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In this work, we use Reinforcement Learning (RL) to optimize the data pre-processing trans-

formations in a machine learning pipeline given a dataset X , child algorithm f(·), and action space

A. Inspired by Effective data pre-processing for AutoML [4] and Learn2Clean [1], we construct a

model that 1) does not specify a data pre-processing pipeline structure in advance and 2) does not

depend on transformation specific rules or empirical calculations across multiple datasets. Using a

simple policy optimization scheme, we produce comparable results to [4] across multiple datasets

from the OpenML-CC18 benchmark suite and with Naive Bayes (NB) as our child algorithm. This

was accomplished by only finding an optimal order of actions sampled from the action space A,

where the parameters of each action were kept to their default values. We hope that this model

can serve as a basis for future projects, including the study of how such data transformations affect

the manifold structure as well as implementing a conditional aspect to our model to make it more

efficient.
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A Action space

X Tabular dataset

π∗
θ Learned policy

τ∗ Learned trajectory

τ0 Baseline trajectory
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0.1 Introduction

In a machine learning pipeline, we generally have two main components: the data and model.

The data section contains all the downloading of the data, cleaning, pre-processing, and feature

engineering. The model section contains model selection, training, and tuning. It is well known

that both of these sections are dependent on each other. For this reason, constructing the pipeline

is considered to be a mainly human-centered component of design, as is it very data and model

dependent and has multiple solutions. Due to this, the idea that one can use machine learning itself

to help automate a machine learning pipeline came out of existence and was coined “Automatic

Machine Learning” (AutoML) [5].

Among the most frequently used ways to implement this is to use Reinforcement Learning

(RL) [7]. RL can be defined as learning what to do—how to map situations to actions—so as to

maximize a numerical reward signal [9]. In this setting, we can train a model to find a machine

learning pipeline by using a performance metric as the reward signal. The model component of the

machine learning pipeline that provides the reward signal is called the child algorithm. This process

is done by using a controller network to sample a certain machine learning pipeline and then test

it to get the reward signal. Now, while we consider the entire pipeline to be important, most work

focused on the model section - namely how to build the best architecture. However, recent efforts

have put more focus on the data section of the pipeline as we have come to understand that each

section is extremely important (especially because data pre-processing seems to be the most time

consuming aspect of a data scientist’s job).

In this work, we will construct a scalable model that automatically finds a pre-processing

sequence for a dataset X , child algorithm f(·), and action space A. More specifically, we use RL

to construct a machine learning pipeline entirely made from pre-processing transformations that

maximizes the accuracy of a child algorithm. We create a more general model as it does not require

specifying a pipeline in advance or empirical results across multiple datasets. We were able to get

comparable results to an existing paper [4] with the contribution that our model is more general
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and scalable. We aim to augment this further for better accuracy and efficiency and also to use it

as a tool for research purposes.

0.2 Related Work

In this section, we will briefly go over the most influential papers for this work. An illustration

of the relevant papers on a timeline can be seen in Figure 1. Within each subsection, we go over

the background of each paper as well as the contribution or difference to our approach.

Neural Architecture Search

2017

2018

2019

2021

AutoAugment

Learn2Clean

Effective Preprocessing for 

AutoML

Introduced RL to search 

for model architectures
Applied RL for an optimal, 

fixed pipeline structure

Used non-RL but open

pipeline structure
Applied RL for image 

augmentations

Figure 1: A Timeline of Related Work

0.2.1 Neural Architecture Search

In Neural Architecture Search (NAS), the aim is to learn an architecture that maximizes

the validation accuracy of a child algorithm. Instead of brute-force searching a possibly infinite

combination of architectures and parameters, one can use Reinforcement Learning (RL) to expedite

the process. Specifically, one can use a controller [12], where the architecture parameters are
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encoded in the controller weights, θ. In this setting, a single forward pass of the controller samples

multiple architectures for the child network. After sampling these architectures, the child network

then uses them to train the child algorithm and compute the validation accuracy of the resulting

model. In [12], their RL method rivaled the best human-generated architecture and was faster than

the previous state of the art network. Overall, this paper’s method serves as the foundation for

this thesis.

0.2.2 AutoAugment

Similar to Neural Architecture Search, AutoAugment [3] uses a controller and RL for its

search strategy. However, instead of learning an architecture, the goal is to learn image augmenta-

tions for a target dataset X of images, such that the the child algorithm f(·) achieves the highest

validation accuracy. In their setup, the learned policy πθ is made up of 5 sub-policies. For each

mini-batch, one sub-policy is chosen at random. Moreover, within each sub-policy, there exist two

transformations with a corresponding magnitude and probability. Thus, the sub-policy has 2 op-

erations, 2 magnitudes, and 2 probabilities (6 parameters to predict) while the whole policy has

6 × 5 = 30 parameters to predict. In the end, they attain competitive results and show that the

learned policies of one dataset can be transferred to other datasets to obtain significant improve-

ments. This paper served as the inspiration for the thesis as it showed that RL can be used to

learn transformations for the dataset also rather than just the child algorithm architecture.

0.2.3 Learn2Clean

In Learn2Clean [1], RL is used to find the best pre-processing sequence given a dataset X ,

child algorithm ϕ, and quality performance metric q. In general, this paper is the closest to our

approach when compared to the other methods. However, there are a few main differences: 1) the

model is specific to cleaning web data, a different application, and 2) the pre-processing pipeline

structure is fixed, e.g. for a given task, they might require that either normalization or feature

engineering comes first. This then requires pre-existing knowledge about the datasets (that it is
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numerical and does not require encoding). In contrast, our pipeline structure is open, in that no

pipeline structure is specified in advance.

