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ABSTRACT.

In this paper we continue the investigation of the structure of computations
in ¢p systems which was initiated in Part I of this paper. Here again our main
combinatorial tool is the structure of Dyck words {and the Exchange Theorem).
However in this paper we investigate the "sparse structure" of Dyck words (i.e.,
the structure of sparse subwords of Dyck words) and use our results about this

sparse structure to derive Cgden's pumping lemma for context-free languages.



INTRODUCTION.

The aim of this paper is to present the results of an investigation which con-
tinues the line of research initiated in [EHR1], [EHR2] and [EHR3]. We investi-
gate the structure of computations in cp systems (which formalize the notion of
a push-down automaton via a pair of grammars working in a coordinated
fashion) and again (as in Part I of this paper) our main combinatorial tools are
results on the combinatorial structure of Dyck words. Now however we are
interested in the structure of sparse subwords of Dyck words. We obtain a
number of results concerning this "sparse structure” of Dyck words (Section 1)
and then combine these results with the Exchange Theorem (given in [EHR2]) to

prove Ogden's pumping lemma for context-free (i.e., cp) languages (see, e.g.,

[0], [H)).




0. PRELIMINARIES.

We assume the reader to be familiar with Part I of this paper ([EHR3]) - we
use without recalling terminology, notation and results from there. If we refer
to a result (or a definition) from Part I, then we precede its reference number

by I- hence, e.g., Lemma 1.2.1 refers to Lemma 2.1 from Part L

In considerations of this paper we will often embed a given word as a sparse

subword in another word. Hence we need the following technical notion.

" Definition 0.1. Let U = (iy, g ...,%,) be a support in a word w. The
U—embedding, denoted ¢y, is the bijection from {1, 2, ..., n} onto U defined by

eu(t)=d forl<t<mn. s

If U=(i,ig..,%) is a support in a word w  and
V=01nJa . Jm)< {1 2, ..., n}, then following the usual convention we use
@u(V) to denote (py(j,). .... ¢ y(Jm)). Moreover, if & = Vi, ..., ¥, is a sequence of
subsets of {1,..,7m}, then we use ¢y{k) to denote the sequence

eu(Vi), oo 9 (Vi)



1. SPARSE SUBWORDS IN DYCK WORDS.

In this section we investigate the structure of sparse subwords in Dyck
words. We start by introducing a number of basic notions that formalize such a

structure.

Definition 1.1. Let U be a support in w € Dy.
(1) U isw-—complete if, for every w-nested pair (i,7), 1 € U if and only ifj € U.
(2) The w—completion of U, denoted by cpl,,(U), is the set

cply(U) =\ Jip | p is a w-nested pair withp N U # @3. =

It should be obvious that cpl,, (U) is w-complete for any support U in w.
The following is an easy observation concerning Ds.

Lemma 1.1. Let w € Dy and let © = w(U) for some w-complete support U

inw. Thenw € Dy. Moreover, if p is a u-nested pair, then ¢ y{p) is w-nested.

If k is a w-chain, then ¢ y{k) is a w-chain. =

The following example shows that even balanced pairs are not preserved
under ¢y (where U is a w-complete support) and consequently that ¢y does not

preserve cochains.
Example 1.1.

Let w = abbaabaacabbba and let U = §2,3,5,7,10,14).
Then U is a w-complete support.

w and u = w(U) have the following nested structures.
Figure 1.

1 = (3,6), (4,5) is au-chain and ¢y(x,) = (5,14), (7,10) is a w-chain.

On the other hand, p =(1,6) is wu-balanced, but the corresponding pair



¢y(p) = (2,14) is not w-balanced.
Consequently «; = (1,2), (3,8) is a w-cochain, while ¢y{xp) = (2,3), (5,14) is not a

w-cochain., =

This example motivates the following notion.

Definition 1.2. Let U be a w-complete support in w € Dy and let w = w{U).

U is w—proper if ¢ y(k) is a w-cochain for every ©-cochain «. ®

The following result is obvious.

Lemma 1.2. Let w € Dy and let U be a w-complete segment in w. Then U
is w-proper. ® |

Example 1.1. {continued)
U = §2,3,5,7,10,14] is not w-proper.

