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Abstract

In previous work, it has been shown that the low-frequency behavior
of a periodic array of absorbing wedges or pyramid cones is equivalent to
that of a layered anisotropic absorbing medium whose effective permittiv-
ity and permeability depend on those of the absorber and the geometry of
the structure. In this report, we study the reflection of plane waves from
this eqnivalent layered medium for the purpose of understanding and im-
proving the performance of such absorber arrays in the frequency range
of 30-300 MHz. By modifying some existing types of standard absorber,
we are able to come up with improved designs that should find impor-
tant application in the lining of anechoic measurement chambers for the
frequency range of 30-1000 MHz.

1 Introduction

Anechoic electromagnetic measurement chambers are frequently lined with pyra-
mid cone absorbers which serve as gradual, low-reflection coverings for the
metallic shielding walls on the outside of the room. Extensive summaries of
the principles and design of such chambers are to be found in [1}-[4]. At suf-
ficiently low frequencies that the height of the cones (i. e. , the thickness of
the absorber wall covering) is no longer large compared to wavelength and skin
depth in the absorbing medium, the performance of the absorber will deteriorate
as compared to higher frequencies. In [5] it was demonstrated that at sufficiently
low frequencies (periods of the cones small compared to a wavelength) a gen-
tly tapered absorber array behaves as a one-dimensionally inhomogeneous but
anisotropic medium, as far as the “average” field is concerned. The equivalent
permittivity and permeability for this structure are obtained from the solution
of the static field problems for an array of absorbing cylinders with no taper
at all. It is the purpose of this report to study the behavior of the reflection
coefficient of a plane wave from this equivalent plane-layered absorbing medium.

Consider, for example, the periodic array of slabs shown in Fig.1. If has
been known for some time [6]-[11] that this medium behaves like a uniaxially
anisotropic but homogeneous material with (possibly complex) tensor permit-
tivity [¢] and permeability [x]:
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If the period a of this laminated medium is small compared to a wavelength in
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Figure 1: Periodic array of absorbing slabs.

either medium, as well as to the skin depth, then:
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where g = d/a is the relative volume of space occupied by the absorber, ¢, and
iio are the complex parameters of the bulk absorber, and €p and gy are those of
free space.

For the two-dimensional square array of square absorbing rods shown in
Fig. 2 (which, when tapered, becomes the pyramid-cone absorber array), the
elements 4, and ¢, are known exactly [5]:

(1-g%)eo+ g’
p: = (1=-g¥)po+9°ua

L

(4)

where ¢ = d/a, and g? represents the volume fraction of space occupied by
the absorber. While no exact, closed-form expression for ¢, = ¢; = ¢, and
i = iz = py exists for this case, numerical evidence presently available suggests
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Figure 2: Square array of square absorbing rods.
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that the Hashin-Shtrikman formulas
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should be quite accurate for the values of ¢, p15 and ¢ encountered in practice
(on the order of 5 percent error [5]).

A comparison of ¢, With ¢, is plotted in Fig. 3 for the case of €5 = 10,
using eqn. (5). The degree of anisotropy of the equivalent homogeneous medium
is seen to be quite pronounced when ¢, /o is this large, unless g is very close to
0 or 1 {bulk air or bulk absorber limits, respectively). It is to be expected that
this anisotropy may significantly affect the propagation of plane waves in this
medium at oblique angles to the axes of the rods.

If the widths of the layers or rods in Figs. 1 or 2 vary with z as shown in
Fig. 4, we have shown in [5] that the resulting array of wedges or pyramid cones
is equivalent to an inhomogeneous anisotropic absorbing layer with effective
parameters [¢(z)] and [i(z)] as shown in Fig. 5. These z-dependent tensors
are obtained from (4) and (5) (or from (3) in the case of wedges) by letting
g — g(z) = d(z)/a in these formulas. Of course, a gentle variation of the values
of ¢, and p, with z would also be a way to vary [e(2)} and [u(z)], so that
further flexibility in these tensor functions can be achieved if desired. At low
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Figure 3: Comparison of ¢; and ¢ for ¢a = 10¢p:
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Figure 4: Array of wedges or cones.
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Figure 5: Equivalent inhomogeneous anisotropic absorbing layer.

frequencies, then, the modelling of geometrically tapered absorbers is simplified
considerably into a one-dimensionally varying plane layer problem. It is this
problem that we address in the present report.

