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ABSTRACT

An improved theory for the input impedance of a probe-fed micro-
strip patch antenna has been developed. The natural modes are established
on a transverse resonance condition which incorporates the angularly
dependent reflection coefficientsand a dynamic wall susceptance associated
with the patch boundaries. The input reactance is shown to he largely
associated with the evanescent waves confined to the vicinity of the probe
while the input resistance is associated with the excitation of the mode at
resonance. Analytical results are presented to describe the input impedance
of & rectangular patch antenna as a function of its dimensions, substrate
thickness and dielectric constant, probe dimensions and Tocation and the

frequency.
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1. Introduction

Mathematical modeling of the basic microstrip radiator was initially
carried out by applying the transmission 1ine analogy [1,2] and then later
by the cavity model [3-5]. Both these theories have the same difficulty to
account properiy for the dispersion of the grounded dielectric. Of partic-
ular interest here is the modal expansion method used in the cavity theory
[3]; the interior fields here are assumed to be composed of discreté modes
obtained from a fixed angularly independent wall reflection coefficient.
The effect of radiation is represented in an ad hoc manner in terms of an
increased substrate loss tangent [3] or by the method of impedance boundary
condition at the walls [5].

In a recent paper by Chang [6] resonant characteristics ¢f an unloaded
rectangular microstrip patch antenna were determined from the viewpoint of
plane waves that propagate under the microstrip patch, bounding back and
forth from the edges and interacting in a constructive manner. Analytical
expressions were derived in [8] for the reflection coefficient of a plane
wave incident obliquely onto the patch boundaries by solving a dual Wiener-
Hopf equation [7]. 1In this paper our purpose is to extend this method to
a loaded resonant patch antenna fed by a thin-wire current probe located
under the microstrip patch. Input impedance for a resonant patch is then
determined analytically in closed form. Simple expressions under a thin
wire, thin-substrate assumption'is obtained and compared with those in the

literature.



2. Excitation of guided modes on a wide microstrip stripline

In order to develop a dispersive model for the resonance of a rectangular
probe-fed microstrip patch antenna we first need to consider the correspon-
ding problem of an infinitely long microstrip stripline of the same width and
examine the excitation of guided modes on such a structure. As depicted in
Fig. 1 a microstrip of width % is situated on the surface of a grounded
dielectric substrate of thickness d and relative permittivity €. @
current probe of radius a is located at (xo,yo) and assumed to have a
filament current of I0 exp(-iwt) where w is the angular operating. fre-
quency and I0 is the amplitude of the current. We assume that the
thickness d 1is electrically very small, i.e., kod << 1 where ko is the
free space wave number and that the width of the microstrip is much greater
than the thickness, i.e. 12 > dz, so that the recuirement of a constant
current distribution is a reasonable one. It also allows us to consider the
guided modes supported by the structure as a result of constructive inter-
ference of plane waves emanating from the current probe because the micro-
strip in effect forms a truncated parallel-plate waveguide in the presence
of the ground plane. Having said that, we can write down without difficulty

the complete plane wave spectrum of the electric field in a parallel plate

region as . _ ,”E 2
1k0cﬂx-x0) 1k0\n - (y> -y<) da
A e T2 ()
L (n® -a%)
where
Yy, _ max
s min (y,yo)
and wul (2)
A = - -9
0 dn

Reflection occurs as these plane waves represented by

- 1
exp iko[ iax.t(nz—az)zy] impinge onto the two edges of the microstrip stripline.
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Fig. 1 . Infinitely extending wide microstrip stripline.



Denoting the reflection coefficient as I'(a) for a wave reflected from the
- i
edge at an angle defined by tan ][a/(nz-uz)ﬂ] we can derive the expression

for the total field under the microstrip by first assuming the form of the

solution as

T Ak alx-x )p ik E(y-y ) ik £ (Ly)
EZ=A0fe° °[e° ot e 0 F (3)
-0 ik £(y + R’) da
+ Be © [ Yap
where )
£= (n? - oZ)* (4)

A and B are the amplitudes of the waves bouncing back from the
edges located at y = + £/2, Expressions for A and B can then be deter-

mined by imposing the known conditions

ik _ty ik £ 8/2 ik £8/2
A=(e ® ®+pe @ "ria)e © (5)

ik &£y ik £40/2 ik g1/2
B=(e 9 %4+pe © )T(a) e © (6)

which after some manipulation yields
o A ) . ) ik &g
£ =A gg-e1koa(x XO)[e1k°€ly a ¢ 2la)e
z 0 £ An

Lo (7)

| 1k £2 '

feos kE(y +y ) + T(a) e © cos ko?;(:f-yo)}]
where 2ik £2
b =1 - Fz(a) e ©

(8)

Integral representation for I'(a) has been previously obtained by
Chang and Kuester [7] based upon a Wiener-Hopf formulation of a semi-
infinite patch. A close form‘expression under the assumption of a thin
substrate is given in [8] and repeated in the Appendix A for convenience.
We note from (A.1) that the magnitude of I{a) 1s equal to one for a > 1.

