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Crespo-Cuevas, Victor (Ph.D., Mechanical Engineering) 

Physically based modeling of biological semi-flexible materials: a novel micromechanical 

model describing the viscoelastic-plastic response of agarose and fibrin networks. 

Thesis directed by Professor Virginia L. Ferguson and Professor Franck J. Vernerey. 

 

In this Ph.D. thesis, I investigated the mechanics of soft matter, specifically focusing on the 

viscoelastic-plastic response of agarose and fibrin networks. The study utilized a combination of 

experimental observations, statistically based continuum mechanics, and discrete numerical 

modeling techniques to develop physically based computational models of biological soft 

materials. In Chapter 2, I proposed a novel model for predicting the time-dependent behavior of 

agarose networks which offered insights into bond kinetics that can be applied to other biopolymer 

networks. Chapter 3 presented a coarse-grained, discrete numerical model for examining 

topological changes in transient semi-flexible networks, capturing the appropriate physics for 

various temperature limits and deformation rates. In Chapter 4, I concentrated on fibrin gels. I 

developed two models to better understand their behavior. The first, a comprehensive protofibril 

bundle model, was designed to capture the energetic penalty linked with highly stretched networks. 

The second, a fibrin fiber model, aimed to capture the macroscopic viscoelastic response of the 

gels and predict network realignment following applied deformation. This research has broad 

implications for biopolymer networks, bioengineering, tissue engineering, and cell-scale 

mechanobiology. By characterizing the critical microstructural features and dynamics that dictate 

the mechanical response of semi-flexible networks, I lay the foundation for further advancements 

in material choice, design, and the understanding of the interplay between soft matter physics and 

biological processes.  
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CHAPTER 1: 

INTRODUCTION 

Over recent decades, the field of soft matter physics has experienced a surge of interest, with a 

focus on subjects such as colloidal matter1, membranes2, gels3, surfactants4, liquid crystals5, and 

polymers6, among others. This burgeoning field serves as a bridge between life science and 

nanotechnology7–9. Comprehensive understanding of soft matter mechanics is essential, as it 

elucidates the governing principles of soft materials, which find applications in diverse domains, 

such as tissue engineering, materials science, and medical research. By employing sophisticated 

computational tools from continuum mechanics, such as finite element techniques and other 

related continuum and discrete modeling approaches, researchers can explore the mechanical 

behavior of soft materials with unprecedented depth and interpretation10. This ultimately leads to 

a better understanding of the underlying mechanisms and enables the development of novel 

materials and applications that harness the unique properties of soft matter. 

  



2 

 

1.1. MECHANICS OF SEMI-FLEXIBLE BIOPOLYMER NETWORKS 

The vast majority of solid-like soft matter is made of networks of connecting elements. Numerous 

applications of random fiber network mechanics are found in soft matter physics. Many biological 

materials present a microstructure composed of a network of fibers that determines their 

mechanical characteristics. From a mechanical perspective, these fibrous materials may be thought 

of as acting as flexible or semi-flexible networks, based on the features of each individual fiber11,12.  

Whereas the behavior of flexible networks has been extensively studied, the mechanics of semi-

flexible networks remain poorly understood due to their unique characteristics 6. The interplay 

between bending and axial modes of deformation, and long-range correlations in their non-affine 

deformation field13 make semi-flexible networks more challenging to analyze and model compared 

to their flexible counterparts, leaving many aspects of their behavior yet to be explored. An 

improved understanding of semi-flexible networks mechanics is crucial for novel insights into how 

various biological materials and their microstructures behave. Such advances in understanding will 

support researchers to develop better models and simulations, thus leading to improved 

understanding and manipulation of biological materials. 

Characterizing the mechanics of semi-flexible networks has garnered more attention in recent 

years due to rising interest in comprehending the mechanical and rheological characteristics of 

complex systems, such as connective tissue and components within the extracellular matrix14. 

While existing models are descriptive, most do not connect the network topology with the 

macroscopic mechanical response. Such models lack accuracy as they do not account for the 

movement and rearrangement of molecules within the biopolymer network. Indeed, the 

mechanical response and fracture properties of soft polymeric materials strongly depend on their 

topological structures including local connectivity, bond types, and crosslinking density. Thus, 
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there is a need for more sophisticated models that accurately capture the complex interplay 

between network topology and mechanical properties. Developing such models will not only 

improve our understanding of the mechanical behavior of biological tissues but also have broader 

implications in areas such as material science and engineering15. 

The elasticity and deformation of many biological systems, including the cytoskeleton, 

collagenous connective tissues (i.e., cartilage and tendon), fibrin, and biopolymers such as agarose 

hydrogels among many others, are defined by the mechanics of random fiber networks. For 

example, the structure and composition of the extracellular matrix of blood clots directly 

influences how well these networks perform mechanically16. Fibrin, a crucial protein in blood 

clotting, forms a fibrous mesh that provides support to injured tissue and aids in the healing 

process17. The organization of the fibrin network changes in response to loading. In stress-free 

conditions, with no applied tensile or compressive loading, the orientation distribution of fibrin 

fibers is isotropic, while when a load is applied, the fibrin network aligns in the direction of 

deformation and fibers become more densely packed18. Similar to fibrin, agarose hydrogels are 

also characterized by their random fiber networks. Agarose gels exhibit unique properties such as 

biocompatibility, transparency, low protein absorption, and adjustable mechanical strength, 

making them suitable for various biomedical applications including drug delivery, cell culture, 

tissue engineering, and regenerative medicine medicine13,19. The mechanical strength of agarose 

hydrogels can be fine-tuned by altering factors such as the concentration of agarose or the gelation 

temperature20. This tunability enables researchers to create hydrogels with specific mechanical 

properties tailored to the requirements of a particular application. Thus, both fibrin and agarose 

hydrogels demonstrate the significance of understanding and manipulating the mechanics of 
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random fiber networks, as this knowledge enables researchers to create materials with specific 

mechanical properties tailored to the requirements of diverse applications in biomedicine. 

Agarose and fibrin networks can be conceptualized as dynamic networks21,22. Bonds in dynamic 

networks have the potential to reversibly separate and reconnect, giving them a viscoelastic, 

nonlinear mechanical response. Even dynamic networks made up of components that appear to be 

simple can show sophisticated emergent dynamics. Engineers attempting to create synthetic 

versions of dynamic networks (i.e., dynamic gels used as scaffolds for tissue engineering) seek to 

understand how the local and physical interactions in these systems give rise to their globally 

emergent responses. This is because such systems may exhibit a variety of rich mechanical 

behaviors. Agarose gels are excellent candidates for tissue engineering as they are tunable, 

viscoelastic, and show a pronounced strain-stiffening response. These characteristics make them 

ideal to create in vitro environments to grow cells and develop tissues. Due to the presence of 

physical crosslinks in agarose supramolecular fibers form from the aggregation of double helices, 

their networks are assumed to be dynamic, wherein the polymer chains associate and dissociate 

over time23,24. Similarly, fibrin gels also behave as viscoelastic materials. The presence of knob-

hole bonds within fibrin gels affect viscoelastic properties by changing their strength with tensile 

force22. These force-dependent cross-links may help fibrin gels resist large deformations and 

prevent premature rupture and directly affect the deformation of blood clots and wound healing 

matrices. Agarose and fibrin serve as examples of the broader class of biopolymer networks that 

are common in biological systems and play critical roles in various biological processes. Hence, 

understanding the factors that determine and regulate the viscoelasticity of biological materials 

like agarose and fibrin, as well as other biopolymer networks, is not only of considerable relevance 

to tissue engineering and regenerative medicine, but also to many applications in robotics (i.e., to 
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create soft robotic components such as actuators, sensors, and skins that can mimic the functions 

of biological tissues25), manufacturing (i.e., to create biodegradable polymers that reduce 

environmental pollution26) and food science (i.e., to create edible films and coatings that enhance 

the quality and safety of food products27). 
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1.2. TRANSIENT NETWORK THEORY: AN OVERVIEW 

Previous attempts to model the mechanical behavior of semi-flexible networks frequently use 

multiscale models ranging from continuum methods (i.e., linear Maxwell or Kelvin-Voigt 

model28) to high fidelity discrete methods (i.e., molecular dynamics29) to predictably construct 

these networks or conversely comprehend their structure-property functions. Statistical mechanics 

stands out as an alternative to continuum models by connecting molecular physics to macroscopic 

mechanical behavior. Miehe and Goktepe (2004) developed a micro-sphere model to connect the 

stretch of molecular chains with polymer response30,31. In their approach, a chain’s end-to-end 

distance is captured by a micro-tube that represents the chain’s micro-mechanics. By 

homogenizing the micro-state variables on a unit sphere that depicts the chain orientation in three 

dimensions, the macroscopic response of the polymer network is computed. However, because 

viscoelasticity is brought on by the reptation motion of entangled chains, this theory can only 

describe static (i.e., covalent) networks. Further effort is needed to generalize this theory to 

describe the behavior of physical networks, where the viscoelasticity results from the breakage 

and reformation of physical cross-links. In this dissertation, the constitutive material models 

developed are based on the transient network theory (TNT)12,32–34 that establishes a bridge between 

polymer chain configuration and the stress in the network.  

Briefly, the TNT begins with the statistical treatment of networks comprised of randomly oriented 

flexible chains connected by reversible bonds with intrinsic association and dissociation rates, 𝑘𝑎 

and 𝑘𝑑, respectively (Figure 1.1). The TNT has been amply used to understand the molecular 

origin of the viscoelastic response by transient networks3,10,35,36. To provide the reader a general 

view of the proposed theoretical and numerical framework which will be used in all following 

chapters, some of the fundamental concepts of the TNT are introduced. In the TNT, the mechanical 
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response of a polymer can be described by the states of the chains and their contribution to the 

overall response of the network. TNT predicts the Cauchy stress of a dynamic network comprised 

entirely of linear entropic springs as 𝝈 = 𝑐𝑘𝑏𝑇𝝁 + 𝜋𝑰 , where 𝑐 is the attached chain concentration, 

𝑘𝑏 is the Boltzmann constant, 𝑇 is the ambient temperature, 𝜋𝑰 is the isotropic pressure enforcing 

incompressibility, and 𝝁 represents, in an average sense, the stretch experienced by chains in the 

network. If we assume that the chains deformation follows the macroscopic deformation 𝑳 (i.e., 

affine deformation), it is possible to construct an evolution equation for the conformation tensor 

evolves according to 𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑(𝝁 − 𝑰), where 𝑳 is the velocity gradient 𝑳 = 𝑭̇𝑭−1. 

Deformation is measured by the deformation gradient 𝑭(𝑡) = 𝑑𝒙(𝑡)/𝑑𝑿 which represents the 

linear mapping between the position vector 𝑿 of a material point in the reference configuration 

and its position 𝒙(𝑡) in the current configuration. 

 

Figure 1.1. Schematic representation of dynamic bonds in a polymer network, where 

dissociation and re-association happen with rates of 𝑘𝑎 and 𝑘𝑑, respectively. 

The TNT enables us to clearly link molecular processes at the level of polymer chains (i.e., 

sliding37, entanglement38, and the breaking and reformation of physical bonds39) to the 

macroscopic response of the network. The Maxwell and Kevin-Voigt models40–42, which are 

phenomenological viscoelastic models, are divergent from this. Details can be found in Chapter 2.   
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1.3. MESOSCALE MODELING OF COMPLEX POLYMER NETWORKS 

Nonetheless, macroscopic statistical frameworks, such as the TNT, are incapable of capturing 

pronounced property gradients and the non-affine deformation introduced by hierarchical network 

architectures and transient bonds. High-resolution discrete methods (e.g., molecular dynamics or 

dissipative particle dynamics) can mitigate these shortcomings, but often incur substantial 

computational costs, complicating accurate microscale-to-macroscale parameter mapping. Hence, 

researchers have adopted a third category of mesoscale network models, employing coarse-grained 

elements to maintain microstructural insights while reducing computational demands. 

Mesoscale modeling has emerged as an effective method for studying complex polymer networks, 

as it circumvents the high computational cost associated with simulating the elemental units of a 

network43. By employing coarse-grained representations of entire chains and prescribing their 

mechanical properties through statistical models, such as the ideal Gaussian model44, mesoscale 

models facilitate the investigation of intricate microstructural changes occurring during network 

evolution45–47. Extensive research utilizing mesoscale models has elucidated the limitations of 

continuum models in predicting network mechanics near the percolation threshold due to the affine 

assumption48. Mesoscale models, on the other hand, inherently track network topological evolution 

and enable probabilistic rupture of bonds through theoretical frameworks like Eyring's49 or Bell's50. 

Recently, these models have been used to examine the influence of chain properties and 

concentrations in the permanent damage, mechanical toughness, and loading rate-dependence51,52. 

The logical progression of such research is to employ mesoscale modeling to explore dynamic 

networks with reversible bond dissociation. Although biophysicists have investigated active 

dynamic systems like actin-myosin or cytoskeletal networks using mesoscale approaches53,54, 

these studies veil the isolated effects of factors such as topology, chain properties, and bond 
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kinetics, which are of primary interest in the context of thermally driven dynamic networks. 

Conventional methods for modeling dynamic cross-linking networks (i.e., molecular dynamics-

Monte Carlo simulations or the development of statistical approximations55) face the same 

challenges of computational cost and inaccessibility to larger time and length scales as encountered 

with elemental unit simulations. 

Consequently, the development and application of a generalized mesoscale framework for 

networks with reversible bonds presents a promising avenue for advancing our understanding of 

complex polymer networks. Embracing this approach will facilitate the exploration of their 

mechanics and properties, ultimately contributing to the optimization of material design and 

performance. 
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1.4. OVERARCHING OBJECTIVES 

In summary, there exists a need to accurately model and predict the combination of elastic stresses, 

viscous flow and continuous changes in material properties occurring in semi-flexible biopolymer 

networks. Numerical modeling developed based on viscoelastic material models has therefore 

become an attractive tool to understand and eventually control the deformation process of these 

networks. Thus, the principal objective of this dissertation was to develop physically based 

computational models of biological soft materials and provide new insights in the emergent 

viscoelastic-plastic response of agarose and fibrin networks employing a combination of 

experimental observations, statistically based continuum transient network theory (TNT), and 

discrete numerical modeling techniques. The first aim of this work explored the nonlinear 

viscoelasticity of agarose hydrogels by conceptualizing them as biopolymer networks with 

transient bond dynamics. This theoretical contribution was supplemented by an experimental 

component that consisted of creep and stress-relaxation tests. We found that the nonlinear rheology 

of agarose gels originates from two distinct mechanisms which are characterized by distinct time 

scales. The second aim of this work was to develop a modeling framework integrating fiber 

realignment and associated stress-stiffening with an underexamined characteristic of semi-flexible 

biological networks: their viscoelastic response, self-healing, and restructuring over long-time 

scales. These networks frequently exhibit dynamic crosslinks with temporal association and 

dissociation, providing them with the capacity for temporal reconfiguration. The third aim of this 

work was to evaluate the nonlinear viscoelastic and plastic mechanical response of fibrin networks 

at their protofibril and fiber level. We developed a mesoscale model to capture the dynamic cross-

linking (detachment and attachment events) between fibrin fibers and to allow us to relate the 

macroscopic viscoelastic response directly to the topological evolution of the fibrillar network.  
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1.5. SUMMARY OF GOALS AND AIMS 

Overarching goal of this dissertation: Develop physically based computational models of 

biological soft materials to provide new insights in the emergent viscoelastic-plastic response of 

agarose and fibrin networks while employing a combination of experimental observations, 

statistically based continuum transient network theory (TNT), and discrete numerical modeling 

techniques. In support of this overarching objective, I completed the following three Aims:  

- Aim 1: Poroviscoelasto-Plasticity of Agarose-Based Hydrogels 

Using agarose gels as a model system, Aim 1 evaluated the complex time-dependent mechanical 

response under unconfined compression. We developed a physics-based constitutive model that 

can accurately describe time-dependent behavior by using the foundation of the transient network 

theory. The model presented in this study can be used to provide control guidance on the material 

design in numerous applications that necessitate the use of agarose-based gels. 

- Aim 2: Time-Dependent Mechanics of Dynamically Cross-Linked Semi-flexible Networks 

Aim 2 developed a mesoscopic model framework to correctly describe the mechanical response 

of semi-flexible rods. The model was built in a highly parallelized framework (i.e., LAMMPS). 

The generation of this model will greatly improve the spatiotemporal scales that may be modeled 

through these methods, thus permitting broader investigation of materials with higher degrees of 

hierarchical microstructure and heterogeneity. 

- Aim 3: A Mesoscale Viscoelastic-Plastic Constitutive Model of Fibrin Gels 

Aim 3 sought to adapt the model presented in Aim 2 to fibrin networks and to define their 

mechanical behavior at a protofibril and fiber length scale (i.e., mesoscale). Developing a robust 

mesoscopic model of protofibril bundles and fibrin gels enhanced our understanding of the time-
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dependent mechanical properties of fibrin at different length-scales and may have significant 

implications for the field of mechanobiology. 

This dissertation has significantly enhanced our comprehension of soft matter mechanics, 

particularly the viscoelastic-plastic behavior of agarose and fibrin networks. This has been 

achieved by creating cutting-edge computational models that combine experimental observations, 

statistically based continuum mechanics, and discrete modeling methods. By identifying the 

crucial microstructural characteristics and dynamics that govern the mechanical response of semi-

flexible networks, we have established the groundwork for future progress in cellular length-scale 

mechanobiology and the development of innovative materials for various applications. As we 

continue to improve and validate our models, we expect our research to deepen our understanding 

of the connections between soft matter physics and the biological processes they influence. This 

will ultimately lead to solutions for challenges in biotechnology, nanotechnology, and beyond. 
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CHAPTER 2:  

POROVISCOELASTO-PLASTICITY OF AGAROSE-BASED HYDROGELS* 

Agarose gels are excellent candidates for tissue engineering as they are tunable, viscoelastic, and 

show a pronounced strain-stiffening response. These characteristics make them ideal to create in 

vitro environments to grow cells and develop tissues. As many other biopolymers, viscoelasticity 

and poroelasticity coexist as time-dependent behaviors in agarose gels. While the viscoelastic 

behavior of these hydrogels has been considered using both phenomenological and continuum 

models, there remains a lack of connection between the underlying physics and the macroscopic 

material response. Through a finite element analysis and complimentary experiments, we 

evaluated the complex time-dependent mechanical response of agarose gels in various conditions. 

We then conceptualized these gels as a dynamic network where the global dissociation/association 

rate of intermolecular bonds is described as a combination of a fast rate native to double helices 

forming between aligned agarose molecules and a slow rate of the agarose molecules present in 

the clusters. Using the foundation of the transient network theory, we developed a physics-based 

constitutive model that accurately describes agarose behavior. Integrating experimental results and 

model prediction, we demonstrated that the fast dissociation/association rate follows a nonlinear 

force-dependent response, whose exponential evolution agrees with Eyring’s model based on the 

transition state theory. Overall, our results establish a more accurate understanding of the time-

dependent mechanics of agarose gels and provide a model that can inform design of a variety of 

biopolymers with a similar network topology. 

