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Abstract 

Stamper, Christopher Edward (Ph.D., Integrative Physiology)  

Characterization of the microbiome in a cohort of U.S. Veterans; implications for general  

and physical health, insomnia, and mental health 

Dissertation directed by Associate Professor Christopher A. Lowry 

 

The human microbiota is a term that is used to describe the microorganisms (archaea, 

bacteria, eukaryotes, and viruses) within the human body. The past decade has been 

characterized by a number of landmark surveys of the human microbiome such as The Human 

Microbiome Project. The main objective of these surveys was to generate a point of reference 

and large databases of comparators. Nevertheless, in-depth analyses of the human microbiome in 

association with validated measures of human general, physical, and mental health are lacking, 

especially the latter.  

The main goal of this dissertation was to assess the skin, oral, and fecal microbiomes in 

association with validated measures of general health, physical health, insomnia, and mental 

health in a cohort of U.S. Veterans. We sought to study this select group of individuals with 

unique environmental exposures and health outcomes, to determine if there were identifiable 

microbial signatures associated with specific health measures. We collected microbiome samples 

from three anatomical sites (skin, oral, and fecal) from 188 U.S. Veterans. From our results, we 

detail the general characteristics of the sample types (skin, oral and fecal) as they relate to each 

other and as they relate to gender, race, and age. We then characterized the microbiome of all 

three sample types (skin, oral and fecal) as they relate to metadata collected in three main 

categories: general and physical health, insomnia, and mental health.  
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Overall, our results comparing the microbiome at the three anatomical sites with respect 

to gender, race, and age were consistent with previous studies of different cohorts with different 

demographics. Measures of general and physical health displayed similar relationships to the 

fecal microbiome; specifically, we observed increased alpha diversity of the fecal microbiome in 

association with “healthy” states. We found that severe insomnia symptoms and several 

measures of mental health were associated with microbial feature from the various sampling 

sites. Further analyses are needed to understand the biological basis of the associations between 

the skin, oral, and fecal microbiomes and measures of physical health, insomnia, mental health, 

and if microbiome-based interventions can be developed in order to improve these health 

outcomes.  
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Chapter 1. Introduction 
The relationship between humans and microbes has been long and complicated with a 

rich history that included some of science’s greatest historical figures and chance happenings. 

We have coevolved with our microscopic counterparts since the beginning of time and we are 

coming to understand that this relationship is mainly symbiotic. Humans serve as the host while 

we are still discovering all the benefits that our commensals provide to us. Arguably one of the 

most overlooked benefits of our relationship with microbes is the endosymbiotic hypothesis of 

mitochondria 1. Although it is still being debated, the organelle that is the power house of every 

cell in the body most likely has a prokaryotic lineage that at some point in evolution was 

captured and incorporated into our eukaryotic existence.   

Bacteria were first discovered by Antonie van Leewenhoek in 1683. Leewenhoek was a 

Dutch business man who owned a draper shop and became the “father of microbiology” because 

of a desire to observe the fiber quality of his drapes at a level of resolution that was beyond what 

was available at the time.2 He began to master the art of glass lens fabrication and, through 

diligence, he developed one of the first microscopes. His obsession with perfecting the lenses 

culminated in making his microscopes capable of a magnification power of 270x.3 His natural 

curiosity compelled him to turn the objective on his microscopes toward specimens other than 

his drapes, including pond water where he was the first to observe and document what he called 

“animalcules”.4 These “animalcules” later became known to be bacteria and protists and his 

work in the development of microscopes ultimately founded the field of microbiology.  

In the late 19th century, the work of Louis Pasteur and Robert Koch determined that 

bacteria and other microorganisms were causing many diseases. Pasteur first demonstrated that 

microorganisms were in the air and played a role in spoilage.5 He showed that by preventing air 

from contacting a nutrient-rich medium such as broth sanitized by boiling, one could prevent the 
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spoilage of the broth. However, if air was allowed to contact the broth, it would ferment and 

spoil. Koch added to the findings of Pasteur with his work with pathogens cultured from diseased 

animals and showed that they have the ability to harm a host. From these experiments, Koch was 

responsible for creating the first set of scientifically-based criteria to determine if a 

microorganism was responsible for causing a disease. The criteria for identification of microbial 

agents with virulence factors were deemed Koch’s Postulates and were6: 

1. The microorganism must be found in abundance in all organisms suffering from the 

disease, but should not be found in healthy organisms.  

2. The microorganism must be isolated from a diseased organism and grown in pure culture. 

3. The cultured microorganism should cause disease when introduced into a healthy 

organism.  

4. The microorganism must be re-isolated from the inoculated diseased experimental host 

and identified as being identical to the original specific causative agent. 

 

The work of Pasteur and Koch confirmed the “germ theory of disease.”7 This 

confirmation was an extraordinary conceptual leap from what had previously been proposed by 

Girolamo Fracastoro in 1546 that “clothes, linens, etc., which although not themselves corrupt, 

can nevertheless foster the essential seeds of the contagion and thus cause infection” to showing 

that very specific microscopic organisms were causing disease.8 This leap was the key that 

allowed medicine to pass into a semi-modern realm. Furthermore, Koch’s Postulates have 

withstood the test of time and are the current scientific theory of disease.9 

  The confirmation of the “germ theory of disease” was a scientific discovery that shifted 

the mind set and approach taken towards microbes by the medical field. During that time in 



 3 

history, the findings of Koch and Pasteur sparked the initiation of much needed changes in 

medical practice to actually begin to comply with the Hippocratic Oath, “above all, do no 

harm.”10 In adapting aseptic techniques that were backed by scientific experiments, medicine 

began to come out of the dark ages and set the stage for transforming our relationship with the 

now perceived harmful microbes. However, steps toward attempting to totally eradicate these 

microbes from our existence were not put into action until Alexander Fleming’s accidental 

happening upon benzylpenicillin in 1928.11 

As the story goes, Fleming was a brilliant researcher, but did not keep the most sanitary 

lab. He was characterizing Staphylococcus and went on holiday for a month and upon his return 

he found that some of the cultures of Staphylococcus had grown fungi. However, instead of 

tossing them out, he examined them and noticed that there were no colonies of Staphylococcus in 

close proximity to the fungi, while colonies remained present further from the fungi. He 

concluded that the fungi were producing a substance that he called “mould juice” with a property 

of being a “bacteria killer.”12 Fleming cultured the fungi and found it to be Penicillium, a genus 

of Ascomycetous fungi, and changed the name of the antibacterial “mould juice” to penicillin in 

1929. This was a major breakthrough in medicine and Sir Fleming was knighted and awarded the 

Nobel Prize in Physiology and Medicine in 1945 for his discovery. Other researchers, namely 

Ernst Boris Chain and Howard Florey, WWII, and funding from the US and British governments 

were the main driving forces for the mass production of penicillin and the development of 

antibiotics as we known them today. These developments changed the world of medicine and 

provided the medical community with a tool to effectively combat bacterial infection and 

inadvertently began an era of sanitization.13  
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 The advent of antibiotics may have led medical professionals to believe that a large 

chunk of what was causing disease and illness in humans was solved. And for the most part this 

was true; humans were able to treat acute illnesses and infections caused by bacteria relatively 

effectively with antibiotics and antiseptic practices. However, fast forward to today and the story 

becomes a bit more complicated. Westernized societies, the societies with the “best” modern 

medical practices and sanitary guidelines, have been on a campaign against microbes for decades 

and are now experiencing rapid and unexplained rises in chronic inflammatory diseases.14 These 

diseases span almost all the body systems and include atopic sensitization,15–17 food allergies,18 

autoimmune diseases,19 and inflammatory bowel disorders.19 Researchers and medical 

practitioners are beginning to question the approach of eradicating and dramatically reducing the 

exposure to microorganisms that we have coevolved with for thousands of years. It has only 

recently been recognized that these “old friends” may have immunoregulatory properties that are 

necessary to keep our immune system in check. Evidence suggests that, if these interactions are 

not present, the immune system becomes hyperactive and proinflammatory, leading to chronic 

low-grade inflammation and an exaggerated immune (re)activity that may be contributing to the 

current rise in inflammatory diseases. This theory has been outlined in two prominent 

hypotheses, the “old friends” hypothesis20 and the biodiversity hypothesis,21 which propose that 

our immune system depends on the stimulation of environmental microbes for normal and 

balanced function. So again, the perception of our relationship with microbes is changing. The 

embracement of “good bacteria” or probiotics and a healthy gut microbiota are in full swing and 

so the journey continues.   

Probiotics have a rich history that began even before antibiotics were discovered, when it 

was noticed and published that not all microbes were detrimental to health. In 1907, Ilya Ilyich 
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Mechnikov (who also went by the pen name Elie Metchnikoff) published The prolongation of 

life, optimistic studies where he discussed, in detail, his thoughts on the current scientific 

principles of how to prolong life and for reasons irrelevant to this dissertation Metchnikoff came 

to the conclusion that preserving the intestines or inhibiting putrefaction of the intestines was the 

key to extending life.22 In The prolongation of life there is a chapter entitled “Lactic acid as 

inhibiting intestinal putrefaction” that might have been the first review ever published on the 

benefits of bacteria on human health nearly half a century before the term “probiotics” was 

coined by Werner Kollath in 1953.23 He cites several examples of natural lactic acid 

fermentation processes in foods such as cabbage, cucumbers, apples, melons, bread, fish, and 

milk that preserve these foods in a way that is not toxic to humans. He also describes that these 

naturally preserving processes allow civilizations in regions of the world with long hard winters 

to sustain themselves. He concludes these arguments with the following statement “as lactic 

fermentation serves so well to arrest putrefaction in general why should it not be used for the 

same purpose within the digestive tube?” (p. 119).22 He continues by reporting “research” 

showing that lactic acid bacteria consumed by humans shows evidence of preventing 

putrefaction of the digestive tube by measuring sulpho-conjugate ethers in urine. Finally, he 

arrives at his most cited observation that Bulgarian peasants were far outliving their wealthier 

counterparts because of their daily consumption of yogurt, mainly because the lactic acid 

bacteria in the yogurt, which later became to be known as Lactobacillus bulgaricus, were 

preventing putrefaction of the digestive tube and leading to a prolongation of life. This 

conclusion also influenced Metchnikoff to culture his own lactic acid bacilli and consume it 

every day for 8 year leading up to the publishing of his book and presumably an additional 8 

years until his death in 1916. Yet the most profound statement within the whole chapter in my 
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opinion was “a reader who has little knowledge of such matters may be surprised by my 

recommendation to absorb large quantities of microbes as the general belief is that microbes are 

all harmful. This belief, however, is erroneous. There are many useful microbes, amongst which 

the lactic bacilli have an honourable place” (p. 128).22 

If only Metchnikoff could see the world of probiotics today. Probiotics species have 

expanded far beyond Lactobacillus and never have we been exposed to such a volume of 

advertising recommending that we “absorb large quantities of microbes.” Based on a market 

report by Global Market Insights, Inc. the global probiotics market is projected to exceed $63 

billion by 2022 and, according to a survey of Grants.gov [https://www.grants.gov, accessed April 

14, 2018], probiotics are being used in clinical trials to treat obesity, inflammatory bowel 

disorders, and posttraumatic stress disorder (PTSD). The past decade has been filled with 

massive survey studies such as the Human Microbiome Project,24 American Gut Project,25 

Belgian Flemish Gut Flora Project,26 Dutch LifeLines DEEP study,27 and many more. The main 

objective of these surveys was to generate a point of reference and large databases of 

comparators. The field is taking the necessary steps to characterize how our commensal bacteria 

influence our health.  

The main goal of the current study and this dissertation was to achieve a similar end in a 

Veteran cohort. We sought to look at this select group of individuals with unique environmental 

exposures and health outcomes, to determine if there were identifiable microbial signatures 

associated with specific health measures. We collected microbiome samples from three 

anatomical sites, skin, oral, and fecal, from 188 United States of America Veterans. From our 

results, we detail in Chapter 3 the general characteristics of the sample types (skin, oral and 

fecal) as they relate to each other and as they relate to gender, race, and age. In Chapters 4, 5, 
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and 6 we characterize the microbiome of all three sample types (skin, oral and fecal) as they 

relate to metadata collected in three main categories: general health and physical health (Chapter 

4), insomnia (Chapter 5), and mental health (Chapter 6). Finally, in Chapter 7 we state our 

conclusions with overall interpretations, limitations, and future directions.  
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Chapter 2. General materials and methods  
2.1 Participants and study design 

This observational study included a sample of 188 participants from a population of 

Veterans seeking care within the US Department of Veteran Affairs health care system. In 

summary, microbiome samples were collected from three body sites: skin, oral, and fecal. 

Several demographic, service history, physical health, and mental health measures were collected 

via medical records, surveys, questionnaires, and interviews. The metrics of physical and mental 

health were used to make associations to the microbiome at the three sampling sites. These 

associations are detailed in the successive chapters of this dissertation. All research and 

experimental practices associated with this dissertation were approved and performed in 

accordance with the Colorado Multiple Institutional Review Board (COMIRB; protocol number 

15-1885) at the University of Colorado Anschutz Medical Campus. Additionally, the study was 

given exempt status from the University of Colorado Boulder IRB as data were de-identified and 

no further contact with participants was planned. 

2.1.1 Recruitment of participants  
The research team worked with providers within the Eastern Colorado Health Care 

System (ECHCS) to recruit potential participants. Specific recruitment strategies included: 

attending Veteran groups and events within the ECHCS, hosting regular recruitment/information 

booths inside the Veteran Health Administration (VHA), posting of recruitment flyers inside the 

VHA and in multiple locations throughout the community, attending community/regional events 

geared for Veterans and/or suicide prevention, posting study opportunities on the Rocky 

Mountain MIRECC website, and including research information in welcome letters to newly 

enrolling Veterans. In addition, health care professionals treating patients within the VHA 

system were informed about the study and assisted in recruitment of patients. Approximately 

30% of Veterans choose not to seek care within the VHA. Recruitment efforts included strategies 
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to target Veterans in the community who are eligible to receive VHA care, but do not seek care 

within VHA system.  

2.1.2 Screening and inclusion/ exclusion criteria  
Screening  

Individuals who responded to recruitment efforts participated in a brief screening process 

by telephone or in person. The screening process objective was to determine if participants were 

eligible to participate in the study based on the inclusion/ exclusion criteria. Screening also 

included a review of VHA medical records. Those who were eligible to participant were 

scheduled for a clinical visit. 

Inclusion criteria 

Veterans between ages 18-99 years of age at the time of enrollment 

Capability of providing a signed and dated informed consent  

Capability and willingness to provide skin, oral, and fecal samples 

Exclusion criteria 

Females who were pregnant  

Positive test for human immunodeficiency virus (HIV), hepatitis B virus (HBV), or hepatitis C 

virus (HCV) per self-report or chart review 

Unstable dietary history as defined by major changes in diet during the previous month, where 

the participant has eliminated or significantly increased a major food group in their diet  

Any confirmed or suspected condition/state of immunosuppression or immunodeficiency  

Major surgery of the GI tract, with the exception of cholecystectomy and appendectomy, in the 

past five years, including any major bowel resection at any time 

Chronic dry mouth 

Individuals exhibiting symptoms of acute disease or infection at the time of enrollment  
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2.1.3 Consent process 
 All members of the research team were trained in Colorado Multiple Institutional Review 

Board (COMIRB) procedures and were under the direct supervision of Lisa A. Brenner, PhD. 

Participants were informed of the nature of the study and potential risks and benefits were 

discussed in a private office at the ECHCS and participants were given the opportunity to ask 

questions about the study. The participants were then presented with an informed consent 

document and were asked to answer six questions to ensure the participants' ability to adequately 

provide informed consent. If participants were not able to adequately respond to the six 

questions, they were excluded from the study. The questions were:  

1) Why is this study being done?  

2) What is the study asking you to do?  

3) What are the risks/side effects of being in the study?  

4) What are the benefits of being in the study?  

5) Is the study voluntary?  

6) What do you do if you have questions or possible side effects?  

Participants were provided with a copy of the consent form and the consent process was 

documented in the participant’s electronic VHA medical record. 

 Participants also provided authorization to collect protected health information. A signed 

and dated copy of the release was provided to the participants. All data in electronic format were 

stored in password protected spreadsheets on the VHA shared drive, behind the VHA firewall 

and on a secure server and behind a firewall at University of Colorado Anschutz Medical 

Campus. Original signed informed consent forms and Health Insurance Portability and 

Accountability Act (HIPAA) authorization forms were stored in locked filing cabinets. Only 
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members of the research team listed on the COMIRB protocol were permitted access to the paper 

documents. 

2.1.4 Compensation  
Participants were compensated $35 for the completion of each study visit. Participants 

were also compensated $10 for providing skin, oral, and fecal samples.  

2.1.5 Surveys 
Participants completed several surveys and results were compiled into a metadata 

spreadsheet to examine associations between survey endpoints and the microbiome. Information 

about the surveys administered to participants can be found in the Table 2.1. Descriptions of the 

surveys and justification for administering them can be found in the Appendix (Chapter 8) of this 

dissertation.  

Table 2.1 Survey information and details 
Measure Time (min) Purpose 
Baseline visit at ECHCS 
University of Washington Risk Assessment 
Protocol- Revised (UWRAP)28 

5 Safety 

Rocky Mountain MIRECC Demographics 
Form 

5 Demographic Information 

Structured Clinical Interview for DSM-5 Axis 
I Disorders (SCID-5)29 

30 Mental health 

Ohio State University TBI-ID (OSU-TBI-
ID)30 

25 TBI  

PTSD Symptom Checklist 5 (PCL-5)31 5 PTSD 
45-Item Outcome Questionnaire (OQ-45)32 10 Mental health 
36-Item Short Form Health Survey (SF-36)33 10 General, physical and 

mental health 
Harvard Food Frequency Questionnaire 
Booklet34 

20 Diet information 

Insomnia Severity Index (ISI)35 5 Sleep information 
Beck Depression Inventory (BDI)36 5 Depression severity 

Abbreviations: UWRAP, University of Washington Risk Assessment Protocol; MIRECC, Rocky 
Mountain Mental Illness Research, Education, and Clinical Center; DSM-5, Diagnostic and Statistical 
Manual of Mental Disorders; SCID-5, Structured Clinical Interview for the DSM-5; OSU-TBI-ID, Ohio 
State University Traumatic Brain Injury- Identification; PTSD, Posttraumatic stress disorder; PCL-5, 
PTSD Symptom Checklist 5; OQ-45, 45-Item Outcome Questionnaire; SF-36, 36-Item Short Form Health 
Survey; ISI, Insomnia Severity Index; BDI, Beck Depression Inventory.  
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During a clinical visit to the VHA, participants self-reported demographic data including 

age, gender, race, ethnicity, marital status, sexual orientation, education level, employee status, 

student status, currently homeless, numbers of times homeless, and ever homeless. Demographic 

characteristics about the Veteran cohort can be found in Table 2.2.  

Table 2.2 Veteran cohort demographic characteristics 
Variable N (%) or  

Mean ± SD (range) 
Total 188 (100%) 
Age 47.0 ± 13.8 (24-77) 
Age Groups   
          20-29 22 (11.7%) 
          30-39 50 (26.6%) 
          40-49 25 (13.3%) 
          50-59 50 (26.6%) 
          60-69 36 (19.1%) 
          70+  5 (2.7%) 
Gender   
          Male 160 (85.1%) 
          Female 28 (14.9%) 
Race  
          Caucasian 120 (63.8%) 
          African American 40 (21.3%) 
          Asian 3 (1.6%) 
          Native American 5 (2.7%) 
          Multiracial 6 (3.2%) 
          Other 14 (7.4%) 
Ethnicity  
          Hispanic 25 (13.3%) 
          Non-Hispanic 163 (86.7%) 
Marital Status    
          Married 62 (33.0%) 
          Single 52 (27.7%) 
          Cohabitating 7 (3.7%) 
          Separated/Divorced 58 (30.8%) 
          Widowed 9 (4.8%) 
Sexual Orientation  
          Heterosexual 173 (92.0%) 
          Gay/Lesbian/Queer 9 (4.8%) 
          Bisexual 4 (2.1%) 
          Other 2 (1.1%) 
Education Level  
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          No High School Degree 1 (0.6%) 
          High School Degree 23 (12.2%) 
          Some College 72 (38.3%) 
          Associate Degree 26 (13.8%) 
          Bachelor Degree 50 (26.6%) 
          Master’s Degree 13 (6.9%) 
          Doctoral Degree 3 (1.6%) 
Employment Status  
          Employed Full-Time 48 (25.5%) 
          Employed Part-Time 17 (9.0%) 
          Unemployed Seeking Job 40 (21.3%) 
          Unemployed Not Seeking 
Job 

34 (18.1%) 

          Retired 49 (26.1%) 
Student Status  
          Not in school 153 (81.4%) 
          Full-Time 27 (14.3%) 
          Part-Time 8 (4.3%) 
Currently Homeless  
          Yes 16 (8.5%) 
          No 172 (91.5%) 
Number of Times Ever Homeless 1.3 ± 2.6 (0-20) 
Ever Homeless  
          Yes 92 (48.9%) 
          No 96 (51.0%) 

Abbreviations: SD, standard deviation.  

Participants provided service data including service branch, service type, months in each 

type of service, service era, number of deployments, and number of times in combat. The survey 

questionnaire responses for each category can be found in Table 2.3. 
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Table 2.3 Veteran cohort military service characteristics 
Variable N (%) or  

Mean ± SD (range) 
Service Branch  
          Army 91 (48.4%) 
          Air Force 36 (19.1%) 
          Navy 28 (14.9%) 
          Marines 25 (13.3%) 
          Coast Guard 1 (0.6%) 
          Multiple 7 (3.7%) 
Service Type  
    Active Duty (AD) only 134 (71.3%) 
    Reserve Duty (RD) only 4 (2.1%) 
    AD & RD 50 (26.6%) 
Months on Active Duty (n = 184) 81.3 ± 67.1 (3-360) 
Months on Reserve Duty1 (n = 53) 63.1 ± 70.0 (2-372) 
Service Era  
          Post Korean 2 (1.1%) 
          Vietnam 17 (9.0%) 
          Post-Vietnam 44 (23.4%) 
          Desert Storm 18 (9.6%) 
          OEF/OIF/OND 63 (33.5%) 
          Multiple 44 (23.4%) 
Year Separated from Service1 (n = 179) 1997 ± 16 (1959-2017) 
Deployed  
          Yes 132 (70.2%) 
          No 56 (29.8%) 
Number Times Deployed2 (n = 132) 2.8 ± 2.4 (1-15) 
Combat  
          Yes 89 (47.3%) 
          No 99 (52.7%) 
Number Times in Combat2 (n = 89) 2.0 ± 1.3 (1-8) 
1Some observations had missing data on variables of interest. 
Specifically, one observation for a Reserve Duty Veteran was missing 
data on months of service, and 9 observations were missing data for the 
year separated from service. 2Continuous variables on the number of 
times deployed and the number of times in combat were only reported 
among those observations with any deployment or combat exposure. 
Abbreviations: SD, standard deviation; OEF/OIF/OND, Operation 
Enduring Freedom/ Operation Iraqi Freedom/ Operation New Dawn  

 
Psychometrically sound measures to obtain data regarding general and physical health, 

insomnia, and mental health conditions of interest were administered and included the Beck 
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Depression Inventory (BDI), Insomnia Severity Index (ISI), 45-Item Outcome Questionnaire 

(OQ-45) Severity measures, 36-Item Short Form Health Survey (SF-36), PTSD Checklist 5 

(PCL-5), traumatic brain injury (TBI) presence, moderate to severe brain injury presence, and 

number of TBIs. Summaries of the listed surveys and questionnaires can be found in Tables 2.4 

and 2.5.   