Physically this means that a total reflection of the incident wave and



therefore the possibility of establishing a transverse rescnance of waves
bouncing back and forth between the two edges can indeed exist. Letting
the phase of I'(z) be defined as x{a), i.e. I'{o) = exp{-ix(a)), a con-

structive interference of waves occurs whenever
koll(n2 —uz)% -x{a) =pm; p=0,1,2... (9)

This is precisely the same condition for the denominator, An in (8) to
vanish. If we thus allow ourselves to deform the contour to the upper half
of a complex a-plane for y > Ygr OF to the lower half plane for y< Yo

the residue contribution from the poles in (8) yields exactly the excitation
of the guided mode(s) supported by a microstrip stripline. In most practices,
the width £ s chosen to permit a solution only for p = 0 so that the

field corresponding to this mode is given as
_ 4nAocos(k0£0y).cos(k0 aoyo) 1k0£0(x> -x.)

(10)
(exlog) + kpa)

EZO

- : = (n? - 49"
where x2 ﬁ?ﬁ %o} &g (n® - ag)
tiation of x(a) with respect to o ata = o . We note that the value

and x'(ao) is the differen-

of @, can be determined exactly from the transcendental equation given

in (9). We should point out that in deriving the transverse resonance
condition, we have obviously ignored the coupling between the two edges

via the top surface of the microstrip. However, from the Wiener-Hopf
derivation given in [7] we can easily establish that the omission of the
external coupling is in the order of kod exp[—kok(nz-])%] which is typically
very small. This is because of our approximations of a thin substrate

(kod << 1) for a relatively wide microstrip (say, m > nkoﬂ > 2m).

In addition to the guided mode, one certainly expects the presence

of a reactive field (equivalent to ihe higher order evanescent modes in a



closed metallic waveguide) and a spurious radiation field when a current
source is placed inside an open waveguide structure. Indeed a closer
examination of the expression [I(a) given in (A.1) indicates that the
integral representation for E, contains a pair of branch cuts (1 -cxz);'5

in the complex oa-plane. This means that, when we deform the contour in

the upper (or Tower) half plane and thereby pick up the residue contribution
from the guided wave pole(s), the expansion is really not complete unless

we also include a branch cut integration at o = 1 (or @ = -1) as shown in
Fig. 2a.

Provided that the substrate is electrically thin (kod <<1) it is
shown in the Appendix B that we can ignore the spurious radiation and
represent the reactive field by an expression corresponding to the case
when the microstrip is enclosed by a pair of perfect magnetic walls.
Consequently, the fotal e1ec£ric field under the microstrip is given by
E.=E__+ EZr where EZr is the reactive field given in terms of the

z z0
residues at the poles corresponding to the evanescent modes shown in

Fig. 2b:
21A o ik £ (x, -x_)
_ 0 1 o pt> 'k pm 1P By
Ear * & pzl % : [cos £ (y+y0) * (-1)7eos Ty yo)}
(11)
where n (12)
= 2 -
Ep (n ap)
and
2-%
=|nd _ (BT
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3. Field expression for the resonant mode of a rectangular patch antenna

Based upon the guided wave representation we have constructed in the
previous section we now consider a rectangular patch antenna as a truncated
wide microstrip of width & and length h as shown in Fig. 3. Clearly
the resonance of such an open resonator can be viewed as a result of con-
structive interference of the guided modes bouncing back and forth from
the two ends, i.e. x =th/2, of the truncated structure. Now since the
guided mode itself is expressible in terms of two zig-zagging plane waves
of the form exp(ikoaox + ikoaoy) as given in (1) in the region x > X,
and exp(-ikoaox + ikogoy) in the region x <-x0, we can again utilize
the reflection coefficient expression in Appendix A derived for a plane
wave with the only modification of changing the angle of incidence by a 90°
or according to the relationship 50 = (n2 -ag)li replacing F(uo) by
P(Eo). Thus, if we now express the x dependence of the total guided
mode field under the patch as

ik a|x—x0[

. h . h
1k0a(§—x) 1k0a(x +§)