Let V = {1,2,3,4,5,7,10,14}. Then V is w-proper. ®

The next result shows that, for a w-proper support U, ¢y preserves bal-

anced pairs.

Lemma 1.3. Let U be a w-proper support in w € Dy and let u = w(U).

If p is a u-balanced pair, then ¢ y(p) is w-balanced.

Proof.

Let p = (i,7) be a u-balanced pair.
If p is u-nested, then ¢y(p) is w-nested and so our lemma clearly holds.

If p is not w-nested, theﬁ there exist occurrences j; and i, such that
£ ={(i,71), (41, 7) is a w-cochain. Since U is w-proper, ¢y(x) is a w-cochain.

Consequently (¢ y(1), ¢ y(J)) = ¢ y(p) is a w-balanced pair. ®

3

In order to extend arbitrary supports to proper ones we need the following

notions.



Definition 1.3. Let U be a supportin w € Dgandletp =(i,7), 2, = (4. J,)
be two w-nested pairs.

(1) pis U—relevant if {i,i+1, ..., j3NU # 2.

IS

(2) p and p, are U—equivalent, denoted by p = p,, if

fi,i+1, .., FiNU =, 4+ L fdNU. .

It <

We use [p]y to denote the equivalence class of p with respect to ; that

is the set of all w-nested pairs U-equivalent with p.

If p is U-relevant, then clearly [p ]y consists of U-relevant pairs; we say
then that [p]y is U-relevant. The set of w-nested pairs that are not
7

U—relevant forms an equivalence class of = .

Example 1.1. (continued)
(6,13) is U-relevant because {6,7,...,13] U = {7,10{.
(7,10) and (B,13) are U-equivalent w-nested pairs because also

$7.8,..100 U = §7.10).

(11,12).

i

(8,9) and (11,12) are not U-relevant and consequently (8,9)
[(7,10)]y = {(8,13), {7,10)} and
[(8.9)]s = (89), (11,12)). =

Lemma 1.4. Let U be a support in w € Dy. The elements of a U-relevant

v
equivalence class of = form aw-chain.

Proof.

Let {i,, 71) and (iz, j2) be two different U-equivalent w-nested pairs. We

may assume that 1; <iz. -
Then eitheril <’?:2 <j2<j101"7:1 <].1 <’l',2 <j2.

Assume that the latter (i.e., the "or" case) holds.

Then §i,, %,+1, ..., 110 N\{2, 12+1, ..., 72} = @. Consequently, since

g

a2



[
(i1.71) 2 (iz, 72), fiy, it L JdNU =g, e+l L JiNU = 2. This
implies that (i;, 7,) and {(iz, 72) are not U-relevant.

Thus, if we have two U-relevant w-nested pairs that are U-equivalent, then
the former (i.e., the "either" case ) holds: one pair lies within the other. It is
now easy to see that a set of U-relevant U-equivalent w-nested pairs forms a

w —chain, ®

Let k =p;, ..., Pm be a w-chain. Then we write out{x) = p;; hence out{x)
denotes the outer pair of x. Moreover, somewhat informally, we will use the
notation out([p]y) to denote outf (k) where & is the chain consisting of the ele-

ments of [p]y (see the above lemma).
Definition 1.4. Let w € Dy and let U be a support in w. The extension of U
(in w), denoted ezt {U) is a support in w defined by

ext,, (U) = cply,(U)Utout ([p]y) | p is a U-relevant w-nested pair}. =

Note that the extension of a support U in w € Dy is w-complete. Further-

more, w-nested pairs contained in ext,, {U) are U-relevant.

Example 1.1. (continued)
For U = {2,3,5,7,10,14} we have the following U-relevant classes: {{1,4), (2,3)},
$(5,14)} and {(6,13), (7,10)3.

Hence ezt (U) = UU(L1,4)U(5,14)(J(6,13) = {1,2,3,4,5,6,7,10,13,14}. =

Lemma 1.5. Let U be a supportinw € Dy and let V = ezt (U). Then
(1) Ucv,
() if p=(i,j) is a w-nested pair such that p CV-U, then
fi+1, 142, ..., i-1NU # 2, and
B) ife={(i,, 7). (iz, jg) is aw—cii;@n such that (i;, 7;)U{iz, j2) € V=U, then

either {i,+1, 1,42, ..., i;=1J\U # 2



or {jo+1, Jo+2, ..., 7, -13NU # P.