Table 2.4 Veteran cohort mental health characteristics with variables categorized and 
interpreted 

Variable N (%) or  
Mean ± SD 
(range) 

Number of missing 
samples  

Beck Depression Inventory1    2 
          Severe 28 (15.1%)  
          Moderate 33 (17.7%)  
          Mild 29 (15.6%)  
          Minimal 96 (51.6%)  
Insomnia Severity Index2   3 
          Clinical Insomnia (Severe) 21 (11.3%)  
          Clinical Insomnia (Moderate Severity) 44 (23.8%)  
          Subthreshold Insomnia 63 (34.1%)  
          No Clinically Significant Insomnia 57 (30.8%)  
OQ-45 Total Severity2   2 
          Clinically Significant 83 (44.6%)  
          Not Clinically Significant 103 (55.4%)  
OQ-45 Symptom Distress Severity3   2 
          Clinically Significant 78 (41.9%)  
          Not Clinically Significant 108 (58.1%)  
OQ-45 Interpersonal Relations Severity4   2 
          Clinically Significant 108 (58.1%)  
          Not Clinically Significant 78 (41.9%)  
OQ-45 Social Role Severity5   2 
          Clinically Significant 69 (37.1%)  
          Not Clinically Significant 117 (62.9%)  
SF-36 Physical Component Summary (PCS)6   7 
          Impaired Function 73 (40.3%)  
          No Impaired Function 108 (59.7%)  
SF-36 Mental Component Summary (MCS)6   7 
          Impaired Function 93 (51.4%)  
          No Impaired Function 88 (48.6%)  
PCL-5 Symptom Severity7   2 
          Significant 72 (38.7%)  
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          Not Significant 114 (61.3%)  
Traumatic brain injury   1 
          Yes 133 (71.1%)  
          No 54 (28.9%)  
Moderate or severe brain injury8   
          Yes 23 (12.2%)  
          No 165 (87.8%)  
Number of traumatic brain injuries 2.50 ± 1.74 (1-

11) 
 

Participants that reported experiencing a 
traumatic brain injury  

133  

1 Beck Depression Inventory: 0-13-Minimal, 14-19-Mild, 20-28-Moderate, 29-63 
Severe; 2OQ-45 Total Severity: >63 Clinically Significant; 3OQ-45 Symptom Distress 
Severity: >36 Clinically Significant; 4OQ-45 Interpersonal Relations Severity: >15 
Clinically Significant; 5OQ-45 Social Role Severity: >12 Clinically Significant; 6SF-36 
Physical and Mental Component Summary scores: >45 Average Function, <45 Impaired 
Function; 7PCL-5 Symptom Severity: >33 Significant; 8Moderate or Severe Traumatic 
Brain Injury: one or more times lost consciousness for over 30 minutes in lifetime. 
Abbreviations: SD, standard deviation, OQ-45, 45-Item Outcome Questionnaire; SF-36, 
36-Item Short Form Health Survey; PCL-5, PTSD Checklist for DSM-5. 
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Table 2.5 Veteran cohort mental health characteristics without categorical assignments 
Variable N (%) or  

Mean ± SD (range) 
Number of 
missing 
samples  

Beck Depression Inventory  14.6 ± 13.0 (0-57) 2 
Insomnia Severity Index  11.6± 7.3 (0-28) 3 
OQ-45 Total Severity  58.1 ± 30.7 (0-148) 2 
OQ-45 Symptom Distress Severity  32.7 ± 18.7 (0-90) 2 
OQ-45 Interpersonal Relations Severity  15.7 ± 8.5 (0-38) 2 
OQ-45 Social Role Severity  9.7 ± 5.6 (0-26) 2 
SF-36 Physical Component Summary (PCS) 46.6 ± 9.9 (17.8-69.3) 7 
SF-36 Mental Component Summary (MCS) 43.3 ± 12.8 (10.6-64.9) 7 
PCL-5 Symptom Severity  26.7 ± 21.3 (0-80) 2 
Traumatic brain injury   1 
          Yes 133 (71.1%)  
          No 54 (28.9%)  
Moderate or severe brain injury1   
          Yes 23 (12.2%)  
          No 165 (87.8%)  
1Moderate or severe traumatic brain injury: one or more times lost consciousness for 
over 30 minutes in lifetime. Abbreviations: SD, standard deviation; OQ-45, 45-Item 
Outcome Questionnaire; SF-36, 36-Item Short Form Health Survey; PCS, Physical 
Component Summary, MCS, Mental Component Summary; PCL-5, PTSD Checklist for 
DSM-5. 

 

2.2 Sample collection and preparation 
Skin, oral, and fecal samples from each participant were collected with double tipped 

polyurethane swabs (BD BBLTM CultureSwabTM EZ II, Cat No. B220144, Fisher Scientific, 

Pittsburgh, PA, USA). Skin and oral swabs were collected by the participant during an inpatient 

evaluation and were stored at -80 oC within one hour of sampling. Skin samples were collected 

by swabbing the antecubital fossa (inner elbow). A detailed protocol for how the skin sample 

was acquired can be found in the appendix (section A2.1) of this dissertation. Oral samples were 

collected by swabbing the buccal mucosa (inner cheek). A detailed protocol for how the oral 

sample was acquired can be found in the appendix (section A2.2) of this dissertation. Participants 

either provided a fecal sample during the same clinical visit as when the skin and oral samples 

were collected or received a pre-packaged sampling kit for home use with instructions for sample 
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collection. A detailed protocol for how the fecal samples were acquired can be found in the 

appendix (section A2.3 and A2.4) of this dissertation. Fecal samples collected at home were 

mailed back to the Rocky Mountain MIRECC within 24 hours of collection. Upon receipt, all 

samples were stored at -80 oC. All samples were transported to the University of Colorado 

Boulder on dry ice or in portable freezers at -20 oC for molecular processing. 

2.3 Molecular processing  
Sample DNA was extracted using the PowerSoil DNA extraction kit (Cat No. 12955-4, 

Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Marker genes in 

isolated DNA were PCR-amplified using GoTaq Master Mix (Cat No. M5133, Promega, 

Madison, WI, USA) and 515 F (5’-GTGCCAGCMGCCGCGGTAA-3’) 806 R (5’-

GGACTACHVGGGTWTCTAAT-3’) primer pair (Integrated DNA Technologies, Coralville, 

IA, USA) targeting the V4 hypervariable region of the 16S rRNA gene modified with a unique 

12-base sequence identifier for each sample and the Illumina adapter as previously described in 

Caporaso et al., 2012.37 The thermal cycling program consisted of an initial step at 94 °C for 3 

min followed by 35 cycles (94 °C for 45 sec, 55 °C for 1 min, and 72 °C for 1.5 min), and a final 

extension at 72 °C for 10 min. Polymerase chain reactions (PCR) were run in duplicate and the 

products from the duplicate reactions were pooled and visualized on an agarose gel to ensure 

successful amplification. PCR products were cleaned and normalized using a SequalPrep 

Normalization Kit (Cat. No. A1051001, ThermoFisher, Waltham, MA, USA) following 

manufacturer’s instructions. The normalized amplicon pool was sequenced on an Illumina MiSeq 

run by using V3 chemistry and 600 cycle, 2 x 300-bp paired-end sequencing. All library 

preparation and sequencing were conducted at the University of Colorado Boulder BioFrontiers 

Next-Gen Sequencing core facility, https://bficores.colorado.edu/sequencing-lab. 
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2.4 Computational analyses  
2.4.1 Sequence processing 

Raw sequences were trimmed, demultiplexed, merged, quality filtered (maxee value of 1 

and singletons removed), and clustered into greater than or equal to 97% similar phylotypes 

using UPARSE v8.38 Quality reports from the fastq_eestats2 command were used to determine 

the fixed-length (200 nucleotides for the forward read and 150 nucleotides for the reverse read) 

at which the raw sequences were trimmed as suggested by the developers of UPARSE. Merging 

criteria were adjusted as suggested by UPARSE developers for merging reads with long overlap. 

Taxonomy was assigned using the Ribosomal Database Project (RDP) classifier39 trained on the 

Greengenes 13_8 16S rRNA gene database.40 For downstream analysis rarefaction curves were 

examined by sample type and the following depths were chosen: skin, 2000; oral, 2000; fecal, 

3000. The samples removed or not present as well as final sample sizes used for analysis are 

listed in Table 2.6.  

Table 2.6 Final sample sizes and sources of missing or removed data 
Sample type Missing samples  Samples removed due 

to sampling depth 
Final 
sample size 

Skin 2 9 177 
Oral  1 9 178 
Fecal 25 2 161 

 

2.4.2 Alpha and beta diversity  
Alpha diversity 

Analysis of alpha diversity was performed with the R package phyloseq (v 1.20.0)41 and 

mctoolsr (v 0.1.1.1) (https://github.com/leffj/mctoolsr/). Stacked bar plots for a taxonomic level 

were created by using the summarize_taxa command and designating the desired taxonomic 

level in the mctoolsr package and then passing the output through the plot_taxa_bars command. 

The parameters of the summarize_taxa command were set to only plot the top ten taxa. Statistics 

on taxa driving differences between categories within a variable were generated by running the 
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summarize taxa command and designating the desired taxonomic level in the mctoolsr package 

and then passing the output through the taxa_summary_by_sample_type command. The 

parameters of the taxa_summary_by_sample_type command were set to filter out taxa that had a 

relative abundance less than 0.01 and to run Kruskal-Wallis statistics.   

Beta diversity 

Quantitative Insights Into Microbial Ecology (QIIME v 1.9.1) was used to generate 

weighted and unweighted UniFrac distance matrices to examine the microbial community 

structure.42,43 Further analysis of beta diversity was performed with the R package phyloseq (v 

1.20.0)41 and mctoolsr (v 0.1.1.1) (https://github.com/leffj/mctoolsr/). Bacterial community 

composition differences were tested with permutational analysis of variance (PERMANOVA) 

performed with the vegan (v 2.4-4) package.44 Both weighted and unweighted UniFrac distance 

matrices were analyzed by PERMANOVA and significant unweighted UniFrac p-values were 

only reported if weighted UniFrac p-values were not significant. All statistics and most graphics 

were created in R (v 3.4.1). Mean dissimilarity principal coordinate analysis plots were made by 

generating a distance matrix using either weighted or unweighted (depending on the variable) 

UniFrac distance metrics. The distance metric was collapsed into mean dissimilarity distances 

using the calculate_mean_dissimilarities command in the mctoolsr package. This distance matrix 

was then passed into the calc_ordination command in the mctoolsr package and finally plotted 

using the plot_ordination command in the phyloseq package. It should be noted that these plots 

are strictly for visualizing general trends in bacterial community structure between groups of 

samples. Interpretation of these plots beyond this is limited and we want to be explicit about this 

concept and stress that no statistical analyses were run on the mean dissimilarity PCoA analysis 

and plots.   
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Machine learning  

Random forest analysis was done using the randomForest (v 4.6-12) package. Random 

forest parameters were set to create 1000 trees and run using the 10-fold cross-validation 

method.45 Importance and proximity parameters were set to TRUE to generate importance values 

for the most predictive OTUs and to allow for the generation of a multidimensional scaling 

(MDS) plot of the results.  

2.4.3 Initial analysis of target variables  
The metadata file generated for this study had 177 total variables assessed or associated 

with each participant. Categorical variables with severely unbalanced sample sizes (i.e. yes: 95% 

of samples, no: 5% of samples) were removed (n = 63), unless the variable had previously been 

cited in other studies as a variable of significant interest to the field (i.e. age group, gender, race) 

or if the variable related to the major topics of this dissertation (measures of general and physical 

health, insomnia, and mental health). Finally, variables unrelated to the topics of this dissertation 

were removed (i.e. PCR primer plate number and barcode sequence) (n = 30). After the data 

were filtered based on these criteria, 84 target variables remained. To gain general insight into 

the microbial associations with these variables, a for-loop was generated in R (v3.4.1) and the 

following metrics were generated and assessed:  

• Alpha diversity  

o Observed OTUs  

§ Kruskal-Wallis test  

§ Pairwise Wilcoxon rank-sum test 

o Shannon diversity  

§ Kruskal-Wallis test  

§ Pairwise Wilcoxon rank-sum test 
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• Beta diversity  

o Taxa driving differences at all taxonomic levels  

§ Taxa filtered at a relative abundance of 0.01  

§ Kruskal-Wallis test 

o Weighted UniFrac 

§ PCoA plot  

§ PERMANOVA  

§ Permutational test of homoscedasticity  

o Unweighted UniFrac 

§ PCoA plot  

§ PERMANOVA  

§ Permutational test of homoscedasticity  

These results were compiled, separated into skin, oral, and fecal results, sorted into general and 

physical health, insomnia, or mental health categories, and evaluated for significance. Significant 

alpha and beta diversity were validated and results were reported. Specific taxa were not 

assessed if beta diversity results were not significant unless specified as “exploratory analysis”.  

2.4.4 Veteran health personal data  
Height and weight data were collected from the participants during the inpatient visit. 

This information was used to generate a body-mass index (BMI) for each participant. The BMIs 

of the cohort were compiled into categories outlined by the Center for Disease Control (CDC). 

Compiled BMI data for the cohort can be found in Table 2.7. The analyses done in this 

dissertation excluded BMIs over 40.  
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Table 2.7 Body-mass index (BMI) categories and sample sizes 
BMI	Category	 Number of participants  
Underweight	(<	18) 0 
Healthy (19-24) 46 
Overweight (25-29) 70 
Obese (30-39) 57 
Extremely Obese (> 40)  8 
Missing BMI data 7 

Abbreviations: BMI, body-mass index.  

2.4.5 General graphics  
Violin plots  

Violin plots are similar to box-and-whisker plots but with added information about the 

distribution of samples within the distribution. The violin plots that are displayed in this 

dissertation have a box-and-whisker plot overlaid on the violin plot. The box-and-whisker plot 

shows the median and quartile information (for a more detailed description of box-and-whisker 

plots please refer to the box-and-whisker plots section immediately below).  The violin plot is a 

kernel density estimation that represents the probability that a sample will fall into a specific 

region of the plot. Wider areas of the plots represent areas where there is a higher probability for 

a sample to fall and vice versa for narrower regions of the plot.  

 
Box-and-whisker plots 

In the box-and-whisker plots, the median is illustrated by a thick black line; bottoms and 

tops of boxes indicate the first and third quartiles, respectively; whiskers indicate the 1.5 

interquartile range (IQR) beyond the upper and lower quartiles. Values outside the whiskers are 

indicated by black dots.    
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Chapter 3. Characterization of the skin, oral, and fecal 
microbiomes among a cohort of United States Military Veterans 
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3.1 Introduction  
In 2007, the United States National Institutes of Health (NIH) launched the Human 

Microbiome Project (HMP) as an extension of the Human Genome Project, in the spirit and full 

embracement of the human as a “supra-organism”, comprised of both intrinsic (host-derived) and 

extrinsic (microbe-derived) genetic material.46 The HMP set out to achieve the following: a) 

construct draft assemblies of reference genomes, b) obtain reference microbiome datasets, c) 

create a reference dataset of “normal healthy individuals”, d) expand the project to create a 

global human microbiome diversity project. Initial efforts for objective c), above, included 

sequencing the microbiomes of 300 “healthy” human subjects at 5 major body sites (skin, oral, 

airways, gut, and vagina).46 Since the conception of medicine and science, members of medical 

and scientific communities have been interested in diseased or allostatic states; however, in order 

to be able to understand the fundamentals of these maladaptive states a homeostatic comparison 

state is required. The value of the HMP in sequencing the microbiomes of 300 “healthy” human 

subjects is directly in line with that objective. In order to identify and characterize a state of 

dysbiosis, microbial imbalance or maladaptation, it was first necessary to develop a reference 
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dataset of a “healthy” cohort. The creation of this dataset was a tremendous endeavor, a major 

achievement, and has provided a reference for the comparison of contingents with potentially 

dysbiotic states against a “healthy” cohort. Researchers have started investigating the human 

microbiome, most often the gut microbiome, as it relates to clinical conditions ranging from 

obesity to PTSD.47,48 Towards this end, efforts are needed to delineate configurations of 

microbial communities with a focus on how microbial communities contribute to disease onset 

and progression, as well as treatment response.  

We examined the 16S rRNA gene sequencing results of skin, oral, and gut samples from 

188 U.S. Veterans. This population is unique in terms of potential trauma and stressor-related 

exposures (e.g., combat, TBI), which have yet to be studied in terms of the human microbiome. 

Also of note is the health system in which this project has been initiated. As discussed in terms 

of the Million Veteran Program, “a mega-biobank to study genetic influences on health and 

disease” (p. 214),49 the VHA possesses unique elements necessary for successful execution of 

genomic research including access to longitudinal patient information via electronic medical 

records (EMR). In the present study, in order to augment data available in EMRs, extensive data 

were collected from the participants via the administration of psychometrically sound measures 

regarding physical and mental health, as well as demographic/military history survey data (e.g., 

combat exposures, TBI).   

In this chapter we characterize the skin, oral, and fecal microbiomes of the Veteran 

cohort. We first examined alpha and beta diversity measures and taxonomy of all the Veteran 

cohort sample types together, followed by a more in-depth evaluation of the alpha and beta 

diversity measures and taxonomy of individual sample types in relation to gender, race, and age.  

3.2 Materials and methods 
3.2.1 General procedures 
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Please refer to Chapter 2 of this dissertation for details on Participants and study design, 

Sample collection and preparation, Molecular processing, and Computational analyses. 

3.3 Results 
3.3.1 General characteristics of the Veteran cohort  

This Veteran cohort had a rich and diverse set of demographic metrics including general 

demographics, and service history, in addition to measures of insomnia, TBI exposures, and 

interpretations of various physical and mental health surveys. A majority of the Veteran cohort 

were Caucasian (63.8%) and a majority of the cohort were males (85.1%). However, the cohort 

was relatively diverse from a demographic standpoint considering the population that the sample 

was drawn from including: African American (21%), Asian (1.6%), Native American (2.7%), 

multiracial (3.2%), and “other” (7.7%) participants. The cohort exhibited a wide range of ages 

(24-77 years; average age ± SD, 47.0 ± 13.8 years), and a vast majority pursued education 

beyond high school (~87%). Perhaps unique to this dataset, 8.5% of the sample reported current 

homelessness and 48% reported ever being homeless. Further details regarding the demographic 

characteristics of this sample are highlighted in Table 2.2. The military service history of this 

Veteran cohort was also diverse with all service branches represented, a wide range of time spent 

on Active Duty service (3-360 months), and service across multiple eras (general time of service, 

i.e. Vietnam era or Iraq/ Afghanistan era) reported. Further details regarding the service details 

of this sample are highlighted in Table 2.3. Of note, 83% (n = 156) of the sample met criteria for 

at least one mental health condition (current and/or lifetime) based on the SCID-5. For a 

summary of mental health characteristics refer to Tables 2.4 and 2.5.   

 
3.3.2 Characteristics of skin, oral, and gut microbiomes of a Veteran cohort 

The Shannon alpha diversity index, a measure of richness and evenness,50 revealed that, 

among the three sample types, the fecal microbiome (median  ± SD,  3.18 ± 0.64) and the skin 
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microbiome (median  ± SD, 3.11 ± 0.73) had higher alpha diversity, relative to the oral 

microbiome (median ± SD, 2.15 ± 0.52) but were not different from each other (Figure 3.1A). 

Analysis of beta diversity, a measure of dissimilarity among samples,51 assessed using weighted 

UniFrac, revealed that the three sample types clustered separately and harbored bacterial 

community structures that were different (PERMANOVA, p < 0.01) (Figure 3.1B).  

The analysis of the Veteran skin microbiome, after processing for quality control, 

included 177 samples (mean ± SD, 9,885 ± 5,550 sequences/sample). The taxonomy of the skin 

microbiome in terms of relative abundance (RA) was dominated by three phyla, Firmicutes 

(mean RA ± SD, 44.9 ± 17.3%), Actinobacteria (mean RA ± SD, 23.9 ± 13.7%), and 

Proteobacteria (mean RA ± SD, 21.6 ± 16.0%), which, together, accounted for 90.4% of all taxa 

(Figure 3.1C). At the genus level, the dominant genera were Corynebacterium (mean RA ± SD, 

16.5 ± 13.5%), Staphylococcus (mean RA ± SD, 16.3 ± 16.3%), and Streptococcus (mean RA ± 

SD, 10.0 ± 8.8%) (data not shown). 

The analysis of the Veteran oral microbiome, after processing for quality control, 

included 178 samples (mean ± SD, 29,894 ± 30,046 sequences/sample), which was the highest 

mean number of sequences from the three sampling locations. The taxonomy of the oral 

microbiome consisted of mainly three phyla, namely Firmicutes (mean RA ± SD, 54.8 ± 17.7%), 

Proteobacteria (mean RA ± SD, 23.2 ± 17.7%), and Bacteroidetes (mean RA ± SD, 9.7 ± 7.3%) 

(Figure 3.1C), which, together, accounted for 87.7% of all taxa. The most prevalent genera from 

the oral samples were Streptococcus (mean RA ± SD, 40.0 ± 17.8%), Haemophilus (mean RA ± 

SD, 17.6 ± 15.9%), and Veillonella (mean RA ± SD, 7.2 ± 6.7%). 

The Veteran fecal microbiome, after processing for quality control, included 161 samples 

(mean ± SD, 26,920 ± 27,070 sequences/sample). The lower sample size in this category was not 
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reflective of sequencing efforts, but a result of fewer Veterans returning fecal samples, which 

were in some cases collected at home and shipped back to the study site, compared to the other 

two sample types, which were collected during the clinical visit. Further details pertaining to 

sample sizes within the sample types can be found in Table 2.6. The three most abundant phyla 

in the fecal microbiome were Firmicutes (mean RA ± SD, 42.0 ± 20.7%), Bacteroidetes (mean 

RA ± SD, 37.8 ± 23.1%), and Proteobacteria (mean RA ± SD, 13.0 ± 21.1%), which, together, 

accounted for 92.8% of all taxa (Figure 3.1C). Genera that appeared most frequently in the fecal 

samples included Bacteroides (mean RA ± SD, 20.2 ± 17.3%), Prevotella (mean RA ± SD, 8.5 ± 

14.5%), and Escherichia (mean RA ± SD, 7.9 ± 17.1%). 

 

Figure 3.1 Alpha and beta diversity, and phylum level taxonomy, of skin, oral, and fecal 
microbiomes 
A) Violin plot of Shannon diversity index between sample types with statistics reported based on 
Wilcoxon rank-sum test. B) Principal coordinate analysis plot from weighted UniFrac distance matrix. 
Principal coordinate axis 1 explained 36.7% of the variance and principal coordinate axis 2 explained 
17.1% of the variance; together, principal coordinate axes 1 and 2 explained 53.8% of variance. C) Top 
taxa for all sample types at the phylum taxonomic level. Sample sizes: skin, 177; oral, 178; fecal, 161.  
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3.3.3 Microbial diversity characteristics by sample type in relation to gender, 
race, and age 
Skin microbiome 

Alpha diversity was higher in males than in females as measured by both observed OTUs 

(Wilcoxon rank-sum test; p < 0.05) and Shannon diversity (Wilcoxon rank-sum test; p < 0.05) 

(Figure 3.2A). Beta diversity analysis using unweighted UniFrac and further analysis by 

PERMANOVA of skin samples revealed differences in bacterial community structure based on 

gender (p = 0.007) (Figure 3.2B). Males showed greater relative abundance of the phyla 

Actinobacteria (Wilcoxon rank-sum test; p < 0.01) and Fusobacteria (Wilcoxon rank-sum test; p 

< 0.05) (Figure 3.2C). These phyla were the only phyla that showed differences in enrichment 

between genders (for more information on how analysis of the relative abundances for individual 

taxa were performed and how top taxa plots were generated see the Alpha diversity section of the 

Computational analysis segment of Chapter 2). Males showed increased relative abundance of 

the genus Akkermansia (Wilcoxon rank-sum test; p < 0.05), while females showed enrichment in 

the genera Lactobacillus (Wilcoxon rank-sum test; p < 0.01), Oscillospira (Wilcoxon rank-sum 

test; p < 0.05), and Dialister (Wilcoxon rank-sum test; p < 0.05).  
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Figure 3.2 Alpha and beta diversity and top taxa plots for the skin microbiome based on gender 
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, for the skin microbiome, based on gender. B) Principal coordinate analysis plot of weighted 
Unifrac distance matrix for the skin microbiome, based on gender.  Principal coordinate axis 1 explained 
18.5% of the variance and principal coordinate axis 2 explained 15.6 % of the variance; together, 
principal coordinate axes 1 and 2 explained 34.1% of variance. C) Top 10 taxa at the phylum taxonomic 
level for the skin microbiome, based on gender. Sample sizes: female, 28; male, 158. 
 