2 Reflection from an Inhomogeneous Uniaxi-
ally Anisotropic Layer

Consider the problem of a plane wave in air incident at an angle 6 from the
normal to the inhomogeneous anisotropic layer shown in Fig. 5. Assuming that
the plane of incidence is the zz-plane as shown, we may assume 8/8y = 0 for
all fields which result. For a uniaxially anisotropic medium described by the
tensors (1) and (2), Maxwell’s equations decouple into two independent sets;
one for perpendicular polarization:

%‘_%‘ = jw§E,
B = —jwpH, (6)
_Bl': = —jwﬁ,H,



and one for parallel polarization:

8E: % = —jwinH,
%‘?;n = jwéiE, M
8y - i Ee

where a time factor of e/“! has been assumed. Since the incident wave deter-
rmines an z-dependent factor ¢~i%0¢%n¢ (where ko = w/fio€o ) which will be
common to the entire field, we can eliminate the explicit z-dependence in (6)
and (7) also, as well as the z-componeats of the fields. The result for either
polarization can be cast in the form

G = —jwﬁef,r(z)H(’)} (8)
%ﬁl = —jwéys(2)E(2)

where for perpendicular polarization:

E(z) = Ey(2) H(z) = —He(2) (9)

s (@) = ()-“”Ts‘} (10)
ﬂe‘”(Z) = i‘r(z)

while for parallel polarization:

E(z) = Eo(2) H(z) = Hy(2) (11)
ur) = &0 3 } (12)
fregy(z) = dy(z)— Lagsnt

Equations (8) are analogous to the classical equations for a nonhomogeneous
transmission line. We therefore exploit this analogy by writing

Zc(z) = g—:ﬁ(j—)) (13)

§(z) = a(2) + iB(z) = jwrf fess(2)ées1(2) (14

as a characteristic impedance and propagation constant, both dependent on 2
and known if all the layer parameters are known.

The analysis of such inhomogeneous lines is well-known [11],[12]), and we
follow these developments here. We define the field impedance

Z(z) = E(2)/H(2) (15)



for which, from (B), it is possible to obtain a Riccati equation:

2'(z) = —juliiess(2) = &eys(2)2%(2)]
= —§(2)[2e(2) - Z%(2)/ Ze(2)] (16)

If Z(2) is found, the electric field reflection coefficient for the plane wave at the
surface of the inhomogeneous layer can be written as

_ 2(0) - Z.(0)
0= 20+ 2.0 ()

in the usual way. Although there is more than one way to define a position-
dependent reflection coefficient within the layer which reduces to (17) when
z =0 18], we find it most convenient here to use the Schelkunoff definition:

vo Z(2) - 2.2), A 5 (Lt T
M= 226  O=5N0TTg e

When this is differentiated and used with (16), we obtain a Riccati equation for
T'(2) itself:

I'(2) = 2%(2)I(2) — N(2)[1 - T?(2)) (19)
where 2’( )
N(z)= -22:1 (20)

is a measure of the nonuniformity of the characteristic impedance. Clearly
N = 0 in a homogeneous section where Z, is constant.

When N = 0, the Riccati equation (19) may be solved exactly to get the
well-known solution

I(z) = [(0) exp[2 /o "5 (21)

If zp is located at the surface of a perfect conductor, then we have the boundary
condition
I'(z0) = -1  (perfect conductor) (22)

since Z(z0) = 0. If zg is located in front of a half- space z < zp of homogeneous
material with no incident wave arriving from z = —oo, then
F(zg)=0  (homogeneous half-space) (23)

For many situations, a combination of (21)- (23) may be used to arrive at a
suitable “initial” condition T'(L) = I'o in order to render the solution to (19)
nnique.