Proof.
(1) Obvious.
() V =ext,(U) contains only U-relevant pairs. Hence {i,i+1, .., 7{NU # 2,
but {(1,7)\U = @ and consequently {i+1, ..., 7-1{N\U # 2.
(3) (11, 7)NU =2 and (iz, ja) U = 0.
If moreover both {i;+1, 4;+2,...,1:—1yN\U =0 and {jot+1, .. 75,-1iNU =2,
then (i, 1) and {iz, j2) are U-equivalent.
Since (i,,j)NU =80, (i,,7,) was added in the extension so we have
(i1, 71) = ouwt ([(i1, 7 )]w).
Analogously we conclude that (iz, j5) = out{[{(iz, j2)]v).

But [(i,. j1)]y = [(iz. j2)]v and consequently (i, , j;) = (iz, jz); a contrad-

iction. =

We are now able to prove our main result concerning the extension of a sup-

pert in a word.
Lemma 1.6. Let U be a support inw € Dy. Then V = ext,,(U) is w-proper.

Proof. Let ¥ = w(V) and let k be a ¥-cochain. In order to prove the lemma

we have to show that ¢y(k) is a w-cochain.
Assume to the contrary that ¢(«) is not a w-cochain.

This implies that there are two w-nested pairs (i, , 7,) and (i3, 72) in ¢y{x)
with j; <ipsuchthat (i,, j2) is not w-balanced.
Hence there has to exist a w-nested pair (ig, j¢) such that
eitheri; <j, <ig<ig <Jz<Jg or ig<i, <j,<jg<iz<js

Since these two cases are*symmetric we discuss only the former one (leav-

ing the latter one to the reader).



Thus assume i, < j, <1ig < iz < jz < 7o for some w-nested pair (ig, jg).
The pair (ig, jo) is U-relevant because (iz,jz) is U-relevant. So
(i, 7) = out{[(ig, jo)]v) is a well-defined w-nested pair. (i,j) C ext,(U) = V.
Since (i), 7;) is U-relevant, {i,, 1,+1, ..., 7, U # @. This implies that i > j,,

because by definition (i, j) is U-equivalent with (i, 7).

Hence we have found (i,,7;,%,1%3,J2,7) CV for some w-nested pairs
(i1,71), {i2,72) and (i,7). This contradicts our assumption that

(p7'(31), ¢7'(41)) and (¢7*(iz), ¢7'(jz)) are nested pairs in a ¥-cochain «.

Consequently ¢y{k) is a w-cochain for every ¥-cochain k. ®
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2. A SPARSE PROOF OF OGDENS LEMMA.

The Exchange Theorem given in [EHR2] has turned out to be very useful in
Part T of this paper; it will also play a crucial role in the present part. Our basic
techniques are the same as before. We use Lemma 1.4.2 to relate balanced pairs
in the weak description of a computation to equivalent pieces in its trail. We can
"pump"” these pieces using the Exchange Theorem. Lemma 1.4.1 is used to
establish a relationship between occurrences in the result of a computation and

‘occurrences of right letters in its weak description.

Since Odgen’s Lemma deals with "special' occurrences in a word of a
context-free lanéﬁage, now we are not interested in all occurrences but rather
in "special” subsets of these letters. In dealing with these subsets the results on
the sparse structure of Dyck words presented in the previous section become
important. They enable us to embed properly "special” balanced pairs in the

weak description of a computation.

Theorem 2.1. (Ogden’s Lemma) Let K be a context-free language over an
alphabet @. Then there exists a constant d € N* such that, for every w € K and
every AC fs{w) with #A>d, there exist segments U, 4 U,  Us ] U, < Us

satisfying
5
@) rs(w) = 4,
i=1

(ii) either U;, Uz and Uz contain elements from A
or Uz, Uy and Us contain elements from A,
(iii) Uyl Usly Uy contains at most d elements from A, and

(w) wwiwgwiws € K for every n € N, where w; = w(l;) for all 1 <i<5.

Proof.

Let G = (G,, Gy, E) be a real-time cp system-;\c'bmputing K = L(G), where
G =(%,P;,S,,0)and Gy = (8, Py, Sa). - |
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Let d = 4(2r®)®) where = #T(G). We will show that the theorem holds

for this choice of d.