0.2.4 Effective Pre-Processing for AutoML

While the other related works involve RL, Effective Pre-Processing for AutoML [4] attempts

to find an optimal pre-processing sequence by reducing the possible combinations through heuristics

and empirical calculations. For instance, using a 3 step process, they use 1) framework-related

rules, 2) heuristic rules, and 3) learnt rules to find effective pre-processing pipelines. The paper

offers some examples for each type of rule: 1) encoding is required for datasets of mixed-type,

and so, encoding will be required to come before other transformations; 2) normalization ought

to be applied before rebalancing as it affects the magnitude of the values; 3) with the remaining

possible orderings filtered from 1) and 2), an exhaustive computation is performed to determine if

a particular ordering yields superior results. Our approach differs from this paper as we 1) do not

depend on transformation specific rules and 2) empirical calculations. Our model does not specify

a pipeline structure in advance, giving our model an open pipeline structure. In this work, we will

be using this paper as a baseline metric to compare our results.

0.3 Method

0.3.1 Design and Algorithm

Our goal is to learn the policy, πθ, a stochastic mapping:

(X , f(·),A) 7→ πθ

such that when we sample a trajectory τ∗: τ∗ ∼ πθ =⇒ τ∗ = {a1, a2, · · · , aT } the child

algorithm’s performance metric is maximized.

We note that X is a tabular dataset, f(·) is the child algorithm, T is the number of time

steps, and A is the action space.
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To aid in the understanding of the model, we can look at the overall design of it in Figure

2., a flowchart representing four main components of the model. This will serve as an outline to

the rest of the paper providing the necessary intuition. We cover the four points with references to

the rest of the paper:

(1) For a given state of our controller with parameters θ, we sample from the policy πθ a total

of M times. This produces M trajectories τk.

(2) Using the M trajectories, one can apply the specified transformations to the training set

and then obtain the reward, Rk, balanced accuracy (Equation 12).

(3) Using all of the trajectories, we will compute a single scalar b that represents the exponential

moving average of the previous trajectories (Equation 9).

(4) Lastly, we can now compute the total loss. The total loss is the arithmetic mean of each

trajectory’s loss, J(θ). The arithmetic mean serves as an approximation to the expectation

value as its constant can be absorbed into the learning rate.
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𝜏1
𝜏2
𝜏3

𝜏𝑀
⋮

𝜋𝜃

∇𝜃𝐽(𝜃)

∇𝜃𝐽1(𝜃)
∇𝜃𝐽2(𝜃)
∇𝜃𝐽3(𝜃)

⋮
∇𝜃𝐽𝑀(𝜃)

1. Sample policy to 
get M trajectories

2. Calculate each 
trajectory’s 
Reward, 𝑅𝑘

4. Take the average 
of each trajectory’s 

loss

𝑅1
𝑅2
𝑅3
⋮
𝑅𝑀

3. Calculate 
Exponential Moving 

Average from Rewards

𝑏0 = 0
𝑏𝑘+1 = 𝛼𝑏𝑘 + (1 − 𝛼)𝑅𝑘

𝑏 = 𝑏𝑀+1

Training epoch

Figure 2: Overall Process of the Policy Optimization Procedure

Similar to Figure 2, we can further clarify the process by looking at some pseudocode for the

overall process. This is represented in Algorithm 1.

0.3.2 Controller

In order to find the best pre-processing sequence, we need to have the ability to encode

sequences into our controller. Likewise, it must be able to store sequential information from previous

transformations in the sequence. Thus, we turn towards Recurrent Neural Networks (RNN) and

Long-Short Term Memory Networks (LSTM) and use the same procedure as [12]. While the LSTM

is considered a more widely applicable variant of the RNN, the vanishing gradient issue in long

RNN’s does not pose a problem due to our short sequence length.

A single RNN’s cell operates by taking in a hidden state ht and input vector xt. The next

hidden state is updated by first multiplying ht and xt with separate weight matrices Whtht , Whtxt ,

then summing the values together, and finally using a non-linearlity such as ReLU or hyperbolic
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Algorithm 1: Policy Optimization Algorithm

Input : X, y, and f(·)
Output: π∗

θ (trained policy)
for each epoch do

for each episode do
τk ∼ πθ
X̂, ŷ = apply transformations(X, y, τk)
Rk = get reward(X̂, ŷ, f(·))

end
for Rk in rewards do

bk+1 = αbk + (1− α)Rk

end
b = bM+1

for Rk in rewards do
Jk = trajectory loss(Rk, b, τk)

end

J(θ) = 1
M

∑M
k=1 Jk

θ = θ + γw∇J(θ)
end

tangent. The calculation can be found in Equation 1.

ht+1 = ReLU(Whththt +Whtxtxt + bht) (1)

In Equation 1., we have three trainable parameters: Whtht , Whtx, and bht . Now, we want to use

this cell so that it outputs a discrete probability distribution. This will allow us to sample a single

action from this specific cell and then feed it into the next cell as the input, xt+1. We can achieve

this discrete probability distribution by first using a linear matrix to change the dimension of the

hidden state into the same number of actions in our action space and then use a softmax function

to get our probability distribution. This is the same way [12] encoded an architecture of a neural

network. Formally, we use the following

yt = softmax (Wyththt + byt) (2)

Finally, we can sample from this discrete probability distribution, yt, to get our action at. We will

then map this action into an embedding space: g : at 7→ xt+1, where at ∈ N ∪ {0}, xt+1 ∈ RY×1.