Although the solution to (19) can be obtained numerically using standard
ordinary differential equation solvers available in computer libraries, it was ini-
tially felt that a closed-form approximate solution would be desirable in order
to speed up computations and to make design easier. To that end, we investi-
gated several types of such approximations which can be found in the literature.
The most common one is similar to 8 WKB expression and which we denote
the phase-iniegral approzimation. It is obtained [11],[12] by assuming that the
reflection coefficient I'(z) is sufficiently small in magnitude that I'? can be ne-
glected compared to 1 in (19). Thus, (19) becomes approximately

I'(2) = 25(2) — (2) (24)

which is a first-order linear equation whose solution is written exactly as:
Toa(z) = =20 7608 pr) 4 f "Rl yn o)
and in particular
e O . e A

Note that in this approximation the reflection coefficient is approximately the
sum of

Tpr1(0) = 2l SRl 74 (27

which is the reflection coefficient at the back of the layer, transferred forward
through the layer as if the characteristic impedance were constant (cf. eqn.
(21)), and

L - " I3 H
Tpaa(0) = f R()e 2 Jo a8 g (28)
0

which is the reflection coefficient we would see from the inhomogeneous layer if
I'(L) = 0, i. e., if the layer were backed by a homogeneous absorber halfspace
[10].

Gaydabura [14] has proposed a modification of the phase-integral approxi-
mation which is claimed to be more accurate because it eliminates the possibility
that the modulus of the reflection coefficient might be greater than one. This
approximation can be written in our notation as

Ia(0) = tanh{e~2Je )% srctanh [(L) + T,n3(0)) (29)

If the imaginary part of the curly brackets in (29) is less than x/4 in absolute
value, then this approximation will indeed obey |T'¢(0)] < 1. However, there is
no guarantee that this will always occur.



Another way of modifying the approximation (26) was proposed by Frances-
chetti (see [15],{16]). Here it is not |T'[* which must be small compared to one,
but only [Tpaz|*. In this way, initial conditions where |'(L)| is not small may
still be accurately accommodated. In our notation, this approximation is

rphl (0)
14 Epna(0) i Bt S 76047 g

I'F(U) = Tpn2(0) + (30)

It too must be checked numerically to assess its range of usefulness.

3 Comparison of the Approximate Formulas

In this section, we choose a specific model with which to assess the accuracy
of the approximations (26) (29) and (30). For greater simplicity, we consider a
perpendicularly polarized plane wave incident upon an array of linearly tapered
wedges (Fig. 4),where

d(z)/a=z/L (31)

and L is the total depth of the tapered region. Then by (9), (10) and (3), if the
absorber is taken to be nonmagnetic (fi, = po), we have

6,”(2) = €g cos? @ + (fa — 50)% (32)
Thus,
¥z)= Jko\‘/ cos? 4 + AZ/L (33)
and z
Zy(2) = 2 (34)

\/cc:uvs2 9+ Az/L
where Zy = (uo/eg)'/?, and

A= (-‘_ - 1) (35)
To help in the evaluation of (26), (29) and (30), define

P(z) = -2j ./o ") az’ (36)

8o that in the present case

P(z) = 2k [ \Jcos?8 + Az'/Lds’ } )

%gl‘ {[t:t:s2 6+ Az/LP? - cos® 0}

9



Then (27) can be written as

Tpa1(0) = e~ PED(L) (38)
where X -
4,  (cos?8+ A)+ cos Bv/cos? 9+ A + cos?§
P(L)= koL —_— (39)
3 Veos?0+ A 4 cos 8
From (20) we can write
N A - -1
R =-22 [co?6 + Az/L] (40)

and so equation (28) can be written

rpp,z(O) = f:ﬁ(z’)c‘ip("'}dz'

. 41)
P(L) =3P (
= —-th E-.F:-Po
by changing variables from z’ to P, where
Fy= EM coe®4 (42)
3A

The integral in (41) can be expressed in terms of the exponential integral of
complex argument [17):

00 e—!
Bi(z) = j d (43)
and takes the form
1, : .
Tona(0) = ge’ Po[EA(jP) - Ex(jFo)] (44)
where dkoL
Pi=Py+P(L)= 32 (cos? 8 + A)3/? (45)

It remains to calculate the integral in (30), which is quite similar to (41):

JERENS R I g o [E R(a)eiPeh gy

. (46)
te~iP By (=i P) - Ei(—jRy))
Using these results in (26), (29) and (30) gives
T(@ = e TPONI) + 2 RIB(P) - By(iF) (a7)
I'g(0) = tanh {e-iP(L>mtmh (L) + %e”’ﬂ[E, (P) ~ E, (jP.,)]} (48)
Tr(0) = o TOr)

14 iT(L)eiPs[Ey(—jP1) — Er(~j Po)]
+ %JP°[E, (iR) - E1(jRy)) (49)
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When we specialize to normal incidence (§ = 0), equation (47) becomes identical
to that obtained by Bucci and Franceschetti [10] for this case.