Thus consider a word w € K and a set A C fs{w) of occurrences in w such
that #A=d. Then let p be a successful computation in G such that res{(p) = w
and let a = tri{p) , £ = wdes{a). As usual, we consider « to be a ['(G)-coloring of
& o maps every occurrence in fs{a) = fs{¢) to an element of I'(G). Then of
course, nd{a) = 7.

(7 is a real-time cp system, thus every occurrence k of a right letter in £

corresponds in a natural way to an occurrence of a letter - ctb{a{k)) - in w (see

Lemma 1.4.1). This correspondence is described by the V-embedding ¢y, where

V=tk € fs(¢) | &k) € 2?2% is the set of occurrences of right letters in ¢. Thus,

for a support W in &, we have ctb {a{W)) = w{e7(W)).

Let A; = py(A), hence A, consists of those occurrences of letters in £ that
contribute to occurrences of "distinguished" letters in w (that is occurrences in
A).

Then let Z = extg(AE) be the extension of A¢ in £ A coﬁsists of occurrences
of right letters in £ only, but % contains at least these and the matching
occurrences of left letters in ¢ Consequently, for any £-complete support W

#(WNE) = 2(WNAg), and in particular we have # 2 = 2#A, > 2d.

Claim 1. There exists a balanced segment ¥ in £ such that
(a) #(WNA) =d, and
{b) W contains
either an a-uniform £-chain k with || = 8
or an a-uniform ¢-cochain & with || = 3,

each pair of which is contained in Z.
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Proof of Claim 1.

Z is a {-complete support, hence £ = £(Z) is an element of Dy, It has length

ItI

€] = #2=2d.

According to Theorem 13.1. there exists a balanced segment
W={(i,i+1,...,7) in € such that d < #%¥ < 2d. If we consider & = a(E) as a
I'(G)-coloring of £, then ind(&) = 7.

Theorem 1.3.5. implies that either ¥ contains an &-uniform ¢-chain & with
|E] =8, or W contains an @-uniform &-cochain ¥ with |&| = 3. So let & be either
a é-chain or a E-cochain as above. We consider both cases at the same time.

By Lemma 1.6. Z is a £-proper support. Hence k = ¢x(k) is a ¢-(co)chain.
The pair (7, 7) is é&-balanced, thus (i, 7) = ¢=(1), ¢=(j)) is also ¢-balanced,
because Z is é-proper (see Lemma 1.3).

Let W =(i,i+1,...,7). Then W is a {-balanced segment that satisfies our

claim. This is seen as follows.

(@) #FNA) = H(WNE) = =T <d.

(Here we have used the fact that ¢y is a bijection between # and W NZ.)

(b) Obviously « is contained in #. Furthermore, & is a-uniform. This follows
from the ®-uniformness of & and the fact that @(k) = @&(k,) implies that

algz(k)) = alpzk.)).

Hence our claim holds. =

It seems helpful to illustrate some of the notions used in this claim with an
example. Since the constants used in the proof become rather large even in
simple {(but nontrivial) cases we give a "scaled” example: the longest uniform
chain in the trail of the computation we present has length 2 and it contains no

non-trivial (longer than 1) uniform cochains.
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Example 2.1.
Let G = {G,, Gz, R) be a cp system which has the following rewrites:
Y = (X » oX, A~ BA),
Yo = (X > bY, A - A),
Ya = (Y » bX, B » A),
Yy =(Y->cY,B > A)and
Yo=(Y>c ,B > A).
Furthermore, let G; = ({X, Y, a,b,c}, P, X, {a,b,c}) and Gz = ({4,B}, P2, A),
where P; and P; are chosen in such a way that they "fit" the set of rewrites.
Consider w = aaaabbbebbe € L(G) together with the set A= {2,6,7] of "dis-
tinguished" positions in w.
A possible computation p for w in & is determined by the control sequence
cont(p) =Y. %1, Y1 V1 Y. Yo, Ve Va. ¥a, Yo Yo
This computation has the trail
a = tri(p) = [XGAI[Yy, 01y, 1lyy, 2l¥a . 0] -+ [¥e, Oll¥o., O

The weak description £ of p is given by

AA A AA -~ A

¢ = AABAABAABAABAABAABBAAR

and obviously fs{£) = fs{a) = {1,2, ...,221.