 

** The results presented in this chapter have been published to Soft Matter as: Crespo-Cuevas, V. Ferguson, V. L., 

Vernerey, F., Poroviscoelasto-Plasticity Of Agarose-Based Hydrogels. 
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2.1. BACKGROUND AND MOTIVATION 

Biopolymers are used extensively as both commodity materials and for specialized applications56–

58. For example, chitin is important for medical devices and wound-healing dressings59, 

carrageenan films play an important role in extending the shelf life of foods60, alginate is used to 

prevent dehydration of meats61, and agar is common for culturing cells62–64. Biopolymers are 

selected for their ease of manufacture from natural precursor materials as well as for their ability 

to bear loads over long time scales. However, biopolymers also exhibit complex behaviors that 

may influence their durability and function. An accurate characterization of these materials is thus 

critical to guide material selection and design, yet many aspects of how biopolymers respond to 

loads applied over time remain poorly understood. Their physical behaviors are complex and vary 

across multiple length scales65, where many behave as semiflexible networks. Typically, these 

polymeric systems have supramolecular assemblies which can vary between about one nanometer 

and tens of nanometers. Of particular interest are agarose-based hydrogels, which are commonly 

used as scaffolds in tissue engineering due to their low cost, biodegradability, and highly 

controllable elastic properties20. Agarose gels are viscoelastic semiflexible biopolymer hydrogels 

whose mechanical response depends on the polymer concentration66 and has been demonstrated 

to exhibit a strain stiffening response that is likely to influence cellular responses67,68. While bulk 

properties are important to bear loads, cells respond directly to the small-length scale properties 

and behavior of their host scaffolds. Modulus, viscoelasticity, plasticity, and nonlinear elasticity 

of substrates and scaffolds influence cells and alter the fundamental processes of growth, 

proliferation, migration, and differentiation6,19.  

To better understand the characteristic mechanics and time-dependent response of agarose gels, 

let us first describe its network features. Below the gelation point, double helices are formed 
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through the conglomeration of agarose molecules. Each agarose molecule participates in more than 

one double helix. Supramolecular fibers form from the aggregation of double helices through 

hydrogen bonding. These bonds govern the self-gelation of agarose gels (Figure 2.1.A) and enable 

the network to be dynamic through bond formation and dissociation which dissipates elastic stored 

energy when exposed to mechanical stimuli. The agarose molecules within the supramolecular 

fibers of the network structure thus possess a solid-like behavior that has been proposed to be 

capable of fast energy dissipation. In contrast, agarose molecules present in the clusters or 

junctions and that are not aligned can dissipate energy much more easily as they slide over adjacent 

molecules thus generating a fluid-like behavior24. Hence, it has been proposed that bond exchange 

processes taking place in the junctions will correspond to longer relaxation times or slower 

dissipation of the stored elastic energy. Clusters formed by several suprafibers within agarose 

networks increase the number of connected bonds under deformation. The adjacent agarose 

molecules that are not part of the cluster in a stress-free configuration are then able to form new 

crosslinks which increases the size of the cluster and strengthens the network. This process enables 

agarose to dissipate stress when loaded over long time periods. Elucidating the complex behavior 

of agarose gels is crucial to design more controllable materials, but also to elucidate the factors 

leading to cell responses when subjected to externally applied loads. In addition, a deeper 

understanding of agarose behavior will provide novel insight into many biological materials which 

present similar network topology (i.e., actin filaments and collagen gels) (Figure 2.1.B). 

The behavior of agarose gels, and many other biopolymers, is considered to be poroviscoelastic 

because of their high-water content69–71. Fluid movement and mass transport through the solid 

network influence behavior. However, existing poroviscoelastic models fail to connect the network 

topology with the mechanical response of the solid phase within hydrogels. Such models lack 
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accuracy as they do not account for the movement and rearrangement of molecules within the 

polymer network. Generally, existing mathematical models used to characterize the macroscopic 

mechanical response of agarose are empirical. Most either describe the mechanical response by 

approximating its structure as a combination of simple linear elements (i.e., Maxwell or Kelvin-

Voigt model) or describe the stress-strain relations from the stored elastic energy expressions (i.e., 

Neo-Hookean or Holzapfel model). Studies using a linear combination of phenomenological 

models, such as Prony series viscoelastic model72, can broadly be found in literature to describe 

the time-dependent response of agarose-based hydrogels. For example, Chen et al. (2011)73 used 

this approach to study the deformation of chondrocytes seeded in agarose gels while Pauly et al. 

(2017)74 investigated the effects of additives on the mechanical properties of agarose hydrogels. 

On the other hand, Caccavo and Lamberti (2017)75 used fundamental balance laws to describe the 

poroviscoelastic behavior of hydrogels under large deformation, and applied it to agarose-based 

hydrogels76. This latter model provided an important step towards the development of refined 

models for biopolymers; however, this modeling approach is empirical which limits its use for 

design purposes. High-precision atomistic simulations, such as molecular dynamics, have been the 

subject of increasing developments in the last two decades. The molecular modeling of hydrogels 

incorporates into a model every single element that is part of the system (i.e., atomic positions, 

velocities, and forces). In this context, Casalini (2013)29 developed a molecular model of an 

agarose-carbomer hydrogel to explore the effect of mesh size on solvent diffusion at low solute 

concentration. Although atomistic models remove all the assumptions that limit the application of 

a specific model, they are still computationally expensive and difficult to apply to polymeric 

networks models at large time scales. Thus, while viscoelasticity in agarose networks have been 
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studied extensively, no studies to date evaluate if the time-dependent response of hydrogels can be 

accurately described by dynamic bond evolution. 

In this study, we connect the viscoelastic macroscopic response with the chain-level physics of 

agarose-based hydrogels. This work seeks to establish a fundamental understanding of 

mechanisms responsible for nonlinear viscoelasticity of agarose hydrogels by adapting the 

 

Figure 2.2. A. Gelation mechanism of agarose, from left to right: When water is added to 

agarose and it is heated up, agarose untangle and forms random coils. As the agarose cools 

(~45oC), coils pair to form helices. As the temperature continues to drop, the helices bundle and 

form higher-order assemblies (suprafibers) that are coincident with water inside the gel. B. 

Schematic representation of different biopolymer networks showing cluster and thick fibers 

structure.   
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Transient Network Theory (TNT)12 to the case of agarose networks. More specifically, the TNT is 

modified to capture the force-dependent response of the fast bond dynamics observed during creep 

and to capture the nonlinear plastic flow-like behavior observed during the multi-step stress-

relaxation experiment. We propose bond dynamics as a novel mechanism for describing strain-

stiffening and force-dependent viscoelastic material behavior of agarose. With new data we sought 

to better understand the time-dependent mechanics of agarose gels to inform their design and to 

provide a model that may be extended to a range of biopolymers which share similar network 

topology. The manuscript is organized as follows. In Section 2, we present and analyze 

experimental results on the behavior of agarose subjected to unconfined compression and study 

the poroelastic contribution on the overall time-dependent response. In Section 3 we review the 

main elements of the TNT to model the response of dynamic polymer networks and introduce the 

nonlinear bond dynamics of agarose-based gels based on network topology. We then modify the 

TNT to capture the experimental observations reported in Section 2. Finally, in Section 4, we 

provide a comprehensive overview of the model.  
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2.2. CHARACTERIZATION OF THE TIME-DEPENDENT RESPONSE OF AGAROSE 

UNDER UNCONFINED COMPRESSION 

In this section, we present and analyze experimental results on the behavior of agarose subjected 

to unconfined compression. We described the time-dependent mechanical response of agarose gels 

for multi-step stress-relaxation and steady creep conditions with the objective of establishing a 

connection with chain-level physics. Because agarose is a biphasic material comprised of a 

solvent-filled biopolymer network, we first aimed to characterize the role of poroelastic effects, 

i.e., the time dependence of the response related to solvent transport, on the gel’s overall response. 

Thus, finite element analysis (FEA) was used to model and reproduce fluid transport in 

experimental specimens during loading over time.  

2.2.1. Experimental methodology 

Agarose Gel Fabrication. Hydrogels were prepared by dissolving 5%, 7.5% and 10%, (w/w) 

agarose (Sigma A9539) into phosphate buffered saline (PBS, pH 7.4, Invitrogen), and while 

stirring the agarose powder was slowly added to prevent clumping. The solution was weighed, 

covered with aluminum foil to reduce evaporation, and boiled (~95oC) and magnetically stirred to 

maintain homogeneity for 5-10 minutes until agarose was dissolved. Agarose solutions were drawn 

into 3-, 5-, and 10-ml syringes cooled at room temperature. The hydrogels were removed from the 

syringes and cut into 8.66 mm, 12 mm and 16 mm lengths, respectively, to create 1:1 cylinders 

(height:diameter ratio).  

Unconfined Compressive Multi-step Stress-Relaxation Test. A total of 15 samples were swelled to 

equilibrium in PBS for 48 h. Unconfined Compressive stress-relaxation testing (n = 3 

samples/composition/dimension) was conducted on a Mechanical Testing System (MTS Insight 

II; Eden Prairie, MN; 250 N load cell; data recorded at 1 Hz) at room temperature; testing was 
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performed with samples immersed in PBS. Aluminum compression platens were rigid, 

impermeable, and smooth. A minimum contact force of 30 mN ensured full contact between platen 

and sample (Figure 2.2.A). A USB-camera (Dino-Lite 1.3MP EdgePLUS AM4117MZT) was used 

to assess for full contact prior to testing as well as to evaluate uncompressed, fully compressed, 

and recovered (48 hours of swelling after testing) dimensions to calculate lateral expansion. The 

test profile included four incremental steps in strain 𝜖 = {5%, 10%, 15%, 20%}. Each of these 

stages was divided into a compression phase and a relaxation phase. Samples were deformed at a 

strain rate of 𝜖̇ = 0.05/s over 1 s, and then each strain was held for 5 h to reach an equilibrium 

stress state (Figure 2.2.B).  

Water absorption/release quantification. After swelling in PBS for 48 hours, 5% w/w samples (n 

= 3) were weighed for initial mass 𝑚0 (before mechanical testing and final mass 𝑚𝑓 (after stress-

relaxation experiments). Samples were weighed quickly to avoid water reabsorption and minimize 

evaporation, and the amount Δ𝑚 of solvent exchanged with the media Δ𝑚 was calculated. This 

procedure was used for the lower agarose concentration gels since their higher porosity (Table 1) 

made them best candidates to have larger values for Δ𝑚. Samples were next re-submerged in PBS 

and weighed after 48 hours to assess for mass of fluid reabsorbed.  

Unconfined Compressive Creep Test. Unconfined compressive creep tests were also conducted to 

evaluate short-term time-dependent responses. Creep testing was performed in PBS at room 

temperature on an MTS with closed-loop load control. A total of 9, cylindrical, 12x12 mm samples 

(n = 3/group) were subjected to constant compressive stress based on the overall strains achieved 

after a fast-loading stage (𝜖𝑙̇ = 0.05/s.). The overall strains achieved during the loading stage were 

𝜖𝑙 = {1%, 2.5%, 5%, 7.5%, 10%, 15%}. The loading stage was followed by a 120 s creep hold at 

𝜖𝑙. 
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2.2.2. Experimental approach: multi-step stress-relaxation 

The multi-step stress relaxation depicted in Figure 2.2. C-E shows the mean stress versus time 

response of the three different sample sizes for each of the three agarose gels compositions. At 

each level of applied strain, the stress increased immediately after the step-strain application, 

followed by a relaxation stage that reaches a quasi-steady value, referred to as the plateau stress 

𝜎𝑝 in the remainder of the manuscript. We observed that this value increases with the applied strain 

while being independent of specimen size. Equilibrium values for the stress at the end of the stress-

relaxation testing were determined to be 0.028 ± 0.00082 MPa, 0.055 ± 0.0011 MPa and 0.083 ± 

0.0005 MPa for 5% w/w, 7.5% w/w and 10% w/w respectively. The stress relaxation data were 

consistent between different samples showing a small variability. 
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Figure 2.3. A. Schematic of the unconfined compression test of a cylindrical disk of hydrated 

hydrogel. B. Strain vs. time function features multiple steps with holding times to observe 

relaxation. C, D, and E. Experimental results obtained from multi-step stress-relaxation (8.66 

mm, 12 mm, and 16 mm) for 5%, 7.5%, and 10% w/w agarose compositions, respectively. For 

each dimension, the averaged data is represented. For each composition, agarose gels showed 

the same long-term stress-relaxation response independent of the sample size. The inset in C. 

shows the stress evolution for the first loading and relaxation step in a semilogarithmic scale 

along the x-axis. 
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A similar “stress-plateau effect” behavior was observed in multi-step stress relaxation testing (with 

a 30 minute relaxation period) on the data reported by Roberts et al. (2011)66 in their comparative 

study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. 

Because of the relatively short time used between step strains in this previous study, the stress does 

not plateau as clearly as reported here although general trends are constant between the two studies.  

2.2.3. Experimental approach: steady-state creep.  

When subjected to a constant compressive load, the agarose sample displayed a combination of 

elastic deformation and creep as described below and as shown in Figure 2.A. First, following a 

period of fast elastic deformation, the specimen displayed a transitory regime where creep rate first 

substantially decreased with respect the loading rate 𝜖̇ = 0.05/s and then later increased before 

reaching a steady-state creep (Figure 2.3.C). We also observed a convergence of the strain rate to 

a constant over time, which indicated steady-state creep and not consolidation effects from fluid 

transport out of the gel. We further noted that the average creep rate increased with applied stress 

(Figure 2.3.B), suggesting that the creep response of agarose is force dependent. At higher loads, 

however, creep could only be sustained for a while before the specimen ruptures. We finally did 

not notice major differences between the creep response of agarose with different compositions. 
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Figure 2.4. A. Experimental results obtained from creep tests of 12 mm height (and diameter) 

samples for each of the agarose compositions (n = 3/composition). Data is reported using a solid 

blue line (average values from samples tested), and a blue region (± standard deviation). The 

red-cross indicates mechanical failure. Agarose gels showed same creep response independent 

of agarose composition. B. Evolution of the average data for the creep strain rate 𝜖𝑐̇ respect the 

average data of the constant stress applied 𝜎𝑖  (𝜎1 < ⋯ < 𝜎6) during the creep test. C. Evolution 

of the average data for the creep strain rate 𝜖𝑐̇ over time for the different constant stresses applied 

𝜎𝑖. Red-cross indicates the mechanical failure. 

2.2.4. Poromechanical effects 

As most biopolymers, agarose can be considered as a biphasic mixture consisting of two 

constituents: a solid skeleton phase that is intermixed with a fluid phase. In the following, we 

therefore use superscripts 𝑠 and 𝑓 to denote the solid and fluid phases, respectively69,77,78. For 
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simplicity, the solid matrix is assumed to have an isotropic and uniform pore distribution on the 

whole domain while the mixture is assumed to have reached its equilibrium swollen state so it can 

be considered fully saturated. During deformation, however, the fluid can move relative to the 

solid skeleton, producing an effective time-dependence of the mixture, independently of the 

material response of the polymer matrix. This poroelastic effect brings a challenge to data 

interpretation as it is difficult to decouple the viscoelastic and poroelastic origins of the material’s 

time behavior79–82. The volume fraction 𝑛𝛼(𝑿, 𝑡) of phase 𝛼 (𝛼 = 𝑠 or 𝑓) is defined as 𝑛𝛼(𝑿, 𝑡) =

𝑑𝑣𝛼

𝑑𝑣
, where X is the material coordinate, 𝑡 is the time, and 𝑑𝑣𝛼 is the differential volume fraction 

of constituent 𝛼. The saturation condition implies that 𝑛𝑠 +  𝑛𝑓 = 1 and the total Cauchy stress 

can be decomposed into a solid and fluid component as83: 

𝝈 =  𝝈𝒔 + 𝝈𝒇 = 𝝈𝒔 − 𝑝𝑓𝑰 2.1 

Here, 𝑝𝑓 stands for the fluid pressure, 𝝈𝒔 is partial stress of solid skeleton84 and 𝑰 is the identity 

tensor. Interstitial fluid flow is modeled based on isotropic Darcy’s law as ∇𝑝𝑓 =

−
1

𝐾

𝑒

1+𝑒
 (𝑣𝑓 − 𝑣𝑠)85 where 𝑒 is the void ratio, 𝐾 is the hydraulic conductance, 𝑣𝑠 is the velocity 

of the solid phase and 𝑣𝑓 is the velocity of the fluid phase, as before.  

To explore the extent of these effects on material response, we implemented the above linear 

poromechanics model into a general-purpose FEA software Abaqus 2019 (Dassault Systèmes 

Simulia Corp., USA). The specimen was modeled as an axisymmetric cylinder around its axis of 

revolution (r = 0) (Figure 2.5.B). Solvent transport was assumed isotropic and modeled by defining 

the hydraulic conductance of the fluid K, the void ratio 𝑒 and the specific weight of the fluid 𝛾𝑠. 

Gu et al. (2003)86 described the evolution of K and 𝑒 as a function of the deformation applied to 

agarose gels (detailed description on Appendix I). The compression step was run using the SOILS 
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analysis in Abaqus, which accounts for the pore pressure response and permeability. Because large 

deformation was used on our tests, the nonlinear geometric option (NLGEOM) was applied. To 

avoid discontinuities on the step resolution, the maximum pore pressure change per increment was 

set to 10 Pa. 

Regarding boundary conditions, the fluid pore pressure 𝑝𝑓 was set to zero on the cylindrical 

periphery (right side) to allow the fluid flow in the radial direction. Furthermore, to simulate the 

rigid and impermeable platen, all displacements and rotations were constrained using an encastre 

boundary condition on the bottom platen. The contact with the platens compressing the hydrogels 

was assumed to be perfectly lubricated and defined as a frictionless contact. Two different 

predefined fields were created on the initial step. The first one was used to initialize the internal 

state variables, which were set to zero. The second one defined the initial void ratio of the sample 

and was set to 𝑒0 (see Appendix I). 

Nonlinear analysis was performed using the Newton-Raphson algorithm. The hydrogel sample 

was modeled by the coupled pore-fluid/stress CAX8P elements, 8-node quadrilateral 

axisymmetric elements that consider biquadratic displacement and bilinear pore pressure. By 

subsequent mesh refinements, the results presented here were demonstrated to be mesh-size 

independent. 

This model was used to simulate the two different tests conducted for this study: multi-step stress-

relaxation and creep. To simulate stress-relaxation, a displacement 𝑢𝑦 was prescribed on the top 

platen using a tabular amplitude to match the strain previously described in Section 2.1. To 

simulate creep, a range of pressures 𝑃𝑦 were prescribed to the top platen with its respective tabular 

amplitude as well to simulate a constant strain ratio during the compression stage. To assess the 

role of poromechanics alone, we first assumed that the solid skeleton behaves as a compressible 
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Neo-Hookean hyperelastic solid. In this context, the sample deformation is measured by the 

deformation gradient 𝑭(𝑡) = 𝑑𝒙(𝑡)/𝑑𝑿 which represents the linear mapping between the position 

vector 𝑿 of a material point in the reference configuration and its position 𝒙(𝑡) in the current 

configuration (Figure 2.4). In the case of unconfined compression, this tensor takes the simple 

form 𝑭(𝑡) = 𝑑𝑖𝑎𝑔[𝜆, 𝜆𝑙 , 𝜆𝑙], where 0 < 𝜆 ≤ 1 is the length ratio along the vertical direction and 

𝜆𝑙 ≥ 1 represents the lateral length ratio.  

 

Figure 2.5. Conceptual diagram of deformation gradient tensor 𝑭, the length ratio along the 

axial direction 𝜆 and the lateral length ratio 𝜆𝑙.   