The bulk properties ¢, = eg(€. — je!') have been measured experimentally
over the frequency range of 30-300 MHz! for several commercially made types
of graphite-impregnated foam absorbers. The results are displayed in Table 1,
where it can be seen that substantially different values and variations of the real
and imaginary parts of £, may occur.

These values will be used in our numerical examples. Note in particular that
(especially for the lower frequencies) &, is such that |A] >> 1, and thus only
(L) and Py can introduce significant dependence of (47)-(49) on the incidence
angle #, because

Py~ P(L) ~ %kuL\/A_ (50)

in this limit. As cos 8§ — 0, Ey(2jFP) — oo, and so these formulas will all
become inaccurate at grazing incidence.

In the next section,we will compare the approximate results (47)-(49) for this
case with exact values obtained from a solution of (19), (33) and (40). Although
this exact solution can be written down in closed form using Airy functions [11],
(18], [19], we will find it more convenient to use standard computer subroutines
for the numerical solution of ordinary differential equations, since this is required
for the analysis of more general geometries in any case.

4 Numerical Results

A standard Runge-Kutta algorithm [20] was used to solve the Riccati equation
(19) subject to a given boundary condition I'(L) at z = L. For all cases studjed
here, the array of cones or wedges had a taper length of L, and a backing layer of
homogeneous absorber of thickness d. Behind the backing layer there is assumed
to be a perfectly conducting wall that serves to shield the measurement area
(Fig. 6).

If calculations for many values of (L) are required, it is more efficient to
calculate I'(0) for three different values of I'(L), and then to use the fact that
any arbitrary solution of (19) can be expressed in terms of them [21]. In more
physical terms, we can note [22] that the inhomogeneous layer can be represented
as a two-port network with scattering matrix [S], terminated at port 2 (the back
plane of the layer) by a load whose reflection coefficient is I'(L)-see Fig. 7. Then
I'(0) is the reflection coefficient seen looking into port 1:

_ (5128n = 851180)L(L} + Sy _ —dT(L) + Sy
TO="" 5@ S iosam O

!The data shown in Tables 1 and 2 were obtained from measurements carried out using
the transmission line method by J. B. Pate of IBM at Research Triangle Park, NC, for whose
assistance the authors are grateful.
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Table 1: Bulk properties of some commercial absorber samples.

o 1]
|

Frequency | Sample I | Sample IT | Sample III
(MHz)

gl el e | & | &
30 79 (25|92 76 |{166] 9.3
35 7625|8473 |155| 9.3 "
40 7426|781 71 |145]| 93
45 72|26 | 72| 68 | 138 | 9.1
50 702668 65 [ 129 | 89
60 67|26 |60 6.0 | 118 86
70 63|26 |55 56 [|110] 8.2 ll

80 6026|5053 |101] 79
90 58| 26146 | 50 { 95 [ 76
100 58126 |43 47|91 |73
125 55|25 |38]| 42 | 81 | 6.7
150 5312536 38 | 74 | 6.1
175 50124 |33| 34 | 69 | 56
200 48|24 31| 32 |65 {52
250 46|24 | 28| 28 | 6.2 | 4.7
300 44|25 4.5

12



port | port 2
i |
JI,_
I
I‘(O)-—-—Ji [s] : I'wL)
é— _
| ]
| {
2:=0 2= L

Figure 7: Equivalent two-port network for the inhomogeneous absorbing layer.
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where

d = 511522 — 8125 (62)

is the determinant of [S].