The structure of a single time step is seen in Figure 3.



8
Action Space A

Category Action

None Identity Map

Normalization (N) Standard Scaler
Power Transformer
Min Max Scaler
Robust Scaler

Feature Engineering (F) PCA
Select K Best

PCA + Select K Best

Discritization (D) Binarizer
K Bins Discretizer

Imputation (I) Simple Imputer

Encoding (E) One Hot Encoding
Ordinal Encoding

Rebalancing (R) SMOTE

Table 1: Our Specific Action Space A

ℎ𝑡

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( ෝ𝑦𝑡)

EMBEDDING

𝑎𝑡

ෝ𝑦𝑡 = 𝑊𝑦𝑡ℎ𝑡ℎ𝑡 + 𝑏𝑦𝑡

𝑥𝑡

ℎ𝑡+1 = 𝑅𝑒𝐿𝑈(𝑊ℎ𝑡ℎ𝑡ℎ𝑡 +𝑊ℎ𝑡𝑥𝑡𝑥𝑡 + 𝑏ℎ𝑡)

Figure 3: A Single RNN Cell

We will repeat this process T times to get our trajectory τ . Overall, all the RNN cells together

form the controller. Altogether, this allows us to encode a sequence of possible transformations
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inside a neural network that we can then tune with Policy-Gradient Optimization. The entire

structure is depicted in Figure 4.

RNN 
CELL

EMBEDDING EMBEDDING

ℎ0 ℎ1 ℎ2 ℎ3RNN 
CELL

RNN 
CELL

EMBEDDING

𝑎0

DENSE DENSE DENSE

𝑎1 𝑎2 𝑎3

SOFTMAX SOFTMAX SOFTMAX

Figure 4: The Structure of the Controller

0.3.3 Policy-Gradient Optimization

To train the controller, we will implement policy-gradient methods [10]. Using the controller’s

weights, θ, we can equate a forward pass of the network to be the policy, πθ. Our goal is to find

such policy that maximizes the child algorithm’s performance. Therefore, for a policy πθ, we aim

to maximize the expected reward over trajectories sampled. This is seen in Equation 3.

J(θ) = E
τ∼πθ

(R(τ)) (3)

Due to the task being to maximize the objective function 3, we effectively perform gradient ascent.

Additionally, in our setup we will be using a non-constant learning that will be a function of the
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epoch, w. Thus, our gradient update becomes Equation 4.

θ ← θ + γw∇θJ(θ) (4)

Before we continue, let us quickly review what a single trajectory looks like. Formally, the trajectory

τ is the sequence that contains the state, reward, and action information at every time step. For

example, a trajectory looks like the following:

τ = {s1, a1, R2, s2, a2, R3, · · · sT , aT , RT+1}

Although this is the most general form, our setup is slightly different. Firstly, we only give rewards

at the end of the trajectory and so we have a single reward for a single trajectory. Another way

to look at this is that for trajectory τk, if we gave rewards at each time step, Rt,k, then we would

have the following piecewise function

Rt,k =


0 1 ≤ t ≤ T − 1

Rk t = T

(5)

where Rk is the child algorithm’s performance metric, after applying the transformations specified

from τk. This is also called a sparse reward setup. Secondly, similar to the N-armed bandit

problem [6], our model only depends on actions and rewrads. This means that we have a stateless

reinforcement learning problem, With these modifications, our trajectory can be simplified to be

the following:

τ = {a1, a2, · · · , aT }

Notice that while Rk could be considered part of the trajectory, we will remove it for convenience

and only consider the transformations at, 1 ≤ t ≤ T to be the trajectory.

Now that we have defined a single trajectory τ , we can continue with the objective function.

However we will notice that the reward signal, R(τ), is non-differentiable as it is solely a performance

metric for our child algorithm. Despite this, we can perform a decomposition of our objective

function such that we introduce differentiable weights. This can be seen in “Derivation of the

Policy Gradient” [9].
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Derivation of the Policy Gradient

J(θ) = E
τ∼πθ

[R(τ)]

=⇒ ∇θJ(θ) = ∇θ E
τ∼πθ

[R(τ)]

= ∇θ

M∑
k=1

P (τk|θ)R(τk) (expanding the expectation)

=
M∑
k=1

∇θP (τk|θ)R(τk) (linearity of gradient operator)

=

M∑
k=1

P (τk|θ)∇θ log(P (τk|θ))R(τk) (log-derivative trick)

= E
τ∼πθ

[
T∑
t=1

∇θ log πθ(at)R(τ)

]
(collapsing into the expectation)

0.3.3.1 REINFORCE with baseline

From above, we have the following objective function (which is the vanilla policy-gradient

method [9]),

J(θ) = E
τ∼πθ

[
T∑
t=1

∇θ log πθ(at)R(τ)

]
(6)

While this is a good start, the variance for this objective function is quite high. In order to combat

this, we can attempt to reduce the variance of the objective function and introduce a baseline

function, bs. Due to our stateless model, we can simplify bs into b ∈ R. With this implementation,

we do not want to actually change the optimization process for the objective, and thus, need to

make sure the gradient is unchanged. For this, we go to the “Unbiased Baseline Proof” [11]. It

is important to note that the baseline function must be a function of the state (or a constant if

stateless) in order for the estimator to be unbiased.
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Unbiased Baseline Proof

∇θJ(θ) = E
τ∼πθ

[
T∑
t=1

∇θ log πθ(at)R(τ)