The material strain is defined by the Finger deformation tensor (or left Cauchy-Green deformation 

tensor) 𝒃 = 𝑭𝑭𝑇, which may further be decomposed into a volumetric component 𝐽𝑒 = √det 𝒃 

and an isochoric component 𝒃̅ = 𝐽𝑒

−
2

3 𝒃. With these definitions, the strain energy density (per 

reference volume) of our compressible Neo-Hookean model is provided by 

𝜓 = 𝑐10(tr 𝒃̅  − 3) +
1

𝐷1

(𝐽𝑒 − 1)2 
2.2 

 The material constant 𝑐10 and 𝐷1 can further be written in terms of the more familiar elastic 

modulus 𝐸𝑠 and the Poisson’s ratio 𝜈𝑠 of the solid network respectively: 
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𝑐10 =
𝐸𝑠

4(1 + 𝜈𝑠) 
 𝑎𝑛𝑑 𝐷1 =

6(1 − 2𝜈𝑠)

𝐸𝑠
 

2.2.b 

The true (Cauchy) stress tensor can then be derived as:  

𝝈 =
2

𝐽𝑒
𝒃

𝜕𝜓

𝜕𝒃
 =  

2

𝐽𝑒
𝑐10Dev 𝒃̅  +

2

𝐷1

(𝐽𝑒 − 1)𝑰 2.3 

where the deviatoric part of 𝒃̅ is given by Dev(𝒃̅) = (𝒃̅ −
tr 𝒃̅

3
𝑰). The Poisson’s ratio 𝜈𝑠 for the 

solid network was experimentally determined by imaging and measuring dimensions of each 

sample before compression and 50 minutes after the load was applied.  Poisson’s ratio was found 

to be 𝜈𝑠 = 0.17, which is in good agreement with previous studies70,87. The Poisson’s ratio in this 

study was assumed to remain constant during testing. 

To obtain the elastic modulus 𝐸𝑠 of the network, an optimization algorithm was developed to 

directly compare the contact force from modeling results and the experimental data (see Appendix 

III). In this case, contact force obtained from first compression stage (𝜖 = 0.05) on the multi-step 

stress-relaxation on 5% w/w agarose gels was used. 𝐸𝑠 is set to be equal to 0.81 MPa. 

Numerical simulations together with experimental findings indicate that poromechanics plays only 

a minor role in stress relaxation. From simulations, we can state fluid transport occurred within 

the first 2000 s (~ 35 min) (Figure 2.5.C and 5.D); then stress remained constant until the end of 

the simulation.  

2.2.5. Experimental confirmation of poromechanical effects 

We next sought to experimentally confirm our finding that poroelasticity did not dominate the 

behavior of agarose under the parameters applied in our computational analysis. Mass loss from 

samples was performed to experimentally confirm the minor role of energy-dissipation from 



29 

 

poromechanics (Table 2.1). The amount of water released increased with increasing sample 

diameter due to the higher water content in the initial state. In relative terms, Table 2.1 shows that 

the amount of water loss remained constant with respect the initial gel mass (‖Δ𝑚̅‖ = ‖
Δ𝑚

𝑚1
‖ =

10.1%), independently of sample size.  

 𝑑 [mm] 𝑚1 [g] Δ𝑚 [g]  

 8.66 0.57 ± 0.022 - 0.05 ± 0.028 (-9.34%)  

 12 1.32 ± 0.084 - 0.14 ± 0.033 (-10.7%)  

 16 3.43 ± 0.17 - 0.35 ± 0.069 (-10.3%)  

Table 2.1. The initial mass of the agarose gels is shown as 𝑚1. Mass variation on gels due to 

the water mass loss, is reported as Δ𝑚 and is calculated as Δ𝑚 = 𝑚2 − 𝑚1, where 𝑚1 initial 

mass of the sample and 𝑚2 is the mass measured after the experimental test.  

The effect of water loss was also assessed through the diametrical contraction of the sample during 

stress-relaxation testing (Figure 2.5.E). When compression is held, pressurized pore fluid slowly 

leaves the system in the radial direction of the sample while pores within it collapse reducing its 

volume. When diametrical contraction stops due to this phenomenon, it can be understood as the 

end of the poromechanics contribution to the energy dissipation. The experimental data recorded 

dissipated energy after the poroelastic model (Section 2.4) plateaued which increased the 

difference between the equilibrium forces. Based on this observation, the purely poroelastic 

computational model was insufficient to explain the behavior of agarose in response to unconfined 

compression observed during the relaxation stage. However, for lower agarose concentrations, 

agarose network may become poorly crosslinked (i.e., near the percolation threshold). Arbabi and 
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Sahimi (1993) concluded that for networks with low connectivity, the capabilities of continuum 

models may be limited since the affine deformation assumption can no longer be applied48. Due 

to the network's decreased cross-link density, viscoelasticity might not be as dominant in that 

situation as for higher agarose concentration. 
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Figure 2.6. A. Schematic of unconfined compression of a cylindrical agarose sample. B. The 

computational domain along with the mesh and the boundary conditions implemented. In the 

boundary conditions, 𝑝 is the pore pressure and 𝑢𝑦 the axial displacement applied when multi-

step stress-relaxation is simulated or 𝑃𝑦 the axial pressure applied when creep is simulated. C. 

Abaqus poroelastic model prediction results (red dashed line) for stress-relaxation test for 16 

mm, 5% w/w agarose gels versus experimental data (solid blue line -average value from the 

different samples tested- and a blue region -average ± standard deviation). D. Three different 

time frames (from top to bottom, 1 s, 200 s and 2000 s) are plotted to show the stress distribution 

in the axial direction. It is possible to observe how the poroelastic effect generates a gradient on 

the stress distribution. After the fluid transport ceased, the stress field became uniform, and the 

solid network was the only part of the system dissipating energy.  E. Photographs were taken 

during stress-relaxation test on 16 mm, 5% w/w agarose gels to experimentally quantify the 

Poisson’s ratio of the solid skeleton and determine the order of magnitude of the characteristic 

time corresponding to the fluid leaving the system. The compression stage had a duration of 1 s 

where the gel expanded laterally. The relaxation process was recorded while the gel contracted 

laterally due to the fluid leaving the system. The gel stopped shrinking at 3000 s after the 

compression stage. 
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2.3. AGAROSE AS A NONLINEAR TRANSIENT NETWORK  

The time-dependent inelastic response of agarose samples in this study was dominated by 

viscoelasticity, rather than poroelasticity. In the literature, the mechanical behavior of agarose have 

generally been characterized by an elastic and a time-dependent or viscous component using 

phenomenological viscoelastic models72–74 (i.e., the simplest being the Maxwell model). These 

models however remain mostly empirical, which motivates the current work as an attempt to build 

a connection between the gel’s network topology and its mechanical response.  

2.3.1. Preliminaries: the transient network theory 

Let us start by introducing a theoretical framework to describe the nonlinear viscoelasticity of 

polymer networks, known as the transient network theory (TNT)10,12. Due to the presence of 

physical crosslinks in agarose structure88, the network is assumed to be dynamic, wherein the 

polymer chains associate and dissociate over time. 

The polymer is thus idealized as a network of polymer strands with the end-to-end vector 𝒓 which 

represents as the segment between two nodes or crosslinks. For convenience, we introduce the 

normalized end-to-end vector 𝝀 = 𝑟/𝑟0 where 𝑟0 is the natural (force-free) length of a strand. In 

the TNT, a statistical description of the network is provided by the density 𝑐 of connected strands 

and the so-called strand conformation tensor, with indices 𝜇𝑖𝑗 given by 

𝝁(𝑡) = 3⟨𝝀⨂𝝀⟩  2.4 

where the operation ⟨ ⟩ denotes the average chain deformation of all connected strand within a 

representative volume element. If the network is initially isotropic, it verifies 𝝁(0) = 𝑰. Under the 

affine deformation assumption89, the change in stretch of a connected strand verifies 𝝀̇ = 𝑳 ⋅ 𝝀 

where 𝑳 is the velocity gradient 𝑳 = 𝑭̇𝑭−1. Therefore, it is possible to construct an evolution 
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equation for the strand conformation tensor if the rates of chain association and dissociation 

previously described are known12
.  

𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑𝝁 + 𝑘𝑎

𝐶 − 𝑐

𝑐
𝑰 

2.5 

where C is the total number of strands per unit volume the network (including both connected and 

dangling contributions), and 𝑘𝑎 and 𝑘𝑑 are the kinetic rates describing polymer chains association 

and dissociation, respectively. For simplicity, we assume there is a perfect bond exchange within 

the network, meaning each detachment event is immediately followed by an attachment event90. 

We also consider the case of incompressible plastic flow. The evolution equation becomes the 

following35: 

𝝁̇ = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑 (𝝁 −
3

tr 𝝁−𝟏
𝑰) 

2.6 

From this relation, it is straightforward to show  that for a covalently cross-linked network (𝑘𝑑 =

0) the conformation tensor 𝝁 is equivalent to the left Cauchy-Green tensor 𝒃, i.e.  𝝁 = 𝒃 = 𝑭𝑭𝑇12. 

Similarly to Equation 2.3, the true stress tensor can then be derived in terms of the conformation 

tensor as10,32  

𝝈 =
2

𝐽𝑒
𝝁

𝜕𝜓

𝜕𝝁
=

2

𝐽𝑒
𝑐10Dev 𝝁̅ +

2

𝐷1

(𝐽𝑒 − 1)𝑰 2.7 

where the deviatoric part of 𝝁̅ is given by Dev 𝝁̅ = 𝝁̅ −
tr 𝝁̅

3
𝑰. Material constants 𝑐10 and 𝐷1 were 

defined in Equation 2.2.b. This model describes a material that displays a linear elastic response 

(through its Neo-Hookean form), and a linear viscoelastic response (since the rate constant 𝑘𝑑 

remains constant). Note that this model may however still capture nonlinear geometrical effects 

since it is valid for large strains. The viscoelasticity of agarose was however observed to be quite 
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nonlinear, which motivates the development of a more physical model regarding the relaxation 

mechanisms occurring within the polymer structure. Such a theoretical improvement must 

therefore involve a rate constant 𝑘𝑑 that changes with stress as previously discussed in Hui et al. 

(2021)39. 

2.3.2. Nonlinear bond dynamics of agarose-based gels 

Hydrogen bonding not only governs the self-gelation of agarose gels, but it also facilitates the 

complex dynamics of the resulting network. Hydrogen-bonding side groups found in agarose 

facilitate the formation of transient supramolecular structures with viscoelastic responses21. It is 

theorized that there are two main microstructural features that contribute to agarose viscoelastic 

behavior. First, aligned agarose molecules that form double helices have a limited mobility in 

comparison with single agarose molecules. This dynamic gel structure has been proposed to occur 

at short relaxation times. In contrast, agarose molecules present in clusters that are not aligned with 

each other can dissipate energy much more easily as they slide over adjacent molecules, 

corresponding to a fluid-like behavior24. This behavior is illustrated in Figure 2.6. 
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Figure 2.7. Schematic of the short relaxation time on agarose corresponding to the fast bond 

dynamics (𝑘𝑑
𝐼  and 𝑘𝑎

𝐼 ) of the strands aligned on the double helices (top) and of the long relaxation 

times associated to the slow bond dynamics (𝑘𝑑
𝐼𝐼 and 𝑘𝑎

𝐼𝐼)  where agarose molecules presented in 

the suprafibers clusters can dissipate energy much more easily as the they slide over adjacent 

molecules (bottom). 

Our experimental results suggest that agarose networks have two different dissipation mechanisms 

when subjected to an external stress23. To construct a model for this network, we first assume each 

mechanism has its own characteristic dissociation rate such that global the kinetic rate 𝑘𝑑 is 

decomposed as: 

𝑘𝑑 = 𝑘𝑑
𝐼 + 𝑘𝑑

𝐼𝐼 2.8 

Here 𝑘𝑑
𝐼  is the fast dissociation rate associated to the rearrangement of the strands aligned forming 

the double helix structure and 𝑘𝑑
𝐼𝐼 is the slow dissociation rate associated with the bond exchange 

in the suprafiber junctions. A closer look at experimental data suggests that the transition between 
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the above two relaxation mechanisms is smooth and a function of the overall stress-state of the 

specimen. The fast rates 𝑘𝑑
𝐼  is assumed to change with the level of stress, or alternatively, the level 

of elastic deformation while the slow constant 𝑘𝑑
𝐼𝐼 is assumed to remain constant over the time 

scale of the experiments. For simplicity, we follow classical plasticity theory and assume that 

volumetric deformation does not affect inelastic flow91. This model assumption can easily be 

relaxed in future implementation of the model if further experiments show it to be inaccurate. We 

can therefore define a scalar measure of the isochoric elastic deformation via an “effective elastic 

strain” defined as: 

𝜇̅ = √
3

2
Dev(𝝁̅): Dev(𝝁̅)  , 

such that the fast relaxation rate is defined with a generic function 𝑓(𝜇̅) in the form: 

𝑘𝑑
𝐼 = 𝑘𝑑0

𝐼 𝑓(𝜇̅) 2.9 

The scalar function 𝑓(𝜇̅) need to be derived based on the experimental data collected. Observation 

of the creep test data suggests that agarose does not show significant creep for 𝜇̅ < 𝛽. However, 

for values of 𝜇̅ > 𝛽 (Figure 2.8.A), creep suddenly accelerates and the function 𝑘𝑑
𝐼  maybe assumed 

to follow the relation 𝑘𝑑
𝐼 = 𝑘𝑑

0exp (𝛾𝜇̅). This exponential relation is in line with the theoretical 

model presented by Eyring experiencing force-dependent bond dynamics49,92,93. Combining this 

statement along with the observation made from multi-step stress relaxation tests, the evolution of 

𝑘𝑑 is hypothesized to follow a generalized logistic function with the following expression:  

𝑓(𝜇̅) =
𝑒𝛾𝜇̅

1 + 𝑒−𝛼(𝜇̅−𝛽)
 2.10 



37 

 

where 𝛽 represents the elastic strain trigger for bond dynamics, and 𝛾 is defined as the stress-

sensitivity of bond dynamics. In addition, as depicted in Figure 2.7, coefficient 𝛼 describes the 

sharpness of the transition between the two energy dissipation mechanisms; if 𝛼 → ∞, the 

transition is very steep and converges to a step function while 𝛼 → 0 indicates a very smooth 

transition showing a perfect coupling between the two relaxation mechanisms during the whole 

relaxation process. The coefficient 𝛽 follows the evolution of the equilibrium or plateau stress 𝜎𝑝 

point seen in Figure 2.2.C-D-E.  

 

Figure 2.8. Physical interpretation of the fitting parameters used to describe the bond dynamic 

evolution: 𝛼 is the bond dynamics transition steepness, 𝛽 is the elastic strain trigger for bond 

dynamics, 𝛾 is the stress-sensitivity of bond dynamics and 𝑘𝑑0
𝐼  is the spontaneous dissociation 

once the stress threshold is triggered.  

2.3.3. Implementation and experimental validation  

The above viscoelastic model was implemented into a UMAT Abaqus subroutine requiring the 

calculation of the Cauchy stress 𝝈(𝝁̅) and tangent stiffness matrix 𝑪(𝝁̅). Using expressions 

provided in Appendix II, Equation 2.6 was invoked to enforce the evolution of the conformation 
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tensor as a function of the dissociation ratio of the network. To summarize, the material behavior 

of the hydrogel depends on two physical processes that are captured by (a) a UMAT subroutine 

for the solid matrix based on the TNT to control the viscoelasticity of the skeleton, and (b) an 

Abaqus material library to describe the poroelasticity due to the pore fluid flow of the solvent. 

Running the optimization procedure detailed on Appendix III on the creep data and, separately, on 

the multi-step stress-relaxation data, it was further possible to accurate calculate model parameters 

𝛼, 𝛽, 𝛾 and 𝑘𝑑0
𝐼 . Using data from the creep test, it was further possible to accurate calculate the 

exponential evolution of 𝑘𝑑
𝐼  where, independently of the concentration of agarose used, we found 

mean values of 𝑘𝑑0
𝐼 = 0.001164 1/s and 𝛾 = 2.412 (Figure 2.8.A); this expression accurately 

predicts the values for 𝑘𝑑
𝐼  when 𝜇̅ < 𝛽.  

Using data from the multi-step stress-relaxation and our optimization algorithm, the parameters 𝛼 

and 𝛽 were empirically fitted for various agarose composition and applied strain (see Figure 2.8.B). 

Different initial guess values were used as an input to the optimization algorithm. 
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Figure 2.9. A. Dissociation rate exponential evolution obtained from the optimization algorithm 

ran on the experimental creep test data on 12 mm, 5% w/w agarose gels. Graphing the results 

shows three different zones: slow relaxation domain (blue zone), fast relaxation domain (green 

zone) and the elastic strain trigger, 𝛽, zone for bond dynamic activation (red zone). B. For 𝛼 = 

500, average values for the different agarose concentrations of the evolution of the elastic strain 

trigger for bond dynamics 𝛽 at different applied strains during the multi-step unconfined 

compression test. C. For 10% w/w agarose, evolution of the bond exchange rate as a function of 

𝜇̅. Vertical lines represent the values for the bond dynamic trigger parameter 𝛽.  
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This data suggests that while the sharpness of the bond dynamics transition remains constant across 

the multiple compression steps, the elastic strain trigger, 𝛽, changes its values to account for the 

stress plateauing during the whole test (Figure 2.8.B). Therefore, 𝛽 follows the plateau point 

evolution. For the 5% w/w case, 𝛽 decreases for the last stress-relaxation step. This agrees with 

the experimental data of Figure 2.2.C where the plateau stress 𝜎𝑝 measured in the last compression 

step (20% strain), is below the one measured for 15% strain. For 7.5% and 10% w/w agarose, the 

same fitting parameter were used for strains > 5%. In these cases, the sharpness of the transition 

remains constant, but 𝛽 slightly increases its value at each deformation step. Taken together, these 

results suggest that the evolution of bond dynamics is independent of agarose concentration. 

The dissociation constant 𝑘𝑑
𝐼𝐼 of the cluster was obtained using the optimization algorithm. We 

found that 𝑘𝑑
𝐼𝐼 is generally insensitive to stress and agarose concentration which confirms it can be 

kept constant. We estimated the mean rate constant as 𝑘𝑑
𝐼𝐼 = 2.76E-6 1/s (i.e., 𝑘𝑑

𝐼𝐼 ≪ 𝑘𝑑
𝐼 ). In the 

remainder of our analysis (i.e., that concentrates on shorter time scales), this rate can therefore be 

neglected compared to 𝑘𝑑
𝐼 , and a general evolution equation for the general kinetic rate is 𝑘𝑑 ≈

𝑘𝑑
𝐼 = 𝑘𝑑0

𝐼 𝑓(𝜇̅). Therefore, as an input for the UMAT subroutine five parameters are necessary to 

describe the solid matrix behavior: the elastic modulus 𝐸𝑠 of the solid network, Poisson’s ratio 𝜈𝑠 

of the solid matrix and the empirical variables 𝛼, 𝛽, 𝛾 and 𝑘𝑑0
𝐼 .  

Figure 2.9. demonstrates agreement between the poroviscoelastic model and the time-dependent 

mechanical response of agarose gels during experimental creep (5% w/w agarose) and multi-step 

stress relaxation (5, 7.5, 10% w/w agarose) testing. Figure 2.8.B. and Figure 2.9.B-D. also verify 

the evolution of bond exchange rate behaves independently of agarose concentration. Inset plot in 

panel A in Figure 2.9 corroborates the model captures the three creep regimes (primary, secondary 

and tertiary creep) in experimental data. Insets plots in panels B-D in Figure 2.9, shows the model 
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captures the short-term experimental response of agarose gels. We notice energy is dissipated 

faster on the experimental data than on the computational model for short time scales, yet such 

difference does not affect the equilibrium response.   