+De

(14)

We again obtain the expression for C and D by replacing the reflection

coefficient as in (5,6). The result is ik o h
] 00
i 4ﬂA0cos(kagoy)cos(kagoyo) 1k0a0]x—x0] Zr(go) e
Sox lag) +k 2 o 0
1k0aoh
x {cos ka {x+x;) + I(g )e cos k o (x -xo)}] (15)

We note that since the effective dielectric constant for the guided

mode of a wide microstrip is typically very close to the substrate dielectric
i

constant so that Eo = (n2 -c;(?;‘)‘§ < 1, the magnitude of F(EO) as given in
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Fig. 3. Truncated microstrip patch antenna
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(A.1) s always less than unity. Physically it means there will always
be some radiation from the two ends of a truncated microstrip. Obviously,
this interpretation of what happens at the ends and the side of a trun-
cated microstrip is consistent with the so-called radiating and non-
radiating walls in the conventional theories of the microstrip patch
antennas. Different from the conventional theories, however, is that

our result is dynamic in nature and self-consistent. It does not require
any patch-up work to obtain our final expression given in (15).

For the case of a resonant antenna, the operating frequency is so
chosen that the magnitude of the depominator is at its minimum. In other
words the reflected waves have to be in phase so that for the TMoq mode
we have

kol - x(E)) = ar s q=1,2,--- (16)
Following a similar procedure for the approximate field expression given
in (12), we can show that the reactive field of the patch is given by

. . ik a_h
2mA ozo ] [e1k0ap|x-x0!+ 2e 0P

{cos koap(x +x0)

ik a h
op )
+ e cos koap(x xo)}]

x Leos B (y+y ) + (-1)P cos BT (y-y )] (17)

Here, for simplicity, we have assumed that the reflection coefficient equals

to +1 at the two ends x= + h for ali the evanescent modes under the patch.
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4. Input impedance to a probe-fed rectangular microstrip patch antenna

Now that we have the field distribution under the patch, the input
impedance can be found quite simply by relating the voltage V = -Ezd
to the current on the probe following the so-called emf method. The
average tangential electric field produced by the current on the surface

of the probe is given as
2m
1 [ ,
<E> =5 E_(x, y) d¢ (18)
a 2 z
z T > X = Xy + & cos ¢
¥
Now, since the radius of the wire is assumed to be very small, i.e.

a sin ¢

koa <<1, we can set a = 0 except for the term

2T .

® ik @ |x-x |
?% J [ ) f%-e op 0 cos(gE%X )] d¢ (19)
p=1
9]
as it represents the predominantly reactive field near the surface of

the probe. It can be simplified by subtracting out first the dominant

term for p>>1 and ap = i %E% which in turn can be evaluated
0

analytically. The details are given in Appendix C.
The input impedance to the probe fed rectangular patch antenna can

be obtained as follows:
7, = - F2a
in Io

Z0 - dupl (20)

where Zo, the input impedance assocaited with the resonant mode and L,
the inductance associated with the reactive field produced by all the
evanescent modes, are obtained by substituting (C.9) into (20). We have

then ) ikouoh
21 (g de ik o _h
7 = —uwud P + 0 - {cos 2k o x + r{g Je ©°0
] ' . 21k o _h 000 0
(EOX (Oto) +k10‘.0) 1 _Pz(go)e 00 (2”}
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cos 2k o.x_ + e1kgz]h k % ch(ﬂmxo) ve
d 0 + 0, 3
k & 3
0

1o
ay sin kotl-lh 2n Sh(@)
+o— + =
1or,] ail ]
d

+ -[2 anfP22 n T (h-2x )sh T (heax ) sh 2]

L =

4

(22)
2(4mh +a) + on 2]
b
+ 6(a)
Here ik o h 47X _ZE_h
w cos 2k a x_+e 2P k 2 ch O+ e
8a) =S ¥ opo + 0 . %
ke p=2 o, sin koaph 2m <h g%g
1 k 2
_ _0_
* iap * 2[317] (23)