 There were no differences in alpha diversity of skin microbiomes, as measured by 

observed OTUs or Shannon diversity, based on race, as determined based on analysis using 

Kruskal-Wallis test (Figure 3.3A). Beta diversity analysis using unweighted UniFrac and further 

analysis by PERMANOVA of skin samples revealed differences in bacterial community 

structure based on race (p = 0.04) (Figure 3.3B). In order to better visualize dissimilarity among 

races we collapsed the distance matrix into a mean dissimilarity distance matrix (for methods on 

how mean dissimilarity PCoA plots were created see the Beta diversity section of the 

Computational analysis section of Chapter 2). The resulting PCoA analysis and plot of the mean 
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dissimilarity unweighted UniFrac distance matrix shows each race as one data point (Figure 

3.3C). Differences in the relative abundances of top taxa (i.e. taxa that had a relative abundance 

of 0.01 or greater) at the phylum taxonomic level yielded no differences based on race as 

determined by Kruskal-Wallis test (Figure 3.3D).  

 

Figure 3.3 Alpha and beta diversity and top taxa plots for the skin microbiome based on race 
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, for the skin microbiome, based on race. B) Principal coordinate analysis plot of unweighted 
UniFrac distance matrix for the skin microbiome, based on race. Principal coordinate axis 1 explained 
10.7% of the variance and principal coordinate axis 2 explained 4.9% of the variance; together, principal 
coordinate axes 1 and 2 explained 15.6% of variance. C) Principal coordinate analysis plot of unweighted 
Unifrac mean dissimilarity distance matrix for the skin microbiome, based on race. Principal coordinate 
axis 1 explained 25.2% of the variance and principal coordinate axis 2 explained 22.4% of the variance; 
together, principal coordinate axes 1 and 2 explained 47.6% of variance. D) Top 10 taxa at the phylum 
taxonomic level for the skin microbiome, based on race. Sample sizes: African American, 40; Asian, 3; 
Caucasian, 118; Multiracial, 6; Native American, 5; Other, 14.  
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There were no differences in alpha diversity of skin microbiomes, as measured by either 

observed OTUs or Shannon diversity, based on age, as determined by Kruskal-Wallis test (data 

not shown). Beta diversity analysis using weighted and unweighted UniFrac and further analysis 

by PERMANOVA of skin samples revealed no differences in bacterial community structure 

based on age (data not shown).  

 

Oral microbiome 

There were no differences in alpha diversity of oral microbiome samples based on gender 

or race as determined by Wilcoxon rank-sum test (data not shown). Beta diversity analysis using 

weighted and unweighted UniFrac and further analysis by PERMANOVA of oral samples 

revealed no differences in bacterial community structure based on gender or race (data not 

shown).  

Alpha diversity varied among age groups, as measured by both observed OTUs and 

Shannon diversity, as determined by Wilcoxon rank-sum test (Figure 3.4A; Table 3.1 (observed 

OTUs); Table 3.2 (Shannon diversity)), with a general trend for alpha diversity to decline with 

age.  
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Table 3.1 Results matrix for pairwise comparisons of observed OTUs in the oral 
microbiome, based on age groups 

Age group 20-29 30-39 40-49 50-59 60-69 70+ 

20-29 NA NS  < 0.05 NS < 0.01 < 0.01 

30-39  NA NS NS < 0.05 < 0.05 

40-49   NA NS NS < 0.01 

50-59    NA < 0.01 < 0.01 

60-69     NA NS 

70+      NA 

Statistics for pairwise comparisons were done with Wilcoxon rank-sum test. P-values are listed; NS, not 
significant. NA represents comparisons between an age group and itself. Blank cells would have been 
replicates of data already in the matrix. Age ranged from 24-77. Sample sizes: 20-29, 22; 30-39, 50; 40-
49, 25; 50-59, 50; 60-69, 36; 70+, 5. 
 
 
Table 3.2 Results matrix for pairwise comparisons of Shannon diversity in the oral 
microbiome, based on age groups 

Age group 20-29 30-39 40-49 50-59 60-69 70+ 

20-29 NA NS  < 0.05 NS < 0.05 < 0.05 

30-39  NA < 0.05 NS < 0.05 < 0.05 

40-49   NA NS < 0.05 NS 

50-59    NA NS < 0.05 

60-69     NA NS 

70+      NA 

Statistics for pairwise comparisons were done with Wilcoxon rank-sum test. P-values are listed; NS, 
not significant. NA represents comparisons between an age group and itself. Blank cells would have been 
replicates of data already in the matrix. Age ranged from 24-77. Sample sizes: 20-29, 22; 30-39, 50; 40-
49, 25; 50-59, 50; 60-69, 36; 70+, 5. 
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Beta diversity analysis using unweighted UniFrac and further analysis by PERMANOVA 

of oral microbiome samples revealed a difference in bacterial community structure based on age 

group (p = 0.002) (Figure 3.4B). Once again, the distance matrix was collapsed into a mean 

dissimilarity distance matrix based on age group (Figure 3.4C). PCoA of the mean dissimilarity 

matrix revealed that the older age groups (60-69 and 70+ years of age) separate from the younger 

age groups (< 60 years of age) (Figure 3.4D). The most abundant phyla in the oral microbiome 

were Firmicutes and Proteobacteria in all age groups. The relative abundances of selected low 

abundance phyla in the oral microbiome, including Actinobacteria, Bacteroidetes, and 

Fusobacteria, are shown for each age group in Figure 3.4E. No differences in specific taxa were 

observed at the phylum or genus level across age groups, based on Kruskal-Wallis test. It should 

be noted that sample sizes within age groups are not evenly distributed (Table 3.3).  
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Figure 3.4 Alpha and beta diversity plots, top taxa plots, and relative abundance of low abundance 
phyla for the oral microbiome based on age group  
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, for the oral microbiome, based on age group. B) Principal coordinate analysis plots of 
unweighted UniFrac distance matrix for the oral microbiome, based on age group. Principal coordinate 
axis 1 explained 22.8% of the variance and principal coordinate axis 2 explained 8.5% of the variance; 
together, principal coordinate axes 1 and 2 explained 31.3% of variance. C) Principal coordinate analysis 
plot of unweighted UniFrac mean dissimilarity distance matrix for the oral microbiome, based on age 
group. Principal coordinate axis 1 explained 26.1% of the variance and principal coordinate axis 2 
explained 20.6% of the variance; together, principal coordinate axes 1 and 2 explained 46.7% of variance. 
D) Top 10 taxa at the phylum taxonomic level for the oral microbiome, based on age group. E) Line and 
scatter plot of relative abundance in selected low abundance phyla for the oral microbiome based on age 
group. Sample sizes: 20-29, 22; 30-39, 50; 40-49, 25; 50-59, 50; 60-69, 36; 70+, 5. 
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Table 3.3 Sample sizes of oral microbiome samples by age group 
Age Groups   
          20-29 22 (11.7%) 
          30-39 50 (26.6%) 
          40-49 25 (13.3%) 
          50-59 50 (26.6%) 
          60-69 36 (19.1%) 
          70+  5 (2.7%) 

 

Fecal microbiome 

There were no differences in alpha diversity of fecal microbiome samples based on 

gender as determined by Wilcoxon rank-sum test (Figure 3.5A). Beta diversity analysis using 

unweighted UniFrac and further analysis by PERMANOVA of fecal samples revealed that the 

bacterial community structure differed between males and females (p < 0.001) (Figure 3.5B). 

The top ten taxa at the phylum and family level are shown in Figure 3.5C and Figure 3.5D, 

respectively. Analysis of the top taxa at the phylum taxonomic level, i.e., those taxa with relative 

abundances over 0.01, using Wilcoxon rank-sum test did not reveal any differences between 

males and females. However, analysis of the top taxa at the family taxonomic level, i.e., those 

taxa with relative abundances over 0.01, exhibited an enrichment in females in the family 

Lactobacillaceae (Wilcoxon rank-sum test, p < 0.01), while males show enrichment in the family 

Verrucomicrobiaceae (Wilcoxon rank-sum test, p < 0.05).  
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Figure 3.5 Alpha and beta diversity and top taxa plots for the fecal microbiome based on gender  
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, for the fecal microbiome, based on gender. B) Principal coordinate analysis plots of unweighted 
UniFrac distance matrix for the fecal microbiome, based on gender. Principal coordinate axis 1 explained 
11.2% of the variance and principal coordinate axis 2 explained 8% of the variance; together, principal 
coordinate axes 1 and 2 explained 19.2% of variance. C) Top 10 taxa represented at the phylum 
taxonomic level for the fecal microbiome based on gender. D) Top 10 taxa represented at the family 
taxonomic level for the fecal microbiome based on gender. Sample sizes: female, 25; male, 138.  
 

There were no differences in alpha diversity of fecal microbiome samples based on race 

as determined by Kruskal-Wallis test (Figure 3.6A). Analysis of beta diversity using unweighted 

UniFrac and further analysis by PERMANOVA of fecal samples revealed that differences in the 

bacterial community structure based on race approached statistical significance (p = 0.07) 

(Figure 3.6B, C). No differences were observed in the relative abundances of exploratory 

analysis of top taxa, i.e., those taxa with relative abundances over 0.01, at the phylum level 

(Kruskal-Wallis test, Figure 3.6D).  
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Figure 3.6 Alpha and beta diversity and top taxa plots for the fecal microbiome based on race 
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, for the fecal microbiome, based on race. B) Principal coordinate analysis plots of unweighted 
UniFrac distance matrix for the fecal microbiome, based on race. Principal coordinate axis 1 explained 
11.2% of the variance and principal coordinate axis 2 explained 8% of the variance; together, principal 
coordinate axes 1 and 2 explained 19.2% of variance. C) Principal coordinate analysis plot of unweighted 
UniFrac mean dissimilarity distance matrix for fecal microbiome, based on race. Principal coordinate axis 
1 explained 24.6% of the variance and principal coordinate axis 2 explained 23.7% of the variance; 
together, principal coordinate axes 1 and 2 explained 48.3% of variance. D) Top 10 taxa for race 
represented at the phylum taxonomic level for the fecal microbiome based on race. Sample sizes: African 
American, 39; Asian, 2; Caucasian, 100; Multiracial, 5; Native American, 5; Other, 12.  
 
 

There were no differences in alpha diversity in the fecal microbiome based on age group 

as determined by Kruskal-Wallis test (Figure 3.7A). Analysis of beta diversity using unweighted 

UniFrac and further analysis by PERMANOVA of fecal samples revealed that the bacterial 

community structure differed among age groups (p = 0.02) (Figure 3.7B). PCoA analysis of the 

mean dissimilarity unweighted UniFrac distance matrix highlights differences in community 

structure between specific age groups (Figure 3.7C). The three youngest age groups (< 49 years 
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of age) were fairly distinct and the three older age groups (> 50 years of age) clustered closely 

together (Figure 3.7C). Analysis by Kruskal-Wallis test of the top phyla, i.e., those taxa with 

relative abundances over 0.01, yielded no differences based on age group (Figure 3.7D).  

 

Figure 3.7 Alpha and beta diversity and top taxa plots for the fecal microbiome based on age group 
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity for the fecal microbiome, based on age group. B) Principal coordinate analysis plots of 
unweighted UniFrac distance matrix for the fecal microbiome, based on age group. Principal coordinate 
axis 1 explained 11.2% of the variance and principal coordinate axis 2 explained 8% of the variance; 
together, principal coordinate axes 1 and 2 explained 19.2% of variance. C) Principal coordinate analysis 
plot of unweighted UniFrac mean dissimilarity distance matrix for the fecal microbiome, based on age 
group. Principal coordinate axis 1 explained 23.1% of the variance and principal coordinate axis 2 
explained 8% of the variance; together, principal coordinate axes 1 and 2 explained 19.2% of variance. D) 
Top 10 taxa for age group represented at the phylum taxonomic level for the fecal microbiome. Sample 
sizes: 20-29, 17; 30-39, 41; 40-49, 22; 50-59, 47; 60-69, 32; 70+, 4. 
 
A summary table of the result of alpha and beta diversity based on gender, race, and age can found in 

Table 3.4.  
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Table 3.4 Table summary of alpha and beta diversity results based on comparisons with 
gender, race, and age 

 
1Table showing the results for the analysis of gender, race, and age as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. 
Abbreviations: OTU, operational taxonomic unit.  
 
3.4 Discussion  

Consistent with previous studies, we found robust differences in microbial community 

structure based on body site (i.e., skin, oral, and fecal microbiomes). We observed higher alpha 

diversity of the skin microbiome in males, relative to females, and differences in alpha diversity 

of the oral microbiome across age groups, with a decline in alpha diversity with age. Despite the 

diverse demographics of this Veteran cohort, analysis of beta diversity of the skin microbiome 

revealed differences based on gender and race. In contrast, analysis of beta diversity of the oral 

microbiome revealed differences based on age, while analysis of beta diversity of the fecal 

microbiome revealed differences based on gender and age. These findings are of potential 

interest in part as they identify specific variables that may be treated as covariates in analysis of 

the skin, oral, and fecal microbiomes in relation to other endpoints in this cohort of US Veterans, 

including general and physical health, insomnia, and mental health. 

Skin microbiome 

Metric Alpha Beta Alpha Beta Alpha Beta
Gender Observed 

OTUs and 
Shannon 
diversity; 

increased in 
males

Unweighted 
UniFrac

Unweighted 
UniFrac

Race Unweighted 
UniFrac

Unweighted 
UniFrac

Age Observed 
OTUs and 
Shannon 
diversity; 

decreased in 
70+

Unweighted 
UniFrac

Unweighted 
UniFrac

Skin Oral Fecal
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Despite the diverse demographics of this Veteran cohort, analysis of alpha diversity of 

the skin microbiome revealed differences based on gender, while analysis of beta diversity 

revealed differences based on gender and race. Males exhibited higher alpha diversity as shown 

by observed OTUs and Shannon diversity. Results of gender differences in alpha diversity in 

previous studies are conflicting, potentially due to non-standardized anatomical sampling 

locations. Nevertheless, a study sampling from the same anatomical location reported no effect 

of gender in Choa1, Phylogenetic distance, or Shannon diversity metrics.52 Two studies of the 

skin microbiome reported that females had higher alpha diversity than males.53,54 However, these 

studies did not sample from the same anatomical location as the samples collected from the 

Veteran cohort. Ross et al., (2017) sampled from several body sites, not including the antecubital 

fossa, and Fierer et al., (2006) sampled from the hand. A separate study of college dormitory 

rooms with passive settling plates showed that male-inhabited rooms had 67% more bacteria 

than female-inhabited rooms as determined by qPCR.55 More studies are needed examining sex 

differences in skin bacteria with standardized anatomical sampling locations to further 

characterize sex differences in skin-associated alpha diversity metrics.  

Consistent with previous studies, the most abundant taxa at the phylum level in skin 

microbiomes in this cohort were Firmicutes, Actinobacteria, and Proteobacteria.56 Lower 

abundance phyla were also present, including Fusobacteria, which have previously been 

observed in forearm microbiomes, but not forehead microbiomes, of a subset (27%) of male and 

female participants.56 Also consistent with previous studies, the most abundant taxa at the genus 

level in skin microbiomes in this cohort included Corynebacterium, Staphylococcus, and 

Streptococcus.52,56–58 Results from this Veteran cohort are consistent with previous gender 

differences reported in the skin microbiome. For example, consistent with previous reports,53,59 
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males had higher relative abundance of the phylum, Actinobacteria, whereas females had higher 

relative abundance of the family Lactobacillaceae and genus Lactobacillus in skin samples.  

Although there are few studies that specifically sampled the skin microbiome from the 

same anatomical location (antecubital fossa; inner elbow), as in our study, a number of studies 

have sampled the skin microbiome from the antecubital fossa, including Grice et al., (2008), 

Kong et al., (2012), Oh et al., (2012), Ying et al., (2015), and the Human Microbiome 

Project.24,52,58,60–62 Results from this Veteran cohort are consistent with previous gender 

differences reported in the skin microbiome from samples taken from the antecubital fossa, 

especially when examining the data at the genus taxonomic level. The gender differences from 

the current study and results reported by Ying et al., (2015) showed the same gender-based 

enrichment and depletion patterns. In both studies, males showed enrichment in the genera 

Anaerococcus in the nares, Corynebacterium (1.6-fold enrichment in both studies), and 

Streptococcus (1.4-fold enrichment in the Veteran cohort, 3-fold enrichment in Ying et al., 

(2015)) in the antecubital fossa, while females showed enrichment in Acinetobacter, especially in 

skin samples from the back, and Staphylococcus in the nares. Although the enrichment patterns 

for the Veteran Cohort and Ying et al., (2015) were similar, the gender differences in these 

specific taxa in the Veteran cohort did not reach statistical significance.  

Bacteria, like any living organism, are sensitive to environmental factors and there are 

important gender-driven physiological differences in skin characteristics that create an 

environment that favors certain bacterial community structures. Male skin is known to be 

thicker, produce more sebum (an “oily” secretion of mainly glycerides, free fatty acids, and 

esters from sebaceous glands63), produce more sweat during exercise, have higher surface pH, 

and lower intra-dermal pH (for review see64). Differences in pH, moisture levels, frequency of 
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moisture, and availability of different nutrients for energy production are well known 

environmental factors that lead to differences in bacterial community structures in different 

terrestrial ecosystems,65–68 These same factors likely influence colonization of human skin by 

bacterial species, leading to differences in bacterial community structure observed between 

males and females.  

Although we observed no differences in alpha diversity of the skin microbiome based on 

race, we did observe differences in beta diversity. Previous studies have found differences in 

alpha and beta diversity in the skin microbiome based on geographical location and by default 

different ethnic backgrounds.57,69,70 However, to the best of our knowledge, this is the first study 

to demonstrate a difference in bacterial community structure based on race in the same 

geographical location. These results should be interpreted with caution because, of the 188 

participants, 63.8% were Caucasian and some racial groups were highly underrepresented (i.e., 3 

Asian, 6 Multiracial, and 5 Native American samples). This preliminary result needs to be 

reproduced in a sample population that is larger and more balanced than this current cohort. 

 Although previous studies have described age-related differences in the skin 

microbiome, we did not find age-related differences in this Veteran cohort. The lack of age-

related differences in the skin microbiome in this Veteran cohort may be due to a restricted age 

range (24-77 years), which may exclude age ranges where the skin microbiome is known to 

change. These age ranges are in the first year of life71,72 and around puberty in adolescents.57,73 

Veterans, by definition must be at least 18 years of age and the youngest participant in the 

Veteran cohort is 24 years of age. Since this cohort does not include participants within the age 

range that the microbiome is known to change it is not surprising that we did not see an effect of 

age in the skin microbiome.  
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Oral microbiome 

Overall, the most abundant phyla in the oral microbiome were Firmicutes, Proteobacteria, 

and Bacteroidetes, while the most abundant genera were Streptococcus (whose members are the 

most abundant bacterial species in the mouth), Haemophilus, and Veillonella, consistent with 

previous studies.62,74 In addition to effects of gender and race on the skin microbiome, we 

observed differences in the oral microbiome based on age, but not gender or race in this Veteran 

cohort. Although we did not find differences in specific taxa at the phylum or genus level across 

age groups, previous studies of microbiota in the oral cavity and atherosclerotic plaques of 

subjects with atherosclerosis demonstrating that higher levels of bacterial phyla seen in 

atherosclerotic plaques correlated with the bacterial phyla seen in the oral cavity suggest that 

changes in the microbiome of the oral cavity, particularly in older participants, may be important 

in general and physical health measures, discussed later in this dissertation.75  

 

Fecal microbiome 

 Consistent with previous studies, the most abundant taxa in fecal microbiomes in this 

cohort included Firmicutes, Bacteroidetes, and Proteobacteria at the phylum level, and 

Bacteroides, Prevotella, and Escherichia at the genus level.62,76 Although we observed no 

differences in alpha diversity of the fecal microbiome due to gender, race, or age group, we 

observed differences in the beta diversity of fecal microbiome in relation to gender and age in 

this Veteran cohort, while differences in relation to race approached statistical significance. We 

did not observe gender differences in the fecal microbiome community structure at the phylum 

level, but we did find increased Lactobacillaceae, and decreased Verrucomicrobiaceae,77 in 
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females, relative to males, in line with previous studies.78 Previous research has shown gender 

differences in the gut microbiome, albeit not in all studies. A study by Mueller et al., (2006) 

showed that males have increases in the genus Bacteroides, while another study by Haro et al., 

(2016) found the opposite result.79,80 One study by Schnorr et al., (2014) showed profound 

gender differences in the gut microbiome in a hunter-gather population in Eastern Africa. 

However, these differences were mainly due to social hierarchies that created sex-related 

divergences in various aspects of lifestyle, including diet, which are likely not to be relevant to 

Western societies.81 Further, the authors stated that these profound differences have not been 

documented in other human populations, and it is unlikely that similar differences would be 

observed in a modern westernized population. Yet, it remains possible that gender-driven dietary 

preference could lead to differences in bacterial community structure. Perhaps the difference 

between males and females in this Veteran cohort is driven by slight dietary differences. It 

should also be noted that the gender differences viewed in this Veteran cohort may be sensitive 

to unbalanced sample sizes (males, 85%; females 15%), in that the analysis of the collective 

community structure in a group with a lower sample size is more susceptible to be influenced by 

an outlying individual than analysis performed on a comparator group with a substantially larger 

sample size.82  

Although analysis of the gut microbiome in this Veteran cohort found that differences in 

beta diversity of the gut microbiome in relation to race only approached statistical significance, 

previous studies have found differences. Gupta et al., (2017), published a comprehensive review 

of microbial studies with associations of the fecal microbiome and race/geography. This group 

noted that the racial/ geographical differences seen in fecal bacterial community composition 

may be most influenced by regional culinary differences between these populations.76,83 Diet has 
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been shown to impact the gut microbiome and when diet is altered, an individual’s gut 

microbiome is also altered.76,81,84,85 In support of this notion, rural and isolated populations in 

Africa that share genetic lineage, but differ in dietary habits (fish- vs farming-based diets) show 

divergent gut microbiomes. The gut microbiomes of these African populations are more similar 

to individuals with their respective dietary habits, fish- or agriculture-based diets, in regions of 

the world thousands of miles apart than they are to each other.86 Arguably, one of the most 

defining attributes separating cultures is dietary habits and gustatory preferences.   