 

Figure 2.10. Comparison of the prediction from finite element predictions against experimental 

measurements for tested samples. Abaqus simulation results are represented by red dotted line, 

and experimental results are reported as a blue solid line (mean values from experimental tests) 

and blue region (average ± standard deviation). A. Results of creep test for 12mm, 5% w/w 

agarose gels. The inset in A. shows creep test results in a semilogarithmic scale along the x-axis. 

B., C., and D. Results of multi-step stress relaxation tests for 5%, 7.5% and 10% w/w agarose 
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gels respectively. The inset in B-D. shows the stress evolution for the first loading and relaxation 

step in a semilogarithmic scale along the x-axis. 
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2.4. DISCUSSION 

We developed a physically based model to describe and predict the time-dependent behavior of 

agarose networks under unconfined compression. Unlike prior phenomenological and continuum 

models describing viscoelasticity, our approach considers the time-dependent evolution of the 

stress-dependent variables that result from bond-exchange within the polymer network. This work 

provides a reinterpretation of agarose network viscoelastic behavior using the transient network 

theory (TNT). Using the characterization of the two main microstructural features that contribute 

to agarose viscoelastic behavior, which are based on dissociation and reassociation of molecular 

bonds within agarose, we demonstrated that the network deforms over time through non-linear 

force-dependent evolution of bond dynamics.  

Agarose gels are formed from hydrogen (e.g., dynamic) bonds that re-attach after disengaging 

which imparts gels with viscoelastic behavior. Here, viscoelasticity was assumed to follow the two 

main characteristic microstructures of the gel network described by Labropoulos et al. (2001)23. 

Assuming perfect bond exchange, we hypothesized that the overall dissociation rate (𝑘𝑑) results 

from a linear combination of the dissociation rate corresponding to double helices forming between 

aligned agarose molecules (𝑘𝑑
𝐼 ) and the dissociation rate of the agarose molecules present in the 

clusters (𝑘𝑑
𝐼𝐼). Due to the degree of mobility of the agarose, these factors are responsible for the 

short (1/𝑘𝑑
𝐼 ) and longer (1/𝑘𝑑

𝐼𝐼) relaxation times, respectively. The present work incorporated these 

topologically based phenomena into a mathematical model, the TNT, thus enabling a novel 

quantitative understanding of the relationships between molecular physics and overall mechanical 

response. This methodology may be extrapolated to other biopolymer networks with similar 

topologies (i.e., collagen and fibrin networks) to predict their emerging material response as a 

function of bond kinetics. 
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The fast bond dynamics of agarose network (𝑘𝑑
𝐼 ) associated to the aligned agarose molecules 

exhibited significant force-sensitive dynamics. In the creep test, we observed that the magnitude 

of the applied stress had the effect of weakening the solid-like behavior of the network associated 

to the fast energy dissipation mechanism. We interpreted this behavior as a reorientation of the 

agarose network along the direction of applied compression which is a particular property of 

semiflexible networks. Our model suggested an exponential force-dependent response of the fast 

dissociation rate, which agrees with Eyring’s theory92. Capturing this phenomenon revealed a 

novel insight in agarose viscoelastic properties: i.e., the lifetime of a bond depends on the force 

applied to that bond. 

We further demonstrated the non-linear viscoelasticity of agarose hydrogels throughout the 

implementation of a non-constant dissociation rate. In our study, the nonlinear viscoelasticity 

could be observed by a stress-plateauing effect during a multi-step stress relaxation test. In 

particular, the equilibrium stress at the end of the relaxation phase plateaued and reached the same 

value independent of the applied deformation. We developed a master equation to describe the 

bond exchange (Equation 2.10) based on physics-based parameters such as the elastic strain trigger 

for bond dynamics and the stress-sensitivity of the bond rate. The same behavior was observed in 

multi-step stress relaxation testing (with a 30 minute relaxation period) reported by Roberts et al. 

(2011)66 in their comparative study of the viscoelastic mechanical behavior of agarose and 

poly(ethylene glycol) hydrogels. Because of the relatively short time used between step strains in 

their study, the stress did not plateau as reported herein; however, the trends in both studies are 

consistent.  

Following the stability of adhesion clusters model presented by Erdmann and Schwarz (2004)94, 

we hypothesized that the clusters formed by several suprafibers within agarose networks increased 
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the number of connected bonds during the deformation process (Figure 2.10). Cluster adhesion 

was presented in previous literature as a likely mechanism for stress relaxation in biopolymers95–

97. For example, Prechtel et al. (2002) studied cluster dissociation under a linear ramp of force and 

described the strength of the adhesion of living cells to model membranes98. Briefly, Erdmann and 

Schwarz postulated a detailed theoretical analysis of the stochastic dynamics of a cluster of parallel 

bonds under shared constant loading and with rebinding. The adjacent agarose molecules that are 

not part of the cluster in a stress-free configuration may be available to later form new crosslinks 

with the initial components of the cluster. This theory provides a mechanism for increasing cluster 

size and strengthening of the network. Following this theory, we found the elastic modulus of 

agarose slightly increased with elastic deformation which indicated a mild strain stiffening effect 

during sustained compression (Appendix IV). Future investigations should further evaluate our 

hypothesis for a potential relationship between the elastic strain trigger for bond dynamics and 

cluster size and should also consider other possible competing mechanisms such a viscoelastic 

elongation of the network chains99,100.  
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Figure 2.10. Schematic representation of the number of bonds 𝑁𝑖 within a cluster in agarose 

network before and after a stress field is applied. Unbonded agarose molecules join the cluster 

as the external force increases. Variable 𝜂 is defined to represent the cluster bond saturation 

plateauing after the force 𝑓 held by the cluster exceed a certain threshold value.  

Poromechanical effects in agarose did not significantly contribute to energy dissipation during 

stress-relaxation. These results followed the well-studied poroelastic material behavior of agarose 

in the literature86,101–105. We observed that the influence of time-dependent fluid displacement on 

the gel’s response to be small. However, we still incorporated it in our analysis for the following 

reasons. First, we observed a reduction of the initial hydrogel mass during long-duration 
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compression tests; this effect can only be captured by poromechanics. Second, the incorporation 

of fluid transport during loading allowed for a more general formulation that may explain coupling 

of poromechanics with network relaxation; this point can be used to better understand 

poroviscoelastic behavior of agarose gels. Demonstrating the minor role of poromechanics in 

agarose supported the use of the TNT to control and predict the macroscopical time-dependent 

response of physically crosslinked gels.  

Unlike prior applications of the TNT in 2D10, our study demonstrated the application of the TNT 

into a commercial FEA software. This approach will allow for future 3D modeling of complex 

polymer behavior (i.e., crack propagation or cavity generation106) using an underlying mechanism-

based material model. We also demonstrated an initial step that will enable a continuum approach 

of the TNT to be applied to more complex geometries (i.e., 3D printed hydrogels) than the 

cylindrical geometry presented in this study. The computational implementation of the TNT into 

a commercial FEA package, combined with experimental testing, allowed us to assess the 

influence of poroelastic and viscoelastic effects in the overall macroscopic response of agarose to 

time-dependent experiments.  

Finally, we emphasize that the model presented in this study can be used to provide control 

guidance on the material design in numerous applications, many of which are applicable to 

bioengineering, that necessitate the use of agarose and similar gels. The TNT model also offers 

the possibility to design and fabricate gels based on their bond dynamic to obtain a specific time-

sensitive behavior. One important future effort is to extend the current model to different 

biopolymers with similar network topology and to determine if the TNT can be universally applied 

to describe behavior of similar biopolymers. Finally, our work may also support a variety of tissue 

engineering applications and provide physical insights to understand the force-dependent 
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viscoelastic behavior. For instance, understanding how the yielding behavior of agarose gels may 

be crucial for a wide range of biomedical applications where gels are subjected to loads over long 

periods of time. 
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CHAPTER 3:  

TIME-DEPENDENT MECHANICS OF DYNAMICALLY CROSS-LINKED SEMI-

FLEXIBLE NETWORKS 

Semi-flexible networks, which are essential backbones within most soft connective tissues, exhibit 

unique mechanical properties including non-linear elastic responses, viscoelasticity and self-

healing. Moreover, these networks are commonly remodeled through processes that are mediated 

cells107. The diverse mechanical responses observed in these networks make developing a general 

theoretical framework challenging. Within the intracellular milieu and extracellular matrix, 

filaments are generally significantly longer than the flexible cross-linkers (𝑅 > 1). Examples 

include biopolymers like actin networks and fibrillar proteins including collagen type I, 

respectively. We thus developed a physically based mesoscale model for semi-flexible networks 

to study time-dependent response and plastic deformation, and we proposed bond dynamics as a 

novel mechanism for describing strain-stiffening and viscoelastic behavior. The primary objective 

of this work was to better understand the time-dependent mechanics of semi-flexible networks, 

which can inform their design and be extended to other biopolymers with similar network 

topology. The model successfully replicated the Gasser, Ogden, and Holzapfel (GOH) continuum 

stress-stretch approximation for networks with permanent bonds, validating the applicability of 

this approach for biopolymer networks. We found that network orientation and Weissenberg 

number significantly impact the mechanical response and network reconfiguration of semi-flexible 

networks with dynamic bonds. Holding time during stress-relaxation was found to be a crucial 

factor affecting stress evolution and plastic realignment in networks with bond dynamics. Our 

study offers a comprehensive understanding of the mechanical response and network 

reconfiguration of semi-flexible networks with permanent and transient cross-links. This work also 
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provides valuable insights into the interplay between microscopic structure and macroscopic 

mechanical properties, paving the way for future research in optimizing and controlling 

mechanical properties of these networks for various applications. 
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3.1. INTRODUCTION 

Semi-flexible networks constitute most of the soft connective tissue across several length-scales. 

Their characteristic nonlinear elastic response has been the object of many studies from both 

theoretical and experimental side. These models couple fiber realignment and the associated stress-

stiffening, often defined by a J-shaped stress-strain curve108,109. A less studied signature of semi-

flexible biological networks is their viscoelastic response, self-healing, and remodeling over long 

time scales. These networks often possess dynamic cross-links that can associate and dissociate, 

giving them the ability to reconfigure over time13. 

Introducing a general theoretical framework for this variety of networks is tempting but may be 

challenging due to the diversity of response that can be observed depending on the network 

topology. One of the parameters that significantly affects the network response if the ratio 𝑅 of 

filament to cross-linker’s length. Thus, when the flexible cross-linkers are long compared to the 

filaments (𝑅 < 1), the former dominate the network response. In this case, the time-dependent 

response is accurately captured by model such as that introduced by Hui et coworkers110 and more 

recently by the transient network theory12,32. In this case, the stress relaxes over time, but filament 

alignment remains insignificant to the response due to their small size. When the filaments are on 

the order of the cross-linkers size (𝑅 ≈ 1), several non-trivial nonlinear effects arise from the 

mechanical coupling between filaments rotation and cross-linkers’ stretch. Theoretically, a first 

model was introduced by Sridhar and Vernerey (2020)111 to understand the mechanics of transient 

nematic networks, for which rods are strongly aligned and are assumed to rotate with the 

surrounding continuum. More recently, this approach was generalized to capture independent rod 

rotation and the associated effects including soft elasticity and the strain stiffening from rod 

realignment. Mathematically, the addition of independent degrees of freedom unfortunately brings 
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significant difficulties in the derivation of simple solutions, despite its ability to describe a rich 

spectrum of responses. 

In the present work, we consider the case of a dynamic semi-flexible network in which filaments 

are significantly longer than the flexible cross-linkers (i.e., 𝑅 > 1). In this case, the response is 

expected to be dominated by the filaments’ elasticity and realignment, while the role of dynamic 

cross-links consists in relaxing the mechanical constraints between adjacent filaments over time. 

The case 𝑅 > 1 is of particular importance for a variety of biopolymers such as actin networks 

cross-linked by filamin, spectrin and other proteins in the cytoskeleton of most mammalian 

cells112,113. Collagen type I is a viscoelastic semi-flexible, and it is the main structural protein 

within the extracellular matrix (ECM)114–118.  

As other semi-flexible networks, collagen has been shown to have a stiffening response to strain 

that is expected to affect cellular responses119,120. While some studies reported entropic elasticity 

of individual polymers resisting extension121 is what causes the strain-stiffening in these networks, 

other studies suggest it is caused by the alignment of fibers in the direction of the applied load122,123. 

According to Nam et al. (2016)124, the strain stiffening of collagen matrices relates to their viscous 

behavior independently of the strain-stiffening underlying mechanism. At larger deformations, 

these matrices stiffen significantly but subsequently, the strain stiffening gradually decreases over 

time due to strain-enhanced stress relaxation. Guidry et al. (1987)125 suggested that contracted gels 

are stabilized by the formation of non-covalent bonds between the nearby collagen fibers 

preventing the full elastic recovery of the network deformation as the external load is removed. 

Even plastic deformation of collagen networks has been shown in the literature126–128; yet, 

compared to elasticity and viscoelasticity, it is still largely unexplored. 
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The mechanical properties of hierarchical semi-flexible materials ranging from individual 

molecules to large-scale macroscopic connective tissues have received significant attention129,130. 

Relating the local properties and topologies of such networks to their global mechanical response 

is highly sought after by researchers aiming to elucidate the origins of biophysical phenomena. For 

example, Buehler (2006)131 used full atomistic calculations to predict the mechanical properties of 

tropocollagen molecules under different types of mechanical loading. The main limitation of 

atomistic models is the enormous number of degrees of freedom that would be required for an all-

atom simulation of a collagen fibril. Their elevated computational cost makes atomistic models 

impractical for modelling statistically representative volume elements (RVEs) that describe the 

macroscopic behavior. By analyzing the relaxation time distribution spectrum obtained from stress 

relaxation tests, Xu et al. (2013)132 were able to explain the macroscopic viscoelastic behavior of 

collagen matrices, which likely corresponds to relaxation mechanisms involving fiber, inter-fibril, 

and fibril sliding. Unfortunately, because continuum models frequently include smoothing 

assumptions, researchers are restricted from examining the influence of local heterogeneities or 

microstructural characteristics. 

To overcome these limitations, mesoscale (or coarse-grained) models are used. Briefly, mesoscale 

models are molecular simulations model where atoms and chains are transformed into a smaller 

number of chemical sites reducing the complexity of the problem with respect the atomic model 

while keeping essential interactions for concerned properties. The mesoscale model proves 

necessary for the exploration of localized stochastic events, such as variability of the bond kinetics, 

or the nucleation of micro-cavities that likely conceive damage and fracture. Tang et al. (2009)133 

investigated the mechanical behavior of initially flawless finite size collagen fibrils exposed to 

uniaxial strain using coarse-grained molecular dynamics simulations and concluded that 
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deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, were 

strongly influenced by fibril length, width, and cross-linking density. A natural extension of such 

work is to then apply mesoscale modeling in the exploration of dynamic networks and capture the 

formation and breaking of bonds along collagen fibers. Sight et al. (2020)55 used traditional 

methods of molecular dynamics-Monte Carlo simulations to model the dynamic cross-linking 

reactions during thermomechanical loading and Wagner et al. (2021)134 developed novel 

methodology for predicting the mechanical response of sol-gel mixtures using mesoscale 

modelling. Despite this progress, those methodologies are limited to 2-D problems due to their 

elevated computational costs and do not include the enthalpic bending contribution since the cross-

links are modeled as freely attached pin joints. 

In this work, we developed a mesoscopic model for semi-flexible networks to study the time 

dependent response and the mechanisms of plastic deformation of cross-linked fibrous materials 

using physically based mathematical models. We propose bond dynamics as a novel mechanism 

for describing strain-stiffening and viscoelastic material behavior of these systems. With this 

model we sought to better understand the time-dependent mechanics of semi-flexible networks to 

inform their design and to provide a framework that may be extended to a range of biopolymers 

which share similar network topology. 
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3.2. CONSTITUTIVE RELATION FOR SEMI-FLEXIBLE NETWORKS 

To motivate the form of the constitutive relations for the continuum model, we begin by 

considering the network-level behavior of a semi-flexible material. A variety of these systems exist 

in the form of biological networks found in the cell cortex135, arterial wall tissue131, and blood 

clots136. In such biological systems, a variety of chemical and biological interactions may be at 

play due to the presence of various enzymes and proteins. We considered a simplified view of a 

semi-flexible network consisting of a collection of long fibers connected by relatively small cross-

links (Figure 3.1.A). In this context, a fiber was considered long if its persistence length 𝑙𝑝 is much 

greater than the length of a cross-link. Furthermore, the cross-links may be static or dynamic, but 

were assumed to be much stiffer than the fibers and thus act as rigid inter-fiber connections. 

 

Figure 3.1. A. Schematic of the semi-flexible dynamic networks considered in this work, 

composed of rigid rods (blue) cross-linked by flexible cross-linkers (red). Discretization of each 

of the rods in 𝑁 smaller segments of length 𝑟0. Each of the junctions are the particles of our 

system. B. Characterization of an arbitrary unit vector 𝒏 as a function of its angle 𝜃 from the 

vector director 𝒂. C. Visualization of the discrete network model generated to describe an 

isotropic semi-flexible network. 
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3.2.1. Discrete model for semi-flexible networks 

To probe the network-level response of this system, we designed a series of explicit simulations 

to model semi-flexible networks at a coarse-grained scale. To model the fibers, we discretized 

them into 𝑁 segments with initial length 𝑟0 such that the total initial length of the fiber was 𝐿 =

 𝑁𝑟0 (Figure 3.1.A). An orientation vector 𝒏 is assigned to each fiber, which was defined as the 

unit vector connecting the first segment to the last. To ensure that the response of the system 

reflects a semi-flexible network, we maintained the length of the fiber to be close to its persistence 

length, i.e., 𝐿 ≈ 𝑙𝑝. For this study, we maintained each segment in a filament to be aligned and 

consider the only mode of deformation to be stretching the rod along 𝒏. 

To initialize the network, we randomly placed filaments into a periodic cubic domain of edge 

length 𝐷 ≫ 𝐿. As is standard for biological filament networks such as collagen, we considered a 

transversely isotropic distribution of filament orientations about an arbitrary director 𝒂 such that 

the orientation 𝒏 of the fiber is only a function of its angle 𝜃 from 𝒂 (Figure 3.1.B). As considered 

by Gasser et al (2006)137, the distribution function of 𝜃 in the network is governed by the 𝜋-periodic 

von Mises distribution: 

𝜌(𝜃) = 4√
𝑏

2𝜋

𝑒𝑥𝑝[𝑏(𝑐𝑜𝑠(2𝜃) + 1)]

erfi(√2𝑏)
, 3.11 

where 𝑏 > 0 is a concentration parameter dictating alignment and erfi(𝑥) = −𝑖erf(𝑥) denotes the 

imaginary error function. As discussed in Gasser et al (2006)137, we noted that 𝑏 may be implicitly 

related to the alignment parameter 𝜅. To ensure a dense packing of filaments, we assigned a 

minimum overlap distance 𝛿 ≈ 𝑙𝑝, which is the smallest distance allowed between any two 

filaments in the network. The filament procedure then goes as follows: (i) a random center point 
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is chosen anywhere inside the domain, (ii) a random filament orientation 𝜃 is sampled from the 

distribution in Eq. 3.11, (iii) the distance between the attempted filament and every other filament 

is calculated, if the minimum distance is less than 𝛿, then placement was successful. This 

procedure continues until 100 subsequent failed placement attempts occur, which means that the 

system can no longer hold any filaments (Figure 3.1.C).  