K T,, Ty and I'y, represent the values of I'(0) obtained for short-circuit
(T(L) = -1), open-circuit (I'(L) = +1) and matched (I'(L) = 0) loads respec-
tively, then

r. = d+ S11
T 148,
~d+ S11
o = 155
rm = Su

and these may be solved to give

Su = I'm
Spy = ZLP':_E’:_EI (53)
d = r,(rlir,g-zr,r,
- ' -T'o
It might be noted by comparison with (30) that Francescheiti’s approxima-
tion is equivalent to the following approximations to the S-parameters:

L o n "
S = rph!(o) =/ ﬁ(z')e_zfn ¥(#") dz dz' (54)
0
L N L n "
Sz = — j F(eye2 Lo vemas” g (55)
0
L F r
$128n = e~2 fo HNds (58)

For an array of wedges, we may have the wedge edges parallel either to the
z-axis or y-axis, and polarization of the incident plane wave eleciric field either
perpendicular or parallel to the plane of incidence zz. For the perpendicular po-
larization, with the edges oriented along the y-axis, numerical results calculated
from the Runge-Kutta solution of (19) are shown in Figure 8. This figure shows
a graph of the magnitude of the reflection coefficient versus frequency corre-
sponding to various thicknesses of homogeneous absorbent material behind the
wedges. From the plot, it is evident that by varying the absorber thickness the
response of the structure can be changed quite dramatically. It should be noted
that this plot, as well as others that follow, were obtained assuming &, to be
that of Sample II in Table 1, unless otherwise stated.

From the plot, we see that the high frequency response is very good, however
at the low frequency end, we see refiections of 40 to 50 percent. We also notice

14
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Figure 8: Magnitude of the reflection coefficient for perpendicular polarization
with wedge edges oriented along the y-axis.
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that by varying the absorber thickness {d), minima develop in the response
curves which can be shifted by altering the dimension d.

These minima are a result of constructive and destructive interference that
occurs because of multiple reflections within the wedges. The reflection coef-
ficient (I') is lowered somewhat because of the various minima. However, I' is
lowered at the expense of peaks that also appear on the curves.

Figure 8 is a pliot of the (numerically) “exact” solution, while Figures 9 and
10 show comparisons of the exact and the approximate values of |[I'|. From
Figure 9, we see that the phase integral and Franceschetti approximations are
virtually indistinguishable from one another except around 38 MHz, and for the
most part, they are indistinguishable from the exact solution. We see that the
Gaydabura approximation is the worst of these three approximations and does
not match the exact solution well until around 90 MHz.

Figure 11 shows results for d equal to 0.1 m, for four different angles of inci-
dence; 0°, 30°, 45°, and 60°. We see that as the angle of incidence in increased,
the response curves increase in magnitude. This is consistent with known be-
havior of reflection coefficients at grazing angles, for which |I'| approaches 1.

Resulis for perpendicular polarization were also calculated from the Ricatti
equation for the case of an array of pyramid cones of square cross-section. The
length of the tapered section was taken to be 1 m, and the thickness of the
backing absorber was varied from 0.1 m to co. Numerical results are shown
in Figure 12. The reflection coefficient I' is plotted for four different angles of
incidence in Fig. 13: 0°, 30°, 45° and 60°.

For the paralle] polarization, numerical results are the same as for perpen-
dicular polarization when the angle of incidence is equal {0 zero (see Figure 12).
Plots for various angles of incidence are shown in Figure 14.

Some interesting observations can be made between the two different ge-
ometries. The cone geometry is more effective at higher frequencies, while the
wedge geometry is more effective at the low frequency end. For both geometries,
T' can be altered guite dramatically by relatively minor variations in the back-
ing absorber. This is made aparent by the shifts of the minima in the response
curves.

We are now in a position to analyze the effect of material properties on the
response of a wall of pyramid cones at frequencies from 30 to about 200 MHz.
We analyzed two different size cones (6ft and 4ft ) with material properties as
measured from “off-the-shelf” cone absorbers from a well-known manufacturer
to determine which would have the best response. The material parameters are
shown in Table 2.

The results are shown in Figure 15. Tbe results that were obtained are
just the opposite of what one might have expected: the 4 ft cones generally
outperformed the 6ft cones.