Finally, despite the fact that this Veteran cohort had a restricted age range, (24-77 years), 

we observed differences in beta diversity of the gut microbiome in relation to age group. It is 

well documented that the gut microbiome changes throughout the phases of life especially in the 

very early and late phases.85,87,88 The microbiome changes substantially around the time that an 

infant transitions from breast feeding to a solid or semi-solid food diet,89,90 where the 

microbiome transitions from a Bifidobacterium-dominant phenotype to an “adult phenotype” 

dominated by Bacteroidetes and Firmicutes.91 The microbiome is relatively stable until the later 

stages in life when various physiological systems and processes decline in function such as 

gastrointestinal function and dental health.92–94 A consistent finding with aging is an increase in 

the relative abundance of Proteobacteria, and a decrease in relative abundance of Actinobacteria 

(Bifidobacterium), but these changes are more pronounced in the extreme decades of life.95  

3.5 Conclusions 
This Veteran cohort has a rich and diverse range of metadata collected on demographics, 

armed forces service, physical health, and mental health metrics. The sample types exhibited 

differences in alpha and beta diversity metrics. Examining the sample types individually allowed 

for the identification of different bacterial community structures in relation to gender, race, and 

age group. Overall, our results were consistent with previous studies of different cohorts with 
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different demographics. This chapter aimed to characterize the skin, oral, and fecal microbiomes 

in a cohort of U.S. Veterans in relation to gender, race, and age. Now we will focus on how the 

microbiome is associated with various physiologic and behavioral states in this Veteran cohort.  
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Chapter 4. Association of general and physical health and the 
microbiome in a Veteran cohort 
4.1 Introduction 

Alexander Fleming’s discovery of benzylpenicillin in 1928 changed the world of 

medicine and shaped how the medical community perceived the relationship that humans should 

have with bacteria and other microbes.13 Especially at that time in history, this discovery was a 

major breakthrough in medicine and Sir Fleming was knighted and awarded the Nobel Prize in 

Physiology and Medicine in 1945 for his discovery. However, a new era is upon the medical 

community to revisit the relationship between microbes and humans. In a time when many non-

communicable diseases (NCDs), principally chronic inflammation-related disorders, are on the 

rise,14 scientists and physicians alike are turning to the microbiome for insights into how 

dysbioses of human microbiomes may be contributing to increasing rates of chronic low-grade 

inflammation in Western societies, and how the microbiome might be harnessed to improve 

outcomes in all disciplines of health.  

Physical health, as it relates to the microbiome, is rather complex because there are single 

microbes that can be either detrimental or beneficial to physical health, while differences in the 

commensal microbial structure as a whole are being implicated in health and disease states of the 

host. There are virulent bacterial species and strains that well known to cause severe detriments 

to physical health such as Mycobacterium tuberculosis, Clostridium botulinum, Salmonella, and 

Escherichia coli. In contrast, probiotics such as Lactobacillus spp. and Bifidobacterium spp. can 

improve general health and wellbeing.96–99  

An excellent example of the dichotomous relationship between microbes and physical 

health is that of Clostridium difficile (C. diff) infection. This microbe is highly virulent, causing 

severe and chronic diarrhea, and like its name implies, it is very difficult to eradicate. The 
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recommended treatment for C. diff  infection is aggressive antibiotic treatment.100 However, C. 

diff has a terribly high reinfection rate,100 and the reason is because a stable microbiome is 

needed to outcompete C. diff in colonization. Unfortunately the antibiotics that kill C. diff also 

wipe out the rest of the commensal community allowing for C. diff to recolonize after cessation 

of the antibiotic treatment. One of the most effective treatments for C. diff is a fecal microbiome 

transplant where the patient receives the microbiome from a “healthy” individual in order 

compete with C. diff.101 Clinicians have recognized that this treatment option is much more 

effective than traditional antibiotics regimens and have added fecal microbiome transplants to the 

most recent update of the Clinical Practice Guidelines for Clostridium difficile Infection in 

Adults and Children.100 

Now that it is being fully embraced that there are clear interactions between the human 

microbiome and human health, researchers are trying to find clear links and microbial signatures 

of general and physical health. Several studies have targeted BMI to try and determine if there 

are relationships between physical health and important features of the microbiome, including 

alpha and beta diversity, and taxonomic composition. However, identifying concrete 

relationships between BMI and microbial diversity or composition has been difficult. Le 

Chatelier and colleagues (2013) showed that a subset of individuals (23%) with a low bacterial 

richness were characterized by increased overall adiposity, insulin resistance and dyslipidemia as 

well as an inflammatory phenotype when compared with individuals with high bacterial richness.  

However, other studies have reported no differences between obese and lean phenotypes in alpha 

diversity metrics.24,85,102 Furthermore, no consistent associations between specific taxa and BMI 

have been found. Two taxa that received a lot of attention were Firmicutes and Bacteroidetes. 

Initially, it was shown that the Firmicutes/Bacteroidetes ratio increased with BMI.47,103 However, 
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subsequent studies have shown the opposite or no relation of Firmicutes/Bacteroidetes ratio and 

BMI.104–106 

In this Chapter, we explore how the microbiome is related to health measures collected in 

the Veteran Cohort. According to the World Health Organization (WHO), “Health is a state of 

complete physical, mental, and social well-being and not merely the absence of disease or 

infirmity.”107 As measures of health, we focused on analysis of BMI data and outcomes of the 

36-Item Short Form Health Survey (SF-36). For the SF-36, we analyzed eight subdomains, 

including general health perception, which gauges the participant’s views and expectations of 

their health. Also from the SF-36, we analyze the Physical Component Summary (PCS) score, 

which is a score that is determined by an algorithm that takes into account questions from all the 

subdomains of the SF-36 and is an overall measure of physical health. We use these measures to 

examine differences in alpha and beta diversity as well as differences in specific taxa that may 

provide insight into microbial signatures of general and physical health in this Veteran Cohort.    

4.2 Materials and methods 
4.2.1 General procedures 

Please refer to Chapter 2 of this dissertation for details on Participants and study design, 

Sample collection and preparation, Molecular processing, and Computational analyses. 

4.2.2 Short Form Health Survey (SF-36) metrics  
We used the 36-Item Short Form Health Survey (SF-36)108,109 to assess relationships 

between health and wellbeing and alpha diversity, beta diversity, and taxonomic composition of 

the fecal microbiome. In all cases, higher scores on the SF-36 reflect higher levels of 

functioning. We used the RAND scoring table to generate scores as a percentage of the total 

points possible for each specific area of functional health status, for a final score within each of 

the eight dimensions measured.110 These dimensions of health and wellbeing were 1) physical 

functioning, 2) role limitations due to physical health problems, 3) role limitations role due to 
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emotional problems, 4) vitality (energy and fatigue), 5) general mental health (psychological 

health and wellbeing), 6) social functioning, 7) bodily pain, and 8) general health perceptions.  

For example, the general health perceptions metric is composed of five questions on the survey 

that are compiled into a composite general health score. The questions on the survey include the 

participant rating their health and addressing their view and expectations of their health. Below 

are the actual questions from the survey accompanied by the possible responses.  

a) In general, would you say your health is  

• 1 - Excellent 

• 2 - Very good 

• 3 - Good 

• 4 - Fair 

• 5 – Poor 

How TRUE or FALSE is each of the following statements for you. 

b) I seem to get sick a little easier than other people  

c) I am as healthy as anybody I know  

d) I expect my health to get worse  

e) My health is excellent 

Questions b-e above involve the following 5 responses: 

• 1 - Definitely true 

• 2 - Mostly true 

• 3 - Don’t know 

• 4 - Mostly false  

• 5 - Definitely false 
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In addition to the scales above, we also analyzed the Physical Component Summary (PCS) score 

in relation to alpha and beta diversity, and taxonomic composition of the fecal microbiome. This 

metric is a comprehensive gauge of physical health that takes into account all questions that 

pertain to physical health in all of the eight subdomains of the SF-36.111 This produces a single 

score that can be used as an overall measure of physical health. More information about how this 

metric is scored is in the Scoring section below.  

 

Scoring 

The metrics of the SF-36 are scored by converting responses into a score from 0-100, 

which represents the percentage of total possible scores achieved. For example, if there were 5 

responses possible, the responses would be converted to percentage scores: 1 = 0, 2 = 25, 3 = 50, 

4 = 75, 5 = 100. The percentage scores are ordered so that more favorable health states are 

assigned higher scores. In the example above, 1(rescore = 0) would be a less favorable health 

state and 5 (rescore = 100) would be a more favorable health state. The eight subdomains of the 

SF-36 are the mean of the rescored values of the questions included in the subdomain. Items left 

blank are not included in calculating subdomain scales. The PCS score is produced by an 

algorithm that is proprietary and no further information is available about what questions are 

used and how the score is actually generated.111    

4.2.3 Microbiome results for skin and oral samples   
In exploratory analysis of the microbiome data, only fecal microbiome associations were 

revealed as significant findings in metadata categories that were relevant to health, based on 

analysis of the eight subscales within the SF-36, or the PCS score from the SF-36. Therefore, no 

skin or oral microbiome results will be shown in this chapter. Furthermore, in exploratory 
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analysis of the microbiome data, only the general health perceptions scale of the SF-36 and the 

PCS score had associations with alpha diversity, beta diversity, or taxonomy of bacterial 

communities. Consequently, we focus in this chapter on analysis of general health and PCS 

scores. 

4.2.4 Body-mass index designations  
All BMI designations were gathered from information available from the Centers for 

Disease Control (CDC). 

https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html 

Healthy (BMI < 25.0) and not healthy (BMI ≥ 25.0) designations were determined by a BMI of 

24.9 being listed as the upper limit for “normal or healthy” by the CDC and a BMI of 25.0 being 

listed as the lower limit of “overweight.” Minimal (BMI < 25.0), moderate (BMI 25.0-29.9), and 

high (BMI ≥ 30.0) risk BMI categories were designated from weight status classifications of 

“normal or healthy” (BMI < 25.0), “overweight” (BMI 25.0-29.9), and “obese” (BMI ≥ 30) by 

the CDC in combination with the following statement on the CDC’s BMI webpage (link above) 

“people who have obesity are at increased risk for many diseases and health conditions”. The 

conditions listed by the CDC were: “all-causes of death (mortality)”, high blood pressure 

(hypertension), high low density lipoprotein (LDL) cholesterol, low high density lipoprotein 

(HDL) cholesterol, or high levels of triglycerides (dyslipidemia), type 2 diabetes, coronary heart 

disease, stroke, gallbladder disease, osteoarthritis, sleep apnea and breathing problems, chronic 

inflammation and increased oxidative stress, some cancers (endometrial, breast, colon, kidney, 

gallbladder, and liver), low quality of life, mental illness such as clinical depression, anxiety, and 

other mental disorders, and bodily pain and difficulty with physical functioning.112–117    

4.3 Results 
4.3.1 BMI 
Analysis of BMI based on gender, race, and age 
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In Chapter 3 of this dissertation, we showed that gender, race, and age were all factors 

that affected the fecal microbiome. Here, we examined these variables as they relate to BMI. 

There was no difference in BMI in male versus female participants, although this comparison 

approached statistical significance (Wilcoxon rank-sum test; p = 0.09) (Figure 4.1C). Kruskal-

Wallis test failed to reveal differences among racial groups or age groups based on BMI (Figure 

4.1B, C).  

 

Figure 4.1 Body-mass index (BMI) relative to gender, race, and age group 
A) Boxplots of BMI within gender. B) Boxplots of BMI within race categories. C) Boxplots of BMI 
within age groups. Abbreviations: BMI, body-mass index. Sample sizes: A) female, 25; male, 138. B) 
African American, 39; Asian, 2; Caucasian, 100; Multiracial, 5; Native American, 5; Other, 12. C) 20-29, 
17; 30-39, 41; 40-49, 22; 50-59, 47; 60-69, 32; ≥70, 4.  
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Alpha and beta diversity in the fecal microbiome based on BMI  

We performed several analyses on BMI designations as they associate with alpha and 

beta diversity. A summary table of results can be found in Table 4.1. 

Table 4.1 Table of body-mass index (BMI) variables and their associations with alpha and 
beta diversity outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the results for the initial analyses of BMI variables as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. 
Abbreviations: BMI, body-mass index.  
 

Alpha diversity in the fecal microbiome was higher in the healthy BMI (BMI < 25) group 

measured by observed OTUs than the not healthy group (BMI ≥ 25) (Wilcoxon rank-sum test, p 

= 0.05) (Figure 4.2A). However, this result was not observed in Shannon diversity (Figure 

4.2A). BMI was further divided into risk categories of minimal (BMI < 25.0), moderate (BMI 

25-29.9), and high (BMI ≥ 30) risk for several diseases cited by the CDC to be associated with 

obesity (see Section 4.2.3, Body-mass index designation). Kruskal-Wallis test did not reveal any 

differences in observed OTUs or Shannon diversity based on BMI risk category (Figure 4.2B). 

In addition, there was no correlation between BMI and either alpha diversity metric, when 

including data from all participants (n = 146; Figure 4.2C). Principal coordinate analysis of 

weighted and unweighted UniFrac distance matrix and statistical assessment with 

PERMANOVA did not reveal differences in bacterial community structure for BMI divided into 

health categories (Healthy: BMI < 25; Not Healthy: BMI ≥ 25) or risk categories (Minimal risk, 

Survey Metric Alpha Beta Alpha Beta Alpha Beta
BMI correlation

BMI health 
categorization: healthy 

(<25), not healthy 
(≥25) 

BMI risk 
categorization: minimal 

(<25), moderate (25-
29.99), high (≥30)

BMI quartiles

Skin Oral Fecal

Body-mass 
index (BMI)
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Moderate risk, High risk) (data not shown). However, principal coordinate analysis of weighted 

UniFrac distance matrix and statistical assessment with PERMANOVA approached statistical 

significance in BMI divided into quartiles (p = 0.1; data not shown). Exploratory analysis of 

specific taxonomic differences between BMI quartiles with Kruskal-Wallis test at all taxonomic 

levels down to the genus level revealed only two taxa that were significantly different, 

Ruminococcus (p < 0.05), or approached significance, Lactobacillus (p = 0.09). Wilcoxon rank-

sum test determined that the relative abundance Ruminococcus was lower in Quartile 2 as 

compared to Quartiles 1 and 4.    

 

Figure 4.2 Alpha diversity plots in the fecal microbiome based on body-mass index (BMI) health 
and risk categories 
A) Boxplot of observed operational taxonomic units (OTUs) and Shannon alpha diversity metrics in the 
fecal microbiome based on BMI categories of healthy (< 25.0) and not healthy (≥25.0) as designated by 
the Centers for Disease Control (CDC). B) Boxplots of observed OTUs and Shannon diversity metrics in 
the fecal microbiome based on BMI risk categories of several diseases mainly relating to cardiovascular 
health outlined by the CDC (see Section 4.2.3, Body-mass index designations). C) Scatter plots with 
regression lines of observed OTUs and Shannon alpha diversity metrics in the fecal microbiome based on 
BMI scores of all participants. Abbreviations: BMI, body-mass index; CDC, Centers for Disease Control; 
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OTU, operational taxonomic unit. Sample sizes: A) Healthy, 39; Not healthy, 107. B) Minimal risk, 48; 
Moderate risk, 39; High risk, 59.  
 

Firmicutes/Bacteroidetes ratio  

Previous studies have suggested a relationship between the Firmicutes/Bacteroidetes ratio 

and obesity, with an increased ratio in obese people compared to lean people, and a tendency for 

this ratio to decrease with weight loss (for reviews, see118–120). However, a number of studies 

have found no relationship.105,121–125 Examination of the relationship between relative 

abundances of Firmicutes, Bacteroidetes, and the Firmicutes/Bacteroidetes ratio, relative to BMI 

showed no significant correlations (Figure 4.3 A, B).  

 

Figure 4.3  Relative abundances of Firmicutes and Bacteroidetes, and the Firmicutes/Bacteroidetes 
ratio, in the fecal microbiome relative to body-mass index (BMI) 
A) Scatter plot and regression lines relating BMI scores to the relative abundance of Firmicutes (blue) and 
Bacteroidetes (red) in the fecal microbiome. B) Scatter plot and regression line relating BMI scores to the 
Firmicutes/Bacteroidetes ratio in the fecal microbiome. Abbreviations: BMI, body-mass index.  
 

4.3.2 Short Form Health Survey (SF-36) metrics 
General health and Physical Component Summary (PCS) scores based on BMI and age 

We examined the association of general health and PCS scores to BMI and age group. 

General health scores displayed a negative relationship with BMI (r = –0.21, p < 0.05), but not 

with age (r = –0.08, p = 0.27) as determined using Pearson correlation (Figure 4.4 A, B). The 

PCS score exhibited negative relationships with both BMI (r = –0.19, p < 0.05) and age (r = –
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0.3, p < 0.001) as determined using Pearson correlation (Figure 4.4 C, D). Physical function 

scores also displayed a negative relationship with BMI (r = –0.21, p < 0.01) as determined by 

Pearson correlation (data not shown).  

 

Figure 4.4 Relationships between body-mass index (BMI) or age and general health and Physical 
Component Summary (PCS) scores from the 36-item Short Form Health Survey (SF-36) 
A) Scatter plot and regression line illustrating the relationship between BMI and general health scores of 
the SF-36. B) Scatter plot and regression line illustrating the relationship between age and the general 
health scores of the SF-36. C) Scatter plot and regression line illustrating the relationship between BMI 
and the PCS scores of the SF-36. D) Scatter plot and regression line illustrating the relationship between 
age and the PCS scores of the SF-36. Abbreviations: BMI, body-mass index; PCS, Physical Component 
Summary; SF-36, 36-Item Short Form Health Survey.  
 

Analysis of alpha and beta diversity and top taxa in the fecal microbiome based on general 

health scores from the SF-36 

We performed several analyses on the general and physical health variables within the 

SF-36 as they associate to alpha and beta diversity. Many of the results were null and a summary 

table of these results can be found in Table 4.2. 
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Table 4.2 Table of general and physical health variables within the 36-Item Short Form 
Health Survey (SF-36) and their associations with alpha and beta diversity outcomes of 
skin, oral, and fecal microbiomes1 

 
1Table showing the results for the initial analyses of general and physical health variables within the SF-
36 as they relate to alpha and beta diversity of skin, oral, and fecal microbiomes. Green represents a 
significant p-value (p < 0.05), yellow represents a p-value approaching significance (p ≤ 0.10), and red 
represents a p-value > 0.10. Abbreviations: SF-36, 36-Item Short Form Health Survey; PCS, Physical 
Component Summary; MCS, Mental Component Summary.  
 

Analysis of the alpha diversity of the fecal microbiome by Kruskal-Wallis, based on 

analysis of quartiles of general health scores from the SF-36, revealed a difference in observed 

OTUs (p < 0.05) but not Shannon diversity. Further analysis with Wilcoxon rank-sum test 

Survey Metric Alpha Beta Alpha Beta Alpha Beta
Physical functioning score 

correlation 
Physical functioning score 

quartiles
Role physical score correlation 
Role physical score quartiles

General health score correlation
General health score quartiles
Bodily pain score correlation 
Bodily pain score quartiles 
Vitality score correlation 
Vitality score quartiles

Social functioning score 
correlation

Social functioning score quartiles
Role-emotional score correlation
Role-emotional score quartiles
Mental health score correlation

Mental health score quartiles
Physical Component Summary 

(PCS) score correlation
Physical Component Summary 
(PCS) score health category: 

healthy (≥45), not healthy (<45)
Physical Component Summary 

(PCS) score quartiles
Mental Component Summary 

(MCS) score correlation
Mental Component Summary 
(MCS) score health category: 

healthy (≥45), not healthy (<45)
Mental Component Summary 

(MCS) score quartiles

Skin Oral Fecal

36-Item Short 
Form Health 

Survey (SF-36)
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revealed higher observed OTUs in the uppermost quartile (representing greater general health), 

relative to the first and second quartile (p < 0.05) (Figure 4.5A). These results were mirrored by 

analysis, using Pearson correlation, of the relationship between the SF-36 general health scores 

and alpha diversity measures (Figure 4.5B). Observed OTUs increased with general health 

scores (r = 0.15, p = 0.05) and Shannon diversity showed no relationship with general health 

scores (r = 0.1, p = 0.19) (Figure 4.5B). Principal coordinate analysis of the weighted UniFrac 

distance matrix and further assessment with PERMANOVA revealed that the bacterial 

community structure differed among general health quartiles (p < 0.01) (Figure 4.5C). Analysis 

of specific taxa with Kruskal-Wallis test revealed that the phylum Actinobacteria (p < 0.01) 

differed among general health quartiles (Figure 4.5D). Actinobacteria were higher in Quartile 1 

as compared to every other quartile (Wilcoxon rank-sum test; Q1, p < 0.05; Q3 & Q4, p < 0.01). 

Analysis of specific taxa at the class taxonomic level with the Kruskal-Wallis test revealed that 

Coriobacteriia (phylum: Actinobacteria) (p < 0.05) and Bacilli (phylum: Firmicutes) (p < 0.05) 

differed among the general health quartiles. Coriobacteriia were higher in Quartile 1 as compared 

to Quartile 3 (Wilcoxon rank-sum test; p < 0.01). Bacilli were higher in Quartile 1 as compared 

to all other Quartiles (Wilcoxon rank-sum test; Q2 & Q4, p < 0.05; Q3, p < 0.01). Analysis of 

specific taxa at the order taxonomic level using the Kruskal-Wallis test revealed Coriobacteriales 

(phylum: Actinobacteria) (p < 0.05) and Lactobacillales (phylum: Firmicutes) (p < 0.05) differed 

among the general health quartiles. Coriobacteriales were higher in Quartile 1 as compared to 

Quartile 3 (Wilcoxon rank-sum test; p < 0.01). Lactobacillales were higher in Quartile 1 as 

compared to Quartile 3 (Wilcoxon rank-sum test; p < 0.01). Analysis of specific taxa at the 

family taxonomic level with the Kruskal-Wallis test revealed Coriobacteriaceae (phylum: 

Actinobacteria) (p < 0.05) and Streptococcaceae (phylum: Firmicutes) (p < 0.05) differed among 
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the general health quartiles. Coriobacteriaceae were higher in Quartile 1 as compared to Quartile 

3 (Wilcoxon rank-sum test; p < 0.01). Streptococcaceae were lower in Quartile 3 as compared to 

Quartile 1 (Wilcoxon rank-sum test; p < 0.01). No genera were determined to be different in the 

general health quartiles based on analysis using the Kruskal-Wallis.   

  

Figure 4.5 Alpha and beta diversity and top taxa plots for the fecal microbiome based on the 
general health metric of the 36-Item Short Form Health Survey (SF-36) 
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity in the fecal microbiome based on quartiles of general health scores from the SF-36. B) Scatter 
plots with regression lines of alpha diversity metrics, observed OTUs and Shannon diversity, in the fecal 
microbiome based on general health scores from the SF-36. C) Principal coordinate analysis of weighted 
UniFrac distance matrix in the fecal microbiome based on general health scores of the SF-36. Only 
Quartiles 1 and 4 shown. Principal coordinate axis 1 explained 33.4% of the variance and principal 
coordinate axis 2 explained 18.9% of the variance; together, principal coordinate axes 1 and 2 explained 
52.3% of variance. D) Top ten phyla in fecal microbiome based on general health quartiles. 
Abbreviations: SF-36, 36-Item Short Form Health Survey; OTU, operational taxonomic unit. Sample 
sizes: Q1, 40; Q2, 40; Q3, 40; Q4, 41.  
 