Again, @ is the normalized propagation constant of the resonant mode as

given in (9) and o is the normalized attenuation constant of the pth

evanescent mode in the patch. 1In (22) we have taken out the p=1 term

from the summation in {23). &(a) can be shown to be numerically of the

3

order of 107 for kod <<1 and can indeed be ignored while calculating Zi

0
In our analysis here we have discounted the existence of a TM00 mode which
yields a basically uniform charge distribution on the patch and is asso-

ciated with the static capacitance of the patch. This gives rise to a

reactance of the form [5]

- id
x00 T elhw (24)

The total input impedance would be the sum of (20) and (24).
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5. Results

In Fig. 4, the input resistance and reactance due to the propagating
mode of a rectangular patch of dimension & = 6.858 cms and h = 4.14 cms
mounted on a grounded dielectric of thickness d = 0.1588 cms and €, =2.5,
excited by a probe of diameter 2a = 0.132 cms, is shown as a function of
frequency and is compared with exiﬁting results [9]_for a similar patch.
There is a 1% difference in the resonant frequencies obtained by the two
theories. The difference derives from the fact that the dynamic end
susceptance as calculated from Im(Y) where

1 +

. _ I'io
Yk so) = ¥ vt (25)

and Y, = (120wd/n)'] is the characteristic admittance of the TEM wave
in a parallel plate waveguide, is not Tinearly proportional to the oper-
ating frequency as in the conventional case where the end susceptance

is typically obtained from a stati; assumption.

The series reactance for the same structure is shown in Fig. 5 for
varying substrate thickness. Since in our formulation we have approxi-
mated the reflection coefficient to unity for the evanescent modes, we
obtain the same result as that using the cavity model. However, the
mathematical form of (22) is much simpler than the familiar double summation
of the cavity model. In fact, (17) with a single summation of evanescent
modes can be shown analytically to take the same form as that in the cavity
model. This is given in Appendix D.

Figures 6 and 7 show the input resistance and reactance due to the
dominant mode as the substrate thickness varies. As expected, the
resonant frequency shifts and the bandwidth increases with increasing

electrical thickness.
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6. Conclusion

An improved theory has been developed to describe the input impedance
of a probe-fed rectangular microstrip patch antenna. The entire spectrum
of plane waves has been considered to include both the propagating and
evanescent modes. The primary feature of this theory is the dynamic nature
of the resonant resistance and frequency. Further, the series reactance
is expressed in a form which is much simpler for practical use. Lastly

the spurious radiation has been estimated to be of the order of kod.
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APPENDIX

A. Angularly dependent reflection coefficient

I'(a) is the complex reflection coefficient of the plane waves bouncing
in the y-direction when tihese waves proceed from the exciting probe and are
incident on the walls y = iA2/2. Whether or not they radiate into space
depends upon the angle of incidence ¢ = sin'](a/n). Beyond this critical
angle the reflection coefficient has a magnitude of unity. The analytical

closed form expression for T(a) from [8] is repeated here.

r(a) = e”1x{0) (A.1)
where ‘
X(o) = 2 tan'] (~—°‘———— tanh A) - fe ( /n2 -a2 ) (A.2)
n/(nz -uz)
K% [/ 4 V()
Aa) = T (-E—;— ur)[in( o =1 kod) + Y-]J
+ ZQO(—Gs) - 200(6u)f (A.3)
> -2/n? -2k d —
Fol-07 -a?) = " . " o {E]; [R,n(/az STk d) +y -1]
+ 200(_53) - n 2w (A.4)

when o =n, A is very small and

2k d P
. 0 _ P 2 ) _
X(a)-—ﬂfhz-az &] a )uriﬁn(/g 1 kod) +y ]}
' 2n2{2Q0(-6€) _ on 2n}
(A.5)
- ol (2,(8,) - in 2-n}]
e -1 W =1 o
§ = e ; § =—L_ Q(z)= ) Z"anm (A.6)

+
e €, 1 u pr‘ﬂ 0
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B. Analysis of the evanescent modes and estimation of the spurious radiation

The branch cut integration along Qo in Fig. 2a obtained by deforming

b

the field expression EZ in (7) gives the spectrum of evanescent modes in
the range 0 to i~ and the spurious radiation in the range 0 to 1.
Rewriting (7) for convenience we have

. . itk &
. ) I da e'lkdx(x> "X<)_[e1€k0(-y>-~y<) N ZP(_(I)E (‘)
2 2 1 -1%(a)e 2tko?