After the network was created, we considered the motion of the nodes after applying a perturbation. 

Before defining the equations of motion, we first defined the constitutive behavior of the segments 

that form each discretized filament. The worm-like chain model is commonly used to model the 

response of semi-flexible polymers whose persistence length is close to the contour length of the 

filament138. Here, we consider the Blundell-Terentjev elastic energy functional139, such that the 

energy 𝜓𝑐 stored in a filament is 

𝜓𝑏(𝑟̂) = 𝑘𝑏𝑇 [
𝜋

2

𝑙𝑝

𝐿
(1 − 𝑟̂2) +

2

𝜋

𝐿

𝑙𝑝

1

(1 − 𝑟̂2)
], 3.12 

where 𝑘𝑏𝑇 is the thermal energy scale, 𝐿 is the contour length of the filament, and 𝑟̂ = 𝑟/𝐿 is the 

normalized end-to-end distance of the chain. Thus, the constitutive behavior of each discretized 

segment is assigned such that the full chain obeys this energy potential. Specifically, we set the 

contour length and persistence length of each segment to be proportional to the number of 

segments per filament and the overall magnitudes of 𝐿 and 𝑙𝑝 of each filament. Therefore, if a 

filament with 𝐿 = 𝑙𝑝 = 10 is discretized into 𝑁 = 10 segments, each segment will have a contour 

length and persistence length of 1. 

In the discrete model, the energy potential in Eq. 3.12 defines a force 𝒇𝒃  =  𝜕𝜓𝑏/𝜕𝒓 acting on 

each node in the network. The force-extension and stored energy based on the Blundell-Terentjev 
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model were added to LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)140 

as a bond interaction between pairs of segment junctions. To verify the accurate implementation 

of the force-extension expression, a single filament model with a different number of segments 

was generated and subjected to axial loading. Independently of the number of segments used in 

the filament, the simulation results in filament axial force agreed with the analytical solution. 

When the network was perturbed, we used an explicit Brownian integration scheme to evolve the 

nodes according to the net force acting on them. Further details will be discussed in Chapter 4. For 

this study, we considered the quasi-equilibrium response of the network such that the network was 

evolved until the maximum force acting on any node was below a threshold minimum. 

3.2.2. Hyperelastic continuum model 

We examined the model’s ability to replicate the continuum stress-stretch approximation described 

by Gasser, Ogden and Holzapfel (GOH)141 for its relevance to biological solids. The Helmoltz free 

energy function for a quasi-incompressible network is then written: 

𝜓𝐺𝑂𝐻(𝐸̅, 𝐽) =
1

2
𝑐(𝐼1̅ − 3) +

𝑘1

2𝑘2

[exp(𝑘2𝐸̅2) − 1] +
𝐾

2
(𝐽 − 1)2 3.13 

where, 𝐼1̅ = tr 𝑪̅  denote the first invariant of the symmetric modified right Cauchy–Green tensor 

𝑪̅, 𝑐 is the neo-Hookean parameter, 𝐸̅ is the Green-Lagrange strain-like quantity which 

characterizes the strain in the direction of the mean orientation 𝒂𝟎, 𝑘2 > 0 is a dimensionless 

parameter and 𝑘1 > 0 is a stress-like parameter to be determined from mechanical tests, and 𝐾 can 

be interpreted as a bulk modulus that penalizes deviations of the volumetric stretch ratio 𝐽 =

det 𝑭 from unity. The Green-Lagrange strain-like quantity is defined as 
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𝐸̅ = 𝜅𝐼1̅ + (1 − 3𝜅)𝐼4̅ − 1 3.14 

where 𝐼4̅ = 𝒂𝟎⨂𝒂𝟎: 𝑪̅ is the fourth invariants of the symmetric modified right Cauchy–Green 

tensor 𝑪̅. For the case 𝜅 = 0, the network is isotropic while when 0 < 𝜅 < 1, the networks are 

anisotropic. In particular, the case 𝜅 = 1 corresponds to a fully aligned fibrous network, such as 

found in tendons and other strongly aligned connective tissues. 

This allowed us to express the symmetric Cauchy stress tensor as: 

𝝈𝐺𝑂𝐻 =
2

𝐽
[
𝜕𝜓

𝜕𝐼1
𝒃 + 𝐼4

𝜕𝜓

𝜕𝐼4
𝒂𝟎⨂𝒂𝟎] +

𝜕𝜓

𝜕𝐽
𝑰 3.15 

where 𝒃 is left Cauchy–Green tensors. To examine the discrete model’s ability to replicate the 

continuum stress-stretch approximation described by the GOH model, five different networks were 

formed utilizing the approach detailed in Section 3.1. Harmonic cross-links were established to 

connect distinct filaments with an initial length of less or equal than a threshold distance. The 

number of filaments and cross-links per unit volume was kept constant while varying 𝜅 over five 

values between 1/3 and 0. Figure 3.2.A illustrates for 𝜅 = 1/3, 1/6 and 0, that the discrete model 

generated in LAMMPS accurately captured the mechanical response of the GOH model. 

This study revealed the impact of the network orientation parameter 𝜅 on the GOH characteristic 

parameters 𝑘1 and 𝑘2. Figure. 3.2.B demonstrates that as the network becomes more isotropic (𝜅 → 

1/3), 𝑘1 and 𝑘2 increase exponentially. Both parameters have been normalized for better 

comparison. Moreover, the analysis also revealed that increasing the number of fibers and cross-

links per unit volume leads to higher 𝑘1 values for each 𝜅 value, while 𝑘2 appears to be independent 

of the number of fibers and cross-links per unit volume (Figure 3.3 C). Defining the fiber volume 

fraction as 𝜌 = 𝑁𝐹𝐿/𝑉, where 𝑁𝐹  is the number of fibers, 𝐿 is the length of the fibers and 𝑉 is the 
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total volume of the network; then, for a constant value of alignment 𝜅, the expression 𝑘1 = 𝜌𝑘1
0 

can be deduced, where 𝑘1
0 is a stress-like constant parameter. 

 

Figure 3.2. Validation of the discrete model. A. Comparison between stress-strain evolution 

obtained from the GOH analytical solution (dotted red lines) and the discrete model (solid black 

lines) for three different alignment degrees of the network 𝜅. B. Evolution of GOH parameters 

𝑘1 and 𝑘2 as a function of 𝜅. C. Compression between the evolution of 𝑘1 and 𝑘2 as a function 

of 𝜅 for a network with 562 (Network 1), 782 (Network 2) and 983 (Network 3) filaments. 
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3.3. TIME-DEPENDENT RESPONSE IN SEMI-FLEXIBLE NETWORKS 

Our main interest in this study was to understand the time-dependent response and evolution of a 

semi-flexible network when the cross-linking junctions between elastic filaments are dynamic. 

The word dynamic here refers to the case where junctions have the ability to temporally break and 

later reform between either different, or the same filaments, but at various locations along their 

length. The way in which these events occur is stochastic and may be influenced by a variety of 

factors, such as chemistry, temperature, and mechanical forces. In this work, our objective was to 

consider perhaps the simplest situation, where these events occurred at a mean frequency, denoted 

as 𝑘𝑑 (for rate of detachment). We further assumed that a detachment event was quickly followed 

by an attachment event so that we did not need to consider eventual competition between the 

attachment and detachment rates. 

To examine the time-dependent response of the discrete network, we considered the same 

discretized fiber system as before, but now allowed cross-links to be created and destroyed 

dynamically. We described creation and deletion events by their characteristic timescales, 𝑘𝑎 and 

𝑘𝑑 respectively, which have units of inverse seconds. Briefly, the stochastic deletion procedure is 

as follows: first, at a numerical time 𝑡, all nodes within a cutoff are considered as potential bonding 

partners. If detachment events are uncorrelated, the probability of a successful deletion event is 

𝑃 = 1 − exp(−𝑘𝑑𝑡), where 𝑡 is the size of the numerical timestep. For each potential event, a 

random number is generated and compared to its probability of detachment. If the deletion is 

successful, the cross-link is removed. The creation procedure is identical and occurs 

simultaneously within the system. Finally, we noted that after every timestep on which we allowed 

for bond dynamics, we equilibrated the system to comply with the quasi-equilibrium assumption 

before resuming the simulation. 
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3.3.1. Strain-rate effect on the viscoelastic response 

To examine the time-dependent viscoelastic behavior of a semi-flexible network, we performed 

simulations on a network comprised of 1200 Blundell-Terentjev semi-flexible fibers. Each fiber 

was comprised by 15 segments with a contour length (𝐿) and persistence length (𝑙𝑝) of 1 unit in a 

volume of 30x30x30 units. We assumed perfect bond exchange (𝑘𝑑 = 𝑘𝑎) and employ Brownian 

time integration to update the positions and velocities of all particles in the network with a drag 

parameter 𝛾𝑡 = 10. A reduced style of units lj, which sets fundamental values such as the 

Boltzmann constant to 1, was used. Prior to loading the system, we allowed a healing period to 

initialize the formation of transient bonds followed by an equilibration procedure to minimize both 

the potential energy and force equilibrium within the network system. 

In our simulations, we first controlled the mechanical behavior of the network by varying the 

Weissenberg number, 𝑊, while keeping the dissociation constant, 𝑘𝑑, fixed at 0.1. Shortly, the 

Weissenberg number is a dimensionless parameter commonly used to study viscoelastic materials, 

defined as the ratio of the dissociation constant 𝑘𝑑 to the stretch rate 𝜆̇. Strain-rate effect on semi-

flexible networks has been studied in various fields such as mechanics, physics, and biology. In 

this study, we considered four different values of 𝑊: 100, 10, 1, and 0.1. Our simulations revealed 

the network's sensitivity to the strain rate, manifested through a more rigid response at higher 

Weissenberg numbers. At lower values of 𝑊, the network exhibited a more compliant response, 

attributable to the rapid breaking and reformation of bonds when compared to the stretching rate.  
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Figure 3.3. Strain-rate effect on semi-flexible networks for the stress (A), free energy (B) and 

alignment coefficient 𝜅 (C). 

In Figure 3.3, we presented the simulation results for all values of 𝑊. The results revealed a non-

linear response of the network over time, with an applied stretch of 1.25 in all cases (Figure 3.3 

A). Notably, the stress 𝜎 and elastic potential 𝜓𝑏 exhibited a divergence for 𝑊 = 100 relative to 

lesser 𝑊 values. Accelerated network stretching resulted in enhanced alignment while rigid cross-

links function as unyielding anchor points permitting the reorientation of semi-flexible beads in 

the direction of the applied tension. All the simulations were initialized with a 𝜅 = 0.32 

(approximating isotropic conditions) and achieved different degrees of alignment, ranging from 

approximately 0.23 to 0.27, depending on 𝑊. Our model confirmed the time-dependent 

viscoelastic response of the network during loading stage and underscored the crucial role played 

by the Weissenberg number in controlling the mechanical behavior of semi-flexible networks.  

3.3.2. Stress-relaxation response on semi-flexible networks with dynamic bonds and effect of 

holding time on plastic realignment 

We examined the network’s plastic reconfiguration by applying a tensile stretch 𝜆 = 1.25 (𝑊 = 

10), followed by an unloading phase to investigate network rearrangement at 𝜎 = 0. Utilizing a 
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consistent stretch ratio 𝜆̇ for both loading and unloading, five distinct holding durations were 

employed, ranging from 0 s to complete relaxation (Figure 3.4 A-B).  

 

Figure 3.4. Effect of holding time on plastic realignment after stress-relaxation. A. Stress 

evolution. Highlights of the discrete network model at  𝜎 = 0 for different relaxation times. 

Color-scale shows the relative alignment of the beads with respect to the orientation vector. B-

C. Evolution of the free energy 𝜓𝑏 and alignment parameter 𝜅 for a complete relaxation stage. 

D. Permanent alignment at 𝜎 = 0 as a function of the duration of the relaxation stage.  

Figure 3.4 presents the stress evolution post removal of the applied stretch for each holding time. 

Network orientation is emphasized in (A), where bead coloration corresponds to its relative 

orientation to the previously established alignment vector 𝒂. This model delineated how alignment 

amplified during the loading phase up to the relaxation stage. In our simulation, the initial network 
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alignment was 𝜅0 = 0.32 while the final alignment at the conclusion of the complete relaxation 

stage was 𝜅𝑓 = 0.26 (Figure 3.4 C). It is important to notice that realignment reaches its maximum 

at the end of the loading stage, 𝜅𝑚𝑎𝑥 = 0.24, and then decreases during the relaxation stage. In a 

polymer network, the chains have a natural tendency to adopt random coil conformations due to 

their entropic nature. When a deformation is held during stress-relaxation, the chains may still 

attempt to adopt more entropically favorable conformations, which can lead to a change in 

alignment even without further macroscopic deformation. 

Simulations revealed that holding time had a significant effect on plastic realignment in networks 

with bond dynamics during stress-relaxation (Figure 3.4 D). Holding time refers to the duration 

for which a material, in this case, a semi-flexible network, is subjected to constant strain during a 

stress-relaxation experiment. In polymer networks with reversible bond dynamics, the longer the 

holding time, the more opportunities there are for the bonds to break and reform. This leads to a 

more significant plastic realignment when the system returns to a stress-free configuration (𝜎 = 0) 

as the network is allowed to adapt and reorganize its structure.   
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3.4. CONCLUSION 

In this study, we have addressed the problem of understanding the mechanical response and 

network reconfiguration of semi-flexible networks with transient cross-links. We have developed 

a physically based mesoscale model framework and implemented simulations that capture the 

essential features of these networks, specifically focusing on the viscoelastic behavior, strain-rate 

dependence, and stress-relaxation response.  

Our model demonstrated its ability to replicate the continuum stress-stretch approximation 

described by Gasser, Ogden, and Holzapfel (GOH) for hyperelastic materials (𝑘𝑑 = 𝑘𝑎 = 0), 

which is particularly relevant to biological solids. The GOH model has been widely adopted in the 

literature for characterizing the mechanical behavior of biological materials due to its capability to 

capture the non-linear anisotropic response exhibited by these systems. Our study revealed the 

impact of the network orientation parameter, 𝜅, on the GOH characteristic parameters, 𝑘1 and 𝑘2. 

Notably, as the network became more isotropic, both 𝑘1 and 𝑘2 increased exponentially. 

Furthermore, our analysis unveiled that increasing the number of fibers and cross-links per unit 

volume leads to higher 𝑘1 values for each 𝜅, while 𝑘2 appears to be independent of the number of 

fibers and cross-links per unit volume. The successful replication of the GOH model in our 

simulations validates the applicability of our theoretical framework and computational approach 

to the study of biological materials. By capturing the relationship between the network orientation 

parameter and the GOH characteristic parameters, our model provided valuable insights into the 

mechanical behavior of biological solids, including their anisotropic and non-linear response to 

deformation. 

Through our simulations, we demonstrated the strain-rate effect on the viscoelastic response of 

semi-flexible networks with dynamic bonds (𝑘𝑑 = 𝑘𝑎 > 0). By varying the Weissenberg number, 
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𝑊, while keeping the dissociation bond frequency, 𝑘𝑑, fixed, we observed that the network’s 

sensitivity to strain rate manifested through a more rigid response at higher Weissenberg numbers. 

Conversely, at lower values of 𝑊, the network exhibited a more compliant response due to the 

rapid breaking and reformation of bonds compared to the stretching rate. This behavior highlights 

the importance of the Weissenberg number in regulating the mechanical response of semi-flexible 

networks.  

Our study found that network orientation plays a crucial role in the stress evolution post removal 

of the applied stretch. The model outlined in Figure 3.4 A that alignment amplified during the 

loading phase and up to the relaxation stage. This behavior is attributed to the entropic nature of 

polymer chains, which have a natural tendency to adopt random coil conformations. Furthermore, 

our simulations revealed that holding time significantly impacts plastic realignment in networks 

with bond dynamics during stress-relaxation, as shown in Figure 3.4 D. In polymer networks with 

reversible bond dynamics, an increase in holding time allows more opportunities for the bonds to 

break and reform. Consequently, this leads to a more significant plastic realignment when the 

system returns to a stress-free configuration, as the network reorganizes its structure.  

In forthcoming research, we endeavor to develop an advanced continuum theoretical framework, 

based on the transient network theory, particularly tailored to semi-flexible networks with 

relatively short cross-links. This framework will enable a more comprehensive understanding of 

the mechanical behavior of such networks. Furthermore, by comparing the results from continuum 

model simulations with those from the discrete model simulations, we aim to validate the accuracy 

and reliability of both approaches. 

In summary, our study provided a comprehensive understanding of the mechanical response and 

network reconfiguration of semi-flexible networks with transient cross-links. Our simulations 
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offered valuable insights into the complex interplay between microscopic structure and 

macroscopic mechanical properties in semi-flexible networks with permanent cross-links. The 

subject matter was highlighted by the ubiquity of semi-flexible networks in various fields, 

including mechanics, physics, and biology. Our work not only provides a sense of closure on the 

fundamental aspects of semi-flexible networks but also opens new avenues for future research, 

ultimately aiming to optimize and control the mechanical properties of these networks for various 

applications. 
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CHAPTER 4:  

A MESO-SCALE VISCOELASTIC-PLASTIC CONSTITUTIVE MODEL OF FIBRIN GELS 

In recent years, there has been a growing interest in understanding the mechanical properties of 

biological tissues and their role in regulating cellular behavior. Among the various components of 

the extracellular matrix (ECM), fibrin has gained particular attention due to its widespread 

presence in blood clots, role in wound healing, and for its use in tissue engineering applications. 

A comprehensive understanding of the viscoelastic and plastic behavior of fibrin gels at the meso-

scale is essential for developing effective therapeutic strategies and designing biomaterials that 

mimic the native ECM. 
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4.1. BACKGROUND AND MOTIVATION 

The extracellular matrix (ECM) of multicellular organisms is responsible for carrying stresses and 

maintaining tissue structure while influencing many other biological properties and functions of 

the tissue. ECM is composed of a variety of different molecules including proteins, carbohydrates, 

lipids, and nucleic acids. These molecules interact with each other to form a sophisticated three-

dimensional (3D) fibrillar network that supports and regulates cell activity and functionality. The 

unique composition and arrangement of these networks gives rise to tissues with different 

mechanical responses. For instance, a random (or isotropic) organization of the network 

fibers142,143 leads to a more manageable and softer response to loading than highly aligned (or 

anisotropic) network fibers144,145. McKee et al. (2011) showed on different soft biological tissues 

that stiffness values for a single tissue can span several orders of magnitude if loads are applied in 

the preferred orientation of the fibers146. Besides network orientation and elastic properties, 

inelastic mechanical properties such as viscoelasticity and plasticity have an impact on cell 

spreading, motility, and differentiation147,148. For example, Chaudhuri et al. (2016) and Cameron 

et al. (2011) discovered the influence of changing substrate viscosity, regardless of substrate 

stiffness, on numerous cell behaviors149–151. Accurately characterizing the mechanical properties 

of the ECM is essential for advancing our understanding of the mechanical behavior of tissues, 

informing material design, and improving clinical outcomes. A key aspect of characterizing its 

mechanical properties precisely is the development of constitutive models that accurately describe 

the viscoelastic and plastic properties of ECM materials. In this chapter, we present a novel meso-

scale viscoelastic-plastic constitutive model of fibrin gels, one of the main components of the 

ECM. Our model builds on previous work in this field and provides a framework for accurately 
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characterizing the mechanical behavior of fibrin gels, which has important implications for tissue 

engineering and regenerative medicine. 