Analysis of alpha and beta diversity and top taxa in the fecal microbiome based on the PCS 

scores of the SF-36 
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Alpha diversity was higher in healthy individuals (PCS score ≥ 45) than not healthy 

individuals (PCS score < 45) in observed OTUs (Wilcoxon rank-sum test, p < 0.05), but not in 

Shannon diversity (Figure 4.6A). Analysis of the relationship between PCS scores and alpha 

diversity using Pearson correlation revealed a positive correlation for observed OTUs (r = 0.18, p 

< 0.05) and a positive relationship that approached statistical significance for Shannon diversity 

(r = 0.16, p = 0.051) (Figure 4.6B). Principal coordinate analysis of the unweighted UniFrac 

distance matrix and further assessment with PERMANOVA revealed that the bacterial 

community structure differed among PCS health designation (p < 0.05; Figure 4.6C) and PCS 

quartiles (p < 0.01) (Q1-Q4; Figure 4.6D). Analysis of specific taxa by Wilcoxon rank-sum test 

based on PCS health designation revealed no differences at the phylum taxonomic level (Figure 

4.5E). Analysis of specific taxa by Wilcoxon rank-sum test at the class taxonomic level revealed 

enrichment of Gammaproteobacteria (phylum: Proteobacteria) (p < 0.05) in not healthy 

individuals. Analysis of specific taxa by Wilcoxon rank-sum test at the order taxonomic level 

revealed enrichment of Enterobacteriales (phylum: Proteobacteria) (p < 0.01) in not healthy 

individuals. Analysis of specific taxa by Wilcoxon rank-sum test at the family taxonomic level 

revealed enrichment of Enterobacteriaceae (phylum: Proteobacteria) (p < 0.01) in not healthy 

individuals and Paraprevotellaceae (phylum: Bacteroidetes) (p < 0.05) and Ruminococcaceae 

(phylum: Firmicutes) (p < 0.05) in healthy individuals. Analysis of specific taxa by Wilcoxon 

rank-sum test at the genus taxonomic level revealed enrichment in Escherichia (phylum: 

Proteobacteria) (p < 0.05) in not healthy individuals and enrichment of Faecalibacterium 

(phylum: Firmicutes) (p < 0.01), Roseburia (phylum: Firmicutes) (p < 0.05), and Coprococcus 

(phylum: Firmicutes) (p < 0.05) in healthy individuals.  
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Figure 4.6 Alpha and beta diversity and top taxa plots in the fecal microbiome based on physical 
Component Summary (PCS) scores of the 36-Item Short Form Health Survey (SF-36)  
A) Boxplots of alpha diversity metrics, observed operational taxonomic units (OTUs) and Shannon 
diversity, in the fecal microbiome based on the PCS metric of the SF-36. PCS scores were collapsed into 
healthy (PCS ≥ 45) and not healthy (PCS < 45) as designated by the developers of the survey. B) Scatter 
plots and regression lines of alpha diversity metrics, observed OTUs and Shannon diversity in the fecal 
microbiome based on PCS scores. C) Principal coordinate analysis of unweighted UniFrac distance 
matrix in the fecal microbiome, based on PCS health designation of healthy (PCS ≥ 45) and not healthy 
(PCS < 45). Principal coordinate axis 1 explained 11.8% of the variance and principal coordinate axis 2 
explained 7.6 % of the variance; together, principal coordinate axes 1 and 2 explained 19.4% of variance. 
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D) Principal coordinate analysis of unweighted UniFrac distance matrix in the fecal microbiome, based 
on PCS quartiles. Analysis included quartiles 1- 4, but only quartiles 1 and 4 are shown. Principal 
coordinate axis 1 explained 11.4% of the variance and principal coordinate axis 2 explained 7.5 % of the 
variance; together, principal coordinate axes 1 and 2 explained 18.9% of variance. E) Top ten phyla in 
fecal microbiome based on the PCS health designation of healthy (PCS ≥ 45) and not healthy (PCS < 45). 
Abbreviations: OTUs, operational taxonomic units; PCS, Physical Component Summary; SF-36, 36-Item 
Short Form Health Survey. Sample sizes: A, E) Healthy, 91; Not healthy, 69. C, D) Q1, 40; Q2, 39; Q3, 
39; Q4, 40.   
  

Analysis of the relationship between PCS and general health scores of the SF-36 using 

Pearson correlation revealed that the two metrics are highly correlated (r = 0.72, p < 0.001). 

Analysis of the relationship between PCS and physical function scores of the SF-36 using 

Pearson correlation revealed that the two metrics are highly correlated (r = 0.72, p < 0.001). 

Analysis of the microbiome and physical function scores from the SF-36 revealed no differences 

in alpha or beta diversity.   

  

 
Figure 4.7 Correlation of physical Component Summary (PCS) score and general health score and 
physical function score from the SF-36 
A) Graph illustrating the relationship between PCS and general health scores from the SF-36, using 
Pearson correlation. B) Graph illustrating the relationship between PCS and physical function scores from 
the SF-36, using Pearson correlation. Abbreviations: PCS, physical Component Summary; SF-36, 36-
Item Short Form Health Survey. 
 
4.4 Discussion  

In this Veteran cohort, we found that BMI was not different based on gender, race, or age 

group. However, there was a relationship between BMI and measures of health. Higher BMI was 

correlated with lower health, as measured by the physical functioning, general health and PCS 
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scores from the SF-36, but not any other subscores from the SF-36. In line with these findings, 

general health scores and PCS scores as well as physical function scores and PCS scores were 

highly correlated with each other. As for how BMI and health measures from validated surveys 

were associated with the microbiome, observed OTUs were lower in all the health metrics that 

have been designated as “not healthy” (BMI ≥ 25, lower general health quartiles, and PCS scores 

< 45). Further, raw general health and PCS scores from the SF-36 were positively correlated with 

observed OTUs. Based on analysis of quartiles of general health scores, differences in general 

health scores were associated with differences in bacterial community structure. Finally, based 

on analysis of PCS score health designations (healthy ≥ 45; not healthy < 45) groups differed in 

bacterial community structure, with not healthy individuals displaying enrichment in several taxa 

from the Proteobacteria phylum while healthy individuals displayed enrichment in obligate 

anaerobic taxa belonging to the Firmicutes and Bacteroidetes phyla.   

4.4.1 BMI in gender, race, and age groups 
Gender 

The National Center for Health Statistics reported that from 2011-2014 women showed 

higher rates of obesity (38.3%) than men (34.3%).126 This Veteran cohort, as mentioned 

previously, has far fewer females (15% of sample) than males (85% of sample). In this gender 

biased sample, we were unable to detect differences in BMI in female and male participants. In 

this Veteran cohort, 54% of women and 41% of men were obese, higher than mean rates of 

reported nationally between 2011-2014, consistent with previous reports that obesity rates are 

higher in Veteran populations than non-Veteran populations.127  

 

Race 
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Several studies have shown variability in BMI, body fat composition, body fat 

distribution, lean body mass, and overall adiposity among racial and ethnic groups.128–130 A 

comprehensive review cited by the CDC reported that age-adjusted obesity rates among adults in 

the United States between 2011 and 2012 were: non-Hispanic blacks (48.1%), Hispanics 

(42.5%), non-Hispanic whites (34.5%), and non-Hispanic Asians (11.7%).131 The obesity rates in 

this Veteran cohort based on race were: African American (22.8%; n = 39), Asian (50.0%; n = 

2), Caucasian (36.3%; n = 100), Multiracial (50.0%; n = 5), Native American (40.0%; n = 5), and 

Other (22.2%; n = 12). Similar obesity rates were seen in Caucasian populations between the 

national survey and Veterans in this cohort, while African American obesity rates in this Veteran 

cohort (n = 39) were much lower than the national survey. The obesity rate in African Americans 

in this Veteran cohort were more similar to the obesity rate of African Americans specifically in 

Colorado (25-30%) as reported by the CDC.132 Interpretation of these results outside of African 

American and Caucasian Veteran populations were limited because of sample size.   

Age 

Our data are similar to data reported by the CDC from the same study mentioned above 

examining obesity across the United States between 2011 and 2012. The CDC study reported 

obesity rates in the following age groups: 20-39 (32.3%), 40-59 (40.2%), and 60+ (37%).131 

Obesity rates in this Veteran cohort in the same age groups were: 20-39 (34.6%; n = 58), 40-59 

(39.3%; n = 69), and 60+ (18.1%; n = 36). The obesity rates among the 20-39 and 40-59 age 

groups were comparable to the national survey, while obesity rates in the 60+ age group in this 

Veteran cohort was much lower than obesity rates for the same age group in the national survey. 

The CDC does not report on the age group of 60+ specifically in Colorado; however Colorado 
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has the lowest rate of obesity when compared to the rest of the continental US and US 

territories.132 

4.4.2 Microbiome and BMI 
Alpha diversity measured by observed OTUs was higher in individuals with a healthy 

BMI (BMI < 25) than a not healthy BMI (BMI ≥ 25). However, there were no differences in 

alpha diversity when categorizing BMI by risk category, and there was no correlation between 

BMI and alpha diversity measures using raw BMI scores. Previous studies have reported 

inconsistent findings in relation to the association between BMI or body weight the gut 

microbiome. Some studies have observed decreases in observed OTUs in obese individuals,133–

135 while other studies have reported no differences between obese and lean phenotypes in alpha 

diversity metrics.24,85,102 Despite results of the transfer of an obesity phenotype to gnotobiotic 

mice by microbiome transplant from obese humans,136 concrete associations between BMI and 

characteristics of the gut microbiome have yet to be established, suggesting that there are a 

number of confounding variables.  

A meta-analysis of several studies relating BMI and obesity to the microbiome suggested 

that the use of a closed reference OTU picking scheme may be behind the lack of differences 

seen in alpha diversity.137 The authors of the meta-analysis suggest that a closed reference OTU 

picking scheme may be throwing out OTUs that are not held within the database and therefore 

artificially decreasing the number of OTUs being observed within samples. The microbial data in 

this veteran cohort was analyzed using a UCLUST pipeline which utilizes a de novo approach to 

assigning OTUs.138,139 This approach does not throw out OTUs and therefore could be a better 

assessment of true alpha diversity. This could also explain why our data show significant 

differences in observed OTUs between healthy and not healthy BMI categories.  
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We found no differences in bacterial community structure based on BMI divided into 

health categories or risk categories. A meta-analysis by Walters et al., (2014) of several 

studies24,85,102,134,135 examining obesity and the microbiome did not detect differences in bacterial 

community structure between obese and lean phenotypes. The authors compiled data from 

several studies and used PCoA analysis to assess beta diversity or bacterial community structure 

between lean and obese phenotypes. Visual clustering of samples from lean or obese individuals 

was not immediately discernable and further analysis by PERMANOVA did not yield any 

significant results.137 The authors of this meta-analysis were quick to disclose that there was very 

little standardization in the molecular techniques used to process the samples from the various 

studies, citing, specifically, that there were differences in extraction techniques, PCR primers, 

and sequencing platforms. These inconsistencies are not trivial and the field is divided on 

whether datasets with the disparities detailed above are indeed comparable.140–143 Fortunately, 

this meta-analysis was not comparing studies to each other, but more looking into each of the 

studies to determine if there was consensus on associations between BMI and features of the 

fecal microbiome.  

Previous studies have reported conflicting findings in regard to associations between 

specific taxa and BMI. One of the main associations of the microbiome and BMI that received a 

lot of attention was the ratio of the phyla Firmicutes to Bacteroidetes. These phyla are commonly 

the two most abundant phyla observed in the human gut and initial research published in high 

impact journals showed that high Firmicutes/Bacteroidetes ratios were associated with high 

BMI.47,103 Since these initial findings, this observation has been corroborated in several 

studies134,144–146 and disputed in several others.104–106,147,148 In this Veteran cohort, we found no 

relationship between Firmicutes or Bacteroidetes or the Firmicutes/Bacteroidetes ratio and BMI. 
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Further analysis of taxonomy within BMI quartiles revealed that the only bacterial taxa that 

significantly differed among quartiles was the genus Ruminococcus. Ruminococcus was 

implicated by Arumugam et al., (2011) as one of the three purposed “enterotypes” that received 

much scrutiny,149 and has been shown in a previous study to vary with BMI.26 We observed that 

in the second quartile Ruminococcus was reduced relative to the other three quartiles, which 

showed similar relative abundances of Ruminococcus. It is difficult to determine the physiologic 

relevance of this finding. Further it has been shown that the relative abundance of the genus 

Akkermansia26 exhibits a negative relationship with BMI, while Lactobacillus shows a positive 

relationship with BMI.137 In this Veteran cohort Akkermansia did not differ in any of our 

divisions of BMI, but Lactobacillus was approaching statistical significance among BMI 

quartiles.  

 

4.4.3 Associations between BMI or age and general health and PCS metrics of 
the SF-36 

General health and PCS scores from the SF-36 survey displayed negative relationships 

with BMI in this Veteran cohort. BMI is a convenient and quick indirect measure of body fat and 

is correlated with several metabolic diseases (for full list please refer to the Body-mass index 

designations segment of the materials and methods section). However, BMI has been disputed in 

being a poor measure of actual body fat,150–152 especially in athletes.153,154 The results from this 

Veteran cohort follow the “normal” associations of BMI with general and physical health; i.e., 

increased BMI is correlated with decreased general and physical health. Similarly, PCS scores 

from the SF-36 decrease with increasing age. In contrast, general health showed no relationship 

to age. This could be because our sample has a limited age range, with only 5 participants 70 

years of age or older.  
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4.4.4 Relationship between the general health metric of the SF-36 and the 
fecal microbiome 

We observed increased alpha diversity in the gut microbiome in individuals with higher 

general health perception scores on the SF-36, as measured by observed OTUs, a measure of 

species richness, when general health was categorized by quartiles. Those in the highest quartile 

had increased alpha diversity relative to those in the first and second quartile. This finding was 

supported by a significant correlation between general health scores and observed OTUs, when 

assessing all individuals in the cohort. According to Ware et al., (1992), the general health 

dimension of the SF-36 can be interpreted such that individuals with low scores believe personal 

health is poor and likely to get worse, while individuals with high scores believe personal health 

is excellent. In both humans133 and animal models,134 increased alpha diversity is associated with 

increased measures of health. Although the mechanisms underlying this association are not clear, 

studies in animal models have demonstrated that stress exposure frequently decreases alpha 

diversity,155,156 and stress-induced reductions of alpha diversity are associated with increased 

proliferation of gut pathogens, including pathobionts, such as Helicobacter spp., that are 

frequently present in the microbiome.157–159 The stress-induced expansion of Helicobacter spp. is 

mediated by glucocorticoid actions on the glucocorticoid receptor, and therefore may be a direct 

outcome of stress exposures.158,159   

In addition to these effects on alpha diversity, we observed differences in beta diversity in 

relation to general health perception scores, based on principal coordinate analysis of the 

weighted UniFrac distance matrix and further assessment with PERMANOVA. The bacterial 

community structure differed among the quartiles of the general health perception scores. 

Analysis using Wilcoxon rank-sum test revealed that the relative abundance of a number or 



 71 

taxonomic groups within the phyla Actinobacteria and Firmicutes were increased in quartile 1 

(representing lower general health perception) relative to quartile 3 (representing higher general 

health perception). For Actinobacteria, these included Actinobacteria (taxonomic level: phyla), 

Coriobacteriia (taxonomic level: class), Coriobacteriales (taxonomic level: order), and 

Coriobacteriaceae (taxonomic level: family). For Firmicutes, these included Bacilli (taxonomic 

level: class), Lactobacillales (taxonomic level: order), and Streptococcaceae (taxonomic level: 

family). These results are similar to previous research showing increased Actinobacteria and 

Firmicutes and decreased Bacteroidetes in obese individuals relative to lean individuals.160 In 

addition, this group showed that increases in Actinobacteria and Firmicutes were associated with 

decreases in alpha diversity, which was also observed in this Veteran cohort.160 Finally, 

metagenomics analysis of obese vs lean individuals showed that of the genes that were enriched 

in obese individuals 75% of them were derived from Actinobacteria and 25% were derived from 

Firmicutes.160 We observed a negative relationship between general health and BMI, which may 

explain how these results align with results from obese individuals.  

 

4.4.5 Relationship between PCS scores from the SF-36 and the fecal 
microbiome  

Alpha diversity measured by observed OTUs was higher in healthy individuals (PCS ≥ 

45) than in not healthy individuals (PCS < 45). Likewise, raw PCS scores showed a positive 

relationship with observed OTUs and a positive relationship that approached statistical 

significance with Shannon diversity. These data are consistent with previous research that has 

shown that alpha diversity of the gut microbiome is reduced in individuals with a number of 

gastrointestinal disease states, including Crohn’s disease,161–163 irritable bowel syndrome,164–166 

and colorectal cancer (for review see167), as well as systemic disorders such as systemic 
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inflammatory response syndrome 168 and metabolic disorders (type 1169 and type 2,120,170 as well 

as diabetes and metabolic syndrome.114,171–173  

Principal coordinate analysis of the unweighted UniFrac distance matrix and further 

analysis by PERMANOVA determined that the bacterial community structure differed between 

healthy (PCS ≥ 45) and not healthy (PCS < 45) individuals. Further analysis, using Wilcoxon 

rank-sum test, of specific taxa, revealed that the relative abundance of a number or taxonomic 

groups within the Proteobacteria phylum were increased in individuals with PCS scores in the 

not healthy range. These taxa included Gammaproteobacteria (taxonomic level: class), 

Enterobacteriales (taxonomic level: order), Enterobacteriaceae (taxonomic level: family), and 

Escherichia (taxonomic level: genus).  

Proteobacteria are gram-negative bacteria that express lipopolysaccharide (LPS, an 

endotoxin that acts on toll-like receptor 4 to induce a cellular inflammatory response) on the 

surface of their outer membrane. Severe endotoxemia can cause septic shock.174 In a study by 

Karl and colleagues, those individuals who had higher relative abundances of Proteobacteria had 

increased gut permeability in response to a stressful long distance march.175 These findings are 

supported by animal studies showing increased relative abundance of Proteobacteria in response 

to stress exposure.157,176,177 Sustained low grade inflammation, potentially driven by LPS from 

increased Proteobacteria in the gut, is well known to be associated with the development of 

metabolic disorders (for review see178) and is also thought to be a risk factor in stress-related 

psychiatric disorders, including anxiety and affective disorders.179 Studies have shown that 4 

weeks of high fat diet consumption in mice increases Proteobacteria species in the gut and 

induces endotoxemia with blood concentrations of bacterially-derived LPS reaching levels that 

are 2-3 fold higher than concentrations found in mice given a control diet.180 Further, 4 weeks of 
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subcutaneous injections of LPS, leading to a chronic endotoxemia, leads to the same metabolic 

complications as those found in mice maintained on a high fat diet.180 In a follow-up study, 

endotoxemia and fecal concentrations of LPS were reduced in both control and high fat diet mice 

in response to antibiotic treatment. Severity of metabolic complications in high fat diet mice 

were also reduced in response to antibiotic administration.181  

 Proteobacteria are not only associated with metabolic disorders but several other disease 

states. The relative abundance of Gammaproteobacteria has been shown to be increased in 

inflammatory bowel diseases,163,182,183 while the genus Escherichia has been shown to be 

increased in ileal Crohn’s disease184 and spontaneous colitis.185 Enterobacteriaceae has been 

shown to be enriched following increased consumption of artificial sweeteners.186 Increased 

relative abundance of Proteobacteria is frequently observed in various disease states and this has 

led some to label Proteobacteria as markers of dysbiosis of the gut microbiome.176,177  

 One proposed mechanism underlying the association between increased relative 

abundance of Proteobacteria, inflammatory bowel diseases and gut dysbiosis is the “oxygen 

hypothesis.”187 Rigottier-Gois (2013), noted that inflammation of the gastrointestinal (GI) tract 

leads to an overall decrease in obligate anaerobic taxa (Firmicutes and some Bacteroides) and 

increases in facultative aerobic taxa (Proteobacteria, specifically Enterobacteriaceae). The author 

proposes that, in an inflammatory state, the GI epithelium is damaged and therefore has impaired 

function. One of the functions of the GI epithelium is to deplete oxygen in the gut lumen through 

beta oxidation of fatty acids at the mucosal interface, which in turn creates an anaerobic 

environment.188 In an inflammatory state, it is proposed that the GI epithelium may have a 

decreased capacity to perform beta oxidation of fatty acids and therefore leave the lumen of the 

GI tract in an aerobic state allowing facultative aerobic taxa like Enterobacteriaceae to bloom.189 



 74 

This hypothesis is further supported by metagenomics analyses that show an overrepresentation 

of genes for encoding respiratory pathways in mice with chemically induced colitis.190  

Enrichment patterns of specific taxa in the healthy individuals (PCS scores ≥ 45) of this Veteran 

cohort are consistent with the “oxygen hypothesis”. The bacterial taxa that were shown to be 

enriched in healthy individuals were Paraprevotellaceae (phylum: Bacteroidetes), 

Ruminococcaceae (phylum: Firmicutes), Faecalibacterium (phylum: Firmicutes), Roseburia 

(phylum: Firmicutes), and Coprococcus (phylum: Firmicutes). All of these taxa are obligate 

anaerobes.  

4.5 Conclusions  
Three measures of general and physical health, i.e., BMI, SF-36 general health 

perception, and SF-36 PCS score showed associations with features of the fecal microbiome in 

this Veteran cohort. All of these metrics displayed a similar relationship with alpha diversity, i.e., 

indicators of lower general and physical health status were associated with lower alpha diversity. 

Conversely, observed OTUs were increased in the “healthy” state, using all three metrics of 

general and physical health. BMI displayed no association with the Firmicutes/Bacteroides ratio. 

The lowest quartile of general health perception exhibited an overall enrichment in taxa within 

the Actinobacteria and Firmicutes phyla. This result may suggest that general health perception 

is influenced by an individual’s perception of health based on weight because these taxa have 

previously been shown to be enriched in obese individuals. The PCS score on the other hand 

may be tapping into the inflammatory state of an individual, as “not healthy” (PCS < 45) 

individuals displayed enrichment in Proteobacteria taxa, while “healthy” (PCS ≥ 45) individuals 

displayed enrichment in obligate anaerobic taxa. These results align with the recently proposed 

“oxygen hypothesis” explaining patterns of taxonomic composition of the fecal microbiome in 

association with inflammation in the GI tract.  
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Chapter 5. Association of insomnia and the microbiome in a 
Veteran cohort 
5.1 Introduction 

Sleep is essential for normal cognitive function and humans spend roughly one-third of 

their existence sleeping or trying to fall asleep.191 It is clear that even acute bouts of sleep 

deprivation and restriction lead to decreases in cognitive performance192–194 and physical 

health.195,196 It has also been shown that sleep irregularity in the form of reversed or misaligned 

circadian cycles as seen in shift workers leads to increases in various metabolic disorders such as 

type 2 diabetes, hypertension, and obesity.196–198 As reviewed in the previous chapter of this 

dissertation, the microbiome is clearly linked to metabolic diseases, general health, and physical 

health.87,120,133 Despite the several lines of evidence that sleep restriction is linked to same poor 

physical health outcomes that have been linked to the microbiome there are relatively few studies 

relating sleep and the microbiome.  

Studies of the relationship between acute or chronic sleep restriction and the microbiome, 

although relatively few in number, have been done in humans and rodents. Two recent studies 

examining the association of acute sleep restriction (i.e., 4 hrs of sleep opportunity for two199 or 

five days,200 respectively) in humans show that the microbiome is relatively robust to changes 

under these conditions. These studies revealed no differences in alpha or beta diversity and very 

few specific taxa were altered in response to acute sleep restriction.199,200 A study performed in 

rats showed acute sleep disruption of 5 days leads to changes in bacterial community structure, 

but only one relatively obscure taxa (OTU; TM7a-3) showed differential abundance between 

treatment groups.200 A study done in mice of chronic sleep fragmentation (4 weeks) showed 

changes in the bacterial community structure with several taxa including probiotic-related taxa 

that were affected.201 These studies collectively provide some evidence that the microbiome is 
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affected by sleep restriction and fragmentation. However, a comprehensive characterization of 

the microbiome as it relates to sleep, and sleep disorders is needed.  

In this Veteran cohort, we conducted two surveys, to gauge insomnia symptom severity 

and presence of a current insomnia disorder, respectively. The first survey, the insomnia severity 

index (ISI) is a seven-item self-report survey that is validated as a metric to gauge the severity an 

individual’s insomnia.202,203 The second survey, the Structured Clinical Interview, fifth edition 

(SCID-5; Module H) is assessed by a trained professional in an interview as part of the 

Diagnostic and Statistical Manual of Mental Health Disorders, fifth edition (DSM-5; research 

version) gauged at determining the presence of a sleep disorder.204 In our analysis of the SCID-5 

metric, we focused on the presence or absence of an insomnia disorder. In this chapter, we 

sought to examine how these two metrics of insomnia related to the microbiome independently 

as well as comparing and contrasting the two metrics against each other to assess for similar or 

confounding results.  