The occurrences of right lett‘ers in ¢, that is occurrences in « "contributing” to
symbols in w, form the set |
V=1{25,8,11,14,15,17,18,19,21,223.

In V we distinguish the set A; = {5,15,17}. cpl{As) = {4,5,12,15,16,17].

¢ contains the following As-relevant pairs:

{3,22), (4,5), (6,19), {(9,18), (12,15) and (16,17).

Of these only (6,19) and (9,18) are Agiequivalent. So

out ([(9,18)]A€) = out ((6,19),(9,18)) = (6,19).

Thus = ext(A) = {3,4,5,6,12,15,16,17,19,22).

Then € = £(5) = BAABBBAABE and
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=o(Z) = [¥, 1Y 2][¥ Ol[¥, ., 1Yy, L]¥s, 0l[¥s, 11[¥e. 0J[¥s, 0][¥o . 0.

¢ has an @-uniform chain & = (4,9),(5,6) which is mapped by ¢z to the a-uniform

=]

¢-chain « = (6,19),(12,15).

The above may be depicted as follows.

Figure 2.
Figure 3.

Figure 4.

(End of Example 2.1.). ®

Proof of Theorem 2.1. (continued).

The above claim enables us to find a splitting of a suitable for the applica-
tion of the Exchange Theorem.

Let ¥ be as in the statement of Claim 1. We consider separately the case
when W contains a chain and the case when # contains a cochain.

(1) Let £ = (i1, 1), ..., (ig, Je) be a c-uniform §-chain contained in #. Then
let Wqy, Wy, ..., Wig be the k-splitting of £.

The following two claims are helpful in proving the second condition from

the statement of Theorem 2.1.
Claim 2. Wsﬂ[lf #0.
Proof of Claim 2.

& contains only Agrelevant pairs, especially (ig, Jg) CZ = ext (). Hence

WeﬂAg 0. " "”
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Claim 3. There exist two pairs P = (45, j) and P; = (i, 7;) of k, where
1<s <t <5, such that
gither Wy ﬂAf # @ and W, ﬂAf # 0

or ng_.g ﬁAe # @ and le—s ﬂAé # 0.
Proof of Claim 3.

Observe that by definition A; contains only occurrences of right letters in £.
Hence the occurrences iy, ..., is all belong to Z—A;

We consider separately three cases, depending on how many of the
occurrences jj, ..., j5 are contained in A |
(a) There exist s,t with1<s <’t < 5 such that js , 7; € A
Then clearly "or"” holds.

(b) There exists exactly one r, 1 =7 < 5, such that j, € A,.

Since obviously Wi .MNA¢# £, "or" holds whenever for some p #7
Wig—p N4 # §. So assume that this is not the case; for every p # 7 we have
Wizp A = 2.

Then let

_]3ifr € 1,3,
S=11,ifr €§3,4,5}, and

[aitr €123,
E=12 ifr € 14,5,

Note that r is different from all elements of {s, s+1, ¢, £ +11.

Since (45 , J5) U{ts+1 . Js+1) € Z—A¢ , Lemma 1.5.(3) implies that
either Wy MA¢ # @ or Wi s MA # 2.
But we have assumed that W3- MA; = @, consequently W NA: # 2.

In the same way we deduce.that W, N4, # 2.

Hence we are left with the "either'’ case of the claim.

{c) For all 1 <7 < 5 we have j, € E-Ag
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Then applying Lemma 1.5.(3) to (4., 77), (%41, Jr+1) we find that, for each
l=7r =<4, either W,NA # @ or Wier N # £. A simple counting argument
yields that at least two of the sets W, , Wo, Wg, Wy, Wg, Wg, Wi and ¥y, that

have a nonempty intersection with A; must lie at ""the same side"” of Wg

This implies that our claim holds. =

Let s,f be as in the above claim. We write

. -1
W1 = U Wk,
- k=0

5

Wg = U Wk:
k=t

—Wa = Ws,

_ 12-¢

Wy= ) W and
k=7

. 12

W5 = U Wk,
k=12-t+1

Now we show that, for i =1, ..., 5, U; = ¢7(W;) satisfles the statement of
the theorem. This is seen as follows.
(0) Obviously #; q Wz -+ { Ws. Hence Uy U< -+ < Us because

¢v!is an increasing function.