This can be explained by noting from Table 2 that the 4ft cones are doped
more heavily (the real and imaginary parts of ¢, are larger) than the 6ft cones.
Absorber manufacturers make cones in this way to achieve best performance at

16
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Figure 9: Exact and approximate reflection coefficients for a wedge array with
an infinite backing layer (perpendicular polarization; wedge edges oriented along

the y-axis).
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Figure 10: Exact and approximate reflection coefficients for a wedge array with
a 0.1m backing layer (perpendicular polarization; wedge edges oriented along

the y-axis).

18



fNGLE OF INCIDENT = B.08
' ANGLE OF INCIDENT = 38.8 . ___
X ANGLE OF INCIDENT = 45.8
e.50 ANGLE OF INCIDENT = §8.8
IT(0)] ;
e
s.e0 [
s
.20
'.--llll_l_L_l_l_ll_l.A_l.llnlljlljll_lll_‘llllllJ_lllllll lllll A_ll“ll.’ll‘l
» o ] 5 B H B
- - ~N -~ ~

Frequency (MHz)

Figure 11: Reflection coeflicient of perpendicularly polarized waves at various
angles of incidence when the wedge edges are oriented along the y-axis.
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Figure 13: Reflection coefficient versus incidence angle for pyramid cone array
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Table 2: Measured bulk material properties for 6ft and 4ft “off-the-shelf” ab-

sorber.
6ft 4ft ll

Frequency cones cones
(MHz) | ¢ | & | « &
30 441 {224 | 15.21 | 10.22
35 423 | 211 | 13.94 | 10.03
40 4.11 | 1.95 1 12.97 | 9.87
45 3.98 | 1.84 | 12.08 | 9.66
b0 389195 (1130 | 949
55 3.83 | 1.68 | 1068 | 9.35
60 3.74 | 1.60 | 10.08 | 9.17
65 3.70 | 1.57 | 9.55 | 9.03
70 3.66 | 1.60 | 9.09 | B8.90
75 361147 | B65 | B.78
80 358 (141§ 827 | 8.66
85 356 | 1.38 | 7.90 | 8.59
90 352134 | 755 | 8.44
95 349 (131 | 7.24 | 837
100 347 | 1.29 | 6.93 | 8.29
120 340 1 1.21 | 584 | 798
140 3371116} 492 | 1.79
160 336 ( 1.13 | 410 | 7.61
180 3.37)1.22 ) 331 | 7.44
200 [3839]128] 255 | 7.1 |

——
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Figure 15: Reflection coefficients of “off-the-shelf” 6ft and 4ft cones, and of 6ft
cones made of modified material.
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higher frequencies. As the cones get larger in size, they require less doping to
obtain the same high frequency response as small cones.

After analyzing the properties of the two different cones, the question was
raised: what if we made a 6ft cone whose material properties were the same
as “off-the-sheli” 4ft cones? This particular configuration was analyzed and
the results are also shown in Figure 15. We see that the new cone performs
substastially better than either of the stock {6ft or 4ft) cones.

A second approach to improving the response of the pyramid-cone stracture
at low frequencies is to alter the length L of the tapered section and the thickness
d-of the backing layer (Fig. 6). Suppose that we wish to maintain the oversll
thickness L + d of the absorber structure a constant (6 feet, in the example we
look at below). Then, we can still vary L (hence also d) individually to see
the effect on the overall frequency behavior of the reflection coefficient. Figure
16 illustrates how the response changes when the dimensions are varied (the
modified material parameters—those of the 4 foot cones from Table 2—are used
here). From the figure we see that the best response is obtained whenL = 1.22
m and d = 0.6 m, making the tapered section occupy about 67 percent of the
total cone length. A standard 6ft cone has a tapered section of 1.57 m and a
backing layer of 0.25 m.

The results for the optimized design were then compared with those for the
standard 6ft geometry, and are shown in Figure 17. From the plot we see that
the new design performs substantially better than does the original cone. The
original cone reflects 50 percent of the energy at 30 MHz, where the new design
reflects only about 10 percent at 30 MHz.

Such improved-design cones have been made and installed in anechoic cham-
bers at two IBM manufacturing sites. Results of measurements made in those
chambers and comparisons with theoretical models for the chambers will be
reported in a separate publication.