5.2 Materials and methods 
5.2.1 General procedures 

Please refer to Chapter 2 of this dissertation for details on Participants and study design, 

Sample collection and preparation, Molecular processing, and Computational analyses. 

5.2.2 Insomnia severity index (ISI)  
The ISI is a seven-item instrument assessing the nature and severity of insomnia 

symptoms, satisfaction with sleep, interference of sleep disturbance with daily functioning, and 

how distressing and noticeable the sleep impairment is.203 The scale is considered a reliable and 

valid measure of insomnia.202 The ISI is structured so that all questions have five total responses 

that are scored 0-4. The response scores represent worsening insomnia symptoms where 0 

represents a lack of an insomnia symptoms and 4 represents a severe insomnia symptom. The 

cumulative ISI score is simply the sum of the response scores for the seven questions. The 
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developers of the ISI provide the following cutoffs for ISI scores: 0-7, no clinically significant 

insomnia; 8-14, subthreshold insomnia; 15-21, clinical insomnia (moderate severity), and 22-28, 

clinical insomnia (severe).203 These categories can be condensed into clinical insomnia (ISI score 

≥ 15) and subthreshold or no insomnia (ISI < 15).203  

5.2.3 Structured Clinical Interview for DSM-5 (SCID-5, research version) 
Module H  

The SCID-5 is a diagnostic interview that is administered by a trained professional used to 

determine metal health disorders as a component of the Diagnostic and Statistical Manual of 

Mental Disorders 5 (DSM-5). In this study, the research version of the DSM-5 was used and the 

interview was administered by trained research assistants. Module H of this interview is aimed at 

determining if an individual is suffering from sleep-wake disorders. The interview for this 

module aims to determine if an individual has a current (within the past 3 months) insomnia 

disorder, hypersomnolence disorder, or substance/ medication-induced sleep disorder. Each of 

these sleep related disorders are assessed independently and each receive a presence or absence 

designation. In this study, we only assessed insomnia disorder (presence/absence) as it related to 

the microbiome. Therefore, we will not detail the criteria for diagnosis of hypersomnolence 

disorder or substance/ medication-induced sleep disorder here. The interviewer asked a series of 

questions to determine if a current insomnia disorder was present based on the following criteria.  

• The time of going to sleep and time of waking  

• Difficulty initiating sleep  

• Difficulty maintaining sleep, characterized by frequent awakenings or problems returning 

to sleep after awakening  

o These criteria exclude frequent toilet use 

• Early morning awakening with inability to return to sleep  
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• Average total sleep time  

o Insomnia disorder was automatically assigned if average total sleep time was less 

than 6.5 hours  

The criteria above are assessed not as specific questions to be explicitly asked in a 

standardized manner, but rather in a format similar to a visit with a clinical psychologist. The 

manual specifically outlines that if the patient/ participant has answered “yes” to a screening 

question in a written portion of the DSM-5 regarding major concerns about their sleeping habits, 

the interviewer should prompt the patient/ participant with the question “You’ve said that over 

the past 3 months a major concern of yours has been that you are not getting enough good sleep 

or feeling rested. Tell me about that?”  

5.2.4 Microbiome results for skin and oral samples   
In exploratory analysis of the microbiome data, only fecal microbiome associations were 

revealed as significant in relation to metadata categories that were relevant to insomnia. 

Therefore, no skin or oral microbiome results will be shown in this chapter.  

5.3 Results  
We performed several analyses on the ISI scores and SCID-5 current insomnia 

designation variables as they associate with alpha and beta diversity. A summary table of results 

can be found in Table 5.1.  
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Table 5.1 Table of insomnia variables and their associations with alpha and beta diversity 
outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the results for the initial analyses of insomnia variables as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. Any p-value 
> 0.05 is not significant. Abbreviations: ISI, Insomnia Severity Index; DSM-5, Diagnostic and Statistics 
Manual of Mental Disorders 5th edition; SCID-5, Structured Clinical Interview for the DSM-5.  
 
 
5.3.2 Analysis of alpha and beta diversity and top taxa in the fecal microbiome 
based on ISI categories and scores 

Alpha diversity was lower in individuals with severe insomnia symptoms (ISI score ≥ 22) 

relative to individuals without severe insomnia symptoms (ISI score < 22) based on analysis 

using observed OTUs (Wilcoxon rank-sum test; p < 0.05), but not Shannon diversity (Figure 

5.1A). We investigated if this difference was also evident when comparing clinical insomnia 

with subthreshold or no insomnia (clinical insomnia (moderate or severe) = ISI scores ≥15; 

subthreshold or no insomnia = ISI scores < 15) (Figure 5.1B). Alpha diversity approached 

statistical significance in individuals with clinical insomnia (ISI score ≥ 15) exhibiting fewer 

observed OTUs than individuals without clinical insomnia (ISI score < 15) (Wilcoxon rank-sum 

test; p = 0.06). Shannon diversity did not differ between individuals with or without clinical 

insomnia. Scatter plots of raw ISI scores exhibited a negative relationship that approached 
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statistical significance in observed OTUs (r = –0.14, p = 0.08), but no relationship was observed 

with Shannon diversity (Figure 5.1C). Principal coordinate analysis of the weighted UniFrac 

distance matrix and further assessment with PERMANOVA revealed that the bacterial 

community structure differed between individuals with severe insomnia symptoms from 

individuals without severe insomnia symptoms (p < 0.05; data not shown). Analysis of specific 

taxa between individuals with severe insomnia symptoms and individuals without severe 

insomnia symptoms by Wilcoxon rank-sum test at the phylum taxonomic level revealed no 

differences. Analysis of specific taxa by Wilcoxon rank-sum test at the class taxonomic level 

revealed enrichment of Bacilli (phylum: Firmicutes) (p < 0.05) in individuals with severe 

insomnia symptoms. Analysis of specific taxa by Wilcoxon rank-sum test at the order taxonomic 

level revealed enrichment of Lactobacillales (phylum: Firmicutes) (p < 0.05) in individuals with 

severe insomnia symptoms. Analysis of specific taxa by Wilcoxon rank-sum test at the family 

taxonomic level revealed enrichment of Lactobacillaceae (phylum: Firmicutes) (p < 0.05) in 

individuals with severe insomnia symptoms and Clostridiaceae (phylum: Firmicutes) (p < 0.05) 

in individuals without severe insomnia symptoms. Analysis of specific taxa by Wilcoxon rank-

sum test at the genus taxonomic level revealed enrichment of Lactobacillus (phylum: Firmicutes) 

(p < 0.05) in individuals with severe insomnia symptoms and enrichment in Faecalibacterium 

(phylum: Proteobacteria) (p < 0.05) and Sporobacterium (phylum: Firmicutes) in individuals 

without severe insomnia symptoms.  
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Figure 5.1 Alpha diversity in the fecal microbiome based on insomnia severity index (ISI) 
designations and scores 
A) Boxplots of observed operational taxonomic units (OTUs) and Shannon diversity metrics within ISI 
designations of not severe (ISI score < 22) and severe clinical insomnia (ISI score ≥ 22), using ISI 
severity thresholds designated by the developers of the index. B) Boxplots of observed OTUs and 
Shannon diversity metrics within ISI designation of no clinical insomnia (ISI score < 15) and clinical 
insomnia (moderate or severe) (ISI score ≥ 15), using ISI clinical insomnia thresholds designated by the 
developers of the index. C) Scatter plots and regression lines of raw ISI scores versus observed OTUs and 
Shannon diversity metrics. Abbreviations: ISI, insomnia severity index, OTU, operational taxonomic unit. 
Sample sizes: A) no severe clinical insomnia, 143; severe clinical insomnia, 18. B) no clinical insomnia, 
105; clinical insomnia (moderate or severe), 56.  
 

5.3.3 Analysis of alpha and beta diversity in the fecal microbiome relative to a 
current insomnia disorder based on SCID-5 

Analysis of alpha diversity, comparing individuals with and without a current insomnia 

disorder based on the SCID-5, approached statistical significance with more observed OTUs in 

individuals with a current diagnosis of insomnia (Wilcoxon rank-sum test; p = 0.08) (Figure 

5.2). Principal coordinate analysis of weighted and unweighted UniFrac distance matrices 
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determined that the bacterial community structures were not different in individuals with and 

without a current insomnia disorder.  

 

Figure 5.2 Alpha diversity in the fecal microbiome based on SCID-5 current insomnia disorder 
designations 
Boxplots of observed operational taxonomic units (OTUs) and Shannon diversity metrics for individuals 
with and without a current insomnia disorder based on the SCID-5. Abbreviations: OTU, operational 
taxonomic unit; SCID-5, Structured Clinical Interview for the DSM-5. Sample sizes: No, 141; Yes, 18. 
 

5.3.4 Exploratory analysis of sample sizes and beta diversity in the fecal 
microbiome comparing ISI severity categories relative to a current insomnia 
disorder based on SCID-5 

A comparative table of sample sizes cross referencing ISI severity with SCID-5 presence 

or absence of a current insomnia disorder displayed conflicting categorization (Table 5.1). A 

survey of the sample sizes displayed that the highest number of individuals with the presence of 

a current insomnia disorder fell into the subthreshold ISI category (n = 8), while the lowest 

number of individuals with the presence of a current insomnia disorder fell into the severe ISI 

category (n = 3). 
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Table 5.2 Sample sizes cross referencing ISI severity designations with SCID-5 presence or 
absence of current insomnia disorder 

 Not significant 
(0-7) 

Subthreshold  
(8-14) 

Moderate  
(15-21) 

Severe  
(22-28) 

Total 

No 46 45 35 15 141 
Yes 4 8 3 3 18 
Total 50 53 38 18 159 

Sample sizes of ISI severity designations (with ISI score ranges in parentheses) against SCID-5 current 
insomnia disorder designation.   
 

Exploratory principal coordinate analysis of the unweighted UniFrac distance matrix and 

further examination with PERMANOVA determined that bacterial community structure based 

on ISI severity categories (no insomnia, subthreshold insomnia, moderate insomnia, or severe 

insomnia) approached statistical significance in determining that the bacterial community 

structure among the ISI severity categories differed (p = 0.06) (Figure 5.3,  only ISI severity 

categories of subthreshold insomnia and severe insomnia are shown). This analysis was 

exploratory in the sense that these observations were based on low sample sizes and therefore 

many of the statistics were underpowered. Also, the beta diversity PCoA analysis of ISI severity 

designations were not fully supported by statistics because a permutational test of 

homoscedasticity produced a significant result meaning that there was unequal variance among 

groups. A visual examination of the PCoA plot comparing SCID-5 and ISI assessments of 

insomnia shows that, similar to the cross-referenced sample sizes, individuals with a current 

insomnia disorder clustered more closely with the subthreshold ISI severity individuals.  
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Figure 5.3 Beta diversity comparisons in the fecal microbiome based on insomnia severity index 
(ISI) designations in individuals with and without a current insomnia disorder based on SCID-5 
Principal coordinate analysis of unweighted UniFrac distance matrix of ISI severity (all categories) with 
only ISI severity categories of severe (red, ISI score 22-28) and subthreshold (blue, ISI score 8-14) 
shown. A current insomnia disorder is designated by shape: No (circle) and Yes (triangle). Principal 
coordinate axis 1 explained 11.1% of the variance and principal coordinate axis 2 explained 7.5% of the 
variance; together, principal coordinate axes 1 and 2 explained 18.6% of variance. Abbreviations: ISI, 
insomnia severity index, OTU, operational taxonomic unit, SCID-5, Structured Clinical Interview for the 
DSM-5. Sample sizes: No current insomnia disorder and ISI severe (red circle), 15; Yes current insomnia 
disorder and ISI subthreshold (blue triangle), 8; No current insomnia disorder & ISI subthreshold (blue 
circle), 4; Yes current insomnia disorder and ISI severe (red triangle), 3.  
 
 
5.4 Discussion  

In this Veteran cohort, we determined that the fecal microbiome differed between the two 

metrics that were used to gauge insomnia, i.e., ISI score and SCID-5 current insomnia disorder 

presence or absence. Observed OTUs were lower in individuals with severe insomnia ISI scores 

(ISI score ≥ 22) compared to individuals without severe insomnia ISI scores (ISI score < 22), 

but, paradoxically, higher in individuals with the presence of a current diagnosis of insomnia 

disorder (SCID-5). Beta diversity as measured by PCoA of the unweighted UniFrac distance 

matrix determined that the bacterial community structure differed between individuals with and 

without severe ISI severity scores, while bacterial community structure was not changed by the 

presence or absence of a current insomnia disorder, although it should be emphasized that of, 

159 individuals assessed for a diagnosis of insomnia using SCID-5, only 18 (11.3%) had a 

diagnosis of current insomnia, resulting in an extreme bias in the sample toward those without a 
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diagnosis of current insomnia. Analysis of specific taxa in the fecal microbiome showed that 

individuals with severe ISI severity scores were enriched in taxa from the Firmicutes phylum and 

specifically several Lactobacilli taxa. In contrast, individuals without severe ISI severity scores 

showed enrichment in the genus Faecalibacterium.  

 

Alpha diversity, beta diversity, and top taxa were altered in individuals with severe insomnia ISI 

scores 

This Veteran cohort displayed changes in alpha and beta diversity in individuals 

exhibiting severe insomnia ISI scores, relative to those without severe insomnia ISI scores. To 

our knowledge, this is the first report of reduced gut microbiome alpha diversity in individuals 

with severe insomnia. Two recent studies that assessed the effects of acute sleep restriction (4 hrs 

of sleep opportunity for two days199 and five days,200 respectively) on the gut microbiome did not 

detect changes in alpha and beta diversity of the gut microbiome, suggesting acute sleep 

restriction for two to five days may not be a long enough period of sleep restriction to induce 

detectable changes in alpha and beta diversity. However previous metabolomics studies of acute 

sleep restriction have detected changes in the host metabolome within a single day of sleep 

restriction.205,206 The host metabolome is different from the gut metabolome and these results 

may be mediated by physiological factors of the host altered by acute sleep restriction rather than 

changes within the microbiome. There are important differences between our study and these 

studies of sleep restriction, as these studies performed a sleep restriction intervention and our 

surveys examined current insomnia symptoms or the presence of a current insomnia disorder.  

The insomnia measures collected within this Veteran cohort may be more comparable to 

chronic models of sleep fragmentation. A study done in mice with a chronic sleep fragmentation 
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regimen (4 weeks) supports the notion that chronic sleep fragmentation is sufficient to detect 

changes in beta diversity. Poroyko et al., (2016) found that chronic sleep fragmentation (SF) 

leads to changes in bacterial community structure and other behavioral and physiological 

changes. Examination of beta diversity and specific taxa in SF mice mostly supported the results 

observed in severe ISI Veterans. Both SF mice and severe ISI Veterans showed differing 

bacterial community structures with a specific increase in Firmicutes. However, the increase 

observed in Firmicutes in SF mice was driven by Lachnospiraceae, while Lactobacillus taxa 

drove this finding in Veterans with severe ISI symptoms. Furthermore, SF mice showed a 4-fold 

decrease in Lactobacillus taxa. Poroyko et al., (2016) did note that the SF mice also experienced 

significant changes in food intake, insulin resistance, and inflammation, which could be 

influencing the discrepancies between the two studies. Poroyko et al., (2016) did not report alpha 

diversity metrics in the main manuscript or supplemental material, so no comparisons between 

alpha diversity could be made.   

Faecalibacterium was depleted in Veterans with severe ISI scores. This genus consists of 

a single known species, F. prausnitzii, and is one of the most abundant commensal bacteria in 

the healthy human large intestine.207 F. prausnitzii is known to be immunoregulatory208 and has 

been implicated in protection against a number of inflammatory disorders. Faecalibacterium has 

been shown to be depleted in patients suffering from inflammatory bowel disease (IBD), i.e. 

ulcerative colitis and Crohn’s disease, as well as irritable bowel syndrome, and colorectal 

cancer.209–211 Faecalibacterium is an extremely oxygen sensitive (EOS) bacterium208,212; 

consistent with the oxygen hypothesis (outlined in Chapter 4) inflammatory bowel diseases may 

compromise the normal anaerobic environment of the lumen of the GI tract.187 A recent 

characterization of F. prausnizii showed that most strains decreased the proinflammatory 
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cytokine, IL-8, increased the anti-inflammatory cytokine IL-10, and produced butyrate in in vitro 

assays.208 The immunoregulatory properties and butyrate producing properties of this genus have 

led some to propose F. prausnizii as a next generation probiotic.208 It is not known if 

Faecalibacterium is associated with insomnia; however, the depletion of Faecalibacterium in 

Veterans with severe ISI symptoms may infer other health complications beyond severe 

insomnia symptoms.  

 

Alpha diversity and beta diversity were not altered in individuals with a current insomnia 

disorder based on the SCID-5 

Alpha diversity as measured by observed OTUs approached statistical significance with 

individuals with a current insomnia disorder displaying more OTUs. The ability to detect 

differences in the gut microbiome in association with ISI severity scores, but not in association 

with a current diagnosis of insomnia may be due to differences in insomnia severity or 

differential use of sleep medications in these two groups. These results stimulated us to perform 

more in depth analyses to probe at the differences between the ISI and SCID-5 insomnia 

measures.  

 

5.4.1 Comparison of the two insomnia measures 
Associations between measures of insomnia, using either the ISI or SCID-5 surveys (both 

considered valid assessments of insomnia in clinical studies202,213), and alpha and beta diversity 

of the fecal microbiome were not in full alignment. One possibility underlying the different 

outcomes is that severity of insomnia is an important determinant of the association between 

insomnia and the gut microbiome, as those with severe insomnia showed differences in alpha 

diversity, beta diversity, and specific taxa, relative to those without severe insomnia, while the 
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SCID-5 diagnostic criteria do not. In support of this reasoning, cross-referencing sample sizes for 

ISI severity designations with SCID-5 current insomnia disorder designation shows only 3 of 18 

individuals with a current insomnia disorder expressing severe ISI symptoms. Further, two-thirds 

of individuals with a current insomnia disorder (12 of 18) have either “not significant” or 

“subthreshold insomnia”, symptoms, based on the ISI survey, which are both below the standard 

determined to be clinical insomnia.203  

One potential factor that our analysis has not taken into account is whether or not 

participants were taking medications, for insomnia or other conditions. Falony et al., (2016) 

performed an extensive meta-analysis of the gut microbiome in the combined Belgian Flemish 

Gur Flora Project and Dutch LifeLines DEEP study with a combined sample size of 3948 to 

reveal covariates, biomarkers, and core microbiota. One of the main covariates explaining 

significant variation in the microbiome and the covariate with the largest effect size was 

medications.26 The effect was influenced in a large part by antibiotics; however, contained within 

the “shortlist” of 13 medications that, independent of other covariates, influenced the community 

composition of the microbiome were benzodiazepines (top insomnia medication recommended 

by clinician guidelines214) as well as other medications that are not selectively insomnia 

medications but are frequently prescribed for insomnia, such as antidepressants, and anti-

panic/anti-anxiety, as well as over-the-counter drugs that are frequently taken by individuals with 

insomnia, such as antihistamine medications.214 The medications venlafaxine (antidepressant) 

and clonazepam (anti-panic and anxiolytic) were shown to specifically influence the relative 

abundance of the phyla Firmicutes and Bacteroides, respectively.26 Antihistamines were shown 

to influence the bacterial community structure as a whole and drive specific increases in the 
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relative abundances of Eggerthella (phylum; Actinobacteria), Flavonifractor (Phylum; 

Clostridium), and Parasutterella (phylum; Proteobacteria).26   

Although we currently do not have information on whether or not participants were 

taking sleep medications, it seems reasonable that if an individual was taking one of these 

medications, not only would their ISI symptoms decrease but they would also be preventing the 

detriments of chronic sleep restriction, which has been associated with dysbiosis of the gut 

microbiome201 and increases in BMI and risk for metabolic disorders.195–197 In other words, it is 

possible that individuals with a current diagnosis of insomnia disorder were also taking sleep 

medications, leading to decreases in ISI severity scores, increases in observed OTUs, and 

changes in bacterial community structure, resulting in those participants being more similar to 

participants in the subthreshold insomnia category, based on the ISI survey.  

5.4.2 Limitations  
A major limitation of this analysis was that we did not have information regarding current 

medications for this Veteran cohort, where many individuals, particularly those with a diagnosis 

of current insomnia, were likely to be taking medications. Medications were likely to lead to 

reductions in symptoms of insomnia leading to lower insomnia severity, and also have potential 

to directly impact the diversity and community structure of the gut microbiome.  

5.5 Conclusions   
These results, along with previous animal studies and recently published clinical studies 

of sleep restriction, support the conclusion that chronic sleep restriction or chronic sleep 

disruption is sufficient to observe changes in alpha and beta diversity of the gut microbiome. It is 

clear that the validated ISI and SCID-5 surveys are identifying different individuals within 

populations with insomnia-like symptoms. Comparison of the two metrics revealed that self-
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reported severity of insomnia symptoms, as measured by the ISI, was a more sensitive measure 

in terms of associations with features of the gut microbiome.  
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Chapter 6. Association of mental health and skin, oral, and fecal 
microbiomes in a cohort of U.S. Veterans 
 

6.1 Introduction 
“No health without mental health” has been the defining mantra of the mental health field 

since this proclamation by the World Health Organization (WHO).215 It is becoming more and 

more evident that the barrier separating physical health and mental health is a conceptual barrier 

and the two health states are intimately linked. Mental health disorders are a serious problem 

globally.216 The Global Burden of Diseases, Injuries, and Risk Factors Study 2016, spanning 

from 1990 to 2016 reported that major depressive disorder ranked in the top-10 causes of illness 

in every country around the world with the exception of four countries.217 Further, the globe has 

shown little improvement in mental health since 1990, while communicable diseases on the other 

hand have largely decreased during the same time period.217 Mental health disorders have proven 

to be a persistent problem around the world. This realization lead the director of the NIMH in 

2006, Thomas Insel, to propose that the field needs to raise the bar for developing novel 

strategies for prevention of mental health disorders.218 Insel made the resonating statement that 

“psychiatry will need to develop strategies for prevention” of mental health disorders.   
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The concept that prevention of mental health disorders may be conceivable is nested in 

the well-established link between inflammation and depression. Individuals with depression that 

are otherwise healthy have increased systemic inflammatory markers and reduced 

immunoregulatory markers.219 Proinflammatory cytokines have been found to be raised in the 

cerebrospinal fluid of a specific subset of depressed patients and raised expression of 

proinflammatory markers have been shown in the brains of deceased individuals who died from 

suicidal self-directed violence.220,221 Cancer patients who were previously not depressed and 

receive treatment with the proinflammatory cytokine interferon-a develop symptoms of 

depression.222 These symptoms can be alleviated by administering an antidepressant shown to be 

anti-inflammatory.222,223 Further, individuals resistant to traditional antidepressant treatments and 

elevated baseline inflammatory markers respond to anti-inflammatory treatment targeting TNF 

signaling.224 Several lines of evidence show that depression has clear links to inflammation. 

 One approach to prevention of mental health disorders is to identify risk factors for 

development of these disorders, and then to design interventions to alleviate this risk. Known 

risk factors for psychiatric disorders include genetic risk factors,225 and environmental risk 

factors including adverse early life experience,226 and major stressful life events.227 There is 

increasing evidence that chronic low-grade inflammation may also be a risk factor for 

development of mental health disorders.220,228,229 A major determinant of chronic low-grade 

inflammation is the level of exposure to immunoregulatory microorganisms during 

development.230 

 The biodiversity and “old friends” hypotheses suggest that decreased exposure to a 

diverse set of microbes, the microbes that we have been exposed to and co-evolved with since 

the beginning of time, may lead to improper regulation of the immune system.20,231 Not only has 
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depression been a persistent global problem, but several other inflammatory disorders such as 

atopic sensitization,15–17 autoimmune disorders,19 including inflammatory bowel disease19 have 

been rising in westernized civilizations and are becoming more prevalent in developing 

nations.14 One theory behind this increase in inflammatory disorders is the high level of 

urbanization in westernized nations and the unprecedented rate of urbanization in developing 

nations.232 Urban environments are known to harbor less microbial diversity than rural 

environments and green and blue spaces.66,233,234 This prevents those living in urban 

environments from having frequent contact with environmental microbes that humans previously 

coexisted with and our immune systems learned to tolerate, which is the main theory behind the 

biodiversity and “old friends” hypothesis. An unfortunate and unintended consequence of this 

microbial deprivation is a dysregulated immune system with a bias toward a more 

proinflammatory response.20,235,236 These hypotheses suggest that chronic low-grade 

inflammation may be a risk factor for development of stress-related psychiatric disorders where 

inflammation has been identified as a risk factor.220 In this Chapter, we seek to examine if there 

are associations between mental health outcomes and features of skin, oral, and fecal 

microbiomes collected from this Veteran cohort.  