]
?
= E

τ∼πθ

[
T∑
t=1

∇θ log πθ(at)(R(τ)− b)

]

= ∇θJ(θ)− E
τ∼πθ

[
T∑
t=1

∇θ log πθ(at)b

]
(by linearity of expectation operator)

= ∇θJ(θ)−
T∑
t=1

E
τ∼πθ

[∇θ log πθ(at)b] (by linearity of expectation operator)

= ∇θJ(θ)− E
τ∼πθ

[
b
∑
a

πθ(a)∇θ log πθ(a)

]
(for arbitrary t, expand R.V. at)

= ∇θJ(θ)− E
τ∼πθ

[
b
∑
a

∇θπθ(a)

]
(inverse log-derivative trick)

= ∇θJ(θ)− E
τ∼πθ

b∇θ

∑
a

πθ(a)︸ ︷︷ ︸
1

 (by definition of a valid prob. dist.)

= ∇θJ(θ)

Now that we have shown that adding a baseline does not affect our gradient, we are left with

the form shown in Equation 7.

J(θ) = E
τ∼πθ

[
T∑
t=1

log πθ(at)(R(τ)− b)

]
(7)

Now, what type of baseline should we choose? We know it has to be a constant as we have a stateless

problem. Due to the baseline being subtracted from the reward, we could treat the difference as

an advantage for that given trajectory. In other words, we could have b be some average of the

trajectories sampled. This way, if a certain trajectory is below average, the advantage will be

negative. Likewise, if it is above average, it will be positive. This then acts as a signal to the

controller to either go in the opposite direction of the actions or follow similar actions in the

gradient update. Thus, we define the advantage

Ak = Rk − b (8)
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While we could use a simple arithmetic mean, we will follow [3] and use the exponential moving

average. With α being a hyperparameter and 1 ≤ k ≤M , we have

b0 = 0 (9)

bk+1 = αbk + (1− α)Rk (10)

b = bM+1 (11)

Lastly, in order to stay consistent with [4] and take into consideration the unbalanced datasets, we

will instead opt to use balanced accuracy as the child algorithm’s performance metric. This is a

better metric for evaluating unbalanced datasets and is illustrated in Equation 12.

Rk =
1

2


(

TP

TP + FN

)
︸ ︷︷ ︸

Recall

+

(
TN

TN + FP

)
︸ ︷︷ ︸

Specificity

 (12)

where T/F denotes “True/False” and P/N denotes “Positive/Negative,” giving four distinct met-

rics.

0.3.3.2 Regularization

Learning rate: As with any gradient updating, we can choose the magnitude of our learning

rate, γ. However, we do not necessarily need to choose a constant value. Instead, we can use what

is called learning rate scheduling, which is the practice of changing your learning rate dynamically

during the training process. It thus will be a function of our epoch w: γw. The reason for a dynamic

learning rate is due to the high variety of the datasets. As each dataset is different, the dynamic

learning rate allows one to explore the space more efficiently in the beginning due to the magnitude

of the learning rate being larger. Then, as the magnitude decreases, it helps the model to converge

as smaller gradient steps are performed. This can be seen in Figure 5.

Entropy: Other than using learning rates, one can use the concept of information entropy

[8]. Inherently, entropy is a way to measure uncertainty in a distribution. Thus, we can attempt

to maximize this uncertainly for our policy πθ, leading to more exploration as it will prevent the
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Figure 5: OneCycleLR with a maximum learning rate, 0.001, and maximum epoch 200.

model from converging onto a simple action. The formal definition of entropy is that if X is a

random variable and is distributed according to p : X 7→ [0, 1], define the entropy as:

H(X ) = −
T∑
t=1

P (xt) logP (xt) (13)

Increasing the entropy effectively smooths out distributions as xt ∈ X entries with lower probabil-

ities are considered more unlikely and carry a higher amount of meaningful information. This can

be seen in Figure 6.

We wish to smooth out our policy, πθ, to enforce policy exploration. Thus, our policy πθ

can be thought of as the random variable X in Equation 13. With the addition of the different

trajectories, our entropy can be formulated as the following

H(πθ) = E
τ∼πθ

[
−

T∑
t=1

πθ(at; τ) log πθ(at; τ)

]
(14)
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Figure 6: The difference between a low entropy and high entropy distribution

Inserting entropy into our objective function with weight ϵ gives us

J(θ) = E
τ∼πθ

[
T∑
t=1

log πθ(at)(R(τ)− b)

]
+ ϵH(πθ) (15)

= E
τ∼πθ

[
T∑
t=1

log πθ(at)(R(τ)− b)− ϵπθ(at; τ) log πθ(at; τ)

]
(16)

∝ 1

M

M∑
k=1

T∑
t=1

log πθ(atk)Ak − ϵπθ(atk) log πθ(atk) (17)

where we choose to do an approximation to E
τ∼πθ

[·]. This gives us our final form for the objective

that we use in practice,

J(θ) =
1

M

M∑
k=1

T∑
t=1

log πθ(atk)Ak − ϵπθ(atk) log πθ(atk) (18)

Early Stopping: Lastly, to further enforce exploration, we used early stopping in our

optimization process. In short, during the training process, one keeps track of the best performing

model parameters (based off of the mean validation accuracy of all trajectories for that given epoch).
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0.3.4 Inference

After training, we have a network with trained parameters, θ, giving us the policy π∗
θ . Our

goal is to then to sample from this network to get a final trajectory τ∗ that we will use to transform

our data and determine its test accuracy. Note that we have a total of N possible actions at each

time step t. Thus, we will denote the specific action at time step t as ait, 1 ≤ i ≤ N . Now to

sample this trajectory, we have three options:

(1) Random Sampling: This is the default method (i.e. a forward pass our of model, such as

was done during training. Although efficient and useful for exploration, it is not as stable

as the other choices.