-Q

{cos k0 (y-+y0) + F(a)eiglcos kog(y-yo)}] (B.1)

In this region the reflection coefficient is complex and is given by
I'(a) = edi(xr'+il) where Xp is the real part and the imaginary part A
is given by

k d

V=2 (1-df) (8.2)

and the + signs denote its value on the two sides of the branch

cut. Simplifying (B.1) on the two sides therefore we have

. J do eikoa(x>-x<) cos(gkoi-xr) sh A
zr 3 /n2-a? [51”(5k01"xr) ch A]z + [cos(akoz-xr)sh Ajz
Q
(B.3)

For integration along the imaginary ones from O to i~ for convenience

we subdivide the range

i = i(]m[aé] + 1) (B.4)
where lm(ué ) is the imaginary part of aé determined from the equation
0k
(n? + apz) Kt - xial) = pr, p=1,2,.. (B.5)
Using (B.4) we have the following relations .
) P 0T
£ = n2-a2 = /ﬁé + aéz + 2a5T + T2 = EE + _EE— (B.6)

P
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where
g' = /nz + aéz .

p

Since the contribution to the value of the integral is primarily in the

vicinity of aé we can use the small order approximation to obtain

cos(£k0£ - Xr) = (-1)P (B.7)
and a‘koz
sin (gk 2 -X,) = (-1)”(;{%r—ﬂ-)1 (B.8)
b

Substituting (B.6) through (B.8) in (B.3) we have

-k o'(x. - x)
- i opt> <
Ezr ) €

(-1)P{cos kzp' (yry,)

p 20' 2 b
P P -1 2ig
(1) cos £ (y-y,)} | S5 dt (B.9)
' P 0 o T te
where
E1A
€= —

upﬂko

If we change the variable of integration as
T=¢ tan 6 ,

(B.9) can be simplified to obtain the following results:
2miA -k a'(x_ - x) |
W T 0 op > <_p ' _p SN
Bl o1 © (-1) Eps kobply+yg) +(=1) cos ket (y yoﬂ
p p (B.10)
For the case of perfect magnetic walls, however, y = 0 and with a
similar simplification we can show without difficulty that (B.9) now
becomes ( )
2miA -k o (X_-X
. 0 0Py > < 4P _1\P _
E, = g ar © (-1)"Teos gk, (y+yy) +(-1)cos &k (y-y,)]
(B.11)

Here o is obtained from

p

ko‘/n2 + u§ L = pn
and N T
gp = n2 + ug

(B.12)
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Hence for both the cases, I'(a) = e 1X and T(a) = 1, the same formula is
obtained. The difference is in “p and a; apd from (B.2) it can be seen
that this difference is of the o}der of kod and is, therefore, immaterial
for integration along the imaginary axis. As a result we can make Ma) =1
for the evanescent modes.

Considering now the integral from 0 to 1 and inspecting (B.2) and (B.3)
we see that the integration would be of the order of kod provided £2 < .,
However, at resonance since the resonant term is of the order of l/kod,

the spurious radiation can be ignored as far as the input impedance is

concerned.

C. Averaging the field over the area of the probe

The integration indicated in (18) gives the average field over the
area of the probe. On inspection of (15) and (17) we note that only one

term is divergent and it is given by

21 : .

0 ik a_alsing|

Aok_zf[ ) Exie 0P cosg%lTy]d¢ (C.1)
o 5 p=1 =p

The integration with respect to ¢ need be performed for only this term.
For all other convergent terms, since the higher order terms of the Taylor
series expansion are of the order of koa where a s the radius of the
probe we can approximate x = Xo and y = yo. In contrast the diverging
terms would be of the form of ln(koa) so that the higher order terms of
the Taylor series would approach « with a = 0 and hence the integration
becomes necessary in this case. We further consider a particular case of
the probe centered along the width of the patch, i.e. Yo © 0, in which
case only the even order modes would be excited and p can be replaced

by 2p.
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To evaluate (C.1) now, we first subtract out the dominant part of

the series, when p is large and ap = i %E%', which would be as follows:

T .2pm a|sing
-21‘A0 f [ ) % e * cos(g%1 a cos ¢) do (C.2}
o p=1

and once again for the remaining part of {C.1) we can use the approximation
X = Xgs ¥ = 0 and with a/f <<1 this part becomes
AmiA ®© k
0 [}l- ¢ (c.3)
1mp 2