6.2 Materials and methods 
6.2.1 General procedures 

Please refer to Chapter 2 of this dissertation for details on Participants and study design, 

Sample collection and preparation, Molecular processing, and Computational analyses. 

6.2.2 Structured Clinical Interview for DSM-5 (SCID-5, research version) 
The SCID-5 is a diagnostic interview that is administered by a trained professional used 

to determine metal health disorders as a component of the Diagnostic and Statistical Manual of 

Mental Disorders 5 (DSM-5). The following metrics were gathered from the SCID-5: ever 

homeless, currently homeless, current PTSD, lifetime PTSD, current MDD, lifetime MDD. 
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These metrics were gathered from the interviewer asking questions similar to the following and 

other relevant follow up questions:  

“Have you ever been homeless and if so how many times?”   

“Are you currently homeless?”   

“Do you have a history of mental health, emotional, or behavioral problems?” 

“Are you currently experiencing mental health, emotional, or behavioral problems?” 

“What has your mood been like?” 

“How have you been spending your free time?” 

“Who do you spend your free time with?” 

Based on the answers to these questions and follow-up questions the trained interviewer will 

determine the presence or absence of various mental health disorders.  

6.2.3 Ohio State University Traumatic Brain Injury Identification Method 
(OSU-TBI-ID) 

We determined the number of TBIs in each participant with the OSU TBI-ID interview. 

This is a structured interview developed using recommendations from Centers for Disease 

Control (CDC) for the detection of history of exposure to TBI. It was designed to elicit self-

reports of TBI occurring over a person’s lifetime in a 3-5 minute interview.  

6.2.4 Beck depression inventory (BDI) 
The BDI is a 21-question self-report survey to measure the severity of depression. The 

survey targets specific symptom categories of hopelessness, irritability, guilt, feelings of being 

punished, fatigue, weight loss, and lack of interest in sex. The following categories of BDI scores 

were created by the developers of the survey: minimal depression (0-13); mild depression (14-

19), moderate depression (20-28), severe depression (29-63).36 

6.2.5 45-Item Outcome Questionnaire (OQ-45) 
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The OQ-45 is a 45-item questionnaire that was designed to measure key areas of mental 

health functioning (symptom distress, interpersonal functioning, and social role). As such it is a 

validated and accepted tool for identifying, tracking, and measuring behavioral health treatment 

outcomes and was used as a measure of symptom distress  

6.2.6 PTSD Checklist (PCL-5) 
The PCL-5 is a 20-item self-report measure that assesses the 20 DSM-5 symptoms of 

PTSD. The PCL-5 is a quicker alternative to performing a full Clinician-Administered PTSD 

Scale (CAPS-5), which is the gold standard for PTSD diagnosis. The PCL-5 is good for 

screening individuals for PTSD, making a provisional diagnosis of PTSD, or monitoring 

symptom change during and after treatment.  

6.2.7 Random forest analysis 
Variables that had significant PERMANOVA results were run through random forest 

models in R (details on parameters for random forest models can be found in the Computational 

analyses section in Chapter 2 of this dissertation).  

6.3 Results  
We performed extensive analyses of the variables relating to mental health as they 

associate with alpha and beta diversity of skin, oral, and fecal microbiomes. Relatively speaking 

there were very few mental health variables that were significantly associated with skin, oral, and 

fecal microbiomes (Table 6.1). There were many limitations that were related to these results 

that are detailed in the limitations section of Chapter 7. In summary, many of the statistics were 

likely underpowered due to low sample sizes and a lack of age-, race-, gender-, and physical 

health-matched controls. Further all random forest models were unsuccessful in classify any of 

the target variables for reasons outlined in detail in the Limitations section of Chapter 7 of this 

dissertation.  
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Table 6.1 Table of mental health variables and their associations with alpha and beta 
diversity outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the results for the initial analysis of metal health variables as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (≤ 0.10), and red represents a p-value > 0.10. 
Abbreviations: DSM-5, Diagnostic and Statistical Manual of Mental Disorders 5th edition; SCID-5, 
Structured Clinical Interview for the DSM-5; MDD, major depressive disorder; PTSD, posttraumatic 
stress disorder; TBI, traumatic brain injury; BDI, Beck Depression Inventory; OQ-45, 45-Item Outcome 
Questionnaire; PCL-5, PTSD Checklist for DSM-5.  

Survey Metric Alpha Beta Alpha Beta Alpha Beta
Ever homeless

Currently homeless
Correlation with number of 

times homeless
Lifetime MDD
Current MDD 

Lifetime persistent depressive 
disorder

Current persistent depressive 
disorder

Lifetime alcohol drinking 
problem

Current alcohol drinking 
problem

Lifetime PTSD 
Current PTSD 

PTSD symptom severity
TBI count correlation 

TBI 2 or more vs 1 or none 

BDI score correlation
BDI severity categories 

(minimal, mild, moderate, 
severe)

BDI severity (severe vs not 
severe)

Total score severity 
categories (not significant or 

significant)
Symptom distress score 

categories (not significant or 
significant)

Interpersonal relations score 
categories (not significant or 

significant)
Social role score categories 

(not significant or significant)
PTSD Checklist for 

DSM-5 (PCL-5)
PCL-5 categories (not clinical 

or clinical) 

45-Item Outcome 
Questionnaire             

(OQ-45)

Beck Depression 
Inventory (BDI)

Skin Oral Fecal

Structured Clinical 
Interview for DSM-5 

(SCID-5) 

Ohio State University 
TBI Identification 

(OSU-TBI-ID)
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6.3.2 Skin microbiome 
Ever homeless 

Alpha diversity in the skin microbiome was higher in individuals who reported 

experiencing homelessness in their lifetime as measured by observed OTUs (Wilcoxon rank-sum 

test; p < 0.05), but not in Shannon diversity (Figure 6.1). Beta diversity analysis using weighted 

and unweighted UniFrac and further analysis by PERMANOVA of skin samples revealed no 

differences in bacterial community structure based on homelessness.  

 

 

Figure 6.1 Alpha diversity boxplots in skin microbiome based on ever homeless 
Boxplots of alpha diversity metrics in the skin microbiome based on ever experiencing homelessness. 
Sample size: No, 107; Yes, 70.   
 

Posttraumatic stress disorder (PTSD) 

Alpha diversity did not differ based on presence or absence of a diagnosis of PTSD. Beta 

diversity analysis using weighted UniFrac and further analysis by PERMANOVA of skin 

samples revealed differences in bacterial community structure based on PTSD assessed using the 

SCID-5. Both individuals with current PTSD (p < 0.05; No, n = 131; Yes, n = 44) and 

individuals who reported ever experiencing PTSD (p < 0.05; No, n = 102; Yes, n = 73) displayed 
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significant PERMANOVA results (data not shown). By default, individuals that currently are 

experiencing PTSD are also categorized as individuals who reported ever experiencing PTSD 

(denoted as lifetime PTSD from here forward). Therefore, current PSTD individuals make up 

60% of the lifetime PTSD individuals. In addition, analysis of the specific taxa within current 

and lifetime PTSD determined that both categories showed the exact same enriched or depletion 

patterns. With the exception that lifetime PTSD displayed marginally more statistical power in 

each of the specific taxa. Because of these two factors specific taxa enrichment results will only 

be displayed for lifetime PTSD. No enrichment of any taxa was observed at the phylum 

taxonomic level based on lifetime PTSD. Lifetime PTSD was associated with greater relative 

abundance of the class Alphaproteobacteria (phylum: Proteobacteria) (Wilcoxon rank-sum test; p 

< 0.05). No enrichment of any taxa was observed at the order taxonomic level based on lifetime 

PTSD. Lifetime PTSD was associated with greater relative abundance of the family 

Micrococcaceae (phylum: Actinobacteria) (Wilcoxon rank-sum test; p < 0.05), but lower relative 

abundance of Corynebacteriaceae (phylum: Actinobacteria) (Wilcoxon rank-sum test; p < 0.05) 

and Lachnospiraceae (phylum: Firmicutes) (Wilcoxon rank-sum test; p < 0.01). Lifetime PTSD 

was associated with greater relative abundance of the genus Corynebacterium (phylum: 

Actinobacteria) (Wilcoxon rank-sum test; p < 0.05).  

 

6.3.3 Oral microbiome 
Currently homeless 

Alpha diversity in the oral microbiome was higher in individuals who were currently 

homeless as measured by observed OTUs (Wilcoxon rank-sum test; p = 0.05), but not in 

Shannon diversity (Figure 6.2). Beta diversity analysis using weighted and unweighted UniFrac 
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and further analysis by PERMANOVA of oral samples revealed no differences in bacterial 

community structure based on homelessness.  

 

 

Figure 6.2 Alpha diversity boxplots in oral microbiome based on currently homeless 
Boxplots of alpha diversity metrics in the oral microbiome based on currently experiencing homelessness. 
Sample size: No, 163; Yes, 15.   
 

Traumatic brain injury 

Alpha diversity in the oral microbiome approached significance in displaying a negative 

correlation with TBI count when all TBIs were included as measured by Shannon diversity 

(Pearson correlation; r = –0.12, p < 0.10), but not in observed OTUs (Pearson correlation; r = –

0.12, p = 0.11) (Figure 6.3A). However, this relationship may be affected by the low number of 

participants with high TBIs (TBI > 6) and low alpha diversity measures. Alpha diversity in the 

oral microbiome was lower in individuals who had experienced two or more TBIs relative to 

individuals who had experienced one or no TBIs as measured by Shannon diversity (Wilcoxon 

rank-sum test; p < 0.05), but not in observed OTUs (Figure 6.3C). Beta diversity analysis using 

weighted and unweighted UniFrac and further analysis by PERMANOVA of oral samples 

revealed no differences in bacterial community structure based on TBI.  
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Figure 6.3 Alpha diversity in oral microbiome based on traumatic brain injury (TBI) 
A) Scatter plots with regression lines of alpha diversity metrics in the oral microbiome based on total TBI 
count. B) Boxplots of alpha diversity metrics in the oral microbiome based on the grouping of one or no 
TBIs and two or more TBIs. Sample sizes: A, B) TBI count: 0, 50; 1, 43; 2, 38; 3, 18; 4, 12; 5, 8; 6, 5; 7, 
1; 8, 1; 11, 1. C) None or 1, 93; 2 or more, 84.  
 

6.3.4 Fecal microbiome 
Lifetime major depressive disorder (MDD) 

Alpha diversity in the fecal microbiome was higher in individuals who reported 

experiencing major depression during their lifetime as measured by observed OTUs (Wilcoxon 

rank-sum test; p < 0.05), and approached statistical significance as measured by Shannon 

diversity (Wilcoxon rank-sum test; p = 0.07) (Figure 6.4). Beta diversity analysis using 

weighted and unweighted UniFrac and further analysis by PERMANOVA of fecal samples 

revealed no differences in bacterial community structure based on reporting major depressive 

disorder (MDD) during an individual’s lifetime. 

 

Current major depressive disorder (MDD) 

Alpha diversity in the fecal microbiome was not different based on current MDD. Beta 

diversity analysis using weighted UniFrac and further analysis by PERMANOVA of fecal 
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samples revealed a difference in bacterial community structure in individuals currently reporting 

MDD (p < 0.05; No, n = 136; Yes, n = 23). Further analysis of specific taxa revealed no 

differences at the phylum or class taxonomic levels. Individuals reporting current MDD showed 

greater relative abundance of the order Actinomycetales (phylum: Actinobacteria) (Wilcoxon 

rank-sum test; p < 0.05). Individuals reporting current MDD showed greater relative abundance 

of the family Prevotellaceae (phylum: Bacteroidetes), Tissierellaceae (phylum: Firmicutes), and 

Corynebacteriaceae (phylum: Actinobacteria), but lower in relative abundance of Bacteroidaceae 

(phylum: Bacteroidetes) (all, Wilcoxon rank-sum test; p < 0.05). Individuals reporting current 

MDD showed greater relative abundance of the genera Prevotella (phylum: Bacteroidetes), 

Peptoniphilus (phylum: Firmicutes), and Anaerococcus (Phylum: Firmicutes), but lower relative 

abundance of Bacteroides (Phylum: Bacteroidetes). 

 

Figure 6.4 Alpha diversity boxplots in fecal microbiome based on reporting major depressive 
disorder during an individual’s lifetime 
Boxplots of alpha diversity metrics in the fecal microbiome based on reporting major depressive disorder 
during an individual’s lifetime. Sample size: No, 88; Yes, 71.   
 

6.4 Discussion 
Extensive analyses were performed to elucidate associations of mental health variables 

and the skin, oral, and fecal microbiomes of a cohort of US Veterans. A majority of the mental 

health metrics were not associated with the microbiome. Veterans who had ever experienced 
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homelessness showed increased alpha diversity as measured by observed OTUs in the skin and 

oral microbiomes. Outcomes that are frequently associated with combat exposure (i.e., TBIs and 

PTSD, and MDD) showed associations with features of the oral microbiome, specifically, 

individuals with two or more TBIs had decreases in alpha diversity of the oral microbiome, as 

measure by Shannon diversity. Meanwhile, both current PTSD and lifetime PTSD were 

associated with changes in the bacterial community structure of the skin microbiome. Lifetime 

MDD was associated with an increase in alpha diversity of the fecal microbiome, as measured by 

observed OTUs, while current MDD was associated with altered bacterial community structure 

of the fecal microbiome.  

6.4.1 Skin microbiome 
Ever homeless  

Veterans who had ever experienced homelessness showed an increase in alpha diversity 

of the skin microbiome as measured by observed OTUs. This effect may be related to increased 

relative exposure to the environment and therefore increased relative exposure to environmental 

bacteria. The outdoor environment harbors a high volume of biomass and diverse populations of 

microbes, relative to indoor environments,237 while the environmental exposures are known to 

impact the skin microbiome.21,238 In addition, it has been shown that populations that spend a 

significant proportion of their time interacting with their environment such as rural farming 

communities have significantly more alpha diversity in their skin microbiome as compared to 

urban non-farming populations.239–241 Although this population of Veterans may not be living a 

rural farming lifestyle, they are likely to spend more time outdoors and interacting with the 

outdoor environment and the environmental microbes. Perhaps this population of Veterans also 

has higher alpha diversity because of this increased exposure to environmental bacteria.  
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Posttraumatic stress disorder (PTSD) 

Analysis of the skin microbiome showed differences in the bacterial community structure 

within individuals who are currently or have ever experienced PTSD over their lifetime. 

Although the main focus of analysis of the microbiome as it relates to mental health has been 

within the gut, data suggest that the skin microbiome has potential to influence systemic immune 

programing,238 which in turn has been associated with risk for development of mental health 

disorders, including PTSD.20,235,242–245 Individuals with current PTSD and lifetime PTSD showed 

differences in the community structure within the skin microbiome with similar enrichment and 

depletion patterns in specific taxa, including increases in Alphaproteobacteria, Micrococcaceae, 

and Corynebacterium and decreases in Lachnospiraceae and Corynebacteriacae. It is unclear if 

differences in the skin microbiome of individuals with current or lifetime PTSD, relative to 

controls, represent a risk factor in development of PTSD, or represent differential exposures to 

physiologic or environmental factors that influence the composition of the skin microbiome. 

Addressing these questions will require further study. 

  

6.4.2 Oral 
Currently homeless 

Individuals who were currently homeless showed an increase in alpha diversity in the 

oral microbiome, which may be an indicator of more exposure to outdoor environments, or oral 

associated plaque in this population. Plaque is mainly found on the teeth and gums around the 

teeth; however, there is a complex interplay and exchange of microbes between plaque and other 

surfaces and medium in the oral cavity.246 Dental plaques are a heterogeneous and diverse 

community of microbes that form a cohesive film on various oral surfaces.246 By definition, oral 

plaque possess all the qualities of a biofilm and this concept is widely accepted in the field.247–249 
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Oral biofilms (plaque) were found to be one of the most microbially diverse sites sampled in the 

human microbiome project.24 Plaque is constantly shedding bacteria and has been shown to 

contribute to the microbiome of saliva and mucosal surfaces within the oral cavity.246 Plaque has 

been shown to increase without daily mechanical removal.250 It could be argued that this 

population may harbor more oral associated plaque and therefore higher alpha diversity because 

of an increase of these highly heterogeneous and diverse biofilms.  

 

Traumatic brain injury (TBI)  

Individuals with two or more TBIs in their lifetime exhibited lower alpha diversity of the 

oral microbiome as measured by Shannon diversity. Although not significant, the number of 

TBIs incurred by an individual was negatively associated with Shannon diversity when all TBIs 

were accounted for. In Chapter 4 of this dissertation we showed that decreases in alpha diversity 

in the fecal microbiome were associated with poor general and physical health as measured by 

BMI, general health scores from the SF-36, and the Physical Component Summary scores from 

the SF-36. However, few studies have examined general health implications of decreases in 

alpha diversity in the oral microbiome. Dysbiosis of the oral microbiome has been shown to be 

associated with oral health maladies such as periodontitis and dental caries.251,252 Meanwhile, the 

need for ongoing dental follow-up and oral hygiene programs in the post-acute phase of 

rehabilitation care following TBI has been recognized.253  

 

6.4.3 Fecal 
Lifetime major depressive disorder (MDD) 

Individuals who had experienced MDD at some point throughout their lifetime showed 

greater alpha diversity in the fecal microbiome. This result was contradictory to what other 
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studies have found. What is intriguing; however, is that these effects persisted once the 

microbiome was transferred into rats, which were not administered antidepressant medication. 

One remarkable detail about the Veterans with lifetime MDD is that they displayed an increase 

in alpha diversity relative to individuals that had never experienced MDD. It is unclear if this 

relationship is due to preexisting differences in alpha diversity, prior to onset of MDD, 

physiologic consequences of MDD, effects of antidepressant drugs, or lifestyle factors associated 

with the risk or consequences of having experienced MDD; these questions will require further 

study. 

 

Current major depressive disorder (MDD)  

Individuals in this Veteran cohort that reported current MDD as measured using the 

SCID-5 did not show differences in alpha diversity, but did show differences in bacterial 

community structure and differences in specific taxa, relative to individuals without current 

MDD. One study by Kelly et al., (2016) showed that participants with a current diagnosis of 

MDD had decreases in several measures of alpha diversity compared to non-depressed 

controls.254 They then inoculated rats 3 days after a 28-day antibiotic regimen with the 

microbiome of a subset of depressed and control participants via fecal microbiome transplant. 

The behavioral phenotype of the rats based on sucrose preference test was that of the fecal 

microbiome transplant donor (depressed or control). Further, the microbiome of the rats from the 

MDD donors also displayed decreases in several metrics of alpha diversity compared to rats that 

received the microbiome from non-depressed control donors.254 It is likely that the individuals 

with current MDD were also taking antidepressant medication because these subjects were 

recruited from “outpatient and inpatient psychiatric clinics”. Lithium, SSRIs, and other 
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antidepressants are known to have antimicrobial effects.255,256 In addition, Maier et al., (2018) 

performed an extensive meta-analysis of over 1000 drugs for their anti-commensal effects on the 

gut microbiome and determined that the anti-psychotic class of drugs (drug class: N05A) were 

highly significant in being anti-commensal.257 These findings very well could be the explanation 

for the decrease in alpha diversity in individuals with current MDD observed by Kelly et al., 

(2016). Several studies have reported decreases in probiotic taxa such as Lactobacillus,155,258,259 

Bifidobacterium,259 and Faecalibacterium.260 Veterans with current MDD, relative to Veterans 

without current MDD, did not show any differences in these probiotic taxa. Previous studies 

have shown decreases in Prevotella,254,260 while we observed an increase. One consistent finding 

with previous research was a decrease in Bacteroides.260 Decreases in Bacteroides have 

previously been linked to metabolic disorders including diabetes and obesity.144,261 Depression 

can be comorbid with metabolic disorders.262 The individuals in this Veteran cohort with current 

MDD also displayed enrichment in two unique taxa, Peptoniphilus and Anaerococcus, both from 

the Firmicutes phylum. These genera are gram-positive anaerobic cocci that have been shown to 

be present in human clinical samples and are sensitive to common antibiotics.263,264 However, 

based on a literature review it does not appear that these taxa are enriched or depleted in 

depression or other mental health disorders. It has also been noted that identification of these 

genera has been increasing in prevalence since the advent and widespread use of 16S ribosomal 

RNA gene PCR, and therefore, there may be an unknown primer bias towards these genera.265  

 

6.5 Conclusions 
These results provide insight into the complex relationship between the microbiome and 

mental health. However, further analyses need to be performed with age-, race-, gender-, and 

health-matched controls, matched antidepressant and other drug use, and larger sample sizes to 
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validate these findings. Homelessness influenced alpha diversity in both the skin and oral 

microbiome, which may be related to lifestyle factors that lead to more exposure the outdoors. 

Current and lifetime PTSD were associated with the bacterial community structure of the skin 

microbiome. Meanwhile, the oral microbiome showed lower alpha diversity in individuals with 

two or more TBIs. Major depressive disorder was associated with an increase in alpha diversity 

(lifetime MDD) and changes in beta diversity (current MDD) in the fecal microbiome. The 

increase in alpha diversity in the fecal microbiome based on lifetime MDD was a novel finding 

and is in need of further investigation. Examination of the enrichment and depletion patterns of 

specific taxa in current MDD showed both similarities and differences to results from previous 

studies as well as some novel taxa not previously associated with MDD.    
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Chapter 7. Conclusions  
7.1 General characteristics of the skin, oral, and fecal microbiomes based on 
gender, race, and age in a Veteran cohort  

This Veteran cohort has a rich and diverse range of metadata collected on demographics, 

armed forces service, general health, physical health, and mental health metrics. The associations 

observed in this Veteran cohort between features of the skin, oral, and fecal microbiomes and 

gender, race, and age reflect what has been previously shown in the literature. Overall, our 

results were consistent with previous studies of different cohorts with different demographics, 

which provided confidence in the data moving forward with more focused analyses.  

Table 7.1 Table summary of gender, race, and age variables and their associations with 
alpha and beta diversity outcomes of skin, oral, and fecal microbiomes1 

  
1Table showing the summary of results for gender, race, and age as they relate to alpha and beta diversity 
of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow represents a 
p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. Abbreviations: OTU, 
operational taxonomic unit.  
 

7.2 Association of general and physical health and the microbiome in a 
Veteran cohort 
 

Three measures of general and physical health (BMI, SF-36 general health subdomain, 

and SF-36 PCS score) displayed similar relationships in the fecal microbiome in alpha diversity 

with increased observed OTUs in the “healthy” states. The SF-36 measures, but not BMI were 

Metric Alpha Beta Alpha Beta Alpha Beta
Gender Observed 

OTUs and 
Shannon 
diversity; 

increased in 
males

Unweighted 
UniFrac

Unweighted 
UniFrac

Race Unweighted 
UniFrac

Unweighted 
UniFrac

Age Observed 
OTUs and 
Shannon 
diversity; 

decreased in 
70+

Unweighted 
UniFrac

Unweighted 
UniFrac

Skin Oral Fecal
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associated with changes in the fecal bacterial community structure. BMI displayed no association 

with the fecal Firmicutes/Bacteroidetes ratio. The SF-36 PCS score may be associated with the 

inflammatory state of an individual because “not healthy” (PCS < 45) individuals displayed 

enrichment in fecal Proteobacteria taxa, while “healthy” (PCS ≥ 45) individuals displayed 

enrichment in fecal obligate anaerobic taxa. These results align with the recently proposed 

“oxygen hypothesis” explaining patterns of taxonomic composition of the fecal microbiome in 

association with inflammation in the GI tract.  