(2) Nucleus Sampling: Similar to random sampling, this is also just a forward pass of the

model. However, the main difference is that at each time step t, we truncate the discrete

probability distribution yt. This effectively makes it more stable as it eliminates the unlikely

tails of the distribution during sampling.

(3) Beam Search: Unlike the other two sampling methods, this acts more like an optimization

scheme. Using the joint probability space spanned by the softmax layers, we can sample

the best B actions at each time step, giving us multiple possible paths. This allows one to

explore paths from π∗
θ .

0.3.4.1 Random Sampling

Given a trained policy π∗
θ , we can sample it to obtain τ∗. Referencing Figure 3., at each time

step t, we have a distribution yt. With the model in evaluation mode (not tracking gradients in

our case), we simply sample at each time step: at ∼ yt. Doing this for all of the T steps, we obtain

the trajectory τ∗ = {a1, a2, a3, · · · , aT }. This method is quite simple but is susceptible to sampling

sub-optimal actions and so is the last choice for our sampling method at inference.
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0.3.4.2 Nucleus Sampling

As mentioned above, it is possible to sample sub-optimal actions. A concrete example of

when this might happen would be if our distribution yt has an action that has extremely low

probability. Even though it has a low probability, we could still sample this action, causing our τ∗

to give drastically worse results. To combat this, we attempt to eliminate the unlikely actions at

each time step t. Specifically, we aim to pick the smallest set V (p) such that starting from the most

likely actions in the distribution, we add actions until we have reached a specified sum p. Formally,

at a fixed time time step t, our new sum p′ is chosen

p′ =
∑

ait∈V (p)

P (ait | a
1:j−1
t ) ≥ p (19)

where a1:j−1
t denote the currently, existing actions in V (p). Next, we set all other actions to zero and

normalize our discrete distribution so that it remains a valid probability distribution. Specifically

our new discrete probability distribution is modeled as the following,

P ′(ait|a
1:j−1
t ) =


P (ait|a

1:j−1
t )/p′ if ait ∈ V (p)

0 otherwise

(20)

This adaptation allows one to then sample like random sampling but at each time step, truncate

the distribution and remove the highly unlikely actions. A visual representation of this process is

depicted in Figure 7. You will notice that aN−1
t and aNt are shaded differently. These represent the

actions that were chosen to be set to 0. The other actions that sum to p′ are a part of the set V (p).

The resulting actions at that were sampling at each time step t from the truncated distributions

are our trajectory τ∗ = {a1, a2, a3, · · · , aT }.

0.3.4.3 Beam Search

Our final method of inference is Beam Search. For this method, instead of changing the

distributions that we are sampling from, we aim to actually explore multiple trajectories across

the whole policy π∗
θ . This effectively acts as an optimization scheme where we can then take the
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Figure 7: Random Sampling vs. Nucleus Sampling

best possibly trajectory(s) specified by our beam width B. As such, it combats the issue of not

considering an ultimately better trajectory that went unnoticed due to choosing a more likely action

at a previous time step t. Below we will make use of “The Conditional Probability Chain Rule.”

The Conditional Probability Chain Rule

P (a1, · · · , aT | x) = P (aT | a1, · · · , aT−1, x)P (a1, · · · , aT−1 | x)

= P (aT | a1, · · · , aT−1, x)P (aT−1 | a1, · · · , aT−2, x)P (a1, · · · , aT−2 | x)

...

T∏
t=1

P (at | mt−1, x) (where mt = {a1, a2, · · · , at}, m0 = {})

We can then consider our trained policy π∗
θ as a joint probability space. Using this space,

we could test every possible trajectory, but if there are a lot of actions or time steps, this would
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take too long. Beam search finds a balance by considering B possible actions at each time step and

dynamically keeping track of the best sequences up to that time t. Specifically, using conditional

probability chain rule. We have

ζt =

t∏
i=1

P (ai | mi−1, x) (21)

For instance, at the first time step, we find the top B actions with the highest scores ζ1 = P (a1 | a0).

Using these B actions, we can then create B instances of the next softmax layer yj,2, 1 ≤ j ≤ B,

where j is the instance index. Now, across all instances, we then pick the top B actions with the

highest score ζ2 = P (a2 | a1, a0) · P (a1 | a0). Using these B actions, we create B instances of the

next softmax layer yj,3, 1 ≤ j ≤ B. We continue this process across T time steps and end up with

the top B trajectories that were found using a beam width B. Notice that we can also reduce

beam search into two common inference strategies that are found in Table 2. The beam search’s

algorithm is stated as Algorithm 2. A visual example of beam search is depicted in Figure 8.

Algorithm 2: Beam Search

Input : B, π∗
θ

Output: τ∗

for each t in range(T) do
ζt =P(a1, a2, · · · , at | a0) ; // compute scores across ALL instances

best actions = torch.topk(ζt, B) ; // find top B actions from ζt
for j, action in enumerate(best actions) do

yj,t+1 = model.forward(action) ; // create B instances of yt+1

end

end
τ∗ = torch.topk(ζT , 1) ; // return highest score trajectory

Value of B Inference Strategy

1 Greedy
N Exact

Table 2: Inference Strategies Adapted from Beam Search
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Figure 8: A Visual Illustration of Beam Search with B = 3.