5 12
i) k_) L_) We = fs(€)2

5
Hence | ) U; = ¢\ W;)2 ¢7Y(V) = fs(w). The reverse inclusion is obvious.

i=1 i=1

W

5
Consequently | ) U; = fs(w).
i=1

(i) Clearly, if W;M\A¢# @, then U,MA# @2 fori = 1,2, ...,5.

Thus, by Claim 2, Ug contains an element from A. Moreover Claim 3 implies

that either U, and U, or U, and U5 contain elements from A.
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11
(iii) The chain & is contained in ¥, so |_) W, C W.
k=1

On the other hand, according to Claim 1, #{W NA) < d.

4 11 4
Hence, because |_J W, \_J W we have #(|_J W;"\A;) < d. From this it fol-
i=2

i=2 k=1
4 4
lows that | ) U; = ¢*(\_) ;) contains at most d elements from A.
i=2 i=2

(iv) Let oy = a(W;) fori =1, ..., 5.

Then o as0z0505 = trl{p).

{(i; , j:) and (ig, i) are a-equivalent ¢é-nested pairs. Hence by Lemma 1.4.2.
OaClglly ™ Og.

Exchanging these pieces in the trails of two copies of the computation p
leads to {unique) successful computations pg and py in G such that
tri{pg) = aj0g0s and
tri(pz) = o0z, = ayofagafas.

We apply the Exchange Theorem once again, this time to the equivalent
pieces o3 (in pp) and cpagey (in p) to obtain a successful computation pg in G
such that |
tri{ps) = cyofogosoynfos = aqefagadas. Continuing in this way we get an infinite
sequence of successful éomputations Po.P1=pP.P2,P3, '+ in G such that, for

every n € N, tri{p,) = a,afogolas.
This implies that res(p,) € L(G) = K for every n € N.

Hence, for allmn € N, wwBwawiws € L{G) = K, where

w; = ctb(oq) = ctb (W) =wley' (W) = w(ly).
This proves the theorem in the "chain-case".

Example 2.1. {continued)

Let #,, Wa, ..., Ws be the «-splitting of ¢ and let for i=1,2, ...,5, U; = o7 (W,).
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Then U, = {1,2}, U, = §3,4}, U = 5,6}, U, = {7,8,9} and Us = {10,11].
Applying the Exchange Theorem to the equivalent subwords of £
BAABAABAABAABE = ¢(Wa\JWa\UW,) and
BAAB = ¢(Ws3)
it is possible to find computations in & for the words
w{UNw (U w{Uzyw (U w(Us) = aa{aa)?bb{beb)"be, foraln €N,
Note that U, A= @ and UsN\A = £, thus this partition of fs{w) does not
satisfy the second condition of Theorem 2.1. (End of Example 2.1.). ®

() Let £ = (iy, j1), (i2, j2), (ig, j3) be a a-uniform ¢-cochain contained in
w.
Let Wy, Wy, ..., Wg be the k-splitting of £. The following result can be proved in

the same way as Claim 2.

Claim 4. W N\A:# 2, WaN\g # 0 and WsN\A # 0. ®

We choose now U; = o7 W), where W, = WolUW, UWs Wg= W UW,,
W= Ws, Wo=0 and Ws = Ws.

This choice satisifes conditions (i) through (iv) from the statement of
Theorem 2.1. The proof of tﬁis fact is omitted, because it can be done analo-
gously to the proof give for the ''chain'-case. As a matter of fact, now the proof
is quite simpler: in the "cochain” case our construction implies that the
"either"” part of condition (ii) from the statement of the theorem holds - hence

now Claim 4 can replace Claims 2 and 3.
We would also like to remark the following concerning the proof of (iv) in the
"cochain" case: now opagay, ™ g, where o; = o(#;) for i = 1, ..., 5, follows from

the fact that (iz, 73) and (i3, j3) are equivalent ¢-balanced pairs.
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Hence the theorem holds also in the "cochain' case.

This concludes the proof of Theorem 2.1. ®
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