The SF-36 questions are based on the individual’s perception of their health. Much of the 

previous research examining health and the microbiome have targeted specific disease states or a 

direct correlate of health such as BMI. Very few studies have examined softer metrics of health, 

such as frequency of exercise or even comparisons of professional athletes and non-professional 

athletes. To our knowledge, this is the first study to relate the general and physical health metrics 

of the SF-36 to the microbiome. Nor has any other study shown that an individual’s perception 

of their general or physical health has the potential to provide insights into the fecal microbiome. 

Further investigation of general and physical health and perception of general and physical 

health as these variables relate to the microbiome are needed.  
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Table 7.2 Table summary of general and physical health variables and their associations 
with alpha and beta diversity outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the summary of results for general and physical health variables as they relate to alpha 
and beta diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), 
yellow represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. 
Abbreviations: BMI, body-mass index; SF-36, 36-Item Short Form Health Survey; PCS, Physical 
Component Summary; OTU, operational taxonomic unit.  
 

7.3 Association of insomnia and the microbiome in a Veteran cohort 
Our results showed that the ISI and SCID-5 surveys are identifying different individuals 

within populations with insomnia-like symptoms. Comparison of the two metrics revealed that 

self-reported severity of insomnia symptoms, as measured by the ISI, was a more sensitive 

Survey Metric Alpha Beta Alpha Beta Alpha Beta
BMI health 

categorization: 
healthy (<25), not 

healthy (≥25) 

Observed 
OTUs; 

increased in 
healthy 

individuals
BMI quartiles Weighted 

UniFrac
General health 

score correlation
Observed 
OTUS;   

increased with 
general health 

scores 
General health 
score quartiles

Observed 
OTUs; 

increased in 
healthiest 
quartile

Weighted 
UniFrac

Physical 
Component 

Summary (PCS) 
score correlation

Observed 
OTUS;   

increased with 
PCS scores 

Physical 
Component 

Summary (PCS) 
score health 

category: healthy 
(≥45), not healthy 

(<45)

Observed 
OTUs; 

increased in 
healthy 

individuals

Unweighted 
UniFrac

Physical 
Component 

Summary (PCS) 
score quartiles

Unweighted 
UniFrac

36-Item Short 
Form Health 

Survey (SF-36)

Skin Oral Fecal

Body-mass 
index (BMI)
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measure in terms of associations with features of the gut microbiome. To the best of our 

knowledge, our result is the first report of decreased alpha diversity of the fecal microbiome in 

individuals with severe insomnia symptoms, as measured by the ISI. In addition, individuals with 

severe insomnia symptoms, as measured by the ISI, displayed changes in bacterial community 

structure of the fecal microbiome, which has also been displayed in mice exposed to chronic (4 

weeks) sleep fragmentation.201 Both SF mice and severe ISI Veterans with severe insomnia 

symptoms based on the ISI showed increases in Firmicutes. However, the increase observed in 

Firmicutes in SF mice was driven by Lachnospiraceae, while Lactobacillus taxa drove this 

finding in Veterans with severe ISI symptoms. Further investigation of the microbiome as it 

relates to insomnia is needed.  
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Table 7.3 Table summary of insomnia variables and their associations with alpha and beta 
diversity outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the summary of results for the insomnia variables as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10. 
Abbreviations: ISI, Insomnia Severity Index; DSM-5, Diagnostic and Statistical Manual of Mental 
Disorders 5th edition; SCID-5, Structured Clinical Interview for the DSM-5; OTU, operational taxonomic 
unit.  
 

7.4 Association of mental health and skin, oral, and fecal microbiomes in a 
Veteran cohort 

The number of mental health metrics collected within this Veteran cohort was 

exceptional. Most of the associations between features of the skin, oral, and fecal microbiomes 

and measures of mental health were determined to be null; however, there were some mental 

health measures that were associated with features of the skin and oral microbiomes. However, 

further analyses are need with age-, race-, gender-, and health-matched controls, matched 

antidepressant and other drug use, and larger sample sizes to validate these findings. 

Survey Metric Alpha Beta Alpha Beta Alpha Beta
ISI severity (severe 

vs not severe)
Observed OTUs; 

decreased in 
severe ISI group

Weighted 
UniFrac

ISI severity clinical 
categories (clinical 

insomnia, not 
clinical insomnia)

Observed OTUs; 
decreased in 
clinical ISI 

group

ISI score correlation Observed OTUs; 
decreased with 

ISI scores

ISI severity 
categories (not 

significant, 
subthreshold, 

moderate, severe) 

Unweighted 
UniFrac

Structured 
Clinical 

Interview 
for the 
DSM-5 

(SCID-5)

Current insomnia 
disorder

Observed OTUs; 
increased in 

current insomnia 
group

Skin Oral Fecal

Insomnia 
Severity 

Index (ISI)
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Current and lifetime PTSD were associated with the bacterial community structure of the 

skin microbiome. These changes in bacterial community structure may be related to behavioral 

changes known to be associated with PTSD. One of the core symptoms associated with PTSD is 

avoidance behavior and social isolation.266 These types of behaviors could lead to an individual 

spending a majority of their time within their dwelling or confining themselves to a single room, 

essentially creating a microbial island with limited exposure to environmental bacteria, perhaps 

leading to unique microbial community structure presumably dominated by skin associated taxa.   

Meanwhile, the oral microbiome showed lower alpha diversity in individuals with two or 

more TBIs, relative to individuals with one or no TBIs. Although the mechanisms underlying 

this association are not clear, it has been previously shown the single largest predictor of a 

reduction in alpha diversity was the presence of periodontitis.267 A study determined that dental 

care and oral hygiene programs for individuals with TBI increased oral health and hygiene.253  

Individuals reporting to have ever experienced MDD in their lifetime (lifetime MDD) 

showed increased alpha diversity of the fecal microbiome, as measured by Shannon diversity. 

We showed that increases in alpha diversity of the fecal microbiome were associated with 

increases in general and physical health in Chapter 4 of this dissertation. MDD is characterized 

by apathy, general discontent, and loss of interest or pleasure in activities. It is difficult to 

determine why these individuals exhibited increased fecal alpha diversity.  One possibility is that 

antimicrobial activity of antidepressant drugs targets pathobionts that would otherwise proliferate 

and reduce alpha diversity.255,256 

Individuals reporting current MDD showed changes in fecal bacterial community 

structure relative to individuals without current MDD. Investigation of patterns of enriched and 

depleted taxa in current MDD individuals did not align with patterns previously reported in the 
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literature.254,268 MDD has a broad range of symptoms. In addition, MDD can have opposite 

effects on the same symptom such as appetite (both loss of appetite and excessive hunger are 

reported). Lithium, SSRIs, and other antidepressants are known to have antimicrobial 

effects,255,256 and the whole class of anti-psychotic drugs (drug class: N05A) were highly 

significant in being anti-commensal.257 Individual-to-individual dissimilarities in the medications 

prescribed, doses, and frequency of taking medications has a high potential to introduce variation 

in this population. Examining mental health from a big-picture perspective highlights the large 

amount of variability associated with this mental health disorders. It is likely that large sample 

sizes or tightly controlled studies, using age, gender, race, and medication matched controls, will 

be required to determine true associations between mental health disorders and the microbiome.  
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Table 7.4 Table summary of mental health measures and their associations with alpha and 
beta diversity outcomes of skin, oral, and fecal microbiomes1 

 
1Table showing the summary of results for the metal health measures as they relate to alpha and beta 
diversity of skin, oral, and fecal microbiomes. Green represents a significant p-value (p < 0.05), yellow 
represents a p-value approaching significance (p ≤ 0.10), and red represents a p-value > 0.10.  
Abbreviations: DSM-5, Diagnostic and Statistical Manual of Mental Disorders 5th edition; SCID-5, 
Structured Clinical Interview for the DSM-5; MDD, major depressive disorder; PTSD, posttraumatic 
stress disorder; TBI, traumatic brain injury; OTU, operational taxonomic unit. 
 

7.5 Limitations  
7.5.1 Sample population and sample size  

This dissertation evaluated the skin, oral, and fecal microbiomes of a cohort of 188 U.S. 

Veterans enrolled in the Veteran Microbiome Study as part of the Military and Veteran 

Survey Metric Alpha Beta Alpha Beta Alpha Beta
Ever homeless Observed 

OTUs; 
increased in 

ever 
homeless 

group
Currently 
homeless

Observed 
OTUs; 

increased in 
currently 
homeless 

group
Lifetime MDD Observed 

OTUS; 
increased in 

lifetime 
MDD group

Current MDD Weighted 
UniFrac

Lifetime PTSD Weighted 
UniFrac

Current PTSD Weighted 
UniFrac

TBI count 
correlation 

Shannon 
diversity; 
decreased 
with TBI 

count
TBI 2 or more 
vs 1 or none 

Shannon 
diversity; 

decreased in 
2 or more 
TBI group

Skin Oral Fecal

Structured 
Clinical Interview 

for DSM-5 
(SCID-5) 

Ohio State 
University TBI 
Identification
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Microbiome Consortium for Research and Education (MVM-CoRE) initiative. This cohort was 

the first cohort among what are planned to be larger cohorts with larger sample sizes and 

additional endpoints. For this initial study, although the overall sample size is relatively high (N 

= 188), sample sizes for a number of endpoints were low and unbalanced. This population is 

unique in that these individuals are Veterans and the armed forces tend to attract certain 

demographics more than others. For example, this Veteran cohort included a low number of 

women (n = 28, 15% of sample population); however, this is higher than the percentage of 

women within the total Veteran population as of 2015 (9.4%).269 Some racial groups were 

underrepresented, such as Native Americans, Asians, Multiracial, and “Other”. Also, the oldest 

age group +70 was underrepresented. Many mental health measures were collected from this 

Veteran cohort. This had the advantage of examining the relationship between skin, oral, and 

fecal microbiomes with a large number of measures of mental health. However, some of the 

mental health measures had small sample sizes of participants exhibiting the condition or 

disorder. Because many of these variables were dichotomous (present or absent) this resulted in a 

high proportion of the sampling population in the “absent” category. For example, for the fecal 

microbiome of this Veteran cohort, 23 individuals reported current symptoms of MDD (14.5%) 

while 136 individuals did not. In future analyses, we plan to balance sample sizes with controls 

matched for variables such as gender, race, age, and BMI.  

An unfortunate consequence of the highly unbalanced sample sizes in some of the 

outcomes studies was the implications for machine learning. A meta-analysis by Walters et al., 

(2014) details how random forest is sensitive to unbalanced sample sizes in classifying a 

category “whose composition is/are highly similar.” Walters et al., (2014) was referring to 

classifying lean vs obese when referring to “highly similar” bacterial compositions, which is 



 117 

arguably much less similar than some of the metadata categories of interest. This was confirmed 

empirically as, in our attempts to run random forest models on the highly unbalanced sample 

sizes, the models were not able to converge and therefore were not able to make any valid 

classifications.  

Furthermore, we understand that we may not have reached statistical significance within 

many of the examined variables because of a lack of statistical power. Falony et al., (2016) 

performed a power analysis to determine the samples sizes need to reach statistical significance 

of bacterial community structure based on PERMANOVA between lean vs obese individuals. 

They determined that it would require 865 lean and 865 obese individuals (p-value = 0.05, power 

= 80%) to reach statistical significance in analysis of bacterial community structure based on 

PERMANOVA between lean vs obese individuals. This provides a general sample size for future 

studies of the association of BMI with skin, oral, and fecal microbiomes.      

7.5.2 Effect size  
We did not directly measure effect size; however, it was shown by Falony et al., (2016) that 

variables associated with "lifestyle” showed relatively low effect sizes of ~ 0.04. It is possible 

that effect sizes for between-group differences for most of our variables were similar to this or 

even lower. It should be noted that genome-wide association studies (GWAS) studies also have 

low effect sizes.270 So, perhaps as has been demonstrated in GWAS studies, microbiome-related 

studies will be found to have low effect sizes in relation to measures of general, physical, and 

mental health, and results will need to be interpreted in this context.  

 

7.6 Future directions  
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As part of the Veteran Microbiome Study, samples continue to be collected. In addition, the 

study is being expanded to include additional surveys listed in Table 7.5, as well as longitudinal 

sampling (currently under review by COMIRB).   

Table 7.5 Future survey information and details 
Measure Time (min) Purpose 
Baseline Visit at ECHCS 
Neurobehavioral Symptom Inventory (NSI)271 5 TBI 
Patient Health Questionnaire (PHQ)-9272 5 Mental health 
Morningness/Eveningness Questionnaire 
(MEQ)273 

5 Sleep 

Seasonality Pattern Assessment Questionnaire 
(SPAQ)274 

5 Mental health 

National Health Interview Survey (NHIS) – 
Chronic Conditions275 

5 Physical health 

Housing, Occupancy, Materials and 
Environment (HOME) Survey276 

5 Housing status/ mental 
health 

 

Based on results from other studies, the importance of the Bristol stool chart survey has 

come to light.26 The Bristol stool chart score has been highly related to the bacterial community 

structure of the microbiome.26 This could also be an additional useful survey for future cohorts. 

Furthermore, a list of medications currently being taken should be added to the metadata 

variables. Medications have been shown to have a large effect size in other studies.26 Although 

this large effect size may be largely influenced by antibiotics, a recent meta-analysis by Maier et 

al., (2018) showed that anti-psychotic medications and other related medications are anti-

commensal. These are of particular relevance to this Veteran population and would be a useful 

addition to the metadata for analysis of this cohort and future cohorts.  
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Appendix 
A1 Survey descriptions  
A1.1 University of Washington Risk Assessment Protocol-Revised (UWRAP)  

The UWRAP was used to assess and address any potential risk associated with 

participating in this study. Participants were asked to articulate pre-test potential stressors (Pre-

Assessment Risk Assessment Questions). Post-test administration, a debriefing checklist and 

protocol were initiated. Using results from the debriefing, members of the research team were 

trained to evaluate responses and access additional assistance if necessary. The UWRAP has 

been recommended by National Institute of Mental Health, and has been used for over 20 years 

in research with potentially high-risk patients.  

 

A1.2 Rocky Mountain MIRECC Demographic Questionnaire  
This survey gathered demographic information including participant age, gender, 

race/ethnicity, education, period of military service, and combat exposure.  

 

A1.3 Structured Clinical Interview for DSM-5-TR Axis I Disorders, Research Version, 
Patient Edition with Psychotic Screen (SCID-I/P W/ PSY SCREEN)  

The SCID interview is a reliable and valid semi-structured interview used to diagnose 

Axis I psychiatric disorders in clinical and research settings.  

 

A1.4 Ohio State University TBI Identification Method (OSU-TBI-ID) 
The OSU TBI-ID interview is a structured interview developed using recommendations 

from Centers for Disease Control (CDC) for the detection of history of exposure to TBI. It was 

designed to elicit self-reports of TBI occurring over a person’s lifetime. This method has been 

validated in two studies including 103 and 119 participants, respectively, where the OSU TBI-ID 
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was found to have high inter-rater reliability. Our study used the OSU TBI-ID to identify 

whether a participant had experienced a moderate or severe TBI.  

 

A1.5 PTSD Checklist 5 (PCL-5)  
The PCL-5 is a self-report measure that assesses PTSD symptom severity, based on the 

DSM-5. Each item is rated on a 5 point Likert scale. The PCL-5 can be used to screen for PTSD 

or monitor change in PTSD symptoms.  

 

A1.6 Outcome Questionnaire (OQ-45) 
The OQ-45 is a 45-item questionnaire that was designed to measure key areas of mental 

health functioning (symptom distress, interpersonal functioning, and social role). As such it is a 

validated and accepted tool for identifying, tracking, and measuring behavioral health treatment 

outcomes and will be the measure of symptom distress in this study. The measure possesses good 

psychometric properties when used with adult psychiatric patients. 

 

A1.7 36-Item Short Form Health Survey (SF-36) 
The SF-36 is a multi-purpose, short-form health survey with only 36 questions. It yields 

an 8-scale profile of functional health and well-being scores as well as psychometrically-based 

physical and mental health summary measures and a preference-based health utility index. The 

instrument was administered by a trained coordinator.  

 

A1.8 Harvard Food Frequency Questionnaire 2007 Booklet (Harvard FFQ) 
The Harvard FFQ is a comprehensive 101-item semi-quantitative food frequency 

questionnaire that includes questions on specific foods, diet types, and supplements. Analysis of 

the questionnaire provides a wide range of macro- and micronutrient quantities. A number of 
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studies have demonstrated fair to good validity and fair to good reproducibility depending upon 

nutrient of interest. 

 

A1.9 The Insomnia Severity Index (ISI) 
The ISI is a 7-item instrument assessing the nature and severity of insomnia symptoms, 

satisfaction with sleep, interference of sleep disturbance with daily functioning, and how 

distressing and noticeable the sleep impairment. The scale is considered a reliable and valid 

measure of insomnia. The ISI was used in our study to assess the presence of persistent insomnia 

complaints.  

 

A1.10 PTSD Checklist for the DSM-5 (PCL-5) 
The PCL-5 is a 20-item self-report measure that assesses the 20 DSM-5 symptoms of 

PTSD. The PCL-5 is a quicker alternative to performing a full Clinician-Administered PTSD 

Scale (CAPS-5), which is the gold standard for PTSD diagnosis. The PCL-5 is good for 

screening individuals for PTSD, making a provisional diagnosis of PTSD, or monitoring 

symptom change during and after treatment.   

 

A1.11 Beck depression inventory (BDI)  
The BDI is a 21-question self-report survey to measure the severity of depression. The 

survey targets specific symptom categories of hopelessness, irritability, guilt, feelings of being 

punished, fatigue, weight loss, lack of interest in sex.  

 

A2 Sample collection protocols 
A2.1 Skin sampling protocol  

1. A research assistant would put on nitrile or latex gloves  

2. The research assistant would hand the participant a sealed double tipped sampling swab  
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3. The research assistant would instruct the participant to open the collection tube to expose 

the swab 

4. The participant was instructed to firmly swab their inner elbow for 10 seconds being 

careful to avoid contacting anything else with the swab 

5. The participant was instructed to place the swabs back into the collection tube  

6. The participant would hand the collection tube back to the research assistant  

7. The research assistant wrote the date and time on the collection tube label  

8. The research assistant would then place the sample into a freezer for storage at –80°C  

 

A2.2 Oral sampling protocol  
1. A research assistant would put on nitrile or latex gloves  

2. The research assistant would hand the participant a sealed double tipped sampling swab  

3. The research assistant would instruct the participant to open the collection tube to expose 

the swab 

4. The participant was instructed to open their mouth and swab the inside of one cheek 

firmly for 10 seconds being careful to avoid contacting the teeth, gums, and tongue 

5. The participant was instructed to place the swabs back into the collection tube  

6. The participant would hand the collection tube back to the research assistant  

7. The research assistant wrote the date and time on the collection tube label  

8. The research assistant would then place the sample into a freezer for storage at –80 °C 

 

A2.3 Fecal sampling protocol (in-clinic) 
1. A research assistant would put on nitrile or latex gloves 
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2. The research assistant would hand a sampling kit to a participant, which contained the 

following instructions 

How to collect your sample: 

• Take the collection tube to the restroom with you to collect your stool sample.  
• Once your stool movement is complete. Put on your gloves and wipe with toilet paper. 
• Carefully holding the used toilet paper, open the tube with the swab inside with the other 

hand. Be careful not to touch the stem or cotton swab. 
• Use the swab tip to collect a sample from the toilet paper. You only want to collect 

enough to color half the swabs brown. Do not fill the entire swab with your sample. 
• Place the swab back into the tube 
• Remove your gloves, flush the toilet and wash your hands after you have completed 

collecting the sample. 
 

3. Upon the return of the participant, the research assistant would take the collection tube 

with soiled swab and write the date on the collection tube label 

4. The research assistant would then place the sample into a freezer for storage at –80°C  

 
A2.4 Fecal sampling protocol (out-of-clinic) 

Below is the text from an instruction sheet that was provided with the fecal sampling 

clinic for out-of-clinic use. 

Sampling Protocol for Gut Swab Microbial Sampling 

• Please do not open the kits until after you are in the restroom. Handle the tube by the red 
cap only. 

• You will not collect your entire stool sample. You will be using the swabs to get your 
sample from the “first use” toilet paper (the first wipe with the toilet paper you make after 
your stool movement is complete) 

• Do not collect your sample until you are sure you can drop the sample in the mailbox on 
the same day.  

• Place the cold pack provided in the freezer.  
 

How to collect your sample: 

1. Take the 2 collection tubes to the restroom with you to collect your stool sample.  
2. Once your stool movement is complete. Put on your gloves and wipe with toilet paper. 
3. Carefully holding the used toilet paper, open the tube with the swab inside with the other 

hand. Be careful not to touch the stem or cotton swab. 
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4. Use the swab tip to collect a sample from the toilet paper. You only want to collect 
enough to color half the swabs brown. Do not fill the entire swab with your sample. 

5. Place the swab back into the tube. 
6. Repeat steps 3-5 with the second tube. 
7. Remove your gloves, flush the toilet and wash your hands after you have completed 

collecting the sample. 
 

After you have collected your sample: 

1. Record the date and time you collected your sample on the outside of the tube.  
2. Put the tubes and the cold pack in the self-addressed envelope provided to you.  
3. Seal the envelope. 
4. Drop the envelope off at the nearest mailbox or post office.  

 

If something out of the ordinary occurs, like you touch the swab to another surface or drop the 

swab on the floor, please notify Kelly Stearns-Yoder at 303-399-8020. 

 
 
A3 Future Surveys 
A3.1 Neurobehavioral Symptom Inventory (NSI) 

The NSI is a widely-used measure of post concussive symptoms among military 

personnel and Veterans and is recommended by the VHA for screening and evaluation. 

 

A3.2 Patient Health Questionnaire-9 (PHQ-9)  
The PHQ-9 is a frequently used and psychometrically sound self-report measure of 

depression. It is free to use and has been validated and administered in many clinical settings. 

 

A3.3 Morningness/Eveningness Questionnaire (MEQ) 
The MEQ is a 19-item self-report instrument designed to assess chronotype (evening, 

intermediate, or morning) in individuals. Information about participant chronotype was assessed 

to determine whether certain chronotypes were more or less sensitive to conventional insomnia 

treatment.   
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A3.4 Seasonality Pattern Assessment Questionnaire (SPAQ) 
The SPAQ is a research and screening tool that is widely-used in studies of seasonality to 

assess mood and behaviors relating to Seasonal Affective Disorder (SAD). The SPAQ evaluates 

severity of global seasonal changes, degree of functional impairment with those changes, and 

seasonal patterns of affective states.  

 

A3.5 National Health Interview Survey – Chronic Conditions  
The National Health Interview Survey (NHIS) has been used to monitor the health of the 

population of the nation since 1957. NHIS data on a broad range of health topics have been 

collected through personal household interviews for over 50 years through the US Census 

Bureau. Survey results have been instrumental in providing data to track health care access, and 

progress toward achieving national health objectives. Our study administered the NHIS to assess 

chronic conditions in our sample population. 

 

A3.6 Housing, Occupancy, Materials, and Environment (HOME) Survey 
The HOME survey determines if aspects of the built environment influence the mental 

well-being of individuals and their relative significance. Ultimately, the desired outcome would 

be to establish design guidelines that take into consideration factors of the built environment that 

correlate to diagnoses of depression, anxiety, and PTSD. Our study used the HOME survey to 

assess the living situation and mental health measures in our sample population.  
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