different 

crisp class values under the use of different operators and across scales.  By accounting for these 

measures of uncertainty, it was possible to determine that several classes in a geomorphometric 

hillslope model are naturally unstable independent of the operator and scale of analysis utilized. 

        There are some constraints and potential gaps.  The first of which is defining the parameters 

of the semantic import models: the central concept, dispersion index, and crossover point (2.3.4).  

The approach taken was to begin to model the variable based on their statistical distribution 

throughout the study area and gradually tweak them until they seemed a good visual fit.  With no 

expert opinion or opportunities to verify the parameters, an approach based on generality 

appeared to be the best procedure.  As previously mentioned for the same reason, it was decided 

not to use global geomorphmetric parameters, such as the wetness or compound topographic 

index, stream initiation thresholds, or stream-to-ridge distance indices.      

        Another issue with the approach used here is the semantic import models do not take into 

account changes in the distribution of terrain attributes from headwaters to the outlet.  For a 

catchment-based study are, the rigidness of the semantic import parameters (central concept, 
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dispersion index) do not allow for flexibility when the character of terrain changes.  Previous 

approaches to solve this problem included calculating terrain attributes up to the longest 

wavelength of terrain features (ridge to ridge distance, so to speak) (Pike, 1988), or use of 

geostatistical interpolations to model neighborhood relationships and distance-decay of variance 

of terrain attributes (Wood, 1996).  However, with time and computing constraints it was 

infeasible to perform kriging or calculate semi-variograms at every single cell for every single 

semantic construct over a large scale, but it is an approach to consider in the future. 

        The decision on what terrain attributes to use/not to use provided another source of 

uncertainty.  Besides crests and drainages, none of the other classes made accommodations for 

tangential curvature for converging or diverging flow patterns, like Dikau or Pennock‘s hillslope 

models (Figures 14 and 15).  As mentioned in introduction to the methods, it was decided to 

leave these measures out to simplify the hillslope model and be able to draw some meaning to 

cross-scale change trajectories.   

        Finally, there was decision to use the CRP as an exemplary unit of analysis.  The results and 

implications have demonstrated that natural classes of geomorphometric objects exhibit varying 

levels of uncertainty when captured as objects in a GIS environment, and this would affect the 

use of the variable topographic position in any kind of land surface or land cover mapping.  

Because of the large variety of ecological benefits  that CRP provides, along with the vast array 

of management strategies to optimize the benefits of land that is currently enrolled (references), a 

multi-scale approach to delineating geomorphometric units provides a flexible approach to 

quantifying landscape position.  This is an important point, as many of the current uses for CRP 

and similar programs deal with environmental issues that occur at a variety of scale from micro-

habitat of endangered species, carbon sequestration at the field-scale, preservation of seasonal 
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habitat for migratory wildfowl along intercontinental flyways, aquifer recharge, and original 

program goals of reduction of soil erosion and improvement of water quality. 
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