0.4 Data Description

0.4.1 Source of Data

In order to keep complexity manageable for this project, we opted to start with simpler

datasets. Inspired by [4], we used the OpenML-CC18 Curated Classification benchmark suite [2],

the same 60 datasets, as in [4]. Nearly all of the datasets are non-synethetic and allow a realistic

way to evaluate a given model as the structure of each dataset varies in its numerical features,

symbolic features, number of features, and number of instances. Lastly, OpenML’s website for the

suite proved to be useful as a tool to see how other models performed on the datasets along with

the pre-processing pipeline.

https://www.openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=99
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0.4.2 Data Exploration

We should first note that each of the dataset is tabular, meaning it can be formulated as a

matrix RQ×P , where Q is the number of instances and P is the number of features. In this section,

we will not be looking into each and every set’s structure but briefly looking at the decomposition

of all the datasets. An example of what a single dataset looks like can be found in Figure 3, where

the goal is to predict if the sample is tipped to the right, left, or balanced.

left-weight left-distance right-weight right-distance

0 1.0 1.0 1.0 1.0

1 1.0 1.0 1.0 2.0

2 1.0 1.0 1.0 3.0

3 1.0 1.0 1.0 4.0

4 1.0 1.0 1.0 5.0
...

...
...

...
...

Table 3: An Example Dataset from OpenMLCC-18

Data properties include (but are not limited to) the number of features, the number of

categorical features, the number of features, and the number of instances. One metric we can look

at is how much of the datasets are numerical versus categorical. Furthermore, we want to consider

the number of features rather than the whole dataset as certain datasets might have mixed data

types. Thus, we simply take it to be a fraction between the numerical/categorical features and the

overall features.

The corresponding pie chart is shown in Figure 9. As you can see from the pie chart, a

large majority of features are numerical (∼ 85%). Again, this is across all features of all datasets,

as it then considers datasets with mixed types. Although it is a large majority, there are still

categorical features (∼ 15%), so in order for our model to remain adaptable, we must not make

any stipulations. Specifically, we could have our model always perform encoding as the first step;

however, then our pipeline would not maintain adaptability. Therefore, we make no assumptions

and let the model figure out what to do. Next, it is important to look at the number of features

and instances. In the box plots shown in Figure 10., we can see that the number of instances are
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Figure 9: OpenML-CC18 Benchmark Suite: Percent of categorical vs. numerical features.

closely concentrated to be below 10,000 instances. However, we can also see that there are quite a

few outliers that go all the way up to 100,000 instances. Similarly for the number of features; while

most of the number of features are closely concentrated to be below 100, there are some datasets

that go all the way past 800 features. There is a high variety of datasets in this suite that we used

and there is a mix of numerical as well as categorical datasets. Due to the diversity, it will be a

good test for our approach to see if it can perform well across various types of datasets. These

results will be discussed in Section 0.5.

0.5 Results

0.5.1 Implementation Setup

Computer Hardware: For our setup, we chose to not use distributed computing but to

use a single computer’s computing power. For each classifier, other than Naive-Bayes, the n jobs
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Figure 10: OpenML-CC18 Benchmark Suite: Number of instances and features.

parameter was set to be -1 so that all cores were used. Additionally, the controller network as well

as the data was cast to our GPU device during training. Table 4 provides more specifics on our

setup.

Hardware Software Hyperparameters

i7-8750h CPU (6 cores) n jobs (Pipeline/Classifier) M = 100
GTX 1060 Max-Q epochs = 200

α = 0.95
γ = 0.001
ϵ = 0.001

Table 4: Implementation Details

Hyperparameters: For the hyperparameters of the learning rate and entropy, the optimal

values were hand-tuned. The other hyperparameters such as the number of epochs, number of

units for an RNN cell, and embedding layer were chosen arbitrarily in the beginning and were

not altered with the hope that they were as general as possible. In our case, the best maximum
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learning rate was found to be γ = 0.001 while the best value of entropy weight was found to be

ϵ = 0.001. Finally, the weight in the updating of the baseline was set to be a = 0.95, matching the

setup of [12]. For the iteration parameters, we used M = 100 for the number of episodes and 200

epochs.

0.5.2 Results

0.5.2.1 Raw Results

Firstly, we will look at how well our model does across all the datasets. With the hyper-

parameters and action space fixed, we run the model on every (X , f(·),A) pair, where f(·) is the

Naive Bayes algorithm. In order to determine if our trajectory τ∗ is effective, we get a baseline test

accuracy before and after applying the transformatons specified from τ∗. We define the following

trajectory to be the baseline trajectory,

τ0 = [Ordinal Encoding, Identity Map, · · · , Identity Map] (22)

where Ordinal Encoding is applied on a column-wise basis. Therefore, if a dataset has completely

numerical features, then Ordinal Encoding turns into the Identity map as nothing is encoded. Using

this baseline trajectory, we can then obtain a test accuracy on our dataset before training starts,

giving us Acc (τ0, a). Then, after training is completed, we can apply our trajectory τ∗ to the test

set and obtain a new test accuracy, Acc (τ∗, a). Note that our child algorithm hyperparameters’

a are not optimized and are set to be the default values. With these two test accuracies, we can

then determine how well our model did in improving the performance across all datasets. This is

evaluated using a relative improvement metric,

δour model = δour =
Acc(τ∗, a)−Acc(τ0, a)

Acc(τ0, a)
(23)

With this metric, we can compute a value for each dataset. Looking at all the values as a distribu-

tion, we can then look at the results in Table 5. Note that we sampled the trained policy π∗
θ using

the three different inference methods covered in Section 0.3.4. Moreover, for beam search we used



25
δour (Random) δour (Nucleus) δour (Beam Search)

mean 6.69% 7.62% 11.41%

std 37.03% 35.29% 18.67%

Table 5: Our model’s improvement

B = N as our action space is relatively small. In Table 5, we can see that, on average, Beam Search

did the best by improving our dataset’s accuracy with ∼ 11.5% relative improvement score. We

can also see that its standard deviation was the lowest at ∼ 18.5%, suggesting that it was a more

stable option compared to the other inference methods. Moreover, we do see an improvement from

random sampling to nucleus sampling in both the mean as well as the standard deviation, albeit

not as large of a jump from nucleus sampling to beam search.