=]
kOE 0=1

Considering (C.2) now, the series can be evaluated analytically by using
standard summation formulae upon which the integration with respect to ¢

becomes trivial and (C.2) takes the following form

2.2
. ~81"a 2a
1A0 QH(T ) - 2] (0-4)
The second term in the summation of (17) with x = Xo and y = 0 is given
by ik o _h
4nA  » rcos(2k o x ) +e OP
TR 2 [_ 0sliJn0 k_h : (C.5)
0" p1 % 1 %% J

This series can be made into a rapidly converging one by once again

extracting out the term for p large. This would give the following

ik o h anpx,  --22h
4miA o Fcos2kax +e 0P k 2 ch + e )
o z opo + 0 2
EOI p=1 o, sin koaph 27 sh(zEEh )
2pm 2pm
[ ] - h-2X ) o - (h+2x )
-2iA F e PO gjp 7 Lt T o
0 pz] p 0 p:] P
® 1 _Aprh
2iA ) e (C.6)
0 p:] p

The last three terms can be summed anaiytically. The average field over
the area of the probe , obtained by using (15), where x = Xo .and

y = 0, and (C.3) through (C.6) is given as follows:
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A4 ) ikoaoh
T 2r{& Je ik o_h
<E> = 0 [1 + 0 ' '5005 2k a x +T(g )e 00 }
PR EX (@) rk ga ) T 1 rP(e ) e 200N 08 Fggky * T LE,
00 0
+in [ 2 i g, g (h=2¢) sh & (h+2x) sh(Zhy)
i | ikoaph 4p1Tx0 1@2%&
. kw;Ao § cos 2k9upx0 +e , koz ch( 7 ) + e
o 0=1 aps1n koaph an sh(zgzh)
k ¢
1 0
+ iup + EEE (C_7)

D. The limiting case of perfect magnetic walls as a comparison to the
cavity model

The purpose of this section is to show that in the limit of perfect
magnetic walls this theory reduces to the cavity model where the field is
given by the sum of all modes in the x and y directions. For such a
cavity with T'{a) = 1 = Iva% -a®  in (i5) and (17) the electric field under
the patch may be obtained. However in order to show a more explicit comparison
with the cavity model we try to make the single summation that we have here
into a double summation as follows:

In {17) denoting,
. ik o h
ik o {x_-x) o p
= 0Pty ety 2 T T
$p(a) = [e + : _EZikoaph {cos koap(x +x0)

ik o h
+e OP c¢os koap(x - xo)]}

we note that ¢(a) should satisfy a wave equation of the form

2
(4 + k%?)ol0) = -ike (x-x.) (D.1)
dx 0

and the boundary condition
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Assuming a solution of the form

o{a) =) A cos(h/2 x) for n=1,2 ... (D.2)
n

which satisfies the orthogonality relation

h/2
nmx -
[ﬁm cos (h/2 x) I A cos (h/2 ﬂ dx = constant (0.3)
~h/2 for m=n ’
and substituting (D.3) into (D.1) we have
_ _; 2kom 1 gmg
Am s [-kz 5 (g@ﬂ)zj] cos h Xq ) (D.4)
0% ~ \Th
and then substituting (D.4) into (D.2) gives
2
¢(a) =-i kaﬂ ) 57 ] 5er 5 COS (Zﬂﬁx) cos gﬁﬂ-xo) (D.5)
m kpo "(“Trﬂ

Substituting for ¢(a) in (10) and (11) for the even order modes the electric

field distribution under the truncated microstrip patch is given by

8n%ﬂ) Py cos(ggﬂ-yo) cos(zfﬂy) cos(ZrnTT xo) co s(zmTr X)
E_=-i

In order to average the field over the area of the probe we integrate (D.6)

with respect to ¢ as follows:
wul 5 [.os; 7 Yo ) cos{=— )
Zh k n (_E__) (ZmTf)

mex)

<£z>a =1
P m

2
L) cos = (xo + a cos ¢) cos ) (y0 + asing)de

D.7
where Ay is given in (2). (D7)

Performing the integration and substituting in (20), the input impedance

is given by
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cosz(gEE
m k (_E__) - (Zm'ﬂ)z

The modes corresponding to p and m are the same as that obtained in
the cavity model [5] with Jo(v&zm”) + (—ELJ a )

converging factor qnn

corresponding to the

2, ,mm
Yo) cos“(p x ) ), (VQZmn 2 4 (2m)?2 a)

(D.8)