Fibrin is a crucial component of the extracellular matrix and plays a significant role in a wide range 

of cellular processes, such as cell adhesion, proliferation, and differentiation, wound healing, 

angiogenesis, and inflammation17,152. It is formed during blood clotting and serves as the scaffold 

for hemostatic clots and obstructive thrombi in blood vessels. Additionally, fibrin has extensive 

biomedical applications, serving as a versatile biomaterial in hemostatic sealants, tissue 

engineering, drug and cell delivery vehicles, and matrices for cell culturing153,154. Due to its 

fundamental biological and medical importance, molecular mechanisms of fibrin formation, as 

well as fibrin structure and properties, remain a major focus of investigation155. 

Fibrin gels possess a remarkable three-dimensional network structure made from fibrinogen and 

thrombin, two proteins involved in blood clotting156. The intricate architecture of fibrin gels is 

highly dependent on a multitude of factors, including fibrinogen concentration, thrombin activity, 

calcium ions, pH, temperature, and mechanical stress154,157,158. This multifaceted dependency gives 

rise to fibrin gels with a diverse array of properties, such as elasticity, stiffness, porosity, and fiber 

diameter, making them a compelling subject for in-depth study159. 

Thrombin has the unique ability to activate other proteins by cleaving them into smaller fragments. 

One such protein is fibrinogen, which, upon activation by thrombin, undergoes a transformation 

into fibrin monomers160–162. These monomers then assemble to form the fibrous network of fibrin 

gel. In addition to activating fibrinogen, thrombin also plays a crucial role in activating platelets 

and other factors involved in regulating coagulation, further highlighting its importance in the 

formation and behavior of fibrin gels. Thrombin cleaves fibrinopeptides A and B from fibrinogen, 
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unveiling knobs that can bind to holes on other fibrin molecules152,163. These knob-hole bonds 

dictate the structure and mechanical properties of fibrin gels164. 

Knob-hole bonds are essential non-covalent and reversible interactions that occur between fibrin 

monomers during fibrin polymerization. Knob-hole bonds are located in both the central nodule 

and the end nodules of fibrin monomers. After thrombin cleaves fibrinopeptides, knobs A and B 

are exposed in the central nodule, while holes a and b are consistently exposed in the 𝛾- and 𝛽-

nodules at the ends165,166 (Figure 4.1 A). To form knob-hole bonds, knobs A and B bind to holes a 

and b, respectively163,167. These interactions form a stable fibrin network, which is crucial for clot 

formation as well as for tissue engineering applications. The resulting fibrin monomers interact 

with each other in a half-staggered manner to produce two-stranded protofibrils (Figure 4.1 B). 

Polypeptide chains, 𝛼𝐶-regions, mediate the primary interaction between fibrin protofibrils 

forming covalent bonds by a plasma transglutaminase, Factor XIIIa168,169. The 𝛼𝐶-regions are 

formed by compact 𝛼𝐶-domains tethered to the bulk of the molecule with flexible 𝛼𝐶-connectors 

and play a significant role during deformation of fibrin fibers170. As a result of fibrin 

polymerization initiated by knob-hole bonds, protofibrils with a half-staggered orientation are 

formed, constituting the fibers of the fibrin matrix (Figure 4.1 C). Fibrin fibers branch to yield a 

three-dimensional gelled network17. The knob-hole bonds impact various properties of the fibrin 

matrix, such as fiber diameter, branching density, viscoelasticity (and plasticity), extensibility, and 

resistance to rupture, which in turn influence the functionality of fibrin gels171. 
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Figure 4.1. Multiscale arrangement of fibrin fiber. Hierarchical arrangement of fibrinogen (A) 

assembling into protofibrils (B), and lateral and axial aggregation to form fibers (C) is shown 

schematically. 

Fibrin is recognized as a semiflexible polymer, exhibiting both rigidity and flexibility in its 

structure122,172–174. The mechanical behaviors of semiflexible polymers like fibrin are crucial for 

their biological functions. Fibrin gels are complex, highly adaptable networks which display 

unique mechanical properties due to their hierarchical structure and non-linear stress-strain 

response. The mechanical behavior of fibrin gels is dictated by factors such as fiber diameter, 

branching, and cross-linking density. Strain stiffening in fibrin gel networks is believed to stem 

from two possible mechanisms. The first, known as the entropic model, suggests that the entropic 

elasticity of individual polymers resists extension175,176. The second, referred to as the enthalpic 

model, proposes that strain stiffening arises from the alignment of fibers in the direction of the 

strain, transitioning to a regime dominated by fiber stretching at higher strains123,138,177–180. Both 

mechanisms contribute to the unique mechanical properties observed in fibrin gel networks. 

Stretched fibers causes them to stiffen more than surrounding fibers at lower stresses, allowing the 
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more strained, stiffer fibers to transmit strain load to the less stressed fibers and reducing strain 

concentration158,181,182. 

The strength of fibrin gels and their viscoelastic properties are significantly influenced by the non-

covalent knob-hole bonds, which exhibit a “catch-slip” bond behavior22,183,184. These bonds 

become stronger as they are stretched, and then weaken, ultimately altering the gel’s strength in 

response to tensile force. Such behavior plays a crucial role in the gel’s ability to resist large 

deformations and prevent premature rupture, thus preserving the gel’s structural integrity. These 

observations emphasize the importance of knob-hole bonds in regulating the mechanical properties 

of fibrin gels and shed light on their potential applications in developing novel biomaterials. 

Research into fibrin has been conducted at multiple levels, from examining molecular interactions 

between its monomers185,186, to investigating fiber network characteristics at the mesoscale187–190, 

and analyzing stress-strain responses of entire gels at the macroscale174,178. Comprehending the 

development, progression, and spread of defects in fibrin gels, as well as their origins, is crucial 

for a proper characterization of these gels. The presence of pores and defects introduces inherent 

property gradients and heterogeneity at the network scale within the gels191. The size of these 

features restricts the applicability of continuum approaches, as these models typically assume 

smooth and homogenous materials. However, the length scale of these features also means that a 

significant number of constituents would need to be included in detailed modeling approaches, 

which limits the effectiveness of techniques like molecular dynamics (MD)192. Consequently, 

many MD studies concentrate on the interactions of just one or a few macromers. Even when using 

simplified MD methods, such as solvent smoothing, these approaches demand substantial 

computational time and resources193. Therefore, explicit, mesoscopic models are necessary to 

connect the microstructural and global mechanical property responses of gels. These models can 
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capture the length scale of heterogeneities and local topological features while utilizing statistical 

representations of elements like individual entropic chains3. Aghvami et al. (2016)194 compared 

the mechanical response of fibrin gels using a nonfibrous strain-stiffening model and a volume-

averaged fiber network model while Zohravi et al. (2023)195 proposed a generalized-mesoscale-

clustering (GMC) framework to study both static and dynamic states of cluster development on 

blood-related clustering ranging from fibrin network formation to platelet aggregation. Recently, 

Filla et al. (2023)196 generated a model to describe the non-linear elastic response of protofibril 

bundle. Their proposed model was limited to a single fiber domain and did not include time-

dependent effects due to bond dynamics between protofibrils. Despite significant progress in 

characterizing the mesoscopic mechanical properties of fibrin gels, there remains a need for 

physically based constitutive models that can accurately capture their meso-scale viscoelastic-

plastic behavior and the network topology evolution. 

Developing a robust mesoscale viscoelastic-plastic constitutive model of fibrin gels not only 

enhances our understanding of their mechanical properties, but also has significant implications 

for the field of mechanobiology. Cells are known to respond to the mechanical cues from their 

surrounding microenvironment, and these interactions play a crucial role in various biological 

processes such as cell migration, proliferation, and differentiation. By providing a detailed 

description of the mechanical environment experienced by cells within fibrin gels, the constitutive 

model can help elucidate the underlying mechanisms governing cellular behavior and response to 

mechanical stimuli.  

In this chapter, we present a meso-scale viscoelastic-plastic constitutive model of fibrin gels that 

accounts for the structural and mechanical complexities observed in these networks. Through a 

comprehensive review of existing experimental data and theoretical models, we identified key 
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parameters that govern the mechanical response of fibrin gels and proposed a unified framework 

to describe their viscoelastic-plastic behavior. We proposed bond dynamics as a novel mechanism 

for describing strain-stiffening and force-dependent viscoelastic material behavior of fibrin gels. 

We sought to better understand the time-dependent mechanics of fibrin gels to inform their design 

and to provide a model that may be extended to a range of biopolymers which share similar 

network topology. 
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4.2. MATERIALS AND METHODS 

The computational model proposed within this chapter is informed and verified by empirical 

findings from Jimenez et al. (2023). This section will provide a concise, yet comprehensive, 

overview of the methodological approach and materials employed in their investigation. 

Fibrin gels fabrication: Uniform fibrin gels were created with final fibrinogen concentrations of 2 

and 4 mg/mL by mixing human fibrinogen (FIB3, Enzyme Research Laboratories) and Alexa 

Fluor (AF) 488 or 546 labeled human fibrinogen (F13191, Molecular Probes) in a 1:10 ratio of 

fluorescent to non-fluorescent fibrinogen, along with 1 µL 2M CaCl2 and 0.5 U thrombin (HT 

1002A, Enzyme Research Laboratories) for every mg of fibrinogen in phosphate buffered saline 

(PBS). The mixture was promptly transferred into molds containing frames to facilitate tensile 

testing and left to polymerize for 5 minutes. 

Orthogonal fibrin gel imaging for three-dimensional mesoscale network analysis: To elucidate the 

intricate 3D mesoscale organization of fibrin networks, an orthogonal rotation bath was employed 

to facilitate imaging in the x-y and x-z planes. This approach was essential to attain precise fiber 

orientation distributions within the 3D network, compensating for the diminished resolution in the 

z-direction relative to the x-y plane due to objective constraints. Utilizing a STELLARIS 5 confocal 

microscope (Leica) with an Apochromatic 63× (NA = 0.90) water-immersible objective, image 

stacks (29.4 × 29.4 × 29.4 µm, 1024 × 1024 × 70 px resolution) were obtained at 0° and 90° 

rotations about the x-axis. Gels of 2 mg/mL (n = 3) and 4 mg/mL (n = 3) concentrations were 

examined. 

Stress-relaxation experiments: Fibrin gels were subjected to 1-, 2-, and 3-mm displacements at a 

velocity of 66 µm/s (approximately 0.01 s−1), allowing for 60-minute relaxation intervals for each 
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increment. Both 2 mg/mL (n = 3) and 4 mg/mL (n = 3) gels were tested in each experiment, totaling 

12 fibrin gels overall. Two fiducial markers of 50 × 50 µm dimensions were photobleached on 

fibrin gel surfaces, separated by 200 µm and embedded to a depth of 200 µm, utilizing a 

STELLARIS confocal microscope equipped with an Apochromatic 10× (NA = 0.40) water-

immersible objective. Initial fibrin gel cross-sections, covering the entire region between the 

photobleached markers, were imaged at 10× magnification. Subsequently, fiber network image 

stacks were acquired at 63× following the methodology delineated above, exclusively in the x–y 

plane. Owing to microscale vibrations impeding the concurrent recording of force and confocal 

images, two distinct experiments were conducted to: (1) examine strain-dependent alterations in 

fibrin network architecture, and (2) assess stress relaxation in fibrin gels. A FemtoTools 

micromanipulator system (FT-RS1002) was employed for unidirectional tensile deformation of 

fibrin gels in both experiments, with distinct mounting systems.  
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4.3. CONSTITUTIVE RELATION FOR FIBRIN NETWORKS 

In this section, we present our model, which incorporates mesoscale interaction potentials, 

pairwise bead bond interactions, and bond angle constraints or bending resistance. Additionally, 

we address bond exchange between fibrin fibers. By adopting this all-encompassing approach, we 

provide a highly accurate depiction of fibrin fiber mechanics, ultimately enhancing our 

understanding of the underlying mechanisms and potentially guiding the development of targeted 

therapies.  

4.3.1. Non-affine deformation 

Non-affine deformation refers to the irregular and complex changes in the structure and shape of 

a material when it is subjected to an external force. In the context of semi-flexible polymer 

networks, understanding non-affine deformation is essential for analyzing the mechanical behavior 

and structural properties of these materials180. In this section, we will discuss the concept of non-

affinity and how it can be incorporated into a mesoscale model using a Brownian dynamics (BD) 

integrator. 

Molecular dynamics (MD) simulations are a powerful tool for studying complex phenomena such 

as collision, aggregation, and breakage events in atomistic detail. MD simulations rely on classical 

Newtonian mechanics to model the motion of every molecule in the system, including solutes and 

solvents197. To accomplish this, interaction forces between molecules must be defined, typically 

through pairwise additive force laws for different molecule types (i.e., solute-solute, solute-

solvent, and solvent-solvent). These forces are often derived from potential energy functions, such 

as the Lennard-Jones potential, which accounts for short-range repulsive forces and long-range 

attractive Van der Waals forces. 
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Briefly, BD technique is used to simulate the dynamics of particles that undergo Brownian motion 

using Newton’s laws of motion in the limit that inertial forces are negligible compared to viscous 

forces. Assuming the thermal fluctuations are negligible, the stochastic equation of motion for the 

center of mass positions, 𝑑𝒓, is defined as 𝑑𝒓/𝑑𝑡 = −𝛾𝑡
−1𝒇 198,199, where 𝛾𝑡 is the drag coefficient, 

and 𝒇 is the resultant force.  

A comparison of the number of simulation time steps executed per second of CPU time 

demonstrated that there are more than 3 orders of magnitude speedup in the BD simulations200. 

Given these limitations, researchers have turned to alternative methods, such as BD simulations. 

This approach significantly reduces computational demands, making it a more feasible option for 

modeling mesoscale systems.  

In the mesoscale model of semi-flexible polymer networks, non-affinity will be applied by 

incorporating the principles of Brownian dynamics. By leveraging the BD approach, we can gain 

valuable insights into the behavior of semi-flexible polymer networks under non-affine 

deformation, shedding light on their mechanical properties and potential applications. 

4.3.2. Elastic energy and stress 

As an illustration of the model, the beads connections are modeled following wormlike chain 

model or Blundell and Terentjev approximation139,201. This fully analytical model has the 

advantage of capturing the right physics in both the low and the high temperature limits, as well 

as in tension and compression/buckling regimes up to the highly bent elastic limit. To prescribe a 

finite contour length, we employ the following free energy expression 𝜓𝑏(𝑥) as a function of its 

end-to-end separation, 𝑟 = |𝒓(𝐿) − 𝒓(0)|, which is useful in analyzing its mechanic properties, 

such as the force-extension relation.  
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𝜓𝑏(𝑟̂) = 𝑘𝑏𝑇 [
𝜋2

2

𝑙𝑝

𝐿
 (1 − 𝑟̂2) +

𝐿

𝑙𝑝

2

𝜋(1 − 𝑟̂2)
], 4.16 

 where 𝑘𝑏 is Boltzmann’s constant, 𝑇 is the reference temperature and 𝑟̂ is defined as the end-to-

end distance of the beads 𝑟̂ = 𝑟/𝐿. The wormlike chain model assumes that the segments are 

unstretchable, i.e., the force in these interactions diverges in the limit 𝑟̂ → 1 enforcing that 

𝜓𝑏(𝑟̂) → ∞ when the chains are stretched to their full contour length 𝐿. This nonlinear divergence 

at high chain stretch is common to semiflexible polymeric chains. In fully extended polymer 

chains, the conformational degrees of freedom are minimized, and the stiffness of the chains is no 

longer entropically driven, rather it is governed by the much stiffer stretching of the beads. From 

Eq. 4.16, the force-extension expression 𝑓(𝑟̂) can be written as: 

𝑓(𝑟̂) = 𝑘𝑏𝑇 [−𝜋2
𝑙𝑝

𝐿2
𝑟̂ +

4

𝜋𝑙𝑝

𝑥

(1 − 𝑟̂2)2
 ] 4.17 

 The finite extension limit for this approximation gives the divergent force scaling: 𝑓 →

(𝑘𝑏𝑇/𝜋𝑙𝑝)(1 − 𝑟̂)−2. To incorporate the effects of bending resistance into our mesoscale 

framework, let us assume that the local internal energy varies quadratically with the filament 

curvature. The bending modulus is related to the persistence length by 𝜅 = 𝑙𝑝𝑘𝑏𝑇.  

Assuming the previously force-extension (𝑓(𝑟̂)) response of a single chain is known, the stress 𝝈 

in the network can be directly evaluated through the virial formula as 

𝝈 =
1

2𝑉
∑ ∑ 𝒓𝑖𝑗⨂𝒇𝑖𝑗 ,

𝑗

𝑁

𝑖

 4.18 

where 𝑉 is the domain volume, 𝒓𝑖𝑗 is the end-to-end vector between node i connected to node 𝑗 

and 𝒇𝑖𝑗 refers to the pairwise tensile and repulsive force between said nodes202. In this study, we 
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disregard the inertial component of virial stress, which is typically observed in atomistic or 

molecular discrete models. This decision is based on the overdamped assumption, positing that 

nodal inertia is inconsequential, and we employ the virial formulation that is intrinsic to continuum 

models. 

4.3.3. Incorporating bond dynamics in mesoscale model 

Recent force spectroscopy experiments into the nature of the adhesions between fibrin fibers 

indicated the presence of weak inter-fiber cross-links between compacted fibers that exhibit a Bell-

like behavior under tension184. Mesoscale models easily permit probabilistic rupture of bonds 

through models such as Eyring’s49,92 or Bell’s50 theory, while inherently tracking the topological 

evolution of the network. To capture this behavior, we develop our model based on the transient 

network theory (TNT)32. The TNT begins with the statistical treatment of networks comprised of 

randomly oriented flexible chains connected by reversible bonds with intrinsic association and 

dissociation rates, 𝑘𝑎 and 𝑘𝑑, respectively. Assuming perfect bond exchange (𝑘𝑑 = 𝑘𝑎),  

𝑘𝑑(𝑓) = 𝑘0 𝑒𝑥𝑝 (
𝑓

𝑓0
), 4.19 

where 𝑘0 is the spontaneous rate, 𝑓0  is a sensibility parameter, and 𝑓 is the current bond force. In 

their study, Litvinov et al. (2018)184 performed single molecule forced unbinding experiments 

utilizing optical trap methodologies to elucidate the intricate influence of mechanical load on 

fibrin’s structural integrity. By employing molecular modeling of the A:a knob-hole complex, they 

established the underlying structural basis for the catch-slip bond behavior observed in fibrin 

polymers. Their findings revealed that the noncovalent A:a knob-hole bond initially exhibits 

increased strength under tensile force (catch bonds), but subsequently experiences diminishing 
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strength once the force surpasses a critical threshold (slip bonds). In this study, we describe the 

time-dependent response of fibrin by characterizing the evolution of the dissociation rate. 
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4.4. COMPUTATIONAL APPROACH 

Fiber network models provide insights into the microstructural mechanisms of deformation in 

fibrous matrices. Modelling fibrin at its fiber level will allow us to capture macroscopical 

behaviors such as strain-stiffening, viscoelasticity and plasticity while observing the underlying 

mechanisms that originate them.  