Next, we can inspect how each individual dataset performed. This can be seen by using a bar

chart and having the y-axis represent the relative improvement score, δour, and the x-axis represent

the dataset’s ID number. This is seen in Figure 11.
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Figure 11: A Visual Showing Results by Dataset ID

Looking at Figure 11., we can see that a large majority of datasets had some increase in

performance. However, there are some datasets whose improvement did not increase at all and

some that even got worse. Lastly, although our model was supposed to find a better trajectory

than the baseline, there were some datasets in which the found trajectory τ∗ actually caused worse

performance. In practice, there could be a simple fix by checking if our baseline test accuracy

is higher than our test accuracy with the found trajectory, however, this in theory should not

happen and most likely points to an optimization fault. More specifically, we could have gotten

stuck in a local optimum, resulting in sub-optimal performance. The other possible reason is if our

training/validation/test split was just too difficult to learn from. One way to combat this would

be to use cross validation; however, this does result in significantly slower training.

One hyperparameter that is quite important to consider is the number of trajectories sampled

for epoch: M . Although our implementation ended up with M = 100 to be the best value, it was

considerly slower than using M = 1. Specifically to do 50 of the datasets and Naive Bayes, it took
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∼ 49 hours with M = 100 and ∼ 1 hour with M = 1. Multiprocessing was not used on the different

trajectories sampled. Due to the performance increase, the slower training time is worthwhile;

however, one might consider trying to make the model more sample-efficient so that it is much

faster but still yields competitive results. For a one-sided comparison, we can look at Figure 12.

to see how much more of an improvement is obtained when using M = 100 versus M = 1 (i.e.

δour(M = 100) - δour(M = 1)).
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Figure 12: Comparing δour for M = 100 and M = 1

0.5.2.2 Relative Results

Next we compare to the results in [4]. A preview of their results are shown in Table 6.

In Table 6., for each dataset in the OpenML-CC18 benchmark suite, they tested three different

child algorithms: K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). Here,

d effective is their equivalent to our τ∗, as is their d to our τ0. Likewise, a are the hyperparameters
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did Algorithm Acc (d effective,a*) Acc (d,a*) Acc (d,a)

3 knn 87.21 80.12 79.22
3 nb 78.05 76.08 59.17
3 rf 97.98 97.95 94.74
6 knn 96.27 96.22 95.56
6 nb 65.48 64.10 64.10
...

...
...

...
...

Table 6: Effective pre-processing for AutoML Results

of the child algorithm. Lastly, for our results, we used the same datasets as they did and chose NB

as our child algorithm to test it on. Now, to compare their results to ours, we must consider two

main differences in how the results were produced:

(1) Different training/validation/test splits were used

(2) The child algorithm’s hyperparameters were optimized: a→ a∗

As in Section 0.5.2.1, we can determine how much of an improvement was created using their

pre-processing pipeline. Despite them possibly having different data splits, we can use the same

method. Letting d effective → τ∗ and d → τ0, we define their metric of improvement

δbaseline paper = δbs =
Acc (τ∗, a∗)−Acc (τ0, a

∗)

Acc (τ0, a∗)
(24)

Next we can compare their improvement to our improvement, and thus, get a value for each dataset.

This is formally done by taking,

∆diff = δour − δbs (25)

In Table 7., we can compare the mean and standard deviation of our method to that of the baseline

paper. In general, our method performs slightly worse than theirs; however, it is centered around 0.

The main reason for this is that we did not optimize the pre-processing parameters and only used

the default parameters for each action in the action space. Despite this disadvantage, it mostly

produced similar results when using beam search. While beam search was the best option, all

standard deviations were similar. For the raw improvement, Table 5 and 7 show that most datasets

had an improvement anywhere from 0.0 and 0.2 (that is roughly 0% to 20%). Although some
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∆diff (Random) ∆diff (Nucleus) ∆diff (Beam Search)

mean -2.08% -0.90% -0.86%

std 17.82% 17.61% 17.44%

Table 7: How our model compares to the baseline paper

datasets actually got worse with a score of -0.2, many more datasets actually had an improvement

value of 0.8. Likewise, when compared to the baseline paper, we see that ∆diff (Beam Search)

is generally normally distribution about 0.0. Again, it also has some datasets that have a lower

improvement value near -0.3, but we also see that we have datasets that had an improvement

value of 0.4 up to 0.8. This generally shows a normal distribution and shows that our method is

comparable to theirs.
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Figure 13: Raw and Relative Results
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0.5.3 Different Sampling Methods

Moving on from the quantitative results, we can look into the sampling methods that were

chosen for each time step. For this, we will simply group the transformations at each time step

(across all datasets) into their respective category: rebalancing (R), normalization (N), discretiza-

tion (D), feature engineering (F), imputation (I), encoding (E), and None. For instance, across

all datasets used, we suspect that encoding should be used in the first step. We will visualize this

using density heatmaps and look at each inference method separately. Each column adds up to

100% as it counts how many of that type of transformation was chosen in that given time step (e.g.