5 Conclusion

There are two approximations inherent in our analysis which may limit its range
of validity. The first is our use of the continuum mode] (1)-(5) to account for
the anisotropic effect of the wedge or pyramid shapes. These expressions are
strictly valid only in the low-frequency limit, and begin to deteriorate if the
taper of the absorber is too fast (wedge angle greater than 20°) or the period
dimension of the wedges or cones is greater than about 10% or 20% of a free
space wavelength. If we can introduce frequency-dependent correction terms
to the expressions for [¢] and [i] as suggested in [10] and [23], it should prove
possible to relax these limitations substantially.

More fundamental in nature is the underlying assumption that only a single,
quasi-plane wave field exists in the tapered absorber, allowing the concept of the
equivalent tensor parameters to make sense at all. If frequency becomes high
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enough, higher-order Floquet modes may begin to propagate in the structure
[24]. Although the theory of [24] is not presently well enough developed to
account adequately for the presence of these modes, numerical evidence for an
equivalent waveguide model [23] suggests that the period of the wedges or cones
might become as large as a half wavelength before higher-order modes need to
be taken intoc account. Further work needs to be done on both of these points.

The numerical results presented here have shown the possibility of dramat-
ically improving the low-frequency reflection properties of pyramid-cone ab-
sorber. This may be at the expense of higher frequency response, but this range
is usually so good that it could be acceptable to trade a little performance here
for the great improvement at the low end. Other attempts at improved absorber
design will be investigated in future work.

A Properties of the Reflection Coefficient in a
Lossy Layer

In this appendix we will derive a few elementary properties of Z(z) and I'(z) in
a lossy layer as defined by eqns. (15) and (18). For the plane waves described
by equs. (8), Poynting’s theorem in its complex differential form is

LIECH* ()] = juléty EGP = g (NE@A (57)

where * denotes complex conjugate. Suppose that the plane z = z; is a perfect
conductor so that E(zg) = 0. Then integrating (57) from z (< 2g) to zg gives

EQH' () = ZE)HE)?
= —ju ] €2, (NEE) = g (NH(Z)P 42 (58)

Taking the real part of both sides and writing &y = €qg - jeisss Pesy =
Hopy — Jtteyy, with €5y, pigss 2 0, we have the relation expressing conservation
of time-average energy as:

Re[Z(2)] = m -[‘u[fgu (NE()? + p':”(z')lH(z')F] d’
0

> (59)
Thus, when no sources exist between a perfect conductor (which may be removed
to zp — oo if desired) and an observation point z, the impedance Z(z) is a purely
passive impedance, lying in the right half of the complex Z-plane.

If Z, is purely real, it is well known that (18) and (59) imply that I lies within
the unit circle of the complex I'-plane: || < 1. However, if Z, is complex, this
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is no longer the case [25]-[27). Let us write Z, in terms of its magnitude and
phase:

Z.=Z.e* (60)
where 4
7 - Beys + e}y ol
N WP (61)
el] efs
f" i
= % [m-l (f—;ﬂ-) —tan™! (i‘-,'ﬂ-)] (62)
ets Hegy

Note that |¢| < #/4 if é.5; and j.;; are given by (10) or (12).
Now from (18) and (60),

Z(2) mjoiny - LET(G)
Ze(2) 1-T(z)

1~ T7(z) — T¥(z) + 24Tu(=)
[t - T.()]* + T¥(2)

where I'(z) = T',.(2)+jTi(z) where I'; and T; are real. But if, by (59), Re[Z(z)} >
0, then (63) implies

(63)

[t —T? ~T#]cos ¢ — M;sin ¢ >0 (64)

" T(2) + j tan (2)] < sec 6(2) (65)

Egn. (65) describes the interior of a circle in the complex I'-plane centered at
—jtan ¢(z) and of radius sec ¢(z). When ¢ = 0, this reduces to the unit circle
as expected. If ¢ = £ /4, then the circle attains its maximum radius of \/5, and
is centered at Ij. Evidently, we may have [I'| > 1 in appropriate circumstances

if ¢ # 0.
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