Available data for informing our physically based model for fibrin gels at fiber length-scale is 

limited, particularly when contrasted with the abundance of data at the protofibril level196,203. This 

research introduces the first fibrin fiber network model to simultaneously: (1) computationally 

ascertain contour length (𝐿𝐹) and persistence length (𝑙𝑝
𝐹) for fibrin fibers derived from the 

mechanical response of protofibril bundles; (2) reproduce the force-strain curve of fibrin fiber 

networks under tension; (3) incorporate force-dependent bond exchange between fibrin fibers; (4) 

generate accurate predictions of fibrin fiber mechanics and network alignment which are 

corroborated by experimental results. Computations are conducted utilizing the open-source 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)140 and the atomistic 

simulation data are visualized using an open-source software package OVITO204.  

4.4.1. Protofibril bundle model 

The multiscale modeling approach is essential when examining fibrin networks, as direct 

simulation of large-scale fibrin bundles would be computationally infeasible and excessively 

resource intensive. To mitigate these challenges, we derive the requisite material properties for 

fibrin fibers, namely contour length (𝐿𝐹) and persistence length (𝑙𝑝
𝐹), by performing uniaxial stretch 

simulations on a representative protofibril bundle model. Furthermore, we analytically investigate 
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the influence of varying the cross-section number of protofibril (𝑁) within a bundle on the 

properties 𝐿𝐹 and 𝑙𝑝
𝐹, elucidating the complex relationship between these variables. 

Our protofibril bundle model is informed from previously acquired data. Zhmurov et al. (2018)203 

conducted an in-depth examination of fibrin protofibril morphology utilizing experimental AFM 

imagery. Their findings revealed an average contour length of 213 ± 101 nm and end-to-end 

distance of 197 ± 86 nm for fibrin protofibrils. A consequent end-to-end to contour length ratio of 

0.94 ± 0.09 denotes an inherent bending propensity in these structures. In a study by Filla et al. 

(2023)196, the protofibril count in fibrin fiber cross sections ranged from 207 to 421. Predictions 

from Filla’s model indicated an 𝛼𝐶-region persistence length of approximately 0.36 nm. Fablo et 

al. (2008)205 revealed in their study that 𝛼𝐶-region contour length is ~600 nm. A typical protofibril 

consists of 15-20 half-staggered monomers206, therefore, each protofibril can be modeled as a 

straight chain with 𝑁𝑚 beads. Each protofibril can be connected to neighbors protofibrils through 

𝛼𝐶-regions or A:a interactions. We incorporated Yesudasan and Averett's (2021)207 neighboring 

protofibril configuration from their bundle model, utilizing a 𝑑0 = 7 nm for radial and 

circumferential protofibril spacing168 (Figure 4.2 A). 
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Figure 4.2. Comprehensive mechanical model of a fibrin fiber via protofibril bundle generation. 

A. Cross-sectional perspective of the protofibril bundle, revealing twisted protofibrils along the 

axial orientation. Particle hues range from blue to red for enhanced visual distinction, while an 

enlarged fiber surface representation illustrates the resting end-to-end distance (𝑟0) and inter-

protofibril gap (𝑑0). B. Stress-stretch curve analysis for bundles exhibiting varying protofibril 

quantities within cross-sectional areas. C. Comparative evaluation of the anticipated fibrin fiber 

response and the corresponding protofibril bundle response (𝑁 = 100) with graphics depicting 

the details of the network configuration evolution. D. Determination of predicted persistence 

length (𝑙𝑝
𝐹) and contour length (𝐿𝐹) for a fibrin fiber with a resting length of 𝑟0

𝐹 = 1.7 𝜇m, 

considering differing numbers of fibers in the cross-sectional arrangement 

Bundles of protofibrils are generated by concatenated protofibril in series. Protofibrils within the 

bundle are twisted by rotating their positions around the 𝑧-axis208,209. Each of the protofibrils in 
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our model is divided into 𝑁𝑚 segments (or beads) of length 𝑏𝑚. In our model, 𝑁𝑚 follows a 

normal distribution between 15-20. Therefore, the contour length for each of the protofibrils is 

defined as 𝐿𝑃𝐹 = 𝑁𝑚𝑏𝑚.  

Connections between beads are used as binding points between the protofibrils and are used to 

assign bending stiffness (defined between three consecutive junctions) and extension resistance 

(defined between two consecutive junctions). The permanent intra-protofibrils connection points 

or nodes are used as anchor points for potential formation of cross-links with other fibers in the 

network. Each node is allowed to form 2 𝛼𝐶-regions cross-links and 2 A:a cross-links with the 

surrounding protofibrils at a maximum distance of 30 nm and 8 nm respectively.  

Following successful cross-link formation among beads from distinct protofibrils, axial stretching 

is applied at a chosen constant stretch rate, 𝜆̇, to accurately characterize the bundle’s elastic 

response. We subsequently analyze the impact of varying protofibril quantity within the cross-

sectional area, 𝑁, on the mechanical response.  

4.4.2. Fibrin network model 

As shown in Chapter 3, our network model is able to generate discrete networks with a desired 

initial topology through the definition of the order parameter 𝜅 previosuly introduced by Gasser et 

al. (2006)137. Briefly, the network initialization involves randomly placing filaments within a cubic 

domain, adhering to a transversely isotropic distribution function of 𝜃 governed by the 𝜋-periodic 

von Mises distribution, and abiding by the minimum overlap distance 𝛿. The initialization 

concludes once filament placement capacity is reached, succeeded by cross-link formation via 

harmonic spring elements. 

Therefore, it is crucial to accurately initialize the network topology. Data from Jimenez et al. 
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(2023)18 revealed that the initial volume fraction (computed from confocal images as the ratio of 

white pixels to the entire pixel domain) amounted to 0.102 and 0.151 for fibrin gels at 

concentrations of 2 mg/mL and 4 mg/mL, respectively. In our model, we assume the beads, or 

fibers in this context, are devoid of volume. To account for initial volume exclusion in our 

computational model, we assign a virtual diameter to the fibers, thereby preventing initial overlaps. 

Assuming fibers in our system are 1.7 x 0.25 𝜇m (length x diameter), we calculate the volume 

fraction of fibrin fibers within a network relative to the total volume. Each fiber in the network is 

divided into 20 segments to open the possibility to form inter-fibers non-covalent bonds (Figure 

4.3 A). Fiber structural parameters are properly adjusted.  

The alignment parameter 𝜅 is derived from confocal images and it is calculated as described in 

Chapter 3. In the stress-free state, it is found to be 0.242 and 0.265 for fibrin gels with 

concentrations of 2 mg/mL and 4 mg/mL, respectively. The network is constructed by constraining 

the number of fibers in such a way that the volume fraction is maintained, and the desired initial 

network topology is achieved. 

 

Figure 4.3. Discrete network model for fibrin gels. A. Schematic representation of the discrete 

network system. Each individual fiber (blue) with resting length 𝑟0
𝐹 is discretized into 20 
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segments with proportional 𝑙𝑝
𝐹 and 𝐿𝐹, effectively approximating the continuous fiber structure. 

Non-covalent cross-link interactions (red) are placed between fibers with a resting length 𝑟0
𝐴:𝑎. 

B. Visualization of the network before (left) and after (right) applying the deformation gradient 

tensor F. 

Once the intended initial alignment is accomplished, we provide sufficient time for the network 

formation through the establishment of non-covalent A:a interactions between fibers. As a result, 

the cross-linked fibers embody the distinct branches that shape the fibrin network structure. Bonds 

are created between fibrin fibers situated at a distance 𝑑𝐴:𝑎 = 𝐷 + 𝑑0, in which 𝐷 signifies the 

fiber diameter, and 𝑑0 functions as a correction factor facilitating bond formation (Figure 4.3 A). 

The equilibrium bond length is defined at 𝑟0
𝐴:𝑎. 

Jimenez et al. (2023) observed that fibrin gels were not incompressible when stretched. In addition 

to their large extensibility, fibrin gels also display a dramatic decrease in volume when they are 

stretched122. The deformation gradient 𝑭(𝑡) tensor takes the simple form 𝑭(𝑡)  =  diag[𝜆𝑙, 𝜆𝑙, 𝜆], 

where 𝜆 ≥ 1 is the length ratio along the pre-alignment direction and 0 < 𝜆𝑙 ≤ 1 represents the 

lateral length ratio (Figure 4.3 B). The change in volume may be attributable to significant fluid 

loss between fibers, a phenomenon previously observed and ascribed to either fiber buckling 

perpendicular to the deformation direction or protein unfolding that augmented exposure to 

hydrophobic groups122, thereby expelling water and compacting stretched fibers. Although non-

poroelastic behaviors are considered, we deliberately apply a compressible deformation by 

controlling the stretch exerted in each direction.  
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4.5. RESULTS 

4.5.1. In silico quantification of fibrin fibers material properties 

The focus of this analysis is to explore the mechanical response of the protofibril bundle and its 

dependence on the number of protofibrils (𝑁) present in the bundle's cross-sectional area. It is 

hypothesized that an increase in the cross-sectional number of fibers results in a stiffer mechanical 

response from the bundle. To test this hypothesis, five different bundle sizes are evaluated, with 

𝑁 values ranging from 100 to 500. 

Non-periodic simulations were conducted using the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) to investigate the behavior of protofibril bundles. These 

simulations involve fixing the position of the face, with particles moving outside the face being 

deleted in the subsequent timestep when re-neighboring occurs. 

Prior to the application of axial stretch to the bundles, a two-stage equilibration process was 

employed. The first stage aimed to minimize both the potential energy and force balance within 

the system between protofibrils, while the second stage was implemented after the formation of 

𝛼𝐶-regions between the protofibrils at a maximum distance of 30 nm. Subsequent to the second 

equilibration stage, the mechanical response of the protofibril bundle was assessed. The initial 

length of the protofibrils was modeled by a normal distribution encompassing 15 to 20 segments 

(𝑁𝑚) with a length of 10 nm per segment. The axial alignment of the segments permits an intra-

protofibril gap, thereby facilitating the formation of 𝛼𝐶-regions along the axial orientation. Total 

axial initial length of the bundle was 1.7 𝜇m. The bundles were elastically deformed until reaching 

a maximum applied stretch of 3.82 ± 0.017 (𝜖 = 282%)205. This is comparable to the single-fiber 

extensibility that is observed when a fibrin fiber is laterally stretched with an atomic force 
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microscope210. 

The structural parameters for fibrin fibers (𝐿𝐹 and 𝑙𝑝
𝐹), were directly fitted based on the mechanical 

response derived from the protofibril bundle simulations. The fibers were characterized using the 

same constitutive model as previously introduced by Blundell and Terentjev. The objective 

function consisted of the mean squared error (MSE) between the bundle model predictions and the 

fiber simulations for each number of protofibrils in the cross-sectional area (𝑁) (Figure 4.2 C). 

The results demonstrate that as the bundle becomes thicker, the persistence length of the fibers 

(𝑙𝑝
𝐹) decreases. This observation can be described by the equation 𝑙𝑝

𝐹 =  4E7𝐷−3.8 (𝑅2=1). 

Conversely, the contour length (𝐿𝐹) remains constant across varying 𝑁 values, with 𝐿𝐹 = 7.89 ± 

0.024 𝜇m (Figure 4.2 D).  

In accordance with earlier studies16,170,211–213, the findings from our simulations are noteworthy as 

they suggest that the unfolding process of the 𝛼𝐶-region within the bundles plays a crucial role in 

determining the elasticity, strain-stiffening, and maximum stretch observed in the mechanical 

properties of fibrin fibers.  

4.5.2. Evolution of fiber alignment in fibrin networks 

Upon determining 𝐿𝐹 and 𝑙𝑝
𝐹 of fibrin fibers, we proceeded to assess the predictive effectiveness 

of our model in relation to the evolution of network topology. As described in Section 4.4.2., we 

initialized the networks with an alignment parameter 𝜅. We evaluated our model for fibrin gels at 

concentrations of 2 mg/mL and 4 mg/mL, employing values of 𝜅 = 0.242 and 0.265, respectively. 

It is noticeable that the gels deviated from perfect isotropy (𝜅 = 1/3), revealing alignment in a 

preferred direction, 𝒂𝟎, prior to deformation. In our simulations, the preferred direction was 

situated along the z-axis. 
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After bond formation, we subjected the network to compressible tensile loading, reaching a stretch 

of 𝜆 = 1.3 in the 𝒂𝟎 direction (z-axis), assuming periodic boundary conditions. By matching the 

volume fraction J observed in the experimental data at high strain as compressive deformation in 

the x and y directions, we quantified the network alignment parameter 𝜅 and volume fraction J 

evolution. As illustrated in Figure 4.4, our model accurately predicted alignment for both 

concentrations and effectively captured the volume fraction evolution observed in the experimental 

data. 

The model’s predictions align with experimental observations of fiber alignment. At the end of the 

deformation stage, the model predicted alignment parameter 𝜅 of 0.06 and 0.048, while 

experimental values are 0.063 ± 0.005 and 0.052 ± 0.004 for 2 mg/mL and 4 mg/mL 

concentrations, respectively. 
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Figure 4.4. Comparison of the evolution of the alignment parameter 𝜅 (A) and volume fraction 

J (B) between experimental data and discrete network model for fibrin gels with concentrations 

of 2 mg/mL (left) and 4 mg/mL (right). 

4.5.3 Time-dependent response  

Next, we can proceed to model a fibrin network and characterize its viscoelastic properties through 

the analysis of non-covalent bonds (A:a interactions181) between fibers. Multi-step stress-

relaxation experiments served as an indispensable tool for calibrating and validating the time-

dependent response of the discrete model. Within these experiments, the gels underwent a 

sequence of strain increments, each followed by a relaxation period. Each increment consisted of 

10% strain and was maintained for one hour, ultimately culminating in a final strain of 30%. 

The experimental stress evolution curve was derived from the recorded force data obtained during 

experimental testing and the actual cross-sectional area. Simulation results remarkable captured 

the experimental stress evolution data for fibrin gels with concentrations of 4 mg/mL (Figure 4.5) 

and provided insights on the alignment parameter 𝜅. 
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Figure 4.5. Time-dependent response of the discrete network model in 4 mg/mL fibrin gels. A. 

An analytical comparison of stress evolution between mean experimental data derived from 

Jimenez et al. (2023) and the discrete network model. B. A predictive assessment of the variation 

in the alignment parameter 𝜅. At the stress-free state, the discrete model matches the 

experimental topology recorded. C. I-IV highlights the reorganization of network structures 

throughout the multi-step stress relaxation process. Bonds are colored by alignment, computing 

the z-component of the unit vector of the bond direction. 

The proposed model successfully captured critical aspects of the system, including the peak stress 

at the conclusion of each loading phase and the equilibrium stress at the end of relaxation stages. 

The force-dependent dissociation rate (𝑘𝑑(𝑓)) enabled the accurate representation of both short-

term and long-term relaxation responses. For fibrin gels with a concentration of 4 mg/mL, the 

parameters 𝑘0 and 𝑓0 were determined to be 0.011 and 1656, respectively. 
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4.6. DISCUSSION 

This study proposes an innovative multiscale computational framework to investigate fibrin fiber 

networks and their underlying mechanics. The model is designed to capture complex mechanical 

behaviors observed in fibrin gels, such as strain-stiffening, viscoelasticity, and plasticity, while 

simultaneously elucidating the associated microstructural mechanisms. By combining a 

physically- based model of fibrin fibers at the protofibril level using a discrete network model, we 

effectively reproduced the experimental mechanical response of fibrin gels. This work provides 

novel insights into the structure-function relationships governing the behavior of fibrin gels under 

tensile loading. 

Our approach begins with simulating protofibril bundles to determine the fibrin fibers' material 

properties, namely contour length (𝐿𝐹) and persistence length (𝑙𝑝
𝐹). The analysis revealed a 

dependency of 𝑙𝑝
𝐹 on the number of protofibrils (N) within the bundle’s cross-sectional area, with 

𝑙𝑝
𝐹 decreasing as the bundle becomes thicker. Conversely, 𝐿𝐹 remains relatively constant across 

different N values, signifying that the bundle size did not have a significant impact on the fiber's 

intrinsic stretching properties. 

Upon determining the fibrin fibers’ structural parameters, the model is extended to the network 

scale, capturing the evolution of network topology and alignment under compressible tensile 

loading. The model accurately predicts alignment for fibrin gels at different concentrations by 

effectively reproducing the volume fraction evolution observed experimentally. This demonstrates 

the model’s ability to capture the interplay between fiber mechanics and network rearrangement 

under deformation, providing critical insights into how the network topology influences 

macroscopic mechanical properties. 
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Furthermore, the discrete network model is employed to characterize the time-dependent response 

of fibrin gels by analyzing non-covalent A:a interactions between fibers. The model successfully 

captures the stress evolution and relaxation response observed in multi-step stress-relaxation 

experiments, further showcasing its potential for providing a comprehensive understanding of 

fibrin gel mechanics. 

Overall, the proposed multiscale computational framework demonstrates a robust ability to capture 

complex fibrin network behaviors and offers valuable insights into the structure-function 

relationships governing these materials. This model can potentially serve as a powerful tool for 

investigating fibrin gel mechanics in various applications, including wound healing, guide 

approaches for tissue engineering using fibrin gels, and to study pathological conditions related to 

fibrin clot formation. 
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4.7. FUTURE DIRECTIONS 

The current multiscale computational framework has demonstrated its ability to capture the 

mechanical properties of fibrin networks, providing valuable insights into the structure-function 

relationships governing their behavior. However, there are several areas for improvement and 

future developments: 

Compressible deformation and fluid phase implementation: In the current model, compressible 

deformation is imposed through boundary conditions, which does not account for the effects of 

fluid diffusion leaving the system. To provide a more comprehensive understanding of fibrin gel 

mechanics, future iterations of the model will include the implementation of a fluid phase. By 

considering fluid diffusion, the model can better capture the coupled mechanical and transport 

phenomena occurring in fibrin networks, leading to a more accurate representation of their 

behavior under various loading conditions. 

Capturing plastic deformation and network rearrangement: The present model can track 

network topology and capture any plastic deformation of the network, depending on the boundary 

conditions applied to it. To further validate and improve the model's predictions, additional 

experiments can be performed where the sample is imaged after removing the load. These 

experimental observations will provide valuable insight into the network rearrangement and plastic 

deformation processes occurring in fibrin gels, ultimately enhancing the model's predictive 

capabilities. 

By addressing these steps, the multiscale computational framework can be further refined to 

provide an even more accurate and comprehensive understanding of fibrin network mechanics.  
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CHAPTER 5: 

CONCLUSIONS 

As the study of biological soft materials gains increasing attention, it is essential to understand the 

mechanics of these complex systems to advance the various fields such as biophysics, materials 

science, and tissue engineering. The mechanical properties of biological networks play a critical 

role in their functionality214, and consequently, the development of accurate models is vital for 

understanding their behavior under different conditions14,215–218 (i.e., mechanical stress, strain, 

temperature, pH, and chemical environments). In this final chapter, we summarize the main 

findings of this dissertation, which contribute to bridging the knowledge gap in the field of semi-

flexible network mechanics, with a focus on the viscoelastic-plastic response of agarose and fibrin 

networks. 

While flexible network mechanics has been extensively studied, semi-flexible networks remain 

underexplored. Interest in characterizing semi-flexible network mechanics has surged due to the 

need to understand complex systems, such as connective tissue or the extracellular matrix13,219. 