20% for normalization on t = 1 means that 20% of the transformations were of normalization type

for the first time step).

1 2 3 4 5

t

R

N

D

F

I

E

None

Ty
pe

 o
f T

ra
ns

fo
rm

at
io

n

14.5% 20.0% 34.5% 36.4% 36.4%

18.2% 12.7% 3.6% 7.3% 5.5%

9.1% 12.7% 12.7% 12.7% 14.5%

9.1% 7.3% 0.0% 1.8% 0.0%

5.5% 12.7% 16.4% 14.5% 12.7%

16.4% 0.0% 0.0% 0.0% 0.0%

27.3% 34.5% 32.7% 27.3% 30.9%

Density Heatmap for Random Sampling

Figure 14: Density Heatmap: Random Sampling

The random sampling heatmap, 14, shows that the most common type of transformation for
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the first time step at t = 1 was None (∼ 27%). Normalization (∼ 18%) and encoding (∼ 16%) are

next. This makes sense, as some of the datasets were categorical and would need to be encoded

first. Other interesting trends observed include that rebalancing seems to increase over time,

normalization seems to decrease over time, and feature engineering decreases over time. It also

appears that discretization and imputation seem relatively constant after the first time step. This

could suggest that the the time step at which imputation or discretization are applied are not very

important. The high density for rebalancing and the identity map could suggest that either more

data is needed to gain insights into the dataset (rebalancing) or no action should be applied to

combat overfitting.
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Figure 15: Density Heatmap: Nucleus Sampling

For nucleus sampling, normalization was overall chosen more than None as the first type

of transformation as opposed to when we used random sampling for the inference method. Addi-

tionally, None was chosen as the most likely transformation on the third time step as well. Other
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than these main differences, the general trends are still seen over time: normalization decreases,

feature engineering decreases, and discretization/imputation stay mostly constant after the first

time step. Recall that although the differences seem small, the quantitative results do suggest that

using nucleus sampling over random sampling is advantageous.
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Figure 16: Density Heatmap: Beam Search

For beam search, we can see that rebalancing (∼ 26%) and None (∼ 26%) are the most likely

choices for t = 1. Like random sampling, the most likely step for t = 3 is also None. While the

trends still hold for our beam search method, there are a few differences: normalization is most

common for the first two time steps, and discretization/imputation are less likely for the first two

time steps.

Although each inference method has slightly different patterns and produces different quali-

titative results, the overall narrative that the heatmaps provide is consistent. For smaller tabular

datasets, rebalancing could be a way to improve overall accuracy even if it is not needed; normal-
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ization is typically applied earlier on (t = 1, 2); encoding is done at t = 1; feature engineering is

done early as well (t = 1); and discretization/imputation generally do not have a preference on

where they are applied once the data is encoded/normalized (t = 3, 4, 5). Lastly, None is common

across all t values, which most likely just point to how each dataset is different in the amount of

transformations it needs.

0.6 Discussion

Future Work: Some immediate future advancements could be to implement a conditional

aspect to our model such that the parameters are shared over datasets. This could possibly allow one

to reduce the number of trajectories (M) required and still yield competitive results. Likewise, we

could augment our action space to include parameters for both our pre-processing transformations

as well as the child algorithm. With these two adaptations together, we could get better results at

a faster rate. Separately, an application of this model could be to use the results to explore how

transformations affect the manifold structure of a dataset at each time step. Ideally, one can run

this model and get experimental evidence and then use manifold learning to study the theoretical

aspect and postulate how to preprocess a dataset solely based off its manifold structure. It would

also be interesting to explore this model and see which types of datasets it performs well on. This

could contribute to the field of “Explainable AutoML,” which to the best of our knowledge, has

not been covered much yet.

Multiple Datasets and Hyperparameters: In general, the goal of any type of AutoML

model is to take the user out of the equation. While the user is clearly not a prominent figure

in our model, it did require the user to tune the learning rate value, epochs, and entropy weight.

In practice, these values were chosen anecdotally and then fixed across all datasets when running

results. However, an ideal model would be able to adapt to each dataset and set the parameters

automatically. In this case, a conditional version of the model seems more appealing. As such, one

should consider this flaw in the model as it takes away from the adaptability of our model, since

we found the hyperparameters specific to the dataset suite and child algorithm.
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0.7 Conclusion

In this work, we demonstrated that Neural Architecture Search (NAS) can be applied to the

data pre-processing part of a machine learning pipeline. Taking inspiration from two recent papers

([1] and [4]), we sought to make a contribution where our model was 1) not fixed in advance and 2)

did not depend on transformation specific rules or empirical calculations. In this way, we were able

to construct an open pipeline structure that is scalable to any type of tabular dataset or application.

We chose Naive Bayes (NB) as our child algorithm and were able to get comparable results to a

baseline paper ([4]) despite not optimizing the parameters of the pre-processing transformations.

We hope that we can augment this model to include a conditional aspect such that the training

can become more efficient as well as include the parameters for the pre-processing transformations.

With these extensions, we believe this model can be used as a tool to study the theoretical affects

of pre-processing transformations on an arbitrary dataset. Although the concept of pre-processing

is both data and model dependent, this might shed light on which manifold data structures yield

the best results in a machine learning pipeline.
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