Existing models fail to link network topology with macroscopic mechanical response, lacking 

accuracy due to the omission of molecular movement and rearrangement69,220. Many semi-flexible 

networks behave as dynamic networks, featuring reversible bonds with viscoelastic, nonlinear 

mechanical responses, which are an essential aspect of many biological systems148. Researchers 

endeavor to understand the interactions in these systems that lead to globally emergent responses, 

as they often exhibit rich mechanical behaviors. Accurate characterization is crucial for material 

choice, design, and advancements in cellular scale mechanobiology151,221.  

This thesis aims to develop physically based computational models of biological soft materials, 

integrating experimental observations, statistically based continuum mechanics, and discrete 
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numerical modeling techniques to offer new insights into the viscoelastic-plastic response of 

agarose and fibrin networks. 

In Chapter 2, we developed a novel, physically based model for predicting the time-dependent 

behavior of agarose networks under unconfined compression, providing a reinterpretation of 

agarose network viscoelastic behavior using the transient network theory (TNT)222. This new 

approach considers the time-dependent evolution of the stress resulting from bond-exchange 

within the polymer network, setting it apart from previous phenomenological and continuum 

models describing viscoelasticity. Existing poroviscoelastic models do not accurately account for 

the movement and rearrangement of molecules within the agarose network70,76. By capturing the 

non-linear force-dependent evolution of bond dynamics, our model has uncovered a crucial 

insight: the lifetime of a bond is dependent on the force applied to it. 

Our research has significant implications for the broader field of biopolymer networks. By 

characterizing the two main microstructural features responsible for agarose viscoelastic behavior, 

our continuum model can be extrapolated to other biopolymer networks, such as collagen and 

fibrin, to predict their material response as a function of bond kinetics. This enables the design and 

fabrication of gels based on bond dynamics to achieve specific time-sensitive behavior, with 

potential applications in bioengineering and tissue engineering. 

Furthermore, our study demonstrates that the TNT can be applied in commercial finite element 

analysis (FEA) software, allowing for future 3D modeling of complex polymer behavior, such as 

crack propagation or cavity generation. This computational implementation has broad 

applicability, enabling the study of more complex geometries and offering insights into the 

coupling of poromechanics with network relaxation. The minor role of poromechanics in agarose 

supports the use of the TNT to control and predict the macroscopic time-dependent response of 
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physically crosslinked gels. 

In Chapter 3, we introduced a coarse-grained, discrete numerical model specifically designed to 

investigate topological changes in transient semi-flexible networks without incurring the high 

computational costs associated with modeling the elemental constituents. This innovative 

approach enables us to explore a wider range of networks and assess their properties more 

efficiently. To enhance the representativeness of the networks that can be examined through this 

model, we incorporated nonlinear Blundell and Terentjev chains139. This choice offers several 

advantages, including capturing the appropriate physics in both low and high temperature limits, 

as well as in tension and compression/buckling regimes up to the highly bent elastic limit. 

Furthermore, our model considers the finite length of true entropic chains, which consistently 

serves to stiffen the network. The effects of this stiffening become particularly significant when 

the rate of deformation exceeds that of relaxation. This observation highlights the importance of 

considering the finite length of entropic chains when characterizing the mechanical properties of 

semi-flexible networks, as it can greatly influence their behavior under various deformation rates.  

Our model demonstrated its effectiveness by accurately replicating the continuum stress-stretch 

approximation described by the GOH model, which is widely used in characterizing the 

mechanical behavior of biological materials137. By investigating the relationship between the 

network orientation parameter, 𝜅, and the GOH characteristic and phenomenological parameters, 

𝑘1 and 𝑘2, we have provided valuable insights into the mechanical behavior of biological solids, 

including their anisotropic and non-linear response to deformation. 

For a network with dynamic bonds, we have highlighted the importance of the Weissenberg 

number in regulating the mechanical response of semi-flexible networks by examining the strain-

rate effect on the viscoelastic response of these networks. This finding underscores the need to 
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consider strain-rate effects when characterizing the mechanical behavior of semi-flexible 

networks. Our study has also revealed the significant impact of holding time on plastic realignment 

during stress-relaxation. These insights can be instrumental in guiding the design and optimization 

of semi-flexible networks for various applications. 

In Chapter 4, we expanded upon the research conducted in Chapter 3 by focusing on fibrin gels, 

which contribute to the mechanical strength of blood clots, and are considered among the most 

robust protein materials in nature136. Fibrin gels consist of protofibrils that self-assemble and 

bundle, forming networks of semi-flexible fibers. Our investigation demonstrated that the 

exceptional strain-stiffening response of fibrin networks is intrinsically linked to the hierarchical 

architecture of fibrin fibers. 

To this end, we developed a comprehensive protofibril bundle model, informed by existing 

literature. Our model used nonlinear Blundell and Terentjev chains for the protofibril backbone, 

extension-limited flexible chains for the αC-regions, and probabilistic slip-bond detachment via 

Eyring’s model for the A:a non-covalent bonds. This approach allowed us to capture the energetic 

penalty associated with highly stretched networks. Our findings revealed that the long extensibility 

characteristic of fibrin fibers primarily results from the deployment of αC-domains, while A:a 

interactions stabilize the bundle. 

By stretching the bundles, we determined the structural parameters for fibrin fibers, which 

informed our chain model. This approach elucidates the underlying mechanisms responsible for 

the remarkable properties of fibrin networks. Our network model incorporated force-dependent 

dynamic bonds between fibers, enabling the examination of the nonlinear viscoelastic response of 

the gels. The model accurately represented the experimental data for fibrin gels provided by 

Jimenez et al. (2023) and demonstrated the capacity to predict the alignment and volume fraction 
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of the network domain during deformation18. 

Our model may help us to understand how mutations or pathological alterations in fibrin change 

the resilience of clots, which can cause hemorrhage or thromboembolism223–225. Specifically, our 

work may shed light on the molecular mechanism by which mutations or truncations of fibrinogen 

in its αC-region lead to several clotting disorders (dysfibrinogenemias226). Moreover, our findings 

suggest a new design concept for resilient synthetic materials with potential applications in drug 

delivery and tissue repair.  

There are undoubtedly limitations associated with this current modeling approach. Firstly, the 

current model does not account for fluid diffusion effects, as it imposes compressible deformation 

through boundary conditions. To enhance the accuracy of the model, future iterations should 

incorporate a fluid phase, allowing the model to better represent the coupled mechanical and 

transport phenomena that occur in fibrin networks under various loading conditions. Secondly, 

although the model can track network topology and capture plastic deformation, it could benefit 

from additional experiments where the sample is imaged after load removal. These observations 

would offer deeper insights into network rearrangement and plastic deformation processes in fibrin 

gels, ultimately improving the model’s predictive capabilities. By addressing these limitations, the 

multiscale computational framework can be further refined to provide a more comprehensive 

understanding of fibrin network mechanics. 

As we look towards the future, our research aims to develop an advanced continuum theoretical 

framework, based on transient network theory, to further our understanding of the mechanical 

behavior of semi-flexible networks with relatively short cross-links. By comparing the results from 

continuum model simulations with those from discrete model simulations, we hope to validate the 

accuracy and reliability of both approaches. 
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In parallel to the advancements in our understanding of semi-flexible networks through the 

development of a continuum theoretical framework, another area of focus for our research will be 

centered around the properties and functionality of fibrin gels. The fibrin gel’s physical properties 

and physiological functionality are predominantly governed by its topological and morphological 

characteristics, which hinge upon factors such as fiber dimensions, branching degree, spatial 

distribution, and mean inter-fiber distance, denoting the gel mesh size. Our multi-scale model 

facilitates regulation of these parameters, and upon validation through empirical data, future 

iterations can analyze the implications of modifying network topology on the consequent 

mechanical response, providing a comprehensive understanding of the interplay between fibrin gel 

network properties and their mechanical outcomes. 

Our model offers valuable insights into controlling the 𝛼𝐶-domains unfolding process in 

protofibrils bundles, which could pave the way for novel thrombus disruption strategies. One 

possible approach may involve stabilizing the coiled 𝛼-chain, making clots more brittle and thus 

easier to remove during thrombectomy. Alternatively, destabilizing the coiled 𝛼-chain could result 

in softer, less occlusive clots. Furthermore, the structural transitions observed at various scales in 

𝛼𝐶-domains may also have implications for the mechanics of other protein assemblies. This 

knowledge can potentially contribute to a deeper understanding of protein structure and function 

in numerous biological contexts. 

In conclusion, this thesis has significantly advanced our understanding of soft matter mechanics, 

specifically the viscoelastic-plastic response of agarose and fibrin networks, through the 

development of innovative computational models that integrate experimental observations, 

statistically based continuum mechanics, and discrete numerical modeling techniques. Our 

findings have broad implications for the fields of biopolymer networks, bioengineering, and tissue 
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engineering, providing new insights into material choice and design, as well as the mechanical 

behavior of biological materials. By characterizing the critical microstructural features and 

dynamics that dictate the mechanical response of semi-flexible networks, we have laid the 

foundation for further advancements in cellular length-scale mechanobiology and the design of 

novel materials for various applications. As we continue to refine and validate our models, we 

anticipate that our research will contribute to a deeper understanding of the interplay between soft 

matter physics and the biological processes they govern, ultimately leading to innovative solutions 

for challenges in biotechnology, nanotechnology, and beyond. 
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APPENDIX  

APPENDIX I: INTRINSIC PERMEABILITY AND VOID RATIO EVOLUTION IN 

AGAROSE GELS 

The intrinsic permeability 𝜅 for agarose gels was defined using the evolutions equations described 

by Gu et al. (2003)86.  

𝜅 = 𝜅0 (
𝐽𝑒 − 𝜙0

1 − 𝜙0
)

𝑛

, 𝜙 =
𝜙0

𝐽𝑒
  

20 

Therefore, in this study, the intrinsic permeability 𝜅 and the solid volume fraction 𝜙 were assumed 

to be a function of the macroscopic deformation applied on the gel, in this case using the Jacobian 

𝐽𝑒 of the elastic deformation gradient tensor 𝑭𝒆. The initial permeability was defined as 𝜅0 =

𝑝1 (
1−𝜙0

𝜙0
)

𝑝2

 where 𝑝1 and 𝑝2 were fitting parameters. Here, the initial solid volume fraction 𝜙0 

was obtained using the relationship established by Pluen et al. (1999)101; 𝜙0 =
1

𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒
𝑐𝑜 

where 𝑐𝑜 is the agarose concentration, 𝜌𝑎𝑔𝑎𝑟𝑜𝑠𝑒 = 1.64 g/ml is the dry agarose density102
 and 

𝜔𝑎𝑔𝑎𝑟𝑜𝑠𝑒 = 0.625 is the mass fraction of agarose in a fiber103. 

The initial hydraulic conductance 𝐾 was defined as 𝐾 =
𝛾𝑠

𝜇
𝜅 where 𝜇 is the dynamic viscosity of 

the fluid and 𝛾𝑠 is the specific weight of the fluid. Since the fluid was a PBS solution, 𝜇 = 1E-9 

N.s/mm2 and 𝛾𝑠 = 9.81E-06 N/mm3. Once 𝜙 was calculated and assuming the porosity 𝜃 = 1 − 𝜙, 

the void ratio was defined as 𝑒0 =
𝜃0

1−𝜃0
=

𝐽𝑒

𝜙0
− 1. Values were summarized in Table 2 and 

assumed to remain constant during the whole deformation process.  
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𝑐o[%] 𝜙0[%] 𝑒0 𝜅0 [mm2] 𝐾0 [mm/s] 

5 4.88 19.5 2.32E-11 2.56E-07 

7.5 7.32 12.67 1.22E-11 1.22E-07 

10 9.76 9.25 7.75E-12 7.60E-08 

Table A1. Parameters used to describe poromechanics for each agarose 

composition used in the study.  
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APPENDIX II: CAUCHY STRESS AND TANGENT STIFFNESS MATRIX 

DERIVATION 

To derive the required expressions for the implementation of the TNT into Abaqus, we first rewrote 

the elastic energy as:  

 𝜓 = 𝑐10(𝐼1̅ − 3) +
1

𝐷1

(𝐽𝑒 − 1)2 
21 

We here assumed elastic compressibility but inelastic incompressibility (from Equation 6). 

Consequently, in the remainder of our derivations, 𝐽𝑒 = 𝐽. The constitutive equation for the Cauchy 

stress can be written directly in terms of the deformation gradient32:  

𝜎𝑖𝑗 =
2

𝐽
𝜇𝑖𝑘

𝜕𝜓

𝜕𝜇𝑘𝑗
 

22 

Now we compute the derivatives of the invariants 𝐼1̅, 𝐼2̅ and 𝐽 with respect to the conformation 

tensor 𝝁 components  

𝜕𝜓

𝜕𝜇𝑖𝑗
=

𝜕𝜓

𝜕𝐼1̅

𝜕𝐼1̅

𝜕𝜇𝑖𝑗
+

𝜕𝜓

𝜕𝐼2̅

𝜕𝐼2̅

𝜕𝜇𝑖𝑗
+

𝜕𝜓

𝜕𝐽

𝜕𝐽

𝜕𝜇𝑖𝑗
, 

23 

 and obtain the stress expression  

𝜎𝑖𝑗 =
2

𝐽
[

1

𝐽
2
3

(
𝜕𝜓

𝜕𝐼1̅

+ 𝐼1̅

𝜕𝜓

𝜕𝐼2̅

) 𝜇𝑖𝑗 −
1

3
(𝐼1̅

𝜕𝜓

𝜕𝐼1̅

+ 2𝐼2̅

𝜕𝜓

𝜕𝐼2̅

) 𝛿𝑖𝑗 −
1

𝐽
4
3

𝜕𝜓

𝜕𝐼2̅

𝜇𝑖𝑘𝜇𝑘𝑗 ] +
𝜕𝜓

𝜕𝐽
𝛿𝑖𝑗  

24 

In our case 

𝜎𝑖𝑗 =
2

𝐽
𝑐10 (𝜇̅𝑖𝑗 −

1

3
𝛿𝑖𝑗𝜇̅𝑘𝑘) +

2

𝐷1

(𝐽 − 1)𝛿𝑖𝑗 
25 

 To obtain the tangent stiffness matrix we first need to define virtual rate of deformation  
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𝛿𝐷𝑖𝑗 =
1

2
(𝛿𝐹𝑖𝑚 𝐹𝑚𝑗

−1 + 𝐹𝑖𝑚
−1 𝛿𝐹𝑗𝑚) =

1

2
(𝐿𝑖𝑗 + 𝐿𝑗𝑖) 

26 

 The Kirchhoff stress is 

𝜏𝑖𝑗 = 𝐽 𝜎𝑖𝑗  27 

The material Jacobian derives from the variation in Kirchhoff stress. 

𝜏𝑖𝑗 = 𝐽 𝐶𝑖𝑗𝑘𝑙 𝛿𝐷𝑘𝑙 28 

 then 

𝐶𝑖𝑗𝑘𝑙 =
2

𝐽
𝑐10 [

1

2
(𝛿𝑖𝑗𝜇̅𝑗𝑙 + 𝜇̅𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝜇̅𝑗𝑘 + 𝜇̅𝑖𝑙𝛿𝑗𝑘) −

2

3
(𝛿𝑖𝑗𝜇̅𝑘𝑙 + 𝜇̅𝑖𝑗𝛿𝑘𝑙 +

1

3
𝛿𝑖𝑗𝛿𝑘𝑙𝜇̅𝑚𝑚)]

+
2

𝐷1

(𝐽𝑒 − 1)𝛿𝑖𝑗𝛿𝑘𝑙 

𝑐10 =
𝐸

4(1 + 𝜈) 
 and 𝐷1 =

6(1 − 2𝜈)

𝐸
 

29 
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APPENDIX III: FITTING PROCEDURE LINKING ABAQUS AND MATLAB 

To estimate the input material parameters (𝑘𝑑
𝐼 , 𝑘𝑑

𝐼𝐼, 𝛼, 𝛽, 𝛾 and 𝑘𝑑0
𝐼 ) of agarose gels, an optimization 

procedure linking Abaqus and MATLAB (MathWorks, Natick, MA, USA) was developed. 

Briefly, initial guess values of the material parameters were assigned in the input file model and 

the Abaqus run was executed to compute the system contact force response 𝐹𝑠𝑖𝑚. Then, the sum 

of root-mean-square error in the contact force was defined as 

𝑆𝐸  = 𝑚𝑖𝑛 ∑(𝐹𝑖
𝑡𝑒𝑠𝑡 − 𝐹𝑖

𝑠𝑖𝑚)
2

𝑛

𝑖=1 

 
30 

where 𝑛 is the number of iterations. Subsequently, an optimization algorithm was used to 

iteratively calculate the value of the input variables by minimizing the objective function 𝑆𝐸. For 

solving the optimization problem, the in-house code was used based on the MATLAB function 

fminsearch. The lower and upper bounds in the function were properly chosen to accommodate a 

wide range of values for each of the material properties. 
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APPENDIX IV: ELASTIC MODULUS OF THE SOLID NETWORK 𝑬𝑺 AND 

AGGREGATE MODULUS 𝑯𝑨  

Once the Poisson’s ratio was properly determined and set to 𝜈𝑠 = 0.17; the elastic modulus of the 

solid network 𝐸𝑠 was obtained using the fitting procedure described on Appendix III. This 

procedure was repeated for each of the four loading steps for every sample. Fully swollen agarose 

gels exhibited an elastic response with a strong correlation between stress/strain (𝑅2 ≈ 1). Most 

studies in the literature report the aggregate modulus 𝐻𝐴 instead of the elastic modulus of the solid 

network. The aggregate modulus for different agarose composition can however be obtained 

directly from 𝐸𝑠 and 𝜈𝑠 as: 

𝐻𝐴 =
3

2

(1 − 2𝜈𝑠)

(1 − 𝜈𝑠)
𝐸𝑠 

31 

At 5% strain and before relaxation, the mean aggregate modulus values could therefore be 

estimated as 0.97 MPa, 1.7 MPa, and 2.43 MPa for 5%, 7.5% and 10% w/w agarose respectively. 

These results were in excellent agreement with the previously reported by Normand et al. 

(2000)227. During the compressive stage that followed stress relaxation, we further observed an 

increase in the aggregate modulus with respect to its initial value. In this study, 𝐻𝐴 was observed 

to exponentially increase with applied deformation in the following fashion (𝑅2 ≈ 1) (Figure 11): 

𝐻𝐴 = 𝑎(𝜇̅)𝑏 + 𝑐 32 

Values for fitting parameters were summarized in Table A2. 
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Table A2. Control parameters a, b, and c as a function of the agarose concentration 𝑐o used in 

the samples. 

The parameter 𝑐 was directly related to the elastic modulus found at 5% strain (𝐻𝐴
0) before the 

network had time to relax. This fact motivated the idea of finding the following master equation 

as a function of the agarose concentration 𝑐o. 

𝐻𝐴 = 𝐻𝐴
0 [

3

2
106𝑐𝑜(𝜇̅)𝑏 + 1]  

33 

The master Equation 27 shows that agarose network becomes stiffer as the overall deformation is 

increased and held during large periods of time. Parameter 𝑏 increases as the concentration of 

agarose in the samples increases. However, we found that assuming parameter 𝑏 constant and 

equal to the average of the values shown on Table 3 (𝑏̅ = 11.3) did not have major differences in 

the fitted curves shown in Figure 9. 
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Figure A1. Evolution of the aggregate modulus 𝐻𝐴 as a function of the second invariant of the 

conformation tensor 𝜇̅.  

 

